WO2022140915A1 - 终端以及基站 - Google Patents

终端以及基站 Download PDF

Info

Publication number
WO2022140915A1
WO2022140915A1 PCT/CN2020/140146 CN2020140146W WO2022140915A1 WO 2022140915 A1 WO2022140915 A1 WO 2022140915A1 CN 2020140146 W CN2020140146 W CN 2020140146W WO 2022140915 A1 WO2022140915 A1 WO 2022140915A1
Authority
WO
WIPO (PCT)
Prior art keywords
beams
information
terminal
measurement results
base station
Prior art date
Application number
PCT/CN2020/140146
Other languages
English (en)
French (fr)
Inventor
郑旭飞
刘柳
川合裕之
陈岚
王静
原田浩树
永田聪
Original Assignee
株式会社Ntt都科摩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ntt都科摩 filed Critical 株式会社Ntt都科摩
Priority to CN202080108161.6A priority Critical patent/CN116830645A/zh
Priority to US18/259,442 priority patent/US20240063883A1/en
Priority to PCT/CN2020/140146 priority patent/WO2022140915A1/zh
Publication of WO2022140915A1 publication Critical patent/WO2022140915A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to the field of wireless communication, and more particularly, to a terminal and a base station.
  • large-scale antenna arrays operating in the millimeter-wave (mmWave) band have been regarded as the recommended technology in 5G communications.
  • mmWave millimeter-wave
  • a large number of beams are used to communicate between the base station and the terminal through beamforming technology.
  • beam management is required.
  • beam measurement/reporting is used to select an appropriate beam to transmit data.
  • the beams generated by large-scale antenna arrays are relatively narrow, which significantly increases the signaling overhead during beam measurement.
  • the base station performs channel measurement through reference signals such as synchronization signal block (SSB) and channel state information reference signal (CSI-RS), and performs beam selection according to the measurement result.
  • reference signals such as synchronization signal block (SSB) and channel state information reference signal (CSI-RS)
  • the base station first performs coarse-grained beam measurement through the SSB signal.
  • further fine-grained beam measurements are performed using CSI-RS.
  • a terminal including: a receiving unit configured to receive first information transmitted via a plurality of first beams; and a transmitting unit configured to transmit information for transmission via at least a part of the first beams The measurement result of the first information; the receiving unit is further configured to receive the second information sent via a preferred beam in the plurality of second beams, the preferred beam is the base station according to the pair sent via more than two first beams The measurement results of the first information are determined from a plurality of the second beams.
  • the width of the second beam is smaller than the width of the first beam, or is the same as the width of the first beam.
  • the first beam and the second beam at least partially overlap, or the second beam is located between two adjacent first beams.
  • the sending unit feeds back measurement results of the first information sent via two or more of the first beams at one time, or within a predetermined period of time, within two or more At each time point, the measurement result of the first information sent via one of the first beams is fed back.
  • the sending unit sends a measurement result of at least a part of the first information with the best quality among the multiple first beams; or, the sending The sending unit sends the measurement results of at least a part of the beams randomly among the multiple first beams; or, the sending unit sends a specific number of the first information with the best quality among the multiple first beams.
  • the receiving unit is further configured to receive configuration information, and the sending unit determines, based on the configuration information, to transmit the measurement results of which beams in the plurality of first beams.
  • the configuration information when the receiving unit determines to transmit the measurement results of at least a part of a specific beam of the plurality of first beams, the configuration information further includes the specific at least part of the beam Number of beams and beam index.
  • a method performed by a terminal comprising: receiving first information transmitted via a plurality of first beams; transmitting measurements of the first information transmitted via at least a portion of the first beams and receiving second information sent via a preferred beam of a plurality of second beams, the preferred beam being a base station from multiple sources based on measurements of the first information sent via more than two of the first beams determined in the second beam.
  • the width of the second beam is smaller than the width of the first beam, or is the same as the width of the first beam.
  • the first beam and the second beam at least partially overlap, or the second beam is located between two adjacent first beams.
  • the measurement results of the first information sent via more than two first beams are fed back at one time, or within a predetermined period of time, at two or more time points each time Feeding back the measurement result of the first information sent via one of the first beams.
  • the measurement results of at least a part of the beams of the first information with the best quality are sent; or, a plurality of the first beams are sent.
  • the measurement results of at least a part of the beams are randomly sent; or, among the multiple first beams, the measurement results of at least a part of the beams in a specific number of beams that transmit the first information with the best quality are sent; or, Sending measurement results of at least a part of the beams in the plurality of first beams.
  • configuration information is further received, and based on the configuration information, it is determined which beams of the plurality of first beams to transmit the measurement results of.
  • the configuration information when the measurement results of at least a part of beams in a plurality of the first beams are sent, the configuration information further includes the number and beam index of the specific at least part of the beams .
  • a base station comprising: a transmitting unit configured to transmit first information via a plurality of first beams; a receiving unit configured to receive information for the first information transmitted via at least a part of the first beams A measurement result of information; and a processing unit configured to determine a preferred beam from a plurality of the second beams according to the measurement results of the first information transmitted via two or more of the first beams; the transmission The unit is further configured to send second information to the terminal via the determined preferred beam.
  • a base station comprising: a transmitting unit configured to transmit first information via a plurality of first beams; a receiving unit configured to receive information for the first information transmitted via at least a part of the first beams A measurement result of information; and a processing unit configured to determine a preferred beam from a plurality of the second beams according to the measurement results of the first information transmitted via two or more of the first beams; the transmission The unit is further configured to send second information to the terminal via the determined preferred beam.
  • the processing unit uses the pre-trained neural network determined by inputting the historical measurement results of the first beam and the historical measurement results of the second beam as training data.
  • the correlation between the first beam and the second beam determines a preferred beam from a plurality of the second beams based on the measurement results.
  • a method performed by a base station comprising: transmitting first information via a plurality of first beams; receiving measurement results for the first information transmitted via at least a portion of the first beams; and A preferred beam is determined from a plurality of the second beams according to the measurement results of the first information sent via the two or more first beams, and a first beam is also sent to the terminal via the determined preferred beams.
  • the first beam determined by inputting the historical measurement results of the first beam and the historical measurement results of the second beam as training data is used to pre-train the neural network.
  • the correlation between the beam and the second beam determines a preferred beam from a plurality of the second beams based on the measurement results.
  • FIG. 1 is a schematic diagram illustrating that a base station performs beam selection by measuring SSB and CSI-RS.
  • FIG. 2 is a schematic diagram showing a terminal according to an embodiment of the present disclosure.
  • FIG 3 is a diagram showing an example in which a terminal transmits a beam measurement result to a base station in an embodiment of the present disclosure.
  • FIG. 4 is a flowchart showing a method executed by a terminal according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram showing a base station according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram showing a neural network according to an embodiment of the present disclosure.
  • FIG. 7 is a flowchart showing a method executed by a base station according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram showing a hardware structure of a device according to an embodiment of the present disclosure.
  • the terminals described herein may include various types of terminals, such as a vehicle terminal, a user terminal (User Equipment, UE), a mobile terminal (or referred to as a mobile station) or a fixed terminal.
  • the base stations mentioned here include eNBs, gNBs, and the like.
  • FIG. 1 are schematic diagrams showing that the base station performs beam selection through measurement of SSB and CSI-RS.
  • the base station 110 first transmits a synchronization signal to the UE 120 through beams #101, #102, #103, and #104.
  • the UE 120 measures the above beams #101, #102, #103, #104 with wider coverage based on the received synchronization signal, and reports the measurement results to the base station 110 to indicate that the beam #104 has the best measurement results . Then, as shown in FIG.
  • the base station 110 sends the CSI-RS signal to the UE 120 through a plurality of beams with narrow coverage corresponding to the beam #104 according to the measurement result of the synchronization signal by the UE 120, and according to the UE 120 Based on the measurement feedback of the CSI-RS signal, it is determined that beam #105 is used to transmit data to the user.
  • the UE needs to first perform beam measurement on a wider beam for transmitting SSB (hereinafter referred to as "SSB beam”), and then perform beam measurement on a narrower beam for transmitting CSI-RS (hereinafter referred to as "CSI-RS beam”) to perform beam measurement, and feed back the measurement results to the base station respectively, so that the base station determines the beam that is ultimately used to send data to the UE.
  • SSB beam SSB
  • CSI-RS beam CSI-RS
  • the correlation between the first beam used for sending the first information and the second beam used for sending data, that is, the second information to the user may be determined in advance on the network side . Therefore, by using the predetermined correlation, the network side device can determine the second beam used for sending data to the UE only according to the measurement results of multiple (ie, more than two) first beams fed back by the UE, without the need for Obtain the user's measurement result for the second beam.
  • the SSB beam is used as the first beam and the CSI-RS beam is used as the second beam as an example for description.
  • the first beam may be a specific CSI-RS beam
  • the second beam may be other CSI-RS beams different from the first beam.
  • the first beam and the second beam may at least partially overlap.
  • the beam width of the first beam may be greater than the beam width of the second beam, and one first beam may have a plurality of second beams corresponding to its coverage.
  • the above-mentioned first beam is an SSB beam
  • the second beam is a CSI-RS beam.
  • the first beam and the second beam may not overlap, the second beam may be located between two adjacent first beams, and the beam width of the first beam is the same as that of the second beam.
  • both the first beam and the second beam are SSB beams or CSI-RS beams.
  • the beam measurement result described below may be one or more of information reflecting channel quality, such as Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), Signal Interference and Noise Ratio (SINR).
  • the measurement result may be a measurement result fed back at the L1 layer (eg, feedback L1-RSRP, L1-RSRQ, L1-SINR, etc.), or may be a measurement result fed back at the L3 layer (eg, L3-RSRP).
  • the measurement results may include measurement results of the primary cell (PCell), the secondary cell (SCell), and the primary and secondary cells (PSCell).
  • it may be a measurement result of a serving cell (serving cell) or a measurement result of a neighbor cell (neighbor cell).
  • FIG. 2 is a schematic diagram of a terminal of an embodiment of the present disclosure.
  • the terminal 200 includes a receiving unit 210 , a transmitting unit 220 , and a processing unit 230 .
  • the receiving unit 210 receives information (eg, a primary synchronization signal PSS or a secondary synchronization signal SSS) transmitted via a plurality of SSB beams from the base station.
  • the processing unit 230 measures the quality of the information transmitted via the multiple SSB beams.
  • the sending unit 220 feeds back the measurement result of the SSB beam to the base station, so that the base station determines the preferred CSI-RS beam from the multiple CSI-RS beams for sending downlink information according to the received measurement result.
  • the receiving unit 210 receives the downlink information sent through the determined preferred beam.
  • the preferred CSI-RS beam is determined by the base station based on the correlation between the SSB beam and the CSI-RS beam.
  • the correlation is the mapping relationship between the SSB beam and the CSI-RS beam, and the mapping relationship reflects which CSI-RS beam among the multiple CSI-RS beams when the measurement result of the SSB beam is a specific value
  • the quality of the transmitted information is the best, ie which CSI-RS beam is the preferred beam.
  • the number of SSB beams for which the sending unit 220 needs to feed back the measurement result may be two or more.
  • the sending unit 220 may feed back the measurement result of one SSB beam to the base station at a time, and the base station estimates the preferred CSI-RS beam based on the measurement results received by the terminal multiple times within a predetermined period of time.
  • the sending unit 220 may also feed back measurement results of multiple SSB beams to the base station at one time, and the base station estimates the preferred CSI-RS beams based on the measurement results.
  • FIG. 3 shows an example in which the transmission unit 220 is feeding back the measurement result of the SSB beam to the base station.
  • the transmitting unit 220 feeds back the measurement results of one SSB beam at multiple time points in a predetermined time period, but the transmitting unit 220 may also feed back the measurement results shown in FIG. 3 to the base station at one time. Multiple SSB beams.
  • the receiving unit 210 receives the primary synchronization from the base station through the SSB beams whose beam numbers are #301, #302, #303, #304, #305, #306, #307, and #308 respectively.
  • Information such as the signal PSS or the secondary synchronization signal SSS, and the processing unit 230 measures the quality of these synchronization signals.
  • the terminal is moving from the coverage position of SSB beam #301 to the coverage position of SSB beam #304 according to the trajectory shown by the arrow.
  • the sending unit sequentially sends the SSBs numbered #301, #301, #301, #302, #302, #303, #303, #304 to the base station Beam measurement results.
  • the SSB beam that the sending unit 220 feeds back the measurement results to the base station each time may not be the beam that transmits the synchronization signal with the best quality, but the beam that transmits the synchronization signal with the second best quality, the third best quality, and the fourth best quality.
  • the sending unit 220 may also select any one SSB beam from the multiple SSB beams shown in (a) each time, and transmit its measurement result. For example, in the time direction, the sending unit 220 sequentially sends the measurement results of the SSB beams #301, #302, #303, #304, #305, #306, #307, and #308, and selects which beam to send the measurement for each time.
  • the results are not related to the measurement results themselves and are arbitrary.
  • the sending unit 220 may also determine that a part of the synchronization signal with the best quality is sent from the multiple SSB beams shown in (a) each time SSB beam, and then select any SSB beam from this part of SSB beams, and send its measurement result. For example, when the terminal moves along the trajectory shown in (a) of FIG. 3 , the numbers of the part of the SSB beams that transmit the synchronization signal with the best quality determined by the terminal are #301, #302, #303, #304, #305, #308. Then, as shown in FIG. (c), in the time direction, the transmitting unit 220 transmits the measurement result of any one of the above beams each time.
  • the sending unit 220 may also send the measurement result of the SSB beam designated by the network side each time based on the configuration of the network side. At this time, the sending unit 220 may, for example, determine which SSB beam measurement result is to be fed back each time based on the index of the beam to be fed back configured by the network side.
  • the sending unit may also determine, based on the DCI format on the network side, which SSB beam measurement result is to be fed back each time and the interval at which the SSB beam is fed back each time within the predetermined time period described in the figure .
  • the sending unit 220 when the sending unit 220 is configured to feed back multiple SSB beams to the base station at a time, still taking the situation shown in (a) of FIG. 3 as an example, the sending unit 220 feeds back the measurement result to the base station every time.
  • the number of SSB beams can be 2 to 8. That is, the number of beams for which the sending unit 220 feeds back the measurement result to the base station each time is two or more.
  • the sending unit 220 may, for example, feed back the measurement results of the multiple SSB beams with the best quality from the multiple SSB beams shown in (a) of FIG. 3 each time.
  • the measurement results of multiple arbitrary SSB beams may also be fed back.
  • the sending unit 220 may also determine a part of the SSB beams in which the synchronization signal with the best quality is sent from the received multiple SSB beams, and then select any multiple SSB beams from the part of the SSB beams SSB beam, sending its measurements.
  • the sending unit 220 may also send the measurement results of multiple SSB beams specified by the network side based on the configuration on the network side.
  • the sending unit 220 performs feedback based on the configuration on the network side The number and beam index of the beams to determine the specific SSB beam measurement results to be fed back.
  • the receiving unit 210 may also receive configuration information from the base station, and the sending unit 220 determines, based on the configuration information, which SSB beam measurement results to feed back to the base station.
  • the configuration information may include a field for instructing the terminal how to feed back the beam measurement result, and in the following, this field is referred to as a reportBehaviorType field.
  • the value of reportBehaviorType may be ⁇ Best, Random, Hybrid, Specific ⁇ , for example.
  • the sending unit 220 In the configuration information received by the receiving unit 210, when the value of reportBehaviorType is Best, the sending unit 220, as shown in (b) in FIG.
  • the measurement results of one SSB beam of the signal may also feed back the measurement results of multiple SSB beams that have sent the synchronization signal with the best quality at one time.
  • the sending unit 220 When the value of reportBehaviorType is Random in the configuration information received by the receiving unit 210, the sending unit 220, as shown in (c) in FIG. 3, randomly feeds back the measurement of one SSB beam to the base station each time within a predetermined period of time. result.
  • the sending unit 220 may also send the measurement results of multiple random SSB beams at one time.
  • the sending unit 220 When the value of reportBehaviorType is Hybrid in the configuration information received by the receiving unit 210, the sending unit 220 is shown in (d) of FIG. Among the multiple SSB beams shown, each time it is determined that a part of the SSB beam with the best quality synchronization signal is sent, and then any one SSB beam is selected from this part of the SSB beam, and its measurement result is sent. Alternatively, according to an example of the present invention, the sending unit 220 may also feed back any number of SSB beams in a part of the SSB beams in which the synchronization signal with the best quality is sent at one time.
  • the sending unit 220 sends the measurement result of one SSB beam designated by the network side each time.
  • the sending unit 220 may send the measurement results of multiple SSB beams designated by the network side at one time.
  • the configuration information may further include a field for specifying the above-mentioned one or more SSB beams, for example, the field is called SpecificBeamReport.
  • a numberOfBeams field and a BeamIndex field may be included.
  • the former is used to indicate the number of SSB beams to which the sending unit 220 is to send the measurement result
  • the latter is used to indicate the index of the SSB beam to which the sending unit 220 is to send the measurement result.
  • the above-mentioned configuration information may be sent, for example, through high-layer signaling, or may be sent through the physical layer.
  • the above configuration information may also be the CSI-ReportConfig information element described in the 3GPP standard TS38.331.
  • the reportBehaviorType field and the SpecificBeamReport field are appended to the CSI-ReportConfig information element.
  • the sending unit 220 when the above-mentioned configuration information is sent by high-layer signaling, when the sending unit 220 is configured by the above-mentioned configuration information to send the measurement results of one or more SSB beams designated by the network side (For example, the above reportBehaviorType is "Specific"), a part of SSB beams can also be specified in the configuration information, and then the lower layer signaling is used to indicate to the terminal which beams in the part of the SSB beams are to be fed back with the measurement results.
  • the above reportBehaviorType is "Specific”
  • a part of the SSB beam is specified by the above-mentioned SpecificBeamReport field, and then one or both of the physical layer signaling MAC CE (MAC Control element) and DCI (Downlink Control Information, downlink control information) are used to indicate to the terminal. Specifically, the measurement results of which beams in this part of the SSB beams should be fed back.
  • MAC CE MAC Control element
  • DCI Downlink Control Information, downlink control information
  • the sending unit 220 when the above-mentioned configuration information is sent by high-layer signaling, when the sending unit 220 is configured by the above-mentioned configuration information to send the measurement results of one or more SSB beams designated by the network side (For example, the above-mentioned reportBehaviorType is designated as "Specific"), directly indicating to the terminal which SSB beam measurement results are fed back through low-level signaling.
  • the above configuration information does not include the SpecificBeamReport field, but one or both of the physical layer signaling MAC CE and DCI directly indicate to the terminal which SSB beam measurement results are specifically fed back.
  • the measurement results of the SSB beams can be appropriately fed back to the base station, so that the base station can determine the preferred CSI-RS beams based only on the measurement results. Therefore, the signaling interaction between the base station and the terminal is greatly saved, and it can be applied to the scenario where the terminal moves at high speed.
  • FIG. 4 is a flowchart of a method performed by a terminal according to an embodiment of the present invention.
  • the method 400 includes step S410.
  • step S410 information (eg, primary synchronization signal PSS or secondary synchronization signal SSS) transmitted via multiple SSB beams is received.
  • step S420 the quality of the information transmitted via the multiple SSB beams is measured.
  • the method 400 further includes a step S430, in which the measurement results of the information transmitted via at least a part of the SSBs are fed back to the base station, so that the base station determines the preferred CSI-RS from the multiple CSI-RS beams according to the received measurement results The beam is used for the transmission of downlink information.
  • step S430 in order to make the estimation of the preferred beam by the base station more accurate, in step S430, the measurement results of as many SSB beams as possible are sent.
  • the measurement results of two or more SSB beams may also be sent.
  • the measurement result of one SSB beam may be fed back to the base station at a time, and the feedback may be performed multiple times in a specific period.
  • the measurement results of multiple SSB beams may be fed back to the base station at one time.
  • step S430 each time the measurement result of one SSB beam is fed back to the base station, the following transmission methods may be used:
  • the measurement result of one SSB beam that has sent the synchronization signal with the best quality can be fed back to the base station each time.
  • the SSB beam that feeds back the measurement results to the base station each time may not be the beam that transmits the synchronization signal with the best quality, but the beam that transmits the synchronization signal with the second best quality, the third best quality, and the fourth best quality.
  • any one SSB beam may be selected from a plurality of SSB beams each time, and the measurement result thereof may be sent.
  • a part of the SSB beams that transmit the synchronization signal with the best quality may be determined from the multiple SSB beams each time, and then any one SSB beam is selected from the part of the SSB beams, and sent to the its measurement results.
  • the measurement result of the SSB beam designated by the network side may also be sent each time based on the configuration of the network side. At this time, for example, based on the index of the beam to be fed back configured by the network side, it may be determined which SSB beam measurement result is to be fed back each time.
  • step S430 based on the DCI format on the network side, it is also possible to determine which measurement result of the SSB beam to be fed back each time and the measurement result of the SSB beam to be fed back each time within the predetermined time period described in the figure. interval.
  • the measurement results of the multiple SSB beams with the best quality may be fed back each time from the multiple SSB beams.
  • the measurement results of multiple arbitrary SSB beams may also be fed back.
  • the measurement results of multiple SSB beams specified by the network side can also be sent based on the configuration on the network side. Beam index, to determine which SSB beam measurement results are to be fed back.
  • step S410 configuration information may also be received from the base station, and in step S430, based on the configuration information, it is determined which SSB beam measurement results are fed back to the base station.
  • the configuration information may include a reportBehaviorType field, a SpecificBeamReport field, and the like.
  • the measurement results of the SSB beams can be appropriately fed back to the base station, so that the base station can determine the preferred CSI-RS beam based only on the measurement results.
  • the base station 500 includes a receiving unit 510 , a transmitting unit 520 , and a processing unit 530 .
  • the transmitting unit 520 transmits information (eg, the primary synchronization signal PSS or the secondary synchronization signal SSS) to the terminal via a plurality of SSB beams.
  • the receiving unit 230 receives the result of the measurement performed by the terminal on the synchronization signals transmitted via the plurality of SSB beams.
  • the processing unit 530 determines the preferred CSI-RS beam for sending downlink information according to the received measurement result.
  • the base station determines the preferred CSI-RS beam based on the correlation between the SSB beam and the CSI-RS beam.
  • the processing unit 530 may determine multiple candidates for the preferred CSI-RS beams.
  • the sending unit sends information related to these candidate beams to the terminal, and the terminal continues to perform fine-grained measurement on the beams for these candidate beams, so as to select the preferred CSI-RS beam.
  • the sending unit 520 may send configuration information to the terminal to control which SSB beam measurement results the receiving unit 510 receives.
  • the sending unit 520 may send configuration information including a reportBehaviorType field and a SpecificBeamReport field to the terminal, where the configuration information may be sent through higher layer signaling or physical layer signaling, and the configuration information may also be CSI-ReportConfig.
  • the sending unit 520 may also send physical layer information such as MAC CE and DCI to the terminal, so as to indicate which SSB beam measurement results should be fed back by the terminal when the value of the reportBehaviorType field is specific.
  • the correlation between the SSB beam and the CSI-RS beam refers to the mapping relationship between the SSB beam and the CSI-RS beam.
  • the processing unit 530 uses a pre-trained neural network to determine a preferred CSI-RS beam from a plurality of CSI-RS beams based on the received measurement results of the SSB beam.
  • the neural network can reflect the above-mentioned mapping relationship between the SSB beam and the CSI-RS beam, that is, when the measurement result of the SSB beam is a specific value, the information of which CSI-RS beam is transmitted through among the multiple CSI-RS beams The best quality.
  • the neural network may be any deep neural network (Deep Neural Networks, DNN) known to those skilled in the art, for example, may be Feedforward Neural Networks (FNN), Convolutional Neural Networks (Convolutional Neural Networks, CNN) and Recurrent Neural Networks (RNN) and so on.
  • DNN Deep Neural Networks
  • the neural network may be provided in the base station 500, and may also be provided in other network elements, for example, may also be provided in the core network.
  • the neural network is set in the base station 500 as an example for description.
  • FIG. 6 shows a schematic diagram of using a 4-layer fully connected neural network (Full-connected Neural Networks) to determine a CSI-RS beam.
  • the number of layers of the neural network is only an example, and is not limited to four layers.
  • the processing unit 530 inputs the measurement results of the multiple SSB beams received by the receiving unit 510 into the neural network. #605, #606, #607, #608 (8 SSB beams), but as described above, the input SSB beams may be any number of beams of two or more.
  • the neural network is based on the mapping relationship between the SSB beam and the CSI-RS beam obtained through training, and through the above input, from the 64 CSI-RS beams corresponding to the coverage of the SSB beam, output the preferred CSI-RS beam #609 .
  • the information input into the neural network may also include information related to the movement of the terminal, so as to optimize the final output result.
  • the above-mentioned information related to the movement of the terminal is, for example, Doppler shift information, a sequence of channel quality information, and the like.
  • the sequence of channel quality information here refers to the channel quality information and the like received by the receiving unit 510 within a period of time, such as RSRP and CSI of an SSB beam received within a period of time.
  • the output of the neural network may also include information such as the position of the terminal, the speed of the terminal, and the moving direction of the terminal.
  • the neural network reflects the mapping relationship between the SSB beam and the CSI-RS beam, and can find out the wider beam width based on the measurement results of two or more input SSB beams with wider beam widths.
  • historical measurement results of CSI-RS beams related to historical measurement results of SSB beams may also be input as training data. For example, in the case shown in FIG.
  • the measurement result of the CSI-RS beam corresponding to the beam #104 may be input as the historical measurement result of the CSI-RS beam, which is based on the beam #104. determined by the measurement results of the SSB beam.
  • the neural network learns which CSI-RS beam transmits the best information quality among multiple CSI-RS beams when the measurement result of the SSB beam is a specific value.
  • the training data input to the neural network may also include a large amount of information related to the movement of the terminal, such as the above-mentioned Doppler frequency shift information, a sequence of channel quality information, and the like.
  • the position, velocity, and moving direction of the corresponding terminal are also used as training data, so that the neural network can learn the Doppler shift information, the sequence of channel quality information, etc., and the position, velocity, and Corresponding model relationship between the directions of movement.
  • the configuration information sent by the sending unit 520 may also notify the terminal that the beam measurement result to be fed back will be used for training the neural network.
  • a reportUsageType field may also be included in the configuration information, and the values of this field are "offline” and "online”.
  • the reportUsageType field is configured as "offline”
  • the measurement result fed back by the terminal is used as the historical measurement result for the training of the neural network.
  • the receiving unit 510 receives the historical measurement result of the SSB beam and the CSI-RS sent from the terminal The historical measurements of the beam, which are fed into the neural network for neural network training.
  • the measurement results fed back by the terminal are used to estimate the optimal beam.
  • the receiving unit receives the measurement results of multiple SSB beams fed back from the terminal and inputs them to the neural network network, so that the neural network can output the candidate of the preferred CSI-RS beam or multiple preferred CSI-RS beams.
  • a preferred beam is determined from multiple CSI-RS beams to transmit data to the terminal only according to the measurement results of the multiple SSB beams fed back by the terminal, and there is no need to obtain the measurement results of the CSI-RS beam by the terminal . Therefore, the signaling interaction between the base station and the terminal can be greatly saved while the quality of the transmitted data is ensured, and it can be applied to the scenario where the terminal moves at a high speed.
  • FIG. 7 is a flowchart of a method performed by a base station according to an embodiment of the present invention.
  • the method 700 includes step S710.
  • information eg, primary synchronization signal PSS or secondary synchronization signal SSS
  • configuration information may also be sent to the terminal to control which SSB beam measurement results are sent by the terminal.
  • the configuration information including the reportBehaviorType field and the SpecificBeamReport field may be sent to the terminal, the configuration information may be sent through higher layer signaling or physical layer signaling, and the configuration information may also be CSI-ReportConfig.
  • physical layer information such as MAC CE and DCI may also be sent to the terminal to indicate which SSB beam measurement results the terminal should feed back when the value of the reportBehaviorType field is specific.
  • the method 700 also includes step S720.
  • step S720 a measurement result of the information transmitted via at least a part of the SSB beams by the terminal is received.
  • the method 700 also includes step S730.
  • step S730 the preferred CSI-RS beam is determined according to the received measurement result. As described above, according to an example of the present invention, in step S730, the preferred CSI-RS beam is determined based on the correlation between the SSB beam and the CSI-RS beam.
  • step S730 instead of directly determining one preferred CSI-RS beam, multiple candidates for preferred CSI-RS beams may be determined.
  • the base station sends information related to these candidate beams to the terminal, and the terminal continues to perform fine-grained measurement on the beams for these candidate beams, so as to select the preferred CSI-RS beam.
  • step S730 a neural network that is pre-trained as described above is used to determine a preferred choice from a plurality of CSI-RS beams based on the measurement results of the SSB beams received in step S720 CSI-RS beam.
  • the signaling interaction between the base station and the terminal can be greatly saved while the quality of the transmitted data is ensured, and the method can be applied to the scenario where the terminal moves at high speed.
  • each functional block may be implemented by one device that is physically and/or logically combined, or two or more devices that are physically and/or logically separated may be directly and/or indirectly (for example, By wired and/or wireless) connection, it is realized by the above-mentioned multiple devices.
  • a device such as a terminal, a base station, etc.
  • a device may function as a computer that executes the processing of the wireless communication method of the present disclosure.
  • FIG. 8 is a schematic diagram of a hardware structure of an involved device 800 according to an embodiment of the present disclosure.
  • the above-mentioned device 800 can be configured as a computer device that physically includes a processor 810 , a memory 820 , a memory 830 , a communication device 840 , an input device 850 , an output device 860 , a bus 870 , and the like.
  • the word “device” may be replaced with a circuit, a device, a unit, or the like.
  • the hardware structure of the terminal may include one or more devices shown in the figures, or may not include some devices.
  • processor 810 For example, only one processor 810 is shown, but there may be multiple processors. Furthermore, processing may be performed by one processor, or by more than one processor simultaneously, sequentially, or in other ways. Additionally, the processor 810 may be mounted on more than one chip.
  • Each function of the device 800 is realized, for example, by reading predetermined software (programs) into hardware such as the processor 810 and the memory 820 to cause the processor 810 to perform calculations and to control communication by the communication device 840 . , and control the reading and/or writing of data in the memory 820 and the memory 830 .
  • the processor 810 controls the entire computer by operating the operating system, for example.
  • the processor 810 may be constituted by a central processing unit (CPU, Central Processing Unit) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like.
  • CPU Central Processing Unit
  • the above-mentioned processing units and the like can be implemented by the processor 810 .
  • the processor 810 reads out programs (program codes), software modules, data, etc. from the memory 830 and/or the communication device 840 to the memory 820, and executes various processes according to them.
  • programs program codes
  • software modules software modules
  • data etc.
  • the program a program for causing a computer to execute at least a part of the operations described in the above-described embodiments may be employed.
  • the processing unit of the terminal 700 can be implemented by a control program stored in the memory 820 and operated by the processor 810, and other functional blocks can also be implemented similarly.
  • the memory 820 is a computer-readable recording medium, such as a read-only memory (ROM, Read Only Memory), a programmable read-only memory (EPROM, Erasable Programmable ROM), an electrically programmable read-only memory (EEPROM, Electrically EPROM), Random access memory (RAM, Random Access Memory) and at least one of other suitable storage media.
  • Memory 820 may also be referred to as registers, cache, main memory (main storage), and the like.
  • the memory 820 may store executable programs (program codes), software modules, and the like for implementing the method according to an embodiment of the present disclosure.
  • the memory 830 is a computer-readable recording medium, and can be composed of, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a CD-ROM (Compact Disc ROM), etc.), Digital versatile discs, Blu-ray (registered trademark) discs), removable disks, hard drives, smart cards, flash memory devices (eg, cards, sticks, key drivers), magnetic stripes, databases , a server, and at least one of other suitable storage media.
  • Memory 830 may also be referred to as secondary storage.
  • the communication device 840 is a hardware (transmitting and receiving device) used for communication between computers through a wired and/or wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, and the like.
  • the communication device 840 may include a high-frequency switch, a duplexer, a filter, a frequency synthesizer, and the like.
  • the above-mentioned sending unit, receiving unit, etc. can be implemented by the communication device 840 .
  • the input device 850 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 860 is an output device (eg, a display, a speaker, a Light Emitting Diode (LED, Light Emitting Diode) lamp, etc.) that implements output to the outside.
  • the input device 850 and the output device 860 may also have an integrated structure (eg, a touch panel).
  • each device such as the processor 810 and the memory 820 is connected by a bus 870 for communicating information.
  • the bus 870 may be constituted by a single bus, or may be constituted by different buses between devices.
  • the terminal may include a microprocessor, a digital signal processor (DSP, Digital Signal Processor), an application specific integrated circuit (ASIC, Application Specific Integrated Circuit), a programmable logic device (PLD, Programmable Logic Device), a field programmable gate array (FPGA, Field Programmable Gate Array) and other hardware, part or all of each function block can be realized through the hardware.
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • PLD programmable logic device
  • FPGA Field Programmable Gate Array
  • the processor 810 may be installed by at least one of these pieces of hardware.
  • channels and/or symbols may also be signals (signaling).
  • signals can also be messages.
  • the reference signal may also be referred to as RS (Reference Signal) for short, and may also be referred to as a pilot (Pilot), a pilot signal, etc. according to the applicable standard.
  • a component carrier CC, Component Carrier
  • CC Component Carrier
  • the information, parameters, etc. described in this specification may be represented by an absolute value, a relative value with a predetermined value, or may be represented by other corresponding information.
  • the radio resource may be indicated by a prescribed index.
  • the formulas and the like using these parameters may also be different from those explicitly disclosed in this specification.
  • the information, signals, etc. described in this specification may be represented using any of a variety of different technologies.
  • data, commands, instructions, information, signals, bits, symbols, chips, etc. may be mentioned throughout the above description may be generated by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of them. combination to represent.
  • information, signals, etc. may be output from the upper layer to the lower layer, and/or from the lower layer to the upper layer.
  • Information, signals, etc. can be input or output via multiple network nodes.
  • Input or output information, signals, etc. can be stored in a specific place (eg, memory), and can also be managed through a management table. Input or output information, signals, etc. can be overwritten, updated or supplemented. Output messages, signals, etc. can be deleted. Input information, signals, etc. can be sent to other devices.
  • a specific place eg, memory
  • Input or output information, signals, etc. can be overwritten, updated or supplemented.
  • Output messages, signals, etc. can be deleted.
  • Input information, signals, etc. can be sent to other devices.
  • Notification of information is not limited to the mode/embodiment described in this specification, and may be performed by other methods.
  • the notification of information may be through physical layer signaling (eg, Downlink Control Information (DCI, Downlink Control Information), Uplink Control Information (UCI, Uplink Control Information)), upper layer signaling (eg, Radio Resource Control Information) (RRC, Radio Resource Control) signaling, broadcast information (Master Information Block (MIB, Master Information Block), System Information Block (SIB, System Information Block), etc.), Media Access Control (MAC, Medium Access Control) signaling ), other signals, or a combination thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC Radio Resource Control Information
  • RRC Radio Resource Control
  • MAC Media Access Control
  • the physical layer signaling may also be referred to as L1/L2 (Layer 1/Layer 2) control information (L1/L2 control signal), L1 control information (L1 control signal), or the like.
  • the RRC signaling may also be called an RRC message, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, and the like.
  • the MAC signaling can be notified by, for example, a MAC control element (MAC CE (Control Element)).
  • notification of predetermined information is not limited to being performed explicitly, and may be performed implicitly (eg, by not performing notification of the predetermined information, or by notification of other information).
  • the determination can be performed by a value (0 or 1) represented by 1 bit, by a true or false value (Boolean value) represented by true (true) or false (false), or by a numerical comparison ( For example, a comparison with a predetermined value) is performed.
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise, should be construed broadly to mean commands, command sets, codes, code segments, program code, programs, sub- Programs, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, steps, functions, etc.
  • software, commands, information, etc. may be sent or received via a transmission medium.
  • a transmission medium For example, when sending from a website, server, or other remote source using wireline technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line, etc.) and/or wireless technology (infrared, microwave, etc.)
  • wireline technology coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line, etc.
  • wireless technology infrared, microwave, etc.
  • system and “network” are used interchangeably in this specification.
  • Base station BS, Base Station
  • radio base station eNB
  • gNB gNodeB
  • cell gNodeB
  • cell group femtocell
  • carrier femtocell
  • a base station may house one or more (eg, three) cells (also referred to as sectors). When the base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, and each smaller area can also pass through the base station subsystem (for example, indoor small base stations (Remote Radio Heads (RRH, RRH) Remote Radio Head)) to provide communication services.
  • the terms "cell” or “sector” refer to a portion or the entirety of the coverage area of the base station and/or base station subsystem in which the communication service is performed.
  • mobile station MS, Mobile Station
  • user terminal user terminal
  • UE User Equipment
  • terminal mobile station
  • a mobile station is also sometimes referred to by those skilled in the art as subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless Terminal, remote terminal, handset, user agent, mobile client, client, or some other appropriate term.
  • the radio base station in this specification may also be replaced with a user terminal.
  • each aspect/embodiment of the present disclosure can also be applied to a structure in which the communication between the radio base station and the user terminal is replaced by the communication between a plurality of user terminals (D2D, Device-to-Device).
  • the functions possessed by the first communication device or the second communication device in the above-mentioned device 800 may be regarded as functions possessed by the user terminal.
  • words like "up” and "down” can also be replaced with "side”.
  • the upstream channel can also be replaced by a side channel.
  • the user terminal in this specification can also be replaced with a wireless base station.
  • the functions possessed by the user terminal described above may be regarded as functions possessed by the first communication device or the second communication device.
  • a specific operation performed by a base station may also be performed by an upper node thereof depending on circumstances.
  • various actions performed for communication with a terminal can be performed through the base station, one or more networks other than the base station Nodes (for example, Mobility Management Entity (MME, Mobility Management Entity), Serving-Gateway (S-GW, Serving-Gateway), etc. can be considered, but not limited thereto), or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • Serving-Gateway Serving-Gateway
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution Advanced
  • LTE-B Long Term Evolution Beyond
  • LTE-Beyond Long Term Evolution Beyond
  • SUPER 3G Advanced International Mobile Telecommunications
  • 4th generation mobile communication system (4G, 4th generation mobile communication system
  • 5th generation mobile communication system (5G, 5th generation mobile communication system)
  • Future Radio Access Future Radio Access
  • New-RAT New Radio Access Technology
  • New Radio New Radio
  • NX New Radio Access
  • Future Generation Radio Access Future Generation Radio Access
  • GSM Global System for Mobile Communications
  • CDMA3000 Code Division Multiple Access 3000
  • UMB Ultra Mobile Broadband
  • UMB Ultra Mobile Broadband
  • IEEE 920.11 Wi-Fi (registered trademark)
  • IEEE 920.11 Wi-Fi (registered trademark)
  • any reference in this specification to an element using the designation "first”, “second” etc. is not intended to comprehensively limit the number or order of such elements. These names may be used in this specification as a convenient method of distinguishing two or more units. Thus, a reference to a first element and a second element does not imply that only two elements may be employed or that the first element must precede the second element in some form.
  • determining (determining) used in this specification may include various operations. For example, with regard to “judging (determining)”, computing, computing, processing, deriving, investigating, looking up (such as tables, databases, or other Searching in the data structure), confirming (ascertaining), etc. are regarded as “judgment (determination)”. In addition, regarding “judgment (determination)”, receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), accessing (accessing) (for example, access to data in the memory), etc., are regarded as “judgment (determination)".
  • connection refers to any connection or combination, direct or indirect, between two or more units, which may be It includes the following situations: between two units “connected” or “combined” with each other, there are one or more intermediate units.
  • the combination or connection between the units may be physical or logical, or may also be a combination of the two.
  • connecting can also be replaced by "accessing”.
  • two units may be considered to be electrically connected through the use of one or more wires, cables, and/or printed, and as a number of non-limiting and non-exhaustive examples, by using a radio frequency region , the microwave region, and/or the wavelengths of electromagnetic energy in the light (both visible and invisible) region, etc., are “connected” or “combined” with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种终端以及基站。该终端包括:接收单元,配置为接收经由多个第一波束发送的第一信息;以及发送单元,配置为发送对于经由至少一部分所述第一波束发送的第一信息的测量结果;所述接收单元还配置为接收经由多个第二波束中的优选波束发送的第二信息,所述优选波束是基站根据对经由两个以上所述第一波束发送的所述第一信息的测量结果,从多个所述第二波束中确定的。

Description

终端以及基站 技术领域
本公开涉及无线通信领域,并且更具体地涉及一种终端以及基站。
背景技术
为了实现演进5G NR的极高数据速率要求,工作在毫米波(mmWave)波段的大规模天线阵列已被视为5G通信中的推荐技术。在大规模天线阵列系统中,通过波束成型技术而采用大量的波束在基站和终端之间进行通信。另一方面,大规模天线阵列的应用带来了很多挑战,增加了系统的复杂度。例如,为了实现良好的通信效果,需要进行波束管理。通常在波束管理中,通过波束测量/报告来选择恰当的波束来发送数据。当使用毫米波进行通信时,由于大规模天线阵列产生的波束较窄,显著增加了波束测量时的信令开销。
此外,在高移动性的场景中,由于用户的位置和周围环境不断变化,波束状态也会随之快速改变。现有的波束测量方法难以跟上这样的改变,这可能导致系统性能的下降。
例如,在现有的波束测量方法中,基站通过同步信号块(SSB)和信道状态信息参考信号(CSI-RS)等参考信号来进行信道测量,并根据测量结果来进行波束选择。一般地,基站先通过SSB信号进行粗粒度波束测量。然后,对于数据信道,使用CSI-RS进行进一步地细粒度波束测量。这导致对于工作在毫米波波段的大规模天线阵列来说会产生大量的信令开销,并且在高移动性的场景下,难以跟上环境的改变。
发明内容
根据本公开的一个方面,提供了一种终端,包括:接收单元,配置为接收经由多个第一波束发送的第一信息;以及发送单元,配置为发送对于经由至少一部分所述第一波束发送的第一信息的测量结果;所述接收单元还配置为接收经由多个第二波束中的优选波束发送的第二信息,所述优选波束是基站根据对经由两个以上所述第一波束发送的所述第一信息的测量结果,从多个所述第二波束中确定的。
根据本公开的一个示例,在上述终端中,所述第二波束的宽度小于所述第一波束的宽度,或者与所述第一波束的宽度相同。
根据本公开的一个示例,在上述终端中,所述第一波束和所述第二波束至少部分重叠,或者所述第二波束位于相邻的两个所述第一波束之间。
根据本公开的一个示例,在上述终端中,所述发送单元一次反馈经由两个以上所述第一波束发送的所述第一信息的测量结果,或者在预定时间段内,在两个以上的时间点每次反馈所述经由一个所述第一波束发送的所述第一信息的测量结果。
根据本公开的一个示例,在上述终端中,所述发送单元发送多个所述第一波束中,发送了质量最好的所述第一信息的至少一部分波束的测量结果;或者,所述发送单元发送多个所述第一波束中,随机至少一部分波束的测量结果;或者,所述发送单元发送多个所述第一波束中,发送了质量最好的所述第一信息的特定数量的波束中,至少一部分波束的测量结果;或者,所述发送单元发送多个所述第一波束中特定的至少一部分波束的测量结果。
根据本公开的一个示例,在上述终端中,所述接收单元还配置为接收配置信息,所述发送单元基于所述配置信息,确定发送多个所述第一波束中哪些波束的测量结果。
根据本公开的一个示例,在上述终端中,当所述接收单元确定为发送多个所述第一波束中特定的至少一部分波束的测量结果时,所述配置信息中还包含该特定的至少一部分波束的数量和波束索引。
根据本公开的另一方面,提供了一种由终端执行的方法,包括:接收经由多个第一波束发送的第一信息;发送对于经由至少一部分所述第一波束发送的第一信息的测量结果;以及接收经由多个第二波束中的优选波束发送的第二信息,所述优选波束是基站根据对经由两个以上所述第一波束发送的所述第一信息的测量结果,从多个所述第二波束中确定的。
根据本公开的一个示例,在上述方法中,所述第二波束的宽度小于所述第一波束的宽度,或者与所述第一波束的宽度相同。
根据本公开的一个示例,在上述方法中,所述第一波束和所述第二波束至少部分重叠,或者所述第二波束位于相邻的两个所述第一波束之间。
根据本公开的一个示例,在上述方法中,一次反馈经由两个以上所述第 一波束发送的所述第一信息的测量结果,或者在预定时间段内,在两个以上的时间点每次反馈所述经由一个所述第一波束发送的所述第一信息的测量结果。
根据本公开的一个示例,在上述方法中,发送多个所述第一波束中,发送了质量最好的所述第一信息的至少一部分波束的测量结果;或者,发送多个所述第一波束中,随机至少一部分波束的测量结果;或者,发送多个所述第一波束中,发送了质量最好的所述第一信息的特定数量的波束中,至少一部分波束的测量结果;或者,发送多个所述第一波束中特定的至少一部分波束的测量结果。
根据本公开的一个示例,在上述方法中,还接收配置信息,并基于所述配置信息,确定发送多个所述第一波束中哪些波束的测量结果。
根据本公开的一个示例,在上述方法中,当发送多个所述第一波束中特定的至少一部分波束的测量结果时,所述配置信息中还包含该特定的至少一部分波束的数量和波束索引。
根据本公开的另一方面,提供了一种基站,包括:发送单元,配置为经由多个第一波束发送第一信息;接收单元,配置为接收对于经由至少一部分所述第一波束发送的第一信息的测量结果;以及处理单元,配置为根据对经由两个以上所述第一波束发送的所述第一信息的测量结果,从多个所述第二波束中确定优选波束;所述发送单元还配置为经由所确定的所述优选波束向终端发送第二信息。
根据本公开的另一方面,提供了一种基站,包括:发送单元,配置为经由多个第一波束发送第一信息;接收单元,配置为接收对于经由至少一部分所述第一波束发送的第一信息的测量结果;以及处理单元,配置为根据对经由两个以上所述第一波束发送的所述第一信息的测量结果,从多个所述第二波束中确定优选波束;所述发送单元还配置为经由所确定的所述优选波束向终端发送第二信息。
根据本公开的一个示例,在上述基站中,所述处理单元使用通过输入所述第一波束的历史测量结果以及所述第二波束的历史测量结果作为训练数据而预先训练的神经网络所确定的所述第一波束和所述第二波束之间的相关性,基于所述测量结果来从多个所述第二波束中确定优选波束。
根据本公开的另一方面,提供了由基站执行的方法,包括:发经由多个第一波束发送第一信息;接收对于经由至少一部分所述第一波束发送的第一信息的测量结果;以及根据对经由两个以上所述第一波束发送的所述第一信息的测量结果,从多个所述第二波束中确定优选波束,此外,还经由所确定的所述优选波束向终端发送第二信息。
根据本公开的一个示例,在上述方法中,使用通过输入所述第一波束的历史测量结果以及所述第二波束的历史测量结果作为训练数据而预先训练的神经网络所确定的所述第一波束和所述第二波束之间的相关性,基于所述测量结果来从多个所述第二波束中确定优选波束。
附图说明
通过结合附图对本公开实施例进行更详细的描述,本公开的上述以及其他目的、特征和优势将变得更加明显。附图用来提供对本公开实施例的进一步理解,并且构成说明书的一部分,与本公开实施例一起用于解释本公开,并不构成对本公开的限制。在附图中,相同的参考标号通常代表相同部件或步骤。
图1是示出基站通过对于SSB和CSI-RS的测量来进行波束选择的示意图。
图2是表示本公开的实施例所涉及的终端的示意图。
图3是表示本公开的实施例中,终端向基站发送波束测量结果的例子的图。
图4是表示本公开的实施例所涉及的由终端执行的方法的流程图。
图5是表示本公开的实施例所涉及的基站的示意图。
图6是表示本公开的实施例所涉及的神经网络的示意图。
图7是表示本公开的实施例所涉及的由基站执行的方法的流程图。
图8是表示本公开实施例所涉及的设备的硬件结构的示意图。
具体实施方式
为了使得本公开的目的、技术方案和优点更为明显,下面将参照附图详细描述根据本公开的示例实施例。在附图中,相同的参考标号自始至终表示 相同的元件。应当理解:这里描述的实施例仅仅是说明性的,而不应被解释为限制本公开的范围。此外,这里所述的终端可以包括各种类型的终端,例如车辆终端、用户终端(User Equipment,UE)、移动终端(或称为移动台)或者固定终端。这里所述的基站包含eNB、gNB等。
图1的(a)和(b)是示出基站通过对于SSB和CSI-RS的测量来进行波束选择的示意图。如图1的(a)所示,基站110首先通过波束#101、#102、#103、#104向UE 120发送同步信号。UE120基于接收到的同步信号,对具有较宽覆盖范围的上述波束#101、#102、#103、#104的进行测量,并且将测量结果报告给基站110以指示波束#104的测量结果最好。然后,如图1b所示,基站110根据UE 120对于同步信号的测量结果,通过与波束#104对应的、多个具有较窄覆盖范围的波束向UE 120发送CSI-RS信号,并且根据UE 120基于CSI-RS信号的测量反馈确定使用波束#105来向用户发送数据。
在图1的(a)和(b)所示的方法中,UE需要首先对发送SSB的较宽波束(以下简称为“SSB波束”)进行波束测量,再对发送CSI-RS的较窄波束(以下简称为“CSI-RS波束”)进行波束测量,并分别向基站反馈测量结果,从而使得基站确定最终用于向UE发送数据的波束。这导致产生较大的信令开销,提升了系统的复杂度,并且在高速移动的场景下,难以适应UE位置的高速变化。
为了解决上述问题,在根据本公开的实施例中,可预先在网络侧确定用于发送第一信息的第一波束与用于向用户发送数据即第二信息的第二波束之间的相关性。从而网络侧设备通过利用预先确定的相关性,仅根据UE反馈的多个(即,两个以上)第一波束的测量结果就能够确定用于向该UE发送数据的第二波束,而不需要获得用户对于第二波束的测量结果。
在以下实施例的说明中,将以SSB波束作为第一波束,CSI-RS波束作为第二波束为例进行描述。然而应理解,本公开不限于此。例如,第一波束可以是特定的CSI-RS波束,第二波束可以是与第一波束不同的其他CSI-RS波束。此外在覆盖范围上,第一波束和第二波束之间可至少部分重叠。例如,第一波束的波束宽度可以大于第二波束的波束宽度,并且一个第一波束可具有与其覆盖范围对应的多个第二波束。例如上述的第一波束是SSB波束,第二波束是CSI-RS波束。可替换地,第一波束和第二波束可不重叠,第二波束可 位于相邻的两个第一波束之间,并且第一波束的波束宽度与第二波束的波束宽度相同。例如,第一波束和第二波束均为SSB波束或者CSI-RS波束。
此外,在下文中所述的波束测量结果,可以是参考信号接收功率(RSRP)、参考信号接收质量(RSRQ)、信号干扰加噪声比(SINR)等反映信道质量的信息中的一个或多个。此外,该测量结果可以是在L1层反馈的测量结果(例如,反馈L1-RSRP、L1-RSRQ、L1-SINR等),也可以是在L3层反馈的测量结果(例如,L3-RSRP)。此外,测量结果可以包含主小区(PCell)、副小区(SCell)以及主副小区(PSCell)的测量结果。此外,可以是服务小区(serving cell)的测量结果,也可以是相邻小区(neighbor cell)的测量结果。
参照图2来说明根据本公开的实施例的终端。图2是本公开的实施例的终端的示意图。如图2所示,终端200具备接收单元210、发送单元220以及处理单元230。接收单元210从基站接收经由多个SSB波束发送的信息(例如,主同步信号PSS或辅同步信号SSS)。处理单元230对经由多个SSB波束发送的信息的质量进行测量。发送单元220向基站反馈SSB波束的测量结果,以使基站根据接收到的测量结果,从多个CSI-RS波束中确定优选CSI-RS波束用于下行信息的发送。接收单元210接收通过所确定的优选波束发送的下行信息。
根据本发明的一个示例,优选CSI-RS波束是基站基于SSB波束和CSI-RS波束之间的相关性而确定的。例如,该相关性为SSB波束和CSI-RS波束的映射关系,该映射关系体现了在SSB波束的测量结果为特定值的情况下,在多个CSI-RS波束中,经由哪个CSI-RS波束传输的信息质量最好,即,哪个CSI-RS波束是优选波束。需要注意的是,在这种情况下,发送单元220发送越多的SSB波束的测量结果,基站关于优选波束的估计就越准确。但是,为了避免基站和终端间过多的信令开销,发送单元220需要反馈测量结果的SSB波束的数量也可以是2个以上即可。
根据本发明的一个示例,发送单元220可以每次向基站反馈1个SSB波束的测量结果,基站基于预定时间段内接收到的由终端多次反馈的测量结果,估计出优选CSI-RS波束。另外,发送单元220也可以一次向基站反馈多个的SSB波束的测量结果,基站基于这些测量结果估计优选CSI-RS波束。
图3表示是表示发送单元220在向基站反馈SSB波束的测量结果的例子。在图3中,示出了在预定时间段内发送单元220在多个时间点每次反馈一个SSB波束的测量结果的例子,但也可以是发送单元220一次向基站反馈图3中示出的多个SSB波束。
如图3中的(a)所示,接收单元210通过波束编号分别为#301、#302、#303、#304、#305、#306、#307、#308的SSB波束从基站接收主同步信号PSS或辅同步信号SSS等信息,处理单元230对这些同步信号的质量进行测量。并且,终端正按照箭头所示的轨迹,从SSB波束#301的覆盖位置移动至SSB波束#304的覆盖位置。
根据本发明的一个示例,在终端如图3中的(a)所示从SSB波束#301按箭头方向移动至SSB波束#304的过程中,发送单元220每次向基站反馈发送了质量最好的同步信号的一个SSB波束的测量结果,从而在时间方向上,发送单元依次向基站发送编号为#301、#301、#301、#302、#302、#303、#303、#304的SSB波束的测量结果。此外,发送单元220每次向基站反馈测量结果的SSB波束也可以不是发送了质量最好的同步信号的波束,而是发送了质量次好、第三好、第四好的同步信号波束等。
根据本发明的一个示例,如图3的(c)所示,发送单元220也可以每次从(a)中所示的多个SSB波束中,选择任意一个SSB波束,发送其测量结果。例如,在时间方向上,发送单元220依次发送SSB波束#301、#302、#303、#304、#305、#306、#307、#308的测量结果,每次选择发送哪一个波束的测量结果与测量结果本身没有关系,是任意的。
根据本发明的一个示例,如图3中的(d)所示,发送单元220也可以每次从(a)中所示的多个SSB波束中,确定发送了质量最好的同步信号的一部分SSB波束,再从这一部分SSB波束中选择任意一个SSB波束,发送其测量结果。例如,在终端沿图3的(a)中所示的轨迹移动时,终端所确定的发送了质量最好的同步信号的一部分SSB波束的编号为#301、#302、#303、#304、#305、#308。则如图(c)所示,在时间方向上,发送单元220每次发送上述波束中的任意一个波束的测量结果。
根据本发明的一个示例,发送单元220也可以基于网络侧的配置,每次发送由网络侧指定的SSB波束的测量结果。此时,发送单元220例如可以基 于由网络侧所配置的要进行反馈的波束的索引,确定每次要反馈哪个SSB波束的测量结果。
此外,根据本发明的一个示例,发送单元也可以还基于网络侧的DCI格式,确定每次要反馈哪个SSB波束的测量结果以及在图中所述的预定时间段内每次反馈SSB波束的间隔。
此外,如上所述,在发送单元220被配置为一次向基站反馈多个SSB波束时,依然以图3的(a)所示的情况为例,则发送单元220每次向基站反馈测量结果的SSB波束的数量可以是2个至8个。即,发送单元220每次向基站反馈测量结果的波束数量为2个以上。
具体而言,发送单元220例如可以每次从图3的(a)中所示的多个SSB波束中,反馈质量最好的多个SSB波束的测量结果。或者,根据本发明的一个示例,也可以反馈多个任意的SSB波束的测量结果。或者,根据本发明的一个示例,发送单元220也可以从接收到的多个SSB波束中,确定发送了质量最好的同步信号的一部分SSB波束,再从这一部分SSB波束中选择任意的多个SSB波束,发送其测量结果。或者,根据本发明的一个示例,发送单元220也可以基于网络侧的配置,发送由网络侧指定的多个SSB波束的测量结果,此时,发送单元220基于由网络侧所配置的要进行反馈的波束的数量和波束索引,确定具体要反馈哪几个SSB波束的测量结果。
根据本发明的一个示例,接收单元210也可以从基站接收配置信息,所述发送单元220基于该配置信息,确定向基站反馈哪些SSB波束的测量结果。例如,该配置信息中可以包含用于指示终端如何反馈波束测量结果的字段,在以下中,将该字段称为reportBehaviorType字段。根据本发明的一个示例,reportBehaviorType的值例如可以取{Best,Random,Hybrid,Specific}。
当接收单元210接收到的配置信息中,reportBehaviorType的取值为Best时,发送单元220如图3中的(b)所示,在预定时间段内,每次向基站反馈发送了质量最好同步信号的一个SSB波束的测量结果。或者,根据本发明的一个示例,发送单元220也可以一次反馈发送了质量最好的同步信号的多个SSB波束的测量结果。
当接收单元210接收到的配置信息中,reportBehaviorType的取值为Random时,发送单元220如图3中的(c)所示,在预定时间段内,每次向 基站随机反馈一个SSB波束的测量结果。或者,根据本发明的一个示例,发送单元220也可以一次发送随机多个SSB波束的测量结果。
当接收单元210接收到的配置信息中,reportBehaviorType的取值为Hybrid时,发送单元220如图3中的(d)所示,发送单元220也可以在预定时间段内,从(a)中所示的多个SSB波束中,每次确定发送了质量最好的同步信号的一部分SSB波束,再从这一部分SSB波束中选择任意一个SSB波束,发送其测量结果。或者,根据本发明的一个示例,发送单元220也可以一次反馈发送了质量最好的同步信号的一部分SSB波束中任意多个SSB波束。
当接收单元210接收到的配置信息中,reportBehaviorType的取值为Specific时,在预定时间段内,发送单元220每次发送由网络侧指定的一个SSB波束的测量结果。或者,也可以如上所述,发送单元220一次发送多个由网络侧指定的SSB波束的测量结果。该配置信息中可以还包含用于指定上述一个或多个SSB波束的字段,例如将该字段称为SpecificBeamReport。在该字段中,例如可以包含numberOfBeams字段和BeamIndex字段。前者用于指示发送单元220所要发送测量结果的SSB波束的数量,后者用于指示发送单元220所要发送测量结果的SSB波束的索引。
根据本发明的一个示例,上述配置信息例如可以通过高层信令进行发送,也可以通过物理层进行发送。例如,在由高层信令发送上述配置信息时,根据本公开的一个示例,上述配置信息也可以是3GPP标准TS38.331中所述的CSI-ReportConfig信息元素。在这种情况下,reportBehaviorType字段以及SpecificBeamReport字段被追加到CSI-ReportConfig信息元素中。
根据本发明的一个示例,也可以是,在由高层信令发送上述配置信息时,在发送单元220被上述配置信息配置为发送由网络侧指定的一个或多个SSB波束的测量结果的情况下(例如上述reportBehaviorType为“Specific”),也可以在该配置信息中指定一部分SSB波束,再通过低层信令来向终端指示具体要反馈这一部分SSB波束中哪些波束的测量结果。例如,通过上述的SpecificBeamReport字段来指定一部分SSB波束,再由物理层信令MAC CE(MAC Control element,MAC控制元素)、DCI(Downlink Control Information,下行控制信息)中的一方或双方来向终端指示具体要反馈这一部分SSB波束 中哪些波束的测量结果。
根据本发明的一个示例,也可以是,在由高层信令发送上述配置信息时,在发送单元220被上述配置信息配置为发送由网络侧指定的一个或多个SSB波束的测量结果的情况下(例如上述reportBehaviorType被指定为“Specific”),直接通过低层信令来向终端指示具体反馈哪些SSB波束的测量结果。例如,上述配置信息中并不包含SpecificBeamReport字段,而通过物理层信令MAC CE、DCI中的一方或双方来直接向终端指示具体反馈哪些SSB波束的测量结果。
根据本实施例的终端,能够恰当地向基站反馈SSB波束的测量结果,以使基站能够仅基于这些测量结果就确定优选CSI-RS波束。由此,大大节约了基站和终端之间信令的交互,并能够适用于终端高速移动的场景。
以上结合图3描述了根据本发明的实施例的终端。以下,参照图4来说明由终端执行的方法。图4是根据本发明实施例的由终端执行的方法的流程图。
如图4所示,方法400包括步骤S410。在步骤S410中,接收经由多个SSB波束发送的信息(例如,主同步信号PSS或辅同步信号SSS)。方法400还包括步骤S420。在步骤S420中,对经由多个SSB波束发送的信息的质量进行测量。
方法400还包括步骤S430,在步骤S430中,向基站反馈对于经由至少一部分SSB发送的信息的测量结果,以使基站根据接收到的测量结果,从多个CSI-RS波束中确定优选CSI-RS波束用于下行信息的发送。
根据本发明的一个示例,为了使基站关于优选波束的估计越准确,在步骤S430中,发送尽量多的SSB波束的测量结果。但是,为了避免基站和终端间过多的信令开销,也可以是发送2个以上的SSB波束的测量结果。
根据本发明的一个示例,在步骤S430中,可以每次向基站反馈1个SSB波束的测量结果,并在一段特定的期间中进行多次反馈。或者,也可以一次向基站反馈多个的SSB波束的测量结果。
在步骤S430中,当每次向基站反馈1个SSB波束的测量结果时,可以采用以下的发送方式:
根据本发明的一个示例,在步骤S430中,可以每次向基站反馈发送了质 量最好的同步信号的一个SSB波束的测量结果。或者,每次向基站反馈测量结果的SSB波束也可以不是发送了质量最好的同步信号的波束,而是发送了质量次好、第三好、第四好的同步信号波束等。
根据本发明的一个示例,在步骤S430中,可以每次从多个SSB波束中选择任意一个SSB波束,发送其测量结果。
根据本发明的一个示例,在步骤S430中,可以每次从多个SSB波束中,确定发送了质量最好的同步信号的一部分SSB波束,再从这一部分SSB波束中选择任意一个SSB波束,发送其测量结果。
根据本发明的一个示例,在步骤S430中,也可以基于网络侧的配置,每次发送由网络侧指定的SSB波束的测量结果。此时,例如可以基于由网络侧所配置的要进行反馈的波束的索引,确定每次要反馈哪个SSB波束的测量结果。
根据本发明的一个示例,在步骤S430中,也可以还基于网络侧的DCI格式,确定每次要反馈哪个SSB波束的测量结果以及在图中所述的预定时间段内每次反馈SSB波束的间隔。
此外,在步骤430中一次向基站反馈多个SSB波束时,可以每次从多个SSB波束中,反馈质量最好的多个SSB波束的测量结果。或者,根据本发明的一个示例,也可以反馈多个任意的SSB波束的测量结果。或者,根据本发明的一个示例,也可以从接收到的多个SSB波束中,确定发送了质量最好的同步信号的一部分SSB波束,再从这一部分SSB波束中选择任意的多个SSB波束,发送其测量结果。或者,根据本发明的一个示例,也可以基于网络侧的配置,发送由网络侧指定的多个SSB波束的测量结果,此时,可以基于由网络侧所配置的要进行反馈的波束的数量和波束索引,确定具体要反馈哪几个SSB波束的测量结果。
根据本发明的一个示例,在步骤S410中,也可以从基站接收配置信息,在步骤S430中,基于该配置信息,确定向基站反馈哪些SSB波束的测量结果。例如,如上所述,该配置信息中可以包含reportBehaviorType字段、SpecificBeamReport字段等。
根据本实施例的由终端执行的方法,能够恰当地向基站反馈SSB波束的测量结果,以使基站能够仅基于这些测量结果就确定优选CSI-RS波束。
以下,参考图5来说明根据本公开的实施例的基站。如图5所示,基站500具备接收单元510、发送单元520以及处理单元530。发送单元520经由多个SSB波束向终端发送信息(例如,主同步信号PSS或辅同步信号SSS)。接收单元230接收由终端对经由多个SSB波束而被发送的同步信号进行测量的结果。处理单元530根据接收到的测量结果,确定优选CSI-RS波束用于下行信息的发送。如上所述,根据本发明的一个示例,基站基于SSB波束和CSI-RS波束之间的相关性而确定优选CSI-RS波束。
根据本发明的一个示例,也可以不是由处理单元530直接确定出一个优选CSI-RS波束,而是由处理单元530确定出多个优选CSI-RS波束的候选。发送单元将与这些候选波束有关的信息发送给终端,终端对针对这些候选波束的波束继续进行细粒度的测量,以选出优选CSI-RS波束。
如上所述,发送单元520可以向终端发送配置信息,以控制接收单元510接收到哪些SSB波束的测量结果。例如,发送单元520可以向终端发送包含reportBehaviorType字段以及SpecificBeamReport字段的配置信息,该配置信息可以通过高层信令或者物理层信令发送,该配置信息也可以是CSI-ReportConfig。此外,发送单元520也可以向终端发送MAC CE、DCI等物理层信息,以在reportBehaviorType字段的取值为specific时指示终端具体应反馈哪些SSB波束的测量结果。
如上所述,SSB波束和CSI-RS波束的相关性例如是指SSB波束和CSI-RS波束的映射关系。根据本发明的一个示例,处理单元530使用预先训练的神经网络,基于接收到的SSB波束的测量结果,从多个CSI-RS波束中确定优选CSI-RS波束。该神经网络能够反映SSB波束和CSI-RS波束的上述映射关系,即,在SSB波束的测量结果为特定值的情况下,在多个CSI-RS波束中,经由哪个CSI-RS波束传输的信息质量最好。
根据本公开的一个示例,神经网络可以是本领域技术人员所公知的任何深度神经网络(Deep Neural Networks,DNN),例如,可以是前馈神经网络(Feedforward Neural Networks,FNN)、卷积神经网络(Convolutional Neural Networks,CNN)以及循环神经网络(Recurrent Neural Networks,RNN)等。此外,根据本公开的一个示例,神经网络可以设置在基站500中,也可以设 置在其他网络元件中,例如也可以设置在核心网络中。以下以将神经网络设置在基站500中为例进行说明。
图6示出了采用4层全连接神经网络(Full-connected Neural Networks)来确定CSI-RS波束的示意图。这里,神经网络的层数仅为一例,并不限定于4层。如图6所示,处理单元530将由接收单元510接收到的多个SSB波束的测量结果输入神经网络,图中示例了输入所有SSB波束(编号为#601、#602、#603、#604、#605、#606、#607、#608的8个SSB波束)的测量结果的情况,但如上所述,输入的SSB波束也可以是2个以上的任意数量的波束。神经网络基于通过训练而获得的SSB波束与CSI-RS波束之间的映射关系,通过上述输入,从与SSB波束的覆盖范围对应的64个CSI-RS波束中,输出优选CSI-RS波束#609。
根据本公开的一个示例,为了适应终端高速移动的场景,被输入神经网络中的信息也可以还包括与终端的移动有关的信息,以优化最终的输出结果。
上述与终端的移动有关的信息例如是多普勒频移信息、信道质量信息的序列等。这里的信道质量信息的序列指的是接收单元510在一段时间内接收到的信道质量信息等,例如在一段时间内接收到的SSB波束的RSRP、CSI等。在这种情况下,神经网络的输出除了优选CSI-RS波束之外,还可以包括终端的位置、终端的速度、终端的移动方向等信息。
以下,说明神经网络的训练。
如上所述,在本实施例中,神经网络反映SSB波束与CSI-RS波束之间的映射关系,能够基于输入的2个以上的波束宽度较宽的SSB波束的测量结果,找出波束宽度更窄的CSI-RS波束中的优选CSI-RS波束。为此,根据本发明的一个示例,在对神经网络进行训练时,作为训练数据,可以预先向其输入大量由终端测量的SSB波束的历史测量结果以及CSI-RS波束的历史测量结果。根据本发明的一个示例,作为训练数据被输入的也可以是与SSB波束的历史测量结果有关的CSI-RS波束的历史测量结果。例如,在本发明的图1所示的情况下,作为CSI-RS波束的历史测量结果而被输入的也可以是与波束#104对应的CSI-RS波束的测量结果,该波束#104是基于SSB波束的测量结果而确定的。神经网络通过对这些大量的训练数据进行学习,掌握在SSB波束的测量结果为特定值的情况下,在多个CSI-RS波束中,经由哪个CSI- RS波束传输的信息质量最好。
此外,被输入神经网络的训练数据也可以还包括大量与终端的移动有关的信息,例如上述的多普勒频移信息、信道质量信息的序列等。在这种情况下,还将对应的终端的位置、速度、以及移动的方向作为训练数据,以使神经网络学习多普勒频移信息、信道质量信息的序列等与终端的位置、速度、以及移动的方向之间的对应模型关系。
根据本发明的一个示例,为了从终端收集训练数据,也可以在上述由发送单元520发送的配置信息中,通知终端其要反馈的波束测量结果将被用于神经网络的训练。例如,也可以在该配置信息中包含reportUsageType字段,该字段的取值为“offline”和“online”。当reportUsageType字段被配置为“offline”时,终端所反馈的测量结果作为历史测量结果被用于神经网络的训练,此时,接收单元510接收从终端发送的SSB波束的历史测量结果和CSI-RS波束的历史测量结果,将其输入至神经网络中用于神经网络的训练。当reportUsageType字段被配置为“online”时,终端所反馈的测量结果被用于进行最佳波束的估计,此时,接收单元接收从终端反馈的多个SSB波束的测量结果,将其输入至神经网络中,以使神经网络输出优选CSI-RS波束或者多个优选CSI-RS波束的候选。
根据本实施例的基站,仅根据终端反馈的多个SSB波束的测量结果,就从多个CSI-RS波束中确定优选波束以向终端发送数据,不需要获得终端对于CSI-RS波束的测量结果。由此,能够在保证发送数据的质量的同时大大节约基站和终端之间信令的交互,能够适用于终端高速移动的场景。
以上结合图5、图6描述了根据本发明的实施例的基站。以下,参照图7来说明由基站执行的方法。图7是根据本发明实施例的由基站执行的方法的流程图。
如图7所示,方法700包括步骤S710。在步骤S710中,经由多个SSB波束向终端发送信息(例如,主同步信号PSS或辅同步信号SSS)。此外,根据本发明的一个示例,在步骤S710中,还可以向终端发送配置信息,以控制终端发送哪些SSB波束的测量结果。例如,如上所述,可以向终端发送包含reportBehaviorType字段以及SpecificBeamReport字段的配置信息,该配置信息可以通过高层信令或者物理层信令发送,该配置信息也可以是CSI- ReportConfig。此外,在步骤S710中,也可以向终端发送MAC CE、DCI等物理层信息,以在reportBehaviorType字段的取值为specific时指示终端具体应反馈哪些SSB波束的测量结果。
方法700还包括步骤S720。在步骤S720中,接收终端对经由至少一部分SSB波束发送的信息的测量结果。
方法700还包括步骤S730。在步骤S730中,根据接收到的测量结果,确定优选CSI-RS波束。如上所述,根据本发明的一个示例,在步骤S730中,基于SSB波束和CSI-RS波束之间的相关性而确定优选CSI-RS波束。
根据本发明的一个示例,在步骤S730中,也可以不是直接确定出一个优选CSI-RS波束,而是确定出多个优选CSI-RS波束的候选。基站将与这些候选波束有关的信息发送给终端,终端对针对这些候选波束的波束继续进行细粒度的测量,以选出优选CSI-RS波束。
根据本发明的一个示例,在步骤S730中,使用预先进行了如上文所述的训练的神经网络,基于在步骤S720中接收到的SSB波束的测量结果,从多个CSI-RS波束中确定优选CSI-RS波束。
根据本实施例的由基站执行的方法,能够在保证发送数据的质量的同时大大节约基站和终端之间信令的交互,能够适用于终端高速移动的场景。
<硬件结构>
另外,上述实施例的说明中使用的框图示出了以功能为单位的块。这些功能块(结构单元)通过硬件和/或软件的任意组合来实现。此外,各功能块的实现手段并不特别限定。即,各功能块可以通过在物理上和/或逻辑上相结合的一个装置来实现,也可以将在物理上和/或逻辑上相分离的两个以上装置直接地和/或间接地(例如通过有线和/或无线)连接从而通过上述多个装置来实现。
例如,本公开的一个实施例的设备(比如终端、基站等)可以作为执行本公开的无线通信方法的处理的计算机来发挥功能。图8是根据本公开的实施例的所涉及的设备800的硬件结构的示意图。上述的设备800可以作为在物理上包括处理器810、内存820、存储器830、通信装置840、输入装置850、输出装置860、总线870等的计算机装置来构成。
另外,在以下的说明中,“装置”这样的文字也可替换为电路、设备、单元等。终端的硬件结构可以包括一个或多个图中所示的各装置,也可以不包括部分装置。
例如,处理器810仅图示出一个,但也可以为多个处理器。此外,可以通过一个处理器来执行处理,也可以通过一个以上的处理器同时、依次、或采用其他方法来执行处理。另外,处理器810可以通过一个以上的芯片来安装。
设备800的各功能例如通过如下方式实现:通过将规定的软件(程序)读入到处理器810、内存820等硬件上,从而使处理器810进行运算,对由通信装置840进行的通信进行控制,并对内存820和存储器830中的数据的读出和/或写入进行控制。
处理器810例如使操作系统进行工作从而对计算机整体进行控制。处理器810可以由包括与周边装置的接口、控制装置、运算装置、寄存器等的中央处理器(CPU,Central Processing Unit)构成。例如,上述的处理单元等可以通过处理器810实现。
此外,处理器810将程序(程序代码)、软件模块、数据等从存储器830和/或通信装置840读出到内存820,并根据它们执行各种处理。作为程序,可以采用使计算机执行在上述实施方式中说明的动作中的至少一部分的程序。例如,终端700的处理单元可以通过保存在内存820中并通过处理器810来工作的控制程序来实现,对于其他功能块,也可以同样地来实现。
内存820是计算机可读取记录介质,例如可以由只读存储器(ROM,Read Only Memory)、可编程只读存储器(EPROM,Erasable Programmable ROM)、电可编程只读存储器(EEPROM,Electrically EPROM)、随机存取存储器(RAM,Random Access Memory)、其他适当的存储介质中的至少一个来构成。内存820也可以称为寄存器、高速缓存、主存储器(主存储装置)等。内存820可以保存用于实施本公开的一实施方式所涉及的方法的可执行程序(程序代码)、软件模块等。
存储器830是计算机可读取记录介质,例如可以由软磁盘(flexible disk)、软(注册商标)盘(floppy disk)、磁光盘(例如,只读光盘(CD-ROM(Compact Disc ROM)等)、数字通用光盘、蓝光(Blu-ray,注册商标)光盘)、可移 动磁盘、硬盘驱动器、智能卡、闪存设备(例如,卡、棒(stick)、密钥驱动器(key driver))、磁条、数据库、服务器、其他适当的存储介质中的至少一个来构成。存储器830也可以称为辅助存储装置。
通信装置840是用于通过有线和/或无线网络进行计算机间的通信的硬件(发送接收设备),例如也称为网络设备、网络控制器、网卡、通信模块等。通信装置840为了实现例如频分双工(FDD,Frequency Division Duplex)和/或时分双工(TDD,Time Division Duplex),可以包括高频开关、双工器、滤波器、频率合成器等。例如,上述的发送单元、接收单元等可以通过通信装置840来实现。
输入装置850是接受来自外部的输入的输入设备(例如,键盘、鼠标、麦克风、开关、按钮、传感器等)。输出装置860是实施向外部的输出的输出设备(例如,显示器、扬声器、发光二极管(LED,Light Emitting Diode)灯等)。另外,输入装置850和输出装置860也可以为一体的结构(例如触控面板)。
此外,处理器810、内存820等各装置通过用于对信息进行通信的总线870连接。总线870可以由单一的总线构成,也可以由装置间不同的总线构成。
此外,终端可以包括微处理器、数字信号处理器(DSP,Digital Signal Processor)、专用集成电路(ASIC,Application Specific Integrated Circuit)、可编程逻辑器件(PLD,Programmable Logic Device)、现场可编程门阵列(FPGA,Field Programmable Gate Array)等硬件,可以通过该硬件来实现各功能块的部分或全部。例如,处理器810可以通过这些硬件中的至少一个来安装。
(变形例)
另外,关于本说明书中说明的用语和/或对本说明书进行理解所需的用语,可以与具有相同或类似含义的用语进行互换。例如,信道和/或符号也可以为信号(信令)。此外,信号也可以为消息。参考信号也可以简称为RS(Reference Signal),根据所适用的标准,也可以称为导频(Pilot)、导频信号等。此外,分量载波(CC,Component Carrier)也可以称为小区、频率载波、载波频率等。
此外,本说明书中说明的信息、参数等可以用绝对值来表示,也可以用与规定值的相对值来表示,还可以用对应的其他信息来表示。例如,无线资源可以通过规定的索引来指示。进一步地,使用这些参数的公式等也可以与本说明书中明确公开的不同。
在本说明书中用于参数等的名称在任何方面都并非限定性的。例如,各种各样的信道(物理上行链路控制信道(PUCCH,Physical Uplink Control Channel)、物理下行链路控制信道(PDCCH,Physical Downlink Control Channel)等)和信息单元可以通过任何适当的名称来识别,因此为这些各种各样的信道和信息单元所分配的各种各样的名称在任何方面都并非限定性的。
本说明书中说明的信息、信号等可以使用各种各样不同技术中的任意一种来表示。例如,在上述的全部说明中可能提及的数据、命令、指令、信息、信号、比特、符号、芯片等可以通过电压、电流、电磁波、磁场或磁性粒子、光场或光子、或者它们的任意组合来表示。
此外,信息、信号等可以从上层向下层、和/或从下层向上层输出。信息、信号等可以经由多个网络节点进行输入或输出。
输入或输出的信息、信号等可以保存在特定的场所(例如内存),也可以通过管理表进行管理。输入或输出的信息、信号等可以被覆盖、更新或补充。输出的信息、信号等可以被删除。输入的信息、信号等可以被发往其他装置。
信息的通知并不限于本说明书中说明的方式/实施方式,也可以通过其他方法进行。例如,信息的通知可以通过物理层信令(例如,下行链路控制信息(DCI,Downlink Control Information)、上行链路控制信息(UCI,Uplink Control Information))、上层信令(例如,无线资源控制(RRC,Radio Resource Control)信令、广播信息(主信息块(MIB,Master Information Block)、系统信息块(SIB,System Information Block)等)、媒体存取控制(MAC,Medium Access Control)信令)、其他信号或者它们的组合来实施。
另外,物理层信令也可以称为L1/L2(第1层/第2层)控制信息(L1/L2控制信号)、L1控制信息(L1控制信号)等。此外,RRC信令也可以称为RRC消息,例如可以为RRC连接建立(RRC Connection Setup)消息、RRC连接重设定(RRC Connection Reconfiguration)消息等。此外,MAC信令例如可以通过MAC控制单元(MAC CE(Control Element))来通知。
此外,规定信息的通知(例如,“为X”的通知)并不限于显式地进行,也可以隐式地(例如,通过不进行该规定信息的通知,或者通过其他信息的通知)进行。
关于判定,可以通过由1比特表示的值(0或1)来进行,也可以通过由真(true)或假(false)表示的真假值(布尔值)来进行,还可以通过数值的比较(例如与规定值的比较)来进行。
软件无论被称为软件、固件、中间件、微代码、硬件描述语言,还是以其他名称来称呼,都应宽泛地解释为是指命令、命令集、代码、代码段、程序代码、程序、子程序、软件模块、应用程序、软件应用程序、软件包、例程、子例程、对象、可执行文件、执行线程、步骤、功能等。
此外,软件、命令、信息等可以经由传输介质被发送或接收。例如,当使用有线技术(同轴电缆、光缆、双绞线、数字用户线路(DSL,Digital Subscriber Line)等)和/或无线技术(红外线、微波等)从网站、服务器、或其他远程资源发送软件时,这些有线技术和/或无线技术包括在传输介质的定义内。
本说明书中使用的“系统”和“网络”这样的用语可以互换使用。
在本说明书中,“基站(BS,Base Station)”、“无线基站”、“eNB”、“gNB”、“小区”、“扇区”、“小区组”、“载波”以及“分量载波”这样的用语可以互换使用。基站有时也以固定台(fixed station)、NodeB、eNodeB(eNB)、接入点(access point)、发送点、接收点、毫微微小区、小小区等用语来称呼。
基站可以容纳一个或多个(例如三个)小区(也称为扇区)。当基站容纳多个小区时,基站的整个覆盖区域可以划分为多个更小的区域,每个更小的区域也可以通过基站子系统(例如,室内用小型基站(射频拉远头(RRH,Remote Radio Head)))来提供通信服务。“小区”或“扇区”这样的用语是指在该覆盖中进行通信服务的基站和/或基站子系统的覆盖区域的一部分或整体。
在本说明书中,“移动台(MS,Mobile Station)”、“用户终端(user terminal)”、“用户装置(UE,User Equipment)”以及“终端”这样的用语可以互换使用。移动台有时也被本领域技术人员以用户台、移动单元、用户单元、无线单元、远程单元、移动设备、无线设备、无线通信设备、远程设备、移动用户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或者若干其他适当的用语来称呼。
此外,本说明书中的无线基站也可以用用户终端来替换。例如,对于将无线基站和用户终端间的通信替换为多个用户终端间(D2D,Device-to-Device)的通信的结构,也可以应用本公开的各方式/实施方式。此时,可以将上述的设备800中的第一通信设备或第二通信设备所具有的功能当作用户终端所具有的功能。此外,“上行”和“下行”等文字也可以替换为“侧”。例如,上行信道也可以替换为侧信道。
同样,本说明书中的用户终端也可以用无线基站来替换。此时,可以将上述的用户终端所具有的功能当作第一通信设备或第二通信设备所具有的功能。
在本说明书中,设为通过基站进行的特定动作根据情况有时也通过其上级节点(upper node)来进行。显然,在具有基站的由一个或多个网络节点(network nodes)构成的网络中,为了与终端间的通信而进行的各种各样的动作可以通过基站、除基站之外的一个以上的网络节点(可以考虑例如移动管理实体(MME,Mobility Management Entity)、服务网关(S-GW,Serving-Gateway)等,但不限于此)、或者它们的组合来进行。
本说明书中说明的各方式/实施方式可以单独使用,也可以组合使用,还可以在执行过程中进行切换来使用。此外,本说明书中说明的各方式/实施方式的处理步骤、序列、流程图等只要没有矛盾,就可以更换顺序。例如,关于本说明书中说明的方法,以示例性的顺序给出了各种各样的步骤单元,而并不限定于给出的特定顺序。
本说明书中说明的各方式/实施方式可以应用于利用长期演进(LTE,Long Term Evolution)、高级长期演进(LTE-A,LTE-Advanced)、超越长期演进(LTE-B,LTE-Beyond)、超级第3代移动通信系统(SUPER 3G)、高级国际移动通信(IMT-Advanced)、第4代移动通信系统(4G,4th generation mobile communication system)、第5代移动通信系统(5G,5th generation mobile communication system)、未来无线接入(FRA,Future Radio Access)、新无线接入技术(New-RAT,Radio Access Technology)、新无线(NR,New Radio)、新无线接入(NX,New radio access)、新一代无线接入(FX,Future generation radio access)、全球移动通信系统(GSM(注册商标),Global System for Mobile communications)、码分多址接入3000(CDMA3000)、超级移动宽带(UMB, Ultra Mobile Broadband)、IEEE 920.11(Wi-Fi(注册商标))、IEEE 920.16(WiMAX(注册商标))、IEEE 920.20、超宽带(UWB,Ultra-WideBand)、蓝牙(Bluetooth(注册商标))、其他适当的无线通信方法的系统和/或基于它们而扩展的下一代系统。
本说明书中使用的“根据”这样的记载,只要未在其他段落中明确记载,则并不意味着“仅根据”。换言之,“根据”这样的记载是指“仅根据”和“至少根据”这两者。
本说明书中使用的对使用“第一”、“第二”等名称的单元的任何参照,均非全面限定这些单元的数量或顺序。这些名称可以作为区别两个以上单元的便利方法而在本说明书中使用。因此,第一单元和第二单元的参照并不意味着仅可采用两个单元或者第一单元必须以若干形式占先于第二单元。
本说明书中使用的“判断(确定)(determining)”这样的用语有时包含多种多样的动作。例如,关于“判断(确定)”,可以将计算(calculating)、推算(computing)、处理(processing)、推导(deriving)、调查(investigating)、搜索(looking up)(例如表、数据库、或其他数据结构中的搜索)、确认(ascertaining)等视为是进行“判断(确定)”。此外,关于“判断(确定)”,也可以将接收(receiving)(例如接收信息)、发送(transmitting)(例如发送信息)、输入(input)、输出(output)、存取(accessing)(例如存取内存中的数据)等视为是进行“判断(确定)”。此外,关于“判断(确定)”,还可以将解决(resolving)、选择(selecting)、选定(choosing)、建立(establishing)、比较(comparing)等视为是进行“判断(确定)”。也就是说,关于“判断(确定)”,可以将若干动作视为是进行“判断(确定)”。
本说明书中使用的“连接的(connected)”、“结合的(coupled)”这样的用语或者它们的任何变形是指两个或两个以上单元间的直接的或间接的任何连接或结合,可以包括以下情况:在相互“连接”或“结合”的两个单元间,存在一个或一个以上的中间单元。单元间的结合或连接可以是物理上的,也可以是逻辑上的,或者还可以是两者的组合。例如,“连接”也可以替换为“接入”。在本说明书中使用时,可以认为两个单元是通过使用一个或一个以上的电线、线缆、和/或印刷电气连接,以及作为若干非限定性且非穷尽性的示例,通过 使用具有射频区域、微波区域、和/或光(可见光及不可见光这两者)区域的波长的电磁能等,被相互“连接”或“结合”。
在本说明书或权利要求书中使用“包括(including)”、“包含(comprising)”、以及它们的变形时,这些用语与用语“具备”同样是开放式的。进一步地,在本说明书或权利要求书中使用的用语“或(or)”并非是异或。
以上对本公开进行了详细说明,但对于本领域技术人员而言,显然,本公开并非限定于本说明书中说明的实施方式。本公开在不脱离由权利要求书的记载所确定的本公开的宗旨和范围的前提下,可以作为修改和变更方式来实施。因此,本说明书的记载是以示例说明为目的,对本公开而言并非具有任何限制性的意义。

Claims (10)

  1. 一种终端,包括:
    接收单元,配置为接收经由多个第一波束发送的第一信息;以及
    发送单元,配置为发送对于经由至少一部分所述第一波束发送的第一信息的测量结果,
    所述接收单元还配置为接收经由多个第二波束中的优选波束发送的第二信息,
    所述优选波束是基站根据对经由两个以上所述第一波束发送的所述第一信息的测量结果,从多个所述第二波束中确定的。
  2. 如权利要求1所述的终端,其中,
    所述第二波束的宽度小于所述第一波束的宽度,或者与所述第一波束的宽度相同。
  3. 如权利要求1或2所述的终端,其中,
    所述第一波束和所述第二波束至少部分重叠,或者所述第二波束位于相邻的两个所述第一波束之间。
  4. 如权利要求1或2所述的终端,其中,
    所述发送单元一次反馈经由两个以上所述第一波束发送的所述第一信息的测量结果,或者在预定时间段内,在两个以上的时间点每次反馈所述经由一个所述第一波束发送的所述第一信息的测量结果。
  5. 如权利要求1或2所述的终端,其中,
    所述发送单元发送多个所述第一波束中,发送了质量最好的所述第一信息的至少一部分波束的测量结果;或者,
    所述发送单元发送多个所述第一波束中,随机至少一部分波束的测量结果;或者,
    所述发送单元发送多个所述第一波束中,发送了质量最好的所述第一信息的特定数量的波束中,至少一部分波束的测量结果;或者,
    所述发送单元发送多个所述第一波束中特定的至少一部分波束的测量结果。
  6. 如权利要求5所述的终端,其中,
    所述接收单元还配置为接收配置信息,
    所述发送单元基于所述配置信息,确定发送多个所述第一波束中哪些波束的测量结果。
  7. 如权利要求6所述的终端,其中,
    当所述接收单元确定为发送多个所述第一波束中特定的至少一部分波束的测量结果时,所述配置信息中还包含该特定的至少一部分波束的数量和波束索引。
  8. 一种基站,包括:
    发送单元,配置为经由多个第一波束发送第一信息;
    接收单元,配置为接收对于经由至少一部分所述第一波束发送的第一信息的测量结果;以及
    处理单元,配置为根据对经由两个以上所述第一波束发送的所述第一信息的测量结果,从多个所述第二波束中确定优选波束,
    所述发送单元还配置为经由所确定的所述优选波束向终端发送第二信息。
  9. 如权利要求8所述的基站,其中,
    所述处理单元使用通过输入所述第一波束的历史测量结果以及所述第二波束的历史测量结果作为训练数据而预先训练的神经网络所确定的所述第一波束和所述第二波束之间的相关性,基于所述测量结果来从多个所述第二波束中确定优选波束。
  10. 一种终端的方法,包括:
    接收经由多个第一波束发送的第一信息;
    发送对于经由至少一部分所述第一波束发送的第一信息的测量结果;以及
    接收经由多个第二波束中的优选波束发送的第二信息,
    所述优选波束是基站根据对经由两个以上所述第一波束发送的所述第一信息的测量结果,从多个所述第二波束中确定的。
PCT/CN2020/140146 2020-12-28 2020-12-28 终端以及基站 WO2022140915A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080108161.6A CN116830645A (zh) 2020-12-28 2020-12-28 终端以及基站
US18/259,442 US20240063883A1 (en) 2020-12-28 2020-12-28 Terminal and base station
PCT/CN2020/140146 WO2022140915A1 (zh) 2020-12-28 2020-12-28 终端以及基站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/140146 WO2022140915A1 (zh) 2020-12-28 2020-12-28 终端以及基站

Publications (1)

Publication Number Publication Date
WO2022140915A1 true WO2022140915A1 (zh) 2022-07-07

Family

ID=82258857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140146 WO2022140915A1 (zh) 2020-12-28 2020-12-28 终端以及基站

Country Status (3)

Country Link
US (1) US20240063883A1 (zh)
CN (1) CN116830645A (zh)
WO (1) WO2022140915A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180288645A1 (en) * 2017-03-30 2018-10-04 Industrial Technology Research Institute Beam measuring and reporting method and base station and user equipment using the same
CN109076556A (zh) * 2018-07-25 2018-12-21 北京小米移动软件有限公司 随机接入方法、装置、电子设备和计算机可读存储介质
CN110476450A (zh) * 2017-02-03 2019-11-19 株式会社Ntt都科摩 用户终端以及无线通信方法
US20190356379A1 (en) * 2017-02-03 2019-11-21 Ntt Docomo, Inc. User terminal and radio communication method
CN110731055A (zh) * 2017-03-23 2020-01-24 株式会社Ntt都科摩 用户终端以及无线通信方法
CN110999115A (zh) * 2017-08-02 2020-04-10 Lg电子株式会社 用于在无线通信系统中测量并报告信号的方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110476450A (zh) * 2017-02-03 2019-11-19 株式会社Ntt都科摩 用户终端以及无线通信方法
US20190356379A1 (en) * 2017-02-03 2019-11-21 Ntt Docomo, Inc. User terminal and radio communication method
CN110731055A (zh) * 2017-03-23 2020-01-24 株式会社Ntt都科摩 用户终端以及无线通信方法
US20180288645A1 (en) * 2017-03-30 2018-10-04 Industrial Technology Research Institute Beam measuring and reporting method and base station and user equipment using the same
CN110999115A (zh) * 2017-08-02 2020-04-10 Lg电子株式会社 用于在无线通信系统中测量并报告信号的方法及装置
CN109076556A (zh) * 2018-07-25 2018-12-21 北京小米移动软件有限公司 随机接入方法、装置、电子设备和计算机可读存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
APPLE INC.: "Further considerations on beam management enhancement", 3GPP DRAFT; R1-1907344 FURTHER CONSIDERATIONS ON BEAM MANAGEMENT ENHANCEMENT, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051728783 *
VIVO: "Clarification on the measurement used for the beam selection", 3GPP DRAFT; R2-1712997_CLARIFICATION ON THE MEASUREMENT USED FOR THE BEAM SELECTION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, USA; 20171127 - 20171201, 17 November 2017 (2017-11-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051371831 *

Also Published As

Publication number Publication date
CN116830645A (zh) 2023-09-29
US20240063883A1 (en) 2024-02-22

Similar Documents

Publication Publication Date Title
EP3713130B1 (en) Method and apparatus for configuring reference signal channel characteristics, and communication device
JP7563895B2 (ja) 端末及び基地局
JP7271525B2 (ja) モビリティ関連のパラメータを調整する方法、ユーザ装置及び基地局
CN113574923B (zh) 终端、通信方法以及无线通信系统
WO2019144909A1 (zh) 无线通信方法和飞行用户设备
US20230123943A1 (en) Terminal
US11757586B2 (en) Wireless communication method and user equipment for receiving information and performing feedback
WO2018084118A1 (ja) ユーザ装置及び基地局
WO2019154061A1 (zh) 无线通信方法以及相应的基站、用户终端
WO2018201910A1 (zh) 波束信息反馈方法及用户装置
WO2021147469A1 (zh) 基于神经网络模型的通信系统及其配置方法
CN111726820B (zh) 由基站执行的方法及相应的基站
CN114557029A (zh) 同时切换和载波聚合配置
WO2019213934A1 (zh) 用于传输信号的方法及相应的用户终端、基站
JP7553198B2 (ja) 端末、通信方法及び無線通信システム
US20230051987A1 (en) Terminal
US20220345199A1 (en) Terminal and communication method
WO2020140288A1 (zh) 无线通信方法及设备
WO2022140915A1 (zh) 终端以及基站
WO2019146574A1 (ja) ユーザ装置及びプリアンブル送信方法
WO2022140914A1 (zh) 波束选择方法以及网络元件
JP2023534099A (ja) 送信装置、受信装置、干渉情報送信方法、及びチャネルアクセス方法
WO2018201928A1 (zh) 数据检测方法和用户设备
WO2023000256A1 (zh) 可重构表面装置、基站和用户装置
US11451289B2 (en) Wireless communication method and corresponding communication device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967267

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080108161.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18259442

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20967267

Country of ref document: EP

Kind code of ref document: A1