WO2020019201A1 - 拍摄图像的方法及移动平台 - Google Patents

拍摄图像的方法及移动平台 Download PDF

Info

Publication number
WO2020019201A1
WO2020019201A1 PCT/CN2018/097053 CN2018097053W WO2020019201A1 WO 2020019201 A1 WO2020019201 A1 WO 2020019201A1 CN 2018097053 W CN2018097053 W CN 2018097053W WO 2020019201 A1 WO2020019201 A1 WO 2020019201A1
Authority
WO
WIPO (PCT)
Prior art keywords
eye image
mobile platform
camera
observation
circle
Prior art date
Application number
PCT/CN2018/097053
Other languages
English (en)
French (fr)
Inventor
陆真国
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2018/097053 priority Critical patent/WO2020019201A1/zh
Priority to CN201880038924.7A priority patent/CN110786008A/zh
Publication of WO2020019201A1 publication Critical patent/WO2020019201A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/239Image signal generators using stereoscopic image cameras using two 2D image sensors having a relative position equal to or related to the interocular distance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/296Synchronisation thereof; Control thereof

Definitions

  • the present application relates to the field of image capturing, and more particularly, to a method and a mobile platform for capturing images.
  • a stereo image (especially a panoramic stereo image) can provide depth information, and therefore, it can give an image viewer a more realistic immersion.
  • a photographing device In order to obtain a stereo image, it is necessary to obtain a left-eye image and a right-eye image within a certain viewing angle range by using a shooting device.
  • a photographing device In the conventional technology, a photographing device usually needs to be operated by a user at a designated observation site. Therefore, the image material that can be captured by the conventional technology is limited to the area or scene that the user can reach.
  • the present application provides a method and a mobile platform for capturing images, which can make the acquisition of image materials less restricted by the scene.
  • a method for capturing an image including: controlling a mobile platform to move to a designated observation position; and controlling a camera mounted on the mobile platform to shoot a scene within a preset range of viewing angles centered on the observation position. Left eye image and right eye image.
  • a mobile platform in a second aspect, includes a control system, and the mobile platform is equipped with a camera.
  • the control system is used to control the mobile platform to move to a designated observation position and control the mobile platform.
  • the camera captures a left-eye image and a right-eye image of a scene in a preset viewing angle range centered on the observation position.
  • a computer-readable storage medium characterized in that instructions are stored thereon for performing the method described in the first aspect.
  • a computer program product including instructions for performing the method described in the first aspect.
  • an apparatus for capturing an image which includes a module for performing each step of the method of the first aspect.
  • the mobile platform can reach a wider range of observation positions, the mobile platform can collect image materials of stereo images from better observation positions, so that the acquisition of image materials is less constrained by the scene.
  • FIG. 1 is a schematic flowchart of a method for capturing an image according to an embodiment of the present application.
  • FIG. 2 is an example diagram of an observation position and a preset viewing angle range.
  • FIG. 3 is an exemplary diagram of a shooting position corresponding to the example of FIG. 2.
  • FIG. 4 is a schematic structural diagram of a mobile platform provided by an embodiment of the present application.
  • FIG. 1 is a schematic flowchart of a method for capturing an image according to an embodiment of the present application.
  • This method can be performed by a mobile platform.
  • the mobile platform may be, for example, a mobile device that is equipped with a camera (or includes a camera) and can be remotely controlled by a user.
  • the mobile platform can be an unmanned device, such as a drone, an unmanned vehicle, or a mobile robot.
  • the method in FIG. 1 includes steps 110 to 120. Each step in FIG. 1 is described in detail below.
  • step 110 the mobile platform is controlled to move to a designated observation position.
  • step 120 the camera of the mobile platform is controlled to capture a left-eye image and a right-eye image of a scene within a preset range of viewing angles centered on the observation position.
  • the camera of the mobile platform can be controlled to reach a predetermined one or more shooting positions, and the left-eye image and the right-eye image of the scene within the preset viewing angle range can be shot at the preset one or more shooting positions.
  • the manner in which the camera of the mobile platform reaches the preset shooting position is related to the type of the mobile platform, which is not limited in this embodiment of the present application.
  • the drone's flight control system can be used to control the drone to fly to the observation position. Then, you can control the drone's body to hover at this observation position, and use the gimbal to control the camera to reach the preset shooting position; or you can use the drone's flight control system to control the drone's body movement Thereby, the camera is controlled to reach the preset shooting position; or, it may be a combination of the above two methods.
  • the preset viewing angle range is not specifically limited in the embodiment of the present application, and may be determined in advance, or may be specified by a user according to actual needs.
  • the preset viewing angle range may be, for example, a 180-degree range, a 210-degree range, a 270-degree range, or a 360-degree range centered on the observation position.
  • the preset viewing angle range is a 360-degree range
  • the stereo image of the scene within the preset viewing angle range may be referred to as a panoramic stereo image.
  • the left-eye image (or right-eye image) of the scene within the preset viewing angle range can be a complete image, or multiple left-eye images (or right) observed from multiple observation angles within the preset viewing angle range. Eye image). Taking panorama shooting as an example, you can take a left-eye image (or right-eye image) every 15 degrees to obtain a total of 24 left-eye images (or right-eye images); or you can control the camera to shoot in a circle and directly Output a left-eye panoramic image (or right-eye panoramic image).
  • the mobile platform can reach a wider range of observation positions, the mobile platform can collect image materials of stereo images from better observation positions, so that the acquisition of image materials is less constrained by the scene.
  • panoramic stereo image shooting the shooting of traditional panoramic stereo images requires a large number of cameras to be installed at fixed positions for shooting.
  • a shooting device has a complicated structure and operation, and is expensive to manufacture.
  • the shooting device is relatively bulky and has limited use scenarios. It is usually only used for shooting large-scale sports events or broadcasting large-scale sports events.
  • the method for capturing images provided by the embodiments of the present application can be used to capture a panoramic stereo image (the preset range of viewing angles can be set to 360-degree panorama), but compared to a conventional panoramic stereo image capture device, mobile platform operations and controls are relatively Simple and cheaper.
  • the mobile platform can be remotely controlled by the user. Therefore, a better observation position can be achieved, and the collection of panoramic stereo images is less restricted by the constraints of the scene.
  • a left-eye image and a right-eye image of a scene in a preset viewing angle range centered on the observation position are obtained.
  • a stereo image of the scene in the preset viewing angle range may be generated according to the left-eye image and the right-eye image of the scene in the preset viewing angle range. For example, if the camera captures multiple left-eye images (or right-eye images), you can first combine the multiple left-eye images (or right-eye images) into a complete left-eye image (or right-eye image), and then The complete left-eye image and right-eye image are registered to generate a stereo image of a scene within a preset range of viewing angles.
  • the process of generating a stereo image of a scene within a preset viewing angle range can be performed online by a mobile platform (for example, the image processing system of the mobile platform can generate a stereo image directly from the left and right eye images), or it can be performed by an offline image processing system .
  • the mobile platform can use the image transmission technology to transfer the left-eye image and the right-eye image of the scene within the preset viewing angle range to the remote workstation, and then synthesize the stereo image on the remote workstation or other image processing equipment.
  • the way of generating stereo images online can enrich the functions of the mobile platform and simplify the operation of users.
  • step 120 There may be various implementation manners of step 120, which are described in detail below with reference to specific embodiments.
  • the preset viewing angle range may include one or more observation angles starting from the observation position (or centered on the observation position).
  • the angle interval between adjacent observation angles can be a preset value (such as 45 degrees), or can be input by the user. Smaller angular intervals can achieve better stereo effect.
  • the observation position is the position of the O point
  • the preset viewing angle range is a 360-degree panoramic range with the O point as the center.
  • multiple observation angles OPi i is a positive integer ranging from 1 to 8 are set in a 360-degree panoramic range
  • the observation angle can also be referred to as the observation direction, that is, from point O in FIG. 2
  • the direction indicated by the starting arrow is 45 degrees from the adjacent observation angle.
  • a left-eye image and a right-eye image corresponding to each observation angle need to be obtained.
  • the user of the mobile platform can control the camera position of the mobile platform online according to experience, and control the camera to shoot the left-eye image and the right-eye image corresponding to each observation angle at an appropriate position deemed by the user.
  • the shooting position of the left-eye image and the right-eye image corresponding to each observation angle can be automatically determined by the mobile platform according to a preset baseline distance and observation angle. The following describes this implementation manner in detail in combination with specific embodiments.
  • step 120 may include controlling the camera of the mobile platform to capture left-eye and right-eye images corresponding to multiple observation angles within a preset viewing angle range, where the left-eye and right-eye images corresponding to multiple observation angles are The shooting positions are located on the circumference of a circle with the observation position as the center and a preset baseline distance as the diameter.
  • the baseline distance can be used to characterize the interpupillary distance between the left and right eyes.
  • the preset baseline distance may be the distance between the binocular cameras (such as the distance between the optical centers of the binocular cameras).
  • the baseline distance may be input by a user of the mobile platform, or it may be an empirical value or a default value.
  • the empirical value or the default value may be, for example, an average interpupillary distance between the left and right eyes of a person according to statistics.
  • the left eye image and the right eye corresponding to each observation angle can be determined according to the relevant parameters of the circle (such as the radius or diameter of the circle, and the position of the center of the circle)
  • the position where the image was taken is on the circumference of the circle.
  • the camera of the mobile platform can be controlled to enter the position L and position R, respectively, and take one image in the direction of LP1 and RP1, and the image taken along LP1 is
  • the image obtained along RP1 is the right-eye image corresponding to the observation position OP1.
  • the shooting modes of the left-eye image and the right-eye image corresponding to other observation angles are the same, and will not be described one by one here.
  • the circle C2 in FIG. 3 represents the imaging surface of the panoramic image.
  • the camera can move along the circumference of the circle, or it can move in other ways. Taking FIG. 3 as an example, the camera can move around the circle C1 and take one or more images each time it reaches a shooting position. Alternatively, after the left-eye image corresponding to the observation angle OP1 is captured at the position L, the camera may move linearly to the position R, and capture the right-eye image corresponding to the observation angle OP1 at the position R. Setting the camera's motion trajectory as a circle can simplify the camera's control mode. The following describes several implementation processes of this mode by way of examples.
  • the monocular camera can be controlled to rotate for the first time along a circle of the circle to capture one of the left-eye image and the right-eye image corresponding to multiple observation angles; control The monocular camera rotates again along the circumference of the circle to capture the other of the left-eye image and the right-eye image corresponding to multiple observation angles.
  • the camera of the mobile platform is a binocular camera
  • the binocular camera of the mobile platform can be controlled to complete the left-eye image and the right-eye image of the scene within a preset angle of view during the process of rotating once along the circle of the circle. Shooting.
  • control methods given in the above two examples have the advantages of relatively simple control logic and easy implementation.
  • the camera of the mobile platform can be controlled to move to the shooting position of the left-eye image corresponding to the first observation angle. ; Controlling the camera of the mobile platform to shoot (single shot) the left eye image corresponding to the first observation angle and the right eye image corresponding to the second observation angle at the shooting position of the left eye image corresponding to the first observation angle.
  • the first observation angle is the observation angle OP1 in FIG. 3
  • the second observation angle is the observation angle OP5 in FIG. 3.
  • the camera can be controlled to take a left-eye image corresponding to the observation angle OP1 along LP1, and then take a right-eye image corresponding to the observation angle OP5 along LP5. Shooting the images corresponding to different observation angles at the same location can improve shooting efficiency.
  • the mobile platform 400 includes a control system 410 and a camera 420.
  • the control system 410 may be configured to control the mobile platform 400 to move to a designated observation position, and control the camera 420 to capture a left-eye image and a right-eye image of a scene within a preset viewing angle range centered on the observation position.
  • the mobile platform 400 further includes an image processing system for generating a stereo image of the scene in the preset viewing angle range according to the left-eye image and the right-eye image of the scene in the preset viewing angle range.
  • the preset viewing angle range is 360 degrees.
  • control system 410 is configured to control the camera 420 to shoot the left-eye image and the right-eye image corresponding to multiple observation angles within a preset viewing angle range, where the shooting positions of the left-eye image and the right-eye image corresponding to multiple observation angles All are located on the circumference of a circle with the observation position as the center and a preset baseline distance as the diameter.
  • control system 410 is configured to control the camera 420 to rotate along a circle of a circle to capture a left-eye image and a right-eye image of a scene within a preset viewing angle range.
  • the camera 420 is a monocular camera 420
  • the control system 410 is configured to control the monocular camera 420 to rotate for the first time along a circle of a circle to capture one of the left-eye image and the right-eye image corresponding to multiple observation angles ; Control the monocular camera 420 to rotate again along the circumference of the circle to capture the other of the left-eye image and the right-eye image corresponding to a plurality of observation angles.
  • the camera 420 is a binocular camera 420
  • the control system 410 is used to control the binocular camera 420 of the mobile platform 400 to complete a left-eye image and Shooting of right eye image.
  • the angle difference between the first observation angle and the second observation angle of the plurality of observation angles is 180 degrees
  • the control system 410 is configured to control the camera 420 to move to the shooting position of the left-eye image corresponding to the first observation angle. ; Controlling the camera 420 to capture a left-eye image corresponding to the first observation angle and a right-eye image corresponding to the second observation angle at a shooting position of the left-eye image corresponding to the first observation angle.
  • the diameter of the circle is a default value or determined by an input from a user of the mobile platform 400.
  • an interval between adjacent observation angles in the plurality of observation angles is a preset value or determined by a user input of the mobile platform 400.
  • the mobile platform is a drone.
  • control system 410 is further configured to control the drone to hover at the observation position; use the gimbal to control the camera 420 to be at a different shooting position.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server, or data center Transmission by wire (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) to another website site, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, and the like that includes one or more available medium integration.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital video disc (DVD)), or a semiconductor medium (for example, a solid state disk (SSD)), etc. .
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a digital video disc (DVD)
  • DVD digital video disc
  • SSD solid state disk
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)

Abstract

提供一种拍摄图像的方法及移动平台。该方法包括:控制移动平台移动至指定的观测位置;控制移动平台上搭载的相机拍摄以观测位置为中心的预设视角范围内的场景的左眼图像和右眼图像。由于移动平台能够达到的观测位置更加广泛,因此,移动平台能够从更好的观测位置采集立体图像的图像素材,使得图像素材的获取较少受到场景的约束。

Description

拍摄图像的方法及移动平台
版权申明
本专利文件披露的内容包含受版权保护的材料。该版权为版权所有人所有。版权所有人不反对任何人复制专利与商标局的官方记录和档案中所存在的该专利文件或者该专利披露。
技术领域
本申请涉及图像拍摄领域,更为具体地,涉及一种拍摄图像的方法及移动平台。
背景技术
相对于平面图像,立体图像(尤其是全景立体图像)能够提供深度信息,因此,能够给予图像观察者更加真实的沉浸感。
为了获得立体图像,需要利用拍摄设备获得一定视角范围内的左眼图像和右眼图像。传统技术中,拍摄设备通常需要由用户到达指定的观测地点进行操作。因此,传统技术能够拍摄到的图像素材受限于用户能够达到的区域或场景。
发明内容
本申请提供一种拍摄图像的方法及移动平台,能够使得图像素材的获取较少地受到场景的约束。
第一方面,提供一种拍摄图像的方法,包括:控制移动平台移动至指定的观测位置;控制所述移动平台上搭载的相机拍摄以所述观测位置为中心的预设视角范围内的场景的左眼图像和右眼图像。
第二方面,提供一种移动平台,所述移动平台包括控制系统,且所述移动平台上搭载有相机,所述控制系统用于控制所述移动平台移动至指定的观测位置,并控制所述相机拍摄以所述观测位置为中心的预设视角范围内的场景的左眼图像和右眼图像。
第三方面,提供一种计算机可读存储介质,其特征在于,其上存储有用于执行第一方面所述的方法的指令。
第四方面,提供一种计算机程序产品,其特征在于,包括用于执行第一方面所述的方法的指令。
第五方面,提供一种拍摄图像的装置,包括用于执行第一方面的方法的各个步骤的模块。
由于移动平台能够达到的观测位置更加广泛,因此,移动平台能够从更好的观测位置采集立体图像的图像素材,使得图像素材的获取较少受到场景的约束。
附图说明
图1是本申请实施例提供的拍摄图像的方法的示意性流程图。
图2是观测位置和预设视角范围的示例图。
图3是图2示例对应的拍摄位置的示例图。
图4是本申请实施例提供的移动平台的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1是本申请实施例提供的拍摄图像的方法的示意性流程图。该方法可以由移动平台执行。该移动平台例如可以是搭载有相机(或包含相机)且用户可以远程操控的可移动设备。举例说明,该移动平台可以是无人驾驶设备,如无人机、无人车,也可以是移动机器人。图1的方法包括步骤110至步骤120,下面对图1的各个步骤进行详细描述。
在步骤110,控制移动平台移动至指定的观测位置。
在步骤120,控制移动平台的相机拍摄以观测位置为中心的预设视角范围内的场景的左眼图像和右眼图像。
例如,可以控制移动平台的相机到达预定的一个或多个拍摄位置,并在该预设的一个或多个拍摄位置对该预设视角范围内的场景的左眼图像和右眼图像进行拍摄。
移动平台的相机达到预设的拍摄位置的方式与移动平台的类型有关,本申请实施例对此并不限定。以无人机为例,则可以利用无人机的飞行控制系统控制无人机飞行至该观测位置。接着,可以控制无人机的机身悬停在该观测位置,并利用云台控制相机到达预设的拍摄位置;或者,可以利用无人机 的飞行控制系统控制无人机的机身移动,从而控制相机到达预设拍摄位置;或者,也可以是上述两种方式的结合。
本申请实施例对预设视角范围不做具体限定,可以预先确定,也可以由用户根据实际需要指定。该预设视角范围例如可以是以观测位置为中心的180度范围,210度范围,270度范围或360度范围。当预设视角范围为360度范围时,该预设视角范围内的场景的立体图像可以称为全景立体图像。
预设视角范围内的场景的左眼图像(或右眼图像)可以是一张完整的图像,也可以是从预设视角范围内的多个观测角度观测到的多张左眼图像(或右眼图像)。以全景拍摄为例,可以每隔15度拍摄一张左眼图像(或右眼图像),共得到24张左眼图像(或右眼图像);或者,也可以控制相机绕圈拍摄,并直接输出一张左眼全景图像(或右眼全景图像)。
由于移动平台能够达到的观测位置更加广泛,因此,移动平台能够从更好的观测位置采集立体图像的图像素材,使得图像素材的获取较少受到场景的约束。
以全景立体图像拍摄为例,传统全景立体图像的拍摄需要在固定位置安装大量摄像头进行拍摄。这种拍摄设备结构和操作复杂,造价昂贵,且这种拍摄设备比较笨重,使用场景有较大限制,通常只用于拍摄大型的体育赛事,或对大型体育赛事进行直播。
本申请实施例提供的拍摄图像的方法可用于拍摄全景立体图像(将上述预设视角范围设置为360度全景即可),但与传统全景立体图像的拍摄设备相比,移动平台操作和控制相对简单,价格也更为便宜。此外,移动平台可以由用户远程操控,因此,能够达到更好的观测位置,使得全景立体图像的采集较少地受限于场景的约束。
经过步骤120,得到了以观测位置为中心的预设视角范围内的场景的左眼图像和右眼图像。接下来,可以根据预设视角范围内的场景的左眼图像和右眼图像,生成预设视角范围内的场景的立体图像。例如,假设相机拍摄得到多张左眼图像(或右眼图像),可以先将该多张左眼图像(或右眼图像)合成一张完整的左眼图像(或右眼图像),再将该完整的左眼图像和右眼图像进行配准,以生成预设视角范围内的场景的立体图像。
预设视角范围内的场景的立体图像的生成过程可以由移动平台在线上执行(例如可以由移动平台的图像处理系统直接根据左右眼图像生成立体图 像),也可以由线下的图像处理系统执行。例如,移动平台可以利用图传技术将预设视角范围内的场景的左眼图像和右眼图像传递至远端的工作站,然后在远端工作站或其他图像处理设备上合成立体图像。线上生成立体图像的方式可以丰富移动平台的功能,简化用户的操作。
步骤120的实现方式可有多种,下面结合具体的实施例进行详细描述。
首先,预设视角范围可以包括从观测位置出发(或以观测位置为中心)的一个或多个观测角度。相邻观测角度之间的角度间隔可以为预设值(如45度),也可以由用户输入。较小的角度间隔可以获得更好的立体效果。
以图2为例,观测位置为O点所在位置,预设视角范围为以O点为中心的360度全景范围。从图2可以看出,在360度全景范围内设置有多个观测角度OPi(i为取值从1至8的正整数,观测角度也可称为观测方向,即图2中的从O点出发的箭头所示的方向),相邻观测角度相差45度。
为了获得预设视角范围内的场景的立体图像,需要获取每个观测角度对应的左眼图像和右眼图像。每个观测角度对应的左眼图像和右眼图像的获取方式可以有多种。例如,可以由移动平台的用户根据经验在线控制移动平台的相机位置,并在用户认为的合适位置控制相机拍摄每个观测角度对应的左眼图像和右眼图像。又如,可以由移动平台根据预先设定的基线距离和观测角度,自动确定每个观测角度对应的左眼图像和右眼图像的拍摄位置。下文结合具体的实施例,对这种实现方式进行详细说明。
可选地,步骤120可包括:控制移动平台的相机拍摄预设视角范围内的多个观测角度对应的左眼图像和右眼图像,其中多个观测角度对应的左眼图像和右眼图像的拍摄位置均位于以观测位置为中心、以预设的基线距离为直径的圆的圆周线上。
应理解,基线距离可用于表征左右眼之间的瞳距。以移动平台的相机为双目相机为例,该预设的基线距离可以为双目相机之间的距离(如双目相机光心之间的距离)。以移动平台的相机为单目相机为例,则该基线距离可以由移动平台的用户的输入,也可以是经验值或默认值。该经验值或默认值例如可以是根据统计得到的人的左右眼之间的平均瞳距。
在拍摄每个观测角度对应的左眼图像和右眼图像时,可以根据该圆的相关参数(如圆的半径或直径,以及圆心位置),确定每个观测角度对应的左眼图像和右眼图像的拍摄位置在该圆的圆周线上的位置。以观测角度为如图 3所示的OP1为例,则可以控制移动平台的相机分别进入位置L和位置R,并分别沿LP1和RP1的方向各拍摄一张图像,沿LP1拍摄得到的图像即为观测位置OP1对应的左眼图像,沿RP1拍摄得到的图像即为观测位置OP1对应的右眼图像。其他观测角度对应的左眼图像和右眼图像的拍摄方式同理,此处不再一一赘述。图3中的圆C2表示的是全景图像的成像面。
需要说明的是,在上述实施例中,只要将移动平台的相机的拍摄位置控制在圆的圆周线上即可,但这并不意味着相机必须沿该圆的圆周线移动。相机可以沿该圆的圆周线运动,也可以采用其他方式运动。以图3为例,相机可以围绕圆C1进行运动,每达到一个拍摄位置,拍摄一张或多张图像。或者,相机在位置L拍摄完观测角度OP1对应的左眼图像之后,可以直线运动至位置R,并在位置R拍摄观测角度OP1对应的右眼图像。将相机的运动轨迹设置为圆周线可以简化相机的控制方式,下面对这种方式的多种实现过程进行举例说明。
作为一个示例,假设移动平台的相机为单目相机,则可以控制单目相机沿圆的圆周线进行首次旋转,以拍摄多个观测角度对应的左眼图像和右眼图像中的一者;控制单目相机沿圆的圆周线进行再次旋转,以拍摄多个观测角度对应的左眼图像和右眼图像中的另一者。
仍以图3为例,可以先控制单目相机沿圆的圆周线旋转一周,依次拍摄8个观测角度对应的左眼图像;然后控制单目相机绕圆再次旋转一周,依次拍摄8个观测角度对应的右眼图像。
作为另一个示例,移动平台的相机为双目相机,则可以控制移动平台的双目相机在沿圆的圆周线旋转一次的过程中完成预设视角范围内的场景的左眼图像和右眼图像的拍摄。
仍以图3为例,如果是双目相机,且圆的直径为双目相机的基线距离,则当左眼相机位于位置L时,右眼的相机位于位置R,然后左眼相机和右眼相机可以同时工作,一次性拍摄出观测角度OP1对应的左眼图像和右眼图像。然后,双目相机可以围绕基线距离的中心旋转一周,从而完成8个观测角度的拍摄。
上述两个示例给出的控制方式具有控制逻辑相对简单,易于实现的优点。
作为又一个示例,多个观测角度中的第一观测角度与第二观测角度之间 的角度差为180度,则可以控制移动平台的相机移动至第一观测角度对应的左眼图像的拍摄位置;控制移动平台的相机在第一观测角度对应的左眼图像的拍摄位置拍摄(一次性拍摄)第一观测角度对应的左眼图像和第二观测角度对应的右眼图像。
仍以图3为例,假设第一观测角度为图3中的观测角度OP1,则第二观测角度为图3中的观测角度OP5。当相机处于位置L时,可以控制相机沿LP1拍摄观测角度OP1对应的左眼图像,然后沿LP5拍摄观测角度OP5对应的右眼图像。在同一位置拍摄完成不同观测角度对应的图像的拍摄,可以提高拍摄效率。
本申请实施例还提供一种移动平台。如图4所示,该移动平台400包括控制系统410和相机420。控制系统410可用于控制移动平台400移动至指定的观测位置,并控制相机420拍摄以观测位置为中心的预设视角范围内的场景的左眼图像和右眼图像。
可选地,移动平台400还包括图像处理系统,用于根据预设视角范围内的场景的左眼图像和右眼图像,生成预设视角范围内的场景的立体图像。
可选地,预设视角范围为360度。
可选地,控制系统410用于控制相机420拍摄预设视角范围内的多个观测角度对应的左眼图像和右眼图像,其中多个观测角度对应的左眼图像和右眼图像的拍摄位置均位于以观测位置为中心、以预设的基线距离为直径的圆的圆周线上。
可选地,控制系统410用于控制相机420沿圆的圆周线旋转,以拍摄预设视角范围内的场景的左眼图像和右眼图像。
可选地,相机420为单目相机420,控制系统410用于控制单目相机420沿圆的圆周线进行首次旋转,以拍摄多个观测角度对应的左眼图像和右眼图像中的一者;控制单目相机420沿圆的圆周线进行再次旋转,以拍摄多个观测角度对应的左眼图像和右眼图像中的另一者。
可选地,相机420为双目相机420,控制系统410用于控制移动平台400的双目相机420在沿圆的圆周线旋转一次的过程中完成预设视角范围内的场景的左眼图像和右眼图像的拍摄。
可选地,多个观测角度中的第一观测角度与第二观测角度之间的角度差为180度,控制系统410用于控制相机420移动至第一观测角度对应的左眼 图像的拍摄位置;控制相机420在第一观测角度对应的左眼图像的拍摄位置拍摄第一观测角度对应的左眼图像和第二观测角度对应的右眼图像。
可选地,圆的直径为默认值或由移动平台400的用户的输入而确定。
可选地,多个观测角度中的相邻观测角度之间的间隔为预设值或由移动平台400的用户输入而确定。
可选地,移动平台为无人机。
可选地,控制系统410还用于控制无人机悬停在观测位置;利用云台控制相机420处于不同的拍摄位置。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其他任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如数字视频光盘(digital video disc,DVD))、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可 以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (26)

  1. 一种拍摄图像的方法,其特征在于,包括:
    控制移动平台移动至指定的观测位置;
    控制所述移动平台上搭载的相机拍摄以所述观测位置为中心的预设视角范围内的场景的左眼图像和右眼图像。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据所述预设视角范围内的场景的左眼图像和右眼图像生成所述预设视角范围内的场景的立体图像。
  3. 根据权利要求1或2所述的方法,其特征在于,所述预设视角范围为360度。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述控制所述移动平台的相机拍摄以所述观测位置为中心的预设视角范围内的场景的左眼图像和右眼图像,包括:
    控制所述移动平台的相机拍摄所述预设视角范围内的多个观测角度对应的左眼图像和右眼图像,其中多个所述观测角度对应的左眼图像和右眼图像的拍摄位置均位于以所述观测位置为中心、以预设的基线距离为直径的圆的圆周线上。
  5. 根据权利要求4所述的方法,其特征在于,所述控制所述移动平台的相机拍摄所述预设视角范围内的多个观测角度对应的左眼图像和右眼图像,包括:
    控制所述移动平台的相机沿所述圆的圆周线旋转,以拍摄所述多个观测角度对应的左眼图像和右眼图像。
  6. 根据权利要求5所述的方法,其特征在于,所述移动平台的相机为单目相机,
    所述控制所述移动平台的相机沿所述圆的圆周线旋转,以拍摄多个观测角度对应的左眼图像和右眼图像,包括:
    控制所述单目相机沿所述圆进行首次旋转,以拍摄多个所述观测角度对应的左眼图像和右眼图像中的一者;
    控制所述单目相机沿所述圆进行再次旋转,以拍摄多个所述观测角度对应的左眼图像和右眼图像中的另一者。
  7. 根据权利要求4所述的方法,其特征在于,所述移动平台的相机为 双目相机,
    所述控制所述移动平台的相机沿所述圆的圆周线旋转,以拍摄多个观测角度对应的左眼图像和右眼图像,包括:
    控制所述双目相机在沿所述圆的圆周线旋转一次的过程中完成多个所述观测角度对应的左眼图像和右眼图像的拍摄。
  8. 根据权利要求4所述的方法,其特征在于,多个所述观测角度中的第一观测角度与第二观测角度之间的角度差为180度,
    所述控制所述移动平台的相机拍摄所述预设视角范围内的多个观测角度对应的左眼图像和右眼图像,包括:
    控制所述移动平台的相机移动至所述第一观测角度对应的左眼图像的拍摄位置;
    控制所述移动平台的相机在所述第一观测角度对应的左眼图像的拍摄位置拍摄所述第一观测角度对应的左眼图像和所述第二观测角度对应的右眼图像。
  9. 根据权利要求4-8中任一项所述的方法,其特征在于,所述圆的直径为默认值或由所述移动平台的用户的输入而确定。
  10. 根据权利要求1-9中任一项所述的方法,其特征在于,所述预设视角范围内的相邻观测角度之间的间隔为预设值或由所述移动平台的用户输入而确定。
  11. 根据权利要求1-10中任一项所述的方法,其特征在于,所述移动平台为无人机。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    控制所述无人机悬停在所述观测位置;
    利用云台控制所述无人机的相机处于不同的拍摄位置。
  13. 一种移动平台,其特征在于,所述移动平台包括控制系统,且所述移动平台上搭载有相机,所述控制系统用于控制所述移动平台移动至指定的观测位置,并控制所述相机拍摄以所述观测位置为中心的预设视角范围内的场景的左眼图像和右眼图像。
  14. 根据权利要求13所述的移动平台,其特征在于,所述移动平台还包括图像处理系统,用于根据所述预设视角范围内的场景的左眼图像和右眼图像,生成所述预设视角范围内的场景的立体图像。
  15. 根据权利要求13或14所述的移动平台,其特征在于,所述预设视角范围为360度。
  16. 根据权利要求13-15中任一项所述的移动平台,其特征在于,所述控制系统用于控制所述相机拍摄所述预设视角范围内的多个观测角度对应的左眼图像和右眼图像,其中多个所述观测角度对应的左眼图像和右眼图像的拍摄位置均位于以所述观测位置为中心、以预设的基线距离为直径的圆的圆周线上。
  17. 根据权利要求16所述的移动平台,其特征在于,所述控制系统用于控制所述相机沿所述圆的圆周线旋转,以拍摄多个所述观测角度对应的场景的左眼图像和右眼图像。
  18. 根据权利要求17所述的移动平台,其特征在于,所述相机为单目相机,所述控制系统用于控制所述单目相机沿所述圆进行首次旋转,以拍摄多个所述观测角度对应的左眼图像和右眼图像中的一者;控制所述单目相机沿所述圆进行再次旋转,以拍摄多个所述观测角度对应的左眼图像和右眼图像中的另一者。
  19. 根据权利要求17所述的移动平台,其特征在于,所述相机为双目相机,所述控制系统用于控制所述双目相机在沿所述圆的圆周线旋转一次的过程中完成多个所述观测角度对应的左眼图像和右眼图像的拍摄。
  20. 根据权利要求17所述的移动平台,其特征在于,多个所述观测角度中的第一观测角度与第二观测角度之间的角度差为180度,所述控制系统用于控制所述相机移动至所述第一观测角度对应的左眼图像的拍摄位置;控制所述相机在所述第一观测角度对应的左眼图像的拍摄位置拍摄所述第一观测角度对应的左眼图像和所述第二观测角度对应的右眼图像。
  21. 根据权利要求16-20中任一项所述的移动平台,其特征在于,所述圆的直径为默认值或由所述移动平台的用户的输入而确定。
  22. 根据权利要求13-21中任一项所述的移动平台,其特征在于,所述预设视角范围内的相邻观测角度之间的间隔为预设值或由所述移动平台的用户输入而确定。
  23. 根据权利要求13-22中任一项所述的方法,其特征在于,所述移动平台为无人机。
  24. 根据权利要求23所述的移动平台,其特征在于,所述控制系统还 用于控制所述无人机悬停在所述观测位置;利用云台控制所述相机处于不同的拍摄位置。
  25. 一种计算机可读存储介质,其特征在于,其上存储有用于执行如权利要求1-12中任一项所述的方法的指令。
  26. 一种计算机程序产品,其特征在于,包括用于执行如权利要求1-12中任一项所述的方法的指令。
PCT/CN2018/097053 2018-07-25 2018-07-25 拍摄图像的方法及移动平台 WO2020019201A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/097053 WO2020019201A1 (zh) 2018-07-25 2018-07-25 拍摄图像的方法及移动平台
CN201880038924.7A CN110786008A (zh) 2018-07-25 2018-07-25 拍摄图像的方法及移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/097053 WO2020019201A1 (zh) 2018-07-25 2018-07-25 拍摄图像的方法及移动平台

Publications (1)

Publication Number Publication Date
WO2020019201A1 true WO2020019201A1 (zh) 2020-01-30

Family

ID=69180335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/097053 WO2020019201A1 (zh) 2018-07-25 2018-07-25 拍摄图像的方法及移动平台

Country Status (2)

Country Link
CN (1) CN110786008A (zh)
WO (1) WO2020019201A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111935474A (zh) * 2020-08-17 2020-11-13 广东申义实业投资有限公司 一种参展式发光转盘及其图像摄取方法
WO2022198558A1 (zh) * 2021-03-25 2022-09-29 深圳市大疆创新科技有限公司 可移动平台及其组件的控制方法、装置
CN113225480A (zh) * 2021-04-30 2021-08-06 纵深视觉科技(南京)有限责任公司 一种图像采集方法、装置、电子设备及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8350894B2 (en) * 2009-04-17 2013-01-08 The Boeing Company System and method for stereoscopic imaging
CN205019710U (zh) * 2015-08-17 2016-02-10 苏州澎逸运动用品有限公司 飞行体验系统
CN106303497A (zh) * 2016-08-12 2017-01-04 南方科技大学 一种虚拟现实内容生成方法和装置
CN108289212A (zh) * 2018-01-23 2018-07-17 北京易智能科技有限公司 一种无人机双目立体成像及与人眼实时交互的装置及方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011135246A (ja) * 2009-12-24 2011-07-07 Sony Corp 画像処理装置、撮像装置、および画像処理方法、並びにプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8350894B2 (en) * 2009-04-17 2013-01-08 The Boeing Company System and method for stereoscopic imaging
CN205019710U (zh) * 2015-08-17 2016-02-10 苏州澎逸运动用品有限公司 飞行体验系统
CN106303497A (zh) * 2016-08-12 2017-01-04 南方科技大学 一种虚拟现实内容生成方法和装置
CN108289212A (zh) * 2018-01-23 2018-07-17 北京易智能科技有限公司 一种无人机双目立体成像及与人眼实时交互的装置及方法

Also Published As

Publication number Publication date
CN110786008A (zh) 2020-02-11

Similar Documents

Publication Publication Date Title
JP4017579B2 (ja) 撮影補助器、画像処理方法、画像処理装置、コンピュータプログラム、プログラムを格納した記録媒体
WO2021012855A1 (zh) 一种全景图像生成系统及全景图像生成方法
JP3792901B2 (ja) カメラ制御システム及びその制御方法
CN105684415A (zh) 球面全景视频拍摄系统
JP6192940B2 (ja) 撮影機器及び連携撮影方法
WO2020019201A1 (zh) 拍摄图像的方法及移动平台
CN107205122A (zh) 多分辨率全景视频直播拍照系统与方法
JP2017505565A (ja) 多面映像の生成方法及びシステム
WO2018196658A1 (zh) 虚拟现实媒体文件生成方法和装置、存储介质及电子装置
CN104902263A (zh) 一种图像信息展现系统和方法
CN108650494B (zh) 基于语音控制的可即时获取高清照片的直播系统
JP7269910B2 (ja) インテリジェント撮影システムの撮影制御方法、装置、記憶媒体及びシステム
CN104065951A (zh) 视频拍摄方法、视频播放方法及智能眼镜
WO2020014953A1 (zh) 一种图像处理方法及设备
CN108614636A (zh) 一种3d实景vr制作方法
TWM373507U (en) Three-dimensional vision panoramic image splicing mosaics device
US20130021448A1 (en) Stereoscopic three-dimensional camera rigs
WO2017181930A1 (zh) 一种飞行方向显示方法、装置及其无人机
KR20160102845A (ko) 비행 가능한 전방위 촬영시스템
CN108419052B (zh) 一种多台无人机全景成像方法
JP2012220679A (ja) 立体映像撮像装置、輻輳距離調整方法及びプログラム
CN108513122B (zh) 基于3d成像技术的模型调整方法及模型生成装置
KR102127764B1 (ko) 파노라마 이미지 생성 시스템 및 방법
JP2021068989A (ja) 情報処理システム、情報処理方法及びプログラム
CN115935011A (zh) 一种基于bim模型的镜现平台数据处理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18928140

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18928140

Country of ref document: EP

Kind code of ref document: A1