WO2020017625A1 - Motor and compressor provided therewith - Google Patents

Motor and compressor provided therewith Download PDF

Info

Publication number
WO2020017625A1
WO2020017625A1 PCT/JP2019/028413 JP2019028413W WO2020017625A1 WO 2020017625 A1 WO2020017625 A1 WO 2020017625A1 JP 2019028413 W JP2019028413 W JP 2019028413W WO 2020017625 A1 WO2020017625 A1 WO 2020017625A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
ring member
stator
peripheral surface
core back
Prior art date
Application number
PCT/JP2019/028413
Other languages
French (fr)
Japanese (ja)
Inventor
宏 北垣
武 本田
彰太 川島
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to JP2020531377A priority Critical patent/JPWO2020017625A1/en
Publication of WO2020017625A1 publication Critical patent/WO2020017625A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures

Definitions

  • the present invention relates to a motor and a compressor using the motor.
  • This application claims priority to and / or incorporates priority from U.S. Provisional Patent Application No. 62 / 700,961, filed July 20, 2018.
  • the outer peripheral surface of the stator core and the inner peripheral surface of the cylindrical housing needs to be provided with a passage (a groove or the like) through which the refrigerant passes. Therefore, when the stator core is fixed to the housing by press fitting or the like, a so-called round core is generally used as the compressor stator core in order to increase the contact area between the outer peripheral surface of the stator core and the inner peripheral surface of the housing as much as possible. It is a target.
  • the round core is a stator core whose core back portion is not divided in the circumferential direction.
  • the space factor of the round core is lower than that of a straight core or the like.
  • a method of painting an insulator instead of an insulator is also conceivable.
  • the insulator is abolished, there is a problem of insulation between the coil and the stator core when the conductor is to be wound by the thickness of the insulator. Therefore, it is conceivable to use a split core instead of the round core as the stator core of the compressor motor.
  • the space factor of the split core is higher than that of the round core.
  • the outer peripheral surface of the stator core and the inner peripheral surface of the housing needs to be provided with a passage for allowing the coolant to pass therethrough.
  • the contact area between the core back and the housing is smaller than in the case of a round core stator core. Therefore, when the split core is fixed to the housing by press-fitting, the outer peripheral surface of the stator core and the inner peripheral surface of the housing come into partial contact with each other, not the entire circumference. As a result, the stator core of the split core cannot be firmly fixed to the housing.
  • the core pieces are partially in contact with each other, even when the core pieces of the split cores are arranged in a ring shape, the positions of the core pieces constituting the split cores may be shifted during press-fitting.
  • stator core for a compressor using a split core that can be easily assembled and a method of manufacturing the same.
  • a motor a rotor that rotates about a central axis extending in the vertical direction, a stator radially opposed to the rotor with a gap therebetween, and a cylindrical case in which the rotor and the stator are located.
  • the stator has a plurality of core pieces having a core back portion annularly arranged along a circumferential direction and a teeth portion extending radially from the core back portion and extending along the circumferential direction, and an outer peripheral surface of the core back or At least one annular ring member attached to an inner peripheral surface, wherein the stator is fixed to the inner peripheral surface of the case via the ring member.
  • FIG. 1 is a sectional view of a motor according to one embodiment.
  • FIG. 2 is a perspective view of a stator piece according to one embodiment.
  • FIG. 3 is a schematic diagram of a compressor provided with a motor according to one embodiment.
  • FIG. 4 is a schematic diagram of a method of fixing the case and the stator in one embodiment.
  • FIG. 5 is a perspective view of a motor according to one embodiment.
  • FIG. 6 is a plan view of a motor according to one embodiment.
  • FIG. 7 is a perspective view of a motor according to one embodiment.
  • FIG. 8 is a plan view of a motor according to one embodiment.
  • FIG. 9 is a plan view of a stator core and a ring member according to a modification.
  • FIG. 9 is a plan view of a stator core and a ring member according to a modification.
  • FIG. 10 is an enlarged plan view of a tooth portion according to a modification.
  • FIG. 11 is a partially enlarged view of a sixth convex portion and a first concave portion according to a modification.
  • FIG. 12 is a partially enlarged view of a fifth concave portion and a fourth convex portion according to a modification.
  • FIG. 13 is a partially enlarged view of a second concave portion and a third convex portion according to a modification.
  • the Z axis is shown as appropriate.
  • the Z-axis direction in each drawing is a direction parallel to the axial direction of the central axis J shown in FIG.
  • the positive side (+ Z side, one side) in the Z-axis direction is referred to as “upper side”
  • the negative side ( ⁇ Z side, the other side) in the Z-axis direction is referred to as “lower side”. Call. Note that the terms “upper side” and “lower side” are simply directions used for description, and do not limit the actual positional relationship or direction.
  • a direction parallel to the central axis J (Z-axis direction) is simply called “axial direction”, a radial direction about the central axis J is simply called “radial direction”, and a central axis J , Ie, around the central axis J, is simply referred to as “circumferential direction”.
  • axial direction a direction parallel to the central axis J
  • radial direction a radial direction about the central axis J
  • a central axis J , Ie around the central axis J, is simply referred to as “circumferential direction”.
  • in plan view means a state viewed from the axial direction.
  • the case 2 accommodates each member constituting the motor 1. As shown in FIG. 1, the rotor 10 and the stator 20 are located inside the case 2.
  • the case 2 has a cylindrical shape that opens to one or both of the upper side (+ Z side) and the lower side ( ⁇ Z side).
  • a bearing holder (not shown) is attached to the opening of the case 2.
  • a progressive die is used for example.
  • an electromagnetic steel plate having a thickness T 0.2 mm to 0.5 mm can be used.
  • the range of the tolerance can be set to 80 ⁇ m, which is different from the normal range.
  • the fastening between the stator core 201A and the ring member RA changes the distance between the central axis and the outer peripheral portion of the stator core 201A (the outer peripheral surface of the core back) for each circumferential position (angle) from the central axis as a starting point,
  • a margin may be provided between the ring member RA and the stator core 201A and the ring member RA may be fixed by press fitting or the like.
  • a fourth convex portion 41B4 projecting radially outward is formed at a radially outer portion of the boundary.
  • the fourth convex portion 41B4 is a portion of one core piece 40B and a radially outer portion of one circumferential end (or the other side) and another circumferential end of the other core piece 40B (or one end). It is composed of at least one of the radially outer parts.
  • the pair of second recess inner wall portions 41B12 extend radially outward from both circumferential sides of the first recess inner wall portion 41B11.
  • the pair of second recess inner wall portions 41B12 extend in a direction away from each other in the circumferential direction. When viewed from the axial direction, the second recess inner wall portion 41B12 extends linearly.
  • the pair of fourth recess inner wall portions 41B14 extend radially outward from radially outer ends of the pair of third inner wall portions 41B13, and extend in a direction away from each other in the circumferential direction.
  • the first protrusion inner wall RB61 which is the radially inner end of the sixth protrusion RB6, has a substantially linear shape extending in the circumferential direction.
  • the first convex inner wall RB62 radially opposes the first concave inner wall 41B11.
  • the pair of second protrusion inner walls RB62 located on both circumferential sides of the first protrusion inner wall 41B11 extend in the radial direction and are substantially parallel.
  • the second projection inner wall RB62 faces the third recess inner wall 41B13 in the circumferential direction.
  • the third convex inner wall 41B13 extends radially outward from the radial outer end of the second convex inner wall RB62.
  • the pair of third convex portion inner walls RB63 extend apart from each other in the circumferential direction.
  • the third convex third convex inner wall RB63 faces the fourth concave inner wall 41B14 at least in the radial direction.
  • a space is formed by the first to third convex inner walls RB61 to RB63 and the first to fourth concave inner walls 41B11 to 41B14.
  • a space is formed between the sixth convex portion RB6 and the first concave portion 41B1.
  • the jig is fitted into the space, and the processing can be easily performed using the straight line portion.
  • the above-described configuration suppresses a portion around the inner wall of the first recess from being plastically deformed. As a result, the area of the magnetic path in the core back portion is suppressed from being reduced, and the magnetic flux can efficiently flow when the motor is driven.
  • the method for manufacturing the motor 1 according to the present invention includes a step of laminating one or more electromagnetic steel sheets to form a laminated steel sheet. Further, a step of taking out a portion to be a rotor core (not shown) from the laminated steel sheet is included. Further, the method further includes a step of taking out the core back portion, the teeth portion, and the ring portion from the same laminated steel plate after taking out the rotor core. Further, a step of forming a space by pushback between the core back portion 41B and the ring member RB is included.
  • the winding method of the coil wire 21 is not limited to concentrated winding, but may be another kind of winding method such as distributed winding, wave winding, lap winding, full-section winding, or short-section winding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

This motor is provided with a rotor that rotates about a central axis extending in the up/down direction, a stator that faces opposite the rotor in the radial direction with a gap therebetween, and a cylindrical case in the interior of which the rotor and the stator are located. The stator includes: a plurality of core pieces having core back parts that are arranged annularly and extend along the circumferential direction and tooth parts that extend in the radial direction from the core back parts; and at least one annular ring member that is mounted onto an outer peripheral surface or an inner peripheral surface of the core back parts. The core pieces and the ring member(s) are steel sheet stacks formed of a plurality of magnetic steel sheets which are stacked together. The stator is fixed to an inner peripheral surface of the case via the ring member(s).

Description

モータおよびそれを備えるコンプレッサMotor and compressor including the same
 本発明は、モータおよび当該モータを用いた圧縮機に関する。本出願は、2018年7月20日に提出された米国仮特許出願第62/700961号に基づく優先権を主張し、その内容を援用する。 The present invention relates to a motor and a compressor using the motor. This application claims priority to and / or incorporates priority from U.S. Provisional Patent Application No. 62 / 700,961, filed July 20, 2018.
 一般に、コンプレッサでは、ステータコアの外周面および筒状のハウジングの内周面の少なくとも一方に冷媒を通すための通路(溝など)を設ける必要がある。そのため、ハウジングに圧入などにより、ステータコアを固定する場合には、なるべくステータコアの外周面とハウジングの内周面との接触面積を増やすために、コンプレッサ用ステータコアとしてはいわゆる丸コアが用いられるのが一般的である。丸コアは、コアバック部が周方向において分割されていないステータコアである。 Generally, in a compressor, at least one of the outer peripheral surface of the stator core and the inner peripheral surface of the cylindrical housing needs to be provided with a passage (a groove or the like) through which the refrigerant passes. Therefore, when the stator core is fixed to the housing by press fitting or the like, a so-called round core is generally used as the compressor stator core in order to increase the contact area between the outer peripheral surface of the stator core and the inner peripheral surface of the housing as much as possible. It is a target. The round core is a stator core whose core back portion is not divided in the circumferential direction.
 しかし、丸コアが用いられる場合、スロット間にノズルのスペースを確保しておく必要がある。そのため、丸コアの占積率は、ストレートコアなどの占積率と比較して、低い。また、丸コアが用いられる場合、インシュレータに代えて、絶縁体を塗装する方法も考えられる。インシュレータを廃止した場合、インシュレータの厚み分だけ導線を巻きまわそうとすると、コイルとステータコアとの間の絶縁の問題がある。そこで、コンプレッサ用モータのステータコアとして、丸コアに代えて、分割コアを用いることが考えられる。分割コアの占積率は、丸コアの占積率よりも、高い。 However, when a round core is used, it is necessary to secure a space for the nozzle between the slots. Therefore, the space factor of the round core is lower than that of a straight core or the like. When a round core is used, a method of painting an insulator instead of an insulator is also conceivable. When the insulator is abolished, there is a problem of insulation between the coil and the stator core when the conductor is to be wound by the thickness of the insulator. Therefore, it is conceivable to use a split core instead of the round core as the stator core of the compressor motor. The space factor of the split core is higher than that of the round core.
 しかしながら、上述のように、ステータコアの外周面およびハウジングの内周面の少なくとも一方に冷媒を通すための通路を設ける必要がある。そのため、ステータコアとして分割コアを採用してしまうと、丸コアのステータコアの場合と比較して、コアバックとハウジングとの接触面積が少ない。そのため、分割コアを圧入によりハウジングに固定すると、ステータコアの外周面とハウジングの内周面とが、全周ではなく、部分的に接触することとなる。その結果、分割コアのステータコアをハウジングに対して強固に固定することができない。また、部分的に接触するため、分割コアのコアピースを環状に配置した場合でも、圧入の際に、分割コアを構成する各コアピースの位置がずれてしまう虞がある。 However, as described above, at least one of the outer peripheral surface of the stator core and the inner peripheral surface of the housing needs to be provided with a passage for allowing the coolant to pass therethrough. For this reason, if a split core is adopted as the stator core, the contact area between the core back and the housing is smaller than in the case of a round core stator core. Therefore, when the split core is fixed to the housing by press-fitting, the outer peripheral surface of the stator core and the inner peripheral surface of the housing come into partial contact with each other, not the entire circumference. As a result, the stator core of the split core cannot be firmly fixed to the housing. In addition, since the core pieces are partially in contact with each other, even when the core pieces of the split cores are arranged in a ring shape, the positions of the core pieces constituting the split cores may be shifted during press-fitting.
 そこで、本発明では、分割コアを用いたコンプレッサ用ステータコアにおいて、容易に組立可能なステータコアおよび製造方法を提供することを目的の一つとする。 Therefore, it is an object of the present invention to provide a stator core for a compressor using a split core that can be easily assembled and a method of manufacturing the same.
 モータであって、上下方向に延びる中心軸を中心として回転するロータと、前記ロータと隙間を介して径方向に対向するステータと、前記ロータおよび前記ステータが内部に位置する筒状のケースと、を備え、前記ステータは、周方向に沿って環状に並び周方向に沿って延びるコアバック部および前記コアバック部から径方向に延びるティース部を有する複数のコアピースと、前記コアバックの外周面または内周面に取り付けられる少なくとも1つの環状のリング部材と、を有し、前記ステータは、前記リング部材を介して前記ケースの内周面に固定される。 A motor, a rotor that rotates about a central axis extending in the vertical direction, a stator radially opposed to the rotor with a gap therebetween, and a cylindrical case in which the rotor and the stator are located. Wherein the stator has a plurality of core pieces having a core back portion annularly arranged along a circumferential direction and a teeth portion extending radially from the core back portion and extending along the circumferential direction, and an outer peripheral surface of the core back or At least one annular ring member attached to an inner peripheral surface, wherein the stator is fixed to the inner peripheral surface of the case via the ring member.
図1は、一実施形態のモータの断面図である。FIG. 1 is a sectional view of a motor according to one embodiment. 図2は、一実施形態のステータピースの斜視図である。FIG. 2 is a perspective view of a stator piece according to one embodiment. 図3は、一実施形態のモータが設けられた圧縮機の概略図である。FIG. 3 is a schematic diagram of a compressor provided with a motor according to one embodiment. 図4は、一実施形態におけるケースとステータとの固定方法の概略図である。FIG. 4 is a schematic diagram of a method of fixing the case and the stator in one embodiment. 図5は、一実施形態におけるモータの斜視図である。FIG. 5 is a perspective view of a motor according to one embodiment. 図6は、一実施形態におけるモータの平面図である。FIG. 6 is a plan view of a motor according to one embodiment. 図7は、一実施形態におけるモータの斜視図である。FIG. 7 is a perspective view of a motor according to one embodiment. 図8は、一実施形態におけるモータの平面図である。FIG. 8 is a plan view of a motor according to one embodiment. 図9は、変形例に係るステータコアおよびリング部材の平面図である。FIG. 9 is a plan view of a stator core and a ring member according to a modification. 図10は、変形例に係るティース部の拡大平面図である。FIG. 10 is an enlarged plan view of a tooth portion according to a modification. 図11は、変形例に係る第6凸部と第1凹部との部分拡大図である。FIG. 11 is a partially enlarged view of a sixth convex portion and a first concave portion according to a modification. 図12は、変形例に係る第5凹部と第4凸部との部分拡大図である。FIG. 12 is a partially enlarged view of a fifth concave portion and a fourth convex portion according to a modification. 図13は、変形例に係る第2凹部と第3凸部との部分拡大図である。FIG. 13 is a partially enlarged view of a second concave portion and a third convex portion according to a modification.
 以下、図面を参照しながら、本発明の実施形態について説明する。なお、本発明の範囲は、以下の実施の形態に限定されず、本発明の技術的思想の範囲内で任意に変更可能である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the scope of the present invention is not limited to the following embodiment, and can be arbitrarily changed within the technical idea of the present invention.
 以下の図面においては、各構成をわかりやすくするために、実際の構造と各構造における縮尺や数等を異ならせる場合がある。また、各図には、適宜Z軸を示す。各図のZ軸方向は、図1に示す中心軸Jの軸方向と平行な方向とする。また、以下の説明においては、Z軸方向の正の側(+Z側,一方側)を「上側」と呼び、Z軸方向の負の側(-Z側,他方側)を「下側」と呼ぶ。なお、上側および下側とは、単に説明のために用いられる方向であって、実際の位置関係や方向を限定しない。また、特に断りのない限り、中心軸Jに平行な方向(Z軸方向)を単に「軸方向」と呼び、中心軸Jを中心とする径方向を単に「径方向」と呼び、中心軸Jを中心とする周方向、すなわち、中心軸Jの軸周りを単に「周方向」と呼ぶ。さらに、以下の説明において、「平面視」とは、軸方向から見た状態を意味する。 に お い て In the drawings below, in order to make each configuration easy to understand, the scale, number, and the like of the actual structure and each structure may be different. In each figure, the Z axis is shown as appropriate. The Z-axis direction in each drawing is a direction parallel to the axial direction of the central axis J shown in FIG. In the following description, the positive side (+ Z side, one side) in the Z-axis direction is referred to as “upper side”, and the negative side (−Z side, the other side) in the Z-axis direction is referred to as “lower side”. Call. Note that the terms “upper side” and “lower side” are simply directions used for description, and do not limit the actual positional relationship or direction. Unless otherwise specified, a direction parallel to the central axis J (Z-axis direction) is simply called “axial direction”, a radial direction about the central axis J is simply called “radial direction”, and a central axis J , Ie, around the central axis J, is simply referred to as “circumferential direction”. Further, in the following description, “in plan view” means a state viewed from the axial direction.
 (モータ)
 図1は、本実施形態のモータ1の断面図である。モータ1は、上下方向に延びる中心軸Jを中心として回転するロータ10と、ロータ10と隙間を介して径方向に対向するステータ20と、ケース2と、を有する。また、モータ1は、図示略のベアリングおよびベアリングホルダを有する。
(motor)
FIG. 1 is a cross-sectional view of a motor 1 according to the present embodiment. The motor 1 includes a rotor 10 that rotates about a central axis J that extends in the up-down direction, a stator 20 that radially opposes the rotor 10 via a gap, and a case 2. The motor 1 has a bearing and a bearing holder (not shown).
 ケース2は、モータ1を構成する各部材を収容する。図1に示すとおり、ケース2の内部にロータ10およびステータ20が位置する。ケース2は、上側(+Z側)および下側(-Z側)のうち何れか一方又は両方に開口する円筒状である。ケース2の開口には、ベアリングホルダ(図示略)が取り付けられる。 The case 2 accommodates each member constituting the motor 1. As shown in FIG. 1, the rotor 10 and the stator 20 are located inside the case 2. The case 2 has a cylindrical shape that opens to one or both of the upper side (+ Z side) and the lower side (−Z side). A bearing holder (not shown) is attached to the opening of the case 2.
 (ロータ)
 ロータ10は、シャフト11と、ロータコア12と、複数のロータマグネット13と、を有する。シャフト11は、上下方向(Z軸方向)に延びる中心軸Jを中心として一方向に延びる。シャフト11の上端および下端は、それぞれベアリング(図示略)によって、中心軸Jの軸周りに回転可能に支持される。ロータコア12は、シャフト11に固定される。ロータコア12は、シャフト11を周方向に囲んでいる。複数(本実施形態では10個)のロータマグネット13は、ロータコア12の周方向に沿った外側面に固定される。複数のロータマグネット13は、N極とS極とが周方向に交互に並べられる。ロータコア12およびロータマグネット13は、シャフト11とともに回転する。なお、マグネットは、複数ではなく、単一の部材であってもよい。また、マグネットは、少なくとも一部がロータコア12に埋め込まれてもよい。
(Rotor)
The rotor 10 has a shaft 11, a rotor core 12, and a plurality of rotor magnets 13. The shaft 11 extends in one direction around a center axis J extending in the up-down direction (Z-axis direction). The upper and lower ends of the shaft 11 are supported by bearings (not shown) so as to be rotatable around the central axis J. The rotor core 12 is fixed to the shaft 11. The rotor core 12 surrounds the shaft 11 in the circumferential direction. A plurality (ten in the present embodiment) of the rotor magnets 13 are fixed to the outer surface of the rotor core 12 along the circumferential direction. The plurality of rotor magnets 13 have N poles and S poles arranged alternately in the circumferential direction. The rotor core 12 and the rotor magnet 13 rotate together with the shaft 11. The magnet may be a single member instead of a plurality. Further, at least a part of the magnet may be embedded in the rotor core 12.
 (ステータ)
 ステータ20は、ロータ10の径方向外側を囲んでいる。ステータ20は、周方向に沿って環状に並ぶ複数のステータピース30から構成される。ステータ20において、周方向に隣接するステータピース30同士は、連結される。すなわち、ステータ20は、ステータピース30を周方向に沿って複数連結させて、構成される。ステータ20は、少なくとも1つの環状のリング部材Rを有する。
(Stator)
The stator 20 surrounds a radially outer side of the rotor 10. The stator 20 includes a plurality of stator pieces 30 arranged in a ring along the circumferential direction. In the stator 20, the stator pieces 30 adjacent in the circumferential direction are connected to each other. That is, the stator 20 is configured by connecting a plurality of stator pieces 30 along the circumferential direction. The stator 20 has at least one annular ring member R.
 本実施形態のステータ20は、15個のティース部42を有する。ティース部42同士の間には、コイル線21が収容されるスロット3が設けられる。ロータ10は、10個のロータマグネット13を有するため、本実施形態のモータ1は、10極15スロットで構成されるモータである。なお、モータの極数およびスロット数は、本実施形態に限定されるものではなく、要求出力および巻線方式などによって適宜選定される。しかしながら、極数/スロット数の比が、2/3となる組み合わせを選択することで、コイル線21の巻線が容易となる。 ス テ ー タ The stator 20 of the present embodiment has fifteen teeth portions 42. A slot 3 for accommodating the coil wire 21 is provided between the teeth 42. Since the rotor 10 has ten rotor magnets 13, the motor 1 of the present embodiment is a motor having 10 poles and 15 slots. In addition, the number of poles and the number of slots of the motor are not limited to the present embodiment, and are appropriately selected depending on a required output, a winding method, and the like. However, by selecting a combination in which the ratio of the number of poles / the number of slots is 2/3, the winding of the coil wire 21 becomes easy.
 (ステータピース)
 次に、本実施形態のステータピース30の構成について説明する。図2は、ステータピース30の斜視図である。
(Stator piece)
Next, the configuration of the stator piece 30 of the present embodiment will be described. FIG. 2 is a perspective view of the stator piece 30.
 図示は省略するが、ステータ20のステータピース30は、コアピース40と、上側インシュレータ50Aと、下側インシュレータ50Bと、絶縁シート(図示略)と、コイル線21と、を有する。 Although not shown, the stator piece 30 of the stator 20 includes a core piece 40, an upper insulator 50A, a lower insulator 50B, an insulating sheet (not shown), and a coil wire 21.
 コアピース40は、平面視で略T字形形状の複数の板材を軸方向に沿って積層することで構成される。したがって、コアピース40は、軸方向に沿って一様な形状を有する。 The core piece 40 is configured by stacking a plurality of plate members having a substantially T-shape in plan view along the axial direction. Therefore, the core piece 40 has a uniform shape along the axial direction.
 コアピース40は、コアバック部41と、ティース部42と、アンブレラ部43と、を有する。図1に示す様に、コアピース40は、周方向に沿って並んで、ステータ20のステータコア201を構成する。 The core piece 40 has a core back portion 41, a teeth portion 42, and an umbrella portion 43. As shown in FIG. 1, the core pieces 40 are arranged side by side in the circumferential direction to form a stator core 201 of the stator 20.
 コアバック部41は、周方向に沿って環状に並び周方向に沿って延びる。コアバック部41は、周方向を向く端部41bにおいて、隣接するコアピース40のコアバック部41と連結される。コアバック部41は、径方向内側を向く第1の対向面41aを有する。 The core back portion 41 is arranged in a ring along the circumferential direction and extends along the circumferential direction. The core back portion 41 is connected to the core back portion 41 of the adjacent core piece 40 at an end 41b facing the circumferential direction. The core back portion 41 has a first facing surface 41a facing radially inward.
 ティース部42は、コアバック部41の周方向中央から径方向内側に向かって延びる。ティース部42の周方向に沿う幅は一様である。ティース部42は、周方向を向く一対の側面42Aを有する。ティース部42には、上側インシュレータ50A、下側インシュレータ50Bおよび絶縁シートを介してコイル線21が巻き付けられる。なお、本実施形態において、コイル線21の巻線方式は集中巻である。 The teeth portion 42 extends radially inward from the center in the circumferential direction of the core back portion 41. The width of the teeth 42 along the circumferential direction is uniform. The teeth portion 42 has a pair of side surfaces 42A facing in the circumferential direction. The coil wire 21 is wound around the teeth portion 42 via an upper insulator 50A, a lower insulator 50B, and an insulating sheet. In the present embodiment, the winding method of the coil wire 21 is a concentrated winding.
 アンブレラ部43は、ティース部42の先端(径方向内側端部)に位置する。アンブレラ部43は、ティース部42より周方向に幅広である。すなわち、アンブレラ部43の周方向に沿う寸法は、ティース部42の周方向に沿う寸法より大きい。また、アンブレラ部43の周方向に沿う寸法は、コアバック部41の周方向に沿う寸法より小さい。アンブレラ部43の径方向内側を向く面は、ロータ10のロータマグネット13と対向する。アンブレラ部43は、径方向外側を向く第2の対向面43aを有する。第2の対向面43aは、コアバック部41の第1の対向面41aと径方向に対向する。第1の対向面41aと第2の対向面43aとの間には、コイル線21が通過する。 Umbrella part 43 is located at the tip (radially inner end part) of teeth part 42. The umbrella part 43 is wider in the circumferential direction than the teeth part 42. That is, the dimension of the umbrella section 43 along the circumferential direction is larger than the dimension of the teeth section 42 along the circumferential direction. The dimension of the umbrella section 43 along the circumferential direction is smaller than the dimension of the core back section 41 along the circumferential direction. The surface of the umbrella portion 43 facing radially inward faces the rotor magnet 13 of the rotor 10. The umbrella unit 43 has a second facing surface 43a facing radially outward. The second opposing surface 43a radially opposes the first opposing surface 41a of the core back portion 41. The coil wire 21 passes between the first facing surface 41a and the second facing surface 43a.
 コアピース40は、上面40bと下面40cとを有する。上面40bおよび下面40cには、図示しない丸穴(凹部)が設けられる。丸穴は、コアバック部41の周方向中央に位置する。上側インシュレータ50Aおよび下側インシュレータ50Bは、軸方向に延びる突起部(図示略)を有する。突起部は、丸穴に挿入される。これにより、上側インシュレータ50Aおよび下側インシュレータ50Bが、コアピース40に固定される。 The core piece 40 has an upper surface 40b and a lower surface 40c. The upper surface 40b and the lower surface 40c are provided with round holes (concave portions) (not shown). The round hole is located at the center in the circumferential direction of the core back portion 41. The upper insulator 50A and the lower insulator 50B have a protrusion (not shown) extending in the axial direction. The protrusion is inserted into the round hole. Thereby, the upper insulator 50A and the lower insulator 50B are fixed to the core piece 40.
 絶縁シートは、例えばポリプロピレンテレフタレート(PET)などの絶縁性の樹脂材料から構成される。なお、絶縁シートを構成する材料は、絶縁性を有し折り曲げることが可能な材料であれば特に限定されない。絶縁シートは、所望の絶縁性能を得るための一様な厚さを有する。 The insulating sheet is made of an insulating resin material such as polypropylene terephthalate (PET). Note that the material forming the insulating sheet is not particularly limited as long as the material has insulating properties and can be bent. The insulating sheet has a uniform thickness to obtain a desired insulating performance.
 (圧縮機)
 図3は、本実施形態のモータ1が設けられた圧縮機(コンプレッサ)100の概略図である。本実施形態の圧縮機100は、モータ1と、モータ1の下側に位置する圧縮機構部101と、ケース109と、アキュムレータ108と、を備える。
(Compressor)
FIG. 3 is a schematic diagram of a compressor (compressor) 100 provided with the motor 1 of the present embodiment. The compressor 100 of the present embodiment includes the motor 1, a compression mechanism 101 located below the motor 1, a case 109, and an accumulator 108.
 圧縮機構部101は、偏心ロータ103と、偏心ロータ103を囲むシリンダ102と、を有する。偏心ロータ103は、モータ1のシャフト11と接続されてモータ1の駆動に伴い回転する。圧縮機後部101は、モータ1と連動する。 The compression mechanism unit 101 includes an eccentric rotor 103 and a cylinder 102 surrounding the eccentric rotor 103. The eccentric rotor 103 is connected to the shaft 11 of the motor 1 and rotates with the driving of the motor 1. The compressor rear part 101 is linked with the motor 1.
 ケース109は、モータ1と圧縮機構部101とを収容する。ケース109には、吸入管104および吐出管105が接続される。ケース109の内部の潤滑油溜め107には、潤滑油が供給され、圧縮機構部101の動作を円滑にする。
 アキュムレータ108には、冷媒(冷却ガス)と潤滑油とが分離された状態で貯留される。アキュムレータ108において分離された冷媒は、吸入管104を介してケース109内部の圧縮機構部101に供給される。
The case 109 houses the motor 1 and the compression mechanism 101. The suction pipe 104 and the discharge pipe 105 are connected to the case 109. Lubricating oil is supplied to the lubricating oil reservoir 107 inside the case 109, and the operation of the compression mechanism 101 is smoothened.
The refrigerant (cooling gas) and the lubricating oil are stored in the accumulator 108 in a separated state. The refrigerant separated in the accumulator 108 is supplied to the compression mechanism 101 inside the case 109 via the suction pipe 104.
 圧縮機100は、モータ1の駆動に伴い圧縮機構部101の偏心ロータ103を回転させる。これにより、圧縮機100は、圧縮機構部101において、冷媒を吸入管104からシリンダ102内に吸入して圧縮する。圧縮された冷媒は、モータ1の周囲および内側を通過して、ケース109の上部に設けられた吐出管105から吐出される。 The compressor 100 rotates the eccentric rotor 103 of the compression mechanism 101 as the motor 1 is driven. Thereby, the compressor 100 draws the refrigerant from the suction pipe 104 into the cylinder 102 and compresses the refrigerant in the compression mechanism 101. The compressed refrigerant passes around and inside the motor 1 and is discharged from a discharge pipe 105 provided at an upper part of the case 109.
 以下、図4を用いて、ステータ20のケース109への固定方法について説明する。図4は、一実施形態におけるステータ20とケース109との固定方法の概略図である。図4におけるケース109は、図3におけるケース109を簡略化し、軸方向一部分のみを示している。ステータ20は、周方向に沿って環状に並ぶ複数のステータピース30から構成される。ステータ20において、周方向に隣接するステータピース30同士は、連結される。すなわち、ステータ20は、ステータピース30が周方向に沿って複数連結することにより、構成される。 Hereinafter, a method of fixing the stator 20 to the case 109 will be described with reference to FIG. FIG. 4 is a schematic diagram of a method of fixing the stator 20 and the case 109 in one embodiment. The case 109 in FIG. 4 simplifies the case 109 in FIG. 3 and shows only a part in the axial direction. The stator 20 includes a plurality of stator pieces 30 arranged in a ring along the circumferential direction. In the stator 20, the stator pieces 30 adjacent in the circumferential direction are connected to each other. That is, the stator 20 is configured by connecting a plurality of stator pieces 30 along the circumferential direction.
 (リング部材)
 ステータ20は、少なくとも1つの環状のリング部材Rを有する。具体的には、ステータ20の外周面(コアバック部41の外周面)には、筒状のリング部材Rが取り付けられる。リング部材Rは、例えば、分割コアが環状に配置された状態において、圧入、焼き嵌めなどによって、コアバック部41の外周面に取り付けられる。本実施形態では、リング部材Rは、ステータコア201のコアバック部41の全周と接触する。これにより、リング部材Rが各ステータピース30を環状のまま保持することができる。その結果、例えば、ステータを移動させる際に、コアピース40が環状の状態を保ったまま、機械などへ移動させることを容易に行うことができる。
(Ring member)
The stator 20 has at least one annular ring member R. Specifically, a cylindrical ring member R is attached to the outer peripheral surface of the stator 20 (the outer peripheral surface of the core back portion 41). The ring member R is attached to the outer peripheral surface of the core back portion 41 by press-fitting, shrink fitting, or the like, for example, in a state where the split cores are arranged in an annular shape. In the present embodiment, the ring member R contacts the entire periphery of the core back portion 41 of the stator core 201. Thereby, the ring member R can hold each stator piece 30 in an annular shape. As a result, for example, when the stator is moved, the core piece 40 can be easily moved to a machine or the like while maintaining the annular state.
 上述のように、ケース109は、モータ1と圧縮機構部101とを収容する。ケース109は、軸方向に延びる筒状の部材である。本実施形態では、ケース109は、筒部と、蓋部と、を有する。筒部は、軸方向に延びる筒状の部材である。蓋部は、筒部の軸方向一方側の端部から径方向内側に向かって延びる。本実施形態では、軸方向から見たときに、蓋部は、環状である。ケース109の材料は、例えば、アルミニウムである。しかしながら、ケース109の材料は、SUSなどのアルミニウム以外の材料であってもよく、特に限定されるものではない。 As described above, the case 109 houses the motor 1 and the compression mechanism 101. The case 109 is a cylindrical member extending in the axial direction. In the present embodiment, the case 109 has a tubular portion and a lid. The tubular portion is a tubular member extending in the axial direction. The lid portion extends radially inward from one axial end of the cylindrical portion. In the present embodiment, when viewed from the axial direction, the lid is annular. The material of the case 109 is, for example, aluminum. However, the material of the case 109 may be a material other than aluminum, such as SUS, and is not particularly limited.
 リング部材Rが取り付けられた状態のステータは、ケース109の内部に保持される。リング部材Rが取り付けられたステータ20は、ケース109の筒部内に、例えば、焼き嵌めや圧入などの方法によって、固定される。 ス テ ー タ The stator with the ring member R attached is held inside the case 109. The stator 20 to which the ring member R is attached is fixed in the cylindrical portion of the case 109 by, for example, shrink fitting or press fitting.
 上述のように、コアバック41の外周面およびケース109の内周面の少なくとも何れか一方には、冷媒が通り軸方向に延びる溝が設けられる。そのため、コアバック41の外周面がケース109の内周面と直接的に接触する場合、その接触する面積は、当該溝が設けられる構造と比較して小さい。 As described above, at least one of the outer peripheral surface of the core back 41 and the inner peripheral surface of the case 109 is provided with a groove through which the refrigerant passes and extends in the axial direction. Therefore, when the outer peripheral surface of the core back 41 directly contacts the inner peripheral surface of the case 109, the contact area is smaller than that of the structure in which the groove is provided.
 しかしながら、ステータコア201の外周面にはリング部材Rが取り付けられていることから、リング部材Rの外周面は、ケース109の内周面と全周にわたって接触する。言い換えると、ステータコア201は、リング部材Rを介してケース109に間接的に固定される。コアバック41の外周面がケース109の内周面と直接接触する場合と比較して、ケース109の内周面がリング部材Rの外周面と接触する面積が大きい。そのため、リング部材Rを介してステータ20をケース109の内部に強固に固定することができる。言い換えると、ステータ20は、リング部材Rを介してケース109の内周面に固定される。 However, since the ring member R is attached to the outer peripheral surface of the stator core 201, the outer peripheral surface of the ring member R contacts the inner peripheral surface of the case 109 over the entire circumference. In other words, the stator core 201 is indirectly fixed to the case 109 via the ring member R. The area where the inner peripheral surface of the case 109 contacts the outer peripheral surface of the ring member R is larger than when the outer peripheral surface of the core back 41 directly contacts the inner peripheral surface of the case 109. Therefore, the stator 20 can be firmly fixed inside the case 109 via the ring member R. In other words, the stator 20 is fixed to the inner peripheral surface of the case 109 via the ring member R.
 なお、本実施形態では、リング部材Rは1つのみがステータコア201の外周面に取り付けられる。しかしながら、複数のリング部材Rがステータコア201の外周面に取り付けられてもよい。この場合、各リング部材Rは軸方向に並ぶのが好ましい。 In the present embodiment, only one ring member R is attached to the outer peripheral surface of the stator core 201. However, a plurality of ring members R may be attached to the outer peripheral surface of stator core 201. In this case, the ring members R are preferably arranged in the axial direction.
 また、リング部材Rの形状は、必ずしも筒状に限られるものではない。リング部材Rの形状は、例えば、軸方向から見たときに、略C字となる形状であってもよい。この場合、板状の部材を湾曲させてステータコア201の外周面に取り付けるのが好ましい。 形状 Further, the shape of the ring member R is not necessarily limited to a cylindrical shape. The shape of the ring member R may be, for example, a substantially C-shape when viewed from the axial direction. In this case, it is preferable that the plate-shaped member be bent and attached to the outer peripheral surface of the stator core 201.
 なお、図5~図8に示すように、リング部材の材料は、例えば、ステータコアと同じ電磁鋼板であってもよい。この場合、リング部材RAをステータコア201Aと共取りとするのが望ましい。すなわち、一または複数枚が積層された同一の電磁鋼板から、リング部材RAおよびステータコア201Aの両方をプレス加工等により、製造する。 As shown in FIGS. 5 to 8, the material of the ring member may be, for example, the same electromagnetic steel plate as the stator core. In this case, it is desirable that the ring member RA be co-produced with the stator core 201A. That is, both the ring member RA and the stator core 201A are manufactured from the same electromagnetic steel sheet in which one or a plurality of sheets are laminated by press working or the like.
 共取りを行うプレス加工では、例えば、順送金型が用いられる。順送型の金型内におけるプレスでは、例えば、電磁鋼板の厚みT=0.2mm~0.5mmのものを用いることができる。さらに、ステータコア201Aの外径がφ100mm近傍の場合には、公差の範囲を通常と異なる80μmとすることも可能である。 プ レ ス In the press working for co-machining, for example, a progressive die is used. For the press in the progressive die, for example, an electromagnetic steel plate having a thickness T = 0.2 mm to 0.5 mm can be used. Further, when the outer diameter of the stator core 201A is in the vicinity of φ100 mm, the range of the tolerance can be set to 80 μm, which is different from the normal range.
 コアピースおよびリング部材RAは、複数枚の電磁鋼板が積層された積層鋼板である。リング部材RAの材料として、ステータコア201Aと同一の電磁鋼板を用いることにより、たとえば、焼き嵌めや圧入時などの応力集中によって、複数のコアピースから構成されるステータコア201Aが分解することを防止することができる。また、リング部材RAを別材料で作る必要がなくコスト等を削減することができる。 The core piece and the ring member RA are laminated steel sheets in which a plurality of electromagnetic steel sheets are laminated. By using the same electromagnetic steel plate as that of the stator core 201A as the material of the ring member RA, it is possible to prevent the stator core 201A composed of a plurality of core pieces from being decomposed due to stress concentration at the time of shrink fitting or press fitting, for example. it can. Further, the ring member RA does not need to be made of a different material, so that costs and the like can be reduced.
 リング部材RAを電磁鋼板(すなわち、積層鋼板)から打ち抜く方法としては、例えば、積層鋼板に対してプッシュバックを行うとともに、リング部材RAとステータコア201Aとを、一体品で取り出す方法がある。 As a method of punching the ring member RA from an electromagnetic steel plate (that is, a laminated steel plate), for example, there is a method of performing pushback on the laminated steel plate and taking out the ring member RA and the stator core 201A as an integrated product.
 それ以外に、リング部材を電磁鋼板から打ち抜く方法としては、二以上の電磁鋼板が積層された積層鋼板からステータコア201Aを打ち抜いて取り出し、その後、ステータコアを打ち抜いた後の積層鋼板から、さらにリング部材RAを打ち抜く方法がある。 In addition, as a method of punching the ring member from the electromagnetic steel sheet, the stator core 201A is punched out from a laminated steel sheet in which two or more electromagnetic steel sheets are stacked, and then, from the laminated steel sheet obtained by punching the stator core, the ring member RA is further extracted. There is a way to punch out.
 打ち抜いたステータコア201Aおよびリング部材RAとの締結は、例えば、ステータコア201Aの外周面(コアバック部)とリング部材RAの内周面との間に接着剤を塗布して固定する方法がある。この場合、軸方向から見たときに、ステータコア201Aの外周面の外形およびリング部材RAの内周面の外形とは、互いに同じ形状(例えば、円形)であることが望ましい。 締結 For fastening the stamped stator core 201A and the ring member RA, for example, there is a method in which an adhesive is applied and fixed between the outer peripheral surface (core back portion) of the stator core 201A and the inner peripheral surface of the ring member RA. In this case, when viewed from the axial direction, it is desirable that the outer shape of the outer peripheral surface of the stator core 201A and the outer shape of the inner peripheral surface of the ring member RA have the same shape (for example, circular).
 さらに、ステータコア201Aとリング部材RAとの締結は、ステータコア201Aのバリ面、ダレ面、あるいは転積(コアを積層する際に電磁鋼板の向きを回転させて積層すること)のズレを利用して、わずかな締め代を作り、圧入等により行われてもよい。 Further, the fastening between the stator core 201A and the ring member RA is performed by using a deviation of a burr surface, a sagging surface, or a translocation (rotating the direction of the electromagnetic steel plates when laminating the cores and laminating) of the stator core 201A. It may be done by making a slight interference and press-fitting.
 また、ステータコア201Aとリング部材RAとの締結は、中心軸とステータコア201Aの外周部(コアバックの外周面)までの距離を、中心軸を起点として周方向の位置(角度)ごとに変更し、リング部材RAとの間に締め代を設けて、ステータコア201Aとリング部材RAと圧入等により固定してもよい。 In addition, the fastening between the stator core 201A and the ring member RA changes the distance between the central axis and the outer peripheral portion of the stator core 201A (the outer peripheral surface of the core back) for each circumferential position (angle) from the central axis as a starting point, A margin may be provided between the ring member RA and the stator core 201A and the ring member RA may be fixed by press fitting or the like.
 また、図7および図8に示すように、上述のように、ステータコア201Aを打ち抜いて取り出してもよい。ステータコア201Aを打ち抜いた後の電磁鋼板から、さらにリング部材RAを打ち抜く方法によって、リング部材RAを作製する場合には、ステータコア201Aの径方向外側にリング部材RAを配置する。その後、打ち抜いたリング部材RAを面打ち(軸方向から力を加える)をして、リング部材RAの内周面が、リング部材の内径が小さくなる様に飛び出させてもよい。これにより、リング部材の内周面がステータコアの外周面と接触し、リング部材の内周面とステータコアの外周面のうち少なくとも一方の面が弾性変形または塑性変形する。その結果、リング部材とステータコアとを締結することができる。好ましくは、リング部材RAの内周面において、径方向外側に突出する係合凸部RA1が形成され、係合凸部RA1がステータコアの外周面に設けられた係合凹部201A1と係合する。図7および図8の変形例において、ステータコア201Aの外周面は、リング部材RAの内周面と間隙を介して対向する。当該間隙は、周方向において、隣り合うティース部42Aの間に位置する。当該間隙にバンパーを配置してもよい。リング部材RAの内周面は、第1内周面RAS1と第2内周面RAS2とを有する。リング部材RAの内周面は、第1内周面RAS1と第2内周面RAS2とにより、∨字状の面を有する。ステータコア201Aの内周面は、第3内周面201A3と第4内周面201A4とを有する。ステータコア201Aの内周面は、第3内周面201A3と第4内周面201A4とにより、∨字状の面を有する。第1内周面RAS1および第3内周面201A3は、平行であることが好ましい。第2内周面RAS2および第4内周面201A4は、平行であることが好ましい。 As shown in FIGS. 7 and 8, the stator core 201A may be punched out and taken out as described above. When the ring member RA is manufactured by a method of further punching the ring member RA from the electromagnetic steel sheet after the stator core 201A has been punched, the ring member RA is arranged radially outside the stator core 201A. Thereafter, the punched ring member RA may be faced (applied a force from the axial direction) so that the inner peripheral surface of the ring member RA protrudes so as to reduce the inner diameter of the ring member. Thus, the inner peripheral surface of the ring member comes into contact with the outer peripheral surface of the stator core, and at least one of the inner peripheral surface of the ring member and the outer peripheral surface of the stator core undergoes elastic deformation or plastic deformation. As a result, the ring member and the stator core can be fastened. Preferably, an engagement projection RA1 protruding radially outward is formed on the inner peripheral surface of the ring member RA, and the engagement projection RA1 engages with an engagement recess 201A1 provided on the outer peripheral surface of the stator core. 7 and 8, the outer peripheral surface of the stator core 201A faces the inner peripheral surface of the ring member RA via a gap. The gap is located between the adjacent tooth portions 42A in the circumferential direction. A bumper may be arranged in the gap. The inner peripheral surface of the ring member RA has a first inner peripheral surface RAS1 and a second inner peripheral surface RAS2. The inner peripheral surface of the ring member RA has a ∨-shaped surface due to the first inner peripheral surface RAS1 and the second inner peripheral surface RAS2. The inner peripheral surface of the stator core 201A has a third inner peripheral surface 201A3 and a fourth inner peripheral surface 201A4. The inner peripheral surface of the stator core 201A has a ∨-shaped surface due to the third inner peripheral surface 201A3 and the fourth inner peripheral surface 201A4. The first inner peripheral surface RAS1 and the third inner peripheral surface 201A3 are preferably parallel. The second inner peripheral surface RAS2 and the fourth inner peripheral surface 201A4 are preferably parallel.
 さらに、ステータコアおよびリング部材は、上述以外の他の形状であってもよい。図9~図13に他の変形例に係るステータコアおよびリングの形状を示す。図9は、本発明の変形例に係るステータコアおよびリング部材の平面図である。図10は本発明の変形例に係るティース部(図9における丸で囲んだ部位)の拡大平面図である。図11は、本発明の変形例に係る第6凸部と第1凹部との部分拡大図である。図12は、本発明の変形例に係る第5凹部と第4凸部の部分拡大図である。図13は、本発明の変形例に係る第2凹部と第3凸部の部分拡大図である。 Furthermore, the stator core and the ring member may have other shapes than those described above. 9 to 13 show shapes of a stator core and a ring according to another modification. FIG. 9 is a plan view of a stator core and a ring member according to a modification of the present invention. FIG. 10 is an enlarged plan view of a tooth portion (a portion surrounded by a circle in FIG. 9) according to a modification of the present invention. FIG. 11 is a partially enlarged view of a sixth convex portion and a first concave portion according to a modification of the present invention. FIG. 12 is a partially enlarged view of a fifth concave portion and a fourth convex portion according to a modification of the present invention. FIG. 13 is a partially enlarged view of a second concave portion and a third convex portion according to a modification of the present invention.
 上述と同様に、図9~図13に示す、ステータコア201BとリングRBとは、電磁鋼板をプレス加工で打ち抜き、積層して固定する(例えば、カシメ、溶接など)ことにより形成される。図9では、ステータコア201Bのコアバック部41Bが、リング部RBと、圧入または上述の方法により固定される。 ス テ ー タ Similarly to the above, the stator core 201B and the ring RB shown in FIGS. 9 to 13 are formed by punching, laminating and fixing (for example, caulking, welding, etc.) electromagnetic steel plates. In FIG. 9, the core back portion 41B of the stator core 201B is fixed to the ring portion RB by press fitting or the above-described method.
 軸方向から見たときに、コアピース40Bは、略T字の外形を有する。コアピース40Bのコアバック部41Bには、径方向内側に向かって凹む第1凹部41B1が設けられる。言い換えると、コアピース40Bのコアバック部41Bの外周面には、径方向内側に向かって凹む第1凹部41B1が形成される。第1凹部41B1の周方向の位置は、ティース部42Bの周方向の位置と、略同一である。すなわち、ティース部42Bの径方向外側には、第1凹部41B1が位置する。 コ ア When viewed from the axial direction, the core piece 40B has a substantially T-shaped outer shape. The core back part 41B of the core piece 40B is provided with a first recess 41B1 that is recessed radially inward. In other words, a first recess 41B1 that is recessed radially inward is formed on the outer peripheral surface of the core back portion 41B of the core piece 40B. The circumferential position of the first concave portion 41B1 is substantially the same as the circumferential position of the tooth portion 42B. That is, the first concave portion 41B1 is located radially outside the tooth portion 42B.
 コアピース40Bの周方向一方側の端部には、周方向他方側に向かって凹む第2凹部41B2が形成される。コアピース40Bの周方向他方側の端部には、周方向一方側に向かって凸となる第3凸部41B3が設けられる。より詳細には、コアバック部41Bの周方向一方側の端部には、周方向他方側に向かって凹む第2凹部41B2が形成され、コアバック部41Bの周方向他方側の端部には、周方向他方側に向かって突出する第3凸部41B3が形成される。 第 A second recess 41B2 is formed at one end in the circumferential direction of the core piece 40B so as to be recessed toward the other side in the circumferential direction. At the other end in the circumferential direction of the core piece 40B, a third convex portion 41B3 that protrudes toward one side in the circumferential direction is provided. More specifically, a second concave portion 41B2 that is recessed toward the other side in the circumferential direction is formed at one end in the circumferential direction of the core back portion 41B, and is formed at the other end in the circumferential direction of the core back portion 41B. A third convex portion 41B3 protruding toward the other side in the circumferential direction is formed.
 一のコアピース40Bは、他のコアピース40Bと周方向に隣り合う。一のコアピース40Bの第2凹部41B2には、周方向他方側に位置する他のコアピース40Bの第3凸部41B3が、嵌まる。これにより、周方向に隣り合う、一のコアピース40Bと他のコアピース40Bとが連結される。好ましくは、第3凸部41B3は、第2凹部41B2と、圧入により固定される。この場合、一のコアピース40Bと周方向一方側(または他方側)の端部と他のコアピース40Bの周方向他方側(または一方側)の端部とは、互いに接触し、一のコアピース40Bと他のコアピース40Bとの境界が形成される。当該境界の径方向外側の部位には、径方向外側に向かって突出する第4凸部41B4が形成される。第4凸部41B4は、一のコアピース40Bと周方向一方側(または他方側)の端部の径方向外側の部位と、他のコアピース40Bの周方向他方側(または一方側)の端部の径方向外側の部位、少なくとも何れか一方により構成される。 One core piece 40B is circumferentially adjacent to another core piece 40B. The third convex portion 41B3 of another core piece 40B located on the other side in the circumferential direction fits into the second concave portion 41B2 of one core piece 40B. Thereby, one core piece 40B and another core piece 40B that are adjacent in the circumferential direction are connected. Preferably, the third convex portion 41B3 is fixed to the second concave portion 41B2 by press fitting. In this case, one core piece 40B and one end (or the other side) in the circumferential direction and the other end (or one side) in the circumferential direction of the other core piece 40B are in contact with each other, and the one core piece 40B and A boundary with another core piece 40B is formed. A fourth convex portion 41B4 projecting radially outward is formed at a radially outer portion of the boundary. The fourth convex portion 41B4 is a portion of one core piece 40B and a radially outer portion of one circumferential end (or the other side) and another circumferential end of the other core piece 40B (or one end). It is composed of at least one of the radially outer parts.
 リング部RBは、コアバック部41Bの径方向外側に位置する。リング部RBの内周面は、コアバック部41Bの外周面の一部と、圧入により固定される。リング部RBの内周面には、径方向外側に向かって凹む第5凹部RB5が形成される。周方向において、第5凹部RB5の位置は、第2凹部41B2と第3凸部41B3とが組み合わさる位置と、同じである。第5凹部RB5内には、第4凸部41B4の少なくとも一部が収容される。これにより、第3凸部41B3と第2凹部41B2とが組み合わさった際に、周方向に隣り合うコアピース40B同士の外周面が変形し、リング部材RBが所定の形状から変形することを抑制することができる。 The ring portion RB is located radially outside the core back portion 41B. The inner peripheral surface of the ring portion RB is fixed to a part of the outer peripheral surface of the core back portion 41B by press fitting. A fifth recess RB5 recessed radially outward is formed on the inner peripheral surface of the ring portion RB. In the circumferential direction, the position of the fifth concave portion RB5 is the same as the position where the second concave portion 41B2 and the third convex portion 41B3 are combined. At least a part of the fourth protrusion 41B4 is accommodated in the fifth recess RB5. Thereby, when the third convex portion 41B3 and the second concave portion 41B2 are combined, the outer peripheral surfaces of the core pieces 40B adjacent in the circumferential direction are deformed, and the ring member RB is prevented from being deformed from a predetermined shape. be able to.
 リング部材RBの内周面には、径方向内側に向かって凸となる第6凸部RB6が形成される。第6凸部RB6は、リング部材RBの内周部から、径方向内側に向かって突出する。第6凸部RB6の周方向の位置は、第1凹部41B1の周方向の位置と同じである。第6凸部RB6の少なくとも一部は、第1凹部41B1内に収容される。より詳細には、第6凸部RB6の少なくとも一部は、第1凹部41B1内に、間隙を介して配置される。 A sixth convex portion RB6 is formed on the inner peripheral surface of the ring member RB so as to protrude radially inward. The sixth convex portion RB6 protrudes radially inward from the inner peripheral portion of the ring member RB. The circumferential position of the sixth convex portion RB6 is the same as the circumferential position of the first concave portion 41B1. At least a part of the sixth protrusion RB6 is accommodated in the first recess 41B1. More specifically, at least a part of the sixth convex portion RB6 is arranged in the first concave portion 41B1 with a gap.
 リング部材RBの内周面において、第6凸部RB6の周方向両側には、径方向外側に向かって凹む溝部RB61が、それぞれ形成される。 溝 On the inner peripheral surface of the ring member RB, on both sides in the circumferential direction of the sixth convex portion RB6, groove portions RB61 recessed outward in the radial direction are respectively formed.
 第1凹部41B1を構成する内側面は、第1凹部内壁部41B11と、第2凹部内壁部41B12と、第3凹部内壁部41B13と、第4凹部内壁部41B14と、を有する。第1凹部内壁部41B11は、周方向に沿って延びる部位である。軸方向から見たときに、第1凹部内壁部41B11は、略直線状である。 内 The inner surface of the first recess 41B1 has a first recess inner wall 41B11, a second recess inner wall 41B12, a third recess inner wall 41B13, and a fourth recess inner wall 41B14. The first recess inner wall portion 41B11 is a portion extending along the circumferential direction. When viewed from the axial direction, the first recess inner wall portion 41B11 is substantially straight.
 一対の第2凹部内壁部41B12は、第1凹部内壁部41B11の周方向両側から径方向外側に向かって伸びる。一対の第2凹部内壁部41B12は、周方向に互いに離れる方向に延びる。軸方向から見たときに、第2凹部内壁部41B12は、直線状に伸びる。 The pair of second recess inner wall portions 41B12 extend radially outward from both circumferential sides of the first recess inner wall portion 41B11. The pair of second recess inner wall portions 41B12 extend in a direction away from each other in the circumferential direction. When viewed from the axial direction, the second recess inner wall portion 41B12 extends linearly.
 第3凹部内壁部41B13は、第2凹部内壁部41B12の径方向外側の端部から径方向外側に向かって延びる。軸方向から見たときに、一対の第3凹部内壁部41B13は、略直線状に伸びる。軸方向から見たときに、第3凹部内壁部41B13は、略平行である。 The third recess inner wall portion 41B13 extends radially outward from a radially outer end of the second recess inner wall portion 41B12. When viewed from the axial direction, the pair of third recess inner wall portions 41B13 extend substantially linearly. When viewed from the axial direction, the third recess inner wall portion 41B13 is substantially parallel.
 一対の第4凹部内壁部41B14は、一対の第3内壁部41B13の径方向外側の端部から径方向外側に向かって延び、周方向に互いに離れる方向に延びる。 The pair of fourth recess inner wall portions 41B14 extend radially outward from radially outer ends of the pair of third inner wall portions 41B13, and extend in a direction away from each other in the circumferential direction.
 軸方向から見たときに、第6凸部RB6の径方向内側の端部である第1凸部内壁RB61は、周方向に延びる略直線状である。第1凸部内壁RB62は、第1凹部内壁部41B11と、径方向に対向する。第1凸部内壁41B11の周方向両側に位置する一対の第2凸部内壁RB62は、径方向に伸び、略平行である。 When viewed from the axial direction, the first protrusion inner wall RB61, which is the radially inner end of the sixth protrusion RB6, has a substantially linear shape extending in the circumferential direction. The first convex inner wall RB62 radially opposes the first concave inner wall 41B11. The pair of second protrusion inner walls RB62 located on both circumferential sides of the first protrusion inner wall 41B11 extend in the radial direction and are substantially parallel.
 第2凸部内壁RB62は、第3凹部内壁部41B13と、周方向に対向する。 The second projection inner wall RB62 faces the third recess inner wall 41B13 in the circumferential direction.
 第3凸部内壁41B13は、第2凸部内壁RB62の径方向外側の端部から、径方向外側に向かって延びる。一対の第3凸部内壁RB63は、周方向に互いに離れて延びる。第3凸第3凸部内壁RB63は、第4凹部内壁部41B14と少なくとも径方向に対向する。 The third convex inner wall 41B13 extends radially outward from the radial outer end of the second convex inner wall RB62. The pair of third convex portion inner walls RB63 extend apart from each other in the circumferential direction. The third convex third convex inner wall RB63 faces the fourth concave inner wall 41B14 at least in the radial direction.
 第1~第3凸部内壁RB61~RB63と第1~第4凹部内壁部41B11~41B14とによって、空間が構成される。言い換えると、第6凸部RB6と第1凹部41B1との間には、空間が構成される。また、上述のように、軸方向から見たときに、第6凸部RB6と第1凹部41B1との間に構成される空間を構成する内壁には、直線部分が存在する、そのため、後述するように、プッシュバックを行う際に、ジグを当該空間内にはめ込み、直線部分を利用して、加工を容易に行うことができる。 空間 A space is formed by the first to third convex inner walls RB61 to RB63 and the first to fourth concave inner walls 41B11 to 41B14. In other words, a space is formed between the sixth convex portion RB6 and the first concave portion 41B1. In addition, as described above, when viewed from the axial direction, there is a linear portion on the inner wall constituting the space formed between the sixth convex portion RB6 and the first concave portion 41B1, and therefore, will be described later. As described above, when the pushback is performed, the jig is fitted into the space, and the processing can be easily performed using the straight line portion.
 加えて、上述の構成により、コアバック部41Bがリング部材RBと圧入等により固定される場合でも、第1凹部内壁部の周囲の部位が塑性変形することが抑制される。その結果、コアバック部における磁路の面積が狭くなることが抑制され、モータに駆動時において、磁束を効率よく流すことができる。 In addition, even when the core back portion 41B is fixed to the ring member RB by press-fitting or the like, the above-described configuration suppresses a portion around the inner wall of the first recess from being plastically deformed. As a result, the area of the magnetic path in the core back portion is suppressed from being reduced, and the magnetic flux can efficiently flow when the motor is driven.
 図9に示すステータコア201Bおよびリング部材RBの製造方法の一例としては、例えば、まず、1枚以上の電磁鋼板を積層して積層鋼板を形成する。その次に、積層鋼板からロータコア(図示省略)となる部位を打ち抜く。次に、ロータコアが打ち抜かれた積層鋼板から、さらに、コアバック部と、ティース部と、リング部と、を打ち抜く。さらに、ティース部42Bとリング部材RBとの繋ぎ目、および周方向に隣り合うコアバック部41Bの端部において、プッシュバック(push-BACk)を行う。コアバック部41Bとリング部材RBとの間には、プッシュバックによって、空間が構成される。すなわち、本発明におけるモータ1の製造方法は、1枚以上の電磁鋼板を積層して積層鋼板を形成する工程を含む。さらに、積層鋼板からロータコア(図示省略)となる部位を取り出す工程を含む。さらに、ロータコア取り出し後の同一の積層鋼板から、さらに、コアバック部と、ティース部と、リング部と、を取り出す工程を含む。さらに、コアバック部41Bとリング部材RBとの間に、プッシュバックによって、空間を構成する工程を含む。 と し て As an example of a method of manufacturing the stator core 201B and the ring member RB shown in FIG. 9, for example, first, one or more electromagnetic steel sheets are stacked to form a laminated steel sheet. Next, a portion to be a rotor core (not shown) is punched from the laminated steel plate. Next, the core back portion, the teeth portion, and the ring portion are further punched from the laminated steel plate from which the rotor core has been punched. Furthermore, push-back (push-BACK) is performed at the joint between the tooth portion 42B and the ring member RB and at the end of the core back portion 41B adjacent in the circumferential direction. A space is formed between the core back portion 41B and the ring member RB by pushback. That is, the method for manufacturing the motor 1 according to the present invention includes a step of laminating one or more electromagnetic steel sheets to form a laminated steel sheet. Further, a step of taking out a portion to be a rotor core (not shown) from the laminated steel sheet is included. Further, the method further includes a step of taking out the core back portion, the teeth portion, and the ring portion from the same laminated steel plate after taking out the rotor core. Further, a step of forming a space by pushback between the core back portion 41B and the ring member RB is included.
 これにより、第1凹部41B1、第2凹部41B2、第3凸部41B3、第4凸部41B4、第5凹部RB5、第6凸部RB6が形成される。リング部材RBとティース部42Bとが、焼き嵌め又は圧入等によって固定される。すなわち、ティース部42Bの外周面の第1凹部41B1の周方向両側の部位と、リング部材RBの内周面とが、焼き嵌め又は圧入などにより固定される。 Thereby, the first concave portion 41B1, the second concave portion 41B2, the third convex portion 41B3, the fourth convex portion 41B4, the fifth concave portion RB5, and the sixth convex portion RB6 are formed. Ring member RB and teeth portion 42B are fixed by shrink fitting or press fitting. That is, the portions on the outer circumferential surface of the teeth portion 42B on both circumferential sides of the first concave portion 41B1 and the inner circumferential surface of the ring member RB are fixed by shrink fitting or press fitting.
 コイル線21の巻線方式は集中巻だけでなく、分布巻、波巻き、重ね巻き、全節巻、又は短節巻などの他の種類の巻線方式であってもよい。 巻 線 The winding method of the coil wire 21 is not limited to concentrated winding, but may be another kind of winding method such as distributed winding, wave winding, lap winding, full-section winding, or short-section winding.
 圧縮機の種類は上述のものに限られず、他の種類の圧縮機であってもよい。上述のステータピースを有するモータは、圧縮機以外の他の装置などにおいても用いることができる。 種類 The type of compressor is not limited to the one described above, and may be another type of compressor. The motor having the above-described stator piece can be used in devices other than the compressor.

Claims (10)

  1.  モータであって、
      上下方向に延びる中心軸を中心として回転するロータと、
      前記ロータと隙間を介して径方向に対向するステータと、
      前記ロータおよび前記ステータが内部に位置する筒状のケースと、
    を備え、
     前記ステータは、
      周方向に沿って環状に並び周方向に沿って延びるコアバック部および前記コアバック部から径方向に延びるティース部を有する複数のコアピースと、
      前記コアバックの外周面または内周面に取り付けられる少なくとも1つの環状のリング部材と、
    を有し、
     前記コアピースおよびリング部材は、複数枚の電磁鋼板が積層された積層鋼板であり、
     前記ステータは、前記リング部材を介して前記ケースの内周面に固定される。
    A motor,
    A rotor that rotates about a central axis extending in a vertical direction,
    A stator radially opposed to the rotor via a gap,
    A cylindrical case in which the rotor and the stator are located,
    With
    The stator is
    A plurality of core pieces having a core back portion annularly arranged along the circumferential direction and teeth portions extending radially from the core back portion and extending along the circumferential direction,
    At least one annular ring member attached to an outer peripheral surface or an inner peripheral surface of the core back;
    Has,
    The core piece and the ring member are laminated steel sheets in which a plurality of electromagnetic steel sheets are laminated,
    The stator is fixed to an inner peripheral surface of the case via the ring member.
  2.  請求項1に記載のモータであって、 前記ロータは、複数枚の電磁鋼板が積層された積層鋼板である。 The motor according to claim 1, wherein the rotor is a laminated steel sheet in which a plurality of electromagnetic steel sheets are laminated.
  3.  請求項1または2に記載のモータであって、
     前記リング部材は、圧入により前記コアバックに固定される。
    The motor according to claim 1 or 2,
    The ring member is fixed to the core back by press fitting.
  4.  請求項1から3の何れか一項に記載のモータであって、
     前記ステータは、前記ケース内に、前記リング部材を介して焼き嵌めにより固定される。
    The motor according to any one of claims 1 to 3, wherein
    The stator is fixed in the case by shrink fitting via the ring member.
  5.  請求項1から4の何れか一項に記載のモータであって、
     軸方向から見たときに、前記リング部材の外形は、略C字である。
    The motor according to any one of claims 1 to 4,
    When viewed from the axial direction, the outer shape of the ring member is substantially C-shaped.
  6.  請求項1から5の何れか一項に記載のモータであって、
     複数の前記リング部材が、前記コアバックに取り付けられる。
    The motor according to any one of claims 1 to 5,
    A plurality of the ring members are attached to the core back.
  7.  請求項1から6の何れか一項に記載のモータであって、
     前記リング部材は、径方向内側に向かって突出する第6凸部を有し、
     前記コアバック部の外周面には、径方向内側に向かって凹む第1凹部が形成され、
     前記第6凸部の少なくとも一部は、前記第1凹部内に、間隙を介して配置される。
    The motor according to any one of claims 1 to 6, wherein
    The ring member has a sixth protrusion protruding radially inward,
    On the outer peripheral surface of the core back portion, a first concave portion is formed that is concave inward in the radial direction,
    At least a part of the sixth convex portion is disposed in the first concave portion with a gap.
  8.  請求項1から7の何れか一項に記載のモータであって、
     前記コアバック部の周方向一方側の端部には、周方向他方側に向かって凹む第2凹部が形成され、
     前記コアバック部の周方向他方側の端部には、周方向他方側に向かって突出する第3凸部が形成され、
     一の前記コアピースは、他の前記コアピースと周方向に隣り合い、
     前記一の前記コアピースの前記第2凹部には、前記他の前記コアピースの前記第3凸部が嵌まる。
    The motor according to any one of claims 1 to 7,
    A second concave portion that is concave toward the other side in the circumferential direction is formed at one end in the circumferential direction of the core back portion,
    A third protrusion protruding toward the other side in the circumferential direction is formed at the other end in the circumferential direction of the core back portion,
    One of the core pieces is circumferentially adjacent to the other of the core pieces,
    The third convex portion of the other core piece fits into the second concave portion of the one core piece.
  9.  圧縮機であって、
      請求項1から8の何れか一項に記載のモータと、
      前記モータと連動する圧縮機構部と、
    を有する。
    A compressor,
    A motor according to any one of claims 1 to 8,
    A compression mechanism interlocked with the motor;
    Having.
  10.  請求項1から9の何れか一項に記載のモータの製造方法であって、
     前記コアバック部と前記リング部材とは、同一の積層鋼板から取り出される工程と、
     前記コアバック部と前記リング部材との間にはプッシュバックによって構成された空間が構成される構成と、
     焼き嵌めによって、前記リング部材と前記コアバック部材とが固定される工程と、
    を含む。
    It is a manufacturing method of the motor according to any one of claims 1 to 9,
    The core back portion and the ring member are taken out of the same laminated steel plate;
    A configuration in which a space configured by pushback is configured between the core back portion and the ring member;
    A step in which the ring member and the core back member are fixed by shrink fitting;
    including.
PCT/JP2019/028413 2018-07-20 2019-07-19 Motor and compressor provided therewith WO2020017625A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020531377A JPWO2020017625A1 (en) 2018-07-20 2019-07-19 Motor and compressor with it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862700961P 2018-07-20 2018-07-20
US62/700,961 2018-07-20

Publications (1)

Publication Number Publication Date
WO2020017625A1 true WO2020017625A1 (en) 2020-01-23

Family

ID=69164612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028413 WO2020017625A1 (en) 2018-07-20 2019-07-19 Motor and compressor provided therewith

Country Status (2)

Country Link
JP (1) JPWO2020017625A1 (en)
WO (1) WO2020017625A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022032141A (en) * 2020-08-11 2022-02-25 シナノケンシ株式会社 Stator core and motor
JP2022543425A (en) * 2020-05-27 2022-10-12 ジン-ジン エレクトリック テクノロジーズ カンパニー リミテッド Stator core cooling structure and motor cooling system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001028871A (en) * 1999-07-12 2001-01-30 Matsushita Electric Ind Co Ltd Linear actuator
JP2001304123A (en) * 2000-04-27 2001-10-31 Mitsubishi Electric Corp Hermetic compressor, method of manufacturing the same, and refrigerating air conditioning device
JP2004343939A (en) * 2003-05-19 2004-12-02 Mitsubishi Electric Corp Rotary electric machine and manufacturing method thereof
JP2007531485A (en) * 2004-03-23 2007-11-01 エマーソン エレクトリック カンパニー End caps for interconnecting segmented stator winding coils to reduce phase-on-phase conditions and methods related thereto
JP2009136101A (en) * 2007-11-30 2009-06-18 Mitsubishi Electric Corp Motor, and refrigerant compressor with the same
JP2014050188A (en) * 2012-08-30 2014-03-17 Asmo Co Ltd Method of manufacturing stator
JP2015082936A (en) * 2013-10-24 2015-04-27 三菱電機株式会社 Stator of dynamo-electric machine
JP2016220490A (en) * 2015-05-26 2016-12-22 三菱電機株式会社 Stator for rotary electric machine, and manufacturing method of stator for rotary electric machine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001028871A (en) * 1999-07-12 2001-01-30 Matsushita Electric Ind Co Ltd Linear actuator
JP2001304123A (en) * 2000-04-27 2001-10-31 Mitsubishi Electric Corp Hermetic compressor, method of manufacturing the same, and refrigerating air conditioning device
JP2004343939A (en) * 2003-05-19 2004-12-02 Mitsubishi Electric Corp Rotary electric machine and manufacturing method thereof
JP2007531485A (en) * 2004-03-23 2007-11-01 エマーソン エレクトリック カンパニー End caps for interconnecting segmented stator winding coils to reduce phase-on-phase conditions and methods related thereto
JP2009136101A (en) * 2007-11-30 2009-06-18 Mitsubishi Electric Corp Motor, and refrigerant compressor with the same
JP2014050188A (en) * 2012-08-30 2014-03-17 Asmo Co Ltd Method of manufacturing stator
JP2015082936A (en) * 2013-10-24 2015-04-27 三菱電機株式会社 Stator of dynamo-electric machine
JP2016220490A (en) * 2015-05-26 2016-12-22 三菱電機株式会社 Stator for rotary electric machine, and manufacturing method of stator for rotary electric machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022543425A (en) * 2020-05-27 2022-10-12 ジン-ジン エレクトリック テクノロジーズ カンパニー リミテッド Stator core cooling structure and motor cooling system
JP7306764B2 (en) 2020-05-27 2023-07-11 ジン-ジン エレクトリック テクノロジーズ カンパニー リミテッド Stator core cooling structure and motor cooling system
JP2022032141A (en) * 2020-08-11 2022-02-25 シナノケンシ株式会社 Stator core and motor
JP7084451B2 (en) 2020-08-11 2022-06-14 シナノケンシ株式会社 Stator core and motor
US11824401B2 (en) 2020-08-11 2023-11-21 Shinano Kenshi Kabushiki Kaisha Stator core with adjustable press-fit force to motor case and motor with the stator core

Also Published As

Publication number Publication date
JPWO2020017625A1 (en) 2021-08-02

Similar Documents

Publication Publication Date Title
KR100401083B1 (en) Stator iron core of electric motor, manufacturing method thereof, electric motor, and compressor
WO2011161806A1 (en) Laminated core for dynamo-electric machine
JP2007068310A (en) Laminated winding core for rotary machine
EP2750263A2 (en) Permanent magnet embedded type rotating electrical machine
US8058761B2 (en) Rotating electrical machine
WO2016178368A1 (en) Rotary electric machine and manufacturing method therefor
WO2020017625A1 (en) Motor and compressor provided therewith
US20210044162A1 (en) Axial gap motor
CN107425619B (en) Stator module, motor and compressor
CN111183568B (en) Stator, motor and compressor
WO2018179736A1 (en) Rotor, and motor with rotor
EP3193429B1 (en) Motor and electric compressor
US6770990B2 (en) Reciprocating motor
WO2014192459A1 (en) Stator, motor, and compressor
JP2018046617A (en) Stator core of rotary electric machine
WO2018235564A1 (en) Stator pieces, stator, and motor
CN1894840B (en) Stator of reciprocating motor and fabrication method thereof
JP5365109B2 (en) Teeth, armature magnetic core
JP2019115217A (en) Rotor core mounting structure
CN114142633B (en) Stator, motor, compressor and refrigeration plant
JP2006129650A (en) Motor
JP7204027B1 (en) Rotating electric machine and its rotor
JP2014079059A (en) Stator of motor and manufacturing method of the same
US20220166295A1 (en) Stator core plate manufacturing method, stator core plate, stator core, and mold
WO2019181524A1 (en) Stator and motor provided therewith

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19838461

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020531377

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19838461

Country of ref document: EP

Kind code of ref document: A1