WO2020019276A1 - 一种用于乙醇和苯制备乙苯的催化剂及其制备和应用 - Google Patents

一种用于乙醇和苯制备乙苯的催化剂及其制备和应用 Download PDF

Info

Publication number
WO2020019276A1
WO2020019276A1 PCT/CN2018/097323 CN2018097323W WO2020019276A1 WO 2020019276 A1 WO2020019276 A1 WO 2020019276A1 CN 2018097323 W CN2018097323 W CN 2018097323W WO 2020019276 A1 WO2020019276 A1 WO 2020019276A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
catalyst
tnu
mesoporous
ethanol
Prior art date
Application number
PCT/CN2018/097323
Other languages
English (en)
French (fr)
Inventor
苏雄
杨晓丽
黄延强
张涛
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to US17/262,677 priority Critical patent/US11434183B2/en
Priority to BR112021001226-5A priority patent/BR112021001226B1/pt
Priority to JP2021504290A priority patent/JP7154377B2/ja
Priority to EP18927322.0A priority patent/EP3827898A4/en
Publication of WO2020019276A1 publication Critical patent/WO2020019276A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/041Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/643Pore diameter less than 2 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0081Preparation by melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/067C8H10 hydrocarbons
    • C07C15/073Ethylbenzene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/86Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon
    • C07C2/862Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms
    • C07C2/864Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms the non-hydrocarbon is an alcohol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65

Definitions

  • the invention relates to a catalyst which can be applied to the gas-phase alkylation reaction of ethanol and benzene to prepare ethylbenzene, and a preparation method and application thereof.
  • Ethylbenzene is an important basic organic raw material in industry. It is mainly used for catalytic dehydrogenation to produce styrene, and then used in the field of polymer materials to prepare rubber and plastics. With the rapid development of the social economy, the market demand and production capacity of ethylbenzene have shown a clear upward trend. Data show that from 1998 to 2015, the annual growth rate of global ethylbenzene demand was 3.7%, and China's annual growth rate reached 5.3%, from 800kt in 1998 to 2Mt in 2015.
  • AlCl 3 liquid phase alkyl method has simple process, mild operating conditions, and high ethylene conversion, but it has problems such as equipment corrosion, environmental pollution, and high maintenance costs.
  • the molecular sieve alkylation method mainly includes the gas phase alkylation of ZSM-5 molecular sieve produced by Mobil and Badger to ethylbenzene (US3751504, US3751506, US4016218, and US4547605) and the liquid-phase alkylation of Beta and Y-type molecular sieves developed by UOP and Lummus companies.
  • Techniques for the production of ethylbenzene US4891458, US5227558 and ZL02151177). These methods have the advantages of no corrosion, no pollution, simple process, high heat energy recovery and utilization.
  • the process of ethanol to ethylbenzene is based on the simultaneous ethanol dehydration and alkylation of ethylene and benzene in the reactor.
  • the catalyst used not only needs to meet the high dehydration selectivity and conversion of ethanol, but also has certain requirements for the catalytic efficiency of the alkylation of ethylene and benzene.
  • China Petroleum and Chemical Corporation uses ZSM-5, adding a binder and modifying with rare earth oxides or alkaline earth metal oxides to obtain a series of catalysts. The treated catalyst was used in the reaction of ethylbenzene production.
  • the yield of benzene is more than 80% (Chemical Reaction Engineering and Technology, 2006, 22, 172-175).
  • the Italian company Versalis uses the BEA group of zeolites as a catalyst to catalyze the alkylation of bioethanol and benzene (WO2011077240).
  • Patent WO2010143043 proposes the use of MTW zeolites as a catalyst, ethanol obtained by fermenting biomass-derived sugars as an alkylating agent, and alkylation reaction with benzene to generate ethylbenzene, which greatly improves the economic type of the reaction.
  • MTW zeolites as a catalyst
  • ethanol obtained by fermenting biomass-derived sugars as an alkylating agent
  • alkylation reaction with benzene to generate ethylbenzene
  • MOFs such as Fe-based MIL-110 and Al-Li-doped MIL-53
  • reaction conditions 17.0 ° C
  • benzene and Ethylbenzene is produced by alkylation of ethanol with a selectivity greater than 75%
  • This research provides a new scheme for the selection of reaction catalysts and control of reaction conditions, but there is still a long way to go before industrialization implementation, so currently molecular sieve catalysts are still the core.
  • the invention relates to a catalyst with high activity and stability for gas phase alkylation of ethanol and benzene to prepare ethylbenzene and a preparation method thereof.
  • the catalyst used in the invention is a mesoporous-microporous composite Structure of TNU-9 molecular sieve.
  • the present invention mainly solves the hydrothermal resistance, high alkylation activity and ethyl selectivity of the catalyst.
  • the detailed preparation method of the catalyst is: using silicon oxide containing mesoporous structure, MCM-48 or SBA-15 as a silicon source, 1,4-MPB as a template, and hydrothermal synthesis to synthesize TNU-9 molecular sieve.
  • the catalyst is used in the alkylation reaction of ethanol and benzene at a reaction temperature of 300 to 500 ° C, a reaction pressure of 0.1 to 2 MPa, a feed mass space velocity of 3 to 8 h -1 , and a phenyl alcohol ratio of 3 to 7 in a reaction environment.
  • the main product For ethylbenzene and water.
  • the catalyst of the present invention can be used stably for a long time in the reaction process of one-step gas phase alkylation of ethanol and benzene to prepare ethylbenzene, and maintain good benzene and ethanol alkylation reaction performance.
  • the invention adopts a hydrothermally synthesized three-dimensional TNU-9 molecular sieve containing a meso-microporous composite structure and a ten-membered ring cross structure, and is used for the process of preparing ethylbenzene by one-step gas phase alkylation of ethanol and benzene.
  • the catalyst not only has high alkylation activity and high ethyl selectivity, but also has certain hydrothermal stability and stable catalytic reaction performance.
  • the patent invention provides a new catalyst for the reaction of ethanol and benzene in the preparation of ethylbenzene, and has a good application prospect.
  • a catalyst for gas phase alkylation of ethanol and benzene to prepare ethylbenzene is provided.
  • the catalyst has high alkylation reaction activity and ethyl selectivity in alkylation products for the reaction. High and high resistance to hydrothermal stability and stable reaction performance.
  • the mesoporous-microporous composite TNU-9 molecular sieve has a silicon-aluminum molar ratio SiO 2 / Al 2 O 3 of 50-200.
  • the upper limit of the silicon-aluminum molar ratio SiO 2 / Al 2 O 3 of the mesoporous-microporous TNU-9 molecular sieve is selected from 200, 190, 180, 170, 160, 150, 140, 130, 120 , 110, or 100; the lower limit is selected from 100, 95, 90, 85, 80, 75, 72, 70, 68, 65, 64, 63, 60, 58, 56, 55, 52, or 50.
  • the mesoporous-microporous composite TNU-9 molecular sieve has a silicon-aluminum molar ratio SiO 2 / Al 2 O 3 of 50-100.
  • the mesoporous-microporous composite TNU-9 molecular sieve has a silicon-aluminum molar ratio SiO 2 / Al 2 O 3 of 60-100.
  • the mesoporous-microporous composite TNU-9 molecular sieve has a silicon-aluminum molar ratio SiO 2 / Al 2 O 3 of 60-80.
  • the mesoporous-microporous composite TNU-9 molecular sieve contains a microporous and mesoporous channel structure; and the size of the mesoporous channel is 3-50 nm.
  • the mesoporous-microporous composite TNU-9 molecular sieve is a grain pile; the size of a single grain is 100-1000 nm.
  • the mesoporous-microporous composite TNU-9 molecular sieve contains pores with a pore diameter of 0.3-0.8 nm.
  • the mesoporous-microporous composite TNU-9 molecular sieve contains micropores with a pore diameter of 0.4-0.7 nm.
  • the mesoporous-microporous TNU-9 molecular sieve contains mesopores with a pore diameter of 6-13 nm.
  • the mesoporous-microporous composite TNU-9 molecular sieve contains mesopores with an upper limit selected from 13nm, 12nm, 11nm or 10nm; a lower limit selected from 9nm, 8nm, 7nm or 6nm.
  • the catalyst is a high-silicon TNU-9 molecular sieve containing meso-microporous composites, the size of the mesoporous channels of the molecular sieve is 3-50 nm, and the molar ratio of silicon to aluminum of the molecular sieve SiO 2 / Al 2 O 3 is 50-200,
  • the catalyst is a small-grained aggregate with a single grain size of 100-1000 nm.
  • the molecular sieve is catalyzed for the reaction between ethanol and benzene to prepare ethylbenzene.
  • a method for preparing a catalyst for one-step gas phase alkylation of ethanol to prepare ethylbenzene is provided.
  • the method is simple, reliable, and convenient for industrial production.
  • step (3) The product obtained in step (3) is calcined to obtain the molecular sieve catalyst.
  • the molar ratio of the aluminum source, the alkali source, the mesoporous structure-containing silicon source, and the templating agent described in step (1) satisfies:
  • SiO 2 : Al 2 O 3 : M 2 O: R: H 2 O 5 ⁇ 100: 1: 1 ⁇ 30: 5 ⁇ 20: 1000 ⁇ 4000;
  • R is a templating agent, based on the number of moles of the templating agent itself;
  • the number of moles of the aluminum source is the number of moles of Al 2 O 3 ;
  • the number of moles of the alkali source is the number of moles of its corresponding alkali metal oxide M 2 O
  • the number of moles of the silicon source is the number of moles of SiO 2 ;
  • the number of moles of water is the number of moles of H 2 O itself.
  • the template agent in step (1) includes at least one of 1,4-MPB, glucose, and activated carbon.
  • the method for preparing 1,4-MPB includes:
  • the solution containing 1,4-dibromobutane and N-methyltetrahydropyrrole is: obtaining 4-dibromobutane and N-methyltetrahydropyrrole in acetone;
  • the reflux is refluxed in a water bath at 30 to 80 ° C;
  • the recrystallization solvent includes a mixed solvent of methanol and ether; wherein the volume ratio of methanol and ether is 0.05-50: 1-20;
  • the drying conditions are: 60 to 120 ° C for 5 to 20 hours.
  • the reflux time of the water bath is 6 to 48 hours.
  • the silicon source containing a mesoporous structure in step (1) is selected from at least one of silicon oxide containing a mesoporous structure, MCM-48, and SBA-15.
  • the aluminum source in step (1) is selected from at least one of sodium metaaluminate, aluminum powder, aluminum nitrate, and aluminum hydroxide;
  • the alkali source is selected from at least one of sodium hydroxide and potassium hydroxide.
  • the stirring time in step (1) is 5 to 24 hours.
  • the hydrothermal crystallization in step (2) is hydrothermal dynamic crystallization
  • the hydrothermal dynamic crystallization conditions are: dynamic crystallization for 100-360h under hydrothermal conditions at 120-260 ° C.
  • the upper limit of the crystallization temperature is selected from 260 ° C, 240 ° C, 220 ° C, 200 ° C, 180 ° C, 160 ° C, or 140 ° C; the lower limit is selected from 140 ° C, 130 ° C, or 120 ° C.
  • the upper limit of the crystallization time is selected from 360h, 340h, 300h, or 280h; the lower limit is selected from 280h, 260h, 240h, 200h, 180h, 160h, 140h, 120h, or 100h.
  • the dynamic crystallization in step (2) is rotary crystallization, and the rotation speed is 5 to 30 rpm.
  • the upper limit of the rotation speed is selected from 30 rpm, 25 rpm, 20 rpm, or 15 rpm
  • the lower limit is selected from 15 rpm, 10 rpm, or 5 rpm.
  • the baking temperature in step (4) is 200-600 ° C, and the baking time is 1-20 hours.
  • the upper limit of the baking temperature is selected from 600 ° C, 580 ° C, 550 ° C, 520 ° C, 500 ° C, or 450 ° C; the lower limit is selected from 450 ° C, 400 ° C, 300 ° C, or 200 ° C.
  • the upper limit of the roasting time is selected from 20h, 18h, 15h, 12h or 10h; the lower limit is selected from 10h, 8h, 5h, 3h or 1h.
  • step (3) includes: filtering and washing the product obtained in step (2) until the washing solution becomes neutral, and drying treatment at 60 to 110 ° C.
  • the method includes:
  • the method includes:
  • the template obtained in step 1 is dissolved in water, and then an aluminum source, an alkali, and a silicon source containing a mesoporous structure are sequentially added.
  • Each substance is calculated as SiO 2 , Al 2 O 3 , M 2 O, R, and H 2 O.
  • the time of the reflow treatment in step 1 is 6 to 48 hours;
  • the aluminum source is any one or more mixed aluminum sources of sodium metaaluminate, aluminum powder, aluminum nitrate, and aluminum hydroxide;
  • the base is any one or two mixtures of sodium hydroxide and potassium hydroxide ;
  • the silicon source used in step 2 is any one or two mixed silicon sources of silicon oxide containing mesoporous structure, MCM-48 or SBA-15;
  • step 2 a rotary crystallization with a motor linkage is used, and the rotation speed is 5-30 rpm;
  • the catalyst is prepared by using ethanol to prepare ethylbenzene.
  • the evaluation conditions are: the catalyst is packed in the reaction tube of the fixed-bed reactor for reaction evaluation, the raw materials are benzene and ethanol, and the molar ratio of benzene and ethanol is 3-7: 1; the space-time space velocity of the feed weight is 3-8h -1
  • the reaction temperature is 300 to 500 ° C, and the reaction pressure is 0.1 to 2 MPa.
  • the above molecular sieve catalyst and the molecular sieve catalyst prepared by the above method are used for the reaction of gas phase alkylation of ethanol and benzene to prepare ethylbenzene.
  • a method for preparing ethylbenzene by gas-phase alkylation of ethanol and benzene is provided, which is characterized in that:
  • the raw materials containing benzene and ethanol are reacted through a fixed-bed reactor containing a catalyst to obtain the ethylbenzene;
  • the catalyst includes at least one of the above molecular sieve catalyst and the molecular sieve catalyst prepared by the above method.
  • the temperature of the reaction is 300 to 500 ° C
  • the pressure of the reaction is 0.1 to 2 MPa
  • the molar ratio of benzene to ethanol in the raw materials is 3 to 7: 1
  • the space velocity is 3 ⁇ 8h -1 .
  • the catalyst is at least one of the above-mentioned catalyst and the catalyst prepared by the above-mentioned method.
  • the selectivity of the ethyl group is greater than 93%.
  • MCM-48 molecular sieve is a M41S series mesoporous molecular sieve, which has a uniform pore size of about 2.6 nm and two sets of independent three-dimensional spiral channel network structures.
  • SBA-15 molecular sieve is a mesoporous molecular sieve belonging to the P3mm space group. It has mesopores with a two-dimensional hexagonal through-hole structure.
  • 1,4-MPB is short for 1,4-bis (N-methylpyrrole) butane.
  • the catalyst provided in this application can efficiently convert ethanol to generate ethylbenzene in one step, simplify the process, save equipment investment, and reduce production costs;
  • the catalyst provided in this application is applied to the process of gas phase alkylation of ethanol and benzene to prepare ethylbenzene. Compared with the prior art, the catalyst has improved hydrothermal stability and ethyl selectivity in the product.
  • the evaluation results show that The selectivity of ethyl group is greater than 93% under the reaction conditions of a molar ratio of benzene / ethanol of 4 to 7: 1, 350 to 470 ° C and a weight space velocity of 4 to 8 h -1 ;
  • the catalyst provided by this application has high resistance to hydrothermal stability and catalytic reaction stability.
  • the molecular sieve is calcined at 650 ° C, and the relative crystallinity is reduced by about 15%.
  • the relative crystallinity is decreased when the saturated steam treatment is conducted at 800 ° C. Only about 30%.
  • the catalyst has a good application prospect and high application value.
  • Figure 1 shows the topological structure of TNU-9 molecular sieve.
  • FIG. 2 is an XRD pattern of the TNU-9 catalyst before reaction in Example 1.
  • FIG. 2 is an XRD pattern of the TNU-9 catalyst before reaction in Example 1.
  • FIG. 3 is a SEM image before the reaction of the TNU-9 catalyst in Example 1.
  • FIG. 4 is a SEM image of the TNU-9 catalyst before reaction in Example 1.
  • FIG. 4 is a SEM image of the TNU-9 catalyst before reaction in Example 1.
  • Fig. 5 shows the conversion rate of benzene in the reaction for the gas phase alkylation reaction of ethanol and benzene to prepare ethylbenzene in Example 1.
  • FIG. 6 is the ethylbenzene selectivity of the catalyst used in the ethanol to ethylbenzene reaction in Example 1.
  • Silica containing mesoporous structure was purchased from Nankai University Molecular Sieve Co., Ltd., and its mesoporous pore size was 15nm.
  • MCM-48 molecular sieve was purchased from Nankai University Molecular Sieve Co., Ltd., and its silicon to aluminum ratio was 30.
  • SBA-15 molecular sieve was purchased from Nankai University Molecular Sieve Co., Ltd., and its silicon to aluminum ratio was 40.
  • the X'pert-Pro type X-ray diffractometer of PANAnalytical Company in the Netherlands was used for XRD structure analysis.
  • the Panalytical Epsilon 5 energy dispersive X-ray fluorescence spectrometer ED-XRF was used for the silicon-aluminum ratio test.
  • Micromeritics ASAP-2010 type physical adsorption instrument was used for pore structure test.
  • ethanol, benzene conversion and ethylbenzene selectivity are calculated based on the number of moles of carbon.
  • TNU-9 molecular sieve has a silicon to aluminum ratio of 60; micropores of 0.55 nm and mesopores of 6 nm.
  • TNU-9 molecular sieve has a silicon to aluminum ratio of 50; micropores of 0.55 nm and mesopores of 6 nm.
  • TNU-9 molecular sieve has a silicon to aluminum ratio of 56; micropores of 0.55 nm and mesopores of 6 nm.
  • TNU-9 molecular sieve has a silicon-to-aluminum ratio of 75; micropores of 0.55 nm and mesopores of 6 nm.
  • 1,4-MPB template was dissolved in 150ml of water, then 0.14g of aluminum powder, 3.6g of sodium hydroxide, and 20g of mesoporous silica material were added in sequence, and the solution was stirred for 10 hours to form a gel and filled into 200ml of stainless steel.
  • hydrothermal crystallization was performed at 160 ° C for 240h, and the rotation speed was 10 rpm; the obtained product was filtered and washed until the washing solution became neutral, and the filtered cake was transferred to an oven at 80 ° C. Medium drying treatment for 12h; then the sample was baked in a 500 ° C muffle furnace for 6h to obtain a TNU-9 molecular sieve.
  • the TNU-9 molecular sieve has a silicon-to-aluminum ratio of 60; micropores of 0.55 nm and mesopores of 10 nm.
  • 1,4-MPB template 21.5g was dissolved in 150ml of water, then 0.14g of aluminum powder, 3.6g of sodium hydroxide and 20g of mesoporous silicon oxide material were added in order, and the solution was stirred for 10 hours to form a gel and filled into 200ml of stainless steel
  • hydrothermal crystallization was performed at 160 ° C for 240h, and the rotation speed was 10 rpm; the obtained product was filtered and washed until the washing solution became neutral, and the filtered cake was transferred to an oven at 80 ° C.
  • Medium drying treatment for 12h then the sample was baked in a 500 ° C muffle furnace for 6h to obtain a TNU-9 molecular sieve.
  • the TNU-9 molecular sieve has a silicon-to-aluminum ratio of 60; micropores of 0.55 nm and mesopores of 13 nm.
  • TNU-9 molecular sieve has a silicon to aluminum ratio of 50; micropores of 0.55 nm and mesopores of 6 nm.
  • TNU-9 molecular sieve has a silicon-to-aluminum ratio of 63; micropores of 0.55 nm and mesopores of 6 nm.
  • TNU-9 molecular sieve has a silicon to aluminum ratio of 65; micropores of 0.55 nm and mesopores of 6 nm.
  • TNU-9 molecular sieve has a silicon-aluminum ratio of 58; micropores of 0.55 nm and mesopores of 6 nm.
  • TNU-9 molecular sieve has a silicon-aluminum ratio of 52; micropores of 0.55 nm and mesopores of 7 nm.
  • TNU-9 molecular sieve has a silicon-aluminum ratio of 56; micropores of 0.55 nm and mesopores of 10 nm.
  • TNU-9 molecular sieve has a silicon-aluminum ratio of 64; micropores of 0.55 nm and mesopores of 9 nm.
  • TNU-9 molecular sieve has a silicon to aluminum ratio of 70; micropores of 0.55 nm and mesopores of 8 nm.
  • TNU-9 molecular sieve has a silicon-aluminum ratio of 68; micropores of 0.55 nm and mesopores of 10 nm.
  • Example 2 The operation was the same as in Example 1, except that the solution was stirred vigorously for 5 hours to form a gel and was charged into a 200 ml stainless steel reaction kettle.
  • Example 2 The operation was the same as in Example 1, except that the solution was stirred vigorously for 24 hours to form a gel and was charged into a 200 ml stainless steel reaction kettle.
  • Example 2 The operation is the same as in Example 1, except that the hydrothermal crystallization is performed at 120 ° C.
  • Example 2 The operation is the same as in Example 1, except that the hydrothermal crystallization is performed at 260 ° C.
  • Example 2 The operation was the same as in Example 1, except that the hydrothermal crystallization was performed for 100 hours.
  • Example 2 The operation is the same as in Example 1, except that the sample is fired in a 200 ° C muffle furnace.
  • Example 2 The operation was the same as in Example 1, except that the samples were fired in a muffle furnace at 600 ° C.
  • Example 2 The operation was the same as in Example 1, except that the sample was baked in a muffle furnace for 1 h.
  • Example 2 The operation is the same as in Example 1, except that the sample is baked in a muffle furnace for 20 hours.
  • the TNU-9 molecular sieves obtained in Examples 1 to 25 were characterized by XRD.
  • a typical XRD pattern is shown in FIG. 2, which corresponds to Example 1.
  • the TNU-9 molecular sieves obtained in Examples 1 to 25 were characterized by SEM testing. Typical SEM spectra are shown in FIGS. 3 and 4, corresponding to Example 1. The SEM spectrum shows that the molecular sieve is a small-grained aggregate with a single crystal grain size of 100-1000 nm, and the small crystal grains have an irregular morphology or a flaky structure with a thickness of about 20 nm.
  • the SEM images of other samples are similar to those in Fig. 3 and Fig. 4.
  • the morphology of the other samples is small particles or flaky grains with a single grain size of 100-1000 nm.
  • the reaction performance is shown in Figure 5 and Figure 6.
  • Figure 5 shows that within a reaction time of 0-12 hours, the conversion rate of benzene is above 22%, and the conversion rate remains basically unchanged.
  • Figure 6 shows that the selectivity of ethylbenzene is above 92% within a reaction time of 0-12 hours, and the selectivity remains substantially unchanged.
  • Figures 5 and 6 show that the catalyst is stable and strong, has excellent catalytic effect, high conversion of reactants, and high selectivity of target products.
  • the catalysts in Examples 1 to 25 were charged in a reaction tube of a fixed-bed reaction bed for reaction evaluation.
  • the reaction results of Examples 1 to 16 are shown in Table 1.
  • Table 1 shows that the molecular sieve catalysts prepared in Examples 1 to 16 of the present application catalyze the gas-phase alkylation of ethanol and benzene.
  • the conversion rate of ethanol is more than 99%, the conversion rate of benzene is more than 15%, and the choice of ethylbenzene. Sex is above 98%.
  • the TNU-9 molecular sieve catalyst prepared in the present application achieved almost the same activity as Comparative Example 1 and Comparative Example 2.
  • Table 1 that the xylene content of the by-product of the TNU-9 molecular sieve catalyst prepared in the present application for catalyzing the gas-phase alkylation reaction of ethanol and benzene is as low as 540 ppm, compared to Comparative Examples 1 and 2
  • the xylene content is above 850 ppm, and the product prepared by the catalyst of the present application has higher purity.
  • the reaction evaluation test conditions were the same as those in Example 28.
  • the catalytic reaction results are shown in Table 1.
  • the reaction evaluation test conditions were the same as those in Example 28.
  • the catalytic reaction results are shown in Table 1.
  • the xylene content is the relative content of xylene relative to ethylbenzene in the product
  • TNU-9 molecular sieve catalyst obtained in Examples 1 to 25, and the nano ZSM-5 molecular sieve catalyst in Comparative Examples 1 and 2 were subjected to a hydrothermal stability test.
  • the catalyst was taken and calcined at 650 ° C for 4 hours, and the relative crystallinity of the calcined catalyst was measured.
  • the experimental results show that the relative crystallinity of the TNU-9 molecular sieve catalyst obtained in Examples 1 to 25 is reduced by about 15%; the relative crystallinity of the nano-ZSM-5 molecular sieve catalyst in Comparative Examples 1 and 2 is reduced by about 16.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Nanotechnology (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本申请公开了一种用于乙醇与苯一步法气相烷基化制备乙苯的催化剂,该催化剂对该反应具有高烷基化反应活性、烷基化产物中乙基选择性高、高抗水热稳定和反应性能稳定的特点。所述催化剂,包含介孔-微孔复合的TNU-9分子筛;所述介孔-微孔复合的TNU-9分子筛的硅铝摩尔比SiO 2/Al 2O 3为50~200。

Description

一种用于乙醇和苯制备乙苯的催化剂及其制备和应用 技术领域
本发明涉及一种可应用于乙醇与苯气相烷基化反应制备乙苯的催化剂及其制备方法和应用。
背景技术
乙苯是工业上重要的基本有机原料,主要用于催化脱氢生产苯乙烯,进而用于高分子材料领域制备橡胶塑料等;也可用作溶剂、稀释剂或生产二乙苯。随着社会经济的高速发展,乙苯的市场需求和生产能力呈现明显的上升趋势。资料显示从1998年到2015年,全球乙苯的需求量年增长率为3.7%,我国的年增长率更是达到了5.3%,从1998年的800kt增加到2015年的2Mt。
目前,工业上主要以苯和乙烯烷基化反应的方式生产乙苯,主要工艺有AlCl 3液相烷基法和分子筛烷基化法两大类。AlCl 3液相烷基法工艺简单、操作条件缓和、乙烯转化率高,但存在设备腐蚀、环境污染、维护费用高等问题。分子筛烷基化法主要包含Mobil和Badger公司推出的ZSM-5分子筛气相烷基化制乙苯工艺(US3751504、US3751506、US4016218和US4547605)以及UOP和Lummus公司开发的Beta和Y型分子筛液相烃化法制乙苯的技术(US4891458、US5227558和ZL02151177),这些方法具有无腐蚀、无污染、流程简单、热能回收利用率高等优点。随着石油资源的日益枯竭和石油价格的飞涨,乙烯烷基化成本大幅度增加,寻求新的原料代替乙烯制备乙苯成为趋势。随着近年来煤制乙醇和生物制乙醇等技术的不断进步与成熟,乙醇的价格和生产成本呈现下降趋势,使其应用前景变得更为可观。采用环境友好型的可再生资源——乙醇作为烷基化试剂,可显著降低乙苯的生产成本,提高企业的经济效益与综合竞争力,使该工艺可以更具吸引力且具有更高的社会价值。
乙醇制乙苯工艺是以乙醇和苯在反应器内同时发生乙醇脱水反应与乙烯和苯的烷基化反应。其所用催化剂不仅需要满足乙醇高的脱水选择性和转化率,而且对乙烯和苯烷基化的催化效率也有一定的要求。中国石油化工股份有限公司采用了ZSM-5,加入粘结剂以及采用稀土氧化物或碱土金属氧化物改性得到一系列催化剂。将处理后的催化剂用于乙苯生产反应中,发现在390℃、1.2MPa、乙醇重量空速0.8h -1和苯乙醇摩尔比为6.5的条件下,乙苯选择性可高达99%,再生周期为半年(CN103121909A,CN102872899A,CN102276413A,CN 102875315,CN102274746A)。郑鑫源等采用β 分子筛为催化剂,得到了在240~260℃、n(苯):n(乙烯)=4~6和苯空速3~5h -1的条件下,乙醇转化率大于99%,乙苯收率大于80%(化学反应工程与工艺,2006,22,172-175)。同样,意大利维尔萨利斯股份公司采用BEA族沸石为催化剂催化生物乙醇和苯进行烷基化反应(WO2011077240)。专利WO2010143043提出了使用MTW族沸石作为催化剂,以发酵生物质衍生的糖获得的乙醇作为烷基化试剂,与苯进行烷基化反应生成乙苯,大大提高了该反应的经济型。除了上述的分子筛催化剂,近期Ehsan Rahmani等人尝试采用MOFs材料,如Fe基的MIL-110和Al-Li掺杂的MIL-53,在相对温和的反应条件下(175~200℃)对苯与乙醇进行烷基化反应生产乙苯,选择性大于75%(Microporous and Mesoporous Materials,2017,249,118-127;Ind.Eng.Chem.Res.2018,57,169-178)。该研究为反应催化剂的选择和反应条件的控制提供了新的方案,但距工业化实施仍有相当长的距离,因此目前仍以分子筛催化剂为核心。
针对市场上存在的各种各样的分子筛,研究人员将它们对苯与乙醇的催化性能进行了比较。孙林平等考察了ZSM-5、Beta和Y沸石在焦化苯与乙醇在气相烷基化反应中的催化性能,结果表明,Beta和Y沸石孔道中的笼结构容易生成大分子,导致催化剂快速失活,而ZSM-5分子筛则表现出良好的抗失活能力(石油学报(石油加工),2006,22,146-148)。Odedairo等对比考察了MOR和ZSM-5分子筛的催化反应性能,得到了在ZSM-5上乙苯的选择性更高的结论(Catalysis Today,2013,204,73-84)。中国科学院山西煤炭化学研究所煤转化国家重点实验室高俊华等比较了不同结构分子筛在苯与乙醇气相烷基化制乙苯反应中的催化性能时也得出相似的结论,ZSM-5分子筛的催化性能更理想,活性更高且稳定性好。但ZSM-5催化剂孔道太小,反应传质容易受到影响,导致副反应的发生以致结焦失活;同时它的抗水热稳定性能较差,所以在该反应过程中结构容易坍塌失活。文献Applied Catalysis A:General,2010,385,31–45对比研究两种与ZSM-5孔道结构相似的分子筛SSZ-33和TNU-9的乙醇烷基化反应性能,反应在苯醇比1:1,250~300℃的条件下进行,得到TNU-9分子筛上的乙醇转化率优于ZSM-5,但乙苯选择性偏低。然而,文献对于TNU-9分子筛的合成及物化性质都缺乏详细描述,苯与乙醇气相烷基化反应选择的条件也较窄。
发明内容
本发明涉及一种高活性和高稳定性的用于乙醇和苯气相烷基化制备乙苯的催化剂及其制备方法,具体的说该发明使用的催化剂为一种的含有介孔-微孔复合结构的TNU-9分子筛。本发明通过合成高硅含量的介孔-微孔复合TNU-9分子筛主要解决催化 剂的抗水热稳定性、高烷基化活性和乙基选择性。催化剂的详细制备方法为:采用含介孔结构的氧化硅、MCM-48或者SBA-15作为硅源,1,4-MPB作为模板剂,采用水热合成法合成TNU-9分子筛。催化剂应用于乙醇与苯烷基化反应中,在反应温度300~500℃,反应压力0.1~2MPa,进料质量空速3~8h -1,苯醇比3~7的反应环境下,主要产物为乙苯和水。本发明催化剂可以在乙醇与苯一步法气相烷基化制备乙苯的反应过程中长期稳定使用,且保持良好的苯与乙醇烷基化反应性能。本发明采用水热合成的含有介-微孔复合结构的十元环交叉结构的三维TNU-9分子筛,用于乙醇与苯一步法气相烷基反应化制备乙苯工艺。该催化剂不仅该催化剂具有高的烷基化活性与高乙基选择性,而且还拥有一定的抗水热稳定性能,催化反应性能稳定。该专利发明为乙醇与苯制备乙苯反应提供了一种新的催化剂,具有很好的应用前景。
根据本申请的一个方面,提供了一种用于乙醇与苯一步法气相烷基化制备乙苯的催化剂,该催化剂对该反应具有高烷基化反应活性、烷基化产物中乙基选择性高、高抗水热稳定和反应性能稳定的特点。
所述分子筛催化剂,其特征在于,
包含介孔-微孔复合的TNU-9分子筛;
所述介孔-微孔复合的TNU-9分子筛的硅铝摩尔比SiO 2/Al 2O 3为50~200。
可选地,所述介孔-微孔复合的TNU-9分子筛的硅铝摩尔比SiO 2/Al 2O 3的上限选自200、190、180、170、160、150、140、130、120、110或100;下限选自100、95、90、85、80、75、72、70、68、65、64、63、60、58、56、55、52或50。
可选地,所述介孔-微孔复合的TNU-9分子筛的硅铝摩尔比SiO 2/Al 2O 3为50~100。
可选地,所述介孔-微孔复合的TNU-9分子筛的硅铝摩尔比SiO 2/Al 2O 3为60~100。
可选地,所述介孔-微孔复合的TNU-9分子筛的硅铝摩尔比SiO 2/Al 2O 3为60~80。
可选地,所述介孔-微孔复合的TNU-9分子筛含有微孔、介孔孔道结构;所述介孔孔道尺寸为3~50nm。
可选地,所述介孔-微孔复合的TNU-9分子筛为晶粒堆积体;单个所述晶粒的尺寸为100~1000nm。
可选地,所述介孔-微孔复合的TNU-9分子筛含有微孔的孔径为0.3~0.8nm。
可选地,所述介孔-微孔复合的TNU-9分子筛含有微孔的孔径为0.4~0.7nm。
可选地,所述介孔-微孔复合的TNU-9分子筛含有介孔的孔径为6~13nm。
可选地,所述介孔-微孔复合的TNU-9分子筛含有介孔的孔径的上限选自13nm、12nm、11nm或10nm;下限选自9nm、8nm、7nm或6nm。
具体地,所述催化剂为含有介-微孔复合的高硅TNU-9分子筛,分子筛的介孔孔道大小为3~50nm,分子筛的硅铝摩尔比SiO 2/Al 2O 3为50~200,催化剂呈小晶粒堆积体,单个晶粒尺寸为100~1000nm。
可选地,所述分子筛催化用于乙醇与苯反应制备乙苯。
根据本申请的另一方面,提供一种用于乙醇一步法气相烷基化制备乙苯的催化剂的制备方法,该方法简单可靠,便于工业化生产。
所述催化剂的制备方法,其特征在于,包括以下步骤:
(1)将铝源、碱源、含介孔结构的硅源加入到含有模板剂的水溶液中,搅拌,获得凝胶状前驱体;
(2)将步骤(1)中获得的凝胶状前驱体水热晶化;
(3)将步骤(2)中获得的产物洗涤至中性、干燥;
(4)将步骤(3)中获得的产物焙烧,得到所述分子筛催化剂。
可选地,步骤(1)中所述铝源、碱源、含介孔结构的硅源和模板剂的摩尔比满足:
SiO 2:Al 2O 3:M 2O:R:H 2O=5~100:1:1~30:5~20:1000~4000;
其中,R为模板剂,以模板剂自身的摩尔数计;铝源的摩尔数以Al 2O 3的摩尔数计;碱源的摩尔数以其相应的碱金属氧化物M 2O的摩尔数计;硅源的摩尔数以SiO 2的摩尔数计;水的摩尔数以H 2O自身的摩尔数计。
可选地,步骤(1)中所述模板剂包括1,4-MPB、葡萄糖、活性炭中的至少一种。
可选地,所述1,4-MPB的制备方法包括:
将含有1,4-二溴丁烷、N-甲基四氢吡咯的溶液回流,重结晶,干燥,得到1,4-MPB。
可选地,所述含有1,4-二溴丁烷、N-甲基四氢吡咯的溶液为:将4-二溴丁烷、N-甲基四氢吡咯置于丙酮中获得;
所述回流为30~80℃水浴回流;
所述重结晶之前采用丙酮抽提;
所述重结晶的溶剂包括甲醇-乙醚的混合溶剂;其中,甲醇和乙醚的体积比为0.05~50:1~20;
所述干燥的条件为:60~120℃处理5~20h。
可选地,所述水浴回流的时间为6~48h。
可选地,步骤(1)中所述含介孔结构的硅源选自含有介孔结构的氧化硅、MCM-48、SBA-15中的至少一种。
可选地,步骤(1)中所述铝源选自偏铝酸钠、铝粉、硝酸铝、氢氧化铝中的至少一种;
所述碱源选自氢氧化钠、氢氧化钾中的至少一种。
可选地,步骤(1)中所述搅拌的时间为5~24h。
可选地,步骤(2)中所述水热晶化为水热动态晶化;
所述水热动态晶化的条件为:120~260℃的水热条件下动态晶化100~360h。
可选地,所述晶化温度的上限选自260℃、240℃、220℃、200℃、180℃、160℃或140℃;下限选自140℃、130℃或120℃。
可选地,所述晶化时间的上限选自360h、340h、300h或280h;下限选自280h、260h、240h、200h、180h、160h、140h、120h或100h。
可选地,步骤(2)中所述动态晶化为旋转式晶化,旋转速度为5~30转/分。
可选地,所述旋转速度的上限选自30转/分、25转/分、20转/分或15转/分;下限选自15转/分、10转/分或5转/分。
可选地,步骤(4)中所述焙烧的温度为200~600℃,所述焙烧的时间为1~20h。
可选地,所述焙烧的温度的上限选自600℃、580℃、550℃、520℃、500℃或450℃;下限选自450℃、400℃、300℃或200℃。
可选地,所述焙烧的时间的上限选自20h、18h、15h、12h或10h;下限选自10h、8h、5h、3h或1h。
可选地,步骤(3)包括:步骤(2)中获得的产物经过滤洗涤至洗液呈中性,60~110℃干燥处理。
作为一种实施方式,所述方法包括:
1)1,4-MPB模板剂R的合成
将1,4-二溴丁烷、N-甲基四氢吡咯溶于丙酮中,加热至30~80℃,回流6~48h;反应液用丙酮抽提,得到的产物用甲醇-乙醚混合溶剂进行重结晶;重结晶后的产物于60~120℃的真空干燥箱中干燥处理5~20h,得到所述模板剂R;
2)TNU-9分子筛的制备
将步骤1)中得到的模板剂R溶解于水中,随后依次加入铝源、碱源以及含介孔结构的硅源,得到溶液I;溶液I中各物质的摩尔比为SiO 2:Al 2O 3:M 2O:R:H 2O=5~100:1:1~30:5~20:1000~4000;将所述溶液I搅拌5~24h后形成凝胶状,装入反应釜中,在120~260℃下,电机带动的动态水热条件下晶化100~360h;将得到的产物进行过滤洗涤处理至洗液呈中性,过滤后的滤饼于60~110℃干燥处理;然后于200~600℃马弗炉 中焙烧1~20h,即得到所述分子筛催化剂。
作为一种具体地实施方式,所述方法包括:
1、1,4-MPB模板剂的合成
取1,4-二溴丁烷、N-甲基四氢吡咯至于丙酮中,放置于30~80℃水浴锅中回流处理;采用丙酮抽提过量的胺,将所得的混合物放置于甲醇-乙醚的混合溶剂中重结晶;将样品转移到60~120℃的真空干燥箱中干燥处理5~20h,得到模板剂;
2、TNU-9分子筛的制备
取步骤1中所得的模板剂溶解于水中,随后依次加入铝源、碱以及含介孔结构的硅源,各物质分别以SiO 2、Al 2O 3、M 2O、R、H 2O计的摩尔比为SiO 2:Al 2O 3:M 2O:R:H 2O=5~100:1:1~30:5~20:1000~4000,其中R为1)中模板剂,M为碱金属;将配置溶液剧烈搅拌5~24h后形成凝胶状装入不锈钢反应釜中,在120~260℃,电机联动的动态水热条件下晶化100~360h;将得到的产物进行过滤洗涤处理至洗液呈中性,过滤后的滤饼转移至60~110℃的烘箱中干燥处理;然后将样品置于200~600℃马弗炉中焙烧1~20h,即得到含介孔-微孔复合结构的TNU-9分子筛。
步骤1回流处理的时间为6~48h;
步骤2中铝源为偏铝酸钠、铝粉、硝酸铝、氢氧化铝中的任意一种或者多种混合铝源;碱为氢氧化钠、氢氧化钾中的任意一种或者两种混合物;
步骤2中采用的硅源为含介孔结构的氧化硅、MCM-48或者SBA-15中的任意一种或者两种混合硅源;
步骤2中晶化过程中采用电机联动的旋转式晶化,旋转速度为5-30转/分;
所述的催化剂的应用乙醇制备乙苯的反应。评价条件为:催化剂装填于固定床反应器的反应管中进行反应评价,原料为苯和乙醇,苯与乙醇的摩尔比为3~7:1;进料重量时空空速为3~8h -1,反应温度为300~500℃,反应压力为0.1~2MPa。
根据本申请的又一方面,上述的分子筛催化剂、上述的方法制备得到的分子筛催化剂用于乙醇与苯气相烷基化制备乙苯的反应。
根据本申请的又一方面,提供一种乙醇与苯气相烷基化制备乙苯的方法,其特征在于,
含有苯和乙醇的原料通过含有催化剂的固定床反应器进行反应,得到所述乙苯;
所述催化剂包括上述的分子筛催化剂、上述的方法制备的分子筛催化剂中的至少 一种。
可选地,所述反应的温度为300~500℃,所述反应的压力为0.1~2MPa;所述原料中苯与乙醇的摩尔比为3~7:1;所述原料的进料重量时空空速为3~8h -1
所述催化剂为上述的催化剂、上述的方法制备的催化剂中的至少一种。
可选地,在苯/乙醇的摩尔比为4~7:1,350~470℃,重量空速4~8h -1的反应条件下,乙基的选择性大于93%。
本申请中,“MCM-48分子筛”,是属于M41S系列介孔分子筛,具有约2.6nm左右的均一孔径及两套相互独立的三维螺旋孔道网络结构。
“SBA-15分子筛”,是属于P3mm空间群的介孔分子筛,具有二维六方通孔结构的介孔。
1,4-MPB是1,4-二(N-甲基吡咯)丁烷的简写。
本申请能产生的有益效果包括:
1)本申请所提供的催化剂制备方法可靠,工艺简单,重复性强;
2)本申请所提供的催化剂,可以有效的转化乙醇一步生成乙苯,流程简化,节省了设备投资,降低了生产成本;
3)本申请所提供的催化剂应用于乙醇与苯气相烷基化反应制备乙苯工艺,与现有技术相比该催化剂抗水热稳定性和产物中乙基选择性得到了提高,评价结果显示,在苯/乙醇的摩尔比为4~7:1,350~470℃,重量空速4~8h -1的反应条件下,乙基的选择性大于93%;
4)本申请所提供的催化剂具有高抗水热稳定和催化反应稳定性能,分子筛经650℃焙烧,相对结晶度下降约15%;在800℃通入饱和水蒸汽处理条件下,相对结晶度下降仅30%左右。催化剂应用前景好,应用价值高。
附图说明
图1为TNU-9分子筛的拓扑结构图。
图2为实施例1中TNU-9催化剂反应前的XRD图。
图3为实施例1中TNU-9催化剂反应前的SEM图。
图4为实施例1中TNU-9催化剂反应前的SEM图。
图5为实施例1中催化剂用于乙醇与苯气相烷基化反应制备乙苯反应中苯的转化 率。
图6为实施例1中催化剂用于乙醇制备乙苯反应的乙苯选择性。
具体实施方式
下面结合实施例详述本申请,但本申请并不局限于这些实施例。
如无特别说明,本申请的实施例中的原料均通过商业途径购买。
含有介孔结构的氧化硅购自南开大学分子筛有限公司,其介孔孔径为15nm。
MCM-48分子筛购自南开大学分子筛有限公司,其硅铝比为30。
SBA-15分子筛购自南开大学分子筛有限公司,其硅铝比为40。
本申请的实施例中分析方法如下:
利用荷兰PANAnalytical公司的X’pert-Pro型X射线衍射仪进行XRD结构分析。
利用HITACHI S-5500FE-SEM电镜进行SEM形貌分析。
利用PANAlytical Epsilon 5能量色散X射线荧光光谱仪ED-XRF进行硅铝比测试。
利用Micromeritics公司ASAP-2010型物理吸附仪进行孔结构测试。
本申请的实施例中,乙醇、苯转化率以及乙苯选择性都基于碳摩尔数进行计算。
实施例1
取21.6g 1,4-二溴丁烷、17.2g N-甲基四氢吡咯至于100ml丙酮中,放置于60℃水浴锅中回流处理24h;采用丙酮抽提过量的胺,将所得的混合物放置于100ml甲醇-乙醚(体积比2:1)的混合溶剂中重结晶;将样品转移到80℃的真空干燥箱中干燥处理10h,即得到1,4-MPB模板剂。取10.7g 1,4-MPB模板剂溶解于150ml水中,随后依次加入0.14g铝粉、3.6g氢氧化钠以及20g介孔氧化硅材料,将溶液搅拌10h后形成的凝胶状装入200ml不锈钢反应釜中,在160℃条件下旋转水热晶化240h,旋转速度为10转/分;将得到的产物进行过滤洗涤处理至洗液呈中性,过滤后的滤饼转移至80℃的烘箱中干燥处理12h;然后将样品置于500℃马弗炉中焙烧6h,即得到TNU-9分子筛。得到TNU-9分子筛的硅铝比为60;微孔0.55nm,介孔6nm。
实施例2
取21.6g 1,4-二溴丁烷、17.2g N-甲基四氢吡咯至于100ml丙酮中,放置于60℃水浴锅中回流处理24h;采用丙酮抽提过量的胺,将所得的混合物放置于100ml甲醇- 乙醚(体积比2:1)的混合溶剂中重结晶;将样品转移到80℃的真空干燥箱中干燥处理10h,即得到1,4-MPB模板剂。取10.7g 1,4-MPB模板剂溶解于150ml水中,随后依次加入0.14g铝粉、3.6g氢氧化钠以及15g MCM-48材料,将溶液搅拌10h后形成的凝胶状装入200ml不锈钢反应釜中,在160℃条件下旋转水热晶化240h,旋转速度为10转/分;将得到的产物进行过滤洗涤处理至洗液呈中性,过滤后的滤饼转移至80℃的烘箱中干燥处理12h;然后将样品置于500℃马弗炉中焙烧6h,即得到TNU-9分子筛。得到TNU-9分子筛的硅铝比为50;微孔0.55nm,介孔6nm。
实施例3
取21.6g 1,4-二溴丁烷、17.2g N-甲基四氢吡咯至于100ml丙酮中,放置于60℃水浴锅中回流处理24h;采用丙酮抽提过量的胺,将所得的混合物放置于100ml甲醇-乙醚(体积比2:1)的混合溶剂中重结晶;将样品转移到80℃的真空干燥箱中干燥处理10h,得到1,4-MPB模板剂。取10.7g 1,4-MPB模板剂溶解于150ml水中,随后依次加入0.14g铝粉、3.6g氢氧化钠以及15g SBA-15材料,将溶液搅拌10h后形成凝胶状装入200ml不锈钢反应釜中,在160℃条件下旋转水热晶化240h,旋转速度为10转/分;将得到的产物进行过滤洗涤处理至洗液呈中性,过滤后的滤饼转移至80℃的烘箱中干燥处理12h;然后将样品置于500℃马弗炉中焙烧6h,即得到TNU-9分子筛。得到TNU-9分子筛的硅铝比为56;微孔0.55nm,介孔6nm。
实施例4
取21.6g 1,4-二溴丁烷、17.2g N-甲基四氢吡咯至于100ml丙酮中,放置于60℃水浴锅中回流处理24h;采用丙酮抽提过量的胺,将所得的混合物放置于100ml甲醇-乙醚(体积比2:1)的混合溶剂中重结晶;将样品转移到80℃的真空干燥箱中干燥处理12h,得到1,4-MPB模板剂。取10.7g 1,4-MPB模板剂溶解于150ml水中,随后依次加入0.14g铝粉、3.6g氢氧化钠以及30g介孔氧化硅材料材料,将溶液搅拌10h后形成凝胶状装入200ml不锈钢反应釜中,在160℃条件下旋转水热晶化240h,旋转速度为10转/分;将得到的产物进行过滤洗涤处理至洗液呈中性,过滤后的滤饼转移至80℃的烘箱中干燥处理12h;然后将样品置于500℃马弗炉中焙烧6h,即得到TNU-9分子筛。得到TNU-9分子筛的硅铝比为75;微孔0.55nm,介孔6nm。
实施例5
取21.6g 1,4-二溴丁烷、17.2g N-甲基四氢吡咯至于100ml丙酮中,放置于60℃水浴锅中回流处理24h;采用丙酮抽提过量的胺,将所得的混合物放置于100ml甲醇-乙醚(体积比2:1)的混合溶剂中重结晶;将样品转移到80℃的真空干燥箱中干燥处理12h,得到1,4-MPB模板剂。取15.8g 1,4-MPB模板剂溶解于150ml水中,随后依次加入0.14g铝粉、3.6g氢氧化钠以及20g介孔氧化硅材料材料,将溶液搅拌10h后形成凝胶状装入200ml不锈钢反应釜中,在160℃条件下旋转水热晶化240h,旋转速度为10转/分;将得到的产物进行过滤洗涤处理至洗液呈中性,过滤后的滤饼转移至80℃的烘箱中干燥处理12h;然后将样品置于500℃马弗炉中焙烧6h,即得到TNU-9分子筛。得到TNU-9分子筛的硅铝比为60;微孔0.55nm,介孔10nm。
实施例6
取21.6g 1,4-二溴丁烷、17.2g N-甲基四氢吡咯至于100ml丙酮中,放置于60℃水浴锅中回流处理24h;采用丙酮抽提过量的胺,将所得的混合物放置于100ml甲醇-乙醚(体积比2:1)的混合溶剂中重结晶;将样品转移到80℃的真空干燥箱中干燥处理12h,得到1,4-MPB模板剂。取21.5g 1,4-MPB模板剂溶解于150ml水中,随后依次加入0.14g铝粉、3.6g氢氧化钠以及20g介孔氧化硅材料材料,将溶液搅拌10h后形成凝胶状装入200ml不锈钢反应釜中,在160℃条件下旋转水热晶化240h,旋转速度为10转/分;将得到的产物进行过滤洗涤处理至洗液呈中性,过滤后的滤饼转移至80℃的烘箱中干燥处理12h;然后将样品置于500℃马弗炉中焙烧6h,即得到TNU-9分子筛。得到TNU-9分子筛的硅铝比为60;微孔0.55nm,介孔13nm。
实施例7
取21.6g 1,4-二溴丁烷、17.2g N-甲基四氢吡咯至于100ml丙酮中,放置于60℃水浴锅中回流处理24h;采用丙酮抽提过量的胺,将所得的混合物放置于100ml甲醇-乙醚(体积比2:1)的混合溶剂中重结晶;将样品转移到80℃的真空干燥箱中干燥处理10h,得到1,4-MPB模板剂。取10.7g 1,4-MPB模板剂溶解于150ml水中,随后依次加入2.0g九水硝酸铝、3.6g氢氧化钠以及15g MCM-48材料,将溶液搅拌10h后形成凝胶状装入200ml不锈钢反应釜中,在160℃条件下旋转水热晶化240h,旋转速度为10转/分;将得到的产物进行过滤洗涤处理至洗液呈中性,过滤后的滤饼转移至80℃的烘箱中干燥处理12h;然后将样品置于500℃马弗炉中焙烧6h,即得到TNU-9分子筛。得到TNU-9分子筛的硅铝比为50;微孔0.55nm,介孔6nm。
实施例8
取21.6g 1,4-二溴丁烷、17.2g N-甲基四氢吡咯至于100ml丙酮中,放置于60℃水浴锅中回流处理24h;采用丙酮抽提过量的胺,将所得的混合物放置于100ml甲醇-乙醚(体积比2:1)的混合溶剂中重结晶;将样品转移到80℃的真空干燥箱中干燥处理12h,得到1,4-MPB模板剂。取10.7g 1,4-MPB模板剂溶解于150ml水中,随后依次加入0.14g铝粉、3.6g氢氧化钠以及15g MCM-48材料,将溶液搅拌10h后形成凝胶状装入200ml不锈钢反应釜中,在180℃条件下旋转水热晶化240h,旋转速度为10转/分;将得到的产物进行过滤洗涤处理至洗液呈中性,过滤后的滤饼转移至80℃的烘箱中干燥处理12h;然后将样品置于500℃马弗炉中焙烧6h,即得到TNU-9分子筛。得到TNU-9分子筛的硅铝比为63;微孔0.55nm,介孔6nm。
实施例9
取21.6g 1,4-二溴丁烷、17.2g N-甲基四氢吡咯至于100ml丙酮中,放置于60℃水浴锅中回流处理24h;采用丙酮抽提过量的胺,将所得的混合物放置于100ml甲醇-乙醚(体积比2:1)的混合溶剂中重结晶;将样品转移到80℃的真空干燥箱中干燥处理12h,得到1,4-MPB模板剂。取10.7g 1,4-MPB模板剂溶解于150ml水中,随后依次加入0.14g铝粉、3.6g氢氧化钠以及15g MCM-48材料,将溶液搅拌10h后形成凝胶状装入200ml不锈钢反应釜中,在200℃条件下旋转水热晶化240h,旋转速度为10转/分;将得到的产物进行过滤洗涤处理至洗液呈中性,过滤后的滤饼转移至80℃的烘箱中干燥处理12h;然后将样品置于500℃马弗炉中焙烧6h,即得到TNU-9分子筛。得到TNU-9分子筛的硅铝比为65;微孔0.55nm,介孔6nm。
实施例10
取21.6g 1,4-二溴丁烷、17.2g N-甲基四氢吡咯至于100ml丙酮中,放置于60℃水浴锅中回流处理24h;采用丙酮抽提过量的胺,将所得的混合物放置于100ml甲醇-乙醚(体积比2:1)的混合溶剂中重结晶;将样品转移到80℃的真空干燥箱中干燥处理8h,得到1,4-MPB模板剂。取10.7g 1,4-MPB模板剂溶解于150ml水中,随后依次加入0.14g铝粉、3.6g氢氧化钠以及15g MCM-48材料,将溶液搅拌10h后形成凝胶状装入200ml不锈钢反应釜中,在160℃条件下旋转水热晶化360h,旋转速度为10转/分;将得到的产物进行过滤洗涤处理至洗液呈中性,过滤后的滤饼转移至80℃的烘箱 中干燥处理12h;然后将样品置于500℃马弗炉中焙烧6h,即得到TNU-9分子筛。得到TNU-9分子筛的硅铝比为58;微孔0.55nm,介孔6nm。
实施例11
取21.6g 1,4-二溴丁烷、17.2g N-甲基四氢吡咯至于100ml丙酮中,放置于60℃水浴锅中回流处理24h;采用丙酮抽提过量的胺,将所得的混合物放置于100ml甲醇-乙醚(体积比2:1)的混合溶剂中重结晶;将样品转移到80℃的真空干燥箱中干燥处理15h,得到1,4-MPB模板剂。取10.7g 1,4-MPB模板剂溶解于150ml水中,随后依次加入0.14g铝粉、3.6g氢氧化钠以及15g MCM-48材料,将溶液搅拌10h后形成凝胶状装入200ml不锈钢反应釜中,在160℃条件下旋转水热晶化240h,旋转速度为20转/分;将得到的产物进行过滤洗涤处理至洗液呈中性,过滤后的滤饼转移至80℃的烘箱中干燥处理12h;然后将样品置于500℃马弗炉中焙烧6h,即得到TNU-9分子筛。得到TNU-9分子筛的硅铝比为52;微孔0.55nm,介孔7nm。
实施例12
取21.6g 1,4-二溴丁烷、17.2g N-甲基四氢吡咯至于100ml丙酮中,放置于60℃水浴锅中回流处理24h;采用丙酮抽提过量的胺,将所得的混合物放置于100ml甲醇-乙醚(体积比2:1)的混合溶剂中重结晶;将样品转移到80℃的真空干燥箱中干燥处理8h,得到1,4-MPB模板剂。取10.7g 1,4-MPB模板剂溶解于150ml水中,随后依次加入2.0g九水硝酸铝、3.6g氢氧化钠以及15g SBA-15材料,将溶液搅拌10h后形成凝胶状装入200ml不锈钢反应釜中,在160℃条件下旋转水热晶化240h,旋转速度为10转/分;将得到的产物进行过滤洗涤处理至洗液呈中性,过滤后的滤饼转移至80℃的烘箱中干燥处理12h;然后将样品置于500℃马弗炉中焙烧6h,即得到TNU-9分子筛。得到TNU-9分子筛的硅铝比为56;微孔0.55nm,介孔10nm。
实施例13
取21.6g 1,4-二溴丁烷、17.2g N-甲基四氢吡咯至于100ml丙酮中,放置于60℃水浴锅中回流处理24h;采用丙酮抽提过量的胺,将所得的混合物放置于100ml甲醇-乙醚(体积比2:1)的混合溶剂中重结晶;将样品转移到80℃的真空干燥箱中干燥处理10h,得到1,4-MPB模板剂。取10.7g 1,4-MPB模板剂溶解于150ml水中,随后依次加入1.5g铝粉、4.2g氢氧化钾以及20g SBA-15材料,将溶液搅拌10h后形成凝胶状 装入200ml不锈钢反应釜中,在160℃条件下旋转水热晶化200h,旋转速度为15转/分;将得到的产物进行过滤洗涤处理至洗液呈中性,过滤后的滤饼转移至80℃的烘箱中干燥处理12h;然后将样品置于500℃马弗炉中焙烧6h,即得到TNU-9分子筛。得到TNU-9分子筛的硅铝比为64;微孔0.55nm,介孔9nm。
实施例14
取21.6g 1,4-二溴丁烷、17.2g N-甲基四氢吡咯至于100ml丙酮中,放置于70℃水浴锅中回流处理20h;采用丙酮抽提过量的胺,将所得的混合物放置于100ml甲醇-乙醚(体积比2:1)的混合溶剂中重结晶;将样品转移到80℃的真空干燥箱中干燥处理10h,得到1,4-MPB模板剂。取10.7g 1,4-MPB模板剂溶解于75ml水中,随后依次加入2.0g偏铝酸钠、4.2g氢氧化钾以及20g SBA-15材料,将溶液搅拌10h后形成凝胶状装入200ml不锈钢反应釜中,在160℃条件下旋转水热晶化200h,旋转速度为30转/分;将得到的产物进行过滤洗涤处理至洗液呈中性,过滤后的滤饼转移至80℃的烘箱中干燥处理12h;然后将样品置于500℃马弗炉中焙烧6h,即得到TNU-9分子筛。得到TNU-9分子筛的硅铝比为70;微孔0.55nm,介孔8nm。
实施例15
取21.6g 1,4-二溴丁烷、17.2g N-甲基四氢吡咯至于100ml丙酮中,放置于70℃水浴锅中回流处理20h;采用丙酮抽提过量的胺,将所得的混合物放置于100ml甲醇-乙醚(体积比2:1)的混合溶剂中重结晶;将样品转移到80℃的真空干燥箱中干燥处理10h,得到1,4-MPB模板剂。取10.7g 1,4-MPB模板剂溶解于150ml水中,随后依次加入2.0g九水硝酸铝、3.6g氢氧化钠以及24g SBA-15材料,将溶液搅拌10h后形成凝胶状装入200ml不锈钢反应釜中,在160℃条件下旋转水热晶化210h,旋转速度为10转/分;将得到的产物进行过滤洗涤处理至洗液呈中性,过滤后的滤饼转移至80℃的烘箱中干燥处理12h;然后将样品置于550℃马弗炉中焙烧5h,即得到TNU-9分子筛。得到TNU-9分子筛的硅铝比为68;微孔0.55nm,介孔10nm。
实施例16
取21.6g 1,4-二溴丁烷、17.2g N-甲基四氢吡咯至于100ml丙酮中,放置于60℃水浴锅中回流处理24h;采用丙酮抽提过量的胺,将所得的混合物放置于100ml甲醇-乙醚(体积比2:1)的混合溶剂中重结晶;将样品转移到80℃的真空干燥箱中干燥处理 5-20h,得到1,4-MPB模板剂。取10.7g 1,4-MPB模板剂溶解于150ml水中,随后依次加入1.6g偏铝酸钠、3.6g氢氧化钠以及12g SBA-15材料,将溶液搅拌10h后形成凝胶状装入200ml不锈钢反应釜中,在160℃条件下旋转水热晶化300h,旋转速度为5转/分;将得到的产物进行过滤洗涤处理至洗液呈中性,过滤后的滤饼转移至80℃的烘箱中干燥处理12h;然后将样品置于550℃马弗炉中焙烧5h,即得到TNU-9分子筛。得到TNU-9分子筛的硅铝比为72;微孔0.55nm,介孔12nm。
实施例17
操作同实施例1,区别在于将溶液剧烈搅拌5h后形成凝胶状装入200ml不锈钢反应釜中。
实施例18
操作同实施例1,区别在于将溶液剧烈搅拌24h后形成凝胶状装入200ml不锈钢反应釜中。
实施例19
操作同实施例1,区别在于在120℃条件下旋转水热晶化。
实施例20
操作同实施例1,区别在于在260℃条件下旋转水热晶化。
实施例21
操作同实施例1,区别在于旋转水热晶化100小时。
实施例22
操作同实施例1,区别在于将样品置于200℃马弗炉中焙烧。
实施例23
操作同实施例1,区别在于将样品置于600℃马弗炉中焙烧。
实施例24
操作同实施例1,区别在于将样品置于马弗炉中焙烧1h。
实施例25
操作同实施例1,区别在于将样品置于马弗炉中焙烧20h。
实施例26
将实施例1~25中得到的TNU-9分子筛进行XRD测试表征,典型的XRD图谱如图2所示,对应实施例1。XRD图谱显示,合成的分子筛为TNU-9分子筛,谱图中2θ=7.142°,7.588°,7.887°,8.819°,9.080°,12.556°,14.395°,15.215°,22.878°,22.908°,23.444°,25.263°衍射峰强度相对较强,三个最强峰位置出现在2θ=7.142°,7.887°和9.080°。
其它样品的XRD图谱与图2相似,均成功制备了TNU-9分子筛。
实施例27
将实施例1~25中得到的TNU-9分子筛进行SEM测试表征,典型的SEM图谱如图3和图4所示,对应实施例1。SEM图谱显示,分子筛呈小晶粒堆积体,单个晶粒尺寸在100~1000nm,小晶粒呈不规则形貌,或者为厚度约20nm的薄片状结构。
其它样品的SEM图与图3和图4相似,形貌呈小颗粒或薄片状晶粒堆积体,单个晶粒尺寸在100~1000nm。
实施例28
将实施例1中的催化剂装填于固定床反应床的反应管中进行反应评价,原料为苯和乙醇,其摩尔比苯:乙醇=4:1;反应温度为390℃,重量空速5.5h -1,反应压力为常压。其反应性能见图5和图6。图5显示,反应时间在0~12h内,苯的转化率在22%以上,且转化率基本维持不变。图6显示,反应时间在0~12h内,乙苯的选择性在92%以上,且选择性基本维持不变。图5和图6表明,催化剂稳定强,催化效果优异,反应物转化率高,目标产物选择性高。
其它实施例得到的催化剂效果与图5和图6相似。
实施例29
将实施例1~25中的催化剂装填于固定床反应床的反应管中进行反应评价,原料为苯和乙醇,其摩尔比苯:乙醇=6:1;反应温度为390℃,重量空速6.5h -1,反应压力 为常压。实施例1~16反应结果见表1。表1说明,本申请实施例1~16制备得到的分子筛催化剂在催化乙醇和苯气相烷基化反应中,乙醇的转化率在99%以上,苯的转化率在15%以上,乙苯的选择性在98%以上。与对比例1、对比例2相比,本申请制备的TNU-9分子筛催化剂达到了与对比例1和对比例2几乎相同的活性。此外,从表1中可以看出,本申请中制备的TNU-9分子筛催化剂用于催化乙醇与苯气相烷基化反应的副产物二甲苯含量低至540ppm,相对于对比例1和对比例2二甲苯含量在850ppm以上,本申请的催化剂制备的产物纯度更高。
实施例17~25的反应结果与实施例1相似。
对比例1
对比催化剂采用南开分子筛厂购买的纳米ZSM-5分子筛催化剂(SiO 2/Al 2O 3=25),反应评价测试条件与实施例28相同。催化反应结果见表1。
对比例2
对比催化剂采用南开分子筛厂购买的纳米ZSM-5分子筛催化剂(SiO 2/Al 2O 3=25),反应评价测试条件与实施例28中的反应条件相同。催化反应结果见表1。
表1催化剂用于乙醇与苯气相烷基化反应的性能数据
Figure PCTCN2018097323-appb-000001
Figure PCTCN2018097323-appb-000002
注:二甲苯含量为产物中二甲苯相对于乙苯的相对含量
实施例30
将实施例1~25中得到的TNU-9分子筛催化剂、对比例1和对比例2中的纳米ZSM-5分子筛催化剂进行水热稳定性测试。
取催化剂于650℃下焙烧4小时,测量焙烧后的催化剂的相对结晶度。实验结果表明,实施例1~25中得到的TNU-9分子筛催化剂相对结晶度下降约15%左右;对比例1和对比例2中的纳米ZSM-5分子筛催化剂的相对结晶度下降约16左右。
取催化剂于800℃下通入饱和水蒸气处理8小时,测量水蒸气处理后的催化剂的相对结晶度。实验结果表明,实施例1~25中得到的TNU-9分子筛催化剂相对结晶度下降30%左右;对比例1和对比例2中的纳米ZSM-5分子筛催化剂的相对结晶度下降约28%左右。
两者的热稳定性和水热稳定性相差不大。
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (23)

  1. 一种分子筛催化剂,其特征在于,包含介孔-微孔复合的TNU-9分子筛;
    所述介孔-微孔复合的TNU-9分子筛的硅铝摩尔比SiO 2/Al 2O 3为50~200。
  2. 根据权利要求1所述的催化剂,其特征在于,所述介孔-微孔复合的TNU-9分子筛的硅铝摩尔比SiO 2/Al 2O 3为50~100。
  3. 根据权利要求1所述的催化剂,其特征在于,所述介孔-微孔复合的TNU-9分子筛的硅铝摩尔比SiO 2/Al 2O 3为60~100。
  4. 根据权利要求1所述的催化剂,其特征在于,所述介孔-微孔复合的TNU-9分子筛的硅铝摩尔比SiO 2/Al 2O 3为60~80。
  5. 根据权利要求1所述的催化剂,其特征在于,所述介孔孔道尺寸为3~50nm。
  6. 根据权利要求1所述的催化剂,其特征在于,所述介孔-微孔复合的TNU-9分子筛为晶粒堆积体;单个所述晶粒的尺寸为100~1000nm。
  7. 权利要求1至6任一项所述分子筛催化剂的制备方法,其特征在于,包括以下步骤:
    (1)将铝源、碱源、含介孔结构的硅源加入到含有模板剂的水溶液中,搅拌,获得凝胶状前驱体;
    (2)将步骤(1)中获得的凝胶状前驱体水热晶化;
    (3)将步骤(2)中获得的产物洗涤至中性、干燥;
    (4)将步骤(3)中获得的产物焙烧,得到所述分子筛催化剂。
  8. 根据权利要求7所述的方法,其特征在于,步骤(1)中所述铝源、碱源、含介孔结构的硅源和模板剂的摩尔比满足:
    SiO 2:Al 2O 3:M 2O:R:H 2O=5~100:1:1~30:5~20:1000~4000;
    其中,R为模板剂,以模板剂自身的摩尔数计;铝源的摩尔数以Al 2O 3的摩尔数计; 碱源的摩尔数以其相应的碱金属氧化物M 2O的摩尔数计;硅源的摩尔数以SiO 2的摩尔数计;水的摩尔数以H 2O自身的摩尔数计。
  9. 根据权利要求7所述的方法,其特征在于,步骤(1)中所述模板剂包括1,4-MPB、葡萄糖、活性炭中的至少一种。
  10. 根据权利要求9所述的方法,其特征在于,所述1,4-MPB的制备方法包括:
    将含有1,4-二溴丁烷、N-甲基四氢吡咯的溶液回流,重结晶,干燥,得到1,4-MPB。
  11. 根据权利要求10所述的方法,其特征在于,所述含有1,4-二溴丁烷、N-甲基四氢吡咯的溶液为:将4-二溴丁烷、N-甲基四氢吡咯置于丙酮中获得;
    所述回流为30~80℃水浴回流;
    所述重结晶之前采用丙酮抽提;
    所述重结晶的溶剂包括甲醇-乙醚的混合溶剂;其中,甲醇和乙醚的体积比为0.05~50:1~20;
    所述干燥的条件为:60~120℃处理5~20h。
  12. 根据权利要求11所述的方法,其特征在于,所述水浴回流的时间为6~48h。
  13. 根据权利要求7所述的方法,其特征在于,步骤(1)中所述含介孔结构的硅源选自含有介孔结构的氧化硅、MCM-48、SBA-15中的至少一种。
  14. 根据权利要求7所述的方法,其特征在于,步骤(1)中所述铝源选自偏铝酸钠、铝粉、硝酸铝、氢氧化铝中的至少一种;
    所述碱源选自氢氧化钠、氢氧化钾中的至少一种。
  15. 根据权利要求7所述的方法,其特征在于,步骤(1)中所述搅拌的时间为5~24h。
  16. 根据权利要求7所述的方法,其特征在于,步骤(2)中所述水热晶化为水热动态晶化;
    所述水热动态晶化的条件为:120~260℃的水热条件下动态晶化100~360h。
  17. 根据权利要求16所述的方法,其特征在于,步骤(2)中所述动态晶化为旋转式晶化,旋转速度为5~30转/分。
  18. 根据权利要求7所述的方法,其特征在于,步骤(3)包括:将步骤(2)中获得的产物经过滤洗涤至洗液呈中性,60~110℃干燥处理。
  19. 根据权利要求7所述的方法,其特征在于,步骤(4)中所述焙烧的温度为200~600℃,所述焙烧的时间为1~20h。
  20. 根据权利要求7所述的方法,其特征在于,所述方法包括:
    1)1,4-MPB模板剂R的合成
    将1,4-二溴丁烷、N-甲基四氢吡咯溶于丙酮中,加热至30~80℃,回流6~48h;反应液用丙酮抽提,得到的产物用甲醇-乙醚混合溶剂进行重结晶;重结晶后的产物于60~120℃的真空干燥箱中干燥处理5~20h,得到所述模板剂R;
    2)TNU-9分子筛的制备
    将步骤1)中得到的模板剂R溶解于水中,随后依次加入铝源、碱源以及含介孔结构的硅源,得到溶液I;溶液I中各物质的摩尔比为SiO 2:Al 2O 3:M 2O:R:H 2O=5~100:1:1~30:5~20:1000~4000;将所述溶液I搅拌5~24h后形成凝胶状,装入反应釜中,在120~260℃下,电机带动的动态水热条件下晶化100~360h;将得到的产物进行过滤洗涤处理至洗液呈中性,过滤后的滤饼于60~110℃干燥处理;然后于200~600℃焙烧1~20h,即得到所述分子筛催化剂。
  21. 权利要求1至6任一项所述的分子筛催化剂、根据权利要求7至20任一项所述的方法制备得到的分子筛催化剂用于乙醇与苯气相烷基化制备乙苯的反应。
  22. 一种乙醇与苯气相烷基化制备乙苯的方法,其特征在于,含有苯和乙醇的原料通过含有催化剂的固定床反应器进行反应,得到所述乙苯;
    所述催化剂包括权利要求1至6任一项所述的分子筛催化剂、权利要求7至20任一项所述的方法制备的分子筛催化剂中的至少一种。
  23. 根据权利要求22所述的乙醇与苯气相烷基化制备乙苯的方法,其特征在于,所述反应的温度为300~500℃,所述反应的压力为0.1~2MPa;所述原料中苯与乙醇的摩尔比为3~7:1;所述原料的进料重量时空空速为3~8h -1
PCT/CN2018/097323 2018-07-23 2018-07-27 一种用于乙醇和苯制备乙苯的催化剂及其制备和应用 WO2020019276A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/262,677 US11434183B2 (en) 2018-07-23 2018-07-27 Catalyst for preparing ethylbenzene from ethanol and benzene, preparation therefor and use thereof
BR112021001226-5A BR112021001226B1 (pt) 2018-07-23 2018-07-27 Catalisador para produzir etilbenzeno a partir de etanol e benzeno,seu método de preparo e uso
JP2021504290A JP7154377B2 (ja) 2018-07-23 2018-07-27 エタノールとベンゼンからエチルベンゼンを製造するための触媒、その製造方法及び応用
EP18927322.0A EP3827898A4 (en) 2018-07-23 2018-07-27 CATALYST FOR THE PRODUCTION OF ETHYLBENZENE FROM ETHANOL AND BENZENE, ITS PRODUCTION AND USE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810812858.6 2018-07-23
CN201810812858.6A CN110743605B (zh) 2018-07-23 2018-07-23 一种用于乙醇和苯制备乙苯的催化剂及其制备和应用

Publications (1)

Publication Number Publication Date
WO2020019276A1 true WO2020019276A1 (zh) 2020-01-30

Family

ID=69182129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/097323 WO2020019276A1 (zh) 2018-07-23 2018-07-27 一种用于乙醇和苯制备乙苯的催化剂及其制备和应用

Country Status (5)

Country Link
US (1) US11434183B2 (zh)
EP (1) EP3827898A4 (zh)
JP (1) JP7154377B2 (zh)
CN (1) CN110743605B (zh)
WO (1) WO2020019276A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115501903A (zh) * 2021-06-23 2022-12-23 中国石油化工股份有限公司 一种石墨烯/zsm-5分子筛复合物及其合成方法和应用
CN115591572A (zh) * 2022-10-26 2023-01-13 陕西延长石油(集团)有限责任公司(Cn) 一种用于乙醇和苯制乙苯的催化剂的制备方法与应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114057538B (zh) * 2020-07-31 2023-11-10 中国石油化工股份有限公司 一种含乙烯气体和苯气相烷基化制乙苯的方法
CN114272892B (zh) * 2022-03-04 2022-05-17 中国华电科工集团有限公司 一种co2捕集吸附剂及其制备方法和应用

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3751506A (en) 1972-05-12 1973-08-07 Mobil Oil Corp Vapor-phase alkylation in presence of crystalline aluminosilicate catalyst
US3751504A (en) 1972-05-12 1973-08-07 Mobil Oil Corp Vapor-phase alkylation in presence of crystalline aluminosilicate catalyst with separate transalkylation
US4016218A (en) 1975-05-29 1977-04-05 Mobil Oil Corporation Alkylation in presence of thermally modified crystalline aluminosilicate catalyst
US4547605A (en) 1983-09-28 1985-10-15 Mobil Oil Corporation Catalyst for alkylation of aromatic hydrocarbons
US4891458A (en) 1987-12-17 1990-01-02 Innes Robert A Liquid phase alkylation or transalkylation process using zeolite beta
US5227558A (en) 1992-02-10 1993-07-13 Fina Technology, Inc. Aromatic alkylation process employing steam modified zeolite beta catalyst
KR20030082022A (ko) * 2002-04-15 2003-10-22 홍석봉 제올라이트 tnu-9와 tnu-10 및 그 제조방법
WO2010143043A1 (en) 2009-06-10 2010-12-16 Polimeri Europa S.P.A. Process for the alkylation of benzene with ethanol or mixtures of ethanol and ethylene
CN102040459A (zh) * 2009-10-22 2011-05-04 中国石油化工股份有限公司 一种甲苯甲醇甲基化反应方法
WO2011077240A1 (en) 2009-12-23 2011-06-30 Polimeri Europa S.P.A. Process for preparing ethylbenzene
CN102276413A (zh) 2010-06-11 2011-12-14 中国石油化工股份有限公司 乙醇与苯气相烷基化制乙苯的方法
CN102274746A (zh) 2010-06-11 2011-12-14 中国石油化工股份有限公司 用于乙醇与苯气相烷基化制乙苯的催化剂
CN102875315A (zh) 2011-07-11 2013-01-16 中国石油化工股份有限公司 乙醇与苯气相烷基化制乙苯的方法
CN102872899A (zh) 2011-07-11 2013-01-16 中国石油化工股份有限公司 乙醇与苯气相烷基化制乙苯的催化剂
CN103121909A (zh) 2011-11-18 2013-05-29 中国石油化工股份有限公司 乙醇与苯气相烷基化生产乙苯的方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1194944C (zh) 2002-12-11 2005-03-30 中国石油化工股份有限公司 用于乙烯液相烷基化制乙苯的催化剂
CN101664695B (zh) * 2008-09-01 2011-12-21 黑龙江大学 微孔-介孔复合分子筛的制备方法
KR20100134930A (ko) * 2009-06-16 2010-12-24 포항공과대학교 산학협력단 새로운 티엔유-9 제올라이트 합성방법 및 탄화수소 전환반응촉매로의 용도
CN105665004A (zh) * 2014-11-20 2016-06-15 中国石油化工股份有限公司 用于烷基化反应的分子筛及其制备方法
CN105597814A (zh) * 2014-11-20 2016-05-25 中国石油化工股份有限公司 稀乙烯与苯烷基化生产乙苯的催化剂
WO2016099408A1 (en) * 2014-12-16 2016-06-23 Ptt Global Chemical Public Company Limited A process for improving stability of zeolite catalyst to use in cumene production by alkylation of benzene with isopropyl alchol
CN107552087B (zh) * 2016-06-30 2020-08-18 中国石油化工股份有限公司 一种改性im-5分子筛及其制备方法和应用以及甲苯甲醇烷基化反应的方法
CN108786669B (zh) 2017-04-27 2021-01-12 中国科学院大连化学物理研究所 流化床气体分布器、应用其的反应器及生产对二甲苯联产低碳烯烃的方法
CN108786670B (zh) 2017-04-27 2021-01-26 中国科学院大连化学物理研究所 甲醇和/或二甲醚与甲苯制对二甲苯联产低碳烯烃的方法
SG11201909968SA (en) 2017-04-27 2019-11-28 Dalian Inst Chemical Physics Cas In-situ preparation method for catalyst for preparing at least one of toluene, para-xylene and light olefins, and reaction process
JP7299315B2 (ja) 2018-11-15 2023-06-27 中国科学院大▲連▼化学物理研究所 ポリエステルポリオールの製造方法
WO2020097880A1 (zh) 2018-11-15 2020-05-22 中国科学院大连化学物理研究所 一种高分子紫外吸收剂及其制备方法和应用
KR102575606B1 (ko) 2018-11-15 2023-09-06 달리안 인스티튜트 오브 케미컬 피직스, 차이니즈 아카데미 오브 사이언시즈 계층적 다공성 ts-1 분자체의 제조 방법
KR102580277B1 (ko) 2018-11-15 2023-09-18 달리안 인스티튜트 오브 케미컬 피직스, 차이니즈 아카데미 오브 사이언시즈 계층적 다공성 ts-1 분자체의 제조 방법
EP3862082A4 (en) 2018-11-15 2021-10-20 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences METHOD OF MANUFACTURING A HIERARCHICAL POROUS TITANOSILICATE TS-1 MOLECULAR SCREEN

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3751506A (en) 1972-05-12 1973-08-07 Mobil Oil Corp Vapor-phase alkylation in presence of crystalline aluminosilicate catalyst
US3751504A (en) 1972-05-12 1973-08-07 Mobil Oil Corp Vapor-phase alkylation in presence of crystalline aluminosilicate catalyst with separate transalkylation
US4016218A (en) 1975-05-29 1977-04-05 Mobil Oil Corporation Alkylation in presence of thermally modified crystalline aluminosilicate catalyst
US4547605A (en) 1983-09-28 1985-10-15 Mobil Oil Corporation Catalyst for alkylation of aromatic hydrocarbons
US4891458A (en) 1987-12-17 1990-01-02 Innes Robert A Liquid phase alkylation or transalkylation process using zeolite beta
US5227558A (en) 1992-02-10 1993-07-13 Fina Technology, Inc. Aromatic alkylation process employing steam modified zeolite beta catalyst
KR20030082022A (ko) * 2002-04-15 2003-10-22 홍석봉 제올라이트 tnu-9와 tnu-10 및 그 제조방법
WO2010143043A1 (en) 2009-06-10 2010-12-16 Polimeri Europa S.P.A. Process for the alkylation of benzene with ethanol or mixtures of ethanol and ethylene
CN102040459A (zh) * 2009-10-22 2011-05-04 中国石油化工股份有限公司 一种甲苯甲醇甲基化反应方法
WO2011077240A1 (en) 2009-12-23 2011-06-30 Polimeri Europa S.P.A. Process for preparing ethylbenzene
CN102276413A (zh) 2010-06-11 2011-12-14 中国石油化工股份有限公司 乙醇与苯气相烷基化制乙苯的方法
CN102274746A (zh) 2010-06-11 2011-12-14 中国石油化工股份有限公司 用于乙醇与苯气相烷基化制乙苯的催化剂
CN102875315A (zh) 2011-07-11 2013-01-16 中国石油化工股份有限公司 乙醇与苯气相烷基化制乙苯的方法
CN102872899A (zh) 2011-07-11 2013-01-16 中国石油化工股份有限公司 乙醇与苯气相烷基化制乙苯的催化剂
CN103121909A (zh) 2011-11-18 2013-05-29 中国石油化工股份有限公司 乙醇与苯气相烷基化生产乙苯的方法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
ACTA PETROLEI SINICA (PETROLEUM PROCESSING, vol. 22, 2006, pages 146 - 148
CATALYSIS TODAY, vol. 204, 2013, pages 73 - 84
CHEMICAL REACTION ENGINEERING AND TECHNOLOGY, vol. 22, 2006, pages 172 - 175
DOCUMENT APPLIED CATALYSIS A: GENERAL, vol. 385, 2010, pages 31 - 45
IND. ENG. CHEM. RES., vol. 57, 2018, pages 169 - 178
LIU, HENG: "Synthesis, Characterization and Catalytic Application of Hierarchical Porous IM-5 and TNU-9 Zeolites", DOCTORAL DISSERTATION OF JILIN UNIVERSITY, 31 December 2014 (2014-12-31), pages 1 - 152, XP055772665 *
MICROPOROUS AND MESOPOROUS MATERIALS, vol. 249, 2017, pages 118 - 127
ODEDAIRO, T. ET AL.: "Ethylation of Benzene: Effect of Zeolite Acidity and Structure", APPLIED CATALYSIS A: GENERAL, vol. 385, no. 1, 25 June 2010 (2010-06-25), pages 31 - 45, XP027230513, ISSN: 0926-860X *
See also references of EP3827898A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115501903A (zh) * 2021-06-23 2022-12-23 中国石油化工股份有限公司 一种石墨烯/zsm-5分子筛复合物及其合成方法和应用
CN115501903B (zh) * 2021-06-23 2024-03-29 中国石油化工股份有限公司 一种石墨烯/zsm-5分子筛复合物及其合成方法和应用
CN115591572A (zh) * 2022-10-26 2023-01-13 陕西延长石油(集团)有限责任公司(Cn) 一种用于乙醇和苯制乙苯的催化剂的制备方法与应用

Also Published As

Publication number Publication date
CN110743605A (zh) 2020-02-04
CN110743605B (zh) 2021-07-27
US20210309590A1 (en) 2021-10-07
EP3827898A4 (en) 2022-04-27
EP3827898A1 (en) 2021-06-02
JP7154377B2 (ja) 2022-10-17
JP2021531162A (ja) 2021-11-18
US11434183B2 (en) 2022-09-06
BR112021001226A2 (pt) 2021-04-27

Similar Documents

Publication Publication Date Title
WO2020019276A1 (zh) 一种用于乙醇和苯制备乙苯的催化剂及其制备和应用
Jia et al. Small-sized HZSM-5 zeolite as highly active catalyst for gas phase dehydration of glycerol to acrolein
Feng et al. Phosphorus-modified b-axis oriented hierarchical ZSM-5 zeolites for enhancing catalytic performance in a methanol to propylene reaction
CN101618337A (zh) 一种改善甲烷芳构化催化剂催化性能方法
AU2017336262B2 (en) Catalyst comprising small 10-ring zeolite crystallites and a method for producing hydrocarbons by reaction of oxygenates over said catalyst.
KR20100075923A (ko) 경질 올레핀류 제조용 촉매 및 경질 올레핀류의 제조 방법
CN112958146B (zh) 一种mfi分子筛纳米片负载的锆基催化剂及其在制备丁二烯反应中的应用
Wu et al. Catalytic and deactivated behavior of SAPO-34/ZSM-5 composite molecular sieve synthesized by in-situ two-step method
CN103878016B (zh) 一种用于甲醇制备丙烯的复合分子筛催化剂及其用途
CN108285151B (zh) 一种Ce同晶取代LTL分子筛及其制备方法
CN108435246B (zh) 一种多级孔同晶取代Ga-ZSM-5分子筛催化剂的制备方法
CN109678174B (zh) 一种多级孔zsm-5分子筛及制备方法和应用
CN111495419A (zh) 一种金属负载型多级孔zsm-5分子筛及制备方法和应用
JP7394950B2 (ja) 酸化亜鉛修飾mfi型ゼオライト及びそれを用いた芳香族化合物の製造方法
WO2021027019A1 (zh) 多孔结构的硅铝磷载体加氢催化剂的制备方法及在制备生物燃料中的应用
CN113996330B (zh) 一种球磨法制备的Zr基MFI分子筛催化剂及其应用
CN115121282A (zh) 一种催化乙醇和苯制备乙苯的催化剂及其应用
CN103349996A (zh) 一种催化剂及其制备方法
CN116037197A (zh) 含zsm-5分子筛的催化剂及其制备方法和应用
Khamkeaw et al. Application of activated carbon derived from bacterial cellulose for mesoporous HZSM-5 catalyst synthesis and performances of catalyst in bioethanol dehydration
Wang et al. Catalytic Performance and Coking Behavior of a Submicron HZSM‐5 Zeolite in Ethanol Dehydration
CN117046507B (zh) Fau-y型沸石负载多元过渡金属催化剂及制备与应用
JP7421767B2 (ja) イソプレンの製造方法
WO2022242731A1 (zh) 一种生物质转化制备对二甲苯的方法
CN111484033B (zh) 一种zsm-5和zsm-11共晶分子筛及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927322

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021504290

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021001226

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2018927322

Country of ref document: EP

Effective date: 20210223

ENP Entry into the national phase

Ref document number: 112021001226

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210122