WO2020019264A1 - 一种馈源装置、双频微波天线及双频天线设备 - Google Patents

一种馈源装置、双频微波天线及双频天线设备 Download PDF

Info

Publication number
WO2020019264A1
WO2020019264A1 PCT/CN2018/097286 CN2018097286W WO2020019264A1 WO 2020019264 A1 WO2020019264 A1 WO 2020019264A1 CN 2018097286 W CN2018097286 W CN 2018097286W WO 2020019264 A1 WO2020019264 A1 WO 2020019264A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
low
array element
feed
frequency array
Prior art date
Application number
PCT/CN2018/097286
Other languages
English (en)
French (fr)
Inventor
张鲁奇
吕瑞
罗昕
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202110415058.2A priority Critical patent/CN113206383A/zh
Priority to CN201880046580.4A priority patent/CN110959226B/zh
Priority to PCT/CN2018/097286 priority patent/WO2020019264A1/zh
Priority to EP18925714.0A priority patent/EP3641059B1/en
Priority to BR112020001288-2A priority patent/BR112020001288A2/pt
Priority to US16/735,313 priority patent/US11139572B2/en
Publication of WO2020019264A1 publication Critical patent/WO2020019264A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/42Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more imbricated arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/002Protection against seismic waves, thermal radiation or other disturbances, e.g. nuclear explosion; Arrangements for improving the power handling capability of an antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/005Damping of vibrations; Means for reducing wind-induced forces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/064Two dimensional planar arrays using horn or slot aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • H01Q13/0208Corrugated horns
    • H01Q13/0225Corrugated horns of non-circular cross-section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • H01Q19/19Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface

Definitions

  • the present application relates to the technical field of antennas, and in particular, to a feed device, a dual-frequency microwave antenna, and a dual-frequency antenna device.
  • dual-frequency microwave antennas transmit high-frequency signals and low-frequency signals on the same link, combining the high-capacity high-frequency and low-frequency long-range distances, while providing large capacity while also
  • the QoS service protection mechanism has been strengthened.
  • high-frequency signals can be E-band (71-76GHz, 81- 86GHz), but the E-band's own characteristics are affected by factors such as large space loss, large rain attenuation, and poor resistance to sloshing caused by narrow half-power angles.
  • the transmission distance and stability of the E-band are limited, which limits the dual-frequency microwave antenna. Work performance.
  • the feed device is the core component of a dual-frequency microwave antenna.
  • the structure of the feed device largely determines the working performance of the dual-frequency microwave antenna.
  • the existing dual-frequency microwave antenna uses a dual-frequency coaxial feed to achieve dual In the frequency band, the outer conductor is a coaxial horn that works in the low frequency band, and the inner conductor is a dielectric rod that works in the high frequency band.
  • dual-band coaxial feed sources can be integrated, the dielectric loss of the high frequency dielectric rod feed is relatively large. Affects the antenna gain, and the dual-band microwave antenna has a narrow beam width at the high-frequency end and cannot perform beam scanning, which results in poor anti-shake ability, which makes the high-capacity high-frequency band of the dual-band microwave antenna very low availability.
  • the present application provides a feed device, a dual-frequency microwave antenna, and a dual-frequency antenna device, which are used to integrate multiple high-frequency array elements to improve the shaking ability of the dual-frequency microwave antenna.
  • the present application provides a feed device including a low frequency feed and a high frequency feed.
  • the high frequency feed is embedded in the low frequency feed.
  • the low frequency feed includes a plurality of low frequency array elements arranged in an array.
  • the high-frequency feed source includes a plurality of high-frequency array elements arranged in an array, wherein at least one high-frequency array element is embedded in one of the low-frequency array elements, and the low-frequency array element and each of the low-frequency array elements embedded in the low-frequency array element are embedded in the low-frequency array element.
  • a high-frequency array element has a common waveguide wall; the above-mentioned feed device embeds a high-frequency feed source in a low-frequency feed source, that is, an array of high-frequency array elements is embedded in an array of low-frequency array elements, and at least one high-frequency array is used.
  • the element is embedded in a low-frequency element, and the low-frequency element has a waveguide wall in common with each high-frequency element embedded in the low-frequency element, which can effectively integrate the high-frequency feed and the low-frequency feed into one.
  • the structure of the feed device is compact, and at the same time, the high-frequency feed and the low-frequency feed have good equalization, and because multiple high-frequency array elements are integrated in the feed device, multiple high-frequency array elements are switched by Switching enables antennas at high
  • the beam scanning of the segment can further widen the beam width of the high-band high-gain beam to prevent sloshing. Therefore, the high-frequency band has certain sloshing resistance, and at the same time, the high-frequency and high-capacity link can be improved on the basis of retaining the backup function of the low-frequency link. Availability.
  • the low-frequency array element and each high-frequency array element embedded in the low-frequency array element are two array elements that feed power independently of each other, In this way, although the low-frequency array element and the high-frequency array element are embedded, but the feeding is independent, it is ensured that the high-frequency array element can be normally fed after being embedded in the low-frequency array element.
  • the low-frequency array element includes a low-frequency feeding port for feeding
  • the high-frequency array element includes a high-frequency feeding port for feeding
  • the low-frequency feeding of the low-frequency array element The electrical port is electrically isolated from the high-frequency feed port of each high-frequency array element embedded in the low-frequency array element, thereby ensuring that the low-frequency array element and the high-frequency array element embedded in the low-frequency array element feed independently from each other.
  • the low-frequency array element has a square caliber
  • the low-frequency feeding port has a rectangular caliber
  • the high-frequency array element has a square caliber.
  • the high-frequency feeding port has a rectangular caliber
  • the feeding caliber should satisfy the following relationship:
  • the caliber narrow side length of the low-frequency feeding port is less than the caliber length of the low-frequency array element and twice the caliber of the high-frequency array element. The difference between the lengths, so that the high-frequency array element will not be embedded in the low-frequency feed port of the low-frequency array element when embedded, thereby ensuring that the high-frequency feed port and the low-frequency feed port are isolated from each other.
  • the low-frequency array element is a first metal horn
  • the high-frequency array element is a second metal horn
  • the caliber of the first metal horn is larger than the caliber of the second metal horn.
  • the second metal horn has a first side wall and a second side wall, and the first side wall and the second side wall are adjacent to each other. Furthermore, the first metal horn includes a horn mouth, the second metal horn is embedded in the first metal horn, and the first side wall and the second side wall are located in the horn mouth. The first metal horn and the second metal horn are connected as a whole through the first side wall and the second side wall, thereby effectively integrating the high frequency feed and the low frequency feed into one, so that the structure of the feed device is compact.
  • the low-frequency feed includes at least four first metal horns, and two adjacent first metal horns are fixedly connected. Through the fixed connection between the first horns and the embedding of the second horn and the first horn, the integration of multiple first horns and the second horn is achieved to ensure the stability of the structure.
  • the horn mouth end faces of two adjacent first metal horns are fixed as a whole, and a plurality of the second metal horns are embedded in the first metal horn. To ensure that there are no gaps between the first metal horns, multiple second horns are embedded in the first metal horn.
  • a second metal horn is provided in the gap, and the two first metal horns are fixedly connected through at least one of the second metal horns.
  • each first metal horn there is only one second metal horn in each first metal horn, or at least two second metal horns are embedded in the first metal horn, along the low frequency of the low frequency array element. At least two of the second metal horns embedded in the first metal horn are arranged in a row.
  • the interval length between the adjacent low-frequency array elements is shorter than the working wavelength of the low-frequency array elements, and the appearance of grating lobes is suppressed by limiting the interval distance between the low-frequency array elements.
  • the interval length between adjacent high-frequency array elements is less than 1 / (1 + sin ⁇ ) of the operating wavelength of the high-frequency array elements, where ⁇ is the maximum value of the high-frequency feed source. Scanning angle, by limiting the separation distance between high-frequency array elements, the appearance of grating lobes is suppressed.
  • the present application provides a dual-frequency microwave antenna, including the feed device according to any one of the above technical solutions; and further comprising a feeding branch, wherein the feeding branch is provided with each high frequency
  • the radio frequency switch corresponding to the array element is used to control the switching of the high frequency array element.
  • the switching of high-frequency array elements is controlled by the action of a radio frequency switch, so that the beam scanning of the dual-frequency microwave antenna in a high frequency band is achieved, thereby improving the availability of high-frequency and large-capacity links in the dual-frequency antenna transmission system. While maintaining the backup function of the low-frequency link.
  • the dual-frequency microwave antenna may be a Cassegrain antenna, and the phase center of the feed and the Cassegrain antenna are composed of 4 array elements in the center region of the high-frequency feed. The focal points overlap.
  • the dual-frequency microwave antenna may also be a reflective antenna such as a ring focus antenna.
  • the present application provides a dual-frequency antenna device, including a microwave indoor unit and a microwave outdoor unit connected to a signal of the microwave indoor unit, including the dual-frequency microwave antenna according to any one of the foregoing technical solutions.
  • the dual-frequency microwave antenna is connected to the microwave outdoor unit through a feeding waveguide.
  • the dual-frequency microwave antenna transmits low-frequency and high-frequency bands in the same dual-frequency microwave antenna, and on the basis of achieving large bandwidth and increasing transmission distance, it can effectively widen the high-frequency antenna.
  • the beam width makes the dual-frequency microwave antenna capable of resisting sloshing in the high frequency band, and improves the availability of the high frequency link.
  • FIG. 1 is a schematic structural diagram of a feed device according to an embodiment of the present application.
  • Figure 2 is a front view of Figure 1;
  • FIG. 3 is another schematic structural diagram of a feed device according to an embodiment of the present application.
  • FIG. 4 is a front view of FIG. 3;
  • FIG. 5 is an enlarged schematic view of position A in FIG. 1; FIG.
  • FIG. 6 is an enlarged schematic view of a position B in FIG. 1;
  • FIG. 7 is a schematic structural diagram of a dual-frequency microwave antenna according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a size of a feed device according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a dual-frequency antenna device according to an embodiment of the present application.
  • FIG. 10 is a feed gain pattern at 15 GHz in the feed device provided in FIG. 3;
  • FIG. 11 is a feed gain pattern at 86 GHz in the feed device provided in FIG. 3;
  • FIG. 12 is a gain pattern of a Cassegrain antenna using the feed device provided in FIG. 3 at 15 GHz;
  • FIG. 13 is a gain pattern of a Cassegrain antenna using the feed device provided in FIG. 3 at 86 GHz;
  • FIG. 14 is a beam scanning range of the Cassegrain antenna using the feed device provided in FIG. 3 in a horizontal direction at 86 GHz;
  • 15 is a feed gain pattern at 15 GHz in the feed device provided in FIG. 1;
  • FIG. 16 is a feed gain pattern at 86 GHz in the feed device provided in FIG. 1;
  • 17 is a gain pattern of a Cassegrain antenna using the feed device provided in FIG. 1 at 15 GHz;
  • FIG. 18 is a gain pattern of a Cassegrain antenna using the feed device provided in FIG. 1 at 86 GHz;
  • FIG. 19 The beam scanning range of the Cassegrain antenna using the feed device provided in FIG. 1 in the horizontal direction at 86 GHz.
  • an embodiment of the present application provides a feeding device.
  • the feeding device improves the anti-sloshing ability by changing the structure and fixing method of a high-frequency feed and a low-frequency feed.
  • Multiple high-frequency array elements are embedded and integrated into a form with a common waveguide wall. The switching of multiple high-frequency array elements can realize the beam scanning of the antenna in the high frequency band, which can widen the beam of the high frequency high gain beam. Width to resist shaking.
  • the high-frequency array element mentioned in the embodiment of the present application refers to an independent unit in a high-frequency feed
  • the low-frequency array element refers to an independent unit in a low-frequency feed.
  • the array arrangement may include a linear array, such as a square matrix. It includes a circular array; the form of the waveguide wall mentioned in the embodiment of the present application is a metal waveguide wall or a frequency-selective surface, which totally transmits low-frequency electromagnetic waves and totally reflects high-frequency electromagnetic waves.
  • the embodiment of the present application provides a feed device with 4 low-frequency array elements, and the 4 low-frequency array elements form a 2x2 square matrix for description.
  • a feed device with more than 4 low-frequency array elements is similar, and
  • a high-frequency array element and a low-frequency array element are used to describe a power feeding device with only a square caliber, and power feeding devices of other calibers are similar thereto.
  • FIG. 2 and FIG. 4 wherein FIG. 2 and FIG. This is an embedded structure of high-frequency feed 2 in low-frequency feed 1.
  • the direction of the feed device is set, and the X-direction and Y-direction are defined.
  • the X-direction is the low-frequency array element 11 is a square caliber.
  • the low-frequency feed port When 113 is a rectangular caliber, the extending direction of the wide side of the caliber of the low-frequency feed port 113, the Y direction is the low-frequency array element 11 is a square caliber, and when the low-frequency feed port 113 is a rectangular caliber, the caliber of the low-frequency feed port 113 is narrow. Direction of extension.
  • FIG. 1 shows a structure in which the low-frequency array element 11 and the high-frequency array element 21 are fitted together
  • FIG. 2 shows the high-frequency array element 21 in The embedded position of the low-frequency array element 11 is shown in FIG. 3.
  • FIG. 3 shows a structure in which the low-frequency array element 11 and the high-frequency array element 21 are fitted together
  • FIG. 4 is a schematic diagram of the arrangement of the high-frequency array element 21 in the low-frequency array element 11.
  • Fig. 7 shows the cooperation relationship between the feed device and the RF front-end circuit 5. As can be seen from Figs.
  • the feed device includes a low-frequency feed 1 and a high-frequency feed 2, and the high-frequency feed 2 is embedded.
  • the low-frequency feed 1 and the high-frequency feed 2 can be embedded in the center position of the low-frequency feed 1 or on one side of the low-frequency feed 1.
  • the low-frequency feed 1 includes a plurality of low-frequency array elements 11 arranged in an array.
  • the number of low-frequency array elements 11 is N, N ⁇ 4, as can be seen from Figure 1, Figure 2, Figure 3 and Figure 4, multiple low-frequency array elements 11 can be arranged into a square matrix, multiple low-frequency array elements 11 also It can be arranged in a circular array.
  • the high-frequency feed 2 includes a plurality of high-frequency array elements 21 arranged in an array.
  • a plurality of high-frequency array elements 21 can be arranged in a rectangular array. 1 and Figure 2 can It can be seen that multiple high-frequency array elements 21 can also be arranged in a square matrix. Among them, at least one high-frequency array element 21 is embedded in a low-frequency array element 11 and can only be embedded in a low-frequency array element 11 in the X direction. There are a plurality of high-frequency array elements 21 arranged in a row, and only one high-frequency array element 21 can be set in a low-frequency array element 11 along the Y side. As can be seen from FIGS.
  • the low-frequency array element 11 and each high-frequency array element 21 embedded in the low-frequency array element 11 have a common waveguide wall. As can be seen from FIG.
  • the low-frequency array element 11 and the high-frequency array element 21 have a common waveguide wall.
  • the common waveguide wall is the first side wall 212 and the second side wall 211.
  • the common waveguide wall of the low-frequency array element 11 and the high-frequency array element 21 is formed by a plurality of first sidewalls 212.
  • adjacent high-frequency array elements 21 are fixed as a whole by using a common side wall.
  • Figs. 3 and 4 it can be seen that the adjacent The frequency array elements 21 are fixed as a whole by sharing the second side wall 211, and the adjacent low frequency array elements 11 are directly fixed as a whole without a gap.
  • the above-mentioned feed device can effectively integrate the high-frequency feed 2 and the low-frequency feed 1 through the common waveguide wall between the low-frequency array element 11 and the high-frequency array element 21 and the common sidewall between the high-frequency array element 21.
  • the above-mentioned feed device can be integrally formed by cutting and processing, which is easy to process.
  • the structure of the compact feed device makes the high-frequency feed 2 and low-frequency feed 1 very good. It can be seen from FIG. 7 that each high-frequency array element 21 is connected to a radio frequency switch 4 on the corresponding feeder branch 3, and by controlling the radio frequency switch 4, each high-frequency array element 21 and radio frequency can be realized.
  • the front-end circuit 5 is electrically connected, so that multiple high-frequency array elements 21 can be switched through the radio frequency switch 4, and the beam scanning of the dual-frequency microwave antenna 100 in the high frequency band can be achieved, thereby improving the high-frequency beam that can widen the high-frequency beam.
  • the beam width is to prevent sloshing, so the high frequency band has a certain degree of sloshing resistance.
  • the availability of the high-frequency and large-capacity link can be improved while retaining the backup function of the low-frequency link.
  • FIG. 8 shows the size relationship between the low-frequency array element 11 and the high-frequency array element 21.
  • the low-frequency array element 11 includes a low-frequency feeding port 113 for feeding power
  • the high-frequency array element 21 includes a high-frequency feeding port 213 for feeding power.
  • the high-frequency array element 21 is two elements that feed independently from each other.
  • the low-frequency feed port 113 of the low-frequency array element 11 and the high-frequency feed port 213 of each high-frequency array element 21 embedded in the low-frequency array element 11 are electrically isolated.
  • the feeding diameter should satisfy the following relationship:
  • the diameter of the narrow side of the low-frequency feeding port 113 is less than the difference between the diameter of the low-frequency array element 11 and twice the diameter of the high-frequency array element 21 It can be seen from FIG. 1 and FIG. 2 that each low-frequency array element 11 has a high-frequency array element 21 embedded therein.
  • the caliber of the narrow side of the low-frequency feed port 113 is much shorter than the caliber length of the low-frequency array element 11 and twice as long.
  • the difference between the caliber length of the high-frequency array element 21 can be seen in Figures 3 and 4 that each low-frequency array element 11 has a high-frequency array element embedded in it.
  • the caliber narrow side length of the low-frequency feed port 113 is significantly smaller than the difference between the caliber length of the low-frequency array element 11 and twice the caliber length of the high-frequency array element 21.
  • the embedding setting, the high-frequency array element 21 will not be embedded in the low-frequency feed port 113 of the low-frequency array element 11 during the embedding, and the embedded position of the high-frequency array element 21 in the low-frequency array element 11 may extend toward the low-frequency feed port 113.
  • the above feeding device integrates multiple high-frequency array elements 21 without affecting the feeding operation of the low-frequency feed source 1 to ensure the compactness of the structure and a certain degree of anti-shake in the high frequency band.
  • the interval length between the adjacent low-frequency array elements 11 is smaller than the working wavelength of the low-frequency array elements 11 so that the low frequency
  • the spacing distance between array elements 11 must satisfy the grid lobe suppression condition.
  • the interval length between adjacent high-frequency array elements 21 is less than 1 / (1 + sin ⁇ ) times.
  • the separation distance suppresses the appearance of grating lobes.
  • the low-frequency array element 11 and the high-frequency array element 21 are horn-like structures.
  • FIG. 5 shows a specific structure of the high-frequency array element 21
  • FIG. 6 shows The specific structure of the low-frequency array element 11 is a first metal horn and the high-frequency array element 21 is a second metal horn.
  • the first metal horn and the second metal horn Both are square calibers.
  • the low-frequency feed port 113 of the first metal horn and the high-frequency feed port 213 of the second metal horn are rectangular.
  • the first metal horn and the second metal horn can also have other calibers.
  • the rectangular caliber in the specific setting, the caliber of the first metal horn is larger than the caliber of the second metal horn to ensure that the first metal horn is the low frequency array element 11 and the second metal horn is the low frequency array element 11 in the two metal horns. .
  • the second metal horn has a first sidewall 212 and a second sidewall 211, and the first sidewall 212 and The second side wall 211 is adjacent and connected.
  • the first metal horn includes a horn 111, the second metal horn is embedded in the first metal horn, and the first side wall 212 and the second side wall 211 are located in the horn 111.
  • each first metal horn is embedded with a second metal horn, and the first side wall 212 and the second side wall 211 are waveguides common to the first metal horn and the second metal horn.
  • the first metal horn and the second metal horn embedded in the first metal horn are connected as a whole through the first side wall 212 and the second side wall 211, and each of the first A plurality of second metal horns are embedded in the metal horn.
  • a second side wall 211 is shared between adjacent second metal horns, and the plurality of first side walls 212 are connected to form an integrated structure.
  • the integrated structure is a waveguide wall common to the first metal horn and the second metal horn.
  • FIG. 1 shows the first metal horn There is a gap between them
  • FIG. 3 shows that there is no gap between the first metal horns, but no matter whether there is a gap between the first metal horns, two adjacent first metal horns are fixedly connected.
  • at least one second metal horn is provided in the gap.
  • two second metal horns are provided in the gap.
  • Metal horn is
  • connection between the two second metal horns is achieved through the use of a shared sidewall between the two second metal horns, and the two second metal horns and the first metal horn also use a shared sidewall.
  • the second metal horn and the first metal horn are connected in the form of a metal, so that two adjacent first metal horns are fixedly connected through at least one second metal horn.
  • the horn is fixedly connected through the first side wall 212 and the second side wall 211 to form a feed structure that integrates the high-frequency feed 2 and the low-frequency feed 1 to ensure the stability of the structure. As can be seen from FIG.
  • Two first metal horns share a side wall to achieve a fixed connection between two adjacent first metal horns.
  • a plurality of second horns are embedded inside the first metal horn. When the number of second metal horns is four, The four second metal horns are respectively embedded in the four first metal horns. When the number of the second metal horns is greater than four, a plurality of second metal horns are arranged in two rows along the X direction and embedded in the first At least two second metal horns in a metal horn are arranged in a row. When there is a gap between the first metal horns, along the X direction, each second metal horn may also be embedded with a plurality of second lines arranged in a row. Metal horn.
  • the present application provides a dual-frequency microwave antenna 100.
  • the dual-frequency microwave antenna 100 may be a Cassegrain antenna, a reflective antenna such as a ring focus antenna, or various types of antennas. Reflective array, dielectric lens, and various transmission array antennas.
  • Figure 7 shows the specific structure of the dual-frequency microwave antenna 100, including the feed device as in any one of the above technical solutions; it also includes a feed branch 3, and a feed branch 3 is provided with a radio frequency switch 4 corresponding to each high frequency array element 21, and the radio frequency switch 4 is used to control the switching of the high frequency array element 21, so as to realize the connection and disconnection of the radio frequency front-end circuit 5 and the high frequency array element 21.
  • the phase center of the feed composed of 4 elements in the center area of the high-frequency feed 2 coincides with the focal point of the Cassegrain antenna.
  • the switching of the high-frequency array element 21 is controlled by the action of the radio frequency switch 4, so as to realize the beam scanning of the dual-frequency microwave antenna 100 in a high frequency band, thereby improving the high-frequency large capacity in the dual-frequency antenna transmission system.
  • the dual-frequency microwave antenna 100 has high anti-shake ability.
  • the diameter of the main reflection surface of the selected Cassegrain antenna is 660 mm, and the diameter of the secondary reflection surface is 100 mm.
  • the feed source irradiation angle is 32 degrees and the focal-to-diameter ratio is 0.385.
  • the low-frequency array element 11 is selected as the conventional frequency band (15GHz)
  • the high-frequency array element 21 is the E-band
  • the aperture of the low-frequency array element 11 is selected.
  • the length H is 13mm, the separation distance D of the low-frequency array element 11 is 13.5mm, the aperture wide side Ra of the low-frequency feed port 113 is 9mm, the aperture narrow side Rb of the low-frequency feed port 113 is 4mm, and the length of the low-frequency array element 11 radiation segment is 20mm, the length of the feeding waveguide segment of the low-frequency array element 11 is 20mm, the waveguide wall thickness of the low-frequency array element 11 is 0.25mm; the aperture length h1 of the high-frequency array element 21 is 2.25mm, and the interval distance d1 of the high-frequency array element 21 is 2.75mm The length of the radiating segment of the high-frequency array element 21 is 5.2mm, and the length of the feeding waveguide segment of the high-frequency array element 21 is 34.8mm.
  • the high-frequency array element 21 embedded in the caliber of the low-frequency array element 11 and the low-frequency array element 11 share the first side wall. 212.
  • the thickness of the first side wall 212 is 0.25 mm.
  • FIG. 3 shows that every 4 second metal horns (2 ⁇ 2 form) in a high frequency band form a square matrix to form an E-band feed.
  • Source C is switched by the RF switch 4 in FIG. 7, and 4 ⁇ N high-frequency array elements 21 can form (2 ⁇ N-1) working states, thereby realizing (2 ⁇ N-1) beam scanning in one dimension.
  • the feed gain at 15 GHz in the feed device is 14.5 dBi
  • the feed gain at 86 GHz in the feed device is 14.6 dBi.
  • the source gain is approximately the same, so the feed device in both working frequency bands has better equalization.
  • the gain of the Cassegrain antenna at 15GHz is 37.4dBi, and its 3dB beam width is 2.1 degrees.
  • the gain of the Cassegrain antenna at 86GHz is 52.6dBi, and its 3dB beam width in the azimuth and elevation planes is 0.4 degrees.
  • the high frequency Feed 2 has 7 working states, which can realize 7 beam scanning in the horizontal direction of the high frequency band of the dual frequency microwave antenna 100, making the dual frequency microwave antenna 100 Horizontal beam width expanded from 0.4 degrees to 2 degrees, and by expanding the horizontal beam width dual-band microwave antenna 100 can realize effective against shaking in the horizontal direction, to improve the ability of the anti-shake dual-band microwave antenna 100.
  • the dual-frequency microwave antenna 100 has high anti-shake ability.
  • the diameter of the main reflection surface of the selected Cassegrain antenna is 660 mm and the diameter of the secondary reflection surface is 100 mm.
  • the feed source irradiation angle is 32 degrees and the focal-to-diameter ratio is 0.385.
  • the low-frequency array element 11 is selected as the conventional frequency band (15GHz)
  • the high-frequency array element 21 is the E-band
  • the aperture of the low-frequency array element 11 is selected.
  • the length H is 9.5mm
  • the separation distance D of the low-frequency array element 11 is 15mm
  • the aperture wide side Ra of the low-frequency feed port 113 is 9.5mm
  • the aperture narrow side Rb of the low-frequency feed port 113 is 4.5mm
  • the low-frequency array element 11 radiates.
  • the length is 20mm
  • the length of the feeding waveguide segment of the low-frequency array element 11 is 20mm
  • the waveguide wall thickness of the low-frequency array element 11 is 0.25mm
  • the caliber length h1 of the high-frequency array element 21 is 2.25mm
  • the interval distance d1 of the high-frequency array element 21 is 2.75mm
  • the length of the high-frequency array element 21 radiating segment is 5.2mm
  • the high-frequency array element 21 feeding waveguide segment length is 34.8mm
  • the high-frequency array element 21 embedded in the low-frequency array element 11 caliber shares the first with the low-frequency array element 11
  • the thickness of the side wall 212 and the second side wall 211 is 0.25 mm.
  • FIG. 1 shows a structural form in which 4 ⁇ 4 high-frequency array elements 21 are embedded in the center region of the low-frequency array element 11, and every 4 high-frequency elements Array 21 (2 ⁇ 2 form) is used to form an E-band feed source C.
  • 4 ⁇ 4 high-frequency array elements 21 can form 3 ⁇ 3 working states, and then realize in two dimensions In the beam scanning of the last nine states, it can be seen from FIG. 15 that the feed gain at 15 GHz in the feed device is 12.2 dBi, and it can be seen from FIG. 16 that the feed gain at 86 GHz in the feed device is 14.5 dBi.
  • the feed gains of the low and high frequency bands are similar, so the feed devices in both operating frequency bands have better equalization.
  • the gain of the Cassegrain antenna at 15GHz is 35.6dBi.
  • the 3dB beam width is 1.9 degrees.
  • the Cassegrain antenna has a gain of 52.4Bi at 86GHz, and its 3dB beam width on the azimuth and elevation planes is 0.4 degrees.
  • the high-frequency feed 2 has 9 working states, which can realize the high-frequency band of the dual-frequency microwave antenna 100 in the horizontal and vertical directions.
  • the 9 beam scans on the radio expand the horizontal beam width of the dual-frequency microwave antenna 100 from 0.4 degrees to 0.9 degrees, and expand the vertical beam width of the dual-frequency microwave antenna 100 from 0.4 degrees to 0.9 degrees.
  • the horizontal beam width can effectively prevent sloshing in the horizontal direction, and by expanding the vertical beam width of the dual-frequency microwave antenna 100, it can effectively prevent sloshing in the vertical direction and improve the anti-sloshing ability of the dual-frequency microwave antenna 100.
  • this application provides a dual-frequency antenna device, and the dual-frequency antenna device may be a microwave device.
  • FIG. 9 shows that two microwave devices constitute a one-hop device, and the two microwave devices may constitute a network system or be part of a network system. Any one of the microwave devices may include a microwave indoor unit 200 and a microwave outdoor unit 400 connected to the microwave indoor unit 200, including the dual-frequency microwave antenna 100, the dual-frequency microwave antenna 100, and the microwave outdoor unit. 400 are connected through a feed waveguide.
  • the dual-frequency microwave antenna 100 of the local device receives the radio frequency signal sent by the antenna of the opposite device, and the microwave outdoor unit 400 converts, amplifies, and converts the received radio frequency signal.
  • the analog intermediate frequency signal is transmitted to the microwave indoor unit 200 through the intermediate frequency cable 300.
  • the microwave indoor unit 200 demodulates and digitizes the received intermediate frequency analog signal, and decomposes it into a digital signal to realize the receiving function of the dual frequency microwave antenna 100;
  • the microwave indoor unit 200 modulates the baseband digital signal into an intermediate frequency analog signal, and transmits it to the microwave outdoor unit 400 through the intermediate frequency cable 300.
  • the microwave outdoor unit 400 upconverts and amplifies the transmitted analog intermediate frequency signal into a specific signal. After the radio frequency signal of the frequency is transmitted through the dual-frequency microwave antenna 100 of the local device to the direction of the antenna of the opposite device; the microwave outdoor unit 400 includes a high-frequency outdoor unit for high-frequency (such as E-band) radio frequency signal access. Low-frequency outdoor for low-frequency (such as 15GHz, 18GHz, 23GHz) RF signal access Unit, dual-frequency antenna supports low-frequency and high-frequency transmission using the same dual-frequency microwave antenna 100.
  • high-frequency outdoor unit for high-frequency (such as E-band) radio frequency signal access such as E-band) radio frequency signal access.
  • Low-frequency outdoor for low-frequency (such as 15GHz, 18GHz, 23GHz) RF signal access Unit dual-frequency antenna supports low-frequency and high-frequency transmission using the same dual-frequency microwave antenna 100.
  • the dual-frequency microwave antenna 100 transmits the low-frequency and high-frequency waves in the same dual-frequency microwave antenna 100 to achieve On the basis of large bandwidth and increased transmission distance, the beam width of the high-frequency antenna can be effectively widened at the same time, so that the dual-frequency microwave antenna 100 has the ability to resist sloshing in the high-frequency band, and improves the availability of the high-frequency link 600.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请提供了一种馈源装置、双频微波天线及双频天线设备,该馈源装置包括低频馈源和高频馈源,高频馈源嵌入低频馈源,该低频馈源包括阵列排列的多个低频阵元,该高频馈源包括阵列排列的多个高频阵元,其中,至少一个高频阵元嵌入到一低频阵元内部,且低频阵元与嵌入该低频阵元内部的每一高频阵元具有共同的波导壁,能够有效地将高频馈源和低频馈源集成为一体,结构较为紧凑,同时使得高频馈源和低频馈源具有很好的等化性,而通过多个高频阵元的开关切换能够实现天线在高频段的波束扫描,进而能够拓宽高频段高增益波束的波束宽度以对抗晃动,故高频段具有一定抗晃动性,同时在保留低频链路的备用功能的基础上能够提升高频大容量链路的可用度。

Description

一种馈源装置、双频微波天线及双频天线设备 技术领域
本申请涉及天线的技术领域,尤其涉及到一种馈源装置、双频微波天线及双频天线设备。
背景技术
作为有效提升微波网络传输容量的技术手段,双频微波天线通过在同一链路传输高频信号和低频信号,将高频段的高容量和低频段的长距离结合起来,在提供大容量的同时还强化了QoS业务保护机制,而随着5G业务对大容量和IP化的要求以及对微波回传网络容量需求激增,高频信号可以为具有宽信道带宽的E-band(71-76GHz、81-86GHz),但E-band自身特性受空间损耗大、雨衰大、半功率角窄所导致的抗晃动性差等因素的影响,其传输距离和稳定性受到了限制,进而限制了双频微波天线的工作性能。
馈源装置是双频微波天线的核心组件,馈源装置的结构形式在很大程度上决定了双频微波天线的工作性能,现有双频微波天线采用双频同轴馈源的方式实现双频带工作,外导体为工作在低频段的同轴喇叭,内导体为工作在高频段的介质棒,虽然能够实现双频段同轴馈源集成,但是高频段介质棒馈源的介质损耗比较大直接影响天线增益,并且双频微波天线在高频端的波束宽度窄且无法实现波束扫描,导致抗晃动能力差,进而使得双频微波天线的大容量高频段的可用度很低。
发明内容
本申请提供了一种馈源装置、双频微波天线及双频天线设备,用于集成多个高频阵元以提高双频微波天线的将晃动能力。
第一方面,本申请提供了一种馈源装置,该馈源装置包括低频馈源和高频馈源,高频馈源嵌入低频馈源,该低频馈源包括阵列排列的多个低频阵元,该高频馈源包括阵列排列的多个高频阵元,其中,至少一个高频阵元嵌入到一所述低频阵元内部,且所述低频阵元与嵌入该低频阵元内部的每一高频阵元具有共同的波导壁;上述馈源装置通过在低频馈源内嵌入高频馈源,即在低频阵元的阵列中嵌入高频阵元的阵列内,并且采用至少一个高频阵元嵌入到一低频阵元内部,且低频阵元与嵌入该低频阵元内部的每一高频阵元具有共同的波导壁的方式能够有效地将高频馈源和低频馈源集成为一体,使得馈源装置的结构紧凑,同时使得高频馈源和低频馈源具有很好的等化性,而由于馈源装置中集成了多个高频阵元,通过多个高频阵元的开关切换能够实现天线在高频段的波束扫描,进而能够拓宽高频段高增益波束的波束宽度以对抗晃动,故高频段具有一定抗晃动性,同时在保留低频链路的备用功能的基础上能够提升高频大容量链路的可用度。
在一个具体的实施方案中,为了保证馈电装置的馈电功能,具体地,所述低频阵元与嵌入该低频阵元的每一高频阵元为相互独立馈电的两个阵元,以使得低频阵元和 高频阵元虽然嵌入设置但是馈电是相互独立的,保证高频阵元嵌入到低频阵元后二者能够正常馈电。
在一个具体的实施方案中,所述低频阵元包括用于馈电的低频馈电端口,所述高频阵元包括用于馈电的高频馈电端口,所述低频阵元的低频馈电端口和嵌入所述低频阵元内的每一高频阵元的高频馈电端口电隔离,从而保证低频阵元和嵌入到该低频阵元的高频阵元之间相互独立馈电。
在一个具体的实施方案中,为了保证高频馈电端口和低频馈电端口电隔离,所述低频阵元为方形口径,低频馈电端口为矩形口径,并且和高频阵元为方形口径,所述高频馈电端口为矩形口径,馈电口径应满足下述关系:所述低频馈电端口的口径窄边长度小于该低频阵元的口径长度与2倍的所述高频阵元口径长度之间的差值,以使得在嵌入时高频阵元不会嵌入到低频阵元的低频馈电端口内,从而保证高频馈电端口和低频馈电端口相互隔离。
在一个具体的实施方案中,该低频阵元为第一金属喇叭,该高频阵元为第二金属喇叭,且所述第一金属喇叭的口径大于第二金属喇叭的口径。通过限定两个金属喇叭的口径关系保证两个金属喇叭中一个是高频阵元,另一是低频阵元。
在一个具体的实施方案中,为了实现高频阵元和低频阵元的嵌设,所述第二金属喇叭具有第一侧壁和第二侧壁,第一侧壁和第二侧壁相邻且连接,所述第一金属喇叭包括喇叭口,所述第二金属喇叭嵌入到所述第一金属喇叭内,所述第一侧壁和第二侧壁位于所述喇叭口内。通过第一侧壁和第二侧壁将第一金属喇叭和第二金属喇叭连接为一体,从而有效地将高频馈源和低频馈源集成为一体,使得馈源装置的结构紧凑。
在一个具体的实施方案中,为了实现馈源装置的馈电,所述低频馈源至少包括4个第一金属喇叭,相邻的两个所述第一金属喇叭的固定相连。通过第一喇叭之间的固定连接再加上第二喇叭与第一喇叭的嵌设实现多个第一喇叭和第二喇叭的集成,保证结构的稳定。
在一个具体的实施方案中,相邻的两个所述第一金属喇叭的喇叭口端面固定为一体,多个所述第二金属喇叭嵌入到所述第一金属喇叭内。以保证第一金属喇叭之间没有间隔时多个第二喇叭均嵌入到第一金属喇叭内部。
在一个具体的实施方案中,在第一金属喇叭之间具有间隔时,其间隔内设置有第二金属喇叭,两个所述第一金属喇叭之间通过至少一个所述第二金属喇叭固定相连。
在一个具体的实施方案中,具体地,每一第一金属喇叭内仅有一个第二金属喇叭,或者第一金属喇叭内嵌入有至少两个第二金属喇叭,沿所述低频阵元的低频馈电端口的口径宽边延伸方向,嵌入在第一金属喇叭内的至少两个所述第二金属喇叭排列为一行。
在一个具体的实施方案中,相邻的所述低频阵元之间的间隔长度小于低频阵元的工作波长,通过限定低频阵元之间的间隔距离抑制栅瓣出现。
在一个具体的实施方案中,相邻的所述高频阵元之间的间隔长度小于1/(1+sinθ)倍的高频阵元的工作波长,其中,θ为高频馈源的最大扫描角度,通过限定高频阵元之间的间隔距离抑制栅瓣出现。
第二方面,本申请提供了一种双频微波天线,包括如上述技术方案任一项所述的馈源装置;还包括馈电支路,所述馈电支路上设有与每一高频阵元相对应的射频开关, 所述射频开关用于控制高频阵元的开关切换。在上述双频微波天线中,通过射频开关的动作,控制高频阵元的开关切换,实现双频微波天线在高频段的波束扫描,进而提高双频天线传输系统中高频大容量链路的可用度,同时可以保留低频链路的备用功能。
在一个具体的实施方案中,具体地,该双频微波天线可以为卡塞格伦天线,所述高频馈源中心区域的4个阵元所组成馈源的相位中心与卡塞格伦天线的焦点相重合。该双频微波天线还可以为环焦天线等反射面天线。
第三方面,本申请提供了一种双频天线设备,包括微波室内单元以及与所述微波室内单元信号相连的微波室外单元,包括如上述技术方案任一项所述的双频微波天线,所述双频微波天线与所述微波室外单元通过馈电波导相连接。在上述双频天线设备中,双频微波天线通过将低频段和高频段在同一双频微波天线中进行传输,在实现大带宽、增大传输距离的基础上,同时可以有效地拓宽高频段天线波束宽度,使得双频微波天线在高频段具有对抗晃动能力,提升高频段链路的可用度。
附图说明
图1为本申请实施例提供的馈源装置的结构示意图;
图2为图1的主视图;
图3为本申请实施例提供的馈源装置的另一结构示意图;
图4为图3的主视图;
图5为图1中A位置的放大示意图;
图6为图1中B位置的放大示意图;
图7为本申请实施例提供的双频微波天线的结构示意图;
图8为本申请实施例提供的馈源装置的一种尺寸示意图;
图9为本申请实施例提供的双频天线设备的结构示意图;
图10为图3所提供的馈源装置中15GHz处的馈源增益方向图;
图11为图3所提供的馈源装置中86GHz处的馈源增益方向图;
图12应用图3所提供的馈源装置的卡塞格伦天线在15GHz的增益方向图;
图13应用图3所提供的馈源装置的卡塞格伦天线在86GHz的增益方向图;
图14应用图3所提供的馈源装置的卡塞格伦天线在86GHz处水平方向上的波束扫描范围;
图15为图1所提供的馈源装置中15GHz处的馈源增益方向图;
图16为图1所提供的馈源装置中86GHz处的馈源增益方向图;
图17应用图1所提供的馈源装置的卡塞格伦天线在15GHz的增益方向图;
图18应用图1所提供的馈源装置的卡塞格伦天线在86GHz的增益方向图;
图19应用图1所提供的馈源装置的卡塞格伦天线在86GHz处水平方向上的波束扫描范围。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述。
针对现有技术中微波网络传输容量不断提升,现有技术中的双频微波天线采用双频同轴馈源的方式实现双频带工作,但是高频端的波束宽度窄,导致抗晃动能力差,为了提升抗晃动能力,本申请实施例提供了一种馈源装置,该馈源装置通过改变高频馈源和低频馈源的结构和固定方式,以提高抗晃动能力,在多个低频阵元中嵌入多个高频阵元,并通过具有共同的波导壁的形式集成为一体,多个高频阵元的开关切换能够实现天线在高频段的波束扫描,进而能够拓宽高频段高增益波束的波束宽度以对抗晃动。在本申请实施例中提到的高频阵元是指高频馈源中的独立单元,低频阵元是指低频馈源中的独立单元,阵列排列可以包括线性阵列,如方阵,还可以包括圆形阵列;在本申请实施例中提到的波导壁的形式为金属波导壁或频率选择表面,对低频段电磁波全透射,对高频段电磁波全反射。
为了方便描述,本申请实施例提供以具有4个低频阵元,4个低频阵元组成2x2的方阵的馈源装置进行说明,具有大于4个低频阵元的馈源装置与之相似,另外,本申请实施例提供以高频阵元和低频阵元仅为方形口径的馈电装置进行说明,其他口径的馈电装置与之相似。
为了方便描述本申请实施例提供的馈源装置中低频阵元11和高频阵元21的结构及相对位置,如图2以及图4所示,其中,图2和图4示出了在两种低频馈源1中高频馈源2的嵌入结构形式,首先,对馈源装置的方向进行设定,分别定义X方向及Y方向,X方向为低频阵元11为方形口径,低频馈电端口113为矩形口径时,低频馈电端口113的口径宽边的延伸方向,Y方向为低频阵元11为方形口径,低频馈电端口113为矩形口径时,低频馈电端口113的口径窄边的延伸方向。
如图1、图2、图3、图4及图7所示,图1示出了低频阵元11和高频阵元21嵌设配合的结构,图2示出了高频阵元21在低频阵元11中嵌入的位置,图3示出了低频阵元11和高频阵元21嵌设配合的结构,图4示出了高频阵元21在低频阵元11中排布的示意图,图7示出了馈源装置与射频前端电路5的配合关系,由图1及图3可以看出,该馈源装置包括低频馈源1和高频馈源2,高频馈源2嵌入低频馈源1,高频馈源2可以嵌入到低频馈源1的中心位置,也可以嵌入到低频馈源1的一侧,该低频馈源1包括阵列排列的多个低频阵元11,其中,低频阵元11的个数为N,N≥4,由图1、图2、图3及图4可以看出,多个低频阵元11可以排列成方阵,多个低频阵元11也可以排列成圆形阵列,该高频馈源2包括阵列排列的多个高频阵元21,由图3及图4可以看出,多个高频阵元21可以矩形阵列排布,由图1及图2可以看出,多个高频阵元21也可以排布成方阵,其中,至少一个高频阵元21嵌入到一低频阵元11内部,沿X方向在一低频阵元11内只能嵌设有排列成一行的多个高频阵元21,沿Y方在一低频阵元11内只能设有一个高频阵元21,由图1及图2可以看出,每一低频阵元11内嵌设有一个高频阵元21,所嵌入的高频阵元21位于多个高频阵元21所形成阵列的四个角位置,沿X方向,在每一低频阵元11内可以嵌设有排列成一行的多个高频阵元21,由图3及图4可以看出,高频阵元21全部嵌入到低频阵元11内,且每一低频阵元11内的高频阵元21的个数相同,低频阵元11与嵌入该低频阵元11内部的每一高频阵元21具有共同的波导壁,由图1可以看出,低频阵元11和高频阵元21共同的波导壁为第一侧壁212和第二侧壁211,由图3可以看出,低频阵元11和高频阵元21共同的波导壁为由多个第一侧壁212连成一体的侧壁;此时,由图1及图2可以看出相邻的高频阵元21之间通过共用侧壁的形式固定为一体,由图3和图4可以看出,相邻的高频阵元21之间通过共用第二侧壁211固定为一体,相邻的低频阵元11之间无间 隔直接固定为一体。
因此,上述馈源装置通过低频阵元11和高频阵元21之间的共同的波导壁、高频阵元21之间共用侧壁能够有效地将高频馈源2和低频馈源1集成为一体,使得馈源装置的结构紧凑,可以通过切削加工等方式一体成型上述馈源装置,容易加工,同时较为紧凑的馈源装置的结构使得高频馈源2和低频馈源1具有很好的等化性;有图7可以看出每一个高频阵元21在所对应的馈电支路3上连接射频开关4,通过控制射频开关4可以实现对每一个高频阵元21与射频前端电路5的电连接,故通过射频开关4可以实现多个高频阵元21的开关切换,进而能够实现双频微波天线100在高频段的波束扫描,从而提高能够拓宽高频段高增益波束的波束宽度以对抗晃动,故高频段具有一定抗晃动性,同时在保留低频链路的备用功能的基础上能够提升高频大容量链路的可用度。
在将高频阵元21嵌入到低频阵元11内时,为了保证馈电装置的馈电功能,一并参考图8,图8示出了低频阵元11和高频阵元21的尺寸关系,低频阵元11包括用于馈电的低频馈电端口113,高频阵元21包括用于馈电的高频馈电端口213,该低频阵元11与嵌入该低频阵元11的每一高频阵元21为相互独立馈电的两个阵元,低频阵元11的低频馈电端口113和嵌入低频阵元11内的每一高频阵元21的高频馈电端口213电隔离,在具体设置时,馈电口径应满足下述关系:低频馈电端口113的口径窄边长度小于该低频阵元11的口径长度与2倍的高频阵元21口径长度之间的差值,有图1及图2可以看出每一低频阵元11内嵌设一个高频阵元21,低频馈电端口113的口径窄边长度远小于该低频阵元11的口径长度与2倍的高频阵元21口径长度之间的差值,有图3及图4可以看出每一低频阵元11内嵌设一个高频阵元21,低频馈电端口113的口径窄边长度明显小于该低频阵元11的口径长度与2倍的高频阵元21口径长度之间的差值,低频阵元11和高频阵元21虽然嵌入设置,在嵌入时高频阵元21不会嵌入到低频阵元11的低频馈电端口113内,高频阵元21在低频阵元11内的嵌入位置可以向着低频馈电端口113延伸,但是不能够与低频馈电端口113相接触,以使得从而保证高频馈电端口213和低频馈电端口113相互隔离,进而使得低频阵元11和高频阵元21的馈电是相互独立,保证高频阵元21嵌入到低频阵元11后二者能够正常馈电,即高频阵元21嵌入到低频阵元11中不会对低频阵元11的馈电造成影响,保证了馈电装置的馈电功能,因此,上述馈电装置在不影响低频馈源1馈电工作的前提下集成了多个高频阵元21,保证了结构的紧凑性和高频段具有一定抗晃动性。
为了避免栅瓣的出现,在保证馈电装置的馈电功能的基础上,继续参考图8,相邻的低频阵元11之间的间隔长度小于低频阵元11的工作波长,以使的低频阵元11间隔距离需满足栅瓣抑制条件,通过限定低频阵元11之间的间隔距离抑制栅瓣出现;相邻的高频阵元21之间的间隔长度小于1/(1+sinθ)倍的高频阵元21的工作波长,其中,θ为高频馈源2的最大扫描角度,以使的高频阵元21间隔距离需满足栅瓣抑制条件,通过限定高频阵元21之间的间隔距离抑制栅瓣出现。
由图1可以看出,低频阵元11和高频阵元21为喇叭状结构,一并参考图5以及图6,图5示出了高频阵元21的具体结构,图6示出了低频阵元11的具体结构,该低频阵元11为第一金属喇叭,该高频阵元21为第二金属喇叭,由图2及图4可以看出,第一金属喇叭和第二金属喇叭均为方形口径,第一金属喇叭的低频馈电端口113和第二金属喇叭的高频馈电端口213为矩形口径,除上述结构外,第一金属喇叭和第二金属喇叭也可以为其他口径,如矩形口径,在具体设置时,第一金属喇叭的口径大于第二金属喇叭的口径,以保 证两个金属喇叭中第一金属喇叭是低频阵元11,第二金属喇叭是低频阵元11。
而为了实现高频阵元21和低频阵元11的嵌设,由图6以及图7可以看出,第二金属喇叭具有第一侧壁212和第二侧壁211,第一侧壁212和第二侧壁211相邻且连接,第一金属喇叭包括喇叭口111,第二金属喇叭嵌入到第一金属喇叭内,第一侧壁212和第二侧壁211位于喇叭口111内。由图1以及图2可以看出,每一第一金属喇叭内嵌设有一个第二金属喇叭,第一侧壁212和第二侧壁211为第一金属喇叭和第二金属喇叭共同的波导壁,通过第一侧壁212和第二侧壁211将第一金属喇叭和与嵌入该第一金属喇叭内的第二金属喇叭连接为一体,由图3以及图4可以看出每一第一金属喇叭内嵌设有多个第二金属喇叭,每一第一金属喇叭内,相邻的第二金属喇叭之间共用第二侧壁211,多个第一侧壁212相连接成一体结构,该一体结构为第一金属喇叭和第二金属喇叭共同的波导壁。
而为了有效地将高频馈源2和低频馈源1集成为一体,使得馈源装置的结构紧凑,具体设置时,如图1以及图3所示,图1示出了第一金属喇叭之间具有间隔,图3示出了第一金属喇叭之间没有间隔,但是无论第一金属喇叭之间有无间隔,相邻的两个第一金属喇叭的固定相连。在第一金属喇叭之间具有间隔时,其间隔内设置有至少一个第二金属喇叭,由图1可以看出,在第一金属喇叭之间具有间隔时,其间隔内设置有两个第二金属喇叭,此时两个第二金属喇叭之间通过共用侧壁的形式实现两个第二金属喇叭之间的连接,而两个第二金属喇叭与第一金属喇叭之间也是通过共用侧壁的形式实现第二金属喇叭与第一金属喇叭之间的连接,从而相邻的两个第一金属喇叭之间通过至少一个第二金属喇叭固定相连,在加上第一金属喇叭和第二金属喇叭通过第一侧壁212和第二侧壁211固定相连,以形成将高频馈源2和低频馈源1集成为一体的馈源结构,保证结构的稳定;由图3可以看出,第一金属喇叭之间没有间隔,可以通过相邻的两个第一金属喇叭的喇叭口111端面112固定为一体实现相邻的两个第一金属喇叭的固定连接,还可以通过相邻的两个第一金属喇叭共用侧壁的形式实现相邻的两个第一金属喇叭的固定连接,多个第二喇叭均嵌入到第一金属喇叭内部,在第二金属喇叭的个数时4个时,四个第二金属喇叭分别嵌入到4个第一金属喇叭内,当第二金属喇叭的个数大于四个时,沿X方向,多个第二金属喇叭排列成两行,且嵌入在第一金属喇叭内的至少两个第二金属喇叭排列为一行,在第一金属喇叭之间具有间隔时,沿X方向,每一第一金属喇叭内也可以嵌入有排成一行的多个第二金属喇叭。
另外,如图7所示,本申请提供了一种双频微波天线100,该双频微波天线100可以为卡塞格伦天线,也可以为环焦天线等反射面天线,还可以为各类反射阵、介质透镜、各类透射阵天线,图7示出双频微波天线100的具体结构,包括如上述技术方案任一项的馈源装置;还包括馈电支路3,馈电支路3上设有与每一高频阵元21相对应的射频开关4,射频开关4用于控制高频阵元21的开关切换,实现射频前端电路5与高频阵元21的连通和断开,高频馈源2中心区域的4个阵元所组成馈源的相位中心与卡塞格伦天线的焦点相重合。在上述双频微波天线100中,通过射频开关4的动作,控制高频阵元21的开关切换,实现双频微波天线100在高频段的波束扫描,进而提高双频天线传输系统中高频大容量链路的可用度,同时可以保留低频链路的备用功能。
下面以图3及图4所示的馈源装置为例说明一下双频微波天线100的抗晃动能力较高,选定卡塞格伦天线的主反射面直径为660mm,副反射面直径为100mm,馈源照射角为32度,焦径比为0.385,一并参考图8,选定低频阵元11为常规频段(15GHz),高频阵元21 为E-band,低频阵元11的口径长度H为13mm,低频阵元11间隔距离D为13.5mm,低频馈电端口113的口径宽边Ra为9mm,低频馈电端口113的口径窄边Rb为4mm,低频阵元11辐射段长度为20mm,低频阵元11馈电波导段长度为20mm,低频阵元11的波导壁厚度为0.25mm;高频阵元21的口径长度h1为2.25mm,高频阵元21间隔距离d1为2.75mm,高频阵元21辐射段长度为5.2mm,高频阵元21馈电波导段长度为34.8mm,嵌入低频阵元11口径中的高频阵元21与低频阵元11共用第一侧壁212,第一侧壁212的厚度为0.25mm。
一并参考图7、图10、图11、图12、图13以及图14,图3示出了在高频段每4个第二金属喇叭(2×2形式)组成方阵构成E-band馈源C,通过图7的射频开关4切换,4×N个高频阵元21可以形成(2×N-1)个工作状态,进而实现在一个维度上(2×N-1)个波束扫描,由图10可以看出,馈源装置中15GHz处的馈源增益为14.5dBi,从图11可以看出,馈源装置中86GHz处的馈源增益为14.6dBi,低频段和高频段的馈源增益大致相同,故在两个工作频段馈源装置都具有比较好的等化性,由图12可以看出,卡塞格伦天线在15GHz处的增益37.4dBi,其3dB波束宽度为2.1度,由图13可以看出,卡塞格伦天线在86GHz处的增益52.6dBi,其在方位面、俯仰面的3dB波束宽度均为0.4度,由图14可以看出,通过开关切换,高频馈源2具有7种工作状态,可以实现双频微波天线100高频段在水平方向上的7个波束扫描,使得双频微波天线100的水平波束宽度由0.4度拓展至2度,而通过拓展双频微波天线100的水平波束宽度能够实现在水平方向上有效地对抗晃动,提高双频微波天线100的抗晃动能力。
下面以图1及图2所示的馈源装置为例说明一下双频微波天线100的抗晃动能力较高,选定卡塞格伦天线的主反射面直径为660mm,副反射面直径为100mm,馈源照射角为32度,焦径比为0.385,一并参考图8,选定低频阵元11为常规频段(15GHz),高频阵元21为E-band,低频阵元11的口径长度H为9.5mm,低频阵元11间隔距离D为15mm,低频馈电端口113的口径宽边Ra为9.5mm,低频馈电端口113的口径窄边Rb为4.5mm,低频阵元11辐射段长度为20mm,低频阵元11馈电波导段长度为20mm,低频阵元11的波导壁厚度为0.25mm;高频阵元21的口径长度h1为2.25mm,高频阵元21间隔距离d1为2.75mm,高频阵元21辐射段长度为5.2mm,高频阵元21馈电波导段长度为34.8mm,嵌入低频阵元11口径中的高频阵元21与低频阵元11共用第一侧壁212和第二侧壁211,第一侧壁212和第二侧壁211的厚度为0.25mm。
一并参考图15、图16、图17、图18以及图19,图1示出了4×4个高频阵元21嵌入到低频阵元11的中心区域的结构形式,每4个高频阵元21(2×2形式)进行组阵构成E-band馈源C,通过射频开关4切换,4×4个高频阵元21可以形成3×3个工作状态,进而实现在二个维度上9个状态的波束扫描,由图15可以看出,馈源装置中15GHz处的馈源增益为12.2dBi,从图16可以看出,馈源装置中86GHz处的馈源增益为14.5dBi,低频段和高频段的馈源增益相近,故在两个工作频段馈源装置都具有比较好的等化性,由图17可以看出,卡塞格伦天线在15GHz处的增益35.6dBi,其3dB波束宽度为1.9度,由图18可以看出,卡塞格伦天线在86GHz处的增益52.4Bi,其在方位面、俯仰面的3dB波束宽度均为0.4度,由图19可以看出,通过开关切换,高频馈源2具有9种工作状态,可以实现双频微波天线100高频段在水平方向、垂直方向上的9个波束扫描,使得双频微波天线100的水平波束宽度由0.4度拓展至0.9度,双频微波天线100的垂直波束宽度由0.4度拓展至 0.9度,而通过拓展双频微波天线100的水平波束宽度能够实现在水平方向上有效地对抗晃动,而通过拓展双频微波天线100的垂直波束宽度能够实现在垂直方向上有效地对抗晃动,提高双频微波天线100的抗晃动能力。
另外,如图9所示,本申请提供了一种双频天线设备,该双频天线设备可以为微波设备。图9中示出了两个微波设备构成一跳设备,两个微波设备可以构成一个网络系统或者是网络系统的一部分。其中,任意一个微波设备可以包括微波室内单元200以及与微波室内单元200信号相连的微波室外单元400,包括如上述技术方案任一项的双频微波天线100,双频微波天线100与微波室外单元400通过馈电波导相连接。在分体式双频微波传输系统中,在接收方向,本端设备的双频微波天线100接收对端设备的天线发送的射频信号,微波室外单元400对接收到的射频信号进行变频和放大,转换成模拟中频信号并通过中频电缆300向微波室内单元200传送发送,微波室内单元200对接收到的中频模拟信号进行解调和数字化处理,分解成数字信号,实现双频微波天线100的接收功能;在发射方向,微波室内单元200将基带数字信号调制成中频模拟信号,并通过中频电缆300向微波室外单元400传送发送,微波室外单元400将传送的模拟中频信号经过上变频和放大,转换成特定频率的射频信号后,通过本端设备的双频微波天线100向对端设备天线的方向发送;其中微波室外单元400包括用于高频段(比如E-band)射频信号接入的高频室外单元、用于低频段(比如15GHz、18GHz、23GHz)射频信号接入的低频室外单元,双频天线支持低频段和高频段采用同一面双频微波天线100进行传输。在分体式双频微波传输系统中,通过绑定低频段链路500和高频段链路600,双频微波天线100通过将低频段和高频段在同一双频微波天线100中进行传输,在实现大带宽、增大传输距离的基础上,同时可以有效地拓宽高频段天线波束宽度,使得双频微波天线100在高频段具有对抗晃动能力,提升高频段链路600的可用度。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (15)

  1. 一种馈源装置,其特征在于,包括低频馈源和嵌入到所述低频馈源的高频馈源,所述低频馈源包括阵列排列的多个低频阵元,所述高频馈源包括阵列排列的多个高频阵元,至少一个所述高频阵元嵌入到一所述低频阵元内部,且所述低频阵元与嵌入该低频阵元内部的每一高频阵元具有共同的波导壁。
  2. 根据权利要求1所述的馈源装置,其特征在于,所述低频阵元与嵌入该低频阵元的每一高频阵元为相互独立馈电的两个阵元。
  3. 根据权利要求2所述的馈源装置,其特征在于,所述低频阵元包括用于馈电的低频馈电端口,所述高频阵元包括用于馈电的高频馈电端口,所述低频阵元的低频馈电端口和嵌入所述低频阵元内的每一高频阵元的高频馈电端口电隔离。
  4. 根据权利要求3所述的馈源装置,其特征在于,所述低频阵元和高频阵元均为方形口径,所述低频馈电端口和高频馈电端口均为矩形口径,所述低频馈电端口的口径窄边长度小于该低频阵元的口径长度与2倍的所述高频阵元口径长度之间的差值。
  5. 根据权利要求1~4任一项所述的馈源装置,其特征在于,所述低频阵元为第一金属喇叭,所述高频阵元为第二金属喇叭,且所述第一金属喇叭的口径大于第二金属喇叭的口径。
  6. 根据权利要求5所述的馈源装置,其特征在于,所述第二金属喇叭具有相邻的第一侧壁和第二侧壁,所述第一金属喇叭包括喇叭口,所述第二金属喇叭嵌入到所述第一金属喇叭、且第一侧壁和第二侧壁位于所述喇叭口内。
  7. 根据权利要求5或6所述的馈源装置,其特征在于,所述低频馈源至少包括4个第一金属喇叭,相邻的两个所述第一金属喇叭的固定相连。
  8. 根据权利要求7所述的馈源装置,其特征在于,相邻的两个所述第一金属喇叭的喇叭口端面固定为一体,多个所述第二金属喇叭嵌入到所述第一金属喇叭内。
  9. 根据权利要求7所述的馈源装置,其特征在于,两个所述第一金属喇叭之间通过至少一个所述第二金属喇叭固定相连。
  10. 根据权利要求8或9所述的馈源装置,其特征在于,沿所述低频阵元的低频馈电端口的口径宽边延伸方向,嵌入在第一金属喇叭内的至少一个所述第二金属喇叭排列为一行。
  11. 根据权利要求1-10任一项所述的馈源装置,其特征在于,相邻的所述低频阵元之间的间隔长度小于低频阵元的工作波长。
  12. 根据权利要求1-11任一项所述的馈源装置,其特征在于,相邻的所述高频阵元之间的间隔长度小于1/(1+sinθ)倍的高频阵元的工作波长,其中,θ为高频馈源的最大扫描角度。
  13. 一种双频微波天线,其特征在于,包括如权利要求1~12任一项所述的馈源装置;还包括馈电支路,所述馈电支路上设有与每一高频阵元相对应的射频开关,所述射频开关用于控制高频阵元的开关切换。
  14. 根据权利要求13所述的双频微波天线,其特征在于,所述双频微波天线为卡塞格伦天线,所述高频馈源中心区域的4个阵元所组成馈源的相位中心与卡塞格伦天线的焦点相重合。
  15. 一种双频天线设备,包括微波室内单元以及与所述微波室内单元信号相连的微波室外单元,其特征在于,包括如权利要求13~14任一项所述的双频微波天线,所述双频微波天线与所述微波室外单元通过馈电波导相连接。
PCT/CN2018/097286 2018-07-26 2018-07-26 一种馈源装置、双频微波天线及双频天线设备 WO2020019264A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202110415058.2A CN113206383A (zh) 2018-07-26 2018-07-26 一种馈源装置、双频微波天线及双频天线设备
CN201880046580.4A CN110959226B (zh) 2018-07-26 2018-07-26 一种馈源装置、双频微波天线及双频天线设备
PCT/CN2018/097286 WO2020019264A1 (zh) 2018-07-26 2018-07-26 一种馈源装置、双频微波天线及双频天线设备
EP18925714.0A EP3641059B1 (en) 2018-07-26 2018-07-26 Feed device, dual-frequency microwave antenna and dual-frequency antenna device
BR112020001288-2A BR112020001288A2 (pt) 2018-07-26 2018-07-26 equipamento de alimentação, antena de micro-ondas de banda dupla e dispositivo de antena de banda dupla
US16/735,313 US11139572B2 (en) 2018-07-26 2020-01-06 Feed apparatus, dual-band microwave antenna, and dual-band antenna device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/097286 WO2020019264A1 (zh) 2018-07-26 2018-07-26 一种馈源装置、双频微波天线及双频天线设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/735,313 Continuation US11139572B2 (en) 2018-07-26 2020-01-06 Feed apparatus, dual-band microwave antenna, and dual-band antenna device

Publications (1)

Publication Number Publication Date
WO2020019264A1 true WO2020019264A1 (zh) 2020-01-30

Family

ID=69180712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/097286 WO2020019264A1 (zh) 2018-07-26 2018-07-26 一种馈源装置、双频微波天线及双频天线设备

Country Status (5)

Country Link
US (1) US11139572B2 (zh)
EP (1) EP3641059B1 (zh)
CN (2) CN113206383A (zh)
BR (1) BR112020001288A2 (zh)
WO (1) WO2020019264A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112599980A (zh) * 2020-11-13 2021-04-02 中国人民解放军63699部队 一种双频段多模组合馈源喇叭

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4783663A (en) * 1985-06-04 1988-11-08 U.S. Philips Corporation Unit modules for a high-frequency antenna and high-frequency antenna comprising such modules
US4998113A (en) * 1989-06-23 1991-03-05 Hughes Aircraft Company Nested horn radiator assembly
CN102610901A (zh) * 2012-03-23 2012-07-25 彭文峰 一种嵌套式双频段双圆极化馈源
JP2016181747A (ja) * 2015-03-23 2016-10-13 日本電信電話株式会社 アンテナ装置
CN106410413A (zh) * 2016-09-05 2017-02-15 电子科技大学 一种用于轨道角动量无线通信模式的四维天线阵

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2972148A (en) * 1958-06-11 1961-02-14 Bendix Corp Multi-channel horn antenna
US4130823A (en) * 1977-08-05 1978-12-19 The United States Of America As Represented By The Secretary Of The Navy Miniature, flush mounted, microwave dual band cavity backed slot antenna
FR2498820A1 (fr) * 1981-01-23 1982-07-30 Thomson Csf Source hyperfrequence bi-bande et antenne comportant une telle source
DE3626856A1 (de) * 1986-08-08 1988-02-11 Licentia Gmbh Antennenanordnung mit hornstrahlern
US5485167A (en) * 1989-12-08 1996-01-16 Hughes Aircraft Company Multi-frequency band phased-array antenna using multiple layered dipole arrays
US5926146A (en) * 1996-06-17 1999-07-20 Datron Transco Inc Dual-band feed for microwave reflector antenna
DE10049845A1 (de) * 2000-10-09 2002-04-11 Philips Corp Intellectual Pty Mehrband-Mikrowellenantenne
US6650291B1 (en) * 2002-05-08 2003-11-18 Rockwell Collins, Inc. Multiband phased array antenna utilizing a unit cell
JP2007235563A (ja) * 2006-03-01 2007-09-13 Mitsubishi Electric Corp アンテナ用放射器の接続構造
US7639197B1 (en) * 2006-07-28 2009-12-29 Rockwell Collins, Inc. Stacked dual-band electromagnetic band gap waveguide aperture for an electronically scanned array
US20100045559A1 (en) * 2008-08-25 2010-02-25 Vivant Medical, Inc. Dual-Band Dipole Microwave Ablation Antenna
US9173706B2 (en) * 2008-08-25 2015-11-03 Covidien Lp Dual-band dipole microwave ablation antenna
US8350773B1 (en) * 2009-06-03 2013-01-08 The United States Of America, As Represented By The Secretary Of The Navy Ultra-wideband antenna element and array
US20110074646A1 (en) * 2009-09-30 2011-03-31 Snow Jeffrey M Antenna array
US9232558B1 (en) * 2010-06-28 2016-01-05 Google Inc. Multi sector antenna and mesh network system
CN102394374B (zh) * 2011-06-29 2013-08-28 西安空间无线电技术研究所 一种双频馈源
CN102394375B (zh) 2011-07-15 2014-06-25 中国工程物理研究院电子工程研究所 一种双频宽带波纹喇叭馈源天线
CN104051860A (zh) * 2014-02-21 2014-09-17 广东通宇通讯股份有限公司 微波天线
US10312601B2 (en) * 2015-01-12 2019-06-04 Huawei Technologies Co., Ltd. Combination antenna element and antenna array
CN105161862B (zh) * 2015-08-13 2017-12-01 上海航天测控通信研究所 一种一体化六频段多用途复合馈源
US9923284B1 (en) * 2015-10-28 2018-03-20 National Technology & Engineering Solutions Of Sandia, Llc Extraordinary electromagnetic transmission by antenna arrays and frequency selective surfaces having compound unit cells with dissimilar elements
US20170141465A1 (en) * 2015-11-12 2017-05-18 King Fahd University Of Petroleum And Minerals Integrated microwave-millimeter wave antenna system with isolation enhancement mechanism
FR3045166B1 (fr) * 2015-12-09 2018-02-16 Thales Antenne active modulaire bi-bande
WO2018064835A1 (zh) * 2016-10-09 2018-04-12 华为技术有限公司 一种喇叭天线
CN106785469B (zh) 2016-12-02 2020-12-25 航天恒星科技有限公司 双频同轴馈源及具有其的天线
WO2018133071A1 (zh) * 2017-01-22 2018-07-26 华为技术有限公司 一种双频天线
CN107069225B (zh) 2017-04-27 2023-08-01 成都雷电微力科技股份有限公司 一种卡赛格伦天线馈源结构及卡赛格伦天线
CN109244676B (zh) * 2017-07-11 2024-05-28 普罗斯通信技术(苏州)有限公司 一种双频馈源组件及双频微波天线
CN107546475B (zh) 2017-09-06 2019-12-03 哈尔滨工业大学 一种应用于5g通信的双频天线馈源
CN107658568A (zh) * 2017-09-27 2018-02-02 北京星际安讯科技有限公司 双频双极化共口径波导喇叭平面阵列天线
CN107910650A (zh) * 2017-11-08 2018-04-13 江苏贝孚德通讯科技股份有限公司 一种双频天线馈电系统及双频天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4783663A (en) * 1985-06-04 1988-11-08 U.S. Philips Corporation Unit modules for a high-frequency antenna and high-frequency antenna comprising such modules
US4998113A (en) * 1989-06-23 1991-03-05 Hughes Aircraft Company Nested horn radiator assembly
CN102610901A (zh) * 2012-03-23 2012-07-25 彭文峰 一种嵌套式双频段双圆极化馈源
JP2016181747A (ja) * 2015-03-23 2016-10-13 日本電信電話株式会社 アンテナ装置
CN106410413A (zh) * 2016-09-05 2017-02-15 电子科技大学 一种用于轨道角动量无线通信模式的四维天线阵

Also Published As

Publication number Publication date
CN110959226A (zh) 2020-04-03
US20200144720A1 (en) 2020-05-07
EP3641059A1 (en) 2020-04-22
BR112020001288A2 (pt) 2021-02-02
US11139572B2 (en) 2021-10-05
EP3641059A4 (en) 2020-08-12
CN110959226B (zh) 2021-07-06
CN113206383A (zh) 2021-08-03
EP3641059B1 (en) 2023-09-06

Similar Documents

Publication Publication Date Title
EP3614491B1 (en) Multi-band base station antennas having broadband decoupling radiating elements and related radiating elements
US11831083B2 (en) Compact wideband dual-polarized radiating elements for base station antenna applications
US10601120B2 (en) Base station antennas having reflector assemblies with RF chokes
JP3867713B2 (ja) 電波レンズアンテナ装置
US6320553B1 (en) Multiple frequency reflector antenna with multiple feeds
US7944404B2 (en) Circular polarized helical radiation element and its array antenna operable in TX/RX band
US5666126A (en) Multi-staged antenna optimized for reception within multiple frequency bands
KR20030040513A (ko) 다중반사기 안테나를 위한 전자기파 송신/수신 소스에대한 개선
JP6232174B2 (ja) マルチビームアンテナシステム
WO2020019264A1 (zh) 一种馈源装置、双频微波天线及双频天线设备
CN111370858B (zh) 定向uhf天线及电子设备
US10581147B1 (en) Arbitrary polarization circular and cylindrical antenna arrays
US10109917B2 (en) Cupped antenna
US20220285857A1 (en) Base station antennas having low cost wideband cross-dipole radiating elements
KR100726025B1 (ko) 위성 디엠비용 차량 탑재 안테나
KR101593416B1 (ko) 커플링 엘리먼트를 이용하는 안테나
CN220553598U (zh) 一种天线单元、天线及基站
CN210692768U (zh) 基站天线和多频带基站天线
KR102601186B1 (ko) 다중 대역 다중 배열 기지국 안테나
US20240195081A1 (en) Cross-dipole radiating elements having helix-shaped dipole arms and base station antennas having such radiating elements
CN117895213A (zh) 基于超表面的低剖面宽带圆极化天线、天线阵列及通信设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018925714

Country of ref document: EP

Effective date: 20200113

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925714

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020001288

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112020001288

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200121