WO2020019213A1 - 随机接入方法、装置、电子设备和计算机可读存储介质 - Google Patents

随机接入方法、装置、电子设备和计算机可读存储介质 Download PDF

Info

Publication number
WO2020019213A1
WO2020019213A1 PCT/CN2018/097098 CN2018097098W WO2020019213A1 WO 2020019213 A1 WO2020019213 A1 WO 2020019213A1 CN 2018097098 W CN2018097098 W CN 2018097098W WO 2020019213 A1 WO2020019213 A1 WO 2020019213A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
ssb
target
csi
measurement result
Prior art date
Application number
PCT/CN2018/097098
Other languages
English (en)
French (fr)
Inventor
江小威
张明
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to US17/261,867 priority Critical patent/US20210298086A1/en
Priority to CN201880001241.4A priority patent/CN109076556B/zh
Priority to PCT/CN2018/097098 priority patent/WO2020019213A1/zh
Publication of WO2020019213A1 publication Critical patent/WO2020019213A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a random access method, a random access device, an electronic device, and a computer-readable storage medium.
  • a user equipment when a user equipment initiates random access, it needs to select a proper beam, and the selection of the beam is determined by detecting certain parameters of the beam, for example, when the random access is initiated is competitive In random access (CBRA, contention based random access), the user equipment needs to determine whether the signal quality of the beam meets the requirements according to the measurement results of the SSB (Synchronization Signal Block).
  • CBRA contention based random access
  • the user equipment detects the SSB of the downlink BWP (Band Width Part) to determine the measurement result of the SSB.
  • the user equipment does not obtain the measurement result of the SSB for the downlink BWP.
  • the user equipment cannot select a suitable beam for random access.
  • embodiments of the present disclosure propose a random access method, a random access apparatus, an electronic device, and a computer-readable storage medium.
  • a random access method including:
  • the method further includes:
  • the measurement results of CSI-RS of multiple beams are determined.
  • determining that the initiated random access corresponds to Whether there are available SSB measurements in the downlink bandwidth section include:
  • the measurement result of determining the channel state information measurement reference signal CSI-RS of multiple beams includes:
  • a measurement result of a CSI-RS associated with a corresponding SSB of the candidate beam is determined.
  • the determining a target SSB corresponding to the target CSI-RS includes:
  • a target SSB co-located with the target CSI-RS is determined.
  • the determining a target SSB co-located with the target CSI-RS quasi-statically includes:
  • a target SSB that is quasi-statically co-located with the target CSI-RS in spatial reception parameters is determined.
  • the determining a target SSB corresponding to the target CSI-RS includes:
  • the target SSB corresponding to the target CSI-RS is determined according to the association relationship between the CSI-RS and the SSB configured by the base station.
  • the preset threshold is determined based on a radio resource control message sent by the base station.
  • a random access device including:
  • a measurement result determining module configured to determine a measurement result of channel state information measurement reference signal CSI-RS of multiple beams when initiating random access
  • a beam determination module configured to determine a target beam corresponding to a target CSI-RS whose measurement result is greater than a preset threshold
  • An SSB determination module configured to determine a target SSB corresponding to the target CSI-RS
  • a random access determination module configured to determine a random access preamble and a random access opportunity associated with the target SSB
  • a random access initiation module is configured to initiate random access on the target beam based on the random access preamble and the random access opportunity.
  • the apparatus further includes:
  • the available determination module is configured to determine, before the measurement result determination module determines the measurement results of the CSI-RS of multiple beams, whether there is an available SSB measurement result for the downlink bandwidth portion corresponding to the initiated random access;
  • the measurement result determination module determines measurement results of CSI-RSs of multiple beams.
  • the available determination module is configured to determine the initiated Whether there are available SSB measurement results for the downlink bandwidth portion of the non-competitive random access;
  • the measurement result determination module is configured to determine the measurement of the CSI-RS associated with the corresponding SSB of the candidate beam result.
  • the SSB determination module includes:
  • a quasi-static co-location sub-module is configured to determine a target SSB that is quasi-statically co-located with the target CSI-RS.
  • the quasi-static co-location sub-module is configured to determine a target SSB that is quasi-statically co-located with the target CSI-RS in spatial reception parameters.
  • the SSB determination module includes:
  • the association relationship submodule is configured to determine a target SSB corresponding to the target CSI-RS according to an association relationship between the CSI-RS and the SSB configured by the base station.
  • the preset threshold is determined based on a radio resource control message sent by the base station.
  • an electronic device including:
  • Memory for storing processor-executable instructions
  • the processor is configured to execute the steps in the method according to any one of the foregoing embodiments.
  • a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the steps in the method according to any one of the foregoing embodiments are implemented.
  • the beam can be determined according to the measurement result of the CSI-RS, so that the beam does not need to be determined according to the measurement result of the SSB, thereby avoiding that the user equipment cannot select an appropriate one because the SSB measurement result is not obtained for the downlink BWP.
  • the problem of random access of beams ensures that user equipment can select beams that meet requirements.
  • the SSB corresponding to the CSI-RS can be further determined after the beam is determined, and then the SSB can be determined.
  • the associated random access preamble and random access timing enable the user equipment to send the random access preamble to the base station at the random access timing based on the beam that meets the requirements, thereby ensuring the random access process to proceed smoothly.
  • Fig. 1 is a schematic flowchart of a random access method according to an embodiment of the present disclosure.
  • Fig. 2 is a schematic flowchart of another random access method according to an embodiment of the present disclosure.
  • Fig. 3 is a schematic flowchart of still another random access method according to an embodiment of the present disclosure.
  • Fig. 4 is a schematic flowchart of still another random access method according to an embodiment of the present disclosure.
  • Fig. 5 is a schematic flowchart of still another random access method according to an embodiment of the present disclosure.
  • Fig. 6 is a schematic flowchart of still another random access method according to an embodiment of the present disclosure.
  • Fig. 7 is a schematic block diagram of a random access device according to an embodiment of the present disclosure.
  • Fig. 8 is a schematic block diagram of another random access device according to an embodiment of the present disclosure.
  • Fig. 9 is a schematic block diagram of an SSB determination module according to an embodiment of the present disclosure.
  • Fig. 10 is a schematic block diagram of another SSB determination module according to an embodiment of the present disclosure.
  • Fig. 11 is a schematic block diagram of a device for random access according to an embodiment of the present disclosure.
  • Fig. 1 is a schematic flowchart of a random access method according to an embodiment of the present disclosure.
  • the random access method shown in this embodiment can be applied to user equipment, such as mobile phones, tablet computers, and smart wearable devices (bands, watches, helmets, glasses, etc.).
  • the user equipment can communicate with a base station, for example, based on LTE (Long Term Evolution, Long Term Evolution) communicates with the base station, and can also communicate with the base station based on NR (New Radio).
  • LTE Long Term Evolution, Long Term Evolution
  • NR New Radio
  • the random access method may include the following steps:
  • step S1 when random access is initiated, measurement results of channel state information measurement reference signals CSI-RS (Channel State Information Reference Signal) of multiple beams are determined.
  • CSI-RS Channel State Information Reference Signal
  • step S2 a target beam corresponding to a target CSI-RS whose measurement result is greater than a preset threshold is determined.
  • the beam may be associated with the CSI-RS, and based on the measurement results of the CSI-RS, the quality of the beam may be determined.
  • the measurement result to be used can be selected according to requirements.
  • the measurement result can be RSRP (Reference Signal Receiving Power), and the preset threshold can also be set as required. If the measurement result is greater than a preset threshold, it can be determined that the beam quality of the beam corresponding to the CSI-RS corresponding to the measurement result meets the requirements.
  • the user equipment may select one measurement result among the multiple measurement results based on a pre-stored configuration message.
  • the corresponding CSI-RS is used as the target CSI-RS.
  • the CSI-RS corresponding to the largest measurement result can be selected as the target CSI-RS.
  • a beam corresponding to a higher priority can be selected.
  • CSI-RS as the target CSI-RS.
  • the CSI-RS associated with the SSB may be determined first, and then the measurement result is determined for the CSI-RS associated with the SSB, thereby ensuring that the determined target CSI-RS is associated with the SSB, thereby enabling subsequent determination.
  • step S3 a target SSB corresponding to the target CSI-RS is determined.
  • the association relationship between the CSI-RS and the SSB may be pre-configured, and based on the association relationship, the target SSB corresponding to the target CSI-RS may be determined.
  • Synchronization Signal Block which specifically represents a Synchronization / PBCH (physical broadcast channel) block, because Synchronization Signal and PBCH can be packaged and processed together at the physical layer, so they are collectively called SSB.
  • Synchronization Signal may include PSS (primary synchronization signal) and SSS (secondary synchronization signal), and PBCH may include PBCH DMRS (demodulation reference signal) and PBCH data.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH may include PBCH DMRS (demodulation reference signal) and PBCH data.
  • steps S2 and S3 can be set as required. For example, step S2 can be performed first, then step S3, or step S3 can be performed first, and then step S2 can be performed. Steps S2 and S3 can be performed simultaneously.
  • step S4 a random access preamble and a random access opportunity associated with the target SSB are determined.
  • the association relationship between the SSB and the random access preamble and the random access timing may be pre-configured, and then based on the association relationship, the random access preamble and random access opportunity associated with the target SSB may be determined.
  • the random access preamble associated with the SSB may be one or more, and the random access opportunity associated with the SSB may be one or more.
  • the user equipment may select one preamble among the multiple preambles for random access according to the needs. Accordingly, when the SSB is associated with multiple random access opportunities, The user equipment may select one random access opportunity for random access among a plurality of random access opportunities as required.
  • step S5 random access is initiated on the target beam based on the random access preamble and the random access opportunity.
  • a preamble can be sent to the base station at the random access timing (PRACH Occasion) on the target beam, thereby initiating Random access.
  • PRACH Occasion random access timing
  • the user equipment when user equipment initiates competitive random access, the user equipment needs to determine whether the signal quality of the beam meets the requirements according to the measurement results of the SSB. However, in some cases, the user equipment does not obtain the downlink BWP. SSB measurement results.
  • the user equipment in the related technology needs to obtain the SSB measurement result by measuring the CD (Cell Defining) SSB.
  • the CD SSB is only located in the initial downlink BWP (that is, the downlink BWP configured by the base station for the user equipment when the user equipment establishes a communication connection with the base station).
  • the initial downlink BWP that is, the downlink BWP configured by the base station for the user equipment when the user equipment establishes a communication connection with the base station.
  • other downlink BWPs need to overlap with the initial downlink BWP, and the overlapping part contains the position of the CDSSB in order to obtain SSB measurement results for other downlink BWPs.
  • the overlapping part does not necessarily include the position of the CDSSB, which results in that for some BWPs, the user equipment cannot obtain the SSB measurement result. Or even if the overlapping part contains the location of the CD and the SSB, but the user equipment is not configured to measure the SSB, the user equipment cannot obtain the measurement result of the SSB.
  • the beam can be determined according to the measurement result of the CSI-RS, so that the beam does not need to be determined according to the measurement result of the SSB, thereby avoiding that the user equipment cannot select an appropriate one because the SSB measurement result is not obtained for the downlink BWP
  • the problem of random access of beams ensures that user equipment can select beams that meet requirements.
  • the SSB corresponding to the CSI-RS can be further determined after the beam is determined, and then the SSB can be determined.
  • the associated random access preamble and random access timing enable the user equipment to send the random access preamble to the base station at the random access timing based on the beam that meets the requirements, thereby ensuring the random access process to proceed smoothly.
  • Fig. 2 is a schematic flowchart of another random access method according to an embodiment of the present disclosure. As shown in FIG. 2, based on the embodiment shown in FIG. 1, the random access method further includes:
  • step S6 before determining the measurement results of the CSI-RSs of the multiple beams, determine whether there is an available SSB measurement result for the downlink bandwidth portion corresponding to the initiated random access;
  • the measurement results of CSI-RS of multiple beams are determined.
  • the CSI-RS of multiple beams before determining the measurement results of the CSI-RS of multiple beams, it may be determined whether there are available SSB measurement results for the downlink bandwidth portion corresponding to the initiated random access.
  • the user equipment can determine the beam based on the SSB measurement results, and directly determine the random access preamble and random access timing based on the SSB, so there is no need to determine the -RS measurement results determine the beam.
  • the measurement results of the CSI-RSs of multiple beams can be determined only when no SSB measurement results are available for the downlink bandwidth portion of the initiated random access, and the beams can be determined according to the measurement results of the CSI-RS. Accordingly, the process of determining the beam, the random access preamble, and the random access timing can be simplified.
  • the initiated downlink BWP of the competitive random access does not include a CD, or the initiated competitive random access.
  • the downlink BWP contains CD and SSB, but the user equipment is not configured to measure SSB.
  • the downlink bandwidth portion corresponding to random access may include multiple situations, for example, including but not limited to the following two cases:
  • the downlink bandwidth portion of the second message (MSG2) used for transmitting random access may be It is determined as the downlink bandwidth portion corresponding to the random access;
  • the downlink bandwidth portion that is the same as the uplink bandwidth portion of the first message (MSG1) used for transmitting the random access may be determined as the downlink bandwidth portion corresponding to the random access.
  • Fig. 3 is a schematic flowchart of still another random access method according to an embodiment of the present disclosure.
  • the initiated random access is a non-competitive random access triggered by a beam failure to recover the BFR
  • the reference signal resource of the candidate beam of the BFR is SSB
  • the determining whether there is an SSB measurement result available for the downlink bandwidth portion corresponding to the initiated random access includes:
  • step S61 it is determined whether there is an available SSB measurement result for the downlink bandwidth portion of the initiated non-competitive random access;
  • the measurement result of determining the channel state information measurement reference signal CSI-RS of the multiple beams includes:
  • step S11 a measurement result of a CSI-RS associated with a corresponding SSB of the candidate beam is determined.
  • the base station may pre-configure one or more candidate beams for the BFR, so that the user equipment can select a beam among these candidate beams to perform. BFR. If the reference signal resource of the candidate beam is SSB, the quality of the candidate beam needs to be determined based on the measurement result of the SSB.
  • the random access since the random access is non-competitive random access, it can be determined whether there is an available SSB measurement result for the downlink bandwidth portion of the initiated non-competitive random access, reducing the need to determine whether there is an available The number of downlink bandwidth parts of the SSB measurement result.
  • the beam used to initiate the non-competitive random access belongs to a candidate beam, so the measurement result of the CSI-RS associated with the corresponding SSB can be determined for the candidate beam, thereby reducing the number of beams required to determine the measurement result of the CSI-RS. Quantity. Accordingly, the workload of the user equipment can be reduced.
  • Fig. 4 is a schematic flowchart of still another random access method according to an embodiment of the present disclosure. As shown in FIG. 4, based on the embodiment shown in FIG. 1, the determining a target SSB corresponding to the target CSI-RS includes:
  • step S31 a target SSB of the target CSI-RS quasi-static co-location (QCL) is determined.
  • the target beam is determined based on the target CSI-RS, and the target beam corresponding to the target CSI-RS may have some differences in the beam corresponding to the target SSB, random access determined according to the target SSB
  • the preamble and random access timing are suitable for random access on the beam corresponding to the target SSB. If the difference between the target beam corresponding to the target CSI-RS and the beam corresponding to the target SSB is too large, the target beam may not be suitable for random access according to the random access preamble and the random access timing.
  • the target SSB corresponding to the target CSI-RS can be determined based on the quasi-static co-location, so that the determined target SSB has a small difference from the target beam corresponding to the target CSI-RS, thereby making the target beam applicable. Random access is performed according to the random access preamble and the random access timing, so as to ensure the smooth progress of the random access.
  • quasi-static co-location can be judged based on the following five parameters: Doppler frequency shift, Doppler spread, spatial reception parameters, average delay, delay spread, CSI-RS and SSB can be in one of the above parameters or multiple There is a quasi-static co-location relationship on the parameters.
  • the target CSI-RS and the target SSB have a quasi-static co-location relationship on the Doppler frequency shift, which refers to the Doppler frequency shift of the target CSI-RS and the Doppler frequency of the target SSB. Shift can assume the same value. .
  • the quasi-static co-location relationship between the CSI-RS and the SSB can be carried by the base station through a radio resource control (RRC) message and transmitted to the user equipment.
  • RRC radio resource control
  • the quasi-static co-location relationship can be located in the CSI.
  • the quasi-static co-location relationship can be identified by TCI (transmission configuration configuration indicator) -State ID, and the quasi-static co-location identified by TCI-State ID
  • the relationship may be configured in a PDSCH-config (a configuration of a physical downlink shared channel) delivered to the user equipment by the base station.
  • the quasi-static co-location relationship may also be included in the Control Resource Set (Control Resource Configuration) issued by the base station to the user equipment, or may be included in the CSI-RS for mobility measurement issued by the base station to the user equipment. Resource allocation.
  • Control Resource Set Control Resource Configuration
  • CSI-RS CSI-RS for mobility measurement issued by the base station to the user equipment.
  • Fig. 5 is a schematic flowchart of still another random access method according to an embodiment of the present disclosure. As shown in FIG. 5, on the basis of the embodiment shown in FIG. 1, determining the target SSB that is quasi-statically co-located with the target CSI-RS includes:
  • step S311 a target SSB that is quasi-statically co-located with the target CSI-RS in spatial reception parameters is determined.
  • whether the target CSI-RS and the target SSB satisfy the quasi-static co-location can be determined according to the spatial receiving parameters. Because the spatial reception parameters can to some extent characterize the direction (or angle) of the beam in space, that is, when the target CSI-RS and the target SSB are quasi-statically co-located on the spatial reception parameters, the target CSI-RS The corresponding target beam and the corresponding beam of the target SSB are relatively close in space, and the beams with the same direction in space have more similar properties, which can largely guarantee that the target beam is more suitable for using the random The access preamble and the random access timing perform random access.
  • Fig. 6 is a schematic flowchart of still another random access method according to an embodiment of the present disclosure. As shown in FIG. 6, based on the embodiment shown in FIG. 1, the determining a target SSB corresponding to the target CSI-RS includes:
  • step S32 the target SSB corresponding to the target CSI-RS is determined according to the association relationship between the CSI-RS and the SSB configured by the base station.
  • the target CSI may also be determined according to the association relationship between the CSI-RS and the SSB configured by the base station.
  • -Target SSB corresponding to RS For example, the association relationship may be used to indicate the SSB corresponding to each CSI-RS.
  • the association relationship may be carried by the base station through an RRC message and sent to the user equipment.
  • the association relationship may be located in a CSI-RS resource, or may be located in RLM (Radio Link Monitoring) radio resource, or located in RRM (Radio Resource Management, Radio Resource Management) resource.
  • the preset threshold is determined based on a radio resource control message sent by the base station.
  • the preset threshold value referred to when determining the target CSI-RS may be carried by the base station by sending an RRC message and sent to the user equipment.
  • the association relationship may be located in the CSI-RS resource, Either in the RLM resource or in the RRM resource.
  • the user equipment may first determine a threshold value corresponding to a measurement result of the target SSB (for example, RSRP), that is, determined according to the measurement result of the target SSB.
  • the threshold value to which the beam refers and then the threshold value corresponding to the measurement result of the target SSB is scaled based on a Power Control Offset SS (Pc-SS) in the CSI-RS resource configuration to determine the preset.
  • Threshold for example, SSB-RSRP-Pc-SS.
  • the present disclosure also provides an embodiment of a random access device.
  • Fig. 7 is a schematic block diagram of a random access device according to an embodiment of the present disclosure.
  • the random access device shown in this embodiment may be applicable to user equipment, such as a mobile phone, a tablet computer, and a smart wearable device (a bracelet, a watch, a helmet, glasses, etc.).
  • the user equipment may communicate with a base station, for example, based on LTE communicates with a base station, and may also communicate with a base station based on NR.
  • the random access device includes:
  • the measurement result determination module 1 is configured to determine measurement results of channel state information measurement reference signals CSI-RS of multiple beams when initiating random access;
  • a beam determining module 2 configured to determine a target beam corresponding to a target CSI-RS whose measurement result is greater than a preset threshold
  • An SSB determination module 3 configured to determine a target SSB corresponding to the target CSI-RS
  • a random access determination module 4 configured to determine a random access preamble and a random access opportunity associated with the target SSB;
  • the random access initiation module 5 is configured to initiate random access on the target beam based on the random access preamble and the random access opportunity.
  • Fig. 8 is a schematic block diagram of another random access device according to an embodiment of the present disclosure. As shown in FIG. 8, based on the embodiment shown in FIG. 7, the device further includes:
  • the availability determination module 6 is configured to determine whether there is an available SSB measurement result for the downlink bandwidth portion corresponding to the initiated random access before the measurement result determination module 1 determines the measurement results of the CSI-RSs of multiple beams;
  • the measurement result determination module 1 determines the measurement results of CSI-RSs of multiple beams.
  • the available determination module 6 is configured to determine the random access Whether there are available SSB measurement results for the downlink bandwidth portion of the initiated non-competitive random access;
  • the measurement result determination module 1 is configured to determine the CSI-RS associated with the corresponding SSB of the candidate beam. Measurement results.
  • Fig. 9 is a schematic block diagram of an SSB determination module according to an embodiment of the present disclosure. As shown in FIG. 9, based on the embodiment shown in FIG. 1, the SSB determination module 3 includes:
  • the quasi-static co-location sub-module 31 is configured to determine a target SSB that is quasi-statically co-located with the target CSI-RS.
  • the quasi-static co-location sub-module 31 is configured to determine a target SSB that is quasi-statically co-located with the target CSI-RS in spatial reception parameters.
  • Fig. 10 is a schematic block diagram of another SSB determination module according to an embodiment of the present disclosure. As shown in FIG. 10, based on the embodiment shown in FIG. 1, the SSB determination module 3 includes:
  • the association relationship sub-module 32 is configured to determine a target SSB corresponding to the target CSI-RS according to an association relationship between the CSI-RS and the SSB configured by the base station.
  • the preset threshold is determined based on a radio resource control message sent by the base station.
  • the relevant part may refer to the description of the method embodiment.
  • the device embodiments described above are only schematic, wherein the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, may be located One place, or it can be distributed across multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the objective of the solution of this embodiment. Those of ordinary skill in the art can understand and implement without creative efforts.
  • An embodiment of the present disclosure further provides an electronic device, including:
  • Memory for storing processor-executable instructions
  • the processor is configured to execute the steps in the method according to any one of the foregoing embodiments.
  • An embodiment of the present disclosure also provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the steps in the method according to any one of the foregoing embodiments are implemented.
  • Fig. 11 is a schematic block diagram of a device 1100 for random access according to an embodiment of the present disclosure.
  • the device 1100 may be a mobile phone, a computer, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness equipment, a personal digital assistant, and the like.
  • the device 1100 may include one or more of the following components: a processing component 1102, a memory 1104, a power component 1106, a multimedia component 1108, an audio component 1110, an input / output (I / O) interface 1112, a sensor component 1114, And communication components 1116.
  • a processing component 1102 a memory 1104, a power component 1106, a multimedia component 1108, an audio component 1110, an input / output (I / O) interface 1112, a sensor component 1114, And communication components 1116.
  • the processing component 1102 generally controls overall operations of the device 1100, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 1102 may include one or more processors 1120 to execute instructions to complete all or part of the steps of the method described above.
  • the processing component 1102 may include one or more modules to facilitate interaction between the processing component 1102 and other components.
  • the processing component 1102 may include a multimedia module to facilitate the interaction between the multimedia component 1108 and the processing component 1102.
  • the memory 1104 is configured to store various types of data to support operation at the device 1100. Examples of such data include instructions for any application or method operating on the device 1100, contact data, phone book data, messages, pictures, videos, and the like.
  • the memory 1104 may be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), Programming read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM Programming read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • the power supply assembly 1106 provides power to various components of the device 1100.
  • the power component 1106 may include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power for the device 1100.
  • the multimedia component 1108 includes a screen that provides an output interface between the device 1100 and a user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive an input signal from a user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or slide action, but also detect duration and pressure related to the touch or slide operation.
  • the multimedia component 1108 includes a front camera and / or a rear camera. When the device 1100 is in an operation mode, such as a shooting mode or a video mode, the front camera and / or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 1110 is configured to output and / or input audio signals.
  • the audio component 1110 includes a microphone (MIC).
  • the microphone is configured to receive an external audio signal.
  • the received audio signal may be further stored in the memory 1104 or transmitted via the communication component 1116.
  • the audio component 1110 further includes a speaker for outputting audio signals.
  • the I / O interface 1112 provides an interface between the processing component 1102 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to: a home button, a volume button, a start button, and a lock button.
  • the sensor component 1114 includes one or more sensors for providing status assessment of various aspects of the device 1100.
  • the sensor component 1114 can detect the on / off state of the device 1100 and the relative positioning of the components.
  • the component is the display and keypad of the device 1100.
  • the sensor component 1114 can also detect the position change of the device 1100 or a component of the device 1100 , The presence or absence of the user's contact with the device 1100, the orientation or acceleration / deceleration of the device 1100, and the temperature change of the device 1100.
  • the sensor assembly 1114 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • the sensor component 1114 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 1114 may further include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 1116 is configured to facilitate wired or wireless communication between the device 1100 and other devices.
  • the device 1100 may access a wireless network based on a communication standard, such as WiFi, 2G, or 3G, or a combination thereof.
  • the communication component 1116 receives a broadcast signal or broadcast-related information from an external broadcast management system via a broadcast channel.
  • the communication component 1116 further includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra wideband
  • Bluetooth Bluetooth
  • the device 1100 may be implemented by one or more application-specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic component is implemented to perform the method described in any one of the above embodiments.
  • ASICs application-specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic component is implemented to perform the method described in any one of the above embodiments.
  • a non-transitory computer-readable storage medium including instructions such as a memory 1104 including instructions, may be provided, which may be executed by the processor 1120 of the device 1100 to complete the foregoing method.
  • the non-transitory computer-readable storage medium may be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及随机接入方法,包括:在发起随机接入时,确定多个波束的信道状态信息测量参考信号CSI-RS的测量结果;确定测量结果大于预设门限值的目标CSI-RS对应的目标波束;确定所述目标CSI-RS对应的目标SSB;确定所述目标SSB关联的随机接入前导码和随机接入时机;在所述目标波束上基于所述随机接入前导码和所述随机接入时机发起随机接入。基于本公开的实施例,可以根据CSI-RS的测量结果确定波束,从而不必根据SSB的测量结果确定波束,进而避免了用户设备因针对下行BWP未获取到SSB的测量结果,而无法选择合适的波束进行随机接入的问题,保证用户设备能够选择到符合要求的波束。

Description

随机接入方法、装置、电子设备和计算机可读存储介质 技术领域
本公开涉及通信技术领域,具体而言,涉及随机接入方法、随机接入装置、电子设备和计算机可读存储介质。
背景技术
在相关技术中,用户设备在发起随机接入时,需要选择合适的波束(beam),而选择波束的则是通过检测波束的某些参数确定的,例如在发起的随机接入为竞争性的随机接入(CBRA,contention based random access)时,用户设备需要根据SSB(Synchronization Signal Block,同步信号块)的测量结果来确定波束的信号质量是否满足要求。
一般而言,用户设备通过对下行BWP(Band Width Part,带宽部分)的SSB进行检测,以确定SSB的测量结果,然而某些情况下,用户设备针对下行BWP未获取到SSB的测量结果,这就会导致用户设备无法选择合适的波束进行随机接入。
发明内容
有鉴于此,本公开的实施例提出了随机接入方法、随机接入装置、电子设备和计算机可读存储介质。
根据本公开实施例的第一方面,提出一种随机接入方法,包括:
在发起随机接入时,确定多个波束的信道状态信息测量参考信号CSI-RS的测量结果;
确定测量结果大于预设门限值的目标CSI-RS对应的目标波束;
确定所述目标CSI-RS对应的目标SSB;
确定所述目标SSB关联的随机接入前导码和随机接入时机;
在所述目标波束上基于所述随机接入前导码和所述随机接入时机发起随机接入。
可选地,所述方法还包括:
在确定多个波束的CSI-RS的测量结果之前,确定所发起的随机接入对应的下行带宽部分是否有可用的SSB测量结果;
其中,若所发起的随机接入对应的下行带宽部分没有可用的SSB测量结果,确定多个波束的CSI-RS的测量结果。
可选地,若所发起的随机接入为因波束失败恢复BFR而触发的非竞争的随机接入,且BFR的候选波束的参考信号资源为SSB,所述确定所发起的随机接入对应的下行带宽部分是否有可用的SSB测量结果包括:
确定所发起的非竞争的随机接入的下行带宽部分是否有可用的SSB测量结果;
其中,若所发起的非竞争的随机接入对应的下行带宽部分没有可用的SSB测量结果,所述确定多个波束的信道状态信息测量参考信号CSI-RS的测量结果包括:
确定所述候选波束的对应的SSB所关联的CSI-RS的测量结果。
可选地,所述确定所述目标CSI-RS对应的目标SSB包括:
确定与所述目标CSI-RS准静态共址的目标SSB。
可选地,所述确定与所述目标CSI-RS准静态共址的目标SSB包括:
确定与所述目标CSI-RS在空间接收参数上准静态共址的目标SSB。
可选地,所述确定所述目标CSI-RS对应的目标SSB包括:
根据基站配置的CSI-RS与SSB的关联关系确定所述目标CSI-RS对应的目标SSB。
可选地,所述预设门限值基于基站发送的无线资源控制消息确定。
根据本公开实施例的第二方面,提出一种随机接入装置,包括:
测量结果确定模块,被配置为在发起随机接入时,确定多个波束的信道状态信息测量参考信号CSI-RS的测量结果;
波束确定模块,被配置为确定测量结果大于预设门限值的目标CSI-RS对应的目标波束;
SSB确定模块,被配置为确定所述目标CSI-RS对应的目标SSB;
随机接入确定模块,被配置为确定所述目标SSB关联的随机接入前导码和随机接入时机;
随机接入发起模块,被配置为在所述目标波束上基于所述随机接入前导码和所述随机接入时机发起随机接入。
可选地,所述装置还包括:
可用确定模块,被配置为在所述测量结果确定模块确定多个波束的CSI-RS的测量结果之前,确定所发起的随机接入对应的下行带宽部分是否有可用的SSB测量结果;
其中,若所发起的随机接入对应的下行带宽部分没有可用的SSB测量结果,所述测量结果确定模块确定多个波束的CSI-RS的测量结果。
可选地,若所发起的随机接入为因波束失败恢复BFR而触发的非竞争的随机接入,且BFR的候选波束的参考信号资源为SSB,所述可用确定模块被配置为确定所发起的非竞争的随机接入的下行带宽部分是否有可用的SSB测量结果;
其中,若所发起的非竞争的随机接入对应的下行带宽部分没有可用的SSB测量结果,所述测量结果确定模块被配置为确定所述候选波束的对应的SSB所关联的CSI-RS的测量结果。
可选地,所述SSB确定模块包括:
准静态共址子模块,被配置为确定与所述目标CSI-RS准静态共址的目标SSB。
可选地,所述准静态共址子模块被配置为确定与所述目标CSI-RS在空间接收参数上准静态共址的目标SSB。
可选地,所述SSB确定模块包括:
关联关系子模块,被配置为根据基站配置的CSI-RS与SSB的关联关系确定所述目标CSI-RS对应的目标SSB。
可选地,所述预设门限值基于基站发送的无线资源控制消息确定。
根据本公开实施例的第三方面,提出一种电子设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为执行上述任一实施例所述方法中的步骤。
根据本公开实施例的第四方面,提出一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述任一实施例所述方法中的步骤。
基于本公开的实施例,可以根据CSI-RS的测量结果确定波束,从而不必根据SSB的测量结果确定波束,进而避免了用户设备因针对下行BWP未获取到SSB的测量结果,而无法选择合适的波束进行随机接入的问题,保证用户设备能够选择到符合要求的波束。
另外,由于随机接入前导码和随机接入时机并不与CSI-RS直接相关,而是与SSB直接相关,从而在确定波束之后可以进一步确定CSI-RS对应的SSB,进而可以确定与该SSB关联的随机接入前导码和随机接入时机,使得用户设备可以基于符合要求的波束,在该随机接入时机向基站发送该随机接入前导码,保证随机接入过程的顺利进行。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是根据本公开的实施例示出的一种随机接入方法的示意流程图。
图2是根据本公开的实施例示出的另一种随机接入方法的示意流程图。
图3是根据本公开的实施例示出的又一种随机接入方法的示意流程图。
图4是根据本公开的实施例示出的又一种随机接入方法的示意流程图。
图5是根据本公开的实施例示出的又一种随机接入方法的示意流程图。
图6是根据本公开的实施例示出的又一种随机接入方法的示意流程图。
图7是根据本公开的实施例示出的一种随机接入装置的示意框图。
图8是根据本公开的实施例示出的另一种随机接入装置的示意框图。
图9是根据本公开的实施例示出的一种SSB确定模块的示意框图。
图10是根据本公开的实施例示出的另一种SSB确定模块的示意框图。
图11是根据本公开的实施例示出的一种用于随机接入的装置的示意框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1是根据本公开的实施例示出的一种随机接入方法的示意流程图。本实施例所示的随机接入方法可以适用于用户设备,例如手机、平板电脑、智能穿戴设备(手环、手表、头盔、眼镜等),所述用户设备可以与基站进行通信,例如可以基于LTE(Long Term Evolution,长期演进)与基站进行通信,也可以基于NR(New Radio,新空口)与基站进行通信。
如图1所示,所述随机接入方法可以包括以下步骤:
在步骤S1中,在发起随机接入时,确定多个波束的信道状态信息测量参考信号CSI-RS(Channel State Information Reference Signal,信道状态信息参考符号)的测量结果。
在步骤S2中,确定测量结果大于预设门限值的目标CSI-RS对应的目标波束。
在一个实施例中,波束可以与CSI-RS相关联,基于CSI-RS的测量结果,可以确定波束的质量。其中,所依据的测量结果可以根据需要选择,例如测量结果可以是RSRP(Reference Signal Receiving Power,参考信号接收功率),并且预设门限值也可以根据需要进行设置。若测量结果大于预设门限值,那么可以确定该测量结果对应的CSI-RS所对应波束的波束质量满足要求。
在一个实施例中,在确定CSI-RS的测量结果后,若有多个测量结果大于预设门限值,那么用户设备可以基于预先存储的配置消息,在多个测量结果中选择一个测量结果对应的CSI-RS作为目标CSI-RS,例如可以选择最大的测量结果对应的CSI-RS作为目标CSI-RS,而在波束被配置了优先级的情况下,可以选择对应较高优先级的波 束的CSI-RS作为目标CSI-RS。
在一个实施例中,可以先确定关联了SSB的CSI-RS,然后针对关联了SSB的CSI-RS确定测量结果,据此可以保证所确定的目标CSI-RS关联有SSB,进而使得后续能够确定目标CSI-RS对应的目标SSB。
在步骤S3中,确定所述目标CSI-RS对应的目标SSB。
在一个实施例中,可以预先配置CSI-RS和SSB的关联关系,进而基于该关联关系,可以确定目标CSI-RS对应的目标SSB。
需要说明的是,SSB的全称为Synchronization Signal Block,其具体是表示Synchronization/PBCH(物理广播信道)block,因为Synchronization Signal和PBCH在物理层可以统一打包一并处理,因此将这两者统一称为SSB。
其中,Synchronization Signal可以包括PSS(主同步信号)和SSS(辅同步信号),PBCH则可以包括PBCH DMRS(解调参考信号)和PBCH数据。
另外,步骤S2和步骤S3的执行顺序可以根据需要进行设置,例如可以先执行步骤S2,后执行步骤S3,也可以先执行步骤S3,后执行步骤S2,还可以同时执行步骤S2和步骤S3。
在步骤S4中,确定所述目标SSB关联的随机接入前导码和随机接入时机。
在一个实施例中,可以预先配置SSB和随机接入前导码以及随机接入时机的关联关系,进而基于该关联关系,可以确定目标SSB关联的随机接入前导码和随机接入时机。
需要说明的是,与SSB关联的随机接入前导码可以是一个或多个,与SSB关联的随机接入时机可以是一个或多个。在SSB关联多个随机接入前导码的情况下,用户设备可以根据需要在多个前导码中选择一个前导码进行随机接入,相应地,在SSB关联多个随机接入时机的情况下,用户设备可以根据需要在多个随机接入时机中选择一个随机接入时机进行随机接入。
在步骤S5中,在所述目标波束上基于所述随机接入前导码和所述随机接入时机发起随机接入。
在一个实施例中,在确定了目标波束以及随机接入前导码和随机接入时机后,可以在目标波束上,在随机接入时机(PRACH occasion)向基站发送前导码(preamble), 从而发起随机接入。
在相关技术中,当用户设备发起竞争性的随机接入时,用户设备需要根据SSB的测量结果来确定波束的信号质量是否满足要求,然而在某些情况下,用户设备针对下行BWP未获取到SSB的测量结果。
例如相关技术中的用户设备需要通过测量CD(Cell Defining)SSB来得到SSB的测量结果,然而CD SSB只位于初始下行BWP(也即用户设备与基站建立通信连接时基站为用户设备配置的下行BWP)的某个位置,其他下行BWP需要与初始下行BWP有重叠部分,并且重叠部分包含CD SSB所在的位置,才能针对其他下行BWP获取到SSB的测量结果。
然而并非所有BWP都与初始下行BWP存在重叠部分,而且即使存在重叠部分,重叠部分也不一定包含CD SSB所在的位置,这就导致对于某些BWP,用户设备并不能获取到SSB的测量结果。或者即使重叠部分包含CD SSB所在的位置,但是用户设备并未被配置对SSB进行测量,也会使得该用户设备不能获取到SSB的测量结果。
基于本公开的实施例,可以根据CSI-RS的测量结果确定波束,从而不必根据SSB的测量结果确定波束,进而避免了用户设备因针对下行BWP未获取到SSB的测量结果,而无法选择合适的波束进行随机接入的问题,保证用户设备能够选择到符合要求的波束。
另外,由于随机接入前导码和随机接入时机并不与CSI-RS直接相关,而是与SSB直接相关,从而在确定波束之后可以进一步确定CSI-RS对应的SSB,进而可以确定与该SSB关联的随机接入前导码和随机接入时机,使得用户设备可以基于符合要求的波束,在该随机接入时机向基站发送该随机接入前导码,保证随机接入过程的顺利进行。
图2是根据本公开的实施例示出的另一种随机接入方法的示意流程图。如图2所示,在图1所示实施例的基础上,所述随机接入方法还包括:
在步骤S6中,在确定多个波束的CSI-RS的测量结果之前,确定所发起的随机接入对应的下行带宽部分是否有可用的SSB测量结果;
其中,若所发起的随机接入对应的下行带宽部分没有可用的SSB测量结果,确定多个波束的CSI-RS的测量结果。
在一个实施例中,在确定多个波束的CSI-RS的测量结果之前,可以先确定发 起的随机接入对应的下行带宽部分是否有可用的SSB测量结果。
若所发起的随机接入对应的下行带宽部分有可用的SSB测量结果,那么用户设备可以根据SSB测量结果确定波束,并直接根据SSB确定随机接入前导码和随机接入时机,从而不必根据CSI-RS的测量结果确定波束。
因此可以在所发起的随机接入对应的下行带宽部分没有可用的SSB测量结果的情况下,才确定多个波束的CSI-RS的测量结果,并根据CSI-RS的测量结果确定波束。据此可以简化确定波束、随机接入前导码和随机接入时机的过程。
其中,所发起的随机接入对应的下行带宽部分没有可用的SSB测量结果,可以是指所发起的竞争随机接入的下行BWP不包含CD SSB,也可以是指所发起的竞争随机接入的下行BWP包含CD SSB,但是用户设备并未被配置对SSB进行测量。
需要说明的是,随机接入对应的下行带宽部分可以包括多种情况,例如包括但不限于下述两种情况:用于传输随机接入的第二条消息(MSG2)的下行带宽部分,可以确定为随机接入对应的下行带宽部分;与用于传输随机接入的第一条消息(MSG1)的上行带宽部分标识相同的下行带宽部分,可以确定为随机接入对应的下行带宽部分。
图3是根据本公开的实施例示出的又一种随机接入方法的示意流程图。如图3所示,在图2所示实施例的基础上,若所发起的随机接入为因波束失败恢复BFR而触发的非竞争的随机接入,且BFR的候选波束的参考信号资源为SSB,所述确定所发起的随机接入对应的下行带宽部分是否有可用的SSB测量结果包括:
在步骤S61中,确定所发起的非竞争的随机接入的下行带宽部分是否有可用的SSB测量结果;
若所发起的非竞争的随机接入对应的下行带宽部分没有可用的SSB测量结果,所述确定多个波束的信道状态信息测量参考信号CSI-RS的测量结果包括:
在步骤S11中,确定所述候选波束的对应的SSB所关联的CSI-RS的测量结果。
在一个实施例中,若所发起的随机接入是因BFR而触发的非竞争随机接入,基站可以为BFR预先配置一个或多个候选波束,以便用户设备可以在这些候选波束中选择波束进行BFR。若候选波束的参考信号资源为SSB,即需要基于SSB的测量结果来确定候选波束的质量。
在这种情况下,由于随机接入为非竞争随机接入,因此可以针对所发起的非竞争的随机接入的下行带宽部分确定的是否有可用的SSB测量结果,减少所需确定是否有可用的SSB测量结果的下行带宽部分的数量。并且,用于发起该非竞争随机接入的波束属于候选波束,因此可以针对候选波束确定对应的SSB所关联的CSI-RS的测量结果,从而减少所需确定CSI-RS的测量结果的波束的数量。据此,可以减少用户设备的工作量。
图4是根据本公开的实施例示出的又一种随机接入方法的示意流程图。如图4所示,在图1所示实施例的基础上,所述确定所述目标CSI-RS对应的目标SSB包括:
在步骤S31中,确定与所述目标CSI-RS准静态共址(Quasi-Colocation,QCL)的目标SSB。
在一个实施例中,由于目标波束是基于目标CSI-RS确定的,而目标CSI-RS对应的目标波束,与目标SSB对应的波束可能存在某些差异,而根据目标SSB所确定的随机接入前导码和随机接入时机,适用于在目标SSB对应的波束上进行随机接入。若目标CSI-RS对应的目标波束与目标SSB对应的波束差异过大,就可能导致目标波束并不适用根据所述随机接入前导码和所述随机接入时机进行随机接入。
而在确定目标CSI-RS对应的目标SSB时,可以基于准静态共址进行确定,从而使得确定的目标SSB对应的波束,与目标CSI-RS对应的目标波束差异较小,进而使得目标波束适用于根据所述随机接入前导码和所述随机接入时机进行随机接入,以便保证随机接入的顺利进行。
其中,准静态共址可以基于以下五种参数判断:多普勒频移,多普勒扩展,空间接收参数,平均时延,时延扩展,CSI-RS和SSB可以在上述一个参数或多个参数上存在准静态共址关系。以多普勒频移为例,目标CSI-RS与目标SSB在多普勒频移上存在准静态共址关系,是指目标CSI-RS的多普勒频移与目标SSB的多普勒频移可以假设取值相同。。
在一个实施例中,CSI-RS和SSB的准静态共址关系可以由基站通过RRC(Radio Resource Control,无线资源控制)消息携带并传输给用户设备,具体地,准静态共址关系可以位于CSI-RS资源的配置消息内,在这种情况下,准静态共址关系可以通过TCI(transmission configuration indicator,传输配置指示器)-State ID来标识,而TCI-State ID所标识的准静态共址关系可以配置在基站下发给用户设备的 PDSCH-config(物理下行共享信道的配置)中。
除了上述方式,准静态共址关系还可以包含在基站下发给用户设备的Control Resource Set(控制资源配置)中,或者可以包含在基站下发给用户设备的用于移动性测量的CSI-RS资源配置中。
图5是根据本公开的实施例示出的又一种随机接入方法的示意流程图。如图5所示,在图1所示实施例的基础上,所述确定与所述目标CSI-RS准静态共址的目标SSB包括:
在步骤S311中,确定与所述目标CSI-RS在空间接收参数上准静态共址的目标SSB。
在一个实施例中,可以根据空间接收参数来确定目标CSI-RS与目标SSB是否满足准静态共址。由于空间接收参数可以在一定程度上表征波束在空间中的方向(或者称为角度),也即在目标CSI-RS和目标SSB在空间接收参数上准静态共址的情况下,目标CSI-RS对应的目标波束和目标SSB对应的波束在空间上的方向较为接近,而在空间中的方向相同的波束性质相近之处较多,可以较大程度上保证目标波束更为适用于根据所述随机接入前导码和所述随机接入时机进行随机接入。
图6是根据本公开的实施例示出的又一种随机接入方法的示意流程图。如图6所示,在图1所示实施例的基础上,所述确定所述目标CSI-RS对应的目标SSB包括:
在步骤S32中,根据基站配置的CSI-RS与SSB的关联关系确定所述目标CSI-RS对应的目标SSB。
在一个实施例中,除了根据图4所示的实施例,基于准静态共址确定目标CSI-RS对应的目标SSB,还可以根据基站配置的CSI-RS与SSB的关联关系确定所述目标CSI-RS对应的目标SSB。例如关联关系可以用于指示每个CSI-RS对应的SSB,其中,关联关系可以由基站通过RRC消息携带并发送给用户设备,具体地,所述关联关系可以位于CSI-RS资源中,或者位于RLM(Radio Link Monitoring,无线链路监听)资源中,或者位于RRM(无线资源管理,Radio Resource Management)资源中。
可选地,所述预设门限值基于基站发送的无线资源控制消息确定。
在一个实施例中,在确定目标CSI-RS时所参照的预设门限值,可以由基站通过发送RRC消息携带并发送给用户设备,例如,所述关联关系可以位于CSI-RS资源中,或者位于RLM资源中,或者位于RRM资源中。
在一个实施例中,若不通过RRC消息明确地配置上述预设门限值,用户设备可以先确定目标SSB的测量结果(例如RSRP)对应的门限值,也即根据目标SSB的测量结果确定波束所参照的门限值,然后基于CSI-RS资源配置里的功率控制偏移值(Power Control OffsetSS,Pc-SS)对目标SSB的测量结果对应的门限值进行缩放来确定所述预设门限值(例如SSB-RSRP-Pc-SS)。
与前述的随机接入方法的实施例相对应,本公开还提供了随机接入装置的实施例。
图7是根据本公开的实施例示出的一种随机接入装置的示意框图。本实施例所示的随机接入装置可以适用于用户设备,例如手机、平板电脑、智能穿戴设备(手环、手表、头盔、眼镜等),所述用户设备可以与基站进行通信,例如可以基于LTE与基站进行通信,也可以基于NR与基站进行通信。
如图7所示,所述随机接入装置包括:
测量结果确定模块1,被配置为在发起随机接入时,确定多个波束的信道状态信息测量参考信号CSI-RS的测量结果;
波束确定模块2,被配置为确定测量结果大于预设门限值的目标CSI-RS对应的目标波束;
SSB确定模块3,被配置为确定所述目标CSI-RS对应的目标SSB;
随机接入确定模块4,被配置为确定所述目标SSB关联的随机接入前导码和随机接入时机;
随机接入发起模块5,被配置为在所述目标波束上基于所述随机接入前导码和所述随机接入时机发起随机接入。
图8是根据本公开的实施例示出的另一种随机接入装置的示意框图。如图8所示,在图7所示实施例的基础上,所述装置还包括:
可用确定模块6,被配置为在所述测量结果确定模块1确定多个波束的CSI-RS的测量结果之前,确定所发起的随机接入对应的下行带宽部分是否有可用的SSB测量结果;
其中,若所发起的随机接入对应的下行带宽部分没有可用的SSB测量结果,所述测量结果确定模块1确定多个波束的CSI-RS的测量结果。
可选地,若所发起的随机接入为因波束失败恢复BFR而触发的非竞争的随机接入,且BFR的候选波束的参考信号资源为SSB,所述可用确定模块6被配置为确定所发起的非竞争的随机接入的下行带宽部分是否有可用的SSB测量结果;
其中,若所发起的非竞争的随机接入对应的下行带宽部分没有可用的SSB测量结果,所述测量结果确定模块1被配置为确定所述候选波束的对应的SSB所关联的CSI-RS的测量结果。
图9是根据本公开的实施例示出的一种SSB确定模块的示意框图。如图9所示,在图1所示实施例的基础上,所述SSB确定模块3包括:
准静态共址子模块31,被配置为确定与所述目标CSI-RS准静态共址的目标SSB。
可选地,所述准静态共址子模块31被配置为确定与所述目标CSI-RS在空间接收参数上准静态共址的目标SSB。
图10是根据本公开的实施例示出的另一种SSB确定模块的示意框图。如图10所示,在图1所示实施例的基础上,所述SSB确定模块3包括:
关联关系子模块32,被配置为根据基站配置的CSI-RS与SSB的关联关系确定所述目标CSI-RS对应的目标SSB。
可选地,所述预设门限值基于基站发送的无线资源控制消息确定。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在相关方法的实施例中进行了详细描述,此处将不做详细阐述说明。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
本公开的实施例还提出一种电子设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为执行上述任一实施例所述方法中的步骤。
本公开的实施例还提出一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述任一实施例所述方法中的步骤。
图11是根据本公开的实施例示出的一种用于随机接入的装置1100的示意框图。例如,装置1100可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图11,装置1100可以包括以下一个或多个组件:处理组件1102,存储器1104,电源组件1106,多媒体组件1108,音频组件1110,输入/输出(I/O)的接口1112,传感器组件1114,以及通信组件1116。
处理组件1102通常控制装置1100的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1102可以包括一个或多个处理器1120来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件1102可以包括一个或多个模块,便于处理组件1102和其他组件之间的交互。例如,处理组件1102可以包括多媒体模块,以方便多媒体组件1108和处理组件1102之间的交互。
存储器1104被配置为存储各种类型的数据以支持在装置1100的操作。这些数据的示例包括用于在装置1100上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1104可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1106为装置1100的各种组件提供电力。电源组件1106可以包括电源管理系统,一个或多个电源,及其他与为装置1100生成、管理和分配电力相关联的组件。
多媒体组件1108包括在所述装置1100和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件1108包括一个前置摄像头和/或后置摄像 头。当装置1100处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1110被配置为输出和/或输入音频信号。例如,音频组件1110包括一个麦克风(MIC),当装置1100处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1104或经由通信组件1116发送。在一些实施例中,音频组件1110还包括一个扬声器,用于输出音频信号。
I/O接口1112为处理组件1102和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1114包括一个或多个传感器,用于为装置1100提供各个方面的状态评估。例如,传感器组件1114可以检测到装置1100的打开/关闭状态,组件的相对定位,例如所述组件为装置1100的显示器和小键盘,传感器组件1114还可以检测装置1100或装置1100一个组件的位置改变,用户与装置1100接触的存在或不存在,装置1100方位或加速/减速和装置1100的温度变化。传感器组件1114可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1114还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1114还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1116被配置为便于装置1100和其他设备之间有线或无线方式的通信。装置1100可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件1116经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件1116还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置1100可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用 于执行上述任一实施例所述的方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器1104,上述指令可由装置1100的处理器1120执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本发明实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (16)

  1. 一种随机接入方法,其特征在于,包括:
    在发起随机接入时,确定多个波束的信道状态信息测量参考信号CSI-RS的测量结果;
    确定测量结果大于预设门限值的目标CSI-RS对应的目标波束;
    确定所述目标CSI-RS对应的目标SSB;
    确定所述目标SSB关联的随机接入前导码和随机接入时机;
    在所述目标波束上基于所述随机接入前导码和所述随机接入时机发起随机接入。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    在确定多个波束的CSI-RS的测量结果之前,确定所发起的随机接入对应的下行带宽部分是否有可用的SSB测量结果;
    其中,若所发起的随机接入对应的下行带宽部分没有可用的SSB测量结果,确定多个波束的CSI-RS的测量结果。
  3. 根据权利要求2所述的方法,其特征在于,若所发起的随机接入为因波束失败恢复BFR而触发的非竞争的随机接入,且BFR的候选波束的参考信号资源为SSB,所述确定所发起的随机接入对应的下行带宽部分是否有可用的SSB测量结果包括:
    确定所发起的非竞争的随机接入的下行带宽部分是否有可用的SSB测量结果;
    其中,若所发起的非竞争的随机接入对应的下行带宽部分没有可用的SSB测量结果,所述确定多个波束的信道状态信息测量参考信号CSI-RS的测量结果包括:
    确定所述候选波束的对应的SSB所关联的CSI-RS的测量结果。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述确定所述目标CSI-RS对应的目标SSB包括:
    确定与所述目标CSI-RS准静态共址的目标SSB。
  5. 根据权利要求4所述的方法,其特征在于,所述确定与所述目标CSI-RS准静态共址的目标SSB包括:
    确定与所述目标CSI-RS在空间接收参数上准静态共址的目标SSB。
  6. 根据权利要求1至3中任一项所述的方法,其特征在于,所述确定所述目标CSI-RS对应的目标SSB包括:
    根据基站配置的CSI-RS与SSB的关联关系确定所述目标CSI-RS对应的目标SSB。
  7. 根据权利要求1至3中任一项所述的方法,其特征在于,所述预设门限值基于 基站发送的无线资源控制消息确定。
  8. 一种随机接入装置,其特征在于,包括:
    测量结果确定模块,被配置为在发起随机接入时,确定多个波束的信道状态信息测量参考信号CSI-RS的测量结果;
    波束确定模块,被配置为确定测量结果大于预设门限值的目标CSI-RS对应的目标波束;
    SSB确定模块,被配置为确定所述目标CSI-RS对应的目标SSB;
    随机接入确定模块,被配置为确定所述目标SSB关联的随机接入前导码和随机接入时机;
    随机接入发起模块,被配置为在所述目标波束上基于所述随机接入前导码和所述随机接入时机发起随机接入。
  9. 根据权利要求8所述的装置,其特征在于,还包括:
    可用确定模块,被配置为在所述测量结果确定模块确定多个波束的CSI-RS的测量结果之前,确定所发起的随机接入对应的下行带宽部分是否有可用的SSB测量结果;
    其中,若所发起的随机接入对应的下行带宽部分没有可用的SSB测量结果,所述测量结果确定模块确定多个波束的CSI-RS的测量结果。
  10. 根据权利要求9所述的装置,其特征在于,若所发起的随机接入为因波束失败恢复BFR而触发的非竞争的随机接入,且BFR的候选波束的参考信号资源为SSB,所述可用确定模块被配置为确定所发起的非竞争的随机接入的下行带宽部分是否有可用的SSB测量结果;
    其中,若所发起的非竞争的随机接入对应的下行带宽部分没有可用的SSB测量结果,所述测量结果确定模块被配置为确定所述候选波束的对应的SSB所关联的CSI-RS的测量结果。
  11. 根据权利要求8至10中任一项所述的装置,其特征在于,所述SSB确定模块包括:
    准静态共址子模块,被配置为确定与所述目标CSI-RS准静态共址的目标SSB。
  12. 根据权利要求11所述的装置,其特征在于,所述准静态共址子模块被配置为确定与所述目标CSI-RS在空间接收参数上准静态共址的目标SSB。
  13. 根据权利要求8至10中任一项所述的装置,其特征在于,所述SSB确定模块包括:
    关联关系子模块,被配置为根据基站配置的CSI-RS与SSB的关联关系确定所述 目标CSI-RS对应的目标SSB。
  14. 根据权利要求8至10中任一项所述的装置,其特征在于,所述预设门限值基于基站发送的无线资源控制消息确定。
  15. 一种电子设备,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为执行权利要求1至7中任一项所述方法中的步骤。
  16. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现权利要求1至7中任一项所述方法中的步骤。
PCT/CN2018/097098 2018-07-25 2018-07-25 随机接入方法、装置、电子设备和计算机可读存储介质 WO2020019213A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/261,867 US20210298086A1 (en) 2018-07-25 2018-07-25 Random access method and device, electronic device and computer-readable storage medium
CN201880001241.4A CN109076556B (zh) 2018-07-25 2018-07-25 随机接入方法、装置、电子设备和计算机可读存储介质
PCT/CN2018/097098 WO2020019213A1 (zh) 2018-07-25 2018-07-25 随机接入方法、装置、电子设备和计算机可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/097098 WO2020019213A1 (zh) 2018-07-25 2018-07-25 随机接入方法、装置、电子设备和计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2020019213A1 true WO2020019213A1 (zh) 2020-01-30

Family

ID=64789256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/097098 WO2020019213A1 (zh) 2018-07-25 2018-07-25 随机接入方法、装置、电子设备和计算机可读存储介质

Country Status (3)

Country Link
US (1) US20210298086A1 (zh)
CN (1) CN109076556B (zh)
WO (1) WO2020019213A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022017511A1 (en) * 2020-07-24 2022-01-27 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for random access procedure

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109451867B (zh) * 2018-02-12 2022-12-27 北京小米移动软件有限公司 随机接入时机的配置方法及装置、随机接入方法及装置
US11523434B2 (en) * 2018-09-21 2022-12-06 Acer Incorporated Method for random accessing and user equipment using the same
WO2020067696A1 (en) * 2018-09-26 2020-04-02 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving signal in wireless communication system
WO2020147065A1 (en) * 2019-01-17 2020-07-23 Qualcomm Incorporated On-demand measurements
CN111479289B (zh) * 2019-01-24 2023-01-13 中国移动通信有限公司研究院 一种小区切换方法、装置和可读介质
CN113439489A (zh) * 2019-02-15 2021-09-24 鸿颖创新有限公司 用于波束故障恢复的方法及装置
WO2020164142A1 (zh) * 2019-02-15 2020-08-20 Oppo广东移动通信有限公司 同步信号块信息处理方法、装置及通信装置
BR112021013928A2 (pt) * 2019-02-26 2021-09-21 Ntt Docomo, Inc. Terminal e método de comunicação
EP3934332A4 (en) * 2019-03-27 2022-03-23 Guangdong Oppo Mobile Telecommunications Corp., Ltd. INFORMATION PROCESSING METHOD AND TERMINAL, AND NETWORK DEVICE
CN111294844B (zh) * 2019-03-29 2023-01-10 展讯通信(上海)有限公司 波束失败恢复方法及用户终端、计算机可读存储介质
CN111615195B (zh) * 2019-04-08 2023-08-25 维沃移动通信有限公司 确定波束信息的方法及装置、通信设备
CN110933695B (zh) * 2019-04-24 2021-12-28 华为技术有限公司 波束故障恢复请求发送方法及终端设备
US20230098488A1 (en) * 2019-06-17 2023-03-30 Beijing Xiaomi Mobile Software Co., Ltd. Method and apparatus for random access indication
CN114073163B (zh) * 2019-07-09 2023-11-10 瑞典爱立信有限公司 用于随机接入过程的方法和装置
CN112260797B (zh) * 2019-07-22 2022-06-14 华为技术有限公司 一种信道状态信息传输方法及装置
WO2021017016A1 (zh) * 2019-08-01 2021-02-04 Oppo广东移动通信有限公司 随机接入方法及相关设备
CN112398620B (zh) * 2019-08-16 2022-04-12 华为技术有限公司 一种参考信号的指示方法及装置
WO2021035678A1 (en) * 2019-08-30 2021-03-04 Qualcomm Incorporated Beam management for bandwidth part not including synchronization signal block
KR102493059B1 (ko) * 2019-10-03 2023-01-31 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치
WO2021163896A1 (zh) * 2020-02-18 2021-08-26 华为技术有限公司 通信方法及装置
CN113645685B (zh) * 2020-05-11 2022-09-16 深圳市万普拉斯科技有限公司 初始接入方法、装置、移动终端和计算机可读存储介质
CN115552945A (zh) 2020-05-15 2022-12-30 苹果公司 用于针对波束搜索延迟降低的控制信令的系统和方法
CN111818604B (zh) * 2020-06-19 2022-07-15 中国信息通信研究院 一种波束切换的方法、设备和系统
WO2022140915A1 (zh) * 2020-12-28 2022-07-07 株式会社Ntt都科摩 终端以及基站
CN113316266B (zh) * 2021-05-28 2023-04-07 成都蒙特斯科技有限公司 一种基于5g网络的音视频流传输方法及系统
CN113472506B (zh) * 2021-06-28 2022-07-19 中信科移动通信技术股份有限公司 下行波束管理方法、基站及终端
CN116963164A (zh) * 2022-04-19 2023-10-27 中国移动通信有限公司研究院 测量方法、装置、相关设备及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108111286A (zh) * 2017-11-17 2018-06-01 中兴通讯股份有限公司 信息发送、接收方法及装置、存储介质、处理器
CN108235444A (zh) * 2016-12-12 2018-06-29 北京三星通信技术研究有限公司 随机接入的方法及基站设备、用户设备

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140056561A (ko) * 2012-10-29 2014-05-12 한국전자통신연구원 다중 빔을 운영하는 이동통신시스템에서 기지국 및 단말의 동작 방법
CN110213834B (zh) * 2017-01-06 2020-09-29 华为技术有限公司 随机接入方法、用户设备和网络设备
WO2018129300A1 (en) * 2017-01-06 2018-07-12 Idac Holdings, Inc. Beam failure recovery
US10938532B2 (en) * 2017-01-09 2021-03-02 Lg Electronics Inc. CSI-RS configuration method and apparatus for beam management in wireless communication system
KR102603689B1 (ko) * 2017-04-01 2023-11-17 삼성전자 주식회사 랜덤 액세스 방법, 네트워크 노드 및 사용자 장치
WO2018203704A1 (ko) * 2017-05-04 2018-11-08 엘지전자(주) 무선 통신 시스템에서 빔 복구를 수행하는 방법 및 이를 위한 장치
CN108809602B (zh) * 2017-05-05 2022-06-03 北京三星通信技术研究有限公司 基站、终端及随机接入前导检测、随机接入信道配置方法
JP2019004315A (ja) * 2017-06-15 2019-01-10 シャープ株式会社 端末装置、基地局装置、通信方法、および、集積回路
JP7056017B2 (ja) * 2017-06-15 2022-04-19 ソニーグループ株式会社 通信装置、通信方法、及びプログラム
KR102661288B1 (ko) * 2017-07-24 2024-04-29 한국전자통신연구원 다중 빔 시스템의 빔 실패 복구 절차를 트리거하는 방법 및 단말
EP3692744B1 (en) * 2017-10-06 2022-08-31 Fg Innovation Company Limited Random access channel resource selection in multi-beam environment
US11272534B2 (en) * 2017-10-27 2022-03-08 Telefonaktiebolaget Lm Ericsson (Publ) Contention-free random access with multiple SSB
CN111373829B (zh) * 2017-11-22 2022-06-07 中兴通讯股份有限公司 不同随机接入资源的共存和关联的方法和装置
HUE060363T2 (hu) * 2018-01-09 2023-02-28 Beijing Xiaomi Mobile Software Co Ltd Fizikai és MAC réteg folyamatok egy vezetéknélküli eszköznél
US10791579B2 (en) * 2018-01-12 2020-09-29 Qualcomm Incorporated Random access response (RAR) monitoring for multiple preamble transmissions in multi-beam operation
WO2019164429A1 (en) * 2018-02-26 2019-08-29 Telefonaktiebolaget Lm Ericsson (Publ) Beam selection for pdcch order
CN110300423B (zh) * 2018-03-22 2022-12-20 华硕电脑股份有限公司 无线通信系统中用于波束故障处置的方法和设备
KR102568368B1 (ko) * 2018-04-05 2023-08-18 가부시키가이샤 엔티티 도코모 유저장치
US11096219B2 (en) * 2018-04-13 2021-08-17 Asustek Computer Inc. Method and apparatus for beam indication for data transmission in a wireless communication system
EP3573406B1 (en) * 2018-05-21 2021-07-07 Comcast Cable Communications, LLC Random access procedures using multiple active bandwidth parts
JP2021528021A (ja) * 2018-06-21 2021-10-14 ノキア テクノロジーズ オサケユイチア ランダムアクセスプロセスにおける非衝突型ランダムアクセスのトランスポート・ブロックサイズ
US11234244B2 (en) * 2018-07-05 2022-01-25 Asustek Computer Inc. Method and apparatus for performing random access resource selection in new radio access technology-unlicensed (NR-U) cells in a wireless communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108235444A (zh) * 2016-12-12 2018-06-29 北京三星通信技术研究有限公司 随机接入的方法及基站设备、用户设备
CN108111286A (zh) * 2017-11-17 2018-06-01 中兴通讯股份有限公司 信息发送、接收方法及装置、存储介质、处理器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "Correction to support beam failure recovery procedure", 3GPP TSG-RAN WG2 MEETING #102 R2-1807266, 20 May 2018 (2018-05-20), XP051443675 *
ZTE; SANECHIPS: "Remaining details of RACH procedure", 3GPP TSG RAN WG1 MEETING #92 R1-1801410, 17 February 2018 (2018-02-17), XP051397550 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022017511A1 (en) * 2020-07-24 2022-01-27 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for random access procedure

Also Published As

Publication number Publication date
US20210298086A1 (en) 2021-09-23
CN109076556B (zh) 2019-11-15
CN109076556A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
WO2020019213A1 (zh) 随机接入方法、装置、电子设备和计算机可读存储介质
US11245458B2 (en) Information transmission method and information transmission device
US11838883B2 (en) Transmission configuration method and device
US11546867B2 (en) Transmission configuration method and apparatus
WO2018171194A1 (zh) 随机接入方法及装置
US11399383B2 (en) Method and device for requesting uplink transmission resource
US11357068B2 (en) Random access failure processing method and apparatus
US11910442B2 (en) Random access control method and random access control device
US11991691B2 (en) Method and apparatus for sending scheduling request
US11665733B2 (en) Preamble and scheduling request transmitting method and device
US20210314992A1 (en) Method and apparatus for sending uplink scheduling request, device and storage medium
WO2019192021A1 (zh) 上行资源请求方法及装置
WO2020034214A1 (zh) 信道占用信息的确定方法和装置
US20210392578A1 (en) Timer adjustment method and device
EP3751892B1 (en) Trigger hold method and trigger hold apparatus
EP3684107B1 (en) Random access method and apparatus, and electronic device and computer-readable storage medium
US11304067B2 (en) Methods and devices for reporting and determining optimal beam, user equipment, and base station
US20200288526A1 (en) Radio link status determination method and radio link status determination device
US11553536B2 (en) Channel coordination method and apparatus
CN114175839A (zh) 随机接入方法、装置、通信装置和计算机可读存储介质
WO2020034159A1 (zh) 带宽部分调整方法和带宽部分调整装置
US20220053473A1 (en) Method and device for indicating resource occupation state, and method and device for determining resource occupation state
US20240106869A1 (en) Call processing method and apparatus, storage medium, and electronic device
WO2023102939A1 (zh) 随机接入时机资源信息的确定、指示方法和装置
CN114731712A (zh) 触发条件判断、资源分区配置方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927783

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18927783

Country of ref document: EP

Kind code of ref document: A1