WO2020019383A1 - 一种透明导电膜 - Google Patents

一种透明导电膜 Download PDF

Info

Publication number
WO2020019383A1
WO2020019383A1 PCT/CN2018/101211 CN2018101211W WO2020019383A1 WO 2020019383 A1 WO2020019383 A1 WO 2020019383A1 CN 2018101211 W CN2018101211 W CN 2018101211W WO 2020019383 A1 WO2020019383 A1 WO 2020019383A1
Authority
WO
WIPO (PCT)
Prior art keywords
blue
conductive film
transparent conductive
protective layer
transparent
Prior art date
Application number
PCT/CN2018/101211
Other languages
English (en)
French (fr)
Inventor
曾西平
靳世东
王海波
李晓明
Original Assignee
深圳市华科创智技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华科创智技术有限公司 filed Critical 深圳市华科创智技术有限公司
Publication of WO2020019383A1 publication Critical patent/WO2020019383A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the invention relates to the field of conductive films, in particular to a transparent conductive film.
  • a dye By adding a dye, the b * value of the conductive film is reduced, and the transmittance of the conductive film is improved.
  • ITO Indium tin oxide
  • ITO Indium tin oxide
  • indium tin oxide substitute materials such as silver nanowires, gold nanowires, copper nanowires, nickel nanowires, silver nanoparticles, gold nanoparticles, copper nanoparticles, nickel nanoparticles, graphene , Conductive polymer (Poly (3,4-ethylenedioxythiophene), Poly (sodium-p-styrenesulfonate)) materials, etc.
  • silver nanowires have the high conductivity of metal silver, excellent flexibility, and a wide range of raw materials and low prices.
  • the nano silver wire with uniform and controllable morphology and high aspect ratio is the best choice for transparent electrode materials of ultra-large size and flexible touch screen.
  • ITO Indium tin oxide
  • the electrical and optical properties of silver nanowire transparent electrodes are competing parameters.
  • the surface resistance of commonly used indium tin oxide is 100-150 ⁇ / port. Because silver nanowires have high conductivity, it is easy to achieve lower surface resistance ( ⁇ 30 ⁇ / port), can provide higher conductivity than indium tin oxide and faster touch response speed, light transmission rate is 92% Above, there is no special pattern and interference moire, which is suitable for touch panels of various sizes. In order to achieve low surface resistance, criss-cross, high aspect ratio silver nanowires need to be spread on the transparent carrier; but with the continuous increase of silver nanowires, the characteristics of yellowing become more obvious (color difference b * value is more high). In the prior art, the relationship between the resistance of the silver nanowire conductive film and the b * value is shown in Table 1.
  • the present invention aims to provide a transparent conductive film in view of the technical problems of coating a large amount of conductive paste in order to achieve low surface resistance of the existing transparent conductive film, and thereby causing discoloration of the film material and poor visibility.
  • CIE Lab * color model (Lab *) based on human perception of color, colorants are added to the protective layer to compensate for the visual effects of discoloration and improve the transmittance of the conductive film.
  • a transparent conductive film includes a transparent carrier, and a conductive layer and a protective layer sequentially coated on the transparent carrier.
  • the components of the protective layer include an acrylic resin, a mixed solvent, and a colorant.
  • the components of the protective layer further include an initiator and a leveling agent, and are mixed in the following parts by weight: 5-10 parts of acrylic resin, 80-90 parts of mixed solvent, 2-5 parts of initiator, and leveling agent 1- 3 parts, and 0.01-0.05% by weight of the total amount of the above-mentioned components.
  • the protective layer is prepared by adding an acrylic resin, a mixed solvent, an initiator, and a leveling agent to the container according to the mixing ratio to stir and mix uniformly to obtain a mixed solution, and then adding 0.01-0.05% by weight of the total mixed solution.
  • the dyeing agent is stirred for 30-40 minutes to make it fully mixed uniformly to obtain a protective layer coating liquid, and then the protective layer coating liquid is coated and cured on the surface of the conductive layer.
  • the conductive layer is a conductive paste coated and cured on the surface of the transparent carrier.
  • the conductive paste is silver nanowires, gold nanowires, copper nanowires, nickel nanowires, silver nanoparticles, gold nanoparticles, copper nanoparticles. One or more of the nickel nanoparticles are mixed.
  • the conductive layer is a silver nanowire conductive paste.
  • the silver nanowire conductive paste includes 0.1-0.5 wt% silver nanowire, the diameter of the silver nanowire is 10-100nm, and the aspect ratio is ⁇ 1000.
  • the mixed solvent is prepared by mixing an alcohol solvent, a ketone solvent, an ester solvent, and an ether solvent in a mass ratio of 1: 1: 1: 1.
  • the dye is a blue dye.
  • the blue dyes are alizarin blue, basic blue 6B, alcohol blue, water-soluble aniline blue, azo blue, brilliant cresol blue, bromophenol blue, carazol blue, quinoline blue, indigo blue, and resin phenol blue.
  • Methyl blue, methine blue, patent blue A patent number five, phthalocyanine, resazurin, benzazine, Prussian blue, methylene blue, thymol blue, and tribenyl blue One or more of them.
  • the thickness of the transparent carrier is 0.01-0.3 mm; the thickness of the conductive layer is 100-300 nm; and the thickness of the protective layer is 80-300 nm.
  • a colorant is added to the protective layer component during the preparation process.
  • the colorant is added to compensate for the The discoloration effect brought by coating; the superposition between the color of the dye in the protective layer and the color of the conductive layer after the discoloration improves the visual effect and transmittance of the conductive film.
  • the transparent conductive film of the present invention has the effect of yellowing the conductive film when silver nanowires are used as the conductive paste.
  • a blue dye to the protective layer, the b * value of the conductive film is reduced, and the conductive film is improved.
  • a transparent conductive film according to an embodiment of the present invention includes a transparent carrier, and a conductive layer and a protective layer sequentially coated on the transparent carrier; the components of the protective layer include an acrylic resin, a mixed solvent, and a colorant.
  • CIE Lab * color model is a color system based on physiological characteristics.
  • the Lab * color model consists of three elements, brightness L and two color channels a and b; a includes colors ranging from dark green (low brightness value) to gray (medium brightness value) to bright pink (high brightness value). ); B includes colors from bright blue (low brightness value) to gray (medium brightness value) to yellow (high brightness value). All colors can be perceived by Lab * scales. These scales can be used to indicate the color difference between the standard sample and the sample, and usually use ⁇ as an identifier. If ⁇ L is positive, the sample is lighter than the standard. If ⁇ L is negative, the sample is darker than the standard. If ⁇ a is positive, the sample is red (or less green) than the standard.
  • ⁇ a If it is negative, it means that the sample is greener (or less red) than the standard sample; if ⁇ b is positive, it means that the sample is yellower (or less blue) than the standard sample; if ⁇ b is negative, it means that the sample is bluer than the standard sample (or Less yellow).
  • the protective layer dyes with different compensation colors are correspondingly selected, thereby achieving the effect of improving the visibility and transmittance of the conductive film from a visual angle. .
  • the components of the protective layer further include an initiator and a leveling agent, and are mixed in the following parts by weight: 5-10 parts of acrylic resin, 80-90 parts of mixed solvent, 2-5 parts of initiator, and leveling agent 1- 3 parts, and 0.01-0.05% by weight of the total amount of the above-mentioned components.
  • the acrylic resin is one or more of epoxy-based acrylic resin, urethane-based acrylic resin, and polyester-based acrylic resin;
  • the initiator is 2,4,6-trimethylbenzoyl-diphenyl oxidation.
  • One or more of phosphine, 1-hydroxy-cyclohexyl-phenylmethanone, 2-hydroxy-2-methyl-1-phenyl-1-acetone; leveling agent is polyether-modified siloxane , Such as BYK333, BYK306 / 307, Teco 450 and so on.
  • the protective layer is prepared by adding an acrylic resin, a mixed solvent, an initiator, and a leveling agent to a container according to a mixing ratio, and mixing them to obtain a mixed solution, and then adding 0.01-0.05 wt% of the total amount of the mixed solution.
  • the dyeing agent is stirred for 30-40 minutes to make it fully mixed uniformly to obtain a protective layer coating liquid, and then the protective layer coating liquid is coated and cured on the surface of the conductive layer.
  • the protective layer coating liquid is applied on the conductive layer in a slit coating manner, the coating speed is 180-220 cm / min, and the curing temperature is 60-130 ° C.
  • the conductive layer is a conductive paste coated and cured on the surface of the transparent carrier, and the conductive paste is silver nanowires, gold nanowires, copper nanowires, nickel nanowires, silver nanoparticles, gold nanoparticles, copper One or more of nanoparticles and nickel nanoparticles are mixed.
  • the color and brightness displayed by the conductive film are different.
  • different amounts and colors of colorants are selected as components of the protective layer for coating. The compensation between the two colors achieves the effect of improving the transmittance of the conductive film.
  • the conductive layer is a silver nanowire conductive paste. More specifically, the silver nanowire conductive paste is uniformly coated on the surface of the transparent carrier in a slit coating manner, the coating speed is 80-120cm / min, the curing temperature is 70-130 ° C, and the pump speed is 20-80ml / Min, the wet film thickness is 10-80 ⁇ m.
  • the silver nanowire conductive paste includes 0.1-0.5 wt% silver nanowires, the diameter of the silver nanowires is 10-100nm, and the aspect ratio is ⁇ 1000.
  • the transparent carrier is Polyethylene terephthalate (PET), Cyclo Olefin Polymers (COP), Triacetyl Cellulose (TAC), Polyvinyl chloride (PVC) Any of Polyimide (PI), Polyethylene (PE), and Polyethylene (PE).
  • PET Polyethylene terephthalate
  • COP Cyclo Olefin Polymers
  • TAC Triacetyl Cellulose
  • PVC Polyvinyl chloride
  • PI Polyimide
  • PE Polyethylene
  • PE Polyethylene
  • the mixed solvent is obtained by mixing an alcohol solvent, a ketone solvent, an ester solvent, and an ether solvent at a mass ratio of 1: 1: 1: 1.
  • the alcohol-based solvent may be methanol, ethanol, propanol, butanol, etc .
  • the ketone-based solvent may be acetone, methyl ethyl ketone, methylpentanone, methyl isobutyl ketone, cyclohexanone, etc .
  • the ester-based solvent may be Ethyl acetate, butyl acetate, isopropyl acetate, and the like
  • the ether solvents may be diethylene glycol monomethyl ether, propylene glycol methyl ether, dipropylene glycol dimethyl ether, diethylene glycol butyl ether, propylene glycol butyl ether, and the like.
  • the colorant is a blue colorant.
  • the conductive film is yellowed due to excessive silver nanowires.
  • ⁇ b is positive, indicating that the sample is yellower (or less blue) than the standard sample. Therefore, in order to compensate and neutralize the color of the conductive film, it is achieved by adding a blue dye, thereby reducing or eliminating the yellowing effect, reducing the b * value, and making ⁇ b approach zero to improve the visual effect of the conductive film.
  • the blue dyes are alizarin blue, basic blue 6B, alcohol blue, water-soluble aniline blue, azo blue, brilliant cresol blue, bromophenol blue, carazol blue, quinoline blue, indigo blue, and resin phenol.
  • the blue dye must have a certain solubility in a mixed solvent of alcohols, ketones, esters, and ethers; so that the blue dye can be uniformly dissolved in the protective layer coating liquid, which is convenient for uniform coating on the conductive layer.
  • the compensation effect on the yellow color of the conductive layer is uniform, and the effect of reducing the yellowing effect of the conductive film is good.
  • the blue dye has a strong absorption band in the visible light region, and the molar absorptivity ( ⁇ ) must be greater than 10 4 ; the blue dye that meets this condition has better color rendering ability and less blue dye Under the application conditions of the agent, the effect of reducing the b * value and the non-yellowing of the silver nanowire conductive film can be achieved.
  • the blue dye should have a high melting point or decomposition temperature; since the silver nanowire conductive film is prepared through a gradient heating and lowering heat treatment, the blue dye must maintain stable performance within this temperature range.
  • the thickness of the transparent carrier is 0.01-0.3 mm; the thickness of the conductive layer is 100-300 nm; and the thickness of the protective layer is 80-300 nm. More specifically, the transmittance of the transparent carrier is> 95%, the surface resistance of the conductive layer is 5 to 100 ⁇ , and the transmittance is> 90%
  • a silver nanowire conductive paste is taken as an example to explain the silver nanowire conductive film and the existing non-added colorant or protective layer.
  • the difference between the silver nanowire conductive films will be further described below in combination with specific examples and comparative examples.
  • the silver nanowire slurry was uniformly coated on the PET surface by slit coating.
  • the pump speed was 30ml / min
  • the wet film thickness was 30um
  • the coating speed was 100cm / min
  • the curing The temperature is 70 ° C, forming a uniform conductive layer;
  • the protective layer coating solution was applied on the conductive layer in a slit coating manner at a coating speed of 200 cm / min and a curing temperature of 60 ° C. to form a dense protective layer to prepare a silver nanowire conductive film.
  • the silver nanowire slurry was uniformly coated on the PET surface by slit coating.
  • the pump speed was 30ml / min
  • the wet film thickness was 30um
  • the coating speed was 100cm / min
  • the curing The temperature is 70 ° C, forming a uniform conductive layer;
  • the protective layer coating solution was applied on the conductive layer in a slit coating manner at a coating speed of 200 cm / min and a curing temperature of 60 ° C. to form a dense protective layer to prepare a silver nanowire conductive film.
  • the silver nanowire slurry was uniformly coated on the PET surface by slit coating.
  • the pump speed was 30ml / min
  • the wet film thickness was 30um
  • the coating speed was 100cm / min
  • the curing The temperature was 70 ° C, a uniform conductive layer was formed, and a silver nanowire conductive film was prepared.
  • Example 3 The silver nanowire conductive films obtained in Example 1 and Comparative Examples 1.1 and 1.2 were tested for resistance, transmittance, haze, and b * values. The test results are shown in Table 3.
  • Example 1 30 91.5 1.2 3.5 Comparative Example 1.1 30 91.5 1.4 5.5 Comparative Example 1.2 30 91.2 1.5 5.5
  • Example 1 More specifically, the silver nanowire conductive film prepared in Example 1 was subjected to a weather resistance test.
  • the test content and method are as follows:
  • UV resistance test irradiation intensity 0.35W / M 2 , temperature 60 °C, time 240h;
  • Xenon weathering test radiation intensity 0.8W / M 2 , temperature 40 °C, humidity 55%, time 240h;
  • Adhesion test BYK knife & 3M610 tape
  • Chemical resistance MEK wipe 5 times
  • the silver nanowire slurry was evenly coated on the PET surface by slit coating.
  • the pump speed was 50ml / min, the wet film thickness was 40um, and the coating speed was 80cm / min.
  • the temperature is 100 ° C, forming a uniform conductive layer;
  • the protective layer coating liquid was applied on the conductive layer in a slit coating manner, the coating speed was 180 cm / min, and the curing temperature was 100 ° C., a dense protective layer was formed, and a silver nanowire conductive film was prepared.
  • the silver nanowire slurry was evenly coated on the PET surface by slit coating.
  • the pump speed was 50ml / min, the wet film thickness was 40um, and the coating speed was 80cm / min.
  • the temperature is 100 ° C, forming a uniform conductive layer;
  • the protective layer coating liquid was applied on the conductive layer in a slit coating manner, the coating speed was 180 cm / min, and the curing temperature was 100 ° C., a dense protective layer was formed, and a silver nanowire conductive film was prepared.
  • the silver nanowire slurry was evenly coated on the PET surface by slit coating.
  • the pump speed was 50ml / min
  • the wet film thickness was 40um
  • the coating speed was 80cm / min.
  • the temperature was 100 ° C, a uniform conductive layer was formed, and a silver nanowire conductive film was prepared.
  • Example 2 The silver nanowire conductive films obtained in Example 2 and Comparative Examples 2.1 and 2.2 were tested for resistance, transmittance, haze, and b * values. The test results are shown in Table 5.
  • Example 2 More specifically, the silver nanowire conductive film prepared in Example 2 was subjected to a weather resistance test. The test conditions were the same as those in Example 1. The weather resistance test results are shown in Table 6.
  • the silver nanowire paste was evenly coated on the PET surface by slit coating.
  • the pump speed was 55ml / min, the wet film thickness was 45um, and the coating speed was 120cm / min.
  • the temperature is 130 ° C, forming a uniform conductive layer;
  • the protective layer coating liquid was applied on the conductive layer in a slit coating manner, the coating speed was 220 cm / min, and the curing temperature was 130 ° C., a dense protective layer was formed to prepare a silver nanowire conductive film.
  • the silver nanowire paste was evenly coated on the PET surface by slit coating.
  • the pump speed was 55ml / min, the wet film thickness was 45um, and the coating speed was 120cm / min.
  • the temperature is 130 ° C, forming a uniform conductive layer;
  • the protective layer coating liquid was applied on the conductive layer in a slit coating manner, the coating speed was 220 cm / min, and the curing temperature was 130 ° C., a dense protective layer was formed, and a silver nanowire conductive film was prepared.
  • the silver nanowire paste was evenly coated on the PET surface by slit coating.
  • the pump speed was 55ml / min
  • the wet film thickness was 45um
  • the coating speed was 120cm / min.
  • the temperature was 130 ° C, a uniform conductive layer was formed, and a silver nanowire conductive film was prepared.
  • Example 3 The silver nanowire conductive films obtained in Example 3 and Comparative Examples 3.1 and 3.2 were tested for resistance, transmittance, haze, and b * values. The test results are shown in Table 7.
  • Example 3 5 90.0 1.9 6.0 Comparative Example 3.1 5 90.0 2.0 10.0 Comparative Example 3.2 5 89.5 2.0 10.0
  • Example 3 More specifically, the silver nanowire conductive film prepared in Example 3 was subjected to a weather resistance test.
  • the test conditions were the same as those in Example 1.
  • the weather resistance test results are shown in Table 8.
  • the silver nanowire slurry was uniformly coated on the surface of TAC by slit coating.
  • the pump speed was 20ml / min
  • the wet film thickness was 15um
  • the coating speed was 100cm / min
  • the curing temperature was 70 ° C.
  • the protective layer coating solution was applied on the conductive layer in a slit coating manner at a coating speed of 200 cm / min and a curing temperature of 60 ° C. to form a dense protective layer to prepare a silver nanowire conductive film.
  • the silver nanowire slurry was uniformly coated on the surface of TAC by slit coating.
  • the pump speed was 20ml / min, the wet film thickness was 15um, and the coating speed was 100cm / min.
  • the temperature is 70 ° C, forming a uniform conductive layer;
  • the protective layer coating solution was applied on the conductive layer in a slit coating manner at a coating speed of 200 cm / min and a curing temperature of 60 ° C. to form a dense protective layer to prepare a silver nanowire conductive film.
  • the silver nanowire slurry was uniformly coated on the surface of TAC by slit coating.
  • the pump speed was 20ml / min
  • the wet film thickness was 15um
  • the coating speed was 100cm / min.
  • the temperature was 70 ° C, a uniform conductive layer was formed, and a silver nanowire conductive film was prepared.
  • Example 4 The silver nanowire conductive films obtained in Example 4 and Comparative Examples 4.1 and 4.2 were tested for resistance, transmittance, haze, and b * values. The test results are shown in Table 9.
  • Example 4 100 94.5 0.8 1.0 Comparative Example 4.1 100 94.5 1.0 2.0 Comparative Example 4.2 100 93.5 1.0 2.0
  • Example 4 More specifically, the silver nanowire conductive film prepared in Example 4 was subjected to a weather resistance test. The test conditions were the same as those in Example 1. The weather resistance test results are shown in Table 10.
  • the silver nanowire conductive film prepared in the embodiment of the present invention has a lower b * value, a haze, and a higher transmission.
  • the rate indicates that by adding a blue dye to the protective layer and using the CIE Lab * color model theory, the present invention achieves a reduction in the yellowing effect of silver nanowires, and improves the visibility and light transmission of the silver nanowire conductive film. effect.
  • the silver nanowire conductive film prepared in each embodiment also has strong weather resistance, making the silver nanowire conductive film of the present invention applicable to various environments and expanding its application range.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Non-Insulated Conductors (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明涉及一种透明导电膜,通过添加染色剂来降低导电膜的b*值,提高导电膜的透过率。本发明针对现有的透明导电膜由于导电浆料的涂布,会出现膜材变色、可视性变差的技术问题,提供一种透明导电膜。该透明导电膜包括透明载体,以及依次涂布在透明载体上的导电层和保护层;保护层的组分包括丙烯酸树脂、混合溶剂和染色剂。根据CIE Lab*颜色模型(Lab*),基于人对颜色的感觉,通过在保护层上添加与导电层显示颜色相对应的染色剂,实现对变色可视效果的补偿,提高导电膜的透过率。

Description

一种透明导电膜
本公开基于申请号为201810842309.3,申请日为2018年7月27日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及导电膜领域,尤其涉及一种透明导电膜,通过添加染色剂来降低导电膜的b*值,提高导电膜的透过率。
背景技术
氧化铟锡(Indium tin oxide,ITO)材料作为触摸屏技术的传统导电材料,具有良好的光电特性,但由于其在柔性方面表现较差、不耐反复挠曲,不适合用于柔性触控产品。近年来,已经出现了种类繁多的氧化铟锡替代材料,比如银纳米线、金纳米线、铜纳米线、镍纳米线、银纳米颗粒、金纳米颗粒、铜纳米颗粒、镍纳米颗粒、石墨烯、导电高分子(Poly(3,4-ethylenedioxythiophene),Poly(sodium-p-styrenesulfonate))材料等。其中银纳米线具有金属银的高导电性、绝佳的柔韧性,且原材料来源广泛、价格低廉。形貌均一可控、高长径比的纳米银线是超大尺寸、柔性触摸屏的透明电极材料的最佳选择,目前已开始局部取代ITO(Indium tin oxide)材料并进入产业化生产。
银纳米线透明电极的电学性能和光学性能是相互竞争的参数,常用的氧化铟锡表面电阻在100-150Ω/口。银纳米线由于具有高导电性,因此容易实现更低的表面电阻(<30Ω/口),能提供比氧化铟锡更高的导电性和更快的触控反应速度,透光率在92%以上,且没有特别图案纹与干涉叠纹的情况,适合各种尺寸的触控面板。而为了实现低表面电阻,需要在透明载体上布满纵横交错的、高长径比的银纳米线;但随着银纳米线的不断增多,泛黄的特性就愈加明显(色差b *值较高)。现有技术下,银纳米线导电膜的电阻与b *值的关系如表1所示。
表1银纳米线导电膜的电阻与b *值关系
R(Ω/口) 100 75 50 30 20 10 5
b *值(%) 2.0 3.5 4.5 5.5 6.5 8.0 10.0
由表1可知,表面电阻越低,对应的b *值越高;而b *值越高,膜材泛黄效果越明显,外观和可视性效果变差。因此,提供一种兼具低表面电阻和高透过率的透明导电膜是该领域的一项技术问题。
发明内容
本发明针对现有的透明导电膜为实现低表面电阻而涂布大量导电浆料,进而出现膜材变色、可视性较差的技术问题,提供一种透明导电膜。根据CIE Lab*颜色模型(Lab*),基于人对颜色的感觉,通过在保护层上添加染色剂,实现对变色可视效果的补偿,提高导电膜的透过率。
本发明采用以下技术方案:
一种透明导电膜,该透明导电膜包括透明载体,以及依次涂布在透明载体上的导电层和保护层;保护层的组分包括丙烯酸树脂、混合溶剂和染色剂。
进一步的,保护层的组分还包括引发剂和流平剂,并按以下重量份混合:丙烯酸树脂5-10份,混合溶剂80-90份,引发剂2-5份,流平剂1-3份,以及占上述组分总量的0.01-0.05wt%的染色剂。
进一步的,保护层的制备方法为:将丙烯酸树脂、混合溶剂、引发剂、流平剂按配比加入到容器中搅拌混合均匀获得混合液,再加入占混合液总量的0.01-0.05wt%的染色剂搅拌30-40min,使其充分混合均匀,得到保护层涂布液,再将保护层涂布液涂布并固化在导电层表面即得。
进一步的,导电层为涂布并固化在透明载体表层的导电浆料,导电浆料为银纳米线、金纳米线、铜纳米线、镍纳米线、银纳米颗粒、金纳米颗粒、铜纳米颗粒、镍纳米颗粒中的一种或多种混合。
进一步的,导电层为银纳米线导电浆料。
进一步的,银纳米线导电浆料包括0.1-0.5wt%的银纳米线,银纳米线的直径为10-100nm,长径比≥1000。
进一步的,混合溶剂由醇类溶剂、酮类溶剂、酯类溶剂和醚类溶剂按照1:1:1:1的质量比混合而成。
进一步的,染色剂为蓝色染色剂。
进一步的,蓝色染色剂为茜素蓝、碱性蓝6B、酒精蓝、水溶苯胺蓝、偶氮蓝、灿烂甲酚蓝、溴酚蓝、卡拉唑蓝、喹啉蓝、靛蓝、树脂酚蓝、甲基蓝、次甲基蓝、专利蓝A、五号专利蓝、酞菁、刃天青、苯甲天青、普鲁士蓝、亚甲苯蓝、百里酚蓝、曲利苯蓝中的任意一种或多种混合而成。
进一步的,透明载体的厚度为0.01-0.3mm;导电层的厚度为100-300nm;保护层的厚度为80-300nm。
本发明的透明导电膜,制备过程中,在保护层组分中添加染色剂,根据CIE Lab*颜色模型,基于人对颜色的感觉,通过染色剂的添加来补偿由于导电层中导电浆料的涂布带来的变色效果;利用保护层中染色剂的颜色与变色后的导电层颜色之间的叠加,提高了导电膜的可视效果和透过率。
本发明的透明导电膜,以银纳米线为导电浆料时会出现导电膜泛黄的效果,通过在保护层中添加蓝色染色剂,实现对导电膜b*值的降低,达到提高导电膜透过率的效果;同时银纳米线由于具有良好的导电性,有利于降低导电膜的电阻,使得透明导电膜在具有较低的表面电阻的同时具有良好的透过效果和可视性。
具体实施方式
下面将结合实施例对本发明的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通的技术人员在没有做出创造性劳动的前提下所获得的所有其它实施例,都属于本发明的保护范围。
本发明实施例的一种透明导电膜,该透明导电膜包括透明载体,以及依次涂布在透明载体上的导电层和保护层;保护层的组分包括丙烯酸树脂、混合溶剂和染色剂。
针对现有的透明导电膜中由于导电层涂布较多的导电材料而易出现导电膜变色的问题,根据CIE Lab*颜色模型,基于人对颜色的感觉,通过在保护层中添加染色剂来补偿导电层的变色效果;利用保护层中染色剂的颜色与变色后的导电层颜色之间的叠加来实现导电膜无色透明的视觉效果,提高了导电膜的可 视性和透过率。
CIE Lab*颜色模型是一种基于生理特征的颜色系统。Lab*颜色模型由三个要素组成,亮度L和两个颜色通道a、b;a包括的颜色是从深绿色(低亮度值)到灰色(中亮度值)再到亮粉红色(高亮度值);b包括的颜色是从亮蓝色(低亮度值)到灰色(中亮度值)再到黄色(高亮度值)。所有的颜色都可以通过Lab*标尺被感知测量,这些标尺可以用来表示标样同试样的色差,并通常用△为标识符。如果△L为正,说明试样比标样浅,如果△L为负,说明试样比标样深;如果△a为正,说明试样比标样红(或者少绿),如果△a为负,说明试样比标样绿(或者少红);如果△b为正,说明试样比标样黄(或者少蓝),如果△b为负,说明试样比标样蓝(或者少黄)。
因此,利用CIE Lab*颜色模型,根据不同导电层显示出来的颜色,对应的选取具有不同的补偿颜色的保护层染色剂,从而从视觉角度实现提高导电膜的可视性和透过率的效果。
具体的,保护层的组分还包括引发剂和流平剂,并按以下重量份混合:丙烯酸树脂5-10份,混合溶剂80-90份,引发剂2-5份,流平剂1-3份,以及占上述组分总量的0.01-0.05wt%的染色剂。
具体的,丙烯酸树脂为环氧类丙烯酸树脂、聚氨酯类丙烯酸树脂、聚酯类丙烯酸树脂中的一种或几种;引发剂为2,4,6-三甲基苯甲酰基-二苯基氧化膦、1-羟基-环己基-苯基甲酮、2-羟基-2-甲基-1-苯基-1-丙酮中的一种或几种;流平剂为聚醚改性硅氧烷,如BYK333、BYK306/307、迪高450等。
具体的,保护层的制备方法为:将丙烯酸树脂、混合溶剂、引发剂、流平剂按配比加入到容器中搅拌混合均匀获得混合液,再加入占混合液总量的0.01-0.05wt%的染色剂搅拌30-40min,使其充分混合均匀,得到保护层涂布液,再将保护层涂布液涂布并固化在导电层表面即得。
优选的,保护层涂布液以狭缝涂布的方式涂布在导电层上,涂布速度为180-220cm/min,固化温度为60-130℃。
具体的,导电层为涂布并固化在所述透明载体表层的导电浆料,导电浆料为银纳米线、金纳米线、铜纳米线、镍纳米线、银纳米颗粒、金纳米颗粒、铜纳米颗粒、镍纳米颗粒中的一种或多种混合。当导电浆料中原料不同时,导电 膜所显示出来的颜色以及亮度均有所差异,对应的再根据CIE Lab*颜色模型选择不同量及颜色的染色剂作为保护层组分进行涂布,通过两种颜色之间的补偿来达到提高导电膜透过率的效果。
优选的,导电层为银纳米线导电浆料。更具体的,银纳米线导电浆料以狭缝涂布的方式均匀涂布在透明载体表面,涂布速度为80-120cm/min,固化温度为70-130℃,泵速为20-80ml/min,湿膜厚度为10-80μm。
具体的,银纳米线导电浆料包括0.1-0.5wt%的银纳米线,所述银纳米线的直径为10-100nm,长径比≥1000。
具体的,透明载体为聚对苯二甲酸(Polyethylene terephthalate,PET)、环烯烃聚合物(Cyclo Olefin Polymers,COP)、三醋酸纤维薄膜(Triacetyl Cellulose,TAC)、聚氯乙烯(Polyvinyl chloride,PVC)、聚酰亚胺(Polyimide,PI)、聚乙烯(polyethylene,PE)中的任意一种。
具体的,混合溶剂由醇类溶剂、酮类溶剂、酯类溶剂和醚类溶剂按照1:1:1:1的质量比混合而成。优选的,醇类溶剂可以为甲醇、乙醇、丙醇、丁醇等;酮类溶剂可以为丙酮、丁酮、甲戊酮、甲基异丁基酮及环己酮等;酯类溶剂可以为醋酸乙酯、醋酸丁酯及醋酸异丙酯等;醚类溶剂可以为二乙二醇单甲醚、丙二醇甲醚、二丙二醇二甲醚、二乙二醇丁醚、丙二醇丁醚等。
具体的,染色剂为蓝色染色剂。由于过多的银纳米线导致导电膜泛黄,根据CIE Lab*颜色模型,即△b为正,说明试样比标样黄(或者少蓝)。因此为了补偿并中和导电膜的颜色,通过添加蓝色染色剂来实现,进而降低或者消除泛黄效果,降低b*值,使△b趋于零,来提高导电膜的可视效果。
更具体的,蓝色染色剂为茜素蓝、碱性蓝6B、酒精蓝、水溶苯胺蓝、偶氮蓝、灿烂甲酚蓝、溴酚蓝、卡拉唑蓝、喹啉蓝、靛蓝、树脂酚蓝、甲基蓝、次甲基蓝、专利蓝A、五号专利蓝、酞菁、刃天青、苯甲天青、普鲁士蓝、亚甲苯蓝、百里酚蓝、曲利苯蓝中的任意一种或多种混合而成。
实验研究表明,在低b *值银纳米线导电膜的制备过程中,并不是所有的蓝色染色剂均能起到很好的降低银纳米线泛黄的效果,具体的,蓝色染色剂需满足以下几个条件:
(1)蓝色染色剂必须在醇、酮、酯、醚类混合溶剂中有一定的溶解度;使 得蓝色染色剂可均匀溶解在保护层涂布液中,便于在导电层上均匀涂布,对导电层各处黄色的补偿效果均一,起来良好降低导电膜泛黄效果的作用。
(2)蓝色染色剂在可见光区域有很强的吸收带,摩尔吸收率(ε)要大于10 4;符合该条件的蓝色染色剂才具有较好的显色能力,较少蓝色染色剂的应用条件下即可起到降低b*值、银纳米线导电膜不泛黄的效果。
(3)蓝色染色剂要有较高的熔点或者分解温度;由于银纳米线导电膜制备过程中要经过梯度升降温热处理,蓝色染色剂需保持在该温度范围内性能稳定。
具体的,透明载体的厚度为0.01-0.3mm;导电层的厚度为100-300nm;保护层的厚度为80-300nm。更具体的,透明载体的透过率>95%,导电层的表面电阻5~100Ω,透过率>90%
通过在银纳米线导电层上涂布带有蓝色染色剂的保护层,可有效降低b*值,解决银纳米线导电膜的泛黄问题。将添加有蓝色染色剂的导电膜的电阻与b*值关系进行测试,结果如表2所示。
表2银纳米线导电膜的电阻与b *值关系(添加染色剂)
R(Ω/口) 30 20 10 5
b *值(%) 3.5 4.0 5.5 6.0
将表2与表1对比可以看出,添加蓝色染色剂后的银纳米线导电膜,在相同的电阻条件下,b*明显降低,进而有效缓解了导电膜的泛黄效果,提高了导电膜的可视性。
为了更具体的说明本发明的透明导电膜在提高导电膜透过率上的效果,以银纳米线导电浆料为例,说明银纳米线导电膜与现有的未添加染色剂或者保护层的银纳米线导电膜的区别,下面将结合具体实施例和对比例做进一步的描述。
实施例1
以PET(Polyethylene terephthalate)为透明载体,将银纳米线浆料以狭缝涂布的方式均匀涂布在PET表面,泵速30ml/min,湿膜厚度30um,涂布速度为100cm/min,固化温度为70℃,形成一层均匀的导电层;
取丙烯酸酯树脂6份、质量比为1:1:1:1的(乙醇:丁酮:醋酸乙酯:二乙二醇单甲醚)混合溶剂90份、引发剂2,4,6-三甲基苯甲酰基-二苯基氧化膦2份、流平剂BYK333 2份加入到玻璃容器中搅拌混合均匀,获得混合液,再在 混合液中加入占混合液总量0.02wt%的碱性蓝6B蓝色染色剂搅拌30min,使其混合均匀,得到保护层涂布液;
将保护层涂布液以狭缝涂布的方式涂布在导电层上,涂布速度为200cm/min,固化温度为60℃,形成一层致密的保护层,制得银纳米线导电膜。
对比例1.1
以PET(Polyethylene terephthalate)为透明载体,将银纳米线浆料以狭缝涂布的方式均匀涂布在PET表面,泵速30ml/min,湿膜厚度30um,涂布速度为100cm/min,固化温度为70℃,形成一层均匀的导电层;
取丙烯酸酯树脂6份、质量比为1:1:1:1的(乙醇:丁酮:醋酸乙酯:二乙二醇单甲醚)混合溶剂90份、引发剂2,4,6-三甲基苯甲酰基-二苯基氧化膦2份、流平剂BYK333 2份加入到玻璃容器中搅拌混合均匀,得到保护层涂布液;
将保护层涂布液以狭缝涂布的方式涂布在导电层上,涂布速度为200cm/min,固化温度为60℃,形成一层致密的保护层,制得银纳米线导电膜。
对比例1.2
以PET(Polyethylene terephthalate)为透明载体,将银纳米线浆料以狭缝涂布的方式均匀涂布在PET表面,泵速30ml/min,湿膜厚度30um,涂布速度为100cm/min,固化温度为70℃,形成一层均匀的导电层,制得银纳米线导电膜。
将实施例1和对比例1.1、1.2得到的银纳米线导电膜进行电阻、透过率、雾度、b*值测试,测试结果见表3。
表3银纳米线导电膜测试结果
组别 电阻(Ω/口) 透过率(%) 雾度(%) b*(%)
实施例1 30 91.5 1.2 3.5
对比例1.1 30 91.5 1.4 5.5
对比例1.2 30 91.2 1.5 5.5
更具体的,对实施例1制得的银纳米线导电膜进行耐候性测试,测试内容及方式如下:
耐UV测试:辐照强度0.35W/M 2,温度60℃,时间240h;
氙气耐候测试:辐射强度0.8W/M 2,温度40℃,湿度55%,时间240h;
高温高湿测试:温度85℃,湿度85%,时间240h;
冷热冲击测试:低温-30℃,高温90℃,时间240h。
实施例1制得的银纳米线导电膜进行耐候性测试的结果见表4。
表4银纳米线导电膜耐候性测试结果
Figure PCTCN2018101211-appb-000001
其中:附着力测试:BYK百格刀&3M610胶带;耐化性:MEK擦拭5次,测试电阻变化
实施例2
以PET(Polyethylene terephthalate)为透明载体,将银纳米线浆料以狭缝涂布的方式均匀涂布在PET表面,泵速50ml/min,湿膜厚度40um,涂布速度为80cm/min,固化温度为100℃,形成一层均匀的导电层;
取丙烯酸酯树脂7份、质量比为1:1:1:1的(乙醇:丁酮:醋酸乙酯:二乙二醇单甲醚)混合溶剂88份、引发剂2-羟基-2-甲基-1-苯基-1-丙酮3份、流平剂BYK306 2份加入到玻璃容器中搅拌混合均匀,获得混合液,再在混合液中加入占混合液总量0.03wt%的溴酚蓝蓝色染色剂搅拌40min,使其混合均匀,得到保护层涂布液;
将保护层涂布液以狭缝涂布的方式涂布在导电层上,涂布速度为180cm/min,固化温度为100℃,形成一层致密的保护层,制得银纳米线导电膜。
对比例2.1
以PET(Polyethylene terephthalate)为透明载体,将银纳米线浆料以狭缝涂布的方式均匀涂布在PET表面,泵速50ml/min,湿膜厚度40um,涂布速度为80cm/min,固化温度为100℃,形成一层均匀的导电层;
取丙烯酸酯树脂7份、质量比为1:1:1:1的(乙醇:丁酮:醋酸乙酯:二乙二醇单甲醚)混合溶剂88份、引发剂2-羟基-2-甲基-1-苯基-1-丙酮3份、流平剂BYK306 2份加入到玻璃容器中搅拌混合均匀,得到保护层涂布液;
将保护层涂布液以狭缝涂布的方式涂布在导电层上,涂布速度为180cm/min,固化温度为100℃,形成一层致密的保护层,制得银纳米线导电膜。
对比例2.2
以PET(Polyethylene terephthalate)为透明载体,将银纳米线浆料以狭缝涂布的方式均匀涂布在PET表面,泵速50ml/min,湿膜厚度40um,涂布速度为80cm/min,固化温度为100℃,形成一层均匀的导电层,制得银纳米线导电膜。
将实施例2和对比例2.1、2.2得到的银纳米线导电膜进行电阻、透过率、雾度、b*值测试,测试结果见表5。
表5银纳米线导电膜测试结果
组别 电阻(Ω/口) 透过率(%) 雾度(%) b*(%)
实施例1 10 90.8 1.6 5.5
对比例2.1 10 90.5 1.8 8.0
对比例2.2 10 90.0 1.8 8.0
更具体的,对实施例2制得的银纳米线导电膜进行耐候性测试,测试条件同实施例1,耐候性测试结果见表6。
表6银纳米线导电膜耐候性测试结果
Figure PCTCN2018101211-appb-000002
实施例3
以PET(Polyethylene terephthalate)为透明载体,将银纳米线浆料以狭缝涂布的方式均匀涂布在PET表面,泵速55ml/min,湿膜厚度45um,涂布速度为120cm/min,固化温度为130℃,形成一层均匀的导电层;
取丙烯酸酯树脂10份、质量比为1:1:1:1的(乙醇:丁酮:醋酸乙酯:二乙二醇单甲醚)混合溶剂82份、引发剂1-羟基-环己基-苯基甲酮5份、流平剂迪高450 3份加入到玻璃容器中搅拌混合均匀,获得混合液,再在混合液中加入占混合液总量0.05wt%的溴酚蓝蓝色染色剂搅拌35min,使其混合均匀,得到保护层涂布液;
将保护层涂布液以狭缝涂布的方式涂布在导电层上,涂布速度为220cm/min,固化温度为130℃,形成一层致密的保护层,制得银纳米线导电膜。
对比例3.1
以PET(Polyethylene terephthalate)为透明载体,将银纳米线浆料以狭缝涂布的方式均匀涂布在PET表面,泵速55ml/min,湿膜厚度45um,涂布速度为120cm/min,固化温度为130℃,形成一层均匀的导电层;
取丙烯酸酯树脂10份、质量比为1:1:1:1的(乙醇:丁酮:醋酸乙酯:二乙二醇单甲醚)混合溶剂82份、引发剂1-羟基-环己基-苯基甲酮5份、流平剂迪高450 3份加入到玻璃容器中搅拌混合均匀,得到保护层涂布液;
将保护层涂布液以狭缝涂布的方式涂布在导电层上,涂布速度为220cm/min,固化温度为130℃,形成一层致密的保护层,制得银纳米线导电膜。
对比例3.2
以PET(Polyethylene terephthalate)为透明载体,将银纳米线浆料以狭缝涂布的方式均匀涂布在PET表面,泵速55ml/min,湿膜厚度45um,涂布速度为120cm/min,固化温度为130℃,形成一层均匀的导电层,制得银纳米线导电膜。
将实施例3和对比例3.1、3.2得到的银纳米线导电膜进行电阻、透过率、雾度、b*值测试,测试结果见表7。
表7银纳米线导电膜测试结果
组别 电阻(Ω/口) 透过率(%) 雾度(%) b*(%)
实施例3 5 90.0 1.9 6.0
对比例3.1 5 90.0 2.0 10.0
对比例3.2 5 89.5 2.0 10.0
更具体的,对实施例3制得的银纳米线导电膜进行耐候性测试,测试条件同实施例1,耐候性测试结果见表8。
表8银纳米线导电膜耐候性测试结果
Figure PCTCN2018101211-appb-000003
实施例4
以TAC为透明载体,将银纳米线浆料以狭缝涂布的方式均匀涂布在TAC表面,泵速20ml/min,湿膜厚度15um,涂布速度为100cm/min,固化温度为70℃,形成一层均匀的导电层;
取丙烯酸酯树脂5份、质量比为1:1:1:1的(乙醇:丁酮:醋酸乙酯:二乙二醇单甲醚)混合溶剂80份、引发剂2,4,6-三甲基苯甲酰基-二苯基氧化膦3份、流平剂BYK333 1份加入到玻璃容器中搅拌混合均匀,获得混合液,再在混合液中加入占混合液总量0.01wt%的茜素蓝蓝色染色剂搅拌30min,使其混合均匀,得到保护层涂布液;
将保护层涂布液以狭缝涂布的方式涂布在导电层上,涂布速度为200cm/min,固化温度为60℃,形成一层致密的保护层,制得银纳米线导电膜。
对比例4.1
以TAC(Triacetyl Cellulose)为透明载体,将银纳米线浆料以狭缝涂布的方式均匀涂布在TAC表面,泵速20ml/min,湿膜厚度15um,涂布速度为 100cm/min,固化温度为70℃,形成一层均匀的导电层;
取丙烯酸酯树脂5份、质量比为1:1:1:1的(乙醇:丁酮:醋酸乙酯:二乙二醇单甲醚)混合溶剂80份、引发剂2,4,6-三甲基苯甲酰基-二苯基氧化膦3份、流平剂BYK333 1份加入到玻璃容器中搅拌混合均匀,得到保护层涂布液;
将保护层涂布液以狭缝涂布的方式涂布在导电层上,涂布速度为200cm/min,固化温度为60℃,形成一层致密的保护层,制得银纳米线导电膜。
对比例4.2
以TAC(Triacetyl Cellulose)为透明载体,将银纳米线浆料以狭缝涂布的方式均匀涂布在TAC表面,泵速20ml/min,湿膜厚度15um,涂布速度为100cm/min,固化温度为70℃,形成一层均匀的导电层,制得银纳米线导电膜。
将实施例4和对比例4.1、4.2得到的银纳米线导电膜进行电阻、透过率、雾度、b*值测试,测试结果见表9。
表9银纳米线导电膜测试结果
组别 电阻(Ω/口) 透过率(%) 雾度(%) b*(%)
实施例4 100 94.5 0.8 1.0
对比例4.1 100 94.5 1.0 2.0
对比例4.2 100 93.5 1.0 2.0
更具体的,对实施例4制得的银纳米线导电膜进行耐候性测试,测试条件同实施例1,耐候性测试结果见表10。
表10银纳米线导电膜耐候性测试结果
Figure PCTCN2018101211-appb-000004
由以上实施例和对比例的测试结果可以看出,在相同的表面电阻条件下,本发明实施例制得的银纳米线导电膜具有更低的b*值、雾度以及更高的透过率,说明本发明通过在保护层中添加蓝色染色剂,利用CIE Lab*颜色模型理论,实现了对银纳米线泛黄效果的缓解,提高了银纳米线导电膜的可视性及透光效果。同时,各实施例制得的银纳米线导电膜也具有较强的耐候性,使得本发明的银纳米线导电膜可适用于各种环境,扩大了其应用范围。
以上借助具体实施例对本发明做了进一步描述,但是应该理解的是,这里具体的描述,不应理解为对本发明的实质和范围的限定,本领域内的普通技术人员在阅读本说明书后对上述实施例做出的各种修改,都属于本发明所保护的范围。

Claims (15)

  1. 一种透明导电膜,其特征在于,所述透明导电膜包括透明载体,以及依次涂布在所述透明载体上的导电层和保护层;所述保护层的组分包括丙烯酸树脂、混合溶剂和染色剂。
  2. 根据权利要求1所述的透明导电膜,其特征在于,所述保护层的组分还包括引发剂和流平剂,并按以下重量份混合:丙烯酸树脂5-10份,混合溶剂80-90份,引发剂2-5份,流平剂1-3份,以及占上述组分总量的0.01-0.05wt%的染色剂。
  3. 根据权利要求2所述的透明导电膜,其特征在于,所述保护层的制备方法为:将丙烯酸树脂、混合溶剂、引发剂、流平剂按配比加入到容器中搅拌混合均匀获得混合液,再加入占混合液总量的0.01-0.05wt%的染色剂搅拌30-40min,使其充分混合均匀,得到保护层涂布液,再将保护层涂布液涂布并固化在导电层表面即得。
  4. 根据权利要求3所述的透明导电膜,其特征在于,所述保护层涂布液以狭缝涂布的方式涂布在导电层上,涂布速度为180-220cm/min,固化温度为60-130℃。
  5. 根据权利要求1-4中任一项所述的透明导电膜,其特征在于,所述导电层为涂布并固化在所述透明载体表层的导电浆料,所述导电浆料为银纳米线、金纳米线、铜纳米线、镍纳米线、银纳米颗粒、金纳米颗粒、铜纳米颗粒、镍纳米颗粒中的一种或多种混合。
  6. 根据权利要求5所述的透明导电膜,其特征在于,所述导电层为涂布并固化在所述透明载体表层的银纳米线导电浆料。
  7. 根据权利要求6所述的透明导电膜,其特征在于,所述银纳米线导电浆料包括0.1-0.5wt%的银纳米线,所述银纳米线的直径为10-100nm,长径比≥1000。
  8. 根据权利要求6或7所述的透明导电膜,其特征在于,所述银纳米线导电浆料以狭缝涂布的方式均匀涂布在所述透明载体表面,涂布速度为80-120cm/min,固化温度为70-130℃,泵速为20-80ml/min,湿膜厚度为10-80μm。
  9. 根据权利要求1-8中任一项所述的透明导电膜,其特征在于,所述透明 载体为聚对苯二甲酸、环烯烃聚合物、TAC三醋酸纤维薄膜、聚氯乙烯、聚酰亚胺、聚乙烯PE中的任意一种。
  10. 根据权利要求2-9中任一项所述的透明导电膜,其特征在于,所述丙烯酸树脂为环氧类丙烯酸树脂、聚氨酯类丙烯酸树脂、聚酯类丙烯酸树脂中的一种或几种;引发剂为2,4,6-三甲基苯甲酰基-二苯基氧化膦、1-羟基-环己基-苯基甲酮、2-羟基-2-甲基-1-苯基-1-丙酮中的一种或几种;流平剂为聚醚改性硅氧烷。
  11. 根据权利要求1-10中任一项所述的透明导电膜,其特征在于,所述混合溶剂由醇类溶剂、酮类溶剂、酯类溶剂和醚类溶剂按照1:1:1:1的质量比混合而成。
  12. 根据权利要求11所述的透明导电膜,其特征在于,所述醇类溶剂为甲醇、乙醇、丙醇、丁醇中的一种或多种;所述酮类溶剂为丙酮、丁酮、甲戊酮、甲基异丁基酮及环己酮中的一种或多种;酯类溶剂为醋酸乙酯、醋酸丁酯及醋酸异丙酯中的一种或多种;醚类溶剂为二乙二醇单甲醚、丙二醇甲醚、二丙二醇二甲醚、二乙二醇丁醚、丙二醇丁醚中的一种或多种。
  13. 根据权利要求1-12中任一项所述的透明导电膜,其特征在于,所述染色剂为蓝色染色剂。
  14. 根据权利要求13所述的透明导电膜,其特征在于,所述蓝色染色剂为茜素蓝、碱性蓝6B、酒精蓝、水溶苯胺蓝、偶氮蓝、灿烂甲酚蓝、溴酚蓝、卡拉唑蓝、喹啉蓝、靛蓝、树脂酚蓝、甲基蓝、次甲基蓝、专利蓝A、五号专利蓝、酞菁、刃天青、苯甲天青、普鲁士蓝、亚甲苯蓝、百里酚蓝、曲利苯蓝中的任意一种或多种混合而成。
  15. 根据权利要求1-14中任一项所述的透明导电膜,其特征在于,所述透明载体的厚度为0.01-0.3mm;所述导电层的厚度为100-300nm;所述保护层的厚度为80-300nm。
PCT/CN2018/101211 2018-07-27 2018-08-18 一种透明导电膜 WO2020019383A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNCN201810842309.3 2018-07-27
CN201810842309.3A CN109243677B (zh) 2018-07-27 2018-07-27 一种透明导电膜

Publications (1)

Publication Number Publication Date
WO2020019383A1 true WO2020019383A1 (zh) 2020-01-30

Family

ID=65073106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101211 WO2020019383A1 (zh) 2018-07-27 2018-08-18 一种透明导电膜

Country Status (2)

Country Link
CN (1) CN109243677B (zh)
WO (1) WO2020019383A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111128443B (zh) * 2019-12-30 2021-05-28 深圳市华科创智技术有限公司 一种透明导电膜及其制备方法
CN111755146B (zh) * 2020-06-28 2022-02-22 深圳市华科创智技术有限公司 一种低b*值高透过率导电膜
TWI767296B (zh) * 2020-08-13 2022-06-11 大陸商天材創新材料科技(廈門)有限公司 透明導電薄膜及其製備方法
CN113205903B (zh) * 2021-04-23 2022-06-14 广东省科学院新材料研究所 一种透明导电薄膜及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010157471A (ja) * 2009-01-05 2010-07-15 Shin Etsu Polymer Co Ltd 透明導電シートおよびタッチパネル
JP2010222507A (ja) * 2009-03-25 2010-10-07 Toyo Ink Mfg Co Ltd 導電性共重合体、及びそれを用いた導電性感圧式接着剤及びその液晶セル用積層体
CN103730187A (zh) * 2012-10-11 2014-04-16 第一毛织株式会社 透明导体、用于透明导电膜的组合物和光学显示设备
WO2017100086A1 (en) * 2015-12-09 2017-06-15 C3Nano Inc. Methods for synthesizing silver nanoplates and noble metal coated silver nanoplates and their use in transparent films
CN107075280A (zh) * 2014-10-17 2017-08-18 C3奈米有限公司 使用纳米级着色剂控制光色调的透明膜

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367428A (ja) * 2001-06-04 2002-12-20 Asahi Glass Co Ltd 着色透明導電膜形成用塗布液、着色透明導電膜付き基体およびその製造方法、ならびに表示装置
EP2692525B1 (en) * 2011-03-28 2015-10-28 Toray Industries, Inc. Conductive laminated body and touch panel
CN102208567B (zh) * 2011-04-18 2013-03-27 电子科技大学 一种柔性发光器件用基板及其制备方法
CN103304811B (zh) * 2013-06-06 2015-12-02 北京京东方光电科技有限公司 一种固化树脂、蓝色光阻剂、彩色滤光片及它们的制备方法、彩色显示器件
CN103421400B (zh) * 2013-08-30 2015-09-16 东莞市平波电子有限公司 一种触摸屏uv固化可剥蓝胶及其制备方法
KR101802567B1 (ko) * 2013-10-17 2017-12-01 삼성에스디아이 주식회사 투명 도전체 및 이를 포함하는 광학표시장치
EP3118265A1 (en) * 2015-07-14 2017-01-18 Henkel AG & Co. KGaA Conductive transparent coating

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010157471A (ja) * 2009-01-05 2010-07-15 Shin Etsu Polymer Co Ltd 透明導電シートおよびタッチパネル
JP2010222507A (ja) * 2009-03-25 2010-10-07 Toyo Ink Mfg Co Ltd 導電性共重合体、及びそれを用いた導電性感圧式接着剤及びその液晶セル用積層体
CN103730187A (zh) * 2012-10-11 2014-04-16 第一毛织株式会社 透明导体、用于透明导电膜的组合物和光学显示设备
CN107075280A (zh) * 2014-10-17 2017-08-18 C3奈米有限公司 使用纳米级着色剂控制光色调的透明膜
WO2017100086A1 (en) * 2015-12-09 2017-06-15 C3Nano Inc. Methods for synthesizing silver nanoplates and noble metal coated silver nanoplates and their use in transparent films

Also Published As

Publication number Publication date
CN109243677B (zh) 2021-04-23
CN109243677A (zh) 2019-01-18

Similar Documents

Publication Publication Date Title
WO2020019383A1 (zh) 一种透明导电膜
JP7145906B2 (ja) ナノスケール着色剤を使用して明るい色相が制御される透明フィルム
KR100590368B1 (ko) 디스플레이용 필터, 표시장치 및 그 제조 방법
US6143418A (en) Transparent conductive film, low-reflectivity transparent conductive film, and display device
DE112008002861B4 (de) Leitfähige Polymermembran auf Polythiophenbasis
CN103992495B (zh) 一种纳米银柔性导电膜及其制备方法
DE69919653T2 (de) Lichtdurchlässiges substrat mit einer lichtdurchlässigen niedrigen ohmischen beschichtung
CN105723273A (zh) 功能性染色眼镜透镜
CN207440490U (zh) 一种基于pdlc的多色彩电致变色器件
JP2005148376A (ja) 膜及び反射防止膜
CN109686476B (zh) 一种可降低黄度的银纳米线透明导电膜
CN108346493B (zh) 一种通过改变等离子体共振强度降低纳米银线透明导电膜黄度的方法
JP2005144849A (ja) 透明導電膜及び反射防止性透明導電膜
CN104592876A (zh) 一种高效防蓝光pet透明涂料及其制备方法
US6524499B1 (en) Transparent conductive film and display device
JP2004045887A (ja) 光学フィルター
CN212392008U (zh) 透明导电薄膜
CN108219700B (zh) 窗膜的颜色功能层的制备方法、包含其的窗膜及其制备方法
JP4004161B2 (ja) 透明積層体及びそれを用いたディスプレイ用フィルター
CN210091128U (zh) 导电膜和触控装置
KR20170072044A (ko) 코팅 조성물 및 이를 이용한 투명 도전막
JP2005225700A (ja) 錫含有酸化インジウム微粒子と透明導電膜形成用塗料及び透明導電膜並びに表示装置、透明導電膜の製造方法
CN111755146B (zh) 一种低b*值高透过率导电膜
JP2005154453A (ja) 透明導電層形成用塗布液及び透明導電性基材
JP2002003746A (ja) 透明導電膜形成用塗料、透明導電膜および表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18928132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/06/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18928132

Country of ref document: EP

Kind code of ref document: A1