WO2020017437A1 - 窒化物半導体装置 - Google Patents

窒化物半導体装置 Download PDF

Info

Publication number
WO2020017437A1
WO2020017437A1 PCT/JP2019/027605 JP2019027605W WO2020017437A1 WO 2020017437 A1 WO2020017437 A1 WO 2020017437A1 JP 2019027605 W JP2019027605 W JP 2019027605W WO 2020017437 A1 WO2020017437 A1 WO 2020017437A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
nitride semiconductor
opening
semiconductor device
electrode
Prior art date
Application number
PCT/JP2019/027605
Other languages
English (en)
French (fr)
Inventor
柴田 大輔
田村 聡之
小川 雅弘
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2020531279A priority Critical patent/JP7303807B2/ja
Priority to US17/259,505 priority patent/US20210167061A1/en
Publication of WO2020017437A1 publication Critical patent/WO2020017437A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/2654Bombardment with radiation with high-energy radiation producing ion implantation in AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/2654Bombardment with radiation with high-energy radiation producing ion implantation in AIIIBV compounds
    • H01L21/26546Bombardment with radiation with high-energy radiation producing ion implantation in AIIIBV compounds of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/266Bombardment with radiation with high-energy radiation producing ion implantation using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • H01L21/30612Etching of AIIIBV compounds
    • H01L21/30621Vapour phase etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3228Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of AIIIBV compounds, e.g. to make them semi-insulating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8252Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using III-V technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0605Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/66196Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices with an active layer made of a group 13/15 material
    • H01L29/66204Diodes
    • H01L29/66212Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7788Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7789Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface the two-dimensional charge carrier gas being at least partially not parallel to a main surface of the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0646PN junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor

Definitions

  • the present disclosure relates to a nitride semiconductor device.
  • a nitride semiconductor typified by gallium nitride (GaN) and aluminum nitride (AlN) is a wide-gap semiconductor having a large band gap, a large breakdown electric field, and a gallium arsenide (GaAs) semiconductor having a high electron saturation drift speed. It has the feature that it is larger than a silicon (Si) semiconductor. For this reason, research and development of a power transistor using a nitride semiconductor which is advantageous for increasing the output and increasing the breakdown voltage are being performed.
  • Patent Document 1 discloses a vertical semiconductor device including a GaN-based stacked body.
  • the semiconductor device disclosed in Patent Document 1 has a vertical field effect transistor (FET: Field Effect Transistor) having a regrown layer including a channel positioned so as to cover a wall surface of an opening provided in a GaN-based stacked body. It is.
  • the channel is formed by a two-dimensional electron gas (2DEG: 2-Dimensional Electron Gas) generated in the regrown layer.
  • 2DEG 2-Dimensional Electron Gas
  • the conventional semiconductor device described above has a problem that it is impossible to achieve both a high breakdown voltage and a large current operation.
  • the present disclosure provides a nitride semiconductor device having a high withstand voltage and capable of operating with a large current.
  • a nitride semiconductor device includes a substrate, a first conductivity-type first nitride semiconductor layer provided above the substrate, A second nitride semiconductor layer of a second conductivity type different from the first conductivity type, provided above the nitride semiconductor layer, and a first opening penetrating the second nitride semiconductor layer And an electron transit layer and an electron supply layer sequentially provided from the substrate side along an inner surface of the first opening, and provided above the electron supply layer so as to cover the first opening.
  • a gate electrode a source electrode connected to the electron supply layer and the electron transit layer at a position distant from the gate electrode, and a source electrode provided on a side of the substrate opposite to the first nitride semiconductor layer.
  • a drain electrode wherein the number of the second nitride semiconductor layers is reduced. Some also is fixed to a potential different from the potential applied to the source electrode.
  • a nitride semiconductor device having a high withstand voltage and capable of operating with a large current.
  • FIG. 1 is a diagram showing a planar layout of the nitride semiconductor device according to the first embodiment.
  • FIG. 2 is an enlarged view of a region II in FIG.
  • FIG. 3 is a cross-sectional view of the nitride semiconductor device according to the first embodiment, taken along line III-III in FIG.
  • FIG. 4 is a diagram illustrating a current flowing through a channel of the nitride semiconductor device according to the comparative example.
  • FIG. 5 is a diagram illustrating a current flowing through the channel of the nitride semiconductor device according to the first embodiment.
  • FIG. 6 is a cross-sectional view of the nitride semiconductor device according to the second embodiment.
  • FIG. 1 is a diagram showing a planar layout of the nitride semiconductor device according to the first embodiment.
  • FIG. 2 is an enlarged view of a region II in FIG.
  • FIG. 3 is a cross-sectional view of the nitride semiconductor device according to the first embodiment
  • FIG. 7 is a plan view showing a planar layout of the nitride semiconductor device according to the third embodiment.
  • FIG. 8 is an enlarged view showing a region VIII in FIG.
  • FIG. 9 is a cross-sectional view of the nitride semiconductor device according to the third embodiment, taken along line IX-IX in FIG.
  • FIG. 10 is a cross-sectional view of the nitride semiconductor device according to the third embodiment, taken along line XX in FIG.
  • FIG. 11A is a cross-sectional view showing a step of laminating a nitride semiconductor in the method for manufacturing a nitride semiconductor device according to the third embodiment.
  • FIG. 11B is a cross-sectional view showing a resist patterning step in the method for manufacturing a nitride semiconductor device according to the third embodiment.
  • FIG. 11C is a cross-sectional view showing a step of forming the gate opening in the method for manufacturing the nitride semiconductor device according to the third embodiment.
  • FIG. 11D is a cross-sectional view showing a step of patterning a resist for a mask at the time of ion implantation in the method for manufacturing a nitride semiconductor device according to the third embodiment.
  • FIG. 11E is a cross-sectional view showing an ion implantation step in the method for manufacturing a nitride semiconductor device according to the third embodiment.
  • FIG. 11F is a cross-sectional view showing a nitride semiconductor regrowth step in the method for manufacturing a nitride semiconductor device according to Embodiment 3.
  • FIG. 11G is a cross-sectional view showing a step of patterning the resist for the source opening in the method for manufacturing the nitride semiconductor device according to the third embodiment.
  • FIG. 11H is a cross-sectional view showing a step of forming the source opening in the method for manufacturing the nitride semiconductor device according to the third embodiment.
  • FIG. 11I is a cross-sectional view showing a step of forming the gate electrode and the source electrode in the method for manufacturing the nitride semiconductor device according to the third embodiment.
  • FIG. 12 is a cross-sectional view of a nitride semiconductor device according to a first modification of the third embodiment.
  • FIG. 13 is a cross-sectional view of a nitride semiconductor device according to a second modification of the third embodiment.
  • FIG. 14 is a sectional view of the nitride semiconductor device according to the fourth embodiment.
  • FIG. 15 is a sectional perspective view showing a layout of two openings of the nitride semiconductor device according to the fourth embodiment.
  • FIG. 16 is a plan view showing a layout of two openings of the nitride semiconductor device according to the fourth embodiment.
  • FIG. 17 is a cross-sectional perspective view showing a connection portion between the gate electrode and the current block layer of the nitride semiconductor device according to the fourth embodiment.
  • FIG. 18 is a cross-sectional perspective view showing a connection portion between a source electrode and a shield layer of the nitride semiconductor device according to the fourth embodiment.
  • FIG. 19 is a sectional view of the nitride semiconductor device according to the fifth embodiment.
  • FIG. 20 is a cross-sectional perspective view showing a layout of two openings of the nitride semiconductor device according to the sixth embodiment.
  • FIG. 21 is a cross-sectional view of the nitride semiconductor device according to the seventh embodiment.
  • FIG. 22 is a sectional view showing another configuration of the nitride semiconductor device according to the seventh embodiment.
  • FIG. 23A is a cross-sectional view for describing a first film forming step in the method for manufacturing a nitride semiconductor device according to the seventh embodiment.
  • FIG. 23B is a cross-sectional view for describing a step of forming the fourth opening and the first opening in the method for manufacturing the nitride semiconductor device according to the seventh embodiment.
  • FIG. 23C is a cross-sectional view for describing a second film-forming step in the method for manufacturing the nitride semiconductor device according to the seventh embodiment.
  • FIG. 23D is a cross-sectional view for describing the step of forming the second opening in the method for manufacturing the nitride semiconductor device according to the seventh embodiment.
  • FIG. 23A is a cross-sectional view for describing a first film forming step in the method for manufacturing a nitride semiconductor device according to the seventh embodiment.
  • FIG. 23B is a cross-sectional view for describing a step of forming the fourth opening and the first opening in the
  • FIG. 23E is a cross-sectional view for describing a third film-forming step in the method for manufacturing the nitride semiconductor device according to the seventh embodiment.
  • FIG. 23F is a sectional view for illustrating the step of forming the threshold adjustment layer in the method for manufacturing the nitride semiconductor device according to the seventh embodiment.
  • FIG. 23G is a cross-sectional view for describing a step of removing the undoped AlGaN film and a part of the undoped GaN film in the method for manufacturing the nitride semiconductor device according to the seventh embodiment.
  • FIG. 23H is a cross-sectional view for describing the step of forming the source opening in the method for manufacturing the nitride semiconductor device according to the seventh embodiment.
  • FIG. 23E is a cross-sectional view for describing a third film-forming step in the method for manufacturing the nitride semiconductor device according to the seventh embodiment.
  • FIG. 23F is a sectional view for illustrating the step of forming
  • FIG. 23I is a cross-sectional view for describing the step of forming the opening for the potential fixed electrode in the method for manufacturing the nitride semiconductor device according to the seventh embodiment.
  • FIG. 23J is a cross-sectional view for explaining the step of removing the p-type GaN film in the diode part in the method for manufacturing the nitride semiconductor device according to the seventh embodiment.
  • FIG. 23K is a cross-sectional view for illustrating the step of forming the source electrode in the method for manufacturing the nitride semiconductor device according to the seventh embodiment.
  • FIG. 23L is a cross-sectional view for illustrating a step of forming the gate electrode, the first potential fixed electrode, and the second potential fixed electrode in the method for manufacturing the nitride semiconductor device according to the seventh embodiment.
  • FIG. 23M is a sectional view for illustrating the step of thinning the substrate in the method for manufacturing the nitride semiconductor device according to the seventh embodiment.
  • a substrate a first conductivity-type first nitride semiconductor layer provided above the substrate, and the first nitride semiconductor layer provided above the first nitride semiconductor layer, A second nitride semiconductor layer of a second conductivity type different from the first conductivity type, a first opening penetrating the second nitride semiconductor layer, and an inner surface of the first opening.
  • an electron transit layer and an electron supply layer sequentially provided from the substrate side, a gate electrode provided above the electron supply layer so as to cover the first opening, and separated from the gate electrode.
  • a source electrode connected to the electron supply layer and the electron transit layer, and a drain electrode provided on a side of the substrate opposite to the first nitride semiconductor layer. At least a portion of the nitride semiconductor layer is electrically connected to the source electrode. It is fixed to a potential different from the.
  • a nitride semiconductor device includes a substrate, a first nitride semiconductor layer provided above the substrate, and a nitride semiconductor device provided above the first nitride semiconductor layer.
  • P-type second nitride semiconductor layer, a first high-resistance layer provided above the second nitride semiconductor layer, the first high-resistance layer, and the second nitride semiconductor A first opening penetrating a layer and reaching the first nitride semiconductor layer; and an electron transit layer and an electron supply layer provided in order from the substrate side along an inner surface of the first opening.
  • a gate electrode provided above the electron supply layer so as to cover the first opening; and a source electrode connected to the electron supply layer and the electron transit layer at a position distant from the gate electrode. Provided on the opposite side of the substrate to the first nitride semiconductor layer. And a drain electrode, wherein the second nitride semiconductor layer is fixed to the gate electrode at the same potential.
  • the second nitride semiconductor layer and the first nitride The depletion layer spreads from the interface with the semiconductor layer to the first nitride semiconductor side, and the breakdown voltage is increased. Further, a channel in the electron transit layer is narrowed by a depletion layer extending from the second nitride semiconductor layer into the electron transit layer, so that a leak current is suppressed. Further, when the nitride semiconductor device is in the ON state, the depletion layer that has spread from the second nitride semiconductor layer into the electron transit layer is degenerated. Therefore, channel narrowing is suppressed, and a large current can flow. Thus, according to this aspect, a nitride semiconductor device having a high withstand voltage and capable of operating with a large current is realized.
  • the nitride semiconductor device further includes a structure that penetrates through the electron supply layer, the electron transit layer, and the first high-resistance layer to reach the second nitride semiconductor layer.
  • the potential fixing electrode electrically connected to the gate electrode is provided, the potential of the second nitride semiconductor layer can be strongly fixed at the gate potential.
  • the nitride semiconductor device further includes a third opening penetrating the electron supply layer and reaching the electron transit layer, and the source electrode includes the third opening.
  • the second opening is provided along a part of the inner surface of the opening, and the second opening is located inside the third opening and away from the source electrode when the substrate is viewed in plan. You may.
  • the nitride semiconductor device may further include a third p-type nitride semiconductor layer provided between the gate electrode and the electron supply layer.
  • the nitride semiconductor device can be realized as a normally-off type FET.
  • the nitride semiconductor device further includes a second high resistance layer provided between the first nitride semiconductor layer and the second nitride semiconductor layer. May be provided.
  • the electron transit layer has a flat portion provided on an upper surface of the first high-resistance layer, and an inclined portion provided along a side surface of the first opening, A length of the inclined portion along a direction parallel to the substrate may be longer than a length of the flat portion along a normal direction of the substrate.
  • the thickness of the inclined portion can be increased, so that channel narrowing due to the depletion layer can be suppressed, and a large current can flow.
  • the breakdown voltage can be increased by connecting the block layer and the source electrode and fixing the potential of the block layer to the source potential (generally, 0 V).
  • the source potential generally, 0 V.
  • the current path becomes narrow due to the narrowing of the channel by the depletion layer extending from the block layer, and the drain current becomes small.
  • a nitride semiconductor device includes a substrate, a first nitride semiconductor layer provided above the substrate, and a structure above the first nitride semiconductor layer.
  • a second p-type nitride semiconductor layer a first opening penetrating through the second nitride semiconductor layer and reaching the first nitride semiconductor layer;
  • the electron transit layer and the electron supply layer provided in order from the substrate side, at a position away from the first opening, penetrates the electron supply layer and the electron transit layer,
  • a high-resistance layer separated into a portion and a portion above the electron supply layer so as to cover the first opening.
  • the second portion is fixed to the same potential as the potential applied to the source electrode, and the first portion is set to a potential different from the potential applied to the source electrode. Fixed.
  • the second nitride semiconductor layer is separated into the first portion on the side of the first opening and the second portion on the side of the second opening by the high resistance layer. Insulated. Therefore, the second portion can be fixed at the same potential as the potential applied to the source electrode (hereinafter, the source potential), and the first portion can be fixed at a potential different from the source potential.
  • the source potential the potential applied to the source electrode
  • the first nitride semiconductor layer is connected to the first nitride semiconductor layer from the interface between the second nitride semiconductor layer and the first nitride semiconductor layer.
  • the depletion layer spreads to the object semiconductor side, and the breakdown voltage is increased.
  • a channel in the electron transit layer is narrowed by a depletion layer extending from the first portion into the electron transit layer, so that a leak current is suppressed.
  • the high resistance layer may be a nitride semiconductor layer containing iron.
  • the high resistance layer can be easily formed in a desired region in a desired shape by ion implantation or the like. For example, according to the ion implantation, the nitride semiconductor crystal in the region into which the iron ions have been implanted can be broken, and the region can have a high resistance.
  • the first portion may be fixed at the same potential as the potential applied to the gate electrode.
  • the potential of the first portion is fixed to the same potential as the potential applied to the gate electrode (hereinafter, gate potential), so that the expansion of the depletion layer extending from the first portion into the electron transit layer is suppressed. Becomes possible. Therefore, it is easy to increase the current of the nitride semiconductor device.
  • the nitride semiconductor device may further include a third p-type nitride semiconductor layer provided between the gate electrode and the electron supply layer.
  • the carrier concentration immediately below the gate electrode can be reduced by the third nitride semiconductor layer, and the threshold voltage of the nitride semiconductor device can be shifted to the positive side. Therefore, the nitride semiconductor device according to this embodiment can be realized as a normally-off type FET.
  • the nitride semiconductor device is further provided on a bottom surface of the second opening, penetrates the second nitride semiconductor layer, and forms the first nitride semiconductor.
  • the semiconductor device may further include a third opening reaching the layer, wherein the source electrode is further provided in the third opening and connected to the first nitride semiconductor layer.
  • An MPS (Merged @ PiN @ Schottky) diode composed of a Schottky barrier diode is formed. For this reason, the loss due to the return current flowing through the MPS diode when a reverse bias is applied can be reduced.
  • a plurality of the third openings may be provided on a bottom surface of the second opening.
  • the MPS diode has a configuration in which a plurality of pn diodes and Schottky barrier diodes are arranged discretely. For this reason, the spread of the depletion layer from the second nitride semiconductor layer to the first nitride semiconductor layer when a reverse bias is applied to the MPS diode can be increased, and a higher breakdown voltage can be achieved. become.
  • the nitride semiconductor device includes a substrate, a first conductivity-type first nitride semiconductor layer provided above the substrate, and the first nitride semiconductor.
  • a second nitride semiconductor layer provided above the fifth nitride semiconductor layer and having a first opening exposing a part of the fifth nitride semiconductor layer; and the first opening
  • a sixth nitride semiconductor layer provided along the inner surface of the semiconductor device, and the sixth nitride semiconductor layer so as to cover the first opening.
  • a gate electrode provided above the layer, a source electrode separated from the gate electrode and electrically connected to the sixth nitride semiconductor layer, and a first nitride semiconductor layer of the substrate. And a drain electrode provided on the opposite side, the fourth nitride semiconductor layer is fixed at the same potential as the potential applied to the source electrode, and the second nitride semiconductor layer is Is fixed to the same potential as the potential given to.
  • the potential of the second nitride semiconductor layer is fixed to the same potential as the potential applied to the gate electrode. Therefore, when the nitride semiconductor device is in an off state, electrons from the second nitride semiconductor layer Since the channel in the electron transit layer is narrowed by the depletion layer spreading in the transit layer, the leak current is suppressed, and good off characteristics are obtained. Further, when the nitride semiconductor device is in the ON state, the depletion layer that has spread from the second nitride semiconductor layer into the electron transit layer is degenerated. Therefore, channel narrowing is suppressed, and a large current can flow.
  • the potential of the fourth nitride semiconductor layer is fixed to the same potential as the potential applied to the source electrode, when the nitride semiconductor device is off, the fourth nitride semiconductor layer and the first The depletion layer spreads from the interface with the nitride semiconductor layer to the first nitride semiconductor layer side, thereby increasing the breakdown voltage.
  • a nitride semiconductor device having a high withstand voltage and capable of operating with a large current is realized.
  • the nitride semiconductor device is effective for high-speed operation.
  • the nitride semiconductor device further includes the fifth nitride provided between the fifth nitride semiconductor layer and the second nitride semiconductor layer.
  • the semiconductor device may include a high resistance layer having a higher resistance than the semiconductor layer or the second nitride semiconductor layer.
  • a leak flows from the gate electrode to the drain electrode via the fifth nitride semiconductor layer, the second nitride semiconductor layer, and the first nitride semiconductor layer.
  • the current can be suppressed by the high resistance layer.
  • the effective carrier concentration of the fifth nitride semiconductor layer may be higher than the effective carrier concentration of the first nitride semiconductor layer.
  • the opening width of the fourth opening may be shorter than the opening width of the first opening.
  • the opening width of the fourth opening is narrow, the depletion layer extending from the fourth nitride semiconductor layer to the fifth nitride semiconductor layer, for example, when the nitride semiconductor device is in an off state, 4 can be closed.
  • the fourth opening is closed by the depletion layer, a path of a current passing through the fourth opening is narrowed, so that an off-state leak current can be suppressed.
  • an electric field applied near the gate electrode can be effectively reduced, and the withstand voltage of the nitride semiconductor device can be increased.
  • the fourth nitride semiconductor layer may have a plurality of the fourth openings.
  • the current paths when the nitride semiconductor device is in the ON state are reduced while reducing the width of each of the plurality of fourth openings. Can be secured. Therefore, it is possible to achieve both a large current in the ON state and a suppression of a leak current in the OFF state.
  • the nitride semiconductor device further includes a Schottky barrier diode provided at a position away from the first opening in plan view, An anode electrode is provided on the fifth nitride semiconductor layer, a cathode electrode of the Schottky barrier diode is a part of the drain electrode, and the fourth nitride semiconductor layer further comprises: A fifth opening may be provided between the electrode and the cathode electrode to expose a part of the first nitride semiconductor layer.
  • the FET and the Schottky barrier diode can be provided in the same element. Since the FET and the Schottky barrier diode are provided in the same element, noise during the operation of the FET can be reduced.
  • the Schottky barrier diode operates as a freewheeling diode because the anode electrode is electrically connected to the source electrode and the cathode electrode is a part of the drain electrode.
  • the Schottky barrier diode allows a current to flow from the source electrode to the drain electrode of the FET when a reverse bias is applied between the source and the drain of the FET. Since concentration of the voltage when the reverse bias is applied to the inside of the FET is suppressed, destruction of the FET can be suppressed.
  • the anode electrode may be electrically connected to the fourth nitride semiconductor layer.
  • the fourth nitride semiconductor layer may have a plurality of the fifth openings.
  • the plurality of fifth openings are provided, it is possible to secure a plurality of current paths when applying a reverse bias to the FET while reducing the width of each of the plurality of fifth openings. Can be. For this reason, it is possible to achieve both an increase in current when a reverse bias is applied to the FET and suppression of a leak current when the FET is in a positive bias state.
  • each drawing is a schematic diagram and is not necessarily strictly illustrated. Therefore, for example, the scales and the like do not always match in each drawing. Further, in each of the drawings, substantially the same configuration is denoted by the same reference numeral, and redundant description will be omitted or simplified.
  • the terms “upper” and “lower” do not refer to the upward direction (vertically upward) and the downward direction (vertically downward) in absolute space recognition, but refer to the order of lamination in the laminated configuration. It is used as a term defined by the relative positional relationship with.
  • the side on which a gate electrode, a source electrode, and the like are provided is referred to as “upper” and the side on which a drain electrode is provided is referred to as “downward” with respect to a substrate.
  • the terms “above” and “below” refer not only to the case where two components are spaced apart from each other and there is another component between the two components, but also It is also applied to a case where two components are arranged in close contact with each other and come into contact with each other.
  • AlGaN represents ternary mixed crystal Al x Ga 1 -xN (0 ⁇ x ⁇ 1).
  • the multi-element mixed crystal is abbreviated as an arrangement of respective constituent elements, for example, AlInN, GaInN, or the like.
  • the x-axis, y-axis, and z-axis indicate three axes of a three-dimensional orthogonal coordinate system.
  • the z-axis direction is the thickness direction of the substrate, that is, the laminating direction of each layer.
  • the y-axis is the direction in which the gate opening extends, that is, the direction corresponding to the channel width.
  • FIG. 1 is a diagram showing a planar layout of nitride semiconductor device 10 according to the present embodiment. Specifically, FIG. 1A shows a pad layout of the nitride semiconductor device 10. FIG. 1B shows a planar layout when the source electrode pad 56 of the nitride semiconductor device 10 is removed. FIG. 1B shows a layout of a lower layer structure with the gate electrode pad 58 being transmitted therethrough.
  • FIG. 2 is an enlarged view of region II in FIG.
  • the source electrode 40 and the potential fixing electrode 46, and the exposed portions of the block layer 22 and the threshold adjustment layer 34 are shaded for easy understanding. I have.
  • dots are shaded on the gate electrode pad 58, and in FIG. 2, dots are shaded on the gate electrode 44.
  • the nitride semiconductor device 10 includes a plurality of source electrodes 40 provided in a plane.
  • Each of the plurality of source electrodes 40 has a rectangular shape that is long in a predetermined direction in plan view.
  • the plurality of source electrodes 40 are provided side by side in the longitudinal direction and the lateral direction in plan view.
  • two source electrodes 40 are provided side by side in the longitudinal direction (vertical direction on the paper), and ten or more source electrodes 40 are arranged in the lateral direction (horizontal direction on the paper).
  • the number and shape of the source electrodes 40 are not limited to these.
  • the plurality of source electrodes 40 are each surrounded by the gate electrode 44 as a set of two arranged in the lateral direction.
  • the gate electrode 44 is a single plate-shaped electrode provided with openings at positions corresponding to each of a plurality of sets of the source electrodes 40. In a plan view, the gate electrode 44 and the source electrode 40 are provided at a distance, and do not overlap.
  • the gate electrode 44 may be a comb-shaped electrode. Specifically, the direction in which the comb teeth of the gate electrode 44 extend is parallel to the longitudinal direction of the source electrode 40. Further, nitride semiconductor device 10 may include a plurality of gate electrodes 44 provided between pairs adjacent to source electrode 40.
  • the nitride semiconductor device 10 further includes a plurality of potential fixing electrodes 46.
  • the planar shape of the plurality of potential fixing electrodes 46 is a long rectangle along the long direction of the source electrode 40.
  • the plurality of potential fixed electrodes 46 correspond one-to-one with the set of source electrodes 40. That is, the plurality of potential fixing electrodes 46 correspond one-to-one with the openings provided in the gate electrode 44.
  • one potential fixing electrode 46 is provided between a pair of source electrodes 40.
  • the shapes of the source electrode 40, the gate electrode 44, and the potential fixing electrode 46 are not limited to the example shown in FIG.
  • the planar shape of the source electrode 40 may be hexagonal.
  • the plurality of source electrodes 40 having a hexagonal shape in plan view may be arranged such that the center of each source electrode 40 is located at a vertex of a regular hexagon filled and arranged in plan view.
  • the nitride semiconductor device 10 is a device having a stacked structure of semiconductor layers containing nitride semiconductors such as GaN and AlGaN as main components. Specifically, nitride semiconductor device 10 has a heterostructure of an AlGaN film and a GaN film.
  • the interface has a feature that a sheet carrier concentration of 1 ⁇ 10 13 cm ⁇ 2 or more can be obtained.
  • the nitride semiconductor device 10 is a field effect transistor (FET) using a two-dimensional electron gas generated at the hetero interface of AlGaN / GaN as a channel.
  • FET field effect transistor
  • the nitride semiconductor device 10 is a so-called vertical FET.
  • the source electrode 40 is grounded (that is, the potential is 0 V), and a positive potential is applied to the drain electrode 50.
  • a potential of 0 V or a negative potential is applied to the gate electrode 44.
  • a positive potential for example, +5 V is applied to the gate electrode 44.
  • FIG. 3 is a cross-sectional view of the nitride semiconductor device 10 according to the present embodiment along line III-III in FIG.
  • the nitride semiconductor device 10 includes a substrate 12, a drift layer 14, a block layer 22, a high-resistance layer 24, a gate opening 26, an electron transit layer 30, and an electron supply layer. 32, a threshold adjustment layer 34, a source opening 36, an opening 38, a source electrode 40, a gate electrode 44, and a potential fixing electrode 46. Further, as shown in FIG. 1A, the nitride semiconductor device 10 includes a source electrode pad 56 and a gate electrode pad 58.
  • the substrate 12 is a substrate made of a nitride semiconductor, and has a first main surface 12a and a second main surface 12b facing each other as shown in FIG.
  • the first main surface 12a is a main surface on the side where the drift layer 14 is formed.
  • first main surface 12a substantially coincides with the c-plane.
  • the second main surface 12b is a main surface on the side where the drain electrode 50 is formed.
  • the planar shape of the substrate 12 is, for example, a rectangle, but is not limited thereto.
  • the substrate 12 is, for example, a substrate made of n + -type GaN having a thickness of 300 ⁇ m and a carrier concentration of 1 ⁇ 10 18 cm ⁇ 3 .
  • n-type and p-type indicate the conductivity type of the semiconductor.
  • the n-type is an example of the first conductivity type of the nitride semiconductor.
  • the p-type is an example of a second conductivity type having a different polarity from the first conductivity type.
  • the n + type represents a state in which an n-type dopant is excessively added to a semiconductor, that is, a so-called heavy dope.
  • n - type refers to a state in which an n-type dopant is excessively added to a semiconductor, that is, light doping. The same applies to the p + type and the p ⁇ type.
  • the substrate 12 does not have to be a nitride semiconductor substrate.
  • the substrate 12 may be a silicon (Si) substrate, a silicon carbide (SiC) substrate, a zinc oxide (ZnO) substrate, or the like.
  • Drift layer 14 is an example of an n-type first nitride semiconductor layer provided above first main surface 12a of substrate 12.
  • the drift layer 14 is, for example, a film made of n ⁇ -type GaN having a thickness of 8 ⁇ m or 10 ⁇ m.
  • the donor concentration of the drift layer 14 is, for example, in a range from 1 ⁇ 10 15 cm ⁇ 3 to 1 ⁇ 10 17 cm ⁇ 3 , and is, for example, 1 ⁇ 10 16 cm ⁇ 3 .
  • the carbon concentration (C concentration) of the drift layer 14 is in the range of 1 ⁇ 10 15 cm ⁇ 3 to 2 ⁇ 10 17 cm ⁇ 3 .
  • the drift layer 14 is provided, for example, in contact with the first main surface 12 a of the substrate 12.
  • the drift layer 14 is formed on the first main surface 12a of the substrate 12 by, for example, crystal growth such as metal organic chemical vapor deposition (MOVPE).
  • MOVPE metal organic chemical vapor deposition
  • the block layer (or the first underlayer) 22 is an example of a p-type second nitride semiconductor layer provided above the drift layer 14.
  • the block layer 22 is, for example, a film made of p-type GaN having a thickness of 400 nm and a carrier concentration of 1 ⁇ 10 17 cm ⁇ 3 .
  • the block layer 22 is provided in contact with the upper surface of the drift layer 14.
  • the block layer 22 is formed on the drift layer 14 by, for example, crystal growth such as MOVPE.
  • the block layer 22 may be formed by injecting magnesium (Mg) into the formed i-type GaN film.
  • the block layer 22 suppresses a leak current between the source electrode 40 and the drain electrode 50.
  • a reverse voltage is applied to a pn junction formed by the block layer 22 and the drift layer 14, specifically, when the drain electrode 50 has a higher potential than the source electrode 40, A depletion layer extends to the drift layer 14.
  • the drain electrode 50 has a higher potential than the source electrode 40 in both the off state and the on state. Therefore, a higher breakdown voltage of nitride semiconductor device 10 is realized.
  • the block layer 22 is fixed at the same potential as the gate electrode 44. The fixing of the potential will be described later.
  • the high resistance layer (or the second underlayer) 24 is an example of a first high resistance layer provided above the block layer 22.
  • the high resistance layer 24 has higher resistance than the block layer 22.
  • the high resistance layer 24 is formed from an insulating or semi-insulating nitride semiconductor.
  • the high resistance layer 24 is, for example, a film made of undoped GaN having a thickness of 200 nm.
  • the high resistance layer 24 is provided in contact with the block layer 22.
  • the high resistance layer 24 is formed on the block layer 22 by, for example, crystal growth such as MOVPE.
  • the high resistance layer 24 is provided in contact with the block layer 22.
  • the high resistance layer 24 is doped with carbon (C). Specifically, the carbon (C) concentration of the high resistance layer 24 is higher than the C concentration of the block layer 22.
  • the high resistance layer 24 may contain silicon (Si) or oxygen (O) mixed during film formation.
  • the C concentration of the high resistance layer 24 is higher than the silicon concentration (Si concentration) or the oxygen concentration (O concentration).
  • the C concentration of the high resistance layer 24 is, for example, 3 ⁇ 10 17 cm ⁇ 3 or more, but may be 1 ⁇ 10 18 cm ⁇ 3 or more.
  • the Si concentration or the O concentration of the high resistance layer 24 is, for example, 5 ⁇ 10 16 cm ⁇ 3 or less, but may be 2 ⁇ 10 16 cm ⁇ 3 or less.
  • the high resistance layer 24 may be formed by ion implantation of magnesium (Mg), iron (Fe), boron (B), or the like, other than carbon. Other ion species may be used as long as they can realize high resistance of GaN.
  • the nitride semiconductor device 10 does not include the high resistance layer 24, the electron transit layer 30, the p-type block layer 22, and the n-type drift layer are provided between the source electrode 40 and the drain electrode 50.
  • the provision of the high-resistance layer 24 can suppress the formation of the parasitic npn structure, and can suppress the malfunction of the nitride semiconductor device 10.
  • a layer may be provided on the upper surface of the high-resistance layer 24 to suppress diffusion of p-type impurities such as Mg from the block layer 22.
  • an AlGaN layer having a thickness of 20 nm may be provided on the high-resistance layer 24.
  • the gate opening 26 is an example of a first opening penetrating the block layer 22 and reaching the drift layer 14. Specifically, the gate opening 26 penetrates through the high-resistance layer 24 and the block layer 22 in this order from the upper surface of the high-resistance layer 24 and reaches the drift layer 14.
  • the bottom surface 26 a of the gate opening 26 is the upper surface of the drift layer 14. As shown in FIG. 3, the bottom surface 26a is located below the interface between the drift layer 14 and the block layer 22.
  • the bottom surface 26a is parallel to the first main surface 12a of the substrate 12.
  • the gate opening 26 is formed so that the opening area increases as the distance from the substrate 12 increases. Specifically, the side surface 26b of the gate opening 26 is obliquely inclined.
  • the cross-sectional shape of the gate opening 26 is an inverted trapezoid, more specifically, an inverted leg trapezoid.
  • the inclination angle of the side surface 26b with respect to the bottom surface 26a is, for example, in a range from 20 ° to 80 °.
  • the inclination angle may be, for example, in a range from 30 ° to 45 °. Since the side surface 26b approaches the c-plane when the inclination angle is 45 ° or less, the film quality of the electron transit layer 30 and the like formed along the side surface 26b by crystal regrowth can be improved. When the inclination angle is 30 ° or more, the gate opening 26 is prevented from becoming too large, and the size of the nitride semiconductor device 10 is reduced.
  • the broken line shows the shape of the bottom surface 26a of the gate opening 26 in plan view.
  • the shape of the gate opening 26 is substantially the same as the shape of the bottom surface 26a.
  • the gate opening 26 is formed in a 0-shaped (race-track shape) surrounding the two sets of source electrodes 40 arranged in the longitudinal direction of the source electrodes 40 collectively.
  • the gate openings 26 are provided in every other set of the source electrodes 40 in the lateral direction of the source electrodes 40.
  • the shape of the gate opening 26 is not limited to this, and may be, for example, a U-shape having one end in the longitudinal direction of the 0-shaped gate opening 26, or two gates having both ends opened. May be linear.
  • the gate opening 26 is formed by forming the drift layer 14, the block layer 22, and the high-resistance layer 24 on the first main surface 12 a of the substrate 12 in order, and then forming the high-resistance layer so that the drift layer 14 is partially exposed. It is formed by removing the layer 24 and the block layer 22. At this time, the bottom layer 26a of the gate opening 26 is formed below the interface between the drift layer 14 and the block layer 22 by also removing the surface layer portion of the drift layer 14.
  • the removal of the high-resistance layer 24 and the block layer 22 is performed by applying and patterning a resist and by dry etching. Specifically, after patterning the resist, the resist is baked so that the end of the resist is inclined obliquely. Thereafter, by performing dry etching, the gate opening 26 whose side surface 26b is inclined is formed such that the shape of the resist is transferred.
  • the electron transit layer 30 is an example of a first regrown layer provided along the inner surface of the gate opening 26 and is an example of a sixth nitride semiconductor layer. Specifically, the electron transit layer 30 is provided along the bottom surfaces 26 a and 26 b of the gate opening 26 and on the upper surface of the block layer 22.
  • the electron transit layer 30 is, for example, a film made of undoped GaN having a thickness of 100 nm.
  • the electron transit layer 30 is undoped, but may be made n-type by doping with Si.
  • the electron transit layer 30 is in contact with the drift layer 14 at the bottom surface 26 a of the gate opening 26.
  • the electron transit layer 30 is in contact with each end face of the block layer 22 and the high resistance layer 24 on the side surface 26b of the gate opening 26. Further, the electron transit layer 30 is in contact with the upper surface of the high resistance layer 24. After the gate opening 26 is formed, the electron transit layer 30 is formed by regrowing the crystal.
  • the electron transit layer 30 has a channel. Specifically, near the interface between the electron transit layer 30 and the electron supply layer 32, a two-dimensional electron gas (2DEG) is generated.
  • the two-dimensional electron gas functions as a channel of the electron transit layer 30.
  • the two-dimensional electron gas is schematically illustrated by a broken line. The two-dimensional electron gas is bent along the interface between the electron transit layer 30 and the electron supply layer 32, that is, along the inner surface of the gate opening 26.
  • an AlN film having a thickness of about 1 nm may be provided as a second regrown layer.
  • the AlN film can suppress alloy scattering and improve channel mobility.
  • the electron supply layer 32 is an example of a third regrowth layer provided along the inner surface of the gate opening 26, and is an example of a sixth nitride semiconductor layer.
  • the electron transit layer 30 and the electron supply layer 32 are provided in this order from the substrate 12 side.
  • the electron supply layer 32 is formed along the upper surface of the electron transit layer 30 with a substantially uniform thickness.
  • the electron supply layer 32 is, for example, a film made of undoped Al 0.2 Ga 0.8 N having a thickness of 50 nm.
  • the electron supply layer 32 is formed by crystal regrowth following the step of forming the electron transit layer 30.
  • the electron supply layer 32 forms an AlGaN / GaN hetero interface with the electron transit layer 30. Thereby, a two-dimensional electron gas is generated in the electron transit layer 30.
  • the electron supply layer 32 supplies electrons to a channel (that is, a two-dimensional electron gas) formed in the electron transit layer 30.
  • the threshold adjustment layer 34 is an example of a third nitride semiconductor layer of the second conductivity type provided between the gate electrode 44 and the electron supply layer 32.
  • the threshold adjustment layer 34 is provided on the electron supply layer 32 and is in contact with the electron supply layer 32 and the gate electrode 44.
  • the end of the threshold adjustment layer 34 is located closer to the source electrode 40 than the end of the gate electrode 44.
  • the threshold adjustment layer 34 and the source electrode 40 are separated and not in contact with each other. For this reason, as shown in FIGS. 1 and 2, in plan view, the threshold adjustment layer 34 appears from the end of the gate electrode 44 such that only an annular portion surrounding the source electrode 40 is exposed.
  • the plan view shape of the exposed portion of the threshold adjustment layer 34 is, for example, a 0-shape (race track shape).
  • the threshold adjustment layer 34 is, for example, a nitride semiconductor layer made of p-type GaN having a thickness of 100 nm and a carrier concentration (effective carrier concentration) of 1 ⁇ 10 17 cm ⁇ 3 .
  • the threshold adjustment layer 34 is formed by MOVPE following the step of forming the electron supply layer 32 and by patterning.
  • nitride semiconductor device 10 can be realized as a normally-off type FET.
  • the threshold adjustment layer 34 is not limited to a p-type GaN film, but may be a nitride semiconductor film containing Al, In, or B. Alternatively, the threshold adjustment layer 34 may be an insulating film such as a silicon nitride film (SiN film) or a silicon oxide film (SiO film). The threshold adjustment layer 34 may be formed using any material that can raise the potential of the channel. In addition, when the normally-off characteristics are not required, the nitride semiconductor device 510 may not include the threshold adjustment layer 34. That is, the gate electrode 44 may be provided directly on the electron supply layer 32.
  • the source opening 36 is an example of a third opening penetrating the electron supply layer 32 and reaching the electron transit layer 30 at a position away from the gate electrode 44. As shown in FIG. 3, the source openings 36 are provided on both sides of the gate electrode 44 in a sectional view. The source opening 36 exposes a part of the electron transit layer 30 at a position away from the gate opening 26.
  • the bottom surface 36 a of the source opening 36 is the upper surface of the electron transit layer 30. As shown in FIG. 3, the bottom surface 36a is located below the interface between the electron supply layer 32 and the electron transit layer 30. The bottom surface 36a is parallel to the first main surface 12a of the substrate 12.
  • the two-dimensional electron gas is exposed on the side surface 36b of the source opening 36, and is connected to the source electrode 40 at the exposed portion.
  • the source opening 36 is arranged at a position away from the gate opening 26 in a plan view.
  • the source opening 36 is formed so that the opening area increases as the distance from the substrate 12 increases.
  • the side surface 36b of the source opening 36 is obliquely inclined.
  • the cross-sectional shape of the source opening 36 is an inverted trapezoid, more specifically, an inverted isosceles trapezoid. Note that the cross-sectional shape of the source opening 36 may be substantially rectangular.
  • the inclination angle of the side surface 36b with respect to the bottom surface 36a is, for example, in a range from 20 ° to 80 °.
  • the inclination angle may be, for example, in a range from 30 ° to 60 °.
  • the inclination angle of the side surface 36b of the source opening 36 is larger than the inclination angle of the side surface 26b of the gate opening 26. Since the side surface 36b is obliquely inclined, the contact area between the source electrode 40 and the electron transit layer 30 (two-dimensional electron gas) increases, so that ohmic connection is easily performed.
  • the source opening 36 is formed, for example, by etching the electron supply layer 32 so as to expose the electron transit layer 30 in a region different from the gate opening 26 following the step of forming the threshold adjustment layer 34. . At this time, by removing the surface layer portion of the electron transit layer 30, the bottom surface 36 a of the source opening 36 is formed below the interface between the electron transit layer 30 and the electron supply layer 32.
  • the source opening 36 is formed in a predetermined shape by, for example, patterning by photolithography and dry etching.
  • the source electrode 40 is connected to the electron transit layer 30 and the electron supply layer 32 at a position away from the gate electrode 44. Specifically, the source electrode 40 is connected to each end face of the electron supply layer 32 and the electron transit layer 30 and the upper surface of the electron transit layer 30. The source electrode 40 is ohmic-connected to the electron transit layer 30 and the electron supply layer 32. As shown in FIG. 3, the source electrode 40 is not in contact with the threshold adjustment layer 34.
  • the source electrode 40 is provided along a part of the inner surface of the source opening 36. Specifically, the source electrode 40 is provided so as to cover a part of the bottom surface 36a of the source opening 36 and the entire side surface 36b. The source electrode 40 is in direct contact with the two-dimensional electron gas on the side surface 36b.
  • the source electrode 40 is formed using a conductive material such as a metal.
  • a material of the source electrode 40 a material such as Ti / Al, which is in ohmic connection to the n-type semiconductor layer, can be used.
  • the source electrode 40 is formed by patterning a conductive film formed by, for example, sputtering or vapor deposition.
  • the opening 38 is an example of a second opening penetrating the electron supply layer 32, the electron transit layer 30, and the high-resistance layer 24 and reaching the block layer 22.
  • the opening 38 is located inside the source opening 36 and away from the source electrode 40 in plan view. Specifically, the opening 38 is provided in a portion of the bottom surface 36 a of the source opening 36 where the source electrode 40 is not provided.
  • the bottom surface 38 a of the opening 38 is the top surface of the block layer 22. As shown in FIG. 3, the bottom surface 38a is flush with the interface between the block layer 22 and the high-resistance layer 24, but is not limited thereto. The bottom surface 38a may be located below the interface between the block layer 22 and the high-resistance layer 24. The bottom surface 38a is parallel to the first main surface 12a of the substrate 12.
  • the openings 38 are formed so that the opening areas are substantially equal. Specifically, the side surface 38b of the opening 38 is substantially perpendicular to the bottom surface 38a. The cross-sectional shape of the opening 38 is substantially rectangular. Thus, the area occupied by the opening 38 in the planar layout can be reduced.
  • the planar shape of the opening 38 is equivalent to the exposed portion of the block layer 22, as shown in FIG.
  • the outline of the exposed portion of the block layer 22 shown in FIG. 2 matches the outline of the bottom surface 38 a of the opening 38. The details will be described together with the description of the configuration of the electrode pad, but the opening 38 extends to the outside between the source electrodes 40 in order to provide the contact portion 47 of the potential fixing electrode 46.
  • the side surface 38b may be inclined with respect to the bottom surface 38a.
  • the cross-sectional shape of the opening 38 may be an inverted trapezoid, specifically, an inverted isosceles trapezoid.
  • the inclination angle of the side surface 38b with respect to the bottom surface 38a may be, for example, in a range of 80 ° or more.
  • the inclination angle of the side surface 38 b of the opening 38 is larger than the inclination angle of the side surface 36 b of the source opening 36.
  • the opening 38 is formed, for example, following the step of forming the source opening 36 or the step of forming the source electrode 40, such that the electron transit layer 30 and the high-level layer are exposed in a region different from the source electrode 40. It is formed by etching the resistance layer 24. At this time, the bottom surface 38 a of the opening 38 may be formed below the interface between the block layer 22 and the high-resistance layer 24 by removing the surface layer portion of the block layer 22.
  • the opening 38 is formed in a predetermined shape by, for example, patterning by photolithography and dry etching.
  • the gate electrode 44 is provided above the electron supply layer 32 so as to cover the gate opening 26.
  • the gate electrode 44 is formed along the upper surface of the threshold adjustment layer 34 and has a substantially uniform thickness in contact with the upper surface of the threshold adjustment layer 34.
  • the gate electrode 44 is formed apart from the source electrode 40 in a plan view so as not to contact the source electrode 40. Specifically, as shown in FIG. 1B, the gate electrode 44 is provided so as to surround the source electrode 40 in plan view.
  • the gate electrode 44 is formed using a conductive material such as a metal.
  • the gate electrode 44 is formed using palladium (Pd).
  • a material that is Schottky-connected to an n-type semiconductor can be used.
  • a nickel (Ni) -based material, tungsten silicide (WSi), gold (Au), or the like can be used.
  • the gate electrode 44 is formed by patterning a conductive film formed by, for example, sputtering or evaporation after forming or patterning the threshold adjustment layer 34 or after forming the opening 38. You.
  • the potential fixing electrode 46 is provided on the bottom surface 38 a of the opening 38 and is in contact with the block layer 22. As shown in FIG. 3, the potential fixing electrode 46 is provided apart from the side surface 38b so as not to contact the side surface 38b of the opening 38.
  • the potential fixing electrode 46 is formed using a conductive material such as a metal.
  • the potential fixing electrode 46 is formed using, for example, the same material as the gate electrode 44.
  • the potential fixing electrode 46 is formed in the same step as the gate electrode 44. Note that the potential fixing electrode 46 may be formed in a step different from that of the gate electrode 44. Further, the potential fixing electrode 46 may be formed using a material different from that of the gate electrode 44.
  • the potential fixing electrode 46 Since the potential fixing electrode 46 is electrically connected to the block layer 22, the potential of the block layer 22 can be fixed. Thereby, the operation of nitride semiconductor device 10 can be stabilized. Details will be described later.
  • the drain electrode 50 is provided on the substrate 12 on the side opposite to the drift layer 14. Specifically, the drain electrode 50 is provided in contact with the second main surface 12b of the substrate 12.
  • the drain electrode 50 is formed using a conductive material such as a metal.
  • a material that is in ohmic connection with the n-type semiconductor layer, such as Ti / Al, can be used, like the material of the source electrode 40.
  • the drain electrode 50 is formed, for example, by patterning a conductive film formed by sputtering or vapor deposition.
  • Electrode pad Subsequently, a configuration of an electrode pad provided in the nitride semiconductor device 10 will be described.
  • the nitride semiconductor device 10 includes two source electrode pads 56 and a gate electrode pad 58.
  • the two source electrode pads 56 and the gate electrode pad 58 are formed using a conductive material such as a metal.
  • the metal used for the electrode pad is, for example, copper (Cu) or aluminum (Al), but is not limited thereto.
  • the two source electrode pads 56 and the gate electrode pad 58 are provided above an interlayer insulating film (not shown) that covers the upper surfaces of the gate electrode 44, the source electrode 40, the potential fixing electrode 46, and the like.
  • Each of the two source electrode pads 56 and the gate electrode pad 58 is thickened, and has a thickness of, for example, 5 ⁇ m or more.
  • the two source electrode pads 56 are located in a direction directly above the plurality of source electrodes 40, that is, at positions where they overlap in a plan view.
  • Each of the plurality of source electrodes 40 is connected to a source electrode pad 56 that overlaps in plan view via a source contact plug 60.
  • the planar shape of the source contact plug 60 is represented by a broken line.
  • the planar shape of the source contact plug 60 is, for example, a long rectangle along the shape of the source electrode 40, but is not limited thereto.
  • the source contact plug 60 is a conductive member that physically and electrically connects the source electrode pad 56 and the source electrode 40.
  • the source contact plug 60 is provided so as to fill a contact hole penetrating the interlayer insulating film in the thickness direction.
  • the source contact plug 60 is formed using a metal material such as Cu or Al, for example.
  • the gate electrode pad 58 is located immediately above the gate electrode 44. As shown in FIG. 1A, the gate electrode pad 58 is sandwiched between two source electrode pads 56 in plan view.
  • the gate electrode 44 is connected to the gate electrode pad 58 via the gate contact plug 62.
  • the shape of the gate contact plug 62 in a plan view is represented by a broken line.
  • the planar shape of the gate contact plug 62 is, for example, a rectangle, but is not limited thereto.
  • the gate contact plug 62 is a conductive member that physically and electrically connects the gate electrode pad 58 and the gate electrode 44. Note that “electrically connected” means that two connected portions (here, the gate electrode pad 58 and the gate electrode 44) have substantially the same potential.
  • the gate contact plug 62 is provided so as to fill a contact hole penetrating the interlayer insulating film in the thickness direction.
  • the gate contact plug 62 is formed using a metal material such as Cu or Al, for example.
  • the gate electrode pad 58 is further located immediately above the contact portion 47 extending from the potential fixing electrode 46.
  • the gate electrode pad 58 is represented by a thick solid line.
  • the contact portion 47 is provided at one end of the potential fixing electrode 46 in a plan view. Specifically, the potential fixing electrode 46 is provided to be longer than the two source electrodes 40, and extends to an outside of a portion sandwiched between the two source electrodes 40. A contact portion 47 is provided at a portion extending to the outside from a portion sandwiched between the two source electrodes 40. The contact portion 47 is a part of the potential fixing electrode 46 and is formed using the same material as the potential fixing electrode 46.
  • FIG. 2 shows the shape of the contact plug 64 in a plan view by a broken line.
  • the contact plug 64 is a conductive member that physically and electrically connects the gate electrode pad 58 and the potential fixing electrode 46.
  • the contact plug 64 is provided so as to fill a contact hole penetrating the interlayer insulating film in the thickness direction.
  • the contact plug 64 is formed using, for example, a metal material such as Cu or Al.
  • the gate electrode 44 and the potential fixing electrode 46 are electrically connected via the gate electrode pad 58. Specifically, the gate electrode 44 and the potential fixing electrode 46 are electrically connected via a gate contact plug 62, a gate electrode pad 58, a contact plug 64, and a contact portion 47.
  • the wiring resistance of these members is regarded as substantially negligible, and the gate electrode 44 and the potential fixing electrode 46 are fixed at the same potential.
  • each electrode pad and each contact plug are merely examples, and are not particularly limited. Any form may be used as long as the gate electrode 44 and the potential fixing electrode 46 can be electrically connected.
  • the electron transit layer 30 is provided on the bottom surface 30 a provided on the bottom surface 26 a, the inclined portion 30 b provided along the side surface 26 b, and on the upper surface of the high resistance layer 24. And a flat portion 30c.
  • the length A of the inclined portion 30b along the direction parallel to the substrate 12 is longer than the length B of the flat portion 30c along the thickness direction of the substrate 12.
  • GaN crystal growth is performed such that the c-plane of the GaN crystal is parallel to the first main surface 12 a of the substrate 12.
  • the polarization of the two-dimensional electron gas is smaller in a portion oblique to the c-plane than in a portion parallel to the c-plane, so that the carrier concentration is reduced. That is, the two-dimensional electron gas has a lower carrier concentration in the portion in the inclined portion 30b than in the portion in the flat portion 30c. Therefore, the portion of the two-dimensional electron gas inside the inclined portion 30 b is easily affected by the narrowing effect of the depletion layer extending from the block layer 22.
  • the length A of the inclined portion 30b is longer than the length B of the flat portion 30c.
  • the two-dimensional electron gas is farther from the block layer 22 in the portion in the inclined portion 30b than in the portion in the flat portion 30c.
  • the channel narrowing effect of the depletion layer can be suppressed, so that a decrease in on-resistance is suppressed.
  • the depth of the opening 38 for forming the potential fixed electrode 46 also becomes shallow. Therefore, as the opening 38 becomes shallower, the process time required for removing the film by etching can be reduced. Further, since the opening 38 is shallow, the coverage of the metal electrode formed in a later step is improved, and the on-resistance is reduced.
  • the length A of the inclined portion 30b is shorter than the length B of the flat portion 30c, not only a large current operation can be performed, but also the process can be facilitated and the on-resistance is reduced. can do.
  • the threshold voltage can be adjusted depending on whether the gate electrode 44 completely covers the gate opening 26 or only partially covers the gate opening 26. That is, the threshold voltage can be adjusted according to the position of the end of the gate electrode 44.
  • the threshold adjustment layer 34 functions substantially as a part of the gate electrode 44. Therefore, when the nitride semiconductor device 10 includes the threshold adjustment layer 34, the threshold voltage is adjusted according to the end of the threshold adjustment layer 34.
  • the threshold adjustment layer 34 covers, for example, at least a portion of the bottom surface 26a and at least a part of the side surface 26b of the gate opening 26 in plan view. Specifically, the threshold adjustment layer 34 covers all of the bottom surface 26a and the side surfaces 26b in plan view. In other words, the gate opening 26 is provided inside the threshold adjustment layer 34 in a plan view.
  • the end of the threshold adjustment layer 34 is closer to the source electrode 40 than the upper end of the side surface 26 b of the gate opening 26. It is located near.
  • the threshold voltage of the nitride semiconductor device 10 includes a portion along the side surface 26 b of the gate opening 26 (specifically, an inclined portion of the two-dimensional electron gas) and a flat portion outside the gate opening 26.
  • the flat portion of the two-dimensional electron gas is determined by the one having the larger threshold voltage.
  • the distance from the block layer 22 to the two-dimensional electron gas is made longer in the flat part than in the inclined part.
  • the length A of the inclined portion 30b is longer than the length B of the flat portion 30c.
  • the threshold adjustment layer 34 may be provided inside the gate opening 26 in plan view. For example, when viewed in the cross section shown in FIG. 3, in the direction parallel to the substrate 12, the end of the threshold adjustment layer 34 is located farther from the source electrode 40 than the upper end of the side surface 26 b of the gate opening 26. May be located. Specifically, the end of the threshold adjustment layer 34 may be located in a direction immediately above the side surface 26b, that is, at a position overlapping in a plan view.
  • the threshold voltage of the nitride semiconductor device 10 is determined only by the configuration of the portion along the side surface 26b of the gate opening 26. Therefore, the carrier concentration of the flat portion 30c can be increased, and the on-resistance can be reduced.
  • the threshold voltage is determined by the positional relationship between the end of the gate electrode 44 and the gate opening 26 instead of the end of the threshold adjustment layer 34. .
  • the gate electrode 44 covers, for example, at least a part of the bottom surface 26a and at least a part of the side surface 26b of the gate opening 26 in plan view. Specifically, the gate electrode 44 is provided inside the gate opening 26 in plan view. For example, when viewed in the cross section shown in FIG. 3, in the direction parallel to the substrate 12, the end of the gate electrode 44 is located farther from the source electrode 40 than the upper end of the side surface 26 b of the gate opening 26. are doing. Specifically, the end of the gate electrode 44 is located right above the side surface 26b, that is, at a position where the gate electrode 44 overlaps in plan view.
  • the gate electrode 44 may cover all of the bottom surface 26a and the side surfaces 26b in plan view. That is, the gate opening 26 may be provided inside the gate electrode 44 in a plan view. For example, when viewed in the cross section shown in FIG. 3, the end of the gate electrode 44 is located closer to the source electrode 40 than the upper end of the side surface 26 b of the gate opening 26 in the direction parallel to the substrate 12. May be.
  • FIG. 4 is a diagram illustrating a current Ix flowing through the channel of the nitride semiconductor device 10x according to the comparative example.
  • the current Ix is indicated by a white arrow in FIG.
  • the block layer 22 is fixed at the same potential as the source electrode 40.
  • the fact that the block layer 22 and the source electrode 40 have the same potential is indicated by connecting them with a thick solid line.
  • a pn structure is formed between the source electrode 40 and the drain electrode 50 by the p-type block layer 22 and the n-type drift layer 14.
  • the potential of the block layer 22 is fixed and the nitride semiconductor device 10x is in an off state, a higher potential is applied to the drain electrode 50 than to the source electrode 40. A voltage is applied. Therefore, the depletion layer extends from the interface between the p-type block layer 22 and the n-type drift layer 14 toward the n-type drift layer 14, so that the withstand voltage between the source and the drain can be increased.
  • the potential difference between the p-type block layer 22 and the gate electrode 44 becomes 0 or the potential of the gate electrode 44 becomes lower than that of the p-type block layer 22. Therefore, a depletion layer 66x is formed in the electron transit layer 30. Since the depletion layer 66x narrows the two-dimensional electron gas and narrows the current path, current flow is suppressed, and stable off characteristics are realized.
  • the nitride semiconductor device 10x when the nitride semiconductor device 10x is in the ON state, a higher potential is applied to the gate electrode 44 than to the source electrode 40, so that a reverse bias is applied between the electron transit layer 30 and the p-type block layer 22. A voltage is applied. Therefore, the depletion layer 66x does not degenerate in the electron transit layer 30, and the two-dimensional electron gas remains narrow. Therefore, the current Ix flowing through the two-dimensional electron gas is suppressed. Therefore, in the nitride semiconductor device 10x according to the comparative example, a large current operation cannot be realized.
  • the depletion layer 66x extending into the electron transit layer 30 is suppressed in the ON state of the nitride semiconductor device 10x, so that a large current operation is performed. Will be possible.
  • the potential of the block layer 22 is in a floating state, when the nitride semiconductor device 10 is in the off state, a depletion layer extending from the block layer 22 into the drift layer 14 is not stably formed, and the withstand voltage is greatly increased. To decline.
  • block layer 22 is fixed at the same potential as the potential applied to gate electrode 44. I have. That is, the block layer 22 is fixed at the same potential as the gate electrode 44.
  • FIG. 5 is a diagram showing current I flowing through the channel of nitride semiconductor device 10 according to the present embodiment.
  • the current I is indicated by a white arrow in FIG.
  • the fact that the block layer 22 and the gate electrode 44 have the same potential is indicated by connecting them with a thick solid line.
  • the depletion layer extends from the interface between the p-type block layer 22 and the n-type drift layer 14 toward the n-type drift layer 14, so that the withstand voltage between the source and the drain can be increased.
  • the nitride semiconductor device 10 When the nitride semiconductor device 10 is in the ON state, the same potential as that of the gate electrode 44 is applied to the p-type block layer 22, so that the depletion layer 66 is degenerated and a current path can be secured. . Therefore, a large current I flowing through the two-dimensional electron gas can flow.
  • nitride semiconductor device 10 of the present embodiment high withstand voltage and large current operation are possible.
  • Embodiment 2 Next, a second embodiment will be described. In the following description, differences from Embodiment 1 will be mainly described, and description of common points will be omitted or simplified.
  • FIG. 6 is a cross-sectional view of the nitride semiconductor device 110 according to the present embodiment. Specifically, FIG. 6 shows a cross section corresponding to the line III-III shown in FIG. 2, as in FIG.
  • the planar layout of the nitride semiconductor device 110 is, for example, the same as the nitride semiconductor device 10 according to the first embodiment.
  • nitride semiconductor device 110 further includes a high-resistance layer 168 as compared to nitride semiconductor device 10.
  • the high resistance layer 168 is an example of a second high resistance layer provided between the drift layer 14 and the block layer 22.
  • the high resistance layer 168 has higher resistance than both the drift layer 14 and the block layer 22.
  • the high resistance layer 168 is formed from an insulating or semi-insulating nitride semiconductor.
  • the high resistance layer 168 is, for example, a film made of undoped GaN having a thickness of 10 nm to several tens nm.
  • the high resistance layer 168 is provided in contact with both the drift layer 14 and the block layer 22.
  • the high resistance layer 168 is formed on the drift layer 14 by, for example, crystal growth such as MOVPE.
  • the high resistance layer 168 is doped with carbon. Specifically, the C concentration of the high resistance layer 168 is higher than the C concentration of the block layer 22 and the C concentration of the drift layer 14. For example, the C concentration of the high resistance layer 168 is substantially the same as the C concentration of the high resistance layer 24.
  • the high-resistance layer 168 may include Si or O mixed at the time of film formation similarly to the high-resistance layer 24.
  • the C concentration of the high resistance layer 168 is higher than the Si concentration or the O concentration.
  • the C concentration of the high resistance layer 168 is, for example, 3 ⁇ 10 17 cm ⁇ 3 or more, but may be 1 ⁇ 10 18 cm ⁇ 3 or more.
  • the Si concentration or the O concentration of the high resistance layer 168 is, for example, 5 ⁇ 10 16 cm ⁇ 3 or less, but may be 2 ⁇ 10 16 cm ⁇ 3 or less.
  • the high resistance layer 168 may be formed by ion implantation of magnesium Mg, iron (Fe), boron (B), or the like, in addition to carbon. Other ion species may be used as long as they can realize high resistance of GaN.
  • nitride semiconductor device 110 when nitride semiconductor device 110 is in the ON state, specifically, when a positive bias (potential higher than source electrode 40) is applied to gate electrode 44 and block layer 22.
  • a positive bias potential higher than source electrode 40
  • the current flowing from the block layer 22 toward the drain electrode 50 can be suppressed.
  • the current causes an offset to occur in an IV curve representing a drain current-drain voltage characteristic, and causes a power loss.
  • since the current can be suppressed, energy saving is realized.
  • Embodiment 3 Next, a third embodiment will be described. In the following description, differences from Embodiment 1 or 2 will be mainly described, and description of common points will be omitted or simplified.
  • FIG. 7 is a plan view showing a planar layout when nitride semiconductor device 210 according to the present embodiment is viewed from above.
  • FIG. 7A shows a pad layout of the nitride semiconductor device 210.
  • FIG. 7B shows a planar layout when the source electrode pad 256 of the nitride semiconductor device 210 is removed.
  • FIG. 7B shows a layout of a lower layer configuration with the gate electrode pad 258 being transmitted therethrough.
  • FIG. 8 is an enlarged view of region VIII in FIG. 7 and 8, the source electrode 240 and the insulating film 242 are hatched for easy understanding. Also, the first underlayer 222 exposed at the outermost periphery of the nitride semiconductor device 210 is hatched.
  • nitride semiconductor device 210 includes a plurality of source electrodes 240 provided in a plane.
  • the planar shape of each of the plurality of source electrodes 240 is a rectangle that is long in a predetermined direction.
  • the plurality of source electrodes 240 are provided side by side in the longitudinal direction and the lateral direction in plan view.
  • two source electrodes 240 are provided side by side in the longitudinal direction (vertical direction on the paper), and nine source electrodes 240 are arranged in the lateral direction (horizontal direction on the paper). I have. Note that the number and shape of the source electrodes 240 are not limited to these.
  • each of the plurality of source electrodes 240 is surrounded by the gate electrode 44.
  • the gate electrode 44 is a single plate-shaped electrode provided with openings for exposing the source electrodes 240 at positions corresponding to the plurality of source electrodes 240. In a plan view, the gate electrode 44 and the source electrode 240 are provided at a distance and do not overlap.
  • an insulating film 242 is provided between the source electrode 240 and the gate electrode 44.
  • the insulating film 242 has a 0-letter shape (race track shape) that is long in the longitudinal direction of the source electrode 240 in a plan view.
  • the gate openings 26 are provided between the source electrodes 240 arranged in the lateral direction.
  • the gate opening 26 is located immediately below the gate electrode 44.
  • the shape of the gate opening 26 in a plan view is long in the same direction as the longitudinal direction of the source electrode 240, and has both ends in the longitudinal direction rounded.
  • the gate opening 26 is located at the center between two adjacent source electrodes 240.
  • a high-resistance layer 228 is provided so as to surround the outside of the gate opening 26. Specifically, as represented by a broken line in FIG. 7, the high-resistance layer 228 has a 0-shape elongated in a direction parallel to the longitudinal direction of the source electrode 240. Note that the high-resistance layer 228 has a predetermined width (length in a direction parallel to the substrate 12), but the width of the high-resistance layer 228 is not illustrated in FIGS.
  • the shapes of the source electrode 240 and the gate electrode 44 are not limited to the example shown in FIG.
  • the planar shape of the source electrode 240 may be a hexagon.
  • the plurality of source electrodes 240 having a hexagonal shape in plan view may be arranged such that the center of each source electrode 240 is located at the vertex of a regular hexagon filled and arranged in plan view.
  • FIG. 9 shows a cross section of the nitride semiconductor device 210 according to the present embodiment taken along line IX-IX in FIG.
  • FIG. 10 shows a cross section of nitride semiconductor device 210 according to the present embodiment along line IX-IX in FIG.
  • the nitride semiconductor device 210 includes a substrate 12, a drift layer 14, a first underlayer 222, a second underlayer 224, a gate opening 26, and a high resistance layer 228. , An electron transit layer 30, an electron supply layer 32, a source opening 236, a source electrode 240, an insulating film 242, a gate electrode 44, and a drain electrode 50. Further, as shown in FIG. 10, the nitride semiconductor device 210 includes a contact plug 252.
  • ⁇ It has a first underlayer 222, a gate connection part 222a and a source connection part 222b.
  • the gate connection portion 222a is an example of a first portion of the first underlayer 222 closer to the gate opening 26 than the high-resistance layer 228 in a plan view.
  • the source connection portion 222b is an example of a second portion of the first base layer 222 closer to the source electrode 240 than the high-resistance layer 228 in a plan view.
  • the gate connection part 222a and the source connection part 222b are electrically insulated by the high resistance layer 228.
  • the gate connection portion 222a is fixed at a potential different from a potential applied to the source electrode 240 (hereinafter, referred to as a source potential). Specifically, the gate connection portion 222a is fixed at a potential applied to the gate electrode 44. As shown in FIG. 10, a contact plug 252 extending from the gate electrode 44 is connected to the gate connection part 222a. A gate potential is applied to the gate connection part 222a via the contact plug 252.
  • the source connection part 222b is fixed at the source potential. Specifically, as shown in FIG. 9, the source connection portion 222b is exposed to the source opening 236, and the exposed portion is in contact with the source electrode 240. As a result, a source potential is applied to the source connection portion 222b.
  • the high resistance layer 228 separates the first underlayer 222 into a gate connection part 222a on the gate opening part 26 side and a source connection part 222b on the source opening part 236 side.
  • the high-resistance layer 228 further separates the second underlayer 224 into a portion on the gate opening 26 side and a portion on the source opening 236 side. are doing.
  • the high-resistance layer 228 extends from the second underlayer 224 to the drift layer 14 through the first underlayer 222.
  • the upper surface of the high resistance layer 228 is flush with the upper surface of the second underlayer 224.
  • the lower surface of the high resistance layer 228 is located below the interface between the first underlayer 222 and the drift layer 14.
  • the high resistance layer 228 may separate only the first base layer 222.
  • the upper surface of the high-resistance layer 228 may be flush with the interface between the first underlayer 222 and the second underlayer 224, or may be located above the interface in the second underlayer 224. .
  • the high resistance layer 228 is located directly below the gate electrode 44 and the source electrode 240, specifically, directly below the insulating film 242.
  • the high-resistance layer 228 is formed at the center between the ends of the bottom surface 26 a of the gate opening 26 and the bottom surface 236 a of the source opening 236. It is located in.
  • the end of the bottom surface 26a is an intersection between the bottom surface 26a and the side surface 26b.
  • the end of the bottom surface 236a is an intersection between the bottom surface 236a and the side surface 236b.
  • the high resistance layer 228 may be provided at a position closer to the gate opening 26 than the center between the ends of the bottom surface 26a and the bottom surface 236a.
  • the upper surface of the high resistance layer 228 may be exposed on the side surface 26b of the gate opening 26.
  • the high resistance layer 228 may be provided at a position closer to the source opening 236 than the center between the ends of the bottom surface 26a and the bottom surface 236a.
  • the upper surface of the high resistance layer 228 may be exposed on the side surface 236b of the source opening 236.
  • the high resistance layer 228 has a higher resistance than the first underlayer 222. In this embodiment, the high-resistance layer 228 has a higher resistance than the second underlayer 224.
  • the high resistance layer 228 is made of, for example, an insulating or semi-insulating nitride semiconductor. In the present embodiment, high resistance layer 228 contains iron (Fe).
  • the high resistance layer 228 is made of, for example, GaN doped with iron and having a high resistance. Note that the high-resistance layer 228 may not be formed using a nitride semiconductor, and may be formed using another material having an insulating property.
  • the source opening 236 is an example of a second opening that penetrates the electron supply layer 32 and the electron transit layer 30 and reaches the first underlayer 222 at a position away from the gate opening 26. Specifically, the source opening 236 penetrates the electron supply layer 32, the electron transit layer 30, and the second underlayer 224 in this order, and reaches the first underlayer 222.
  • the bottom surface 236a of the source opening 236 is the upper surface of the first underlayer 222.
  • the bottom surface 236a is located below the interface between the first underlayer 222 and the second underlayer 224.
  • the source opening 236 is formed so that the opening area increases as the distance from the substrate 12 increases.
  • the side surface 236b of the source opening 236 is obliquely inclined.
  • the cross-sectional shape of the source opening 236 is an inverted trapezoid, more specifically, an inverted isosceles trapezoid.
  • the cross-sectional shape of the source opening 236 may be substantially rectangular. That is, the source opening 236 may have a substantially uniform opening area regardless of the distance from the substrate 12.
  • the inclination angle of the side surface 236b with respect to the bottom surface 236a is, for example, in a range from 20 ° to 80 °.
  • the inclination angle may be in a range of 30 ° or more and 60 ° or less.
  • the inclination angle of the side surface 236 b of the source opening 236 is larger than the inclination angle of the side surface 26 b of the gate opening 26. Since the side surface 236b is obliquely inclined, the contact area between the source electrode 240 and the electron transit layer 30 (two-dimensional electron gas) increases, so that ohmic connection is easily performed.
  • the source electrode 240 is provided in the source opening 236 and is connected to the electron transit layer 30 and the electron supply layer 32. Specifically, the source electrode 240 is provided so as to cover the side surface 236b of the source opening 236.
  • the source electrode 240 is connected to the first underlayer 222. Specifically, the source electrode 240 is connected to each end face of the electron supply layer 32, the electron transit layer 30, and the second underlayer 224, and to the source connection part 222b. The source electrode 240 is ohmically connected to the electron transit layer 30 and the electron supply layer 32. The source electrode 240 is connected to a two-dimensional electron gas in the electron transit layer 30 at a side surface 236b of the source opening 236.
  • the source electrode 240 is formed using a conductive material such as a metal.
  • a material of the source electrode 240 for example, a material such as Ti / Al that can be ohmic-connected to the n-type semiconductor layer can be used.
  • ⁇ Al ⁇ is also Schottky-connected to the first underlayer 222 made of a p-type nitride semiconductor. For this reason, a metal material having a large work function such as Pd or Ni having a low contact resistance with respect to the p-type nitride semiconductor may be provided in a lower layer portion of the source electrode 240. Thus, the potential of the first base layer 222 can be further stabilized.
  • the insulating film 242 is provided in contact with the electron supply layer 32. As shown in FIG. 9, the insulating film 242 covers an end surface of a portion of the source electrode 240 that is outside the source opening 236. The insulating film 242 is provided to prevent the source electrode 240 and the gate electrode 44 from being physically and electrically connected.
  • the insulating film 242 is located between the gate electrode 44 and the electron supply layer 32.
  • the insulating film 242 covers the side surface of the contact plug 252. This suppresses the electrical connection between the contact plug 252 and the electron transit layer 30 and the electron supply layer 32.
  • the insulating film 242 is formed using an insulating material.
  • the insulating film 242 is a film made of, for example, silicon oxide or silicon nitride having a thickness of 100 nm.
  • the source electrode pad 256 is electrically connected to each of the plurality of source electrodes 240.
  • the source electrode pad 256 is provided above each of the plurality of source electrodes 240.
  • a plurality of conductive contact plugs (not shown) are provided at positions corresponding to the plurality of source electrodes 240, respectively.
  • the source electrode pad 256 is electrically connected to each of the plurality of source electrodes 240 via the contact plug.
  • the source electrode pad 256 is, for example, grounded. That is, 0 V is applied to the source electrode pad 256.
  • the potential applied to the source electrode pad 256 is given to the source connection part 222 b of the first underlayer 222 via the source electrode 240.
  • the gate electrode pad 258 is electrically connected to the gate electrode 44.
  • the gate electrode pad 258 is provided, for example, above the gate electrode 44.
  • a contact plug (not shown) is provided directly below the gate electrode pad 258.
  • the gate electrode pad 258 is electrically connected to the gate electrode 44 via the contact plug.
  • the gate electrode 44 is provided in a flat plate shape in the plane. Therefore, the gate electrode pad 258 does not have to be provided on the entire surface of the nitride semiconductor device 210, but only needs to be provided on a part thereof. For example, as shown in FIG. 7, the gate electrode pad 258 is provided along one side of the nitride semiconductor device 210 and at the center of the one side. Source electrode pad 256 is provided to surround gate electrode pad 258.
  • the number and position of the gate electrode pads 258 are not particularly limited.
  • one gate electrode pad 258 may be provided at the center of nitride semiconductor device 210, and two gate electrode pads 258 may be provided along two opposing sides of nitride semiconductor device 210. .
  • a power supply for controlling the gate electrode 44 is connected to the gate electrode pad 258.
  • a positive potential for example, +5 V
  • a ground potential (0 V) or a negative potential is applied to the gate electrode pad 258.
  • the potential applied to the gate electrode pad 258 is applied to the gate connection part 222a of the first underlayer 222 via the gate electrode 44 and the contact plug 252.
  • the interface between the electron transit layer 30 and the electron supply layer 32 is an AlGaN / GaN hetero interface.
  • a two-dimensional electron gas is generated in the electron transit layer 30, and a channel is formed. Since the two-dimensional electron gas has a high carrier concentration, the mobility of the channel is increased, and the on-resistance is reduced.
  • the first base layer 222 is separated into the gate connection portion 222a and the source connection portion 222b by the high resistance layer 228. Since the gate connection portion 222a is electrically connected to the gate electrode 44, the gate connection portion 222a is fixed at a gate potential.
  • the gate potential becomes 0 V or a negative potential, so that the depletion layer extends from the gate connection part 222a to the electron transit layer 30. Therefore, leakage current flowing through the channel is suppressed, and stable off characteristics can be obtained.
  • the gate potential becomes a positive potential, and the gate connection part 222a is positively biased. For this reason, the depletion layer extending toward the electron transit layer 30 shrinks, and a drain current can flow without narrowing the current path. As a result, it is possible to realize a field-effect transistor capable of achieving both stable off characteristics and large current.
  • the source connection portion 222b is fixed at the source potential regardless of the operating state of the nitride semiconductor device 210.
  • the source potential is lower than the potential applied to the drain electrode 50, for example, 0V. Therefore, a reverse bias is applied to the p-type source connection portion 222b and the n-type drift layer 14 by the source connection portion 222b and the drain electrode 50, so that the depletion layer extends to the drift layer 14 side. Thereby, the breakdown voltage between the source and the drain can be increased.
  • FIGS. 11A to 11I are cross-sectional views showing each step of the method for manufacturing nitride semiconductor device 210 according to the present embodiment.
  • each of the nitride semiconductor layers constituting the nitride semiconductor device 210 is formed by metal organic chemical vapor deposition (MOVPE: Metal Organic Vapor Phase Epitaxy).
  • MOVPE Metal Organic Vapor Phase Epitaxy
  • the method for forming the nitride semiconductor layer is not limited to this, and for example, the nitride semiconductor layer may be formed by molecular beam epitaxy (MBE: Molecular Beam Epitaxy).
  • the n-type nitride semiconductor is formed by adding, for example, silicon (Si).
  • the p-type nitride semiconductor is formed by adding magnesium (Mg). Note that the n-type impurity and the p-type impurity are not limited to these.
  • a substrate 12 made of n-type GaN whose first main surface 12a is a (0001) plane, that is, a c-plane is prepared.
  • an n-type GaN film 13 in which Si is added as an n-type impurity, a p-type GaN film 221 in which Mg is added as a p-type impurity, and an undoped GaN are formed on the first main surface 12a of the substrate 12.
  • the film 223 is formed in this order.
  • the n-type GaN film 13, the p-type GaN film 221 and the undoped GaN film 223 are each patterned into a predetermined shape, so that the drift layer 14, the first underlayer 222, and the 2 underlayer 224.
  • the thickness and carrier concentration of each layer are, for example, as follows.
  • the n-type GaN film 13 has a thickness of 8 ⁇ m and a carrier concentration of 1 ⁇ 10 16 cm ⁇ 3 .
  • the p-type GaN film 221 has a thickness of 400 nm and a carrier concentration of 1 ⁇ 10 17 cm ⁇ 3 .
  • the undoped GaN film 223 has a thickness of 200 nm. Note that these numerical values are merely examples.
  • a resist is applied on the undoped GaN film 223, and the applied resist is patterned by photolithography to form a resist mask 290.
  • the resist mask 290 is a mask for forming the gate opening 26 and has an opening 291 corresponding to the shape of the gate opening 26 in a plan view.
  • a gate opening 26 is formed by dry etching.
  • the gate opening 26 penetrates the undoped GaN film 223 and the p-type GaN film 221, and the n-type GaN film 13 is exposed.
  • the bottom surface 26a of the gate opening 26 is parallel to the first main surface 12a of the substrate 12.
  • the side surface 26b of the gate opening 26 is inclined at a predetermined inclination angle with respect to the bottom surface 26a.
  • the regrowth layer can be formed with a uniform thickness on the side surface 26b, so that channel narrowing can be suppressed, and both a decrease in carrier concentration and an increase in on-resistance can be suppressed.
  • a resist is applied again on the undoped GaN film 223 and in the gate opening 26.
  • a resist mask 292 is formed by patterning the applied resist by photolithography.
  • the resist mask 292 is a mask for forming the high resistance layer 228.
  • the resist mask 292 is provided on a part of the undoped GaN film 223 and on the bottom surface 26 a and the side surface 26 b of the gate opening 26.
  • the resist mask 292 has an opening 293 corresponding to the shape of the high-resistance layer 228 in plan view.
  • the opening 293 exposes a part of the upper surface of the undoped GaN film 223.
  • high-resistance layers 228 are formed as shown in FIG. 11E by ion-implanting iron ions into the portions of the resist mask 292 exposed at the openings 293.
  • the high resistance layer 228 is a layer in which each of the undoped GaN film 223, the p-type GaN film 221 and the n-type GaN film 13 is doped with iron in a portion exposed to the opening 293.
  • the p-type GaN film 221 is separated into a first p-type GaN film 221a on the gate opening 26 side and a second p-type GaN film 221b on the source opening 236 side.
  • Each of the first p-type GaN film 221a and the second p-type GaN film 221b is patterned into a predetermined shape to become a gate connection part 222a and a source connection part 222b.
  • the ion implantation conditions are, for example, an acceleration energy of 40 keV and a dose of 1 ⁇ 10 14 cm ⁇ 2 .
  • a high-resistance layer 228 having a thickness of about 50 nm is formed.
  • the region into which the iron ions are implanted, that is, the high-resistance layer 228 has high resistance due to the destruction of the crystal structure.
  • a metal ion having a large atomic number such as a titanium ion, a chromium ion, a copper ion, or a nickel ion may be used. Accordingly, recrystallization of the high-resistance layer 228 due to heat treatment in a later step can be suppressed, and the resistance value of the high-resistance layer 228 decreases.
  • an undoped GaN film 29, an undoped AlN film (not shown), and an undoped AlGaN film are formed on the entire surface along the shape of the gate opening 26. 31 are formed in this order by the MOVPE method.
  • the undoped GaN film 29 and the undoped AlGaN film 31 become an electron transit layer 30 and an electron supply layer 32 by being patterned into a predetermined shape, respectively.
  • the undoped GaN film 29 has a thickness of 100 nm as follows.
  • the undoped AlN film has a thickness of 1 nm.
  • the undoped AlGaN film 31 has a thickness of 50 nm. Note that these numerical values are merely examples.
  • a resist is applied again on the undoped AlGaN film 31 and in the gate opening 26.
  • a resist mask 294 is formed by patterning the applied resist by photolithography.
  • the resist mask 294 is a mask for forming the source opening 236, and has an opening 295 corresponding to the shape of the source opening 236 in plan view.
  • a source opening 236 is formed by dry etching.
  • an opening 254 for forming the contact plug 252 is formed as shown in FIG.
  • the source opening 236 and the opening 254 pass through the undoped AlGaN film 31, the undoped AlN film (not shown), the undoped GaN film 29, and the undoped GaN film 223, respectively, and the p-type GaN film 221 is exposed.
  • the bottom surface 236a of the source opening 236 is parallel to the first main surface 12a of the substrate 12.
  • the side surface 236b of the source opening 236 is inclined at a predetermined inclination angle with respect to the bottom surface 236a. Note that the opening 254 may be formed at a timing different from that of the source opening 236.
  • the undoped AlGaN film 31, the undoped GaN film 29, the undoped GaN film 223, and the p-type GaN film 221 are respectively patterned to form the electron supply layer 32, the electron transit layer 30, the second underlayer 224, and the first underlayer. 222 is formed.
  • a source metal film made of Ti and Au is formed on a part of the upper surface of the electron supply layer 32 and on the side surface 236b and the bottom surface 236a of the source opening 236 by an evaporation method or a sputtering method, and is patterned. Thus, a source electrode 240 is formed.
  • an insulating film made of SiO 2 is formed on the upper surface of the electron supply layer 32 by a CVD method or the like, and is patterned to form the insulating film 242. Note that the insulating film 242 may cover the source electrode 240.
  • the insulating film 242 is provided so as to cover the inner surface of the opening 254, as shown in FIG. At this time, the insulating film 242 attached to the bottom of the opening 254 is removed by patterning so that the bottom of the opening 254 is exposed.
  • a gate metal film made of Pd is formed by a vapor deposition method or a sputtering method so as to cover the gate opening 26.
  • the gate electrode 44 is formed by patterning the formed gate metal film. Note that the gate electrode 44 may cover the insulating film 242.
  • the contact plug 252 is formed by filling the opening 254 with the formed metal film. The contact plug 252 physically and electrically connects the gate electrode 44 and the gate connection portion 222a of the first underlayer 222.
  • a drain metal film made of Ti and Al is formed on the second main surface 12b of the substrate 12 by a vapor deposition method or a sputtering method, and is patterned as necessary, thereby forming the drain electrode 50.
  • nitride semiconductor device 210 shown in FIGS. 9 and 10 is formed.
  • an insulating film is formed.
  • a contact hole exposing a part of each of the plurality of source electrodes 240 and a part of the gate electrode 44 is formed in the formed insulating film.
  • a source electrode pad 256 and a gate electrode pad 258 are formed by forming and patterning a metal film.
  • FIG. 12 is a cross-sectional view of a nitride semiconductor device 310 according to the present modification. As shown in FIG. 12, the nitride semiconductor device 310 is different from the nitride semiconductor device 210 shown in FIG. The following description focuses on differences from the first to third embodiments, and description of common points is omitted or simplified.
  • the threshold adjustment layer 34 is the same as the threshold adjustment layer 34 according to the first embodiment. In the present modification, when the substrate 12 is viewed in a plan view, the end of the threshold adjustment layer 34 is located closer to the source electrode 240 than the end of the gate electrode 44. The threshold adjustment layer 34 and the source electrode 240 are separated and not in contact with each other.
  • the insulating film 242 is formed so as to cover the source electrode 240, the electron supply layer 32, and the threshold adjustment layer.
  • the insulating film 242 covers an end of the threshold adjustment layer 34, and a portion covering the end is covered with the gate electrode 44. That is, a part of the insulating film 242 is located between the threshold adjustment layer 34 and the gate electrode 44. Note that the insulating film 242 may be provided to cover an end of the gate electrode 44.
  • the threshold adjustment layer 34 raises the potential at the conduction band edge of the channel portion. Therefore, the threshold voltage of nitride semiconductor device 310 can be increased. Therefore, nitride semiconductor device 310 can be realized as a normally-off type FET.
  • FIG. 13 is a sectional view of a nitride semiconductor device 410 according to the present modification. As shown in FIG. 13, in the present modification, the configuration of source electrode 240 is different from nitride semiconductor device 210 shown in FIG. The following description focuses on differences from the third embodiment, and description of common points is omitted or simplified.
  • Nitride semiconductor device 410 includes source electrode 440 instead of source electrode 240. Further, nitride semiconductor device 410 includes a plurality of openings 439.
  • the plurality of openings 439 are provided on the bottom surface 236a of the source opening 236.
  • the plurality of openings 439 are an example of a third opening penetrating the first underlayer 222 and reaching the drift layer 14.
  • the bottom surface of the opening 439 is below the interface between the drift layer 14 and the first underlayer 222.
  • six (three left and right) openings 439 are provided in one bottom surface 236a.
  • the plurality of openings 439 have the same configuration as each other.
  • the cross-sectional shape of the opening 439 is substantially rectangular. That is, the opening 439 may have a substantially uniform opening area regardless of the distance from the substrate 12.
  • the cross-sectional shape of the opening 439 may be an inverted trapezoid.
  • the plurality of openings 439 are formed by removing a part of the source connection portion 222b of the first base layer 222 after forming the source opening 236 and before forming the source electrode 440.
  • the plurality of openings 439 are formed by photolithography patterning and dry etching.
  • the width of the plurality of openings 439 (that is, the length in the direction horizontal to the substrate 12) and the distance between the adjacent openings 439 are, for example, equal. Further, the lateral widths of the plurality of openings 439 are equal to each other. The size and position of the opening 439 are not particularly limited.
  • the source electrode 440 is provided so as to be in contact with the bottom surface 236a of the source opening 236 and cover the side surface 236b, similarly to the source electrode 240. Further, the source electrode 440 is provided in each of the plurality of openings 439 formed in the first underlayer 222 and is connected to the drift layer 14. Specifically, part of the source electrode 440 is provided to fill each of the plurality of openings 439.
  • the source electrode 440 is connected to each end face of the electron supply layer 32, the electron transit layer 30, and the second underlayer 224.
  • the source electrode 440 is ohmically connected to the electron transit layer 30 and the electron supply layer 32.
  • the pn diode formed by the drift layer 14 made of n-type GaN and the first underlayer 222 made of p-type GaN and the bottom surface of the opening 439 are located immediately below the source opening 236.
  • An MPS diode composed of a Schottky barrier diode formed by the source electrode 440 and the first underlayer 222 composed of p-type GaN is formed.
  • the MPS diode has advantages of both a pn diode and a Schottky barrier diode, is excellent in high withstand voltage characteristics, and can realize a low operating voltage.
  • the MPS diode is formed in parallel with the field effect transistor. That is, the MPS diode functions as a freewheeling diode for protecting the field effect transistor. As a result, the rising voltage can be reduced while maintaining a high withstand voltage at the time of reverse bias, so that the loss due to the return current flowing through the MPS diode can be reduced.
  • FIG. 14 is a cross-sectional view of the nitride semiconductor device 510 according to the present embodiment. Specifically, FIG. 14 shows a cross section taken along line XIV-XIV of FIG.
  • FIGS. 15 and 16 are a sectional perspective view and a plan view, respectively, showing the layout of openings 518 and 526 of nitride semiconductor device 510 according to the present embodiment.
  • FIG. 15 illustrates the shield layer 516 provided with the opening 518 and the current block layer 522 provided with the opening 526, and the illustration of other components is omitted. The same applies to FIG.
  • FIG. 17 is a cross-sectional perspective view showing a connection portion between gate electrode 44 and current block layer 522 of nitride semiconductor device 510 according to the present embodiment.
  • FIG. 17 schematically shows a nitride semiconductor device 510 when a cross section cut along line XVII-XVII in FIG. 16 is viewed obliquely.
  • FIG. 17 shows one end of the nitride semiconductor device 510 in the direction in which each of the opening 518 and the opening 526 extends.
  • FIG. 18 is a cross-sectional perspective view showing a connection portion between source electrode 40 and shield layer 516 of nitride semiconductor device 510 according to the present embodiment.
  • FIG. 18 schematically shows a nitride semiconductor device 510 when a cross section cut along line XVIII-XVIII in FIG. 16 is viewed obliquely. That is, FIG. 18 shows one end of the nitride semiconductor device 510 on the opposite side of FIG. 17 in the direction in which each of the openings 518 and 526 extends.
  • the nitride semiconductor device 510 includes a substrate 12, a drift layer 14, a shield layer 516, an opening 518, a base layer 520, a current blocking layer 522, an opening 526,
  • the substrate 12, the drift layer 14, the electron transit layer 30, the electron supply layer 32, the threshold adjustment layer 34, the source opening 36, the source electrode 40, the gate electrode 44, and the drain electrode 50 are substantially the same as those in the first embodiment. The description of the same configuration will be omitted or simplified.
  • the nitride semiconductor device 510 is a field effect transistor (FET) using a two-dimensional electron gas generated at the AlGaN / GaN hetero interface as a channel.
  • nitride semiconductor device 510 is a so-called vertical FET.
  • FET field effect transistor
  • nitride semiconductor device 510 when the nitride semiconductor device 510 is in an ON state, current flows from the drain electrode 50 to the source electrode 40 via the substrate 12, the drift layer 14, the underlayer 520, and the electron transit layer 30 (two-dimensional electron gas). Flows. The current flows from the drift layer 14 to the underlayer 520 through the opening 518, and flows from the underlayer 520 to the electron transit layer 30 through the opening 526.
  • the source electrode 40 is grounded (that is, the potential is 0 V), and a positive potential is applied to the drain electrode 50.
  • the potential applied to the drain electrode 50 is, for example, several hundred volts, but is not limited thereto.
  • On / off of the nitride semiconductor device 510 is controlled by the potential applied to the gate electrode 44.
  • nitride semiconductor device 510 the details of each component included in nitride semiconductor device 510 will be described.
  • the effective carrier concentration of drift layer 14 is determined by the rated voltage of the device. For example, when the rated voltage is in the range of 0.6 kV to 1.2 kV, the effective carrier concentration of drift layer 14 is in the range of 5 ⁇ 10 15 cm ⁇ 3 to 2 ⁇ 10 16 cm ⁇ 3. . As an example, the effective carrier concentration of the drift layer 14 is 1 ⁇ 10 16 cm ⁇ 3 .
  • the shield layer 516 is an example of a second conductivity type fourth nitride semiconductor layer provided above the drift layer 14.
  • the shield layer 516 is, for example, a film made of p-type GaN having a thickness of 400 nm and an effective carrier concentration of 1 ⁇ 10 17 cm ⁇ 3 .
  • the shield layer 516 is provided in contact with the upper surface of the drift layer 14.
  • the shield layer 516 is fixed to the same potential as the potential applied to the source electrode 40 (hereinafter, referred to as a source potential). That is, the shield layer 516 and the source electrode 40 are electrically connected. A specific connection configuration will be described later with reference to FIG.
  • the shield layer 516 has an opening 518 which is an example of a fourth opening exposing a part of the drift layer 14.
  • the opening 518 penetrates through the shield layer 516 and reaches the drift layer 14.
  • the bottom surface 518a of the opening 518 is the upper surface of the drift layer 14.
  • the bottom surface 518a is, for example, parallel to the first main surface 12a of the substrate 12, and is located below the interface between the drift layer 14 and the shield layer 516.
  • the opening 518 is formed such that the opening area increases as the distance from the substrate 12 increases.
  • the side surface 518b of the opening 518 is obliquely inclined.
  • the cross-sectional shape of the opening 518 is an inverted trapezoid, more specifically, an inverted isosceles trapezoid.
  • the inclination angle of the side surface 518b with respect to the bottom surface 518a is, for example, in a range from 20 ° to 80 °.
  • the inclination angle may be in a range of 30 ° or more and 45 ° or less.
  • the side surface 518b approaches the c-plane, so that the quality of the underlayer 520 formed along the side surface 518b by crystal regrowth can be improved.
  • the underlayer 520 is an example of a first conductive type fifth nitride semiconductor layer provided along the inner surface of the opening 518 and above the shield layer 516.
  • the underlayer 520 is, for example, a film made of n-type GaN having a thickness of 300 nm.
  • the base layer 520 is provided in contact with the bottom surface 518 a and the side surface 518 b of the opening 518 and the top surface of the shield layer 516.
  • the current block layer 522 is an example of a second nitride semiconductor layer provided above the base layer 520.
  • the current blocking layer 522 is, for example, a film made of p-type GaN having a thickness of 400 nm.
  • the current block layer 522 is provided in contact with the upper surface of the base layer 520.
  • the effective carrier concentration of the current block layer 522 is, for example, the same as the effective carrier concentration of the shield layer 516.
  • the current block layer 522 is fixed at the same potential as the potential applied to the gate electrode 44 (hereinafter referred to as gate potential). That is, the current block layer 522 and the gate electrode 44 are electrically connected.
  • gate potential the potential applied to the gate electrode 44
  • the current block layer 522 has an opening 526 exposing a part of the base layer 520.
  • the opening 526 is an example of a first opening penetrating the current block layer 522.
  • the opening 526 penetrates the current block layer 522 and reaches the base layer 520.
  • the opening 526 is a gate opening that forms a recess structure of the gate electrode 44.
  • the bottom surface 526a of the opening 526 is the upper surface of the base layer 520.
  • the bottom surface 526a is, for example, parallel to the first main surface 12a of the substrate 12, and is located below the interface between the underlayer 520 and the current block layer 522.
  • the opening 526 is formed so that the opening area increases as the distance from the substrate 12 increases.
  • the side surface 526b of the opening 526 is obliquely inclined.
  • the cross-sectional shape of the opening 526 is an inverted trapezoid, more specifically, an inverted leg trapezoid.
  • the inclination angle of the side surface 526b with respect to the bottom surface 526a is, for example, in a range from 20 ° to 80 °.
  • the inclination angle may be in a range of 30 ° or more and 45 ° or less.
  • the side surface 526b approaches the c-plane, so that the film quality of the electron transit layer 30 formed along the side surface 526b by crystal regrowth can be improved.
  • the inclination angle is 30 ° or more, the opening 526 is prevented from becoming too large, and the size of the nitride semiconductor device 510 is reduced.
  • the opening 518 and the opening 526 are each elongated in one direction. In this embodiment, both the opening 518 and the opening 526 extend along the y-axis. When viewed in plan (that is, when viewed from the positive side of the z-axis), the openings 518 and 526 overlap.
  • the opening width W1 of the opening 518 is equal to the opening width W2 of the opening 526. That is, in plan view, the opening 518 and the opening 526 have the same shape and the same size as shown in FIG. Specifically, the opening width W1 is the distance between the ends exposed at the opening 518 at the lower end of the shield layer 516.
  • the opening width W ⁇ b> 2 is the distance between the lower ends of the current blocking layers 522 and the ends exposed to the opening 526.
  • the opening widths W1 and W2 are, for example, 5 ⁇ m.
  • the width of each of the current blocking layers 522 located on both sides of the opening 526 is 6 ⁇ m. Note that these numerical values are merely examples.
  • the electron transit layer 30 is in contact with the underlayer 520 at the bottom surface 526a of the opening 526. That is, the electron transit layer 30 is not in contact with the drift layer 14.
  • the electron transit layer 30 is in contact with the end surface of the current block layer 522 at the side surface 526b of the opening 526. Further, the electron transit layer 30 is in contact with the upper surface of the current blocking layer 522.
  • the opening 538 is an opening for exposing a part of the shield layer 516 at a position away from the opening 526.
  • the opening 538 is provided on both sides of the gate electrode 44 outside the source electrode 40 (specifically, on the opposite side of the gate electrode 44 and the opening 526) in a cross-sectional view. Have been. Specifically, the opening 538 penetrates the electron supply layer 32, the electron transit layer 30, the current blocking layer 522, and the underlayer 520, and reaches the shield layer 516.
  • the bottom surface 538a of the opening 538 is the upper surface of the shield layer 516. The bottom surface 538a is located below the interface between the underlayer 520 and the shield layer 516.
  • the opening 538 is formed such that the opening area is substantially uniform regardless of the distance from the substrate 12.
  • side surface 538b of opening 538 is substantially perpendicular to bottom surface 538a.
  • the cross-sectional shape of the opening 538 is rectangular. Note that the side surface 538b may be inclined.
  • the first potential fixing electrode 546 is an electrode for fixing the potential of the current block layer 522, and is in contact with the current block layer 522. Specifically, as shown in FIG. 14, a part of the upper surface of the current blocking layer 522 is not provided with the electron transit layer 30 and the electron supply layer 32 and is exposed. The first potential fixing electrode 546 is provided in contact with an exposed portion of the upper surface of the current blocking layer 522. The first potential fixed electrode 546 is provided apart from the source electrode 40 and does not contact the electron transit layer 30. In a cross-sectional view, the first potential fixing electrodes 546 are provided on both sides of the gate electrode 44 and outside the source electrode 40.
  • the first potential fixed electrode 546 is electrically connected to the gate electrode 44. That is, the first potential fixing electrode 546 fixes the potential of the current blocking layer 522 to the gate potential.
  • electrical connections between different layers are indicated by thick solid lines. The same applies to FIGS. 19, 21 and 22 to be described later.
  • the electron transit layer 30, the electron supply layer 32, and the threshold adjustment layer 34 are removed, and the upper surface of the current block layer 522 is exposed.
  • the gate electrode 44 extends in the positive y-axis direction, and has a contact plug 552 at an end thereof.
  • the contact plug 552 is a conductive portion that electrically connects the gate electrode 44 and the first potential fixing electrode 546.
  • the first potential fixing electrodes 546 located on both sides of the gate electrode 44 extend in the positive direction of the y-axis similarly to the gate electrode 44, and are connected together at one end.
  • the contact plug 552 is connected to this connection part.
  • the first potential fixed electrode 546 can be formed of a material that is ohmic-connected to a p-type semiconductor.
  • the same material as the gate electrode 44 can be used for the first potential fixed electrode 546.
  • the first potential fixed electrode 546 is formed using a palladium (Pd) or nickel (Ni) -based material.
  • the second potential fixing electrode 548 is an electrode for fixing the potential of the shield layer 516, and is in contact with the shield layer 516. Specifically, as shown in FIG. 14, the second potential fixing electrode 548 is provided in an opening 538 for exposing the shield layer 516. More specifically, second potential fixing electrode 548 is provided in contact with bottom surface 538a of opening 538. The second potential fixing electrode 548 is not in contact with the underlying layer 520 and the current blocking layer 522. In a cross-sectional view, the second potential fixed electrodes 548 are provided on both sides of the gate electrode 44 and outside the source electrode 40 and the first potential fixed electrode 546.
  • the second potential fixing electrode 548 is electrically connected to the source electrode 40. That is, the second potential fixing electrode 548 fixes the potential of the shield layer 516 to the source potential.
  • the nitride semiconductor device 510 As shown in FIG. 18, at the other end of the nitride semiconductor device 510, not only the electron transit layer 30, the electron supply layer 32, and the threshold adjustment layer 34, but also the current blocking layer 522 and the underlayer 520 are removed. The upper surface of the shield layer 516 is exposed.
  • the source electrodes 40 located on both sides of the gate electrode 44 extend in the negative direction of the y-axis, and are connected together at their ends.
  • a contact plug 541 is provided at this connection portion.
  • the contact plug 541 is a conductive portion that electrically connects the source electrode 40 and the second potential fixing electrode 548.
  • the second potential fixed electrodes 548 located on both sides of the gate electrode 44 extend in the negative direction of the y-axis similarly to the source electrode 40, and are connected together at one end.
  • a contact plug 541 is connected to this connection portion.
  • the second potential fixing electrode 548 can be formed using a material that is ohmic-connected to a p-type semiconductor.
  • the same material as the gate electrode 44 can be used for the second potential fixing electrode 548.
  • the second potential fixing electrode 548 is formed using a palladium (Pd) or nickel (Ni) -based material.
  • the current block layer 522 is provided to suppress a leak current flowing between the drain electrode 50 and the source electrode 40. Since the p-type current block layer 522 and the electron transit layer 30 are in contact with each other, the depletion layer spreads into the electron transit layer 30 from the side surface 526b of the opening 526.
  • the nitride semiconductor device 510 is in the off state, that is, when 0 V or a negative potential is applied to the gate electrode 44, a channel formed in the electron transit layer 30 by the depletion layer (specifically, In this case, the two-dimensional electron gas is narrowed, so that the current flowing from the drain electrode 50 to the source electrode 40 via the channel is suppressed.
  • the nitride semiconductor device 510 can obtain good off-state characteristics.
  • the current blocking layer 522 is not fixed to the gate potential, the current flowing through the channel is small even if the nitride semiconductor device 510 is turned on due to the channel narrowing. Become.
  • nitride semiconductor device 510 when nitride semiconductor device 510 is in the ON state, that is, when a positive potential is applied to gate electrode 44, current blocking layer 522 is fixed at the gate potential. Therefore, a positive bias is applied between the current blocking layer 522 and the electron transit layer 30. As a result, the depletion layer that has spread in the electron transit layer 30 is degenerated, so that channel narrowing is eliminated. Therefore, when nitride semiconductor device 510 is turned on, a large current can flow between drain electrode 50 and source electrode 40.
  • the capacitance formed between the current blocking layer 522 and the drain electrode 50 is added to the feedback capacitance between the gate and the drain.
  • the switching response becomes worse. That is, high-speed operation of the nitride semiconductor device 510 becomes difficult.
  • the shield layer 516 fixed to the source potential is provided between the current blocking layer 522 and the drain electrode 50. That is, since the shield layer 516 shields (shields) the current block layer 522 facing the drain electrode 50, the capacitance formed between the current block layer 522 and the drain electrode 50 can be reduced.
  • the opening width W1 of the opening 518 is equal to the opening width W2 of the opening 526.
  • the shapes of the opening 518 and the opening 526 are equal in plan view. That is, the current block layer 522 is substantially shielded by the shield layer 516. Therefore, the capacitance formed between the current blocking layer 522 and the drain electrode 50 can be further reduced.
  • an increase in the feedback capacitance between the gate and the drain can be suppressed, so that high-speed operation of the nitride semiconductor device 510 can be realized.
  • the p-type current blocking layer 522, the n-type base layer 520, and the p-type shield layer 516 form a pnp structure.
  • a reverse bias is applied between the gate and the source, a punch is provided between the current blocking layer 522 fixed at the gate potential (to be described later in detail) and the shield layer 516 fixed at the source potential. Through current may flow.
  • the effective carrier concentration of the underlayer 520 is larger than the effective carrier concentration of the drift layer 14.
  • the effective carrier concentration of the underlayer 520 is 1 ⁇ 10 17 cm ⁇ 3 .
  • the effective carrier concentration of the underlayer 520 may be equal to the effective carrier concentration of the drift layer 14.
  • FIG. 19 is a cross-sectional view of the nitride semiconductor device 610 according to the present embodiment. As shown in FIG. 19, nitride semiconductor device 610 is different from nitride semiconductor device 510 according to the fourth embodiment in that a high resistance layer 668 is provided.
  • the high resistance layer 668 is an example of a high resistance layer provided between the base layer 520 and the current block layer 522 and having a higher resistance than the base layer 520 and the current block layer 522.
  • the high resistance layer 668 is provided in contact with each of the base layer 520 and the current block layer 522.
  • the high resistance layer 668 is formed from an insulating or semi-insulating nitride semiconductor.
  • the high resistance layer 668 is, for example, a film made of GaN having a thickness of 200 nm.
  • the high resistance layer 668 is doped with carbon (C).
  • C carbon
  • the carbon concentration of the high resistance layer 668 is, for example, 3 ⁇ 10 17 cm ⁇ 3 or more, but may be 1 ⁇ 10 18 cm ⁇ 3 or more.
  • the high-resistance layer 668 may include silicon (Si) or oxygen (O) mixed at the time of film formation.
  • the carbon concentration of the high resistance layer 668 is higher than the silicon concentration or the oxygen concentration.
  • the silicon concentration or the oxygen concentration of the high resistance layer 668 is, for example, 5 ⁇ 10 16 cm ⁇ 3 or less, but may be 2 ⁇ 10 16 cm ⁇ 3 or less.
  • the high resistance layer 668 may be formed by ion implantation of magnesium (Mg), iron (Fe), boron (B), or the like, in addition to carbon. Other ion species may be used as long as they can realize high resistance of GaN. By the ion implantation, the nitride semiconductor crystal in the implanted region can be broken, and the region can be easily increased in resistance.
  • Mg magnesium
  • Fe iron
  • B boron
  • the p-type current block layer 522 and the base layer 520 form a pn junction. Therefore, when the nitride semiconductor device 610 is in the ON state, that is, when a positive potential is applied to the gate electrode 44, a forward bias is applied to the current blocking layer 522 and the base layer 520 fixed to the gate potential. The state is applied. Therefore, a current easily flows from the current blocking layer 522 to the underlying layer 520, and a leak current flows from the gate electrode 44 to the drain electrode 50 via the current blocking layer 522, the underlying layer 520, the drift layer 14, and the substrate 12. There is fear.
  • the provision of the high-resistance layer 668 makes it possible to suppress a leak current flowing from the p-type current block layer 522 to the base layer 520. Thereby, a leak current flowing from the gate electrode 44 to the drain electrode 50 can be suppressed.
  • Embodiment 6 Next, a sixth embodiment will be described. Hereinafter, differences from Embodiments 1 to 5 will be mainly described, and description of common points will be omitted or simplified.
  • FIG. 20 is a cross-sectional perspective view showing a layout of openings 618 and 619 and opening 526 of the nitride semiconductor device according to the present embodiment.
  • shield layer 516 has a plurality of openings 618 and 619. Although two openings 618 and 619 are shown in FIG. 20, the shield layer 516 may have three or more openings.
  • the opening width W11 of the opening 618 and the opening width W12 of the opening 619 are shorter than the opening width W2 of the opening 526.
  • the opening width W11 and the opening width W12 are, for example, the same length, but may be different.
  • the plurality of openings 618 and 619 have the same shape and the same size as each other, but may have different shapes or different sizes.
  • the opening width W11 is half the length of the depletion layer extending into the underlayer 520 from the side surface of the opening 618 when a voltage is applied between the drain electrode 50 and the source electrode 40, for example. It is set to be short. That is, the opening width W11 is determined such that the depletion layers extend from both side surfaces of the opening 618 so that the opening 618 is closed. The same applies to the opening width W12 of the opening 619.
  • the opening widths W11 and W12 are, for example, 2 ⁇ m, but are not limited thereto.
  • Each of the openings 618 and 619 is provided at a position that does not overlap with the opening 526 in plan view. In other words, the opening 526 and the shield layer 516 overlap in plan view. Thus, concentration of the electric field near the opening 526 can be reduced. Therefore, the breakdown voltage between the gate and the drain can be increased.
  • the plurality of openings 618 and 619 are provided, a current path between the drain electrode 50 and the source electrode 40 can be secured. That is, an increase in the on-resistance of the nitride semiconductor device can be suppressed.
  • Embodiment 7 Next, a seventh embodiment will be described. Hereinafter, differences from Embodiments 1 to 6 will be mainly described, and description of common points will be omitted or simplified.
  • FIG. 21 is a cross-sectional view of the nitride semiconductor device 700 according to the present embodiment.
  • nitride semiconductor device 700 is different from nitride semiconductor device 510 according to the fourth embodiment in that it has a Schottky barrier diode.
  • the nitride semiconductor device 700 includes a transistor unit 701 and a diode unit 702. The transistor portion 701 and the diode portion 702 are provided side by side in a plane when the substrate 12 is viewed in plan.
  • Transistor section 701 has the same configuration as nitride semiconductor device 510 according to the fourth embodiment. Note that transistor portion 701 may have the same configuration as nitride semiconductor device 610 according to the fifth embodiment. Alternatively, transistor portion 701 may have the same configuration as the nitride semiconductor device according to the sixth embodiment. The transistor portion 701 is a portion sandwiched between two second potential fixed electrodes 548.
  • the diode unit 702 is a Schottky barrier diode provided at a position away from the opening 526. Specifically, the diode section 702 is provided at a position apart from the two second potential fixed electrodes 548. As shown in FIG. 21, an anode 744 provided on a base layer 720 and a cathode 750 that is a part of the drain electrode 50 are provided.
  • the anode electrode 744 is provided in contact with the upper surface of the base layer 720.
  • the anode electrode 744 is formed using a conductive material such as a metal.
  • the anode electrode 744 is formed using, for example, the same material as the gate electrode 44.
  • the anode electrode 744 can be made of a material that is Schottky-connected to an n-type semiconductor, such as palladium (Pd), a nickel (Ni) -based material, tungsten silicide (WSi), and gold. (Au) or the like can be used.
  • the Schottky barrier diode is formed by the Schottky connection between the anode electrode 744 and the base layer 720.
  • Anode electrode 744 is electrically connected to source electrode 40. That is, the diode section 702 operates as a freewheeling diode connected between the source electrode 40 and the drain electrode 50 of the transistor section 701. When a reverse bias is applied between the source and the drain of the transistor portion 701, the diode portion 702 can flow a current from the anode electrode 744 connected to the source electrode 40 to the cathode electrode 750 (drain electrode 50).
  • the anode electrode 744 is electrically connected to the shield layer 516. Specifically, the anode electrode 744 is electrically connected to the shield layer 516 by being electrically connected to the second potential fixing electrode 548 provided in contact with the upper surface of the shield layer 516. .
  • the electric field concentrated on the Schottky connection portion that is, the interface between the anode electrode 744 and the base layer 720 can be reduced. Therefore, the withstand voltage of the diode portion 702 can be increased.
  • the shield layer 516 has an opening 718 in order to allow a current to flow from the anode electrode 744 to the cathode electrode 750.
  • the opening 718 is an example of a fifth opening that exposes part of the drift layer 14 between the anode electrode 744 and the cathode electrode 750.
  • the opening 718 penetrates through the shield layer 516 and reaches the drift layer 14.
  • the bottom surface 718a of the opening 718 is the upper surface of the drift layer 14.
  • the bottom surface 718a is, for example, parallel to the first main surface 12a of the substrate 12, and is located below the interface between the drift layer 14 and the shield layer 516.
  • the opening 718 is formed such that the opening area increases as the distance from the substrate 12 increases.
  • the side surface 718b of the opening 718 is obliquely inclined.
  • the cross-sectional shape of the opening 718 is an inverted trapezoid, more specifically, an inverted isosceles trapezoid.
  • the inclination angle of the side surface 718b with respect to the bottom surface 718a is, for example, in a range from 20 ° to 80 °.
  • the inclination angle may be in a range of 30 ° or more and 45 ° or less.
  • the shield layer 516 may include a plurality of openings 718.
  • FIG. 22 is a cross-sectional view showing another configuration example of the nitride semiconductor device according to the present embodiment.
  • FIGS. 23A to 23M are cross-sectional views showing respective steps of a method for manufacturing nitride semiconductor device 700 according to the present embodiment.
  • each nitride semiconductor layer included in the nitride semiconductor device 700 is formed by a metal organic chemical vapor deposition (MOCVD) method.
  • MOCVD metal organic chemical vapor deposition
  • MOVPE Metal Organic Vapor Phase Epitaxy
  • the method for forming the nitride semiconductor layer is not limited to this, and for example, the nitride semiconductor layer may be formed by molecular beam epitaxy (MBE: Molecular Beam Epitaxy).
  • the n-type nitride semiconductor is formed by adding, for example, silicon (Si).
  • the p-type nitride semiconductor is formed by adding magnesium (Mg). Note that the n-type impurity and the p-type impurity are not limited to these.
  • a substrate 11 made of n-type GaN whose first main surface 12a is a (0001) plane, that is, a c-plane is prepared.
  • an n-type GaN film 13 to which Si is added as an n-type impurity and a p-type GaN film 515 to which Mg is added as a p-type impurity are formed on the first main surface 12a of the substrate 11.
  • the films are formed in this order by MOCVD.
  • the n-type GaN film 13 and the p-type GaN film 515 are each patterned into a predetermined shape to become the drift layer 14 and the shield layer 516 shown in FIG.
  • an opening 518 and an opening 718 are formed by forming a resist mask on the p-type GaN film 515 and performing dry etching.
  • the opening 518 and the opening 718 respectively penetrate the p-type GaN film 515 and expose a part of the n-type GaN film 13.
  • the dry etching is performed using, for example, a chlorine-based gas. Note that a portion including the opening 518 (left portion in the drawing) corresponds to the transistor portion 701, and a portion including the opening 718 (right portion in the drawing) corresponds to the diode portion 702.
  • the removal of the GaN film may be performed by wet etching.
  • the gas used for dry etching and the liquid used for wet etching are not particularly limited. After the etching, the resist mask is removed.
  • an n-type GaN film 519 and a p-type GaN film 521 are formed in this order over the entire surface along the shapes of the openings 518 and 718 by MOCVD.
  • MOCVD MOCVD
  • an example is shown in which the upper surface of the n-type GaN film 519 is flat, but the upper surface may be concave along the inner surfaces of the openings 518 and 718.
  • the n-type GaN film 519 and the p-type GaN film 521 are patterned into predetermined shapes, respectively, to become the underlayers 520 and 720 and the current block layer 522 shown in FIG.
  • an opening 526 is formed by forming a resist mask on the p-type GaN film 521 and performing etching.
  • the opening 526 penetrates the p-type GaN film 521, and exposes a part of the n-type GaN film 519.
  • an undoped GaN film 29, an undoped AlN film (not shown), an undoped AlGaN film 31, and a p-type GaN film 33 are formed on the entire surface along the shape of the opening 526. Films are formed in this order by MOCVD.
  • the undoped GaN film 29, the undoped AlGaN film 31, and the p-type GaN film 33 are each patterned into a predetermined shape to become the electron transit layer 30, the electron supply layer 32, and the threshold adjustment layer 34 shown in FIG.
  • the crystal growth of the nitride semiconductor (that is, the formation of the nitride semiconductor film) is performed three times. Subsequently, patterning of the formed nitride semiconductor film is performed. The patterning is performed by forming a resist mask having a predetermined shape by photolithography and etching.
  • a part of the undoped AlGaN film 31 and a part of the undoped GaN film 29 are removed by etching to form a source opening 36.
  • the undoped GaN film 29 is not completely removed in the thickness direction but remains partially. That is, the bottom surface 36a of the source opening 36 corresponds to the exposed portion of the undoped GaN film 29.
  • an opening 538 is formed at a position apart from both the opening 526 and the opening 518.
  • the p-type GaN film 515 is exposed by removing the p-type GaN film 521 and the n-type GaN film 519 by etching in a portion not included in the transistor portion 701 and the diode portion 702.
  • patterned underlayers 520 and 720 and current blocking layers 522 and 722 are formed.
  • the current block layer 722 is removed by etching. At this time, a part of the upper surface of the base layer 720 may be removed. That is, the upper surface of the underlayer 720 may be located below the interface between the underlayer 520 and the current block layer 522.
  • the source electrode 40 is formed. Specifically, after a metal material such as titanium (Ti) and aluminum (Al) is formed over the entire surface by vapor deposition or sputtering, a resist mask is formed, and patterning is performed by etching.
  • the etching of the metal film is, for example, dry etching, but may be wet etching.
  • an electrode may be formed by performing a resist patterning on the surface of the semiconductor layer before depositing the metal material, thereby attaching metal only to a specific region (lift-off process).
  • the gate electrode 44, the anode electrode 744, the first potential fixed electrode 546, and the second potential fixed electrode 548 are formed. Specifically, after a metal material such as palladium (Pd) is formed over the entire surface by vapor deposition or sputtering, a resist mask is formed, and patterning is performed by etching. Further, a lift-off process may be used.
  • a metal material such as palladium (Pd) is formed over the entire surface by vapor deposition or sputtering
  • a resist mask is formed, and patterning is performed by etching. Further, a lift-off process may be used.
  • the back surface of the substrate 11 is polished.
  • a thinned substrate 12 is formed.
  • the resistance of the substrate 12 can be reduced.
  • a drain metal film made of Ti and Al is formed on the second main surface 12b of the substrate 12 by a vapor deposition method or a sputtering method, and is patterned as necessary, thereby forming the drain electrode 50.
  • nitride semiconductor device 700 shown in FIG. 21 is formed.
  • the manufacturing method described above is only an example, and the order of the steps may be appropriately changed.
  • the formation of the source electrode 40 may be performed after the formation of the gate electrode 44.
  • the gate electrode 44, the first potential fixed electrode 546, the second potential fixed electrode 548, and the anode electrode 744 are formed at the same time, but may be formed in different steps.
  • the nitride semiconductor device 510 according to the fourth embodiment can be formed through the same steps as the nitride semiconductor device 700 according to the present embodiment. Specifically, the steps of manufacturing the transistor portion 701 of the nitride semiconductor device 700 are sequentially performed, whereby the nitride semiconductor device 510 is manufactured.
  • the nitride semiconductor device 610 according to the fifth embodiment can also be formed through the same steps as the nitride semiconductor device 610 according to the present embodiment. Specifically, in FIG. 23C, it can be manufactured by forming an n-type GaN film 519, a high-resistance GaN film with a high C concentration (high-resistance layer 668), and a p-type GaN film 521 by a series of crystal growth. Alternatively, the high-resistance layer 668 may be formed by increasing the resistance near the interface between the p-type GaN film 521 and the n-type GaN film 519 by ion implantation.
  • an insulating film with a high resistance value or the like may be formed as the high-resistance layer 668, and the p-type GaN film 521 may be formed over the formed insulating film.
  • the nitride semiconductor device according to the sixth embodiment can also be formed through the same steps as the nitride semiconductor device 700 according to the present embodiment. Specifically, in FIG. 23B, a plurality of openings 618 and 619 can be formed by changing a mask pattern used when forming the opening 518.
  • the diode portion 702 is connected in parallel to the transistor portion 701 and functions as a freewheeling diode.
  • the anode electrode 744 of the diode section 702 may not be connected to the source electrode 40.
  • the cathode electrode 750 may be physically separated from the drain electrode 50 in the transistor portion 701 and may be electrically insulated. Thereby, the diode unit 702 may realize another function.
  • the nitride semiconductor device 10 may not include the opening 38 and the potential fixing electrode 46.
  • the block layer 22 may be fixed to the same potential as the gate electrode 44 by electrically connecting the end surface of the block layer 22 and the gate electrode 44.
  • the nitride semiconductor device 10 may not include the threshold adjustment layer 34.
  • the nitride semiconductor device 10 may be realized as a normally-on FET.
  • the film thickness of the electron transit layer 30 may be uniform regardless of the position.
  • the thickness of the bottom portion 30a, the thickness of the inclined portion 30b, and the thickness of the flat portion 30c may be equal to each other.
  • the length A and the length B shown in FIG. 3 may be equal.
  • the bottom surface 36a of the source opening 36 may be the upper surface of the high-resistance layer 24.
  • the high-resistance layer 24 may be formed by removing the electron supply layer 32, the electron transit layer 30, and the surface portion of the high-resistance layer 24.
  • the nitride semiconductor device 10 does not need to include the source opening 36.
  • the source electrode 40 is provided in contact with the upper surface of the electron supply layer 32.
  • the source electrode 40 may be connected to the electron transit layer 30 via the electron supply layer 32.
  • the resistance layer 228 is formed, it is not limited to this.
  • the high resistance layer 228 may be formed by performing ion implantation of iron after the formation of the p-type GaN film 221. In this case, the high resistance layer 228 is not formed on the second underlayer 224, and the upper surface of the high resistance layer 228 is flush with the upper surface of the first underlayer 222.
  • the high-resistance layer 228 may be formed by removing a predetermined region of the p-type GaN film 221 by etching and filling the removed region with an insulating material.
  • the present invention is not limited to this.
  • the first conductivity type may be p-type and the second conductivity type may be n-type.
  • the direction in which the opening 518 extends and the direction in which the opening 526 extends may not be the same.
  • the direction in which the opening 518 extends and the direction in which the opening 526 extends may obliquely intersect or may intersect at right angles.
  • the high resistance layer 668 may not be a film made of a nitride semiconductor.
  • the high-resistance layer 668 may be a film formed using an insulating material such as a silicon oxide film.
  • the present disclosure can be used as a nitride semiconductor device having a high withstand voltage and capable of operating with a large current, and can be used, for example, as a power transistor used in a power supply circuit of a consumer device such as a television.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

窒化物半導体装置(10)は、基板(12)と、基板(12)の上方に設けられたドリフト層(14)と、ドリフト層(14)の上方に設けられたブロック層(22)と、ブロック層(22)の上方に設けられた高抵抗層(24)と、高抵抗層(24)及びブロック層(22)を貫通するゲート開口部(26)と、ゲート開口部(26)の内面に沿って、基板(12)側から順に設けられた電子走行層(30)及び電子供給層(32)と、ゲート開口部(26)を覆うように電子供給層(32)の上方に設けられたゲート電極(44)と、ゲート電極(44)から離れた位置において、電子供給層(32)及び電子走行層(30)に接続されたソース電極(40)と、基板(12)の、ドリフト層(14)とは反対側に設けられたドレイン電極(50)とを備え、ブロック層(22)の少なくとも一部は、ソース電極(40)に与えられる電位とは異なる電位に固定されている。

Description

窒化物半導体装置
 本開示は、窒化物半導体装置に関する。
 窒化ガリウム(GaN)及び窒化アルミニウム(AlN)に代表される窒化物半導体は、バンドギャップが大きいワイドギャップ半導体であり、絶縁破壊電界が大きく、電子の飽和ドリフト速度がヒ化ガリウム(GaAs)半導体又はシリコン(Si)半導体に比べて大きいという特長を有している。このため、高出力化、かつ、高耐圧化に有利な窒化物半導体を用いたパワートランジスタの研究開発が行われている。
 例えば、特許文献1には、GaN系積層体を備える縦型の半導体装置が開示されている。特許文献1に開示された半導体装置は、GaN系積層体に設けられた開口部の壁面を覆うように位置するチャネルを含む再成長層を有する縦型の電界効果トランジスタ(FET:Field Effect Transistor)である。チャネルは、再成長層に発生する二次元電子ガス(2DEG:2 - Dimensional Electron Gas)によって形成されている。これにより、移動度が高く、オン抵抗が低いFETが実現されている。
特許第5569321号公報
 しかしながら、上記従来の半導体装置では、高耐圧化と大電流動作とが両立できないという問題がある。
 そこで、本開示は、高耐圧で、かつ、大電流動作が可能な窒化物半導体装置を提供する。
 上記課題を解決するため、本開示の一態様に係る窒化物半導体装置は、基板と、前記基板の上方に設けられた第1の導電型の第1の窒化物半導体層と、前記第1の窒化物半導体層の上方に設けられた、前記第1の導電型とは異なる第2の導電型の第2の窒化物半導体層と、前記第2の窒化物半導体層を貫通する第1の開口部と、前記第1の開口部の内面に沿って、前記基板側から順に設けられた電子走行層及び電子供給層と、前記第1の開口部を覆うように前記電子供給層の上方に設けられたゲート電極と、前記ゲート電極から離れた位置において、前記電子供給層及び前記電子走行層に接続されたソース電極と、前記基板の、前記第1の窒化物半導体層とは反対側に設けられたドレイン電極とを備え、前記第2の窒化物半導体層の少なくとも一部は、前記ソース電極に与えられる電位とは異なる電位に固定されている。
 本開示によれば、高耐圧で、かつ、大電流動作が可能な窒化物半導体装置を提供することができる。
図1は、実施の形態1に係る窒化物半導体装置の平面レイアウトを示す図である。 図2は、図1の領域IIを拡大して示す図である。 図3は、図2のIII-III線における、実施の形態1に係る窒化物半導体装置の断面図である。 図4は、比較例に係る窒化物半導体装置のチャネルを流れる電流を表す図である。 図5は、実施の形態1に係る窒化物半導体装置のチャネルを流れる電流を表す図である。 図6は、実施の形態2に係る窒化物半導体装置の断面図である。 図7は、実施の形態3に係る窒化物半導体装置の平面レイアウトを示す平面図である。 図8は、図7の領域VIIIを拡大して示す図である。 図9は、図8のIX-IX線における、実施の形態3に係る窒化物半導体装置の断面図である。 図10は、図8のX-X線における、実施の形態3に係る窒化物半導体装置の断面図である。 図11Aは、実施の形態3に係る窒化物半導体装置の製造方法において、窒化物半導体の積層工程を示す断面図である。 図11Bは、実施の形態3に係る窒化物半導体装置の製造方法において、レジストのパターニング工程を示す断面図である。 図11Cは、実施の形態3に係る窒化物半導体装置の製造方法において、ゲート開口部の形成工程を示す断面図である。 図11Dは、実施の形態3に係る窒化物半導体装置の製造方法において、イオン注入時のマスク用のレジストのパターニング工程を示す断面図である。 図11Eは、実施の形態3に係る窒化物半導体装置の製造方法において、イオン注入工程を示す断面図である。 図11Fは、実施の形態3に係る窒化物半導体装置の製造方法において、窒化物半導体の再成長工程を示す断面図である。 図11Gは、実施の形態3に係る窒化物半導体装置の製造方法において、ソース開口部用のレジストのパターニング工程を示す断面図である。 図11Hは、実施の形態3に係る窒化物半導体装置の製造方法において、ソース開口部の形成工程を示す断面図である。 図11Iは、実施の形態3に係る窒化物半導体装置の製造方法において、ゲート電極及びソース電極の形成工程を示す断面図である。 図12は、実施の形態3の変形例1に係る窒化物半導体装置の断面図である。 図13は、実施の形態3の変形例2に係る窒化物半導体装置の断面図である。 図14は、実施の形態4に係る窒化物半導体装置の断面図である。 図15は、実施の形態4に係る窒化物半導体装置の2つの開口部のレイアウトを示す断面斜視図である。 図16は、実施の形態4に係る窒化物半導体装置の2つの開口部のレイアウトを示す平面図である。 図17は、実施の形態4に係る窒化物半導体装置のゲート電極と電流ブロック層との接続部分を示す断面斜視図である。 図18は、実施の形態4に係る窒化物半導体装置のソース電極とシールド層との接続部分を示す断面斜視図である。 図19は、実施の形態5に係る窒化物半導体装置の断面図である。 図20は、実施の形態6に係る窒化物半導体装置の2つの開口部のレイアウトを示す断面斜視図である。 図21は、実施の形態7に係る窒化物半導体装置の断面図である。 図22は、実施の形態7に係る窒化物半導体装置の別の構成を示す断面図である。 図23Aは、実施の形態7に係る窒化物半導体装置の製造方法における、1回目の成膜工程を説明するための断面図である。 図23Bは、実施の形態7に係る窒化物半導体装置の製造方法における、第4の開口部及び第1の開口部の形成工程を説明するための断面図である。 図23Cは、実施の形態7に係る窒化物半導体装置の製造方法における、2回目の成膜工程を説明するための断面図である。 図23Dは、実施の形態7に係る窒化物半導体装置の製造方法における、第2の開口部の形成工程を説明するための断面図である。 図23Eは、実施の形態7に係る窒化物半導体装置の製造方法における、3回目の成膜工程を説明するための断面図である。 図23Fは、実施の形態7に係る窒化物半導体装置の製造方法における、閾値調整層の形成工程を説明するための断面図である。 図23Gは、実施の形態7に係る窒化物半導体装置の製造方法における、アンドープAlGaN膜及びアンドープGaN膜の一部の除去工程を説明するための断面図である。 図23Hは、実施の形態7に係る窒化物半導体装置の製造方法における、ソース開口部の形成工程を説明するための断面図である。 図23Iは、実施の形態7に係る窒化物半導体装置の製造方法における、電位固定電極用の開口部の形成工程を説明するための断面図である。 図23Jは、実施の形態7に係る窒化物半導体装置の製造方法における、ダイオード部のp型GaN膜の除去工程を説明するための断面図である。 図23Kは、実施の形態7に係る窒化物半導体装置の製造方法における、ソース電極の形成工程を説明するための断面図である。 図23Lは、実施の形態7に係る窒化物半導体装置の製造方法における、ゲート電極、第1の電位固定電極及び第2の電位固定電極の形成工程を説明するための断面図である。 図23Mは、実施の形態7に係る窒化物半導体装置の製造方法における、基板の薄膜化工程を説明するための断面図である。
 (本開示の概要)
 上記課題を解決するために、基板と、前記基板の上方に設けられた第1の導電型の第1の窒化物半導体層と、前記第1の窒化物半導体層の上方に設けられた、前記第1の導電型とは異なる第2の導電型の第2の窒化物半導体層と、前記第2の窒化物半導体層を貫通する第1の開口部と、前記第1の開口部の内面に沿って、前記基板側から順に設けられた電子走行層及び電子供給層と、前記第1の開口部を覆うように前記電子供給層の上方に設けられたゲート電極と、前記ゲート電極から離れた位置において、前記電子供給層及び前記電子走行層に接続されたソース電極と、前記基板の、前記第1の窒化物半導体層とは反対側に設けられたドレイン電極とを備え、前記第2の窒化物半導体層の少なくとも一部は、前記ソース電極に与えられる電位とは異なる電位に固定されている。
 これにより、高耐圧で、かつ、大電流動作が可能な窒化物半導体装置を実現することができる。
 また、例えば、本開示の一態様に係る窒化物半導体装置は、基板と、前記基板の上方に設けられた第1の窒化物半導体層と、前記第1の窒化物半導体層の上方に設けられたp型の第2の窒化物半導体層と、前記第2の窒化物半導体層の上方に設けられた第1の高抵抗層と、前記第1の高抵抗層及び前記第2の窒化物半導体層を貫通し、前記第1の窒化物半導体層にまで達する第1の開口部と、前記第1の開口部の内面に沿って、前記基板側から順に設けられた電子走行層及び電子供給層と、前記第1の開口部を覆うように前記電子供給層の上方に設けられたゲート電極と、前記ゲート電極から離れた位置において、前記電子供給層及び前記電子走行層に接続されたソース電極と、前記基板の、前記第1の窒化物半導体層とは反対側に設けられたドレイン電極とを備え、前記第2の窒化物半導体層は、前記ゲート電極と同電位に固定されている。
 これにより、p型の第2の窒化物半導体層がゲート電極と同電位に固定されているので、窒化物半導体装置がオフ状態である場合、第2の窒化物半導体層と第1の窒化物半導体層との界面から第1の窒化物半導体側に空乏層が広がって耐圧が高められる。また、第2の窒化物半導体層から電子走行層内に広がる空乏層によって電子走行層内のチャネルが狭窄されるので、リーク電流が抑制される。また、窒化物半導体装置がオン状態である場合、第2の窒化物半導体層から電子走行層内に広がった空乏層が縮退する。このため、チャネルの狭窄化が抑制され、大電流を流すことができる。このように、本態様によれば、高耐圧で、かつ、大電流動作が可能な窒化物半導体装置が実現される。
 また、例えば、本開示の一態様に係る窒化物半導体装置は、さらに、前記電子供給層、前記電子走行層及び前記第1の高抵抗層を貫通し、前記第2の窒化物半導体層にまで達する第2の開口部と、前記第2の開口部の底面に設けられ、前記第2の窒化物半導体層に接触する電位固定電極とを備え、前記電位固定電極は、前記ゲート電極と電気的に接続されていてもよい。
 これにより、ゲート電極と電気的に接続された電位固定電極が設けられているので、第2の窒化物半導体層の電位をゲート電位に強く固定することができる。
 また、例えば、本開示の一態様に係る窒化物半導体装置は、さらに、前記電子供給層を貫通し、前記電子走行層にまで達する第3の開口部を備え、前記ソース電極は、前記第3の開口部の内面の一部に沿って設けられ、前記第2の開口部は、前記基板を平面視した場合、前記第3の開口部の内側において前記ソース電極から離れた位置に位置していてもよい。
 これにより、ソース電極と電位固定電極との接触を抑制することができるので、ゲート-ソース間にリーク電流が発生することを抑制することができる。このため、高効率の窒化物半導体装置が実現される。
 また、例えば、本開示の一態様に係る窒化物半導体装置は、さらに、前記ゲート電極と前記電子供給層との間に設けられたp型の第3の窒化物半導体層を備えてもよい。
 これにより、電子走行層と電子供給層との界面近傍に生じるチャネルのポテンシャルを持ち上げることができるので、窒化物半導体装置をノーマリオフ型のFETとして実現することができる。
 また、例えば、本開示の一態様に係る窒化物半導体装置は、さらに、前記第1の窒化物半導体層と前記第2の窒化物半導体層との間に設けられた第2の高抵抗層を備えてもよい。
 これにより、窒化物半導体装置がオン状態である場合、第2の窒化物半導体層からドレイン電極に向かって流れる電流を高抵抗層によって抑制することができる。したがって、リーク電流を抑制することができるので、高効率の窒化物半導体装置が実現される。
 また、例えば、前記電子走行層は、前記第1の高抵抗層の上面上に設けられた平坦部と、前記第1の開口部の側面に沿って設けられた傾斜部とを有し、前記基板に平行な方向に沿った前記傾斜部の長さは、前記基板の法線方向に沿った前記平坦部の長さより長くてもよい。
 これにより、傾斜部の厚みを大きくすることができるので、空乏層によるチャネルの狭窄を抑制することができ、大電流を流すことができる。
 なお、縦型FETでは、ドリフト層全体を電流経路とすることが可能であるため、大電流動作に適している。縦型FETでは、ブロック層とソース電極とを接続してブロック層の電位をソース電位(一般的には0V)に固定することで、耐圧を高めることができる。しかしながら、この場合、オフ時には安定したオフ特性を得ることができるものの、オン時には、ブロック層から延びる空乏層によるチャネルの狭窄により電流経路が狭くなり、ドレイン電流が小さくなるという課題がある。
 上記課題を解決するため、本開示の一態様に係る窒化物半導体装置は、基板と、前記基板の上方に設けられた第1の窒化物半導体層と、前記第1の窒化物半導体層の上方に設けられたp型の第2の窒化物半導体層と、前記第2の窒化物半導体層を貫通し、前記第1の窒化物半導体層にまで達する第1の開口部と、前記第1の開口部の内面に沿って、前記基板側から順に設けられた電子走行層及び電子供給層と、前記第1の開口部から離れた位置において、前記電子供給層及び前記電子走行層を貫通し、前記第2の窒化物半導体層にまで達する第2の開口部と、前記第2の窒化物半導体層を前記第1の開口部側の第1の部分と前記第2の開口部側の第2の部分とに分離する高抵抗層と、前記第1の開口部を覆うように前記電子供給層の上方に設けられたゲート電極と、前記第2の開口部に設けられ、前記電子走行層及び前記電子供給層に接続されたソース電極と、前記基板の、前記第1の窒化物半導体層とは反対側に設けられたドレイン電極とを備え、前記第2の部分は、前記ソース電極に与えられる電位と同じ電位に固定され、前記第1の部分は、前記ソース電極に与えられる電位とは異なる電位に固定されている。
 これにより、高抵抗層により第2の窒化物半導体層は第1の開口部側の第1の部分と第2の開口部側の第2の部分とに分離されるので、両者は電気的に絶縁される。したがって、第2の部分にはソース電極に与えられる電位と同じ電位(以下、ソース電位)に固定され、かつ、第1の部分にはソース電位とは異なる電位に固定することができる。
 第2の窒化物半導体層の電位が固定されているので、窒化物半導体装置がオフ状態である場合、第2の窒化物半導体層と第1の窒化物半導体層との界面から第1の窒化物半導体側に空乏層が広がって耐圧が高められる。また、窒化物半導体装置がオフ状態である場合、第1の部分から電子走行層内に広がる空乏層によって電子走行層内のチャネルが狭窄されるので、リーク電流が抑制される。
 また、窒化物半導体装置がオン状態である場合、第1の部分から電子走行層内に広がった空乏層が縮退する。このため、チャネルの狭窄化が抑制され、大電流を流すことができる。このように、本態様によれば、高耐圧で、かつ、大電流動作が可能な窒化物半導体装置が実現される。
 また、例えば、前記高抵抗層は、鉄を含む窒化物半導体層であってもよい。
 これにより、窒化物半導体に鉄を含ませることにより、高抵抗層の抵抗を高くすることができるので、容易に第2の窒化物半導体層を第1の部分と第2の部分とに電気的に分離することができる。また、高抵抗層は、イオン注入などによって所望の領域に所望の形状で容易に形成することができる。例えば、イオン注入によれば、鉄イオンが注入された領域の窒化物半導体の結晶を破壊でき、当該領域を高抵抗化することができる。
 また、例えば、前記第1の部分は、前記ゲート電極に与えられる電位と同じ電位に固定されていてもよい。
 これにより、第1の部分の電位をゲート電極に与えられる電位と同じ電位(以下、ゲート電位)に固定されるので、第1の部分から電子走行層内に延びる空乏層の広がりを抑制することが可能となる。したがって、窒化物半導体装置の大電流化が容易となる。
 また、例えば、本開示の一態様に係る窒化物半導体装置は、さらに、前記ゲート電極と前記電子供給層との間に設けられたp型の第3の窒化物半導体層を備えてもよい。
 これにより、第3の窒化物半導体層によってゲート電極の直下のキャリア濃度を低減することができ、窒化物半導体装置の閾値電圧を正側にシフトさせることができる。したがって、本態様に係る窒化物半導体装置を、ノーマリオフ型のFETとして実現することができる。
 また、例えば、本開示の一態様に係る窒化物半導体装置は、さらに、前記第2の開口部の底面に設けられ、前記第2の窒化物半導体層を貫通し、前記第1の窒化物半導体層にまで達する第3の開口部を備え、前記ソース電極は、さらに、前記第3の開口部に設けられ、前記第1の窒化物半導体層に接続されていてもよい。
 これにより、第1の窒化物半導体層と第2の窒化物半導体層とで形成されるpnダイオードと、第3の開口部の底部でソース電極と第1の窒化物半導体層とで形成されるショットキーバリアダイオードとからなるMPS(Merged PiN Schottky)ダイオードが形成される。このため、逆バイアスが印加された時にMPSダイオードを通して流れる還流電流による損失を小さくすることができる。
 また、例えば、前記第3の開口部は、前記第2の開口部の底面に複数設けられていてもよい。
 これにより、MPSダイオードは、pnダイオードとショットキーバリアダイオードとが複数かつ離散的に配置された構成となる。このため、MPSダイオードに逆バイアスが印加された際の第2の窒化物半導体層から第1の窒化物半導体層への空乏層の広がりを大きくすることが可能で、更なる高耐圧化が可能になる。
 また、例えば、本開示の一態様に係る窒化物半導体装置は、基板と、前記基板の上方に設けられた第1の導電型の第1の窒化物半導体層と、前記第1の窒化物半導体層の上方に設けられた、前記第1の窒化物半導体層の一部を露出させる第4の開口部を有する、前記第1の導電型とは異なる第2の導電型の第4の窒化物半導体層と、前記第4の開口部の内面に沿って、かつ、前記第4の窒化物半導体層の上方に設けられた、前記第1の導電型の第5の窒化物半導体層と、前記第5の窒化物半導体層の上方に設けられた、前記第5の窒化物半導体層の一部を露出させる第1の開口部を有する第2の窒化物半導体層と、前記第1の開口部の内面に沿って設けられた第6の窒化物半導体層と、前記第1の開口部を覆うように前記第6の窒化物半導体層の上方に設けられたゲート電極と、前記ゲート電極から離れて、前記第6の窒化物半導体層に電気的に接続されたソース電極と、前記基板の、前記第1の窒化物半導体層とは反対側に設けられたドレイン電極とを備え、前記第4の窒化物半導体層は、前記ソース電極に与えられる電位と同じ電位に固定され、前記第2の窒化物半導体層は、前記ゲート電極に与えられる電位と同じ電位に固定されている。
 これにより、第2の窒化物半導体層の電位が、ゲート電極に与えられる電位と同じ電位に固定されているので、窒化物半導体装置がオフ状態である場合、第2の窒化物半導体層から電子走行層内に広がる空乏層によって電子走行層内のチャネルが狭窄されるので、リーク電流が抑制され、良好なオフ特性が得られる。また、窒化物半導体装置がオン状態である場合、第2の窒化物半導体層から電子走行層内に広がった空乏層が縮退する。このため、チャネルの狭窄化が抑制され、大電流を流すことができる。
 また、第4の窒化物半導体層の電位が、ソース電極に与えられる電位と同じ電位に固定されているので、窒化物半導体装置がオフ状態である場合、第4の窒化物半導体層と第1の窒化物半導体層との界面から第1の窒化物半導体層側に空乏層が広がって耐圧が高められる。このように、本態様によれば、高耐圧で、かつ、大電流動作が可能な窒化物半導体装置が実現される。
 また、ソース電極に与えられる電位と同じ電位に固定された第4の窒化物半導体層がシールド層として機能するので、ゲート電極とドレイン電極間に生じる容量(帰還容量)を低減することができる。このため、窒化物半導体装置は、高速動作にも有効である。
 また、例えば、本開示の一態様に係る窒化物半導体装置は、さらに、前記第5の窒化物半導体層と前記第2の窒化物半導体層との間に設けられた、前記第5の窒化物半導体層又は前記第2の窒化物半導体層よりも抵抗値が高い高抵抗層を備えてもよい。
 これにより、窒化物半導体装置がオン状態である場合に、ゲート電極から、第5の窒化物半導体層、第2の窒化物半導体層及び第1の窒化物半導体層を介してドレイン電極に流れるリーク電流を高抵抗層によって抑制することができる。
 また、例えば、前記第5の窒化物半導体層の実効キャリア濃度は、前記第1の窒化物半導体層の実効キャリア濃度より高くてもよい。
 これにより、ゲート-ソース間に逆方向電圧が印加された場合に、第5の窒化物半導体層から第2の窒化物半導体層に第5の窒化物半導体層を介して流れるパンチスルー電流を抑制することができる。
 また、例えば、前記第4の開口部の開口幅は、前記第1の開口部の開口幅より短くてもよい。
 これにより、第4の開口部の開口幅が狭いので、例えば、窒化物半導体装置がオフ状態である場合に、第4の窒化物半導体層から第5の窒化物半導体層へ延びる空乏層によって第4の開口部を塞ぐことができる。空乏層によって第4の開口部が塞がることで、第4の開口部を通る電流の経路が狭窄されるので、オフ状態のリーク電流を抑制することができる。また、窒化物半導体装置がオフ状態である場合に、ゲート電極の近傍に印加される電界を効果的に緩和することができ、窒化物半導体装置の耐圧を高めることができる。
 また、例えば、前記第4の窒化物半導体層は、複数の前記第4の開口部を有してもよい。
 これにより、複数の第4の開口部が設けられているので、複数の第4の開口部の各々の開口幅を狭くしつつ、窒化物半導体装置がオン状態である場合の電流経路を複数、確保することができる。このため、オン状態における大電流化と、オフ状態におけるリーク電流の抑制とを両立させることができる。
 また、例えば、本開示の一態様に係る窒化物半導体装置は、さらに、平面視において、前記第1の開口部から離れた位置に設けられたショットキーバリアダイオードを備え、前記ショットキーバリアダイオードのアノード電極は、前記第5の窒化物半導体層上に設けられ、前記ショットキーバリアダイオードのカソード電極は、前記ドレイン電極の一部であり、前記第4の窒化物半導体層は、さらに、前記アノード電極と前記カソード電極との間において、前記第1の窒化物半導体層の一部を露出させる第5の開口部を有してもよい。
 これにより、FETとショットキーバリアダイオードとを同一素子内に設けることができる。FETとショットキーバリアダイオードとが同一素子内に設けられることにより、FETの動作時のノイズを低減することができる。
 ショットキーバリアダイオードは、アノード電極がソース電極と電気的に接続され、カソード電極がドレイン電極の一部であるので、還流ダイオードとして動作する。つまり、ショットキーバリアダイオードは、FETのソース-ドレイン間に逆バイアスが印加された場合に、FETのソース電極からドレイン電極に電流を流すことができる。逆バイアスが印加されたときの電圧がFET内に集中するのが抑制されるので、FETの破壊を抑制することができる。
 また、例えば、前記アノード電極は、前記第4の窒化物半導体層と電気的に接続されていてもよい。
 これにより、ショットキー接続部分に集中する電界を緩和することができるので、ショットキーバリアダイオードの耐圧を高めることができる。
 また、例えば、前記第4の窒化物半導体層は、複数の前記第5の開口部を有してもよい。
 これにより、複数の第5の開口部が設けられているので、複数の第5の開口部の各々の開口幅を狭くしつつ、FETへの逆バイアス印加時の電流経路を複数、確保することができる。このため、FETへの逆バイアス印加時における大電流化と、FETの正バイアス状態におけるリーク電流の抑制とを両立させることができる。
 以下では、実施の形態について、図面を参照しながら具体的に説明する。
 なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、例えば、各図において縮尺などは必ずしも一致しない。また、各図において、実質的に同一の構成については同一の符号を付しており、重複する説明は省略又は簡略化する。
 また、本明細書において、平行又は垂直などの要素間の関係性を示す用語、及び、長方形などの要素の形状を示す用語、並びに、数値範囲は、厳格な意味のみを表す表現ではなく、実質的に同等な範囲、例えば数%程度の差異をも含むことを意味する表現である。
 また、本明細書において、「上方」及び「下方」という用語は、絶対的な空間認識における上方向(鉛直上方)及び下方向(鉛直下方)を指すものではなく、積層構成における積層順を基に相対的な位置関係により規定される用語として用いる。本明細書では、基板を基準としてゲート電極及びソース電極などが設けられた側を「上方」、ドレイン電極が設けられた側を「下方」としている。また、「上方」及び「下方」という用語は、2つの構成要素が互いに間隔を空けて配置されて2つの構成要素の間に別の構成要素が存在する場合のみならず、2つの構成要素が互いに密着して配置されて2つの構成要素が接する場合にも適用される。
 また、本明細書において、AlGaNとは、三元混晶AlGa1-xN(0≦x≦1)のことを表す。以下、多元混晶は、それぞれの構成元素の配列、例えば、AlInN、GaInNなどのように略記される。例えば、窒化物半導体の1つであるAlGa1-x-yInN(0≦x≦1、0≦y≦1、x+y=1)は、AlGaInNと略記される。
 また、本明細書及び図面において、x軸、y軸及びz軸は、三次元直交座標系の三軸を示している。各実施の形態では、z軸方向を基板の厚み方向、すなわち、各層の積層方向としている。y軸は、ゲート開口部が延びる方向、すなわち、チャネル幅に相当する方向としている。
 (実施の形態1)
 [構成]
 まず、実施の形態1に係る窒化物半導体装置の構成について、図1~図3を用いて説明する。
 図1は、本実施の形態に係る窒化物半導体装置10の平面レイアウトを示す図である。具体的には、図1の(a)は、窒化物半導体装置10のパッドレイアウトを示している。図1の(b)は、窒化物半導体装置10のソース電極パッド56を取り除いた場合の平面レイアウトを示している。図1の(b)では、ゲート電極パッド58を透過させた状態で下層の構成のレイアウトを示している。
 図2は、図1の領域IIを拡大して示す図である。図1及び図2において、形状を分かりやすくするため、ソース電極40及び電位固定電極46、並びに、ブロック層22及び閾値調整層34の各々の露出した部分には、斜線の網掛けを付している。また、図1では、ゲート電極パッド58にドットの網掛けを付しており、図2では、ゲート電極44にドットの網掛けを付している。
 図1に示されるように、窒化物半導体装置10は、面内に並んで設けられた複数のソース電極40を備える。複数のソース電極40の平面視形状はそれぞれ、所定方向に長尺の長方形である。複数のソース電極40は、平面視において、長手方向及び短手方向の各々に並んで設けられている。図1に示される例では、長手方向(紙面上下方向)に2個のソース電極40が並んで設けられており、短手方向(紙面左右方向)には、10個以上のソース電極40が並んでいる。なお、ソース電極40の個数及び形状は、これらに限定されない。
 複数のソース電極40はそれぞれ、短手方向に並んだ2個を一組として、ゲート電極44に囲まれている。ゲート電極44は、ソース電極40の複数の組の各々に対応する位置に開口が設けられた一枚の板状の電極である。平面視において、ゲート電極44とソース電極40とは、距離を空けて設けられており、重複していない。
 なお、ゲート電極44は、櫛歯状の電極であってもよい。具体的には、ゲート電極44の櫛歯の延びる方向は、ソース電極40の長手方向に平行である。また、窒化物半導体装置10は、ソース電極40の隣り合う組間に設けられたゲート電極44を複数備えてもよい。
 本実施の形態では、窒化物半導体装置10は、さらに、複数の電位固定電極46を備える。複数の電位固定電極46の平面視形状は、ソース電極40の長尺方向に沿って長尺の長方形である。図1及び図2に示されるように、複数の電位固定電極46は、ソース電極40の組に一対一で対応している。すなわち、複数の電位固定電極46は、ゲート電極44に設けられた開口に一対一に対応している。具体的には、1つの電位固定電極46は、一組のソース電極40の間に設けられている。
 なお、ソース電極40、ゲート電極44及び電位固定電極46の形状は、図1に示される例に限らない。例えば、ソース電極40の平面視形状は六角形であってもよい。平面視形状が六角形の複数のソース電極40は、平面視において充填配置された正六角形の頂点に、各ソース電極40の中心が位置するように配置されていてもよい。
 本実施の形態では、窒化物半導体装置10は、GaN及びAlGaNなどの窒化物半導体を主成分とする半導体層の積層構造を有するデバイスである。具体的には、窒化物半導体装置10は、AlGaN膜とGaN膜とのヘテロ構造を有する。
 AlGaN膜とGaN膜とのヘテロ構造において、(0001)面上での自発分極又はピエゾ分極によって、ヘテロ界面には高濃度の二次元電子ガス(2DEG)が発生する。このため、アンドープ状態であっても、当該界面には、1×1013cm-2以上のシートキャリア濃度が得られる特徴を有する。
 本実施の形態に係る窒化物半導体装置10は、AlGaN/GaNのヘテロ界面に発生する二次元電子ガスをチャネルとして利用した電界効果トランジスタ(FET)である。具体的には、窒化物半導体装置10は、いわゆる縦型FETである。
 窒化物半導体装置10では、例えば、ソース電極40が接地され(すなわち、電位が0V)、ドレイン電極50に正の電位が与えられている。窒化物半導体装置10がオフ状態である場合には、ゲート電極44には0Vの電位又は負の電位が印加されている。窒化物半導体装置10がオン状態である場合には、ゲート電極44には正の電位(例えば+5V)が印加されている。
 図3は、図2のIII-III線における本実施の形態に係る窒化物半導体装置10の断面図である。
 図3に示されるように、窒化物半導体装置10は、基板12と、ドリフト層14と、ブロック層22と、高抵抗層24と、ゲート開口部26と、電子走行層30と、電子供給層32と、閾値調整層34と、ソース開口部36と、開口部38と、ソース電極40と、ゲート電極44と、電位固定電極46とを備える。さらに、図1の(a)に示されるように、窒化物半導体装置10は、ソース電極パッド56と、ゲート電極パッド58とを備える。
 以下では、窒化物半導体装置10が備える各構成要素の詳細について説明する。
 基板12は、窒化物半導体からなる基板であり、図3に示されるように、互いに背向する第1の主面12a及び第2の主面12bを有する。第1の主面12aは、ドリフト層14が形成される側の主面である。具体的には、第1の主面12aは、c面に略一致する。第2の主面12bは、ドレイン電極50が形成される側の主面である。図1に示されるように、基板12の平面視形状は、例えば矩形であるが、これに限らない。
 基板12は、例えば、厚さが300μmであり、キャリア濃度が1×1018cm-3であるn型のGaNからなる基板である。なお、n型及びp型は、半導体の導電型を示している。本実施の形態では、n型は、窒化物半導体の第1の導電型の一例である。p型は、第1の導電型とは極性が異なる第2の導電型の一例である。n型は、半導体にn型のドーパントが過剰に添加された状態、いわゆるヘビードープを表している。また、n型とは、半導体にn型のドーパントが過少に添加された状態、いわゆるライトドープを表している。p型及びp型についても同様である。
 なお、基板12は、窒化物半導体基板でなくてもよい。例えば、基板12は、シリコン(Si)基板、炭化シリコン(SiC)基板、又は、酸化亜鉛(ZnO)基板などであってもよい。
 ドリフト層14は、基板12の第1の主面12aの上方に設けられたn型の第1の窒化物半導体層の一例である。ドリフト層14は、例えば、厚さが8μm又は10μmのn型のGaNからなる膜である。ドリフト層14のドナー濃度は、例えば、1×1015cm-3以上1×1017cm-3以下の範囲であり、一例として1×1016cm-3である。また、ドリフト層14の炭素濃度(C濃度)は、1×1015cm-3以上2×1017cm-3以下の範囲である。
 ドリフト層14は、例えば、基板12の第1の主面12aに接触して設けられている。ドリフト層14は、例えば、有機金属気相エピタキシャル成長(MOVPE)法などの結晶成長により、基板12の第1の主面12a上に形成される。
 ブロック層(又は第1の下地層)22は、ドリフト層14の上方に設けられたp型の第2の窒化物半導体層の一例である。ブロック層22は、例えば、厚さが400nmであり、キャリア濃度が1×1017cm-3であるp型のGaNからなる膜である。ブロック層22は、ドリフト層14の上面に接触して設けられている。ブロック層22は、例えば、MOVPE法などの結晶成長により、ドリフト層14上に形成される。なお、ブロック層22は、成膜したi型のGaN膜にマグネシウム(Mg)を注入することで形成されてもよい。
 ブロック層22は、ソース電極40とドレイン電極50との間のリーク電流を抑制する。例えば、ブロック層22とドリフト層14とで形成されるpn接合に対して逆方向電圧が印加された場合、具体的には、ソース電極40よりもドレイン電極50が高電位となった場合に、ドリフト層14に空乏層が延びる。これにより、窒化物半導体装置10の高耐圧化が可能である。上述したように本実施の形態では、オフ状態及びオン状態のいずれにおいても、ソース電極40よりドレイン電極50が高電位となっている。このため、窒化物半導体装置10の高耐圧化が実現される。
 ブロック層22は、ゲート電極44と同電位に固定されている。電位の固定については、後で説明する。
 高抵抗層(又は第2の下地層)24は、ブロック層22の上方に設けられた第1の高抵抗層の一例である。高抵抗層24は、ブロック層22より抵抗が高い。高抵抗層24は、絶縁性又は半絶縁性の窒化物半導体から形成されている。高抵抗層24は、例えば、厚さが200nmのアンドープGaNからなる膜である。高抵抗層24は、ブロック層22に接触して設けられている。高抵抗層24は、例えば、MOVPE法などの結晶成長により、ブロック層22上に形成される。高抵抗層24は、ブロック層22に接触して設けられている。
 なお、ここで“アンドープ”とは、GaNの極性をn型又はp型に変化させるSi又はMgなどのドーパントがドープされていないことを意味する。本実施の形態では、高抵抗層24には、炭素(C)がドープされている。具体的には、高抵抗層24の炭素(C)濃度は、ブロック層22のC濃度より高い。
 また、高抵抗層24には、成膜時に混入する珪素(Si)又は酸素(O)が含まれる場合がある。この場合に、高抵抗層24のC濃度は、珪素濃度(Si濃度)又は酸素濃度(O濃度)より高い。例えば、高抵抗層24のC濃度は、例えば3×1017cm-3以上であるが、1×1018cm-3以上でもよい。高抵抗層24のSi濃度又はO濃度は、例えば、5×1016cm-3以下であるが、2×1016cm-3以下でもよい。
 なお、高抵抗層24は、炭素以外に、マグネシウム(Mg)、鉄(Fe)又はホウ素(B)などのイオン注入により形成されてもよい。GaNの高抵抗化を実現できるイオン種であれば、他のイオン種を用いてもよい。
 ここで、仮に、窒化物半導体装置10が高抵抗層24を備えない場合、ソース電極40とドレイン電極50との間には、電子走行層30とp型のブロック層22とn型のドリフト層14という寄生npn構造、すなわち、寄生バイポーラトランジスタが存在することになる。このため、窒化物半導体装置10がオフ状態である場合において、p型のブロック層22に電流が流れた場合に、寄生バイポーラトランジスタがオン状態になり、窒化物半導体装置10の耐圧を低下させる恐れがある。この場合、窒化物半導体装置10の誤動作が発生しやすい。本実施の形態では、高抵抗層24が設けられていることで、寄生npn構造が形成されることを抑制し、窒化物半導体装置10の誤動作を抑制することができる。
 高抵抗層24の上面には、ブロック層22からMgなどのp型不純物が拡散するのを抑制するための層が設けられていてもよい。例えば、高抵抗層24上には、厚さが20nmのAlGaN層が設けられていてもよい。
 ゲート開口部26は、ブロック層22を貫通し、ドリフト層14にまで達する第1の開口部の一例である。具体的には、ゲート開口部26は、高抵抗層24の上面から、高抵抗層24及びブロック層22をこの順で貫通し、ドリフト層14まで達している。ゲート開口部26の底面26aは、ドリフト層14の上面である。図3に示されるように、底面26aは、ドリフト層14とブロック層22との界面より下側に位置している。底面26aは、基板12の第1の主面12aに平行である。
 本実施の形態では、ゲート開口部26は、基板12から遠ざかる程、開口面積が大きくなるように形成されている。具体的には、ゲート開口部26の側面26bは、斜めに傾斜している。ゲート開口部26の断面視形状は、逆台形、より具体的には、逆等脚台形である。
 底面26aに対する側面26bの傾斜角は、例えば、20°以上80°以下の範囲である。傾斜角は、例えば30°以上45°以下の範囲であってもよい。傾斜角が45°以下であることにより、側面26bがc面に近づくので、結晶再成長により側面26bに沿って形成される電子走行層30などの膜質を高めることができる。傾斜角が30°以上であることにより、ゲート開口部26が大きくなりすぎることが抑制され、窒化物半導体装置10の小型化が実現される。
 図1及び図2には、ゲート開口部26の底面26aの平面視形状が破線で示されている。ゲート開口部26の形状は、底面26aの形状と略同等である。図1に示されるように、ゲート開口部26は、ソース電極40の長手方向に並んだ2組のソース電極40をまとめて囲む0字状(レーストラック形状)に形成されている。ゲート開口部26は、ソース電極40の短手方向において、ソース電極40の一組置きに設けられている。なお、ゲート開口部26の形状はこれに限定されず、例えば、0字状のゲート開口部26の長手方向の一端が開放されたU字状であってもよく、両端が開放された2本の直線状であってもよい。
 ゲート開口部26は、基板12の第1の主面12a上に、ドリフト層14、ブロック層22及び高抵抗層24を順に形成した後、部分的にドリフト層14を露出させるように、高抵抗層24及びブロック層22を除去することで形成される。このとき、ドリフト層14の表層部分も除去することで、ゲート開口部26の底面26aは、ドリフト層14とブロック層22との界面よりも下方に形成される。
 高抵抗層24及びブロック層22の除去は、レジストの塗布及びパターニング、並びに、ドライエッチングによって行われる。具体的には、レジストをパターニングした後、ベークすることにより、レジストの端部が斜めに傾斜する。その後にドライエッチングを行うことで、レジストの形状が転写されるようにして側面26bが斜めになったゲート開口部26が形成される。
 電子走行層30は、ゲート開口部26の内面に沿って設けられた第1の再成長層の一例であり、第6の窒化物半導体層の一例である。具体的には、電子走行層30は、ゲート開口部26の底面26a及び26bに沿って、かつ、ブロック層22の上面上に設けられている。電子走行層30は、例えば、厚さが100nmのアンドープGaNからなる膜である。なお、電子走行層30は、アンドープであるが、Siドープなどにより、n型化されてもよい。
 電子走行層30は、ゲート開口部26の底面26aにおいてドリフト層14に接触している。電子走行層30は、ゲート開口部26の側面26bにおいて、ブロック層22及び高抵抗層24の各々の端面に接触している。さらに、電子走行層30は、高抵抗層24の上面に接触している。電子走行層30は、ゲート開口部26を形成した後に、結晶の再成長により形成される。
 電子走行層30は、チャネルを有する。具体的には、電子走行層30と電子供給層32との界面の近傍には、二次元電子ガス(2DEG)が発生する。二次元電子ガスが電子走行層30のチャネルとして機能する。図3では、二次元電子ガスが模式的に破線で図示されている。二次元電子ガスは、電子走行層30と電子供給層32との界面に沿って、すなわち、ゲート開口部26の内面に沿って屈曲している。
 また、図3には示されていないが、電子走行層30と電子供給層32との間に、厚さが1nm程度のAlN膜が第2の再成長層として設けられていてもよい。AlN膜は、合金散乱を抑制し、チャネルの移動度を向上させることができる。
 電子供給層32は、ゲート開口部26の内面に沿って設けられた第3の再成長層の一例であり、第6の窒化物半導体層の一例である。電子走行層30と電子供給層32とは、基板12側からこの順で設けられている。電子供給層32は、電子走行層30の上面に沿った形状で略均一な厚さで形成されている。電子供給層32は、例えば、厚さが50nmのアンドープAl0.2Ga0.8Nからなる膜である。電子供給層32は、電子走行層30の形成工程に続いて、結晶の再成長により形成される。
 電子供給層32は、電子走行層30との間でAlGaN/GaNのヘテロ界面を形成している。これにより、電子走行層30内に二次元電子ガスが発生する。電子供給層32は、電子走行層30に形成されるチャネル(すなわち、二次元電子ガス)への電子の供給を行う。
 閾値調整層34は、ゲート電極44と電子供給層32との間に設けられた第2の導電型の第3の窒化物半導体層の一例である。閾値調整層34は、電子供給層32上に設けられ、電子供給層32とゲート電極44とに接触している。
 本実施の形態では、基板12を平面視した場合に、閾値調整層34の端部は、ゲート電極44の端部よりもソース電極40に近い位置に位置している。閾値調整層34とソース電極40とは離間しており、接触していない。このため、図1及び図2に示されるように、平面視において、閾値調整層34は、ゲート電極44の端部から、ソース電極40を囲む環状の部分のみが露出して現れる。閾値調整層34の露出部分の平面視形状は、例えば0字状(レーストラック形状)である。
 閾値調整層34は、例えば、厚さが100nmであり、キャリア濃度(実効キャリア濃度)が1×1017cm-3であるp型のGaNからなる窒化物半導体層である。閾値調整層34は、電子供給層32の形成工程から引き続いてMOVPE法によって成膜され、パターニングされることで形成される。
 閾値調整層34が設けられていることによって、チャネル部分の伝導帯端のポテンシャルが持ち上げられる。このため、窒化物半導体装置10の閾値電圧を大きくすることができる。したがって、窒化物半導体装置10をノーマリオフ型のFETとして実現することができる。
 なお、閾値調整層34は、p型のGaN膜に限らず、Al、In又はBを含む窒化物半導体膜であってもよい。あるいは、閾値調整層34は、シリコン窒化膜(SiN膜)又はシリコン酸化膜(SiO膜)などの絶縁膜であってもよい。閾値調整層34は、チャネルのポテンシャルを持ち上げることができる材料であれば、いかなる材料を用いて形成されてもよい。また、ノーマリオフ特性が要求されない場合には、窒化物半導体装置510は、閾値調整層34を備えなくてもよい。つまり、電子供給層32上に直接ゲート電極44が設けられてもよい。
 ソース開口部36は、ゲート電極44から離れた位置において、電子供給層32を貫通し、電子走行層30にまで達する第3の開口部の一例である。図3に示されるように、断面視において、ソース開口部36は、ゲート電極44の両側に設けられている。ソース開口部36は、ゲート開口部26から離れた位置において、電子走行層30の一部を露出させる。ソース開口部36の底面36aは、電子走行層30の上面である。図3に示されるように、底面36aは、電子供給層32と電子走行層30との界面よりも下側に位置している。底面36aは、基板12の第1の主面12aに平行である。
 なお、二次元電子ガスは、ソース開口部36の側面36bに露出し、露出部分でソース電極40に接続されている。ソース開口部36は、平面視において、ゲート開口部26から離れた位置に配置されている。
 図3に示されるように、ソース開口部36は、基板12から遠ざかる程、開口面積が大きくなるように形成されている。具体的には、ソース開口部36の側面36bは、斜めに傾斜している。例えば、ソース開口部36の断面形状は、逆台形、より具体的には、逆等脚台形である。なお、ソース開口部36の断面形状は、略矩形であってもよい。
 底面36aに対する側面36bの傾斜角は、例えば、20°以上80°以下の範囲である。傾斜角は、例えば、30°以上60°以下の範囲であってもよい。例えば、ソース開口部36の側面36bの傾斜角は、ゲート開口部26の側面26bの傾斜角よりも大きい。側面36bが斜めに傾斜していることで、ソース電極40と電子走行層30(二次元電子ガス)との接触面積が増えるので、オーミック接続が行われやすくなる。
 ソース開口部36は、例えば、閾値調整層34の形成工程に続いて、ゲート開口部26とは異なる領域において電子走行層30を露出させるように、電子供給層32をエッチングすることにより形成される。このとき、電子走行層30の表層部分も除去することにより、ソース開口部36の底面36aが電子走行層30と電子供給層32との界面よりも下方に形成される。ソース開口部36は、例えば、フォトリソグラフィによるパターニング、及び、ドライエッチングなどによって所定形状に形成される。
 ソース電極40は、ゲート電極44から離れた位置において、電子走行層30及び電子供給層32に接続されている。具体的にはソース電極40は、電子供給層32及び電子走行層30の各々の端面と、電子走行層30の上面とに接続されている。ソース電極40は、電子走行層30及び電子供給層32に対してオーミック接続されている。図3に示されるように、ソース電極40は、閾値調整層34には接触していない。
 ソース電極40は、ソース開口部36の内面の一部に沿って設けられている。具体的には、ソース電極40は、ソース開口部36の底面36aの一部と側面36bの全体とを覆うように設けられている。ソース電極40は、側面36bにおいて二次元電子ガスと直接接触している。
 ソース電極40は、金属などの導電性の材料を用いて形成されている。ソース電極40の材料としては、例えば、Ti/Alなど、n型の半導体層に対してオーミック接続される材料を用いることができる。ソース電極40は、例えば、スパッタ又は蒸着などによって成膜した導電膜をパターニングすることにより形成される。
 開口部38は、電子供給層32、電子走行層30及び高抵抗層24を貫通し、ブロック層22にまで達する第2の開口部の一例である。開口部38は、平面視において、ソース開口部36の内側においてソース電極40から離れた位置に位置している。具体的には、開口部38は、ソース開口部36の底面36aのうち、ソース電極40が設けられていない部分に設けられている。
 開口部38の底面38aは、ブロック層22の上面である。図3に示されるように、底面38aは、ブロック層22と高抵抗層24との界面と面一であるが、これに限らない。底面38aは、ブロック層22と高抵抗層24との界面により下側に位置していてもよい。底面38aは、基板12の第1の主面12aに平行である。
 図3に示されるように、開口部38は、開口面積が実質的に等しくなるように形成されている。具体的には、開口部38の側面38bは、底面38aに対して実質的に垂直である。開口部38の断面形状は、略矩形である。これにより、平面レイアウトにおいて開口部38が占める面積を小さくすることができる。
 開口部38の平面視形状は、図2に示されるように、ブロック層22の露出部分と同等である。図2に示されるブロック層22の露出部分の輪郭は、開口部38の底面38aの輪郭に一致する。詳細については電極パッドの構成の説明と共に説明するが、開口部38は、電位固定電極46のコンタクト部47を設けるために、ソース電極40間の外側にまで延設されている。
 なお、側面38bは、底面38aに対して傾斜していてもよい。例えば、開口部38の断面形状は、逆台形、具体的には、逆等脚台形であってもよい。底面38aに対する側面38bの傾斜角は、例えば、80°以上の範囲であってもよい。例えば、開口部38の側面38bの傾斜角は、ソース開口部36の側面36bの傾斜角よりも大きい。
 開口部38は、例えば、ソース開口部36の形成工程、又は、ソース電極40の形成工程に続いて、ソース電極40とは異なる領域においてブロック層22を露出させるように、電子走行層30及び高抵抗層24をエッチングすることにより形成される。このとき、ブロック層22の表層部分も除去することにより、開口部38の底面38aがブロック層22と高抵抗層24との界面よりも下方に形成されてもよい。開口部38は、例えば、フォトリソグラフィによるパターニング、及び、ドライエッチングなどによって所定形状に形成される。
 ゲート電極44は、ゲート開口部26を覆うように電子供給層32の上方に設けられている。本実施の形態では、ゲート電極44は、閾値調整層34の上面に沿った形状で、閾値調整層34の上面に接触して略均一な厚さで形成されている。
 ゲート電極44は、ソース電極40と接触しないように、平面視において離間させて形成されている。具体的には、図1の(b)に示されるように、ゲート電極44は、平面視において、ソース電極40を囲むように設けられている。
 ゲート電極44は、金属などの導電性の材料を用いて形成されている。例えば、ゲート電極44は、パラジウム(Pd)を用いて形成されている。なお、ゲート電極44の材料としては、n型の半導体に対してショットキー接続される材料を用いることができ、例えば、ニッケル(Ni)系材料、タングステンシリサイド(WSi)、金(Au)などを用いることができる。ゲート電極44は、閾値調整層34の成膜又はパターニングが行われた後、あるいは、開口部38が形成された後、例えば、スパッタ又は蒸着などによって成膜した導電膜をパターニングすることにより形成される。
 電位固定電極46は、開口部38の底面38aに設けられ、ブロック層22に接触している。電位固定電極46は、図3に示されるように、開口部38の側面38bに接触しないように、側面38bから離れて設けられている。
 電位固定電極46は、金属などの導電性の材料を用いて形成されている。電位固定電極46は、例えばゲート電極44と同じ材料を用いて形成されている。電位固定電極46は、ゲート電極44と同じ工程で形成される。なお、電位固定電極46は、ゲート電極44とは異なる工程で形成されてもよい。また、電位固定電極46は、ゲート電極44とは異なる材料を用いて形成されてもよい。
 電位固定電極46がブロック層22に電気的に接続されていることで、ブロック層22の電位を固定することができる。これにより、窒化物半導体装置10の動作を安定させることができる。詳細については、後で説明する。
 ドレイン電極50は、基板12の、ドリフト層14とは反対側に設けられている。具体的には、ドレイン電極50は、基板12の第2の主面12bに接触して設けられている。ドレイン電極50は、金属などの導電性の材料を用いて形成されている。ドレイン電極50の材料としては、ソース電極40の材料と同様に、例えばTi/Alなど、n型の半導体層に対してオーミック接続される材料を用いることができる。ドレイン電極50は、例えば、スパッタ又は蒸着などによって成膜した導電膜をパターニングすることにより形成される。
 [電極パッド]
 続いて、窒化物半導体装置10が備える電極パッドの構成について説明する。
 図1の(a)に示されるように、窒化物半導体装置10は、2つのソース電極パッド56と、ゲート電極パッド58とを備える。2つのソース電極パッド56及びゲート電極パッド58は、金属などの導電性の材料を用いて形成されている。電極パッドに用いられる金属は、例えば、銅(Cu)又はアルミニウム(Al)であるが、これらに限定されない。
 2つのソース電極パッド56及びゲート電極パッド58は、ゲート電極44、ソース電極40及び電位固定電極46などの上面を覆う層間絶縁膜(図示せず)の上方に設けられている。2つのソース電極パッド56及びゲート電極パッド58はそれぞれ、厚膜化されており、例えば、厚さが5μm以上である。
 2つのソース電極パッド56はそれぞれ、複数のソース電極40の直上方向に、すなわち、平面視において重複する位置に位置している。複数のソース電極40はそれぞれ、平面視において重複するソース電極パッド56とソースコンタクトプラグ60を介して接続されている。図2には、ソースコンタクトプラグ60の平面視形状が破線で表されている。ソースコンタクトプラグ60の平面視形状は、例えば、ソース電極40の形状に沿って長尺な矩形であるが、これに限らない。
 ソースコンタクトプラグ60は、ソース電極パッド56とソース電極40とを物理的に、かつ、電気的に接続する導電性部材である。ソースコンタクトプラグ60は、層間絶縁膜を厚さ方向に貫通するコンタクトホールを充填するように設けられている。ソースコンタクトプラグ60は、例えば、Cu又はAlなどの金属材料を用いて形成されている。
 ゲート電極パッド58は、ゲート電極44の直上方向に位置している。図1の(a)に示されるように、ゲート電極パッド58は、平面視において、2つのソース電極パッド56に挟まれている。
 ゲート電極44は、ゲートコンタクトプラグ62を介してゲート電極パッド58に接続されている。図1には、ゲートコンタクトプラグ62の平面視形状が破線で表されている。ゲートコンタクトプラグ62の平面視形状は、例えば長方形であるが、これに限らない。
 ゲートコンタクトプラグ62は、ゲート電極パッド58とゲート電極44とを物理的に、かつ、電気的に接続する導電性部材である。なお、電気的に接続とは、接続される2つの部位(ここでは、ゲート電極パッド58とゲート電極44)が実質的に同電位であることを意味する。ゲートコンタクトプラグ62は、層間絶縁膜を厚さ方向に貫通するコンタクトホールを充填するように設けられている。ゲートコンタクトプラグ62は、例えば、Cu又はAlなどの金属材料を用いて形成されている。
 図2に示されるように、ゲート電極パッド58は、さらに、電位固定電極46から延設されたコンタクト部47の直上方向に位置している。なお、図2では、ゲート電極パッド58の外形の一部のみを太実線で表している。
 コンタクト部47は、平面視において、電位固定電極46の一方の端部に設けられている。具体的には、電位固定電極46は、2つのソース電極40よりも長尺に設けられており、2つのソース電極40で挟まれた部分より外側まで延びている。2つのソース電極40で挟まれた部分より外側まで延びた部分にコンタクト部47が設けられている。コンタクト部47は、電位固定電極46の一部であり、電位固定電極46と同じ材料を用いて形成されている。
 コンタクト部47は、コンタクトプラグ64を介してゲート電極パッド58に接続されている。図2には、コンタクトプラグ64の平面視形状が破線で表されている。
 コンタクトプラグ64は、ゲート電極パッド58と電位固定電極46とを物理的に、かつ、電気的に接続する導電性部材である。コンタクトプラグ64は、層間絶縁膜を厚さ方向に貫通するコンタクトホールを充填するように設けられている。コンタクトプラグ64は、例えば、Cu又はAlなどの金属材料を用いて形成されている。
 以上のように、ゲート電極44と電位固定電極46とは、ゲート電極パッド58を介して電気的に接続されている。具体的には、ゲート電極44と電位固定電極46とは、ゲートコンタクトプラグ62と、ゲート電極パッド58と、コンタクトプラグ64と、コンタクト部47とを介して電気的に接続されている。これらの部材の配線抵抗は実質的に無視できるものとみなし、ゲート電極44と電位固定電極46とは同電位に固定される。
 なお、各電極パッド及び各コンタクトプラグの形状、位置及び個数などは、一例にすぎず、特に限定されない。ゲート電極44と電位固定電極46とを電気的に接続することができれば、いかなる形態であってもよい。
 [電子走行層の膜厚]
 図3に示されるように、電子走行層30は、底面26a上に設けられた底面部30aと、側面26bに沿って設けられた傾斜部30bと、高抵抗層24の上面上に設けられた平坦部30cとを有する。本実施の形態では、基板12に平行な方向に沿った傾斜部30bの長さAは、基板12の厚み方向に沿った平坦部30cの長さBより長い。
 一般的に、窒化物半導体材料を用いて形成された縦型FETにおいて、GaNの結晶成長は、GaN結晶のc面が基板12の第1の主面12aと平行になるように行われる。このとき、二次元電子ガスは、c面に平行な部分に比べて、c面に対して斜めの部分において、分極が小さくなるためキャリア濃度が低下する。つまり、二次元電子ガスは、平坦部30c内の部分に比べて、傾斜部30b内の部分においてキャリア濃度が低い。したがって、二次元電子ガスの傾斜部30b内の部分は、ブロック層22から延びる空乏層による狭窄効果を受けやすい。
 本実施の形態では、図3に示されるように、傾斜部30bの長さAは、平坦部30cの長さBより長い。このため、二次元電子ガスは、傾斜部30b内の部分において、平坦部30c内の部分よりも、ブロック層22から離れている。このため、空乏層によるチャネルの狭窄効果を抑制することができるので、オン抵抗の減少が抑制される。
 一方で、電子走行層30の厚み方向に沿った長さ(すなわち、電子走行層30の厚み)が短い場合、電位固定電極46を形成するための開口部38の深さも浅くなる。このため、開口部38が浅い程、エッチングによる膜の除去に要するプロセス時間を短縮することができる。また、開口部38が浅いことにより、後工程で形成される金属電極のカバレッジも良好になるので、オン抵抗が小さくなる。
 このように、傾斜部30bの長さAが平坦部30cの長さBより短いことにより、大電流動作を可能にするだけでなく、プロセスを容易にすることができ、かつ、オン抵抗を低減することができる。
 [ゲート端部]
 本実施の形態では、ゲート電極44がゲート開口部26を完全に覆うか、一部のみを覆うかに応じて、閾値電圧を調整することができる。つまり、ゲート電極44の端部の位置に応じて閾値電圧を調整することができる。
 なお、閾値調整層34は、実質的にゲート電極44の一部として機能する。このため、窒化物半導体装置10が閾値調整層34を備える場合、閾値調整層34の端部に応じて閾値電圧が調整される。
 閾値調整層34は、例えば、平面視において、ゲート開口部26の底面26aと側面26bの少なくとも一部とを覆っている。具体的には、閾値調整層34は、平面視において、底面26aと側面26bの全てとを覆っている。言い換えると、平面視において、閾値調整層34の内側にゲート開口部26が設けられている。図3に示される断面で見た場合に、基板12に平行な方向(すなわち、紙面左右方向)において、閾値調整層34の端部は、ゲート開口部26の側面26bの上端よりもソース電極40に近い位置に位置している。
 この場合、窒化物半導体装置10の閾値電圧は、ゲート開口部26の側面26bに沿った部分(具体的には、二次元電子ガスの傾斜部分)、及び、ゲート開口部26の外側の平坦部分(具体的には、二次元電子ガスの平坦部分)のうち、閾値電圧が大きい方で決定される。例えば、二次元電子ガスの平坦部分で閾値電圧が決定されるようにする場合、ブロック層22から二次元電子ガスまでの距離を、平坦部分において傾斜部分よりも長くする。具体的には、傾斜部30bの長さAを平坦部30cの長さBより長くする。これにより、ブロック層22からの空乏化の影響を抑えることができ、傾斜部30bにおける閾値電圧を平坦部30cにおける閾値電圧よりも小さくすることができる。
 なお、閾値調整層34は、平面視において、ゲート開口部26の内側に設けられていてもよい。例えば、図3に示される断面で見た場合に、基板12に平行な方向において、閾値調整層34の端部は、ゲート開口部26の側面26bの上端よりもソース電極40から離れた位置に位置してもよい。具体的には、閾値調整層34の端部は、側面26bの直上方向に、すなわち、平面視において重複する位置に位置していてもよい。
 この場合、窒化物半導体装置10の閾値電圧は、ゲート開口部26の側面26bに沿った部分の構成のみで決定される。このため、平坦部30cのキャリア濃度を大きくすることができるので、オン抵抗を低減することができる。
 なお、窒化物半導体装置10が閾値調整層34を備えない場合、閾値調整層34の端部の代わりに、ゲート電極44の端部とゲート開口部26との位置関係によって閾値電圧が決定される。
 本実施の形態では、ゲート電極44は、例えば、平面視において、ゲート開口部26の底面26aと側面26bの少なくとも一部とを覆っている。具体的には、ゲート電極44は、平面視において、ゲート開口部26の内側に設けられている。例えば、図3に示される断面で見た場合に、基板12に平行な方向において、ゲート電極44の端部は、ゲート開口部26の側面26bの上端よりもソース電極40から離れた位置に位置している。具体的には、ゲート電極44の端部は、側面26bの直上方向に、すなわち、平面視において重複する位置に位置している。
 あるいは、ゲート電極44は、平面視において、底面26aと側面26bの全てとを覆っていてもよい。つまり、平面視において、ゲート電極44の内側に、ゲート開口部26が設けられていてもよい。例えば、図3に示される断面で見た場合に、基板12に平行な方向において、ゲート電極44の端部は、ゲート開口部26の側面26bの上端よりもソース電極40に近い位置に位置していてもよい。
 [効果など]
 続いて、本実施の形態に係る窒化物半導体装置10の効果について、図4及び図5を用いて説明する。
 図4は、比較例に係る窒化物半導体装置10xのチャネルを流れる電流Ixを表す図である。電流Ixは、図4において白抜きの矢印で示されている。比較例に係る窒化物半導体装置10xでは、ブロック層22は、ソース電極40と同電位に固定されている。なお、図4では、ブロック層22とソース電極40とが同電位であることを、これらを太実線で接続することで表している。
 ソース電極40とドレイン電極50との間には、p型のブロック層22とn型のドリフト層14とによるpn構造が形成されている。ブロック層22の電位が固定されることにより、窒化物半導体装置10xがオフ状態である場合、ドレイン電極50には、ソース電極40より高い電位が与えられているので、当該pn構造には逆バイアス電圧が印加される。このため、p型のブロック層22とn型のドリフト層14との界面からn型のドリフト層14に向かって空乏層が延びるので、ソース-ドレイン間の耐圧を高めることができる。
 また、窒化物半導体装置10xがオフ状態である場合、p型のブロック層22とゲート電極44との電位差が0になり、又は、p型のブロック層22よりもゲート電極44の電位が低くなるので、電子走行層30内に空乏層66xが形成される。空乏層66xが二次元電子ガスを狭窄し、電流経路を狭めることができるので、電流の流れが抑制され、安定したオフ特性が実現される。
 一方で、窒化物半導体装置10xがオン状態である場合、ゲート電極44には、ソース電極40より高い電位が与えられるので、電子走行層30とp型のブロック層22との間には逆バイアス電圧が印加される状態になる。このため、空乏層66xが電子走行層30内で縮退せず、二次元電子ガスを狭窄したままになる。このため、二次元電子ガスを流れる電流Ixが抑制される。したがって、比較例に係る窒化物半導体装置10xでは、大電流動作が実現できない。
 なお、ブロック層22とソース電極40との電気的な接続を切り離した場合、窒化物半導体装置10xのオン状態では、電子走行層30内に延びる空乏層66xが抑制されるので、大電流動作が可能になる。しかしながら、ブロック層22の電位がフローティング状態になるので、窒化物半導体装置10がオフ状態である場合に、ブロック層22からドリフト層14内に延びる空乏層が安定して形成されず、耐圧が大幅に低下する。
 これに対して、本実施の形態に係る窒化物半導体装置10では、図1~図3を用いて説明したように、ブロック層22は、ゲート電極44に与えられる電位と同じ電位に固定されている。すなわち、ブロック層22は、ゲート電極44と同電位に固定されている。
 図5は、本実施の形態に係る窒化物半導体装置10のチャネルを流れる電流Iを表す図である。電流Iは、図5において白抜きの矢印で示されている。図5では、ブロック層22とゲート電極44とが同電位であることを、これらを太実線で接続することで表している。
 窒化物半導体装置10がオフ状態である場合、ドレイン電極50には、ゲート電極44より高い電位が与えられているので、当該pn構造には逆バイアス電圧が印加される。このため、p型のブロック層22とn型のドリフト層14との界面からn型のドリフト層14に向かって空乏層が延びるので、ソース-ドレイン間の耐圧を高めることができる。
 また、窒化物半導体装置10がオフ状態である場合、p型のブロック層22とゲート電極44との電位差が0になるので、電子走行層30内に空乏層66が形成される。空乏層66が二次元電子ガスを狭窄し、電流経路を狭めることができるので、電流の流れが抑制され、安定したオフ特性が実現される。
 また、窒化物半導体装置10がオン状態である場合、p型のブロック層22にはゲート電極44と同じ電位が与えられているので、空乏層66が縮退し、電流経路を確保することができる。したがって、二次元電子ガスを流れる電流Iを大きく流すことができる。
 以上のように、本実施の形態に係る窒化物半導体装置10によれば、高耐圧で、かつ、大電流動作が可能になる。
 (実施の形態2)
 続いて、実施の形態2について説明する。以下の説明では、実施の形態1との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
 図6は、本実施の形態に係る窒化物半導体装置110の断面図である。具体的には、図6は、図3と同様に、図2に示されるIII-III線に相当する断面を示している。なお、窒化物半導体装置110の平面レイアウトは、例えば、実施の形態1に係る窒化物半導体装置10と同様である。
 図6に示されるように、窒化物半導体装置110は、窒化物半導体装置10と比較して、高抵抗層168をさらに備える。
 高抵抗層168は、ドリフト層14とブロック層22との間に設けられた第2の高抵抗層の一例である。高抵抗層168は、ドリフト層14及びブロック層22のいずれよりも抵抗が高い。高抵抗層168は、絶縁性又は半絶縁性の窒化物半導体から形成されている。高抵抗層168は、例えば、厚さが10nm~数十nmのアンドープGaNからなる膜である。高抵抗層168は、ドリフト層14とブロック層22との両方に接触して設けられている。高抵抗層168は、例えば、MOVPE法などの結晶成長により、ドリフト層14上に形成される。
 本実施の形態では、高抵抗層168は、炭素がドープされている。具体的には、高抵抗層168のC濃度は、ブロック層22のC濃度及びドリフト層14のC濃度より高い。例えば、高抵抗層168のC濃度は、高抵抗層24のC濃度と同程度である。
 また、高抵抗層168には、高抵抗層24と同様に、成膜時に混入するSi又はOが含まれる場合がある。この場合に、高抵抗層168のC濃度は、Si濃度又はO濃度より高い。高抵抗層168のC濃度は、例えば3×1017cm-3以上であるが、1×1018cm-3以上でもよい。高抵抗層168のSi濃度又はO濃度は、例えば、5×1016cm-3以下であるが、2×1016cm-3以下でもよい。
 なお、高抵抗層168は、炭素以外に、マグネシウムMg、鉄(Fe)又はホウ素(B)などのイオン注入により形成されてもよい。GaNの高抵抗化を実現できるイオン種であれば、他のイオン種を用いてもよい。
 本実施の形態によれば、窒化物半導体装置110がオン状態である場合に、具体的には、ゲート電極44及びブロック層22に正バイアス(ソース電極40より高い電位)が印加された場合に、ブロック層22からドレイン電極50に向かって流れる電流を抑制することができる。当該電流は、ドレイン電流-ドレイン電圧特性を表すI-Vカーブにおいてオフセットが発生する原因となり、電力ロスの原因となる。本実施の形態によれば、当該電流を抑制することができるので、省エネルギー化が実現される。
 (実施の形態3)
 続いて、実施の形態3について説明する。以下の説明では、実施の形態1又は2との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
 [構成]
 まず、実施の形態3に係る窒化物半導体装置の構成について、図7~図10を用いて説明する。
 図7は、本実施の形態に係る窒化物半導体装置210を上面から見たときの平面レイアウトを示す平面図である。図7の(a)は、窒化物半導体装置210のパッドレイアウトを示している。図7の(b)は、窒化物半導体装置210のソース電極パッド256を取り除いた場合の平面レイアウトを示している。図7の(b)では、ゲート電極パッド258を透過させた状態で下層の構成のレイアウトを示している。
 図8は、図7の領域VIIIを拡大して示す図である。図7及び図8において、形状を分かりやすくするため、ソース電極240及び絶縁膜242に斜線の網掛けを付している。また、窒化物半導体装置210の最外周に露出している第1の下地層222にも斜線の網掛けを付している。
 図7に示されるように、窒化物半導体装置210は、面内に並んで設けられた複数のソース電極240を備える。複数のソース電極240の平面視形状はそれぞれ、所定方向に長尺の長方形である。複数のソース電極240は、平面視において、長手方向及び短手方向の各々に並んで設けられている。図7に示される例では、長手方向(紙面上下方向)に2個のソース電極240が並んで設けられており、短手方向(紙面左右方向)には、9個のソース電極240が並んでいる。なお、ソース電極240の個数及び形状は、これらに限定されない。
 図7に示されるように、複数のソース電極240はそれぞれ、ゲート電極44に囲まれている。ゲート電極44は、複数のソース電極240に対応する位置に、ソース電極240を露出させるための開口が設けられた一枚の板状の電極である。平面視において、ゲート電極44とソース電極240とは、距離を空けて設けられており、重複していない。
 平面視において、ソース電極240とゲート電極44との間には、絶縁膜242が設けられている。絶縁膜242は、平面視において、ソース電極240の長手方向に長尺な0字形状(レーストラック形状)である。
 本実施の形態では、平面視において、ゲート開口部26は、短手方向に沿って並んだソース電極240間に設けられている。ゲート開口部26は、ゲート電極44の直下方向に位置している。ゲート開口部26の平面視形状は、ソース電極240の長手方向と同じ方向に長尺であり、長手方向の両端部が丸みを帯びた形状である。ゲート開口部26は、隣り合う2つのソース電極240間の中央に位置している。
 図7に示されるように、ゲート開口部26の外側を囲むように、高抵抗層228が設けられている。具体的には、図7の破線で表されるように、高抵抗層228は、ソース電極240の長手方向に平行な方向に長尺な0字形状を有する。なお、高抵抗層228は所定の幅(基板12に平行な方向の長さ)を有するが、図7及び図8では高抵抗層228の当該幅を図示していない。
 なお、ソース電極240及びゲート電極44の形状は、図7に示される例に限らない。例えば、ソース電極240の平面視形状は六角形であってもよい。平面視形状が六角形の複数のソース電極240は、平面視において充填配置された正六角形の頂点に、各ソース電極240の中心が位置するように配置されていてもよい。
 図9は、図8のIX-IX線における本実施の形態に係る窒化物半導体装置210の断面を示している。図10は、図8のIX-IX線における本実施の形態に係る窒化物半導体装置210の断面を示している。
 図9に示されるように、窒化物半導体装置210は、基板12と、ドリフト層14と、第1の下地層222と、第2の下地層224と、ゲート開口部26と、高抵抗層228と、電子走行層30と、電子供給層32と、ソース開口部236と、ソース電極240と、絶縁膜242と、ゲート電極44と、ドレイン電極50とを備える。また、図10に示されるように、窒化物半導体装置210は、コンタクトプラグ252を備える。
 以下では、窒化物半導体装置210が備える各構成要素の詳細について説明する。なお、基板12、ドリフト層14、ゲート開口部26、電子走行層30、電子供給層32、ゲート電極44及びドレイン電極50などの、実施の形態1と実質的に同様の構成については、その説明を省略又は簡略化する。
 第1の下地層222、ゲート接続部222aとソース接続部222bとを備える。ゲート接続部222aは、平面視において、第1の下地層222のうち、高抵抗層228よりゲート開口部26に近い第1の部分の一例である。ソース接続部222bは、平面視において、第1の下地層222のうち、高抵抗層228よりソース電極240に近い第2の部分の一例である。ゲート接続部222aとソース接続部222bとは、高抵抗層228によって電気的に絶縁されている。
 ゲート接続部222aは、ソース電極240に与えられる電位(以下、ソース電位と記載する)とは異なる電位に固定されている。具体的には、ゲート接続部222aは、ゲート電極44に与えられる電位に固定されている。図10に示されるように、ゲート接続部222aには、ゲート電極44から延びるコンタクトプラグ252が接続されている。コンタクトプラグ252を介してゲート接続部222aには、ゲート電位が与えられる。
 ソース接続部222bは、ソース電位に固定されている。具体的には、図9に示されるように、ソース接続部222bは、ソース開口部236に露出しており、露出部分がソース電極240に接触している。これにより、ソース接続部222bには、ソース電位が与えられる。
 高抵抗層228は、第1の下地層222を、ゲート開口部26側のゲート接続部222aと、ソース開口部236側のソース接続部222bとに分離する。本実施の形態では、図9及び図10に示されるように、高抵抗層228はさらに、第2の下地層224を、ゲート開口部26側の部分とソース開口部236側の部分とに分離している。
 具体的には、高抵抗層228は、第2の下地層224から第1の下地層222を貫通してドリフト層14にまで達している。高抵抗層228の上面は、第2の下地層224の上面と面一である。また、高抵抗層228の下面は、第1の下地層222とドリフト層14との界面より下側に位置している。なお、高抵抗層228は、第1の下地層222のみを分離していてもよい。例えば、高抵抗層228の上面は、第1の下地層222と第2の下地層224の界面と面一でもよく、当該界面より上側で第2の下地層224内に位置していてもよい。
 本実施の形態では、高抵抗層228は、ゲート電極44とソース電極240との間の直下方向、具体的には、絶縁膜242の直下方向に位置している。例えば、図9に示される断面で見た場合に、基板12に平行な方向において、高抵抗層228は、ゲート開口部26の底面26aとソース開口部236の底面236aとの端部間の中央に位置している。なお、底面26aの端部は、底面26aと側面26bとの交差部分である。底面236aの端部は、底面236aと側面236bとの交差部分である。
 高抵抗層228は、底面26aと底面236aとの端部間の中央よりゲート開口部26に近い位置に設けられていてもよい。例えば、高抵抗層228の上面は、ゲート開口部26の側面26bに露出していてもよい。あるいは、高抵抗層228は、底面26aと底面236aとの端部間の中央よりソース開口部236に近い位置に設けられていてもよい。例えば、高抵抗層228の上面は、ソース開口部236の側面236bに露出していてもよい。
 高抵抗層228は、第1の下地層222よりも抵抗値が高い。本実施の形態では、高抵抗層228は、第2の下地層224よりも抵抗値が高い。高抵抗層228は、例えば、絶縁性又は半絶縁性の窒化物半導体からなる。本実施の形態では、高抵抗層228は、鉄(Fe)を含んでいる。高抵抗層228は、例えば、鉄がドープされ、高抵抗化されたGaNからなる。なお、高抵抗層228は、窒化物半導体を用いて形成されていなくてもよく、絶縁性を有する他の材料を用いて形成されてもよい。
 ソース開口部236は、ゲート開口部26から離れた位置において、電子供給層32及び電子走行層30を貫通し、第1の下地層222にまで達する第2の開口部の一例である。具体的には、ソース開口部236は、電子供給層32、電子走行層30及び第2の下地層224をこの順で貫通し、第1の下地層222まで達している。本実施の形態では、図9に示されるように、ソース開口部236の底面236aは、第1の下地層222の上面である。底面236aは、第1の下地層222と第2の下地層224との界面よりも下側に位置している。
 図9に示されるように、ソース開口部236は、基板12から遠ざかる程、開口面積が大きくなるように形成されている。具体的には、ソース開口部236の側面236bは、斜めに傾斜している。例えば、ソース開口部236の断面形状は、逆台形、より具体的には、逆等脚台形である。なお、ソース開口部236の断面形状は、略矩形であってもよい。すなわち、ソース開口部236は、基板12からの距離によらずに開口面積が略均一であってもよい。
 底面236aに対する側面236bの傾斜角は、例えば、20°以上80°以下の範囲である。傾斜角は、30°以上60°以下の範囲であってもよい。例えば、ソース開口部236の側面236bの傾斜角は、ゲート開口部26の側面26bの傾斜角よりも大きい。側面236bが斜めに傾斜していることで、ソース電極240と電子走行層30(二次元電子ガス)との接触面積が増えるので、オーミック接続が行われやすくなる。
 ソース電極240は、ソース開口部236に設けられ、電子走行層30及び電子供給層32に接続されている。具体的には、ソース電極240は、ソース開口部236の側面236bを覆うように設けられている。
 ソース電極240は、第1の下地層222に接続されている。具体的には、ソース電極240は、電子供給層32、電子走行層30及び第2の下地層224の各々の端面と、ソース接続部222bとに接続されている。ソース電極240は、電子走行層30及び電子供給層32に対してオーミック接続されている。ソース電極240は、ソース開口部236の側面236bにおいて、電子走行層30内の二次元電子ガスと接続されている。
 ソース電極240は、金属などの導電性の材料を用いて形成されている。ソース電極240の材料としては、例えば、Ti/Alなど、n型の半導体層に対してオーミック接続される材料を用いることができる。
 また、Alは、p型の窒化物半導体からなる第1の下地層222に対してショットキー接続される。このため、ソース電極240の下層部分には、p型の窒化物半導体に対して低コンタクト抵抗となるPd又はNiなどの仕事関数の大きい金属材料を設けてもよい。これにより、第1の下地層222の電位をより安定させることができる。
 絶縁膜242は、電子供給層32上に接触して設けられている。図9に示されるように、絶縁膜242は、ソース電極240のソース開口部236から外側に出た部分の端面を覆っている。絶縁膜242は、ソース電極240とゲート電極44とが物理的かつ電気的に接続されるのを防止するために設けられている。
 本実施の形態では、図9及び図10に示されるように、絶縁膜242は、ゲート電極44と電子供給層32との間に位置している。絶縁膜242は、コンタクトプラグ252の側面を覆っている。これにより、コンタクトプラグ252と電子走行層30及び電子供給層32とが電気的に接続されるのを抑制する。
 絶縁膜242は、絶縁性を有する材料を用いて形成されている。絶縁膜242は、例えば、厚さ100nmの酸化シリコン又は窒化シリコンからなる膜である。
 ソース電極パッド256は、複数のソース電極240の各々に電気的に接続されている。ソース電極パッド256は、複数のソース電極240の各々の上方に設けられている。ソース電極パッド256の直下方向には、複数のソース電極240の各々に対応する位置に複数の導電性のコンタクトプラグ(図示せず)が設けられている。当該コンタクトプラグを介してソース電極パッド256は、複数のソース電極240の各々に電気的に接続されている。
 ソース電極パッド256は、例えば接地されている。つまり、ソース電極パッド256には、0Vが印加されている。ソース電極パッド256に印加された電位は、ソース電極240を介して第1の下地層222のソース接続部222bに与えられる。
 ゲート電極パッド258は、ゲート電極44と電気的に接続されている。ゲート電極パッド258は、例えば、ゲート電極44より上方に設けられている。ゲート電極パッド258の直下方向にはコンタクトプラグ(図示せず)が設けられている。当該コンタクトプラグを介してゲート電極パッド258は、ゲート電極44に電気的に接続されている。
 本実施の形態では、ゲート電極44が面内で平板状に設けられている。このため、ゲート電極パッド258は、窒化物半導体装置210の面内の全体に設けなくてよく、一部のみに設けられていればよい。例えば、図7に示されるように、ゲート電極パッド258は、窒化物半導体装置210の一辺に沿って、当該一辺の中央部分に設けられている。ゲート電極パッド258を囲むように、ソース電極パッド256が設けられている。
 なお、ゲート電極パッド258の個数及び位置は、特に限定されない。例えば、1つのゲート電極パッド258が窒化物半導体装置210の中央に設けられていてもよく、2つのゲート電極パッド258が窒化物半導体装置210の対向する2辺に沿って設けられていてもよい。
 ゲート電極パッド258には、ゲート電極44の制御用の電源が接続される。窒化物半導体装置210をオン状態にする場合に、ゲート電極パッド258には正の電位(例えば、+5V)が印加される。窒化物半導体装置210をオフ状態にする場合に、ゲート電極パッド258には接地電位(0V)又は負の電位が印加される。ゲート電極パッド258に印加された電位は、ゲート電極44及びコンタクトプラグ252を介して、第1の下地層222のゲート接続部222aに与えられる。
 以上のように、本実施の形態に係る窒化物半導体装置210では、電子走行層30と電子供給層32との界面がAlGaN/GaNのヘテロ界面となる。これにより、電子走行層30中に二次元電子ガスが発生し、チャネルが形成される。二次元電子ガスは、キャリア濃度が高いので、チャネルの移動度が高くなり、オン抵抗が低減される。
 また、本実施の形態では、高抵抗層228によって、第1の下地層222はゲート接続部222aとソース接続部222bとに分離される。ゲート接続部222aがゲート電極44と電気的に接続されているので、ゲート接続部222aには、ゲート電位に固定されている。
 このため、窒化物半導体装置210がオフ状態である場合、ゲート電位は0V又は負の電位になるので、ゲート接続部222aから電子走行層30へ空乏層が延びる。したがって、チャネルを流れるリーク電流が抑制され、安定したオフ特性を得ることができる。
 一方、窒化物半導体装置210がオン状態である場合、ゲート電位は正の電位になり、ゲート接続部222aが正にバイアスされる。このため、電子走行層30側に延びた空乏層が縮まり、電流経路を狭めることなくドレイン電流を流すことが可能になる。その結果、安定したオフ特性と大電流化が両立可能な電界効果トランジスタを実現することが可能になる。
 また、ソース接続部222bは、窒化物半導体装置210の動作状態によらず、ソース電位に固定されている。ソース電位はドレイン電極50に与えられる電位よりも低く、例えば0Vである。このため、ソース接続部222bとドレイン電極50とによって、p型のソース接続部222bとn型のドリフト層14とには逆バイアスが与えられるので、空乏層がドリフト層14側に延びる。これにより、ソース-ドレイン間の耐圧を高めることができる。
 [製造方法]
 続いて、本実施の形態に係る窒化物半導体装置210の製造方法について、図11A~図11Iを用いて説明する。図11A~図11Iは、本実施の形態に係る窒化物半導体装置210の製造方法の各工程を示す断面図である。
 以下では、窒化物半導体装置210を構成する各窒化物半導体層を、有機金属気相成長(MOVPE:Metal Organic Vapor Phase Epitaxy)法によって成膜する場合を説明する。なお、窒化物半導体層の成膜方法は、これに限らず、例えば、分子線エピタキシー(MBE:Molecular Beam Epitaxy)法によって成膜してもよい。
 また、n型の窒化物半導体は、例えばシリコン(Si)を添加することにより形成される。p型の窒化物半導体は、マグネシウム(Mg)を添加することにより形成される。なお、n型不純物及びp型不純物は、これらに限られない。
 まず、第1の主面12aが(0001)面、すなわち、c面であるn型GaNからなる基板12を準備する。図11Aに示されるように、基板12の第1の主面12a上に、Siをn型不純物として添加したn型GaN膜13、Mgをp型不純物として添加したp型GaN膜221及びアンドープGaN膜223をこの順で成膜する。なお、n型GaN膜13、p型GaN膜221及びアンドープGaN膜223はそれぞれ、所定形状にパターニングされることで、図9及び図10に示されるドリフト層14、第1の下地層222及び第2の下地層224になる。
 各層の厚さ及びキャリア濃度は、例えば、次の通りである。n型GaN膜13は、厚さが8μmであり、キャリア濃度が1×1016cm-3である。p型GaN膜221は、厚さが400nmであり、キャリア濃度が1×1017cm-3である。アンドープGaN膜223は、厚さが200nmである。なお、これらの数値は一例に過ぎない。
 図11Bに示されるように、アンドープGaN膜223上にレジストを塗布し、塗布したレジストをフォトリソグラフィによってパターニングすることで、レジストマスク290を形成する。レジストマスク290は、ゲート開口部26を形成するためのマスクであり、ゲート開口部26の平面視形状に応じた開口291を有する。
 次に、図11Cに示されるように、ドライエッチングによって、ゲート開口部26を形成する。ゲート開口部26は、アンドープGaN膜223及びp型GaN膜221を貫通しており、n型GaN膜13が露出している。このとき、ゲート開口部26の底面26aは、基板12の第1の主面12aに平行である。ゲート開口部26の側面26bは、底面26aに対して、所定の傾斜角で傾斜している。これにより、側面26b上に再成長層を均一な厚さで形成することができるので、チャネルの狭窄が抑えられ、キャリア濃度の低下及びオン抵抗の増加の両方を抑制することができる。
 次に、レジストマスク290を除去した後、アンドープGaN膜223上、及び、ゲート開口部26内に再びレジストを塗布する。図11Dに示されるように、塗布したレジストをフォトリソグラフィによってパターニングすることで、レジストマスク292を形成する。
 レジストマスク292は、高抵抗層228を形成するためのマスクである。レジストマスク292は、アンドープGaN膜223上の一部とゲート開口部26の底面26a及び側面26bに設けられる。レジストマスク292は、高抵抗層228の平面視形状に応じた開口293を有する。開口293は、アンドープGaN膜223の上面の一部を露出させている。
 次に、レジストマスク292の開口293に露出した部分に、鉄イオンのイオン注入を行うことで、図11Eに示されるように、高抵抗層228を形成する。高抵抗層228は、アンドープGaN膜223、p型GaN膜221及びn型GaN膜13の各々の、開口293に露出した部分に鉄がドープされた層である。
 高抵抗層228の形成により、p型GaN膜221は、ゲート開口部26側の第1のp型GaN膜221aと、ソース開口部236側の第2のp型GaN膜221bとに分離される。第1のp型GaN膜221a及び第2のp型GaN膜221bはそれぞれ、所定形状にパターニングされることでゲート接続部222a及びソース接続部222bになる。
 イオン注入の注入条件は、例えば加速エネルギー40keV、ドーズ量1×1014cm-2である。これにより、約50nmの厚さの高抵抗層228が形成される。鉄イオンが注入された領域、すなわち、高抵抗層228は、結晶構造が破壊されることにより、高抵抗化される。
 このとき、鉄イオンの代わりに、例えば、チタンイオン、クロムイオン、銅イオン又はニッケルイオンなどの、原子番号が大きい金属のイオンを利用してもよい。これにより、後工程における加熱処理による高抵抗層228の再結晶化を抑制することができ、高抵抗層228の抵抗値が小さくなる。
 次に、レジストマスク292を除去した後、図11Fに示されるように、ゲート開口部26の形状に沿って全面に、アンドープGaN膜29、アンドープAlN膜(図示せず)、及び、アンドープAlGaN膜31を、MOVPE法によってこの順で成膜する。アンドープGaN膜29及びアンドープAlGaN膜31はそれぞれ、所定形状にパターニングされることで電子走行層30及び電子供給層32になる。
 各層の厚さは、略均一であり、例えば、次の通りである、アンドープGaN膜29は、厚さが100nmである。アンドープAlN膜は、厚さが1nmである。アンドープAlGaN膜31は、厚さが50nmである。なお、これらの数値は一例に過ぎない。
 次に、アンドープAlGaN膜31上、及び、ゲート開口部26内に再びレジストを塗布する。図11Gに示されるように、塗布したレジストをフォトリソグラフィによってパターニングすることで、レジストマスク294を形成する。レジストマスク294は、ソース開口部236を形成するためのマスクであり、ソース開口部236の平面視形状に応じた開口295を有する。
 次に、図11Hに示されるように、ドライエッチングによって、ソース開口部236を形成する。また、ソース開口部236の形成と同時に、図10に示されるように、コンタクトプラグ252を形成するための開口部254を形成する。ソース開口部236及び開口部254はそれぞれ、アンドープAlGaN膜31、アンドープAlN膜(図示せず)、及び、アンドープGaN膜29、アンドープGaN膜223を貫通し、p型GaN膜221が露出している。このとき、ソース開口部236の底面236aは、基板12の第1の主面12aに平行である。ソース開口部236の側面236bは、底面236aに対して、所定の傾斜角で傾斜している。なお、開口部254の形成は、ソース開口部236とは異なるタイミングで形成されてもよい。
 アンドープAlGaN膜31、アンドープGaN膜29、アンドープGaN膜223及びp型GaN膜221がそれぞれパターニングされることで、電子供給層32、電子走行層30、第2の下地層224及び第1の下地層222が形成される。
 次に、電子供給層32の上面の一部、並びに、ソース開口部236の側面236b及び底面236aに、TiとAuとからなるソース金属膜を蒸着法又はスパッタリング法などによって成膜し、パターニングすることで、ソース電極240を形成する。
 続いて、電子供給層32の上面にSiOからなる絶縁膜をCVD法などによって成膜し、パターニングすることで絶縁膜242を形成する。なお、絶縁膜242は、ソース電極240上に覆いかぶさってもよい。
 また、絶縁膜242は、図10に示されるように、開口部254の内面を覆うように設けられる。このとき、開口部254の底面が露出するように、開口部254の底面に付着した絶縁膜242をパターニングにより除去する。
 次に、ゲート開口部26を覆うように、Pdからなるゲート金属膜を蒸着法又はスパッタリング法などによって成膜する。図11Iに示されるように、成膜したゲート金属膜をパターニングすることで、ゲート電極44を形成する。なお、ゲート電極44は絶縁膜242上に覆いかぶさってもよい。また、図10に示されるように、成膜した金属膜によって開口部254内が埋められることによって、コンタクトプラグ252が形成される。コンタクトプラグ252は、ゲート電極44と第1の下地層222のゲート接続部222aとを物理的かつ電気的に接続する。
 さらに、基板12の第2の主面12bに、TiとAlとからなるドレイン金属膜を蒸着法又はスパッタリング法などによって成膜し、必要に応じてパターニングすることで、ドレイン電極50を形成する。
 以上の工程を経て、図9及び図10に示される窒化物半導体装置210が形成される。
 なお、ゲート電極44及びソース電極240を形成した後、絶縁膜を成膜する。成膜した絶縁膜に、複数のソース電極240の各々の一部、及び、ゲート電極44の一部を露出させるコンタクトホールを形成する。その後、金属膜を成膜してパターニングすることで、ソース電極パッド256及びゲート電極パッド258が形成される。
 [変形例1]
 ここで、実施の形態3に係る窒化物半導体装置210の変形例1について、図12を用いて説明する。
 図12は、本変形例に係る窒化物半導体装置310の断面図である。図12に示されるように、窒化物半導体装置310は、図9に示される窒化物半導体装置210と比較して、閾値調整層34を備える点が相違する。以下では、実施の形態1~3との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
 閾値調整層34は、実施の形態1に係る閾値調整層34と同様である。本変形例では、基板12を平面視した場合に、閾値調整層34の端部は、ゲート電極44の端部よりもソース電極240に近い位置に位置している。閾値調整層34とソース電極240とは離間しており、接触していない。
 図12に示されるように、絶縁膜242は、ソース電極240、電子供給層32及び閾値調整層34を覆うように形成されている。絶縁膜242は、閾値調整層34の端部を覆っており、当該端部を覆う部分は、ゲート電極44によって覆われている。つまり、絶縁膜242の一部は、閾値調整層34とゲート電極44との間に位置している。なお、絶縁膜242は、ゲート電極44の端部を覆うように設けられていてもよい。
 本変形例によれば、閾値調整層34によって、チャネル部分の伝導帯端のポテンシャルが持ち上げられる。このため、窒化物半導体装置310の閾値電圧を大きくすることができる。したがって、窒化物半導体装置310をノーマリオフ型のFETとして実現することができる。
 [変形例2]
 続いて、実施の形態3に係る窒化物半導体装置210の変形例2について、図13を用いて説明する。
 図13は、本変形例に係る窒化物半導体装置410の断面図である。図13に示されるように、本変形例では、図9に示される窒化物半導体装置210と比較して、ソース電極240の構成が異なる。以下では、実施の形態3との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
 窒化物半導体装置410は、ソース電極240の代わりにソース電極440を備える。さらに、窒化物半導体装置410は、複数の開口部439を備える。
 複数の開口部439は、ソース開口部236の底面236aに設けられている。複数の開口部439は、第1の下地層222を貫通し、ドリフト層14にまで達する第3の開口部の一例である。開口部439の底面は、ドリフト層14と第1の下地層222との界面より下側である。本変形例では、1つの底面236aに6つ(左右3つずつ)の開口部439が設けられている。
 複数の開口部439は、互いに同じ構成を有する。例えば、開口部439の断面形状は、略矩形である。すなわち、開口部439は、基板12からの距離によらずに開口面積が略均一であってもよい。あるいは、開口部439の断面形状は、逆台形であってもよい。
 複数の開口部439は、ソース開口部236を形成した後、ソース電極440を形成する前に、第1の下地層222のソース接続部222bの一部を除去することで形成される。例えば、複数の開口部439は、フォトリソグラフィによるパターニング及びドライエッチングなどによって形成される。
 図13に示される断面で見た場合に、複数の開口部439の横幅(すなわち、基板12に水平な方向の長さ)と、隣り合う開口部439間の距離とは、例えば等しい。また、複数の開口部439の各々の横幅は、互いに等しい。なお、開口部439の大きさ及び位置は特に限定されない。
 ソース電極440は、ソース電極240と同様に、ソース開口部236の底面236aに接し、側面236bを覆うように設けられている。さらに、ソース電極440は、第1の下地層222に形成された複数の開口部439の各々に設けられ、ドリフト層14に接続されている。具体的には、ソース電極440の一部は、複数の開口部439の各々を充填するように設けられている。
 ソース電極440は、具体的には、電子供給層32、電子走行層30及び第2の下地層224の各々の端面に接続されている。ソース電極440は、電子走行層30及び電子供給層32に対してオーミック接続されている。
 この構成によると、ソース開口部236の直下方向には、n型GaNからなるドリフト層14とp型GaNからなる第1の下地層222とで形成されるpnダイオードと、開口部439の底面でソース電極440とp型GaNからなる第1の下地層222とで形成されるショットキーバリアダイオードとからなるMPSダイオードが形成される。MPSダイオードは、pnダイオード及びショットキーバリアダイオード両者のメリットを有しており、高耐圧特性に優れ、低動作電圧を実現できる。
 MPSダイオードは、電界効果トランジスタと並列に形成されている。つまり、MPSダイオードは、電界効果トランジスタを保護するための還流ダイオードとして機能する。これにより、逆バイアス時には高耐圧を維持しつつ、立ち上がり電圧を低くすることができるので、MPSダイオードを通して流れる還流電流による損失を小さくすることができる。
 なお、本変形例では、1つのソース開口部236の底面236aに複数の開口部439が設けられている例を示したが、これに限らない。底面236aには、1つのみの開口部439が設けられていてもよい。
 (実施の形態4)
 続いて、実施の形態4に係る窒化物半導体装置の構成について、図14~図18を用いて説明する。以下の説明では、実施の形態1~3との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
 図14は、本実施の形態に係る窒化物半導体装置510の断面図である。具体的には、図14は、図16のXIV-XIV線における断面を示している。図15及び図16はそれぞれ、本実施の形態に係る窒化物半導体装置510の開口部518及び開口部526のレイアウトを示す断面斜視図及び平面図である。図15では、開口部518が設けられたシールド層516と、開口部526が設けられた電流ブロック層522とが図示されており、他の構成の図示は省略されている。図16についても同様である。
 図17は、本実施の形態に係る窒化物半導体装置510のゲート電極44と電流ブロック層522との接続部分を示す断面斜視図である。具体的には、図17は、図16のXVII-XVII線で切断した断面を斜めから見た場合の窒化物半導体装置510を模式的に示している。つまり、図17は、窒化物半導体装置510の端部であって、開口部518及び開口部526の各々が延びる方向の一端を示している。
 図18は、本実施の形態に係る窒化物半導体装置510のソース電極40とシールド層516との接続部分を示す断面斜視図である。具体的には、図18は、図16のXVIII-XVIII線で切断した断面を斜めから見た場合の窒化物半導体装置510を模式的に示している。つまり、図18は、窒化物半導体装置510の端部であって、開口部518及び開口部526の各々が延びる方向の、図17とは反対側の一端を示している。
 図14に示されるように、窒化物半導体装置510は、基板12と、ドリフト層14と、シールド層516と、開口部518と、下地層520と、電流ブロック層522と、開口部526と、電子走行層30と、電子供給層32と、閾値調整層34と、ソース開口部36と、開口部538と、ソース電極40と、ゲート電極44と、第1の電位固定電極546と、第2の電位固定電極548と、ドレイン電極50とを備える。なお、基板12、ドリフト層14、電子走行層30、電子供給層32、閾値調整層34、ソース開口部36、ソース電極40、ゲート電極44及びドレイン電極50などの、実施の形態1と実質的に同様の構成については、その説明を省略又は簡略化する。
 本実施の形態に係る窒化物半導体装置510は、AlGaN/GaNのヘテロ界面に発生する二次元電子ガスをチャネルとして利用した電界効果トランジスタ(FET)である。具体的には、窒化物半導体装置510は、いわゆる縦型FETである。例えば、窒化物半導体装置510がオン状態である場合には、ドレイン電極50からソース電極40に、基板12、ドリフト層14、下地層520及び電子走行層30(二次元電子ガス)を介して電流が流れる。電流は、開口部518を通ってドリフト層14から下地層520に流れ、開口部526を通って下地層520から電子走行層30に流れる。
 窒化物半導体装置510では、例えば、ソース電極40が接地され(すなわち、電位が0V)、ドレイン電極50に正の電位が与えられている。ドレイン電極50に与えられる電位は、例えば、数百Vであるが、これに限らない。ゲート電極44に印加される電位によって、窒化物半導体装置510のオンオフが制御される。
 ゲート電極44には0Vの電位又は負の電位が印加された場合には、電子走行層30内のチャネルが狭窄されて、窒化物半導体装置510がオフ状態になる。つまり、この場合、ドレイン電極50からソース電極40に電流が流れない。ゲート電極44には正の電位(例えば+5V)が印加された場合には、窒化物半導体装置510がオン状態になる。つまり、この場合、ドレイン電極50からソース電極40に電流が流れる。
 以下では、窒化物半導体装置510が備える各構成要素の詳細について説明する。
 本実施の形態では、ドリフト層14の実効キャリア濃度は、デバイスの定格電圧によって決定される。例えば、定格電圧が0.6kV以上1.2kV以下の範囲である場合には、ドリフト層14の実効キャリア濃度は、5×1015cm-3以上2×1016cm-3以下の範囲である。一例として、ドリフト層14の実効キャリア濃度は、1×1016cm-3である。
 シールド層516は、ドリフト層14の上方に設けられた第2の導電型の第4の窒化物半導体層の一例である。シールド層516は、例えば、厚さが400nmであり、実効キャリア濃度が1×1017cm-3であるp型のGaNからなる膜である。シールド層516は、ドリフト層14の上面に接触して設けられている。
 シールド層516は、ソース電極40に与えられる電位(以下、ソース電位と記載)と同じ電位に固定されている。つまり、シールド層516とソース電極40とは、電気的に接続されている。具体的な接続の構成については、図18を用いて後で説明する。
 本実施の形態では、シールド層516は、ドリフト層14の一部を露出させる第4の開口部の一例である開口部518を有する。開口部518は、シールド層516を貫通しており、ドリフト層14にまで達している。図14に示されるように、開口部518の底面518aは、ドリフト層14の上面である。底面518aは、例えば、基板12の第1の主面12aに平行であり、ドリフト層14とシールド層516との界面より下側に位置している。本実施の形態では、開口部518は、基板12から遠ざかる程、開口面積が大きくなるように形成されている。具体的には、開口部518の側面518bは、斜めに傾斜している。例えば、開口部518の断面形状は、逆台形、より具体的には、逆等脚台形である。
 底面518aに対する側面518bの傾斜角は、例えば、20°以上80°以下の範囲である。傾斜角は、30°以上45°以下の範囲であってもよい。傾斜角が45°以下であることにより、側面518bがc面に近づくので、結晶再成長により側面518bに沿って形成される下地層520の膜質を高めることができる。
 下地層520は、開口部518の内面に沿って、かつ、シールド層516の上方に設けられた第1の導電型の第5の窒化物半導体層の一例である。下地層520は、例えば、厚さが300nmであるn型のGaNからなる膜である。下地層520は、開口部518の底面518a及び側面518b、並びに、シールド層516の上面に接触して設けられている。
 電流ブロック層522は、下地層520の上方に設けられた第2の窒化物半導体層の一例である。電流ブロック層522は、例えば、厚さが400nmであるp型のGaNからなる膜である。電流ブロック層522は、下地層520の上面に接触して設けられている。電流ブロック層522の実効キャリア濃度は、例えば、シールド層516の実効キャリア濃度と同じである。
 電流ブロック層522は、ゲート電極44に与えられる電位(以下、ゲート電位と記載)と同じ電位に固定されている。つまり、電流ブロック層522とゲート電極44とは、電気的に接続されている。具体的な接続の構成については、図17を用いて後で説明する。
 本実施の形態では、電流ブロック層522は、下地層520の一部を露出させる開口部526を有する。開口部526は、電流ブロック層522を貫通する第1の開口部の一例である。開口部526は、電流ブロック層522を貫通しており、下地層520にまで達している。開口部526は、ゲート電極44のリセス構造を形成するゲート開口部である。
 本実施の形態では、図14に示されるように、開口部526の底面526aは、下地層520の上面である。底面526aは、例えば、基板12の第1の主面12aに平行であり、下地層520と電流ブロック層522との界面よりも下側に位置している。
 本実施の形態では、開口部526は、基板12から遠ざかる程、開口面積が大きくなるように形成されている。具体的には、開口部526の側面526bは、斜めに傾斜している。例えば、開口部526の断面形状は、逆台形、より具体的には、逆等脚台形である。
 底面526aに対する側面526bの傾斜角は、例えば、20°以上80°以下の範囲である。傾斜角は、30°以上45°以下の範囲であってもよい。傾斜角が45°以下であることにより、側面526bがc面に近づくので、結晶再成長により側面526bに沿って形成される電子走行層30などの膜質を高めることができる。傾斜角が30°以上であることにより、開口部526が大きくなりすぎることが抑制され、窒化物半導体装置510の小型化が実現される。
 図15に示されるように、開口部518及び開口部526はそれぞれ、一方向に長尺である。本実施の形態では、開口部518及び開口部526はいずれも、y軸に沿って延びている。平面視した場合(すなわち、z軸の正側から見た場合)、開口部518及び開口部526は、重複している。
 本実施の形態では、図15に示されるように、開口部518の開口幅W1は、開口部526の開口幅W2と等しい。つまり、平面視において、開口部518と開口部526とは、図16に示されるように、同じ形状及び同じ大きさである。開口幅W1は、具体的には、シールド層516の下側の端部であって、開口部518に露出した端部間の距離である。開口幅W2は、電流ブロック層522の下側の端部であって、開口部526に露出した端部間の距離である。開口幅W1及びW2は、例えば、5μmである。なお、開口部526の両側に位置する電流ブロック層522の幅はそれぞれ、6μmである。なお、これらの数値は一例に過ぎない。
 本実施の形態では、電子走行層30は、開口部526の底面526aにおいて下地層520に接触している。つまり、電子走行層30は、ドリフト層14とは接触していない。電子走行層30は、開口部526の側面526bにおいて電流ブロック層522の端面に接触している。さらに、電子走行層30は、電流ブロック層522の上面に接触している。
 開口部538は、開口部526から離れた位置において、シールド層516の一部を露出させるための開口部である。図14に示されるように、断面視において、開口部538は、ゲート電極44の両側で、ソース電極40よりも外側(具体的には、ゲート電極44及び開口部526とは反対側)に設けられている。具体的には、開口部538は、電子供給層32、電子走行層30、電流ブロック層522及び下地層520を貫通し、シールド層516にまで達している。図14に示されるように、開口部538の底面538aは、シールド層516の上面である。底面538aは、下地層520とシールド層516との界面よりも下側に位置している。
 本実施の形態では、開口部538は、基板12からの距離によらず、開口面積が実質的に均一になるように形成されている。具体的には、開口部538の側面538bは、底面538aに対して実質的に垂直である。例えば、開口部538の断面形状は、矩形である。なお、側面538bは、斜めに傾斜していてもよい。
 第1の電位固定電極546は、電流ブロック層522の電位を固定するための電極であり、電流ブロック層522に接触している。具体的には、図14に示されるように、電流ブロック層522の上面の一部は、電子走行層30及び電子供給層32が設けられておらず、露出している。第1の電位固定電極546は、電流ブロック層522の上面の露出した部分に接触して設けられている。第1の電位固定電極546は、ソース電極40から離れて設けられており、かつ、電子走行層30には接触していない。断面視において、第1の電位固定電極546は、ゲート電極44の両側で、ソース電極40よりも外側に設けられている。
 本実施の形態では、第1の電位固定電極546は、ゲート電極44と電気的に接続されている。つまり、第1の電位固定電極546は、電流ブロック層522の電位をゲート電位に固定する。なお、図14では、異なる層間の電気的な接続を、太実線で表している。後述する図19、図21及び図22においても同様である。
 例えば、図17に示されるように、窒化物半導体装置510の一端では、電子走行層30、電子供給層32及び閾値調整層34が除去されており、電流ブロック層522の上面が露出している。ゲート電極44は、y軸の正方向に向かって延びており、その端部にコンタクトプラグ552が設けられている。コンタクトプラグ552は、ゲート電極44と第1の電位固定電極546とを電気的に接続する導電部である。
 ゲート電極44の両側に位置する第1の電位固定電極546は、ゲート電極44と同様に、y軸の正方向に向かって延びており、その端部において1つに接続されている。この接続部分にコンタクトプラグ552が接続されている。
 第1の電位固定電極546は、p型の半導体に対してオーミック接続される材料を用いることができる。例えば、第1の電位固定電極546は、ゲート電極44と同じ材料を用いることができる。具体的には、第1の電位固定電極546は、パラジウム(Pd)又はニッケル(Ni)系の材料を用いて形成される。
 第2の電位固定電極548は、シールド層516の電位を固定するための電極であり、シールド層516に接触している。具体的には、図14に示されるように、第2の電位固定電極548は、シールド層516を露出させるための開口部538内に設けられている。より具体的には、第2の電位固定電極548は、開口部538の底面538a上に接触して設けられている。第2の電位固定電極548は、下地層520及び電流ブロック層522には接触していない。断面視において、第2の電位固定電極548は、ゲート電極44の両側で、ソース電極40及び第1の電位固定電極546よりも外側に設けられている。
 本実施の形態では、第2の電位固定電極548は、ソース電極40と電気的に接続されている。つまり、第2の電位固定電極548は、シールド層516の電位をソース電位に固定する。
 図18に示されるように、窒化物半導体装置510の他端では、電子走行層30、電子供給層32及び閾値調整層34だけでなく、さらに、電流ブロック層522及び下地層520も除去されており、シールド層516の上面が露出している。ゲート電極44の両側に位置するソース電極40は、y軸の負方向に向かって延びており、その端部において1つに接続されている。この接続部分にコンタクトプラグ541が設けられている。コンタクトプラグ541は、ソース電極40と第2の電位固定電極548とを電気的に接続する導電部である。
 ゲート電極44の両側に位置する第2の電位固定電極548は、ソース電極40と同様に、y軸の負方向に向かって延びており、その端部において1つに接続されている。この接続部分にコンタクトプラグ541が接続されている。
 第2の電位固定電極548は、p型の半導体に対してオーミック接続される材料を用いることができる。例えば、第2の電位固定電極548は、ゲート電極44と同じ材料を用いることができる。具体的には、第2の電位固定電極548は、パラジウム(Pd)又はニッケル(Ni)系の材料を用いて形成される。
 続いて、シールド層516、下地層520及び電流ブロック層522の具体的な機能について詳細に説明する。
 本実施の形態では、電流ブロック層522は、ドレイン電極50とソース電極40との間に流れるリーク電流を抑制するために設けられている。p型の電流ブロック層522と電子走行層30とが接触しているので、開口部526の側面526bから電子走行層30内に空乏層が広がる。窒化物半導体装置510がオフ状態である場合、すなわち、ゲート電極44に0V又は負の電位が印加されている場合には、当該空乏層によって、電子走行層30内に形成されるチャネル(具体的には、二次元電子ガス)が狭窄されるので、ドレイン電極50からソース電極40にチャネルを介して流れる電流が抑制される。このように、電流ブロック層522が設けられていることで、窒化物半導体装置510は、良好なオフ特性を得ることができる。
 ここで、仮に、電流ブロック層522がゲート電位に固定されていない場合、チャネルの狭窄の影響を受けて、窒化物半導体装置510がオン状態になったとしても、チャネルを介して流れる電流が少なくなる。これに対して、本実施の形態では、窒化物半導体装置510がオン状態である場合、すなわち、ゲート電極44に正の電位が印加された場合、電流ブロック層522がゲート電位に固定されているので、電流ブロック層522と電子走行層30との間には正バイアスが印加される。これにより、電子走行層30内に広がっていた空乏層が縮退するので、チャネルの狭窄が解消される。したがって、窒化物半導体装置510がオン状態になった場合には、ドレイン電極50とソース電極40との間に大電流を流すことができる。
 一方で、電流ブロック層522がゲート電位に固定されることで、電流ブロック層522とドレイン電極50との間に形成される容量がゲート-ドレイン間の帰還容量に上乗せされる。帰還容量が大きくなる程、スイッチングの応答性が悪くなる。つまり、窒化物半導体装置510の高速動作が難しくなる。
 これに対して、本実施の形態では、ソース電位に固定されたシールド層516が電流ブロック層522とドレイン電極50との間に設けられている。つまり、シールド層516は、ドレイン電極50に対向する電流ブロック層522を遮蔽(シールド)するので、電流ブロック層522とドレイン電極50との間に形成される容量を小さくすることができる。
 本実施の形態では、図15に示されるように、開口部518の開口幅W1と開口部526の開口幅W2とが等しい。また、図16に示されるように、平面視において、開口部518と開口部526との形状が等しい。つまり、電流ブロック層522は、シールド層516によってほぼ遮蔽される。このため、電流ブロック層522とドレイン電極50との間に形成される容量を更に小さくすることができる。
 このように、本実施の形態では、ゲート-ドレイン間の帰還容量の増大を抑制することができるので、窒化物半導体装置510の高速動作を実現することができる。
 また、シールド層516は、ソース電位に固定されているので、p型のシールド層516とn型のドリフト層14とで形成されるpn接合に対して逆方向電圧が印加された状態になる。このため、シールド層516とドリフト層14との界面からドリフト層14内に空乏層が延びる。これにより、窒化物半導体装置510の高耐圧化が可能である。
 また、本実施の形態では、p型の電流ブロック層522と、n型の下地層520と、p型のシールド層516とがpnp構造を形成している。ゲート-ソース間に逆方向バイアスが印加された場合、ゲート電位に固定された電流ブロック層522(詳細については、後で説明する)と、ソース電位に固定されたシールド層516との間にパンチスルー電流が流れる恐れがある。
 これに対して、例えば、下地層520の実効キャリア濃度は、ドリフト層14の実効キャリア濃度より大きい。具体的には、下地層520の実効キャリア濃度は、1×1017cm-3である。これにより、下地層520を厚膜化しなくても、パンチスルー電流を抑制することができる。
 なお、下地層520の膜厚を大きくすることでも、パンチスルー電流を抑制することができる。一方で、下地層520の膜厚が大きすぎる場合には、オン抵抗が増大する。このため、オン抵抗の増大又はパンチスルー電流が抑制されている場合には、下地層520の実効キャリア濃度は、ドリフト層14の実効キャリア濃度に等しくてもよい。
 (実施の形態5)
 続いて、実施の形態5について説明する。以下では、実施の形態1~4との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
 図19は、本実施の形態に係る窒化物半導体装置610の断面図である。図19に示されるように、窒化物半導体装置610は、実施の形態4に係る窒化物半導体装置510に加えて、高抵抗層668を備える点が相違する。
 高抵抗層668は、下地層520と電流ブロック層522との間に設けられた、下地層520及び電流ブロック層522よりも抵抗値が高い高抵抗層の一例である。高抵抗層668は、下地層520と電流ブロック層522との各々に接触して設けられている。高抵抗層668は、絶縁性又は半絶縁性の窒化物半導体から形成されている。高抵抗層668は、例えば、厚さが200nmであるGaNからなる膜である。
 例えば、高抵抗層668には、炭素(C)がドープされている。例えば、高抵抗層668の炭素濃度は、例えば3×1017cm-3以上であるが、1×1018cm-3以上でもよい。
 また、高抵抗層668には、成膜時に混入する珪素(Si)又は酸素(O)が含まれる場合がある。この場合に、高抵抗層668の炭素濃度は、珪素濃度又は酸素濃度より高い。高抵抗層668の珪素濃度又は酸素濃度は、例えば、5×1016cm-3以下であるが、2×1016cm-3以下でもよい。
 なお、高抵抗層668は、炭素以外に、マグネシウム(Mg)、鉄(Fe)又はホウ素(B)などのイオン注入により形成されてもよい。GaNの高抵抗化を実現できるイオン種であれば、他のイオン種を用いてもよい。イオン注入によって、注入された領域の窒化物半導体の結晶を破壊でき、当該領域を容易に高抵抗化することができる。
 仮に高抵抗層668が設けられていない場合、p型の電流ブロック層522と下地層520とがpn接合を形成している。このため、窒化物半導体装置610がオン状態である場合、すなわち、ゲート電極44に正の電位が印加されている場合、ゲート電位に固定された電流ブロック層522と下地層520とに順バイアスが印加された状態になる。このため、電流ブロック層522から下地層520に電流が流れやすくなるので、ゲート電極44から、電流ブロック層522、下地層520、ドリフト層14及び基板12を介してドレイン電極50にリーク電流が流れる恐れがある。
 本実施の形態に係る窒化物半導体装置610によれば、高抵抗層668が設けられていることにより、p型の電流ブロック層522から下地層520に流れるリーク電流を抑制することができる。これにより、ゲート電極44からドレイン電極50に流れるリーク電流を抑制することができる。
 (実施の形態6)
 続いて、実施の形態6について説明する。以下では、実施の形態1~5との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
 図20は、本実施の形態に係る窒化物半導体装置の開口部618及び619並びに開口部526のレイアウトを示す断面斜視図である。図20に示されるように、本実施の形態に係る窒化物半導体装置では、シールド層516が複数の開口部618及び619を有する。図20では、2つの開口部618及び619を示しているが、シールド層516は、3つ以上の開口部を有してもよい。
 開口部618の開口幅W11及び開口部619の開口幅W12は、開口部526の開口幅W2より短い。開口幅W11と開口幅W12とは、例えば同じ長さであるが、異なっていてもよい。複数の開口部618及び619は、互いに同じ形状及び同じ大きさであるが、異なる形状又は異なる大きさであってもよい。
 開口幅W11は、その半分の長さが、例えば、ドレイン電極50とソース電極40との間に電圧が印加されている場合に開口部618の側面から下地層520内に延びる空乏層の長さより短くなるように定められている。つまり、開口部618の両側の側面からそれぞれ空乏層が延びることにより、開口部618が塞がれるように開口幅W11が定められている。開口部619の開口幅W12についても同様である。開口幅W11及びW12は、例えば2μmであるが、これに限定されない。
 開口部618及び619はいずれも、平面視において、開口部526に重複しない位置に設けられている。言い換えると、平面視において、開口部526とシールド層516とが重複している。これにより、開口部526の近傍に電界が集中するのを緩和することができる。したがって、ゲート-ドレイン間の耐圧を高めることができる。
 また、複数の開口部618及び619が設けられているので、ドレイン電極50とソース電極40との間の電流経路を確保することができる。つまり、窒化物半導体装置のオン抵抗の増大を抑制することができる。
 (実施の形態7)
 続いて、実施の形態7について説明する。以下では、実施の形態1~6との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
 図21は、本実施の形態に係る窒化物半導体装置700の断面図である。図21に示されるように、窒化物半導体装置700は、実施の形態4に係る窒化物半導体装置510に加えて、ショットキーバリアダイオードを備える点が相違する。具体的には、窒化物半導体装置700は、トランジスタ部701と、ダイオード部702とを備える。トランジスタ部701とダイオード部702とは、基板12を平面視した場合に、面内で並んで設けられている。
 トランジスタ部701は、実施の形態4に係る窒化物半導体装置510と同じ構成を有する。なお、トランジスタ部701は、実施の形態5に係る窒化物半導体装置610と同じ構成を有してもよい。あるいは、トランジスタ部701は、実施の形態6に係る窒化物半導体装置と同じ構成を有してもよい。トランジスタ部701は、2つの第2の電位固定電極548間に挟まれた部分である。
 ダイオード部702は、開口部526から離れた位置に設けられたショットキーバリアダイオードである。具体的には、ダイオード部702は、2つの第2の電位固定電極548から離れた位置に設けられている。図21に示されるように、下地層720上に設けられたアノード電極744と、ドレイン電極50の一部であるカソード電極750とを備える。
 アノード電極744は、下地層720の上面に接触して設けられている。アノード電極744は、金属などの導電性の材料を用いて形成されている。アノード電極744は、例えば、ゲート電極44と同じ材料を用いて形成されている。具体的には、アノード電極744は、n型の半導体に対してショットキー接続される材料を用いることができ、例えば、パラジウム(Pd)、ニッケル(Ni)系材料、タングステンシリサイド(WSi)、金(Au)などを用いることができる。アノード電極744と下地層720とがショットキー接続されることにより、ショットキーバリアダイオードが形成される。
 アノード電極744は、ソース電極40と電気的に接続されている。つまり、ダイオード部702は、トランジスタ部701のソース電極40とドレイン電極50との間に接続された還流ダイオードとして動作する。ダイオード部702は、トランジスタ部701のソース-ドレイン間に逆バイアスが印加された場合に、ソース電極40と接続されたアノード電極744からカソード電極750(ドレイン電極50)に電流を流すことができる。
 本実施の形態では、アノード電極744は、シールド層516と電気的に接続されている。具体的には、アノード電極744は、シールド層516の上面に接触して設けられた第2の電位固定電極548と電気的に接続されることにより、シールド層516と電気的に接続されている。
 これにより、ショットキー接続部分、すなわち、アノード電極744と下地層720との界面に集中する電界を緩和することができる。このため、ダイオード部702の耐圧を高めることができる。
 ダイオード部702では、アノード電極744からカソード電極750に電流を流すために、シールド層516が開口部718を有する。開口部718は、アノード電極744とカソード電極750との間においてドリフト層14の一部を露出させる第5の開口部の一例である。開口部718は、シールド層516を貫通しており、ドリフト層14にまで達している。図21に示されるように、開口部718の底面718aは、ドリフト層14の上面である。底面718aは、例えば、基板12の第1の主面12aに平行であり、ドリフト層14とシールド層516との界面より下側に位置している。本実施の形態では、開口部718は、基板12から遠ざかる程、開口面積が大きくなるように形成されている。具体的には、開口部718の側面718bは、斜めに傾斜している。例えば、開口部718の断面形状は、逆台形、より具体的には、逆等脚台形である。底面718aに対する側面718bの傾斜角は、例えば、20°以上80°以下の範囲である。傾斜角は、30°以上45°以下の範囲であってもよい。
 なお、図22に示されるように、シールド層516は、複数の開口部718を備えてもよい。図22は、本実施の形態に係る窒化物半導体装置の別の構成例を示す断面図である。
 続いて、本実施の形態に係る窒化物半導体装置700の製造方法について、図23A~図23Mを用いて説明する。図23A~図23Mは、本実施の形態に係る窒化物半導体装置700の製造方法の各工程を示す断面図である。
 以下では、窒化物半導体装置700を構成する各窒化物半導体層を、有機金属気相成長(MOCVD:Metal Organic Chemical Vapor Deposition)法によって成膜する場合を説明する。有機金属気相成長法は、MOVPE(Metal Organic Vapor Phase Epitaxy)とも称される。なお、窒化物半導体層の成膜方法は、これに限らず、例えば、分子線エピタキシー(MBE:Molecular Beam Epitaxy)法によって成膜してもよい。
 また、n型の窒化物半導体は、例えばシリコン(Si)を添加することにより形成される。p型の窒化物半導体は、マグネシウム(Mg)を添加することにより形成される。なお、n型不純物及びp型不純物は、これらに限られない。
 まず、第1の主面12aが(0001)面、すなわち、c面であるn型GaNからなる基板11を準備する。図23Aに示されるように、基板11の第1の主面12a上に、Siをn型不純物として添加したn型GaN膜13、及び、Mgをp型不純物として添加したp型GaN膜515を、MOCVD法によってこの順で成膜する。なお、n型GaN膜13及びp型GaN膜515はそれぞれ、所定形状にパターニングされることで、図21に示されるドリフト層14及びシールド層516になる。
 次に、図23Bに示されるように、p型GaN膜515上にレジストマスクを形成し、ドライエッチングを行うことによって、開口部518及び開口部718を形成する。開口部518及び開口部718はそれぞれ、p型GaN膜515を貫通しており、n型GaN膜13の一部を露出させている。ドライエッチングは、例えば、塩素系のガスを用いて行われる。なお、開口部518を含む部分(図中、左側の部分)がトランジスタ部701に相当し、開口部718を含む部分(図中、右側の部分)がダイオード部702に相当する。なお、GaN膜の除去は、ウェットエッチングによって行われてもよい。ドライエッチングに用いるガス、及び、ウェットエッチングに用いられる液体は、特に限定されない。エッチング後は、レジストマスクが除去される。
 次に、図23Cに示されるように、開口部518及び開口部718の形状に沿って全面に、n型GaN膜519、及び、p型GaN膜521を、MOCVD法によってこの順で成膜する。ここでは、n型GaN膜519の上面が平坦である例を示しているが、開口部518及び開口部718の内面形状に沿って凹んでいてもよい。n型GaN膜519及びp型GaN膜521はそれぞれ、所定形状にパターニングされることで、図21に示される下地層520及び720、並びに、電流ブロック層522になる。
 次に、図23Dに示されるように、p型GaN膜521上にレジストマスクを形成し、エッチングを行うことによって、開口部526を形成する。開口部526は、p型GaN膜521を貫通しており、n型GaN膜519の一部を露出させている。
 次に、図23Eに示されるように、開口部526の形状に沿って全面に、アンドープGaN膜29、アンドープAlN膜(図示せず)、アンドープAlGaN膜31、及び、p型GaN膜33を、MOCVD法によってこの順で成膜する。アンドープGaN膜29、アンドープAlGaN膜31及びp型GaN膜33はそれぞれ、所定形状にパターニングされることで、図21に示される電子走行層30、電子供給層32及び閾値調整層34になる。
 このように、本実施の形態では、窒化物半導体の結晶成長(すなわち、窒化物半導体膜の成膜)は、3回に分けて行われる。続いて、成膜された窒化物半導体膜のパターニングを行う。パターニングは、フォトリソグラフィによる所定形状のレジストマスクの形成と、エッチングとによって行われる。
 まず、開口部526の直上方向を含む範囲のみにp型GaN膜33が残るように、p型GaN膜33の他の部分をエッチングで除去する。これにより、図23Fに示されるように、残ったp型GaN膜33である閾値調整層34が形成される。
 次に、図23Gに示されるように、閾値調整層34を含む所定の範囲のみに、アンドープAlGaN膜31及びアンドープGaN膜29が残るように、アンドープAlGaN膜31及びアンドープGaN膜29の他の部分をエッチングで除去する。
 次に、図23Hに示されるように、アンドープAlGaN膜31の一部及びアンドープGaN膜29の一部をエッチングによって除去することで、ソース開口部36を形成する。アンドープGaN膜29は、厚み方向における全てを除去せずに、一部が残っている。つまり、ソース開口部36の底面36aは、アンドープGaN膜29の露出した部分に相当する。
 次に、図23Iに示されるように、開口部526及び開口部518のいずれとも離れた位置に、開口部538を形成する。具体的には、トランジスタ部701及びダイオード部702にも含まれない部分において、p型GaN膜521及びn型GaN膜519をエッチングによって除去することで、p型GaN膜515を露出させる。これにより、パターニングされた下地層520及び720、並びに、電流ブロック層522及び722が形成される。
 次に、図23Jに示されるように、電流ブロック層722をエッチングによって除去する。このとき、下地層720の上面の一部が除去されてもよい。つまり、下地層720の上面は、下地層520と電流ブロック層522との界面よりも下側に位置していてもよい。
 以上のような図23E~図23Jに示される各工程を経て、成膜した窒化物半導体膜のパターニングが行われる。続いて、各電極の形成を行う。
 まず、図23Kに示されるように、ソース電極40を形成する。具体的には、チタン(Ti)及びアルミニウム(Al)などの金属材料を蒸着又はスパッタリングなどによって全面に成膜した後、レジストマスクを形成し、エッチングによってパターニングする。金属膜のエッチングは、例えばドライエッチングであるが、ウェットエッチングであってもよい。また、金属材料を成膜する前に半導体層の表面にレジストパターニングを行うことにより、特定の領域のみに金属を付着させる方法(リフトオフプロセス)で電極形成しても構わない。
 次に、図23Lに示されるように、ゲート電極44、アノード電極744、第1の電位固定電極546及び第2の電位固定電極548を形成する。具体的には、パラジウム(Pd)などの金属材料を蒸着又はスパッタリングなどによって全面に成膜した後、レジストマスクを形成し、エッチングによってパターニングする。また、リフトオフプロセスを用いても構わない。
 次に、基板11の裏面を研磨する。これにより、図23Mに示されるように、薄膜化された基板12が形成される。基板12が薄膜化されることで、基板12の抵抗を小さくすることができる。
 さらに、基板12の第2の主面12bに、TiとAlとからなるドレイン金属膜を蒸着法又はスパッタリング法などによって成膜し、必要に応じてパターニングすることで、ドレイン電極50を形成する。
 以上の工程を経て、図21に示される窒化物半導体装置700が形成される。
 上述した製造方法は、一例に過ぎず、適宜工程の順序が入れ替わってもよい。例えば、ソース電極40の形成は、ゲート電極44の形成よりも後に行われてもよい。また、例えば、ゲート電極44、第1の電位固定電極546、第2の電位固定電極548及びアノード電極744を同時に形成したが、異なる工程で形成してもよい。
 なお、実施の形態4に係る窒化物半導体装置510は、本実施の形態に係る窒化物半導体装置700と同様の工程を経て形成することができる。具体的には、窒化物半導体装置700のトランジスタ部701の製造工程を順次実行することで、窒化物半導体装置510が製造される。
 また、実施の形態5に係る窒化物半導体装置610も、本実施の形態に係る窒化物半導体装置610と同様の工程を経て形成することができる。具体的には、図23Cにおいて、n型GaN膜519、C濃度を高くした高抵抗のGaN膜(高抵抗層668)、p型GaN膜521を一連の結晶成長で形成することにより作製できる。また、イオン注入によりp型GaN膜521とn型GaN膜519との界面近傍の領域を高抵抗化することで、高抵抗層668を形成しても構わない。さらには、n型GaN膜519を成膜した後に、抵抗値の高い絶縁膜などを高抵抗層668として成膜し、成膜した絶縁膜上にp型GaN膜521を成膜してもよい。
 また、実施の形態6に係る窒化物半導体装置も、本実施の形態に係る窒化物半導体装置700と同様の工程を経て形成することができる。具体的には、図23Bにおいて、開口部518を形成する際のマスクパターンを変更することで、複数の開口部618及び619を形成することができる。
 また、本実施の形態では、ダイオード部702がトランジスタ部701に並列接続され、還流ダイオードとして機能する例を示したが、これに限らない。ダイオード部702のアノード電極744は、ソース電極40に接続されていなくてもよい。また、カソード電極750は、トランジスタ部701内のドレイン電極50とは物理的に分離され、電気的に絶縁されていてもよい。これにより、ダイオード部702が他の機能を実現してもよい。
 (他の実施の形態)
 以上、1つ又は複数の態様に係る窒化物半導体装置について、実施の形態に基づいて説明したが、本開示は、これらの実施の形態に限定されるものではない。本開示の主旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したもの、及び、異なる実施の形態における構成要素を組み合わせて構築される形態も、本開示の範囲内に含まれる。
 例えば、窒化物半導体装置10は、開口部38及び電位固定電極46を備えなくてもよい。例えば、ブロック層22の端面とゲート電極44とを電気的に接続することで、ブロック層22を、ゲート電極44と同電位に固定してもよい。
 また、例えば、窒化物半導体装置10は、閾値調整層34を備えなくてもよい。窒化物半導体装置10は、ノーマリオン動作のFETとして実現されてもよい。
 また、例えば、電子走行層30の膜厚は、部位によらず均等であってもよい。例えば、底面部30aの膜厚と傾斜部30bの膜厚と平坦部30cの膜厚とは、互いに等しくてもよい。また、図3に示される長さAと長さBとは等しくてもよい。
 また、例えば、ソース開口部36の底面36aは、高抵抗層24の上面であってもよい。具体的には、電子供給層32と、電子走行層30と、高抵抗層24の表層部分とを除去することで、高抵抗層24が形成されてもよい。
 また、例えば、窒化物半導体装置10は、ソース開口部36を備えていなくてもよい。この場合、ソース電極40は、電子供給層32の上面に接触して設けられている。ソース電極40は、電子供給層32を介して電子走行層30と接続されていてもよい。
 例えば、実施の形態3では、第1の下地層222に相当するp型GaN膜221、及び、第2の下地層224に相当するアンドープGaN膜223に対して鉄をイオン注入することにより、高抵抗層228を形成したが、これに限らない。例えば、p型GaN膜221の成膜後に、鉄のイオン注入を行うことで、高抵抗層228を形成してもよい。この場合、高抵抗層228は、第2の下地層224には形成されず、高抵抗層228の上面は、第1の下地層222の上面と面一になる。あるいは、p型GaN膜221の所定領域をエッチングにより除去し、除去した領域に絶縁性材料を埋めることによって高抵抗層228を形成してもよい。
 また、例えば、上記の各実施の形態では、第1の導電型がn型であり、第2の導電型がp型である例について示したが、これに限らない。第1の導電型がp型であり、第2の導電型がn型でもよい。
 例えば、開口部518の延びる方向と開口部526の延びる方向とは、一致していなくてもよい。例えば、開口部518の延びる方向と開口部526の延びる方向とは、斜めに交差していてもよく、直交していてもよい。
 また、例えば、高抵抗層668は、窒化物半導体からなる膜でなくてもよい。例えば、高抵抗層668は、シリコン酸化膜などの絶縁性材料を用いて形成された膜であってもよい。
 また、上記の各実施の形態は、請求の範囲又はその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
 本開示は、高耐圧で、かつ、大電流動作が可能な窒化物半導体装置として利用でき、例えば、テレビなどの民生機器の電源回路などに用いられるパワートランジスタなどに利用することができる。
10、10x、110、210、310、410、510、610、700 窒化物半導体装置
11、12 基板
12a 第1の主面
12b 第2の主面
13、519 n型GaN膜
14 ドリフト層(第1の窒化物半導体層)
22 ブロック層(第2の窒化物半導体層)
24、168、228、668 高抵抗層
26 ゲート開口部(第1の開口部)
26a、36a、38a、236a、518a、526a、538a、718a 底面
26b、36b、38b、236b、518b、526b、538b、718b 側面
29、223 アンドープGaN膜
30 電子走行層
30a 底面部
30b 傾斜部
30c 平坦部
31 アンドープAlGaN膜
32 電子供給層
33、515、521 p型GaN膜
34 閾値調整層(第3の窒化物半導体層)
36 ソース開口部(第3の開口部)
38 開口部(第2の開口部)
40、240、440 ソース電極
44 ゲート電極
46 電位固定電極
47 コンタクト部
50 ドレイン電極
56、256 ソース電極パッド
58、258 ゲート電極パッド
60 ソースコンタクトプラグ
62 ゲートコンタクトプラグ
64、252、541、552 コンタクトプラグ
66、66x 空乏層
221 p型GaN膜
221a 第1のp型GaN膜
221b 第2のp型GaN膜
222 第1の下地層
222a ゲート接続部
222b ソース接続部
224 第2の下地層
236 ソース開口部(第2の開口部)
242 絶縁膜
254、538 開口部
290、292、294 レジストマスク
291、293、295 開口
439 開口部(第3の開口部)
516 シールド層(第4の窒化物半導体層)
518、618、619 開口部(第4の開口部)
520、720 下地層(第5の窒化物半導体層)
522、722 電流ブロック層(第2の窒化物半導体層)
526 開口部(第1の開口部)
546 第1の電位固定電極
548 第2の電位固定電極
701 トランジスタ部
702 ダイオード部
718 開口部(第5の開口部)
744 アノード電極
750 カソード電極

Claims (21)

  1.  基板と、
     前記基板の上方に設けられた第1の導電型の第1の窒化物半導体層と、
     前記第1の窒化物半導体層の上方に設けられた、前記第1の導電型とは異なる第2の導電型の第2の窒化物半導体層と、
     前記第2の窒化物半導体層を貫通する第1の開口部と、
     前記第1の開口部の内面に沿って、前記基板側から順に設けられた電子走行層及び電子供給層と、
     前記第1の開口部を覆うように前記電子供給層の上方に設けられたゲート電極と、
     前記ゲート電極から離れた位置において、前記電子供給層及び前記電子走行層に接続されたソース電極と、
     前記基板の、前記第1の窒化物半導体層とは反対側に設けられたドレイン電極とを備え、
     前記第2の窒化物半導体層の少なくとも一部は、前記ソース電極に与えられる電位とは異なる電位に固定されている
     窒化物半導体装置。
  2.  さらに、
     前記第2の窒化物半導体層の少なくとも一部は、前記ゲート電極に与えられる電位と同じ電位に固定されている
     請求項1に記載の窒化物半導体装置。
  3.  さらに、
     前記第2の窒化物層の上方に設けられた第1の高抵抗層と、
     前記電子供給層、前記電子走行層及び前記第1の高抵抗層を貫通し、前記第2の窒化物半導体層にまで達する第2の開口部と、
     前記第2の開口部の底面に設けられ、前記第2の窒化物半導体層に接触する電位固定電極とを備え、
     前記第1の開口部は、前記第1の高抵抗層及び前記第2の高抵抗層を貫通しており、
     前記電位固定電極は、前記ゲート電極と電気的に接続されている
     請求項2に記載の窒化物半導体装置。
  4.  さらに、
     前記電子供給層を貫通し、前記電子走行層にまで達する第3の開口部を備え、
     前記ソース電極は、前記第3の開口部の内面の一部に沿って設けられ、
     前記第2の開口部は、前記基板を平面視した場合、前記第3の開口部の内側において前記ソース電極から離れた位置に位置している
     請求項3に記載の窒化物半導体装置。
  5.  さらに、
     前記ゲート電極と前記電子供給層との間に設けられた前記第2の導電型の第3の窒化物半導体層を備える
     請求項2~4のいずれか1項に記載の窒化物半導体装置。
  6.  さらに、
     前記第1の窒化物半導体層と前記第2の窒化物半導体層との間に設けられた第2の高抵抗層を備える
     請求項2~5のいずれか1項に記載の窒化物半導体装置。
  7.  前記電子走行層は、
     前記第1の高抵抗層の上面上に設けられた平坦部と、
     前記第1の開口部の側面に沿って設けられた傾斜部とを有し、
     前記基板に平行な方向に沿った前記傾斜部の長さは、前記基板の法線方向に沿った前記平坦部の長さより長い
     請求項2~6のいずれか1項に記載の窒化物半導体装置。
  8.  さらに、
     前記第1の開口部から離れた位置において、前記電子供給層及び前記電子走行層を貫通し、前記第2の窒化物半導体層にまで達する第2の開口部と、
     前記第2の窒化物半導体層を前記第1の開口部側の第1の部分と前記第2の開口部側の第2の部分とに分離する高抵抗層とを備え、
     前記ソース電極は、前記第2の開口部に設けられており、
     前記第2の部分は、前記ソース電極に与えられる電位と同じ電位に固定され、
     前記第1の部分は、前記ソース電極に与えられる電位とは異なる電位に固定されている
     請求項1に記載の窒化物半導体装置。
  9.  前記高抵抗層は、鉄を含む窒化物半導体層である
     請求項8に記載の窒化物半導体装置。
  10.  前記第1の部分は、前記ゲート電極に与えられる電位と同じ電位に固定されている
     請求項8又は9に記載の窒化物半導体装置。
  11.  さらに、
     前記ゲート電極と前記電子供給層との間に設けられた前記第2の導電型の第3の窒化物半導体層を備える
     請求項8~10のいずれか1項に記載の窒化物半導体装置。
  12.  さらに、
     前記第2の開口部の底面に設けられ、前記第2の窒化物半導体層を貫通し、前記第1の窒化物半導体層にまで達する第3の開口部を備え、
     前記ソース電極は、さらに、前記第3の開口部に設けられ、前記第1の窒化物半導体層に接続されている
     請求項8~11のいずれか1項に記載の窒化物半導体装置。
  13.  前記第3の開口部は、前記第2の開口部の底面に複数設けられている
     請求項12に記載の窒化物半導体装置。
  14.  前記第1の窒化物半導体層と前記第2の窒化物半導体層との間に設けられた、前記第1の窒化物半導体層の一部を露出させる第4の開口部を有する、前記第1の導電型とは異なる第2の導電型の第4の窒化物半導体層と、
     前記第4の開口部の内面に沿って、かつ、前記第4の窒化物半導体層と前記第2の窒化物半導体層との間に設けられた、前記第1の導電型の第5の窒化物半導体層とを備え、
     前記第1の開口部は、前記第5の窒化物半導体層の一部を露出させ、
     前記第4の窒化物半導体層は、前記ソース電極に与えられる電位と同じ電位に固定され、
     前記第2の窒化物半導体層は、前記ゲート電極に与えられる電位と同じ電位に固定されている
     請求項1に記載の窒化物半導体装置。
  15.  さらに、前記第5の窒化物半導体層と前記第2の窒化物半導体層との間に設けられた、前記第5の窒化物半導体層又は前記第2の窒化物半導体層よりも抵抗値が高い高抵抗層を備える
     請求項14に記載の窒化物半導体装置。
  16.  前記第5の窒化物半導体層の実効キャリア濃度は、前記第1の窒化物半導体層の実効キャリア濃度より高い
     請求項14又は15に記載の窒化物半導体装置。
  17.  前記第4の開口部の開口幅は、前記第1の開口部の開口幅より短い
     請求項14~16のいずれか1項に記載の窒化物半導体装置。
  18.  前記第4の窒化物半導体層は、複数の前記第4の開口部を有する
     請求項17に記載の窒化物半導体装置。
  19.  さらに、平面視において、前記第1の開口部から離れた位置に設けられたショットキーバリアダイオードを備え、
     前記ショットキーバリアダイオードのアノード電極は、前記第5の窒化物半導体層上に設けられ、
     前記ショットキーバリアダイオードのカソード電極は、前記ドレイン電極の一部であり、
     前記第4の窒化物半導体層は、さらに、前記アノード電極と前記カソード電極との間において、前記第1の窒化物半導体層の一部を露出させる第5の開口部を有する
     請求項14~18のいずれか1項に記載の窒化物半導体装置。
  20.  前記アノード電極は、前記第4の窒化物半導体層と電気的に接続されている
     請求項19に記載の窒化物半導体装置。
  21.  前記第4の窒化物半導体層は、複数の前記第5の開口部を有する
     請求項19又は21に記載の窒化物半導体装置。
PCT/JP2019/027605 2018-07-17 2019-07-11 窒化物半導体装置 WO2020017437A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020531279A JP7303807B2 (ja) 2018-07-17 2019-07-11 窒化物半導体装置
US17/259,505 US20210167061A1 (en) 2018-07-17 2019-07-11 Nitride semiconductor device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018-134461 2018-07-17
JP2018134461 2018-07-17
JP2018-141737 2018-07-27
JP2018141737 2018-07-27
JP2018-161232 2018-08-30
JP2018161232 2018-08-30

Publications (1)

Publication Number Publication Date
WO2020017437A1 true WO2020017437A1 (ja) 2020-01-23

Family

ID=69164025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027605 WO2020017437A1 (ja) 2018-07-17 2019-07-11 窒化物半導体装置

Country Status (3)

Country Link
US (1) US20210167061A1 (ja)
JP (1) JP7303807B2 (ja)
WO (1) WO2020017437A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023112374A1 (ja) * 2021-12-16 2023-06-22 パナソニックホールディングス株式会社 窒化物半導体デバイス
JP7438918B2 (ja) 2020-11-12 2024-02-27 株式会社東芝 半導体装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113707727B (zh) * 2021-08-30 2023-03-28 电子科技大学 一种具有倒梯形槽的垂直GaN二极管

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011035072A (ja) * 2009-07-30 2011-02-17 Sumitomo Electric Ind Ltd 半導体装置およびその製造方法
JP2014022701A (ja) * 2012-07-24 2014-02-03 Sumitomo Electric Ind Ltd 縦型半導体装置およびその製造方法
WO2015004853A1 (ja) * 2013-07-12 2015-01-15 パナソニックIpマネジメント株式会社 半導体装置
WO2016147541A1 (ja) * 2015-03-17 2016-09-22 パナソニック株式会社 窒化物半導体装置
WO2017138505A1 (ja) * 2016-02-12 2017-08-17 パナソニック株式会社 半導体装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5051980B2 (ja) * 2005-03-31 2012-10-17 住友電工デバイス・イノベーション株式会社 半導体装置
JP2012084739A (ja) * 2010-10-13 2012-04-26 Sumitomo Electric Ind Ltd 半導体装置およびその製造方法
JP2014192493A (ja) * 2013-03-28 2014-10-06 Toyoda Gosei Co Ltd 半導体装置
WO2015122135A1 (ja) * 2014-02-13 2015-08-20 パナソニックIpマネジメント株式会社 窒化物半導体デバイス
JP2016054250A (ja) * 2014-09-04 2016-04-14 豊田合成株式会社 半導体装置、製造方法、方法
JP7195306B2 (ja) * 2018-03-27 2022-12-23 パナソニックホールディングス株式会社 窒化物半導体装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011035072A (ja) * 2009-07-30 2011-02-17 Sumitomo Electric Ind Ltd 半導体装置およびその製造方法
JP2014022701A (ja) * 2012-07-24 2014-02-03 Sumitomo Electric Ind Ltd 縦型半導体装置およびその製造方法
WO2015004853A1 (ja) * 2013-07-12 2015-01-15 パナソニックIpマネジメント株式会社 半導体装置
WO2016147541A1 (ja) * 2015-03-17 2016-09-22 パナソニック株式会社 窒化物半導体装置
WO2017138505A1 (ja) * 2016-02-12 2017-08-17 パナソニック株式会社 半導体装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7438918B2 (ja) 2020-11-12 2024-02-27 株式会社東芝 半導体装置
WO2023112374A1 (ja) * 2021-12-16 2023-06-22 パナソニックホールディングス株式会社 窒化物半導体デバイス

Also Published As

Publication number Publication date
JPWO2020017437A1 (ja) 2021-08-02
US20210167061A1 (en) 2021-06-03
JP7303807B2 (ja) 2023-07-05

Similar Documents

Publication Publication Date Title
JP5678866B2 (ja) 半導体装置およびその製造方法
JP4705412B2 (ja) 電界効果トランジスタ及びその製造方法
TWI823081B (zh) 半導體裝置
JP6754782B2 (ja) 半導体装置
US9589951B2 (en) High-electron-mobility transistor with protective diode
US20060124960A1 (en) Semiconductor device and method for fabricating the same
JP7157138B2 (ja) 窒化物半導体装置
WO2020017437A1 (ja) 窒化物半導体装置
WO2019187789A1 (ja) 窒化物半導体装置
WO2022176455A1 (ja) 窒化物半導体デバイス
WO2019097813A1 (ja) 窒化物半導体装置
JP2011066464A (ja) 電界効果トランジスタ
US20220359669A1 (en) Nitride semiconductor device and method of manufacturing the same
US20220376055A1 (en) Nitride semiconductor device
WO2021140898A1 (ja) 窒化物半導体装置
JP7361723B2 (ja) 窒化物半導体装置
US20230387288A1 (en) Nitride semiconductor device
WO2023042617A1 (ja) 半導体装置
WO2023112374A1 (ja) 窒化物半導体デバイス
WO2023127187A1 (ja) 窒化物半導体デバイス
JP2023133798A (ja) 窒化物半導体デバイス
CN106328699B (zh) 半导体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19838563

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020531279

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19838563

Country of ref document: EP

Kind code of ref document: A1