WO2020017625A1 - Moteur et compresseur le comprenant - Google Patents

Moteur et compresseur le comprenant Download PDF

Info

Publication number
WO2020017625A1
WO2020017625A1 PCT/JP2019/028413 JP2019028413W WO2020017625A1 WO 2020017625 A1 WO2020017625 A1 WO 2020017625A1 JP 2019028413 W JP2019028413 W JP 2019028413W WO 2020017625 A1 WO2020017625 A1 WO 2020017625A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
ring member
stator
peripheral surface
core back
Prior art date
Application number
PCT/JP2019/028413
Other languages
English (en)
Japanese (ja)
Inventor
宏 北垣
武 本田
彰太 川島
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to JP2020531377A priority Critical patent/JPWO2020017625A1/ja
Publication of WO2020017625A1 publication Critical patent/WO2020017625A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures

Definitions

  • the present invention relates to a motor and a compressor using the motor.
  • This application claims priority to and / or incorporates priority from U.S. Provisional Patent Application No. 62 / 700,961, filed July 20, 2018.
  • the outer peripheral surface of the stator core and the inner peripheral surface of the cylindrical housing needs to be provided with a passage (a groove or the like) through which the refrigerant passes. Therefore, when the stator core is fixed to the housing by press fitting or the like, a so-called round core is generally used as the compressor stator core in order to increase the contact area between the outer peripheral surface of the stator core and the inner peripheral surface of the housing as much as possible. It is a target.
  • the round core is a stator core whose core back portion is not divided in the circumferential direction.
  • the space factor of the round core is lower than that of a straight core or the like.
  • a method of painting an insulator instead of an insulator is also conceivable.
  • the insulator is abolished, there is a problem of insulation between the coil and the stator core when the conductor is to be wound by the thickness of the insulator. Therefore, it is conceivable to use a split core instead of the round core as the stator core of the compressor motor.
  • the space factor of the split core is higher than that of the round core.
  • the outer peripheral surface of the stator core and the inner peripheral surface of the housing needs to be provided with a passage for allowing the coolant to pass therethrough.
  • the contact area between the core back and the housing is smaller than in the case of a round core stator core. Therefore, when the split core is fixed to the housing by press-fitting, the outer peripheral surface of the stator core and the inner peripheral surface of the housing come into partial contact with each other, not the entire circumference. As a result, the stator core of the split core cannot be firmly fixed to the housing.
  • the core pieces are partially in contact with each other, even when the core pieces of the split cores are arranged in a ring shape, the positions of the core pieces constituting the split cores may be shifted during press-fitting.
  • stator core for a compressor using a split core that can be easily assembled and a method of manufacturing the same.
  • a motor a rotor that rotates about a central axis extending in the vertical direction, a stator radially opposed to the rotor with a gap therebetween, and a cylindrical case in which the rotor and the stator are located.
  • the stator has a plurality of core pieces having a core back portion annularly arranged along a circumferential direction and a teeth portion extending radially from the core back portion and extending along the circumferential direction, and an outer peripheral surface of the core back or At least one annular ring member attached to an inner peripheral surface, wherein the stator is fixed to the inner peripheral surface of the case via the ring member.
  • FIG. 1 is a sectional view of a motor according to one embodiment.
  • FIG. 2 is a perspective view of a stator piece according to one embodiment.
  • FIG. 3 is a schematic diagram of a compressor provided with a motor according to one embodiment.
  • FIG. 4 is a schematic diagram of a method of fixing the case and the stator in one embodiment.
  • FIG. 5 is a perspective view of a motor according to one embodiment.
  • FIG. 6 is a plan view of a motor according to one embodiment.
  • FIG. 7 is a perspective view of a motor according to one embodiment.
  • FIG. 8 is a plan view of a motor according to one embodiment.
  • FIG. 9 is a plan view of a stator core and a ring member according to a modification.
  • FIG. 9 is a plan view of a stator core and a ring member according to a modification.
  • FIG. 10 is an enlarged plan view of a tooth portion according to a modification.
  • FIG. 11 is a partially enlarged view of a sixth convex portion and a first concave portion according to a modification.
  • FIG. 12 is a partially enlarged view of a fifth concave portion and a fourth convex portion according to a modification.
  • FIG. 13 is a partially enlarged view of a second concave portion and a third convex portion according to a modification.
  • the Z axis is shown as appropriate.
  • the Z-axis direction in each drawing is a direction parallel to the axial direction of the central axis J shown in FIG.
  • the positive side (+ Z side, one side) in the Z-axis direction is referred to as “upper side”
  • the negative side ( ⁇ Z side, the other side) in the Z-axis direction is referred to as “lower side”. Call. Note that the terms “upper side” and “lower side” are simply directions used for description, and do not limit the actual positional relationship or direction.
  • a direction parallel to the central axis J (Z-axis direction) is simply called “axial direction”, a radial direction about the central axis J is simply called “radial direction”, and a central axis J , Ie, around the central axis J, is simply referred to as “circumferential direction”.
  • axial direction a direction parallel to the central axis J
  • radial direction a radial direction about the central axis J
  • a central axis J , Ie around the central axis J, is simply referred to as “circumferential direction”.
  • in plan view means a state viewed from the axial direction.
  • the case 2 accommodates each member constituting the motor 1. As shown in FIG. 1, the rotor 10 and the stator 20 are located inside the case 2.
  • the case 2 has a cylindrical shape that opens to one or both of the upper side (+ Z side) and the lower side ( ⁇ Z side).
  • a bearing holder (not shown) is attached to the opening of the case 2.
  • a progressive die is used for example.
  • an electromagnetic steel plate having a thickness T 0.2 mm to 0.5 mm can be used.
  • the range of the tolerance can be set to 80 ⁇ m, which is different from the normal range.
  • the fastening between the stator core 201A and the ring member RA changes the distance between the central axis and the outer peripheral portion of the stator core 201A (the outer peripheral surface of the core back) for each circumferential position (angle) from the central axis as a starting point,
  • a margin may be provided between the ring member RA and the stator core 201A and the ring member RA may be fixed by press fitting or the like.
  • a fourth convex portion 41B4 projecting radially outward is formed at a radially outer portion of the boundary.
  • the fourth convex portion 41B4 is a portion of one core piece 40B and a radially outer portion of one circumferential end (or the other side) and another circumferential end of the other core piece 40B (or one end). It is composed of at least one of the radially outer parts.
  • the pair of second recess inner wall portions 41B12 extend radially outward from both circumferential sides of the first recess inner wall portion 41B11.
  • the pair of second recess inner wall portions 41B12 extend in a direction away from each other in the circumferential direction. When viewed from the axial direction, the second recess inner wall portion 41B12 extends linearly.
  • the pair of fourth recess inner wall portions 41B14 extend radially outward from radially outer ends of the pair of third inner wall portions 41B13, and extend in a direction away from each other in the circumferential direction.
  • the first protrusion inner wall RB61 which is the radially inner end of the sixth protrusion RB6, has a substantially linear shape extending in the circumferential direction.
  • the first convex inner wall RB62 radially opposes the first concave inner wall 41B11.
  • the pair of second protrusion inner walls RB62 located on both circumferential sides of the first protrusion inner wall 41B11 extend in the radial direction and are substantially parallel.
  • the second projection inner wall RB62 faces the third recess inner wall 41B13 in the circumferential direction.
  • the third convex inner wall 41B13 extends radially outward from the radial outer end of the second convex inner wall RB62.
  • the pair of third convex portion inner walls RB63 extend apart from each other in the circumferential direction.
  • the third convex third convex inner wall RB63 faces the fourth concave inner wall 41B14 at least in the radial direction.
  • a space is formed by the first to third convex inner walls RB61 to RB63 and the first to fourth concave inner walls 41B11 to 41B14.
  • a space is formed between the sixth convex portion RB6 and the first concave portion 41B1.
  • the jig is fitted into the space, and the processing can be easily performed using the straight line portion.
  • the above-described configuration suppresses a portion around the inner wall of the first recess from being plastically deformed. As a result, the area of the magnetic path in the core back portion is suppressed from being reduced, and the magnetic flux can efficiently flow when the motor is driven.
  • the method for manufacturing the motor 1 according to the present invention includes a step of laminating one or more electromagnetic steel sheets to form a laminated steel sheet. Further, a step of taking out a portion to be a rotor core (not shown) from the laminated steel sheet is included. Further, the method further includes a step of taking out the core back portion, the teeth portion, and the ring portion from the same laminated steel plate after taking out the rotor core. Further, a step of forming a space by pushback between the core back portion 41B and the ring member RB is included.
  • the winding method of the coil wire 21 is not limited to concentrated winding, but may be another kind of winding method such as distributed winding, wave winding, lap winding, full-section winding, or short-section winding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

La présente invention concerne un moteur pourvu d'un rotor qui tourne autour d'un axe central s'étendant dans la direction haut/bas, un stator qui est tourné à l'opposé du rotor dans la direction radiale avec un espace entre eux, et un boîtier cylindrique à l'intérieur duquel sont situés le rotor et le stator. Le stator comprend : une pluralité de pièces de noyau ayant des parties arrière de noyau qui sont agencées de façon annulaire et s'étendent le long de la direction circonférentielle et des parties de dent qui s'étendent dans la direction radiale à partir des parties arrière de noyau ; et au moins un élément de bague annulaire qui est monté sur une surface périphérique externe ou une surface périphérique interne des parties arrière de noyau. Les pièces de noyau et le ou les éléments de bague sont des empilements de tôles d'acier constitués d'une pluralité de feuilles d'acier magnétiques qui sont empilées ensemble. Le stator est fixé à une surface périphérique interne du boîtier par l'intermédiaire du ou des éléments de bague.
PCT/JP2019/028413 2018-07-20 2019-07-19 Moteur et compresseur le comprenant WO2020017625A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020531377A JPWO2020017625A1 (ja) 2018-07-20 2019-07-19 モータおよびそれを備えるコンプレッサ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862700961P 2018-07-20 2018-07-20
US62/700,961 2018-07-20

Publications (1)

Publication Number Publication Date
WO2020017625A1 true WO2020017625A1 (fr) 2020-01-23

Family

ID=69164612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028413 WO2020017625A1 (fr) 2018-07-20 2019-07-19 Moteur et compresseur le comprenant

Country Status (2)

Country Link
JP (1) JPWO2020017625A1 (fr)
WO (1) WO2020017625A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022032141A (ja) * 2020-08-11 2022-02-25 シナノケンシ株式会社 固定子コア及びモータ
JP2022543425A (ja) * 2020-05-27 2022-10-12 ジン-ジン エレクトリック テクノロジーズ カンパニー リミテッド ステータコア冷却構造及びモータ冷却システム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001028871A (ja) * 1999-07-12 2001-01-30 Matsushita Electric Ind Co Ltd リニアアクチュエータ
JP2001304123A (ja) * 2000-04-27 2001-10-31 Mitsubishi Electric Corp 密閉型圧縮機およびその製造方法、冷凍・空調装置。
JP2004343939A (ja) * 2003-05-19 2004-12-02 Mitsubishi Electric Corp 回転電機及びその製造方法
JP2007531485A (ja) * 2004-03-23 2007-11-01 エマーソン エレクトリック カンパニー フェーズ・オン・フェーズ状態を減少させるためにセグメント化された固定子の巻線コイルを相互接続するための端部キャップ、およびそれに関連する方法
JP2009136101A (ja) * 2007-11-30 2009-06-18 Mitsubishi Electric Corp モータ及びそれを備えた冷媒圧縮機
JP2014050188A (ja) * 2012-08-30 2014-03-17 Asmo Co Ltd ステータの製造方法
JP2015082936A (ja) * 2013-10-24 2015-04-27 三菱電機株式会社 回転電機のステータ
JP2016220490A (ja) * 2015-05-26 2016-12-22 三菱電機株式会社 回転電機の固定子及び、回転電機の固定子の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001028871A (ja) * 1999-07-12 2001-01-30 Matsushita Electric Ind Co Ltd リニアアクチュエータ
JP2001304123A (ja) * 2000-04-27 2001-10-31 Mitsubishi Electric Corp 密閉型圧縮機およびその製造方法、冷凍・空調装置。
JP2004343939A (ja) * 2003-05-19 2004-12-02 Mitsubishi Electric Corp 回転電機及びその製造方法
JP2007531485A (ja) * 2004-03-23 2007-11-01 エマーソン エレクトリック カンパニー フェーズ・オン・フェーズ状態を減少させるためにセグメント化された固定子の巻線コイルを相互接続するための端部キャップ、およびそれに関連する方法
JP2009136101A (ja) * 2007-11-30 2009-06-18 Mitsubishi Electric Corp モータ及びそれを備えた冷媒圧縮機
JP2014050188A (ja) * 2012-08-30 2014-03-17 Asmo Co Ltd ステータの製造方法
JP2015082936A (ja) * 2013-10-24 2015-04-27 三菱電機株式会社 回転電機のステータ
JP2016220490A (ja) * 2015-05-26 2016-12-22 三菱電機株式会社 回転電機の固定子及び、回転電機の固定子の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022543425A (ja) * 2020-05-27 2022-10-12 ジン-ジン エレクトリック テクノロジーズ カンパニー リミテッド ステータコア冷却構造及びモータ冷却システム
JP7306764B2 (ja) 2020-05-27 2023-07-11 ジン-ジン エレクトリック テクノロジーズ カンパニー リミテッド ステータコア冷却構造及びモータ冷却システム
JP2022032141A (ja) * 2020-08-11 2022-02-25 シナノケンシ株式会社 固定子コア及びモータ
JP7084451B2 (ja) 2020-08-11 2022-06-14 シナノケンシ株式会社 固定子コア及びモータ
US11824401B2 (en) 2020-08-11 2023-11-21 Shinano Kenshi Kabushiki Kaisha Stator core with adjustable press-fit force to motor case and motor with the stator core

Also Published As

Publication number Publication date
JPWO2020017625A1 (ja) 2021-08-02

Similar Documents

Publication Publication Date Title
KR100401083B1 (ko) 전동기 고정자 철심 및 그의 제조방법과 전동기 및 압축기
WO2011161806A1 (fr) Noyau feuilleté pour machine dynamoélectrique
JP2007068310A (ja) 回転機の積層巻きコア
EP2750263A2 (fr) Machine électrique tournante du type à aimant permanent intégré
US8058761B2 (en) Rotating electrical machine
WO2016178368A1 (fr) Machine électrique rotative et son procédé de fabrication
WO2020017625A1 (fr) Moteur et compresseur le comprenant
US20210044162A1 (en) Axial gap motor
CN107425619B (zh) 定子组件、电机和压缩机
US11336158B2 (en) Manufacturing method of core of rotating electrical machine, and core of rotating electrical machine
WO2018179736A1 (fr) Rotor et moteur avec rotor
EP3193429B1 (fr) Moteur et compresseur électrique
US6770990B2 (en) Reciprocating motor
CN111183568B (zh) 定子、马达和压缩机
JP2018046617A (ja) 回転電機の固定子鉄心
WO2018235564A1 (fr) Éléments de stator, stator et moteur
CN1894840B (zh) 往复式电机的定子及其制造方法
JP5365109B2 (ja) ティース、電機子用磁芯
JP2019115217A (ja) ロータコアの取付構造
CN114142633B (zh) 定子、电机、压缩机和制冷设备
JP2006129650A (ja) モータ
JP7204027B1 (ja) 回転電機及びそのローター
JP2014079059A (ja) モータのステータ、およびその製造方法
US20220166295A1 (en) Stator core plate manufacturing method, stator core plate, stator core, and mold
WO2019181524A1 (fr) Stator et moteur fourni avec celui-ci

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19838461

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020531377

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19838461

Country of ref document: EP

Kind code of ref document: A1