WO2020017133A1 - Distributed-winding, radial-gap-type rotary electric machine and stator thereof - Google Patents

Distributed-winding, radial-gap-type rotary electric machine and stator thereof Download PDF

Info

Publication number
WO2020017133A1
WO2020017133A1 PCT/JP2019/019024 JP2019019024W WO2020017133A1 WO 2020017133 A1 WO2020017133 A1 WO 2020017133A1 JP 2019019024 W JP2019019024 W JP 2019019024W WO 2020017133 A1 WO2020017133 A1 WO 2020017133A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
electric machine
rotating electric
distributed winding
radial gap
Prior art date
Application number
PCT/JP2019/019024
Other languages
French (fr)
Japanese (ja)
Inventor
榎本 裕治
日野 徳昭
公則 澤畠
雅寛 堀
永田 稔
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to CN201980019879.5A priority Critical patent/CN112368912B/en
Priority to JP2020530906A priority patent/JP7142700B2/en
Publication of WO2020017133A1 publication Critical patent/WO2020017133A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/04Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings, prior to mounting into machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure

Definitions

  • the present invention relates to a rotating electric machine, and particularly to a distributed winding radial gap type rotating electric machine and a stator thereof.
  • an electromagnetic steel plate is used for the iron core portion, and a motor having a different loss level depending on its thickness, Si content, and the like is used.
  • Soft magnetic materials include high-performance materials such as iron-based amorphous metals that have higher magnetic permeability and lower iron loss than electromagnetic steel sheets, and nanocrystal materials that can be expected to have high magnetic flux densities, as well as these materials.
  • the plate thickness is extremely thin, 0.025 mm, and the hardness is 900, which is Vickers hardness of 900, which is more than five times that of electromagnetic steel plates. High-performance materials cannot be applied to motors.
  • copper loss is mainly determined by the relationship between the coil resistance and current, and measures are taken to reduce the coil resistance, such as cooling, and reduce the current value by suppressing the decrease in the residual magnetic flux density of the magnet.
  • a design has been made to increase the ratio (occupation ratio) of the conductor to the cross-sectional area of the stator slot so as to reduce the resistance value to just the theoretical limit.
  • the rectangular wire coil which can increase the space factor in the slot, has a complicated structure in which the coil end portions at both ends of the slot have a complicated structure.
  • the volume (line length) becomes large and the resistance value slightly increases.
  • Patent Literature 1 a two-pin hairpin-shaped conductor segment is inserted into a stator coil of a motor, and each is bent and formed at a coil end portion opposite to the inserted side, and another is disposed in a circumferential direction.
  • This is a method of forming an annular coil by welding a bent conductor of a hairpin-shaped coil.
  • this method has the effect of increasing the slot space factor, it requires bending and forming a thick solid rectangular conductor at the time of manufacturing, so stress on the stator core, damage to the slot insulator, and
  • the coil end becomes large on the welding side because a space around the welded portion must be provided for welding.
  • Patent Document 2 is mentioned as a method of trying to improve them.
  • the stator coil of the segment conductor insertion type is divided in the axial direction, the divided end faces are formed into a shape that can be combined as a V-shape, and the V-shaped combination portion has a conductive paste adhesive.
  • a method of joining to form a conductor coil is shown. In this method, since welding at the coil end portion is eliminated, an effect of suppressing the resistance value of the coil by designing the shape of the coil end portion optimally can be expected.
  • it is necessary to assemble the conductors one by one by applying an adhesive there is a problem in increasing man-hours and securing reliability.
  • Patent Document 3 discloses a configuration in which coils divided in the axial direction are connected by protrusions and holes or convex and concave shapes. This is also characterized in that the connection is made in a state where the connection portion is visible in order to ensure connection reliability. After the connection process, a part of the split stator core is fitted in the circumferential direction and assembled.
  • problems such as the reliability check of the insertion of the contact connection portion, an increase in man-hours, and an increase in man-hours for assembling the core.
  • Patent Literature 4 discloses a method of connecting the coil end surfaces having irregularities as in Patent Literature 3. After the insertion into the slot, stress is applied to a part of the coil to widen the inserted coil, thereby satisfying a highly reliable connection (securing conductivity) by a caulking effect. Although the description of the means for widening after being inserted into the core is not clear, there is a concern that if it is performed at all the connection points, the number of steps in the widening step will increase.
  • An object of the present invention is to connect segment conductors with high reliability.
  • a distributed winding radial gap type rotating electric machine and a stator thereof include a plurality of segment conductors formed in a U shape, and a stator core into which the plurality of segment conductors are inserted in a distributed winding state.
  • the plurality of segment conductors are each formed with a convex shape and a concave shape at a tip portion connected to each other, and the convex shape and the concave shape have a combined surface in which an axial vertical direction is a contact surface,
  • the convex-side dimension of the convex shape is formed larger than the concave-side dimension of the concave shape, and the coil end formed by the plurality of segment conductors is integrated with a resin or other insulating material or a high heat conductive member. Make up a group.
  • the segment conductors can be connected with high reliability.
  • FIG. 2 is an exploded perspective view of a segment conductor 3 and a segment conductor 4 according to the embodiment. It is an enlarged perspective view near the connection part of the segment conductor 3 and the segment conductor 4 according to this embodiment, the left side is before connection, and the right side is after connection. It is a development perspective view of the resin mold part of the radial gap type rotary electric machine concerning this embodiment.
  • FIG. 2 is a perspective view of a resin-made bobbin 2 for slot insulation according to the embodiment shown in FIG. 1. It is a partial perspective view showing the state where bobbin 2 concerning this embodiment was inserted in the stator core. It is a perspective view of insulating paper 7 concerning other embodiments. It is a perspective view showing the state where insulating paper 7 was bent.
  • FIG. 1 is a partial perspective view showing the state where bobbin 2 concerning this embodiment was inserted in the stator core.
  • FIG. 3 is a partial perspective view showing a state where insulating paper 7 is inserted into a stator core 1.
  • FIG. 3 is a partial perspective view showing an example of disposition of segment conductors 3 on a stator core 1 according to the present embodiment.
  • FIG. 5 is a top view of the stator core 1 shown in FIG.
  • FIG. 5 is a partial perspective view showing a coil end portion in a state where 48 segment conductors 3 shown in FIG. 4A are arranged in a circumferential direction (a state in which all coils are inserted).
  • FIG. 5 is a perspective view showing a plurality of segment conductors 3 with the stator core 1 of FIG. 4C removed.
  • FIG. 6 is a perspective view showing a state in which a part near a vertex of a coil end of a coil group of the segment conductor 3 shown in FIG. It is a bottom view which shows the resin mold ring part 6 comprised separately as shown in FIG.5 (c).
  • FIG. 4 is an overall perspective view of a resin mold ring portion 6 formed separately.
  • FIG. 7 is an overall perspective view before connecting a resin mold ring portion 6 shown in FIG. 6B to a coil group.
  • FIG. 7 is a perspective view showing a state where a coil group of the segment conductors 3 and 4 integrated by the resin mold ring portion 6 shown in FIGS. 5 and 6 is assembled to the stator core 1.
  • FIG. 2 is a perspective view showing a state where a coil group of segment conductors 3 and 4 integrated by a resin mold ring portion 6 is assembled to a stator core 1. It is a perspective view explaining the relation between a stator and a rotor concerning this embodiment. It is an axial sectional view showing the form where the motor concerning this embodiment was assembled. It is a perspective view which shows the connection form of the segment conductor 3 and the segment conductor 4. It is a front view which shows the connection form of the segment conductor 3 and the segment conductor 4. It is a fragmentary perspective view showing a manufacturing method as a comparative example of a fitting part of segment conductor 3 and segment conductor 4.
  • FIG. 4 is a partial perspective view of the vicinity of the distal ends of the segment conductors 3 and 4. It is a perspective view of bobbin 2 concerning other embodiments.
  • FIG. 3 is an overall perspective view before teeth portions 5 of stator core 1 are inserted into bobbin 2.
  • FIG. 3 is a partial perspective view in which a tooth portion 5 is fixed to a stator core 1.
  • FIG. 3 is a partial perspective view of segment conductor 3 and segment conductor 4 concerning other embodiments.
  • the two end portions of the segment conductor have a combination shape in which the vertical direction in the axial direction such as a convex shape and a concave shape is a contact surface, and the dimensional relationship of the unevenness is the dimensional relationship of the interference fit.
  • a part of the tip of the coil end is made of resin or other resin. It is integrated with an insulator or a high heat conductive member.
  • the coil can be reliably positioned, and the axial insertion force when the coil is inserted into the slot portion can be transmitted uniformly and reliably in the axial direction.
  • an extremely large insertion force is required, so it is necessary to apply firmly parallel stress in the axial direction to the fitting part during press-fitting.
  • the vertex of the coil end will be pushed, but since the inclination of the coil and the vertices of multiple coils separately hit the pressing jig, It is difficult for the coil to be inserted properly due to buckling of the coil.
  • the coil can be inserted with a uniform stress applied thereto, all the fitting portions can be connected with only one insertion step.
  • the slot portion of the stator core is provided with an insulating resin bobbin, a slot liner, and the like for preventing an insulation short circuit between the coil and the core, and assists in inserting the coil in the slot portion in the axial direction. It is also important to adopt the structure together.
  • the stator coils configured as described above can be inserted by applying stress to all the coils so as to be uniform, so that all the fitting portions can be connected by only one insertion step. Further, since an insulating resin bobbin, a slot liner, and the like for preventing a short circuit between the coil and the core are provided in the slot portion of the stator core, insulation performance can be ensured. Furthermore, after insertion, by placing the mold portion such as resin at the end of the coil end disposed at the coil end on both ends in contact with the motor housing and the bearing holding portion, the axial stress is continuously applied to the stator coil, When used as a motor, a structure is adopted in which the fitted and press-fitted coil connection portion is prevented from coming out due to vibration or the like.
  • this structure has a structure in which the heat conductivity from the coil end portion to the bearing holding portion and the housing can be increased, it can contribute to a reduction in motor temperature rise during use and a reduction in copper loss. Welding and bending processes during manufacturing can be reduced.
  • FIG. 1 shows a structure of a stator of a radial gap type rotating electric machine according to one embodiment of the present invention, in which segment conductors divided in an axial direction are reconnected in a stator core.
  • FIG. 1A is an exploded perspective view of the segment conductor 3 and the segment conductor 4 according to the present embodiment.
  • the segment conductor 4 has a hairpin shape having two legs or a U-shape.
  • the tip of the segment conductor 3 has a convex shape.
  • a hairpin-shaped or U-shaped segment conductor 4 is provided on the opposite side of the segment conductor 3 in the axial direction.
  • the tip of the segment conductor 4 has a concave shape.
  • the segment conductor 3 and the segment conductor 4 are connected in the axial length of the stator core 1 so that a wave winding is formed.
  • FIG. 1B is an enlarged perspective view of the vicinity of the connection between the segment conductor 3 and the segment conductor 4 according to the present embodiment, where the left side is before connection and the right side is after connection.
  • the connecting portion between the segment conductor 3 and the segment conductor 4 is formed so that the convex shape and the concave shape are meshed with substantially the same shape, and is formed in such a shape that the surface parallel to the axial direction is larger than the conductor cross-sectional area.
  • the contact connection can be made on the surface.
  • FIG. 1C is an exploded perspective view of a resin mold portion of the radial gap type rotating electric machine according to the present embodiment.
  • the stator core 1 has 48 slots in the circumferential direction.
  • the slots of the stator core 1 are arranged at an angular pitch of 7.5 degrees in the circumferential direction.
  • an insulator is provided in the slot portion.
  • a plastic bobbin 2 is disposed in the slot.
  • the coil group By fixing a part of the coil end of the hairpin coil group, the coil group can be stably handled without using a large-scale jig.
  • the hairpin coil group integrated by the resin mold ring 6 is inserted into the slot of the stator core 1.
  • the coil group of the segment conductors 4 on the opposite side in the axial direction is similarly molded at the apex of the coil end portion by the resin mold ring portion, and the resin mold ring portion 8 and the coil group of the segment conductors 4 are integrated.
  • the coil group integrated by the resin mold ring portion 8 is inserted into the slot portion of the stator core 1 and further pressed into a predetermined position by a pressing device such as a press, so that the hairpin coil group and the complete connection portion are connected. Is performed.
  • the coil group is integrated, and the positions of the fitting portions are substantially aligned in both directions in the axial direction, so that the coupling can be performed firmly and stably by applying pressure to the whole. .
  • FIG. 2A is a perspective view of a resin-made bobbin 2 for slot insulation according to the embodiment shown in FIG.
  • FIG. 2B is a partial perspective view illustrating a state where the bobbin 2 according to the present embodiment is inserted into the stator core 1.
  • the slot shape of the stator core 1 is such that the shape of the slot (groove) is a straight slot in which the groove portion in which the segment conductors 3 and 4 enter has a rectangular cross section.
  • the opening is formed on the gap side, in other words, on the side facing the rotor. Such an opening is called an open slot shape.
  • the portion of the stator core 1 that enters the slot has a parallel surface shape that can be inserted into a straight slot.
  • a portion that protrudes in the axial direction from the stator core 1 is provided with a protrusion in the circumferential direction (in other words, a flange portion), and the protrusion allows positioning in the axial direction.
  • the bobbin 2 shown in FIG. 2A has a structure in which the segment conductors 3 and 4 are separated from each other by the rooms 2a to 2f so that the segment conductors 3 and 4 are insulated one by one. Thereby, the positioning of the segment conductors 3 and 4 and the insulation between the segment conductors 3 and 4 can be smoothly performed.
  • the bobbin 2 made of resin is usually made of a molded article of thermoplastic plastic, and is preferably made of PP, PBT, PPS, LCP or the like having high heat resistance. In recent years, there is a material whose strength and thermal conductivity are increased by the inclusion of glass fiber, silica, or the like.
  • the bobbin 2 be manufactured within a range of a tolerance in which the slot can be assembled with respect to the width dimension of the slot, and that the bobbin 2 is installed so that there is no backlash in the circumferential direction, the radial direction, or the axial direction.
  • the stator core 1 of the present embodiment is divided into the teeth portion 5 and the other core back portion.
  • the stator core 1 is a split core configured by being split and assembled, the above-mentioned flange portion of the bobbin 2 is overlapped so as to cover the split portion. As a result, after the bobbin 2 is inserted, the divided cores can be held so as not to come apart.
  • the iron part of the main magnetic flux is greatly reduced by adopting a material composed of an iron-based amorphous metal, a low-loss magnetic steel sheet, a nanocrystalline alloy foil strip with high saturation magnetization, etc. It is possible to
  • FIG. 3A is a perspective view of the insulating paper 7 according to another embodiment.
  • FIG. 3B is a perspective view illustrating a state in which the insulating paper 7 is bent.
  • FIG. 3C is a partial perspective view showing a state where the insulating paper 7 is inserted into the stator core 1.
  • the insulating paper 7 is very thin, having a thickness of 0.2 mm or less, and is desirably made of Nomex or the like made of a high-strength insulating material such as aramid.
  • the insulating paper 7 is formed to be several mm longer than the axial length of the stator core 1.
  • the insulating paper 7 is folded in valleys at intervals. Then, as shown in FIG. 3A, the insulating paper 7 becomes a slot liner having a B-shaped cross section.
  • an insulating structure is formed. As shown in FIG. 3C, three B-shaped insulating papers 7 are arranged in the slot in the radial direction.
  • the shape of the aslot may be a semi-closed slot (a slot shape in which the slot opening is half closed) as shown in the figure.
  • stator core 1 is formed of an integral electromagnetic steel plate, but the stator core 1 can also be used in the case of the split core structure described above. It is.
  • the merit of using the insulating paper slot liner is that the space factor of the conductor can be increased because the paper is as thin as 0.2 mm or less. At present, the thickness of the molded resin bobbin depends on the axial length and the like, but the limit is about 0.3 mm.
  • FIG. 4A is a partial perspective view showing an example of the arrangement of the segment conductors 3 on the stator core 1 according to the present embodiment.
  • the stator core 1 has 48 slots.
  • the distributed winding coil formed by the segment conductors 3 has an angle of 45 degrees.
  • each segment conductor 3 jumps over six slots. Since one slot angle is 7.5 degrees, the angle between the legs of the segment conductor 3 is 45 degrees.
  • FIG. 4 (b) is a top view of the stator core 1 shown in FIG. 4 (a).
  • One foot of the segment conductor 3 is arranged in the slot insertion hole of the first layer on the outer peripheral side in the radial direction. It is bent at the apex of the coil end of the segment conductor 3. The other leg of the segment conductor 3 is in the second layer on the outer peripheral side in the radial direction.
  • the adjacent slot is closed, so that it is difficult to insert the next adjacent coil.
  • FIG. 4 (c) is a partial perspective view showing a coil end portion in a state where 48 segment conductors 3 shown in FIG. 4 (a) are arranged in a circumferential direction (a state in which all coils are inserted).
  • the shape is such that they can be inserted without interference.
  • FIG. 5A is a perspective view of the stator core 1 shown in FIG.
  • the segment conductors 3 are aligned while being inserted into the stator core 1, the coil ends of the segment conductors 3 are neatly aligned, and the coils inserted into the slots are also aligned in the axial, radial, and circumferential directions. You can see that there is. It can be seen that if this state can be maintained, insertion into the stator core 1 becomes easy. Therefore, it was considered to fix the coil group of the segment conductor 3 while keeping this state.
  • FIG. 5B is a perspective view showing a state in which a part of the coil group of the coil group of the segment conductor 3 shown in FIG. is there.
  • the integrated coil group is assembled as shown in FIG.
  • FIG. 6A is a bottom view showing the resin mold ring portion 6 formed separately as shown in FIG. 5C.
  • the resin mold ring 6 is molded in advance.
  • the resin mold ring portion 6 is formed with a plurality of concave shapes on one surface of the ring-shaped component such that the coil end apexes of the aligned coil end groups are accurately held.
  • FIG. 6B is an overall perspective view of the resin mold ring portion 6 formed separately.
  • segment conductors 3 provided in three layers in the radial direction are insulated and isolated from each other by the annular wall of the resin mold ring portion 6.
  • the resin mold ring 6 has the same shape that can firmly hold the shape of the vertex portion of the coil end of the segment conductor 3.
  • FIG. 7A is a perspective view showing a state in which the coil group of the segment conductors 3 and 4 integrated by the resin mold ring portion 6 shown in FIGS. 5 and 6 is being assembled to the stator core 1.
  • FIG. 7B is a perspective view showing a state where the coil group of the segment conductors 3 and 4 integrated by the resin mold ring portion 6 is assembled to the stator core 1.
  • a coil group of the segment conductor 3 having a convex tip is inserted into the stator core 1 from the axial top.
  • a coil group of the segment conductor 4 having a concave connection portion at the distal end from the lower side in the axial direction is inserted into the slot via the bobbin 2.
  • the coil group of the segment conductor 4 After the coil group of the segment conductor 4 is inserted from below the stator core 1 in the axial direction, the coil group of the segment conductor 3 and the coil group of the stator core 1 and the segment conductor 4 are axially pressed by a press. Pressure molding is performed so as to be at a predetermined position according to the dimensional relationship.
  • the tip shapes of the coil groups of the segment conductors 3 and 4 are in a dimensional relationship more than the tight fit, but by pressing the resin mold ring portion 6 in parallel in the axial direction, the uniform shape is obtained. Since stress is applied, a firm connection can be achieved.
  • FIG. 8A is a perspective view illustrating the relationship between the stator and the rotor according to the present embodiment.
  • the rotor of the motor according to the present embodiment includes a permanent magnet 12, a rotor core 13 that houses and rotates the permanent magnet 12, and a shaft 11 that supports the rotor core 13.
  • the present embodiment shows an example of a permanent magnet synchronous motor
  • the rotor may be a cage-type conductor rotor of an induction motor or a magnetic salient pole rotor of a reluctance motor.
  • the permanent magnet 12 is disposed inside or on the surface of the rotor core 13.
  • the rotor is disposed inside the stator, and the rotor surface and the stator inner surface face each other via a gap, and exchange magnetic flux to operate as a motor.
  • FIG. 8B is an axial cross-sectional view showing an assembled form of the motor according to the present embodiment.
  • the shaft 11 is in contact with a ball bearing 14 on the output side of the shaft 11 and a ball bearing 15 on the opposite side. With the outer peripheries of the ball bearings 14 and 15 fixed, the inner peripheral surface of the bearing is held rotatably integrally with the shaft.
  • the outer periphery of the ball bearing 14 is held by the output side bearing holding portion 16.
  • the outer periphery of the ball bearing 15 is held by the non-output side bearing holding portion 17.
  • the output-side bearing holding portion 16 and the non-output-side bearing holding portion 17 are configured by the housing 20 in a state where coaxiality is maintained.
  • the housing 20 is configured to be tightened in the axial direction by bolts 18 and 19 to apply stress in the axial direction and to be held.
  • the stator is held and fixed at a predetermined position in the axial direction of the housing 20.
  • the resin mold ring portion 6 in which the coil group is integrated is in contact with the axial surface of the bearing holding portion on both the output side and the non-output side, and is held in a state where stress is applied in the axial direction.
  • This structure also has an effect that heat generated by Joule loss generated in the coil in the bearing holding portion can be cooled by heat conduction from the coil end portion. Further, a cooling method in which a cooling oil (lubricating oil) is usually applied to the coil end portion that is not resin-molded is often adopted, and is directly applied to the coil ends of the segment conductors 3 and 4 not surrounded by resin. Therefore, the oil cooling effect is not reduced.
  • a cooling oil lubricating oil
  • the segment conductors 3 and 4 can be completely fixed by keeping the segment conductors 3 and 4 firmly in the axial direction, a varnish treatment (resin) which has been necessary for fixing the segment conductors 3 and 4 until now is possible. This eliminates the need for the step of fixing the coil, thereby shortening the motor manufacturing process. Since the varnish treatment requires a drying furnace (usually a continuous furnace) for drying the varnish, it also leads to a reduction in investment costs of the drying furnace and costs such as the amount of heat (electricity cost) during production.
  • FIG. 9A is a perspective view showing a connection form between the segment conductors 3 and 4.
  • FIG. 9B is a front view showing a connection form between the segment conductors 3 and 4.
  • the dimension of the bobbin 2 in the width direction is substantially equal to the flat outer dimensions of the segment conductors 3 and 4.
  • the clearance tolerance for assembly should be at least about 20 microns in the case of an outer diameter of at least about 2 mm to 3 mm in the present embodiment, and it is desired to have a dimensional relationship so as not to open outside when fitted.
  • FIG. 9 (b) shows a state in which the legs of the hairpin coils of the segment conductors 3 and 4 have different lengths.
  • the connection locations are different in the axial direction, so that connection is made at different axial positions in every other radial groove.
  • FIG. 10A is a partial perspective view showing a manufacturing method as a comparative example of a fitting portion between the segment conductor 3 and the segment conductor 4.
  • the segment conductor 3 and the segment conductor 4 can be stamped out of the convex portion and the concave portion at the same time from the state of the rectangular wire to increase the material yield and minimize the number of presses. At this time, the dimensional relationship between the concave portion and the convex portion is the same as indicated by A. Although a slight dimensional difference can be caused by springback, it is difficult to actively set the dimensions of the groove and the projection.
  • FIG. 10B is a partial perspective view illustrating a method of manufacturing a fitting portion between the segment conductor 3 and the segment conductor 4 according to the present embodiment.
  • FIG. 10C is a partial perspective view of the vicinity of the distal ends of the segment conductors 3 and 4.
  • the blanks are punched into a marginal dimensional relationship, and the dimensions are made by conductive plating 21 and 22 such as tin, gold, and silver. It shows how to insert.
  • the conductive platings 21 and 22 are also effective in preventing corrosion of copper, and it is also useful to apply a plating to a punched and cut portion other than a portion of the rectangular conductor having an enamel coating after cutting.
  • FIG. 11A is a perspective view of a bobbin 2 according to another embodiment.
  • FIG. 11B is an overall perspective view before the teeth portion 5 of the stator core 1 is inserted into the bobbin 2.
  • FIG. 11C is a partial perspective view in which the teeth portion 5 is fixed to the stator core 1.
  • the material of the teeth portion 5 is held by the bobbin 2. Since the magnetic flux is concentrated in the teeth portion 5 and the iron loss increases due to the residual stress such as caulking, it is desirable to hold the teeth portion 5 in a state where it is just cut.
  • FIG. 11C shows a state in which the teeth portion 5 is assembled to the core back core.
  • FIG. 12A is a perspective view of a segment conductor 3 and a segment conductor 4 according to another embodiment.
  • FIG. 12B is a perspective view showing a state in which the segment conductors 3 and 4 are connected to the bobbin 2 according to another embodiment.
  • the groove (concave part) and the protrusion (convex part) are oriented in the direction rotated by 90 degrees from the direction shown in FIGS. 1 and 9. This is because, as shown in FIG. 12 (b), when the bobbins 2 shown in FIG. 11 overlap side by side, the concave surface of the cross section of the connection portion does not come to the mating surface between the bobbin walls. .
  • the segment conductors 3 and 4 are bent by bending the segment conductors 3 and 4. And the segment conductor 4 applies stress to the stator teeth.

Abstract

The purpose of the present invention is to connect segment conductors to each other with high reliability. A distributed-winding, radial-gap-type rotary electric machine and a stator thereof according to the present invention are provided with: a plurality of segment conductors 3, 4 formed in a U-shape; and a stator core 1 into which the plurality of segment conductors 3, 4 are inserted in a state of distributed winding. The plurality of segment conductors 3, 4 have protruding shapes and recessed shapes at the respective tip sections that are connected to each other, and the protruding shapes and the recessed shapes have assembly surfaces having a contact surface in a direction perpendicular to the axial direction. The protruding-side dimension of the protruding shapes is larger than the recess-side dimension of the recessed shapes, and coil ends configured by the plurality of segment conductors 3, 4 constitute a coil group integrated with a resin-molded ring part 6.

Description

分布巻ラジアルギャップ型回転電機及びその固定子Distributed winding radial gap type rotating electric machine and its stator
 本発明は、回転電機に係り、特に分布巻ラジアルギャップ型回転電機及びその固定子に関する。 The present invention relates to a rotating electric machine, and particularly to a distributed winding radial gap type rotating electric machine and a stator thereof.
 産業機械の動力源や、自動車駆動用として用いられる回転電機は、高効率化が求められる。モータを高効率化するためには、モータの損失を低減することが必要で、モータの損失の2大要因であるコイル銅損と鉄心鉄損の低減設計を検討していく設計手法が一般的である。 回 転 High efficiency is required for rotating electric machines used for power sources of industrial machines and for driving automobiles. In order to increase the efficiency of the motor, it is necessary to reduce the loss of the motor. Generally, a design method that considers a design to reduce the copper loss and the iron core loss, which are two major factors of the motor loss, is common. It is.
 モータ要求仕様の出力特性(回転数とトルク)が決まると、機械損は一意に決まるため、鉄損と銅損を低減する設計が重要となる。鉄損は、使用する軟磁性材料によって低減が可能である。 と When the output characteristics (rotational speed and torque) of the required motor specifications are determined, the mechanical loss is uniquely determined, so a design that reduces iron loss and copper loss is important. Iron loss can be reduced by the soft magnetic material used.
 一般的なモータでは鉄心部分には電磁鋼板が採用されており、その厚みやSiの含有量などによって損失レベルが異なるものが利用されている。軟磁性材料には、電磁鋼板よりも透磁率が高く、鉄損が低い鉄基アモルファス金属や、ファインメット、高磁束密度が期待できるナノ結晶材料などの高機能材料が存在するが、これらの材料系では、その板厚が0.025mmと非常に薄く、また、硬度がビッカース硬度で900と電磁鋼板の5倍以上に硬いなど、モータを安価に製造する上での課題が多いために、それらの高機能材料をモータに適用する事が出来ないでいる。 で は In a general motor, an electromagnetic steel plate is used for the iron core portion, and a motor having a different loss level depending on its thickness, Si content, and the like is used. Soft magnetic materials include high-performance materials such as iron-based amorphous metals that have higher magnetic permeability and lower iron loss than electromagnetic steel sheets, and nanocrystal materials that can be expected to have high magnetic flux densities, as well as these materials. In the system, the plate thickness is extremely thin, 0.025 mm, and the hardness is 900, which is Vickers hardness of 900, which is more than five times that of electromagnetic steel plates. High-performance materials cannot be applied to motors.
 一方銅損は、主にコイルの抵抗値と電流の関係で決まり、冷却によってコイル抵抗値の低減や、磁石の残留磁束密度の低下の低下を抑えることによって電流値を低減するといった対策を行う。さらに、近年の自動車駆動用モータ等では固定子スロットの断面積に対する導体の比率(占積率)を高めて理論限界ぎりぎりまで抵抗値を小さくするような設計が行われている。しかし、スロット内の占積率が高くできる平角電線コイルは、スロットの両端部のコイルエンド部分の引き回しが複雑な構造となり、それらの導体同士を溶接などの方法によって接続することによって、コイルエンド部分のボリューム(線長)が大きくなってしまい、抵抗値が若干大きくなるなどの問題がある。 On the other hand, copper loss is mainly determined by the relationship between the coil resistance and current, and measures are taken to reduce the coil resistance, such as cooling, and reduce the current value by suppressing the decrease in the residual magnetic flux density of the magnet. Further, in recent motors for driving automobiles and the like, a design has been made to increase the ratio (occupation ratio) of the conductor to the cross-sectional area of the stator slot so as to reduce the resistance value to just the theoretical limit. However, the rectangular wire coil, which can increase the space factor in the slot, has a complicated structure in which the coil end portions at both ends of the slot have a complicated structure. However, there is a problem that the volume (line length) becomes large and the resistance value slightly increases.
 特許文献1では、モータの固定子コイルに2本足のヘアピン形状導体セグメントを挿入して、挿入した側と反対側のコイルエンド部でそれぞれを曲げ成形して、周方向に配置された別のヘアピン形状コイルの曲げ成形された導体と溶接して円環状のコイルを形成する方法である。この方法では、スロット占積率を大きく出来る効果がある反面、製造時に、太く硬い平角導体を曲げ成形する必要があるため、固定子コアへの応力や、スロット絶縁物へのダメージ、接続部にも曲げた際の残留応力が残っているため、溶接接合信頼性の確保が困難といった課題があり、製造方法としては改善の余地がある。また、溶接を施すために溶接部の周囲の空間を取らなければならないため、溶接側ではコイルエンド部が大きくなってしまうといった問題もある。 In Patent Literature 1, a two-pin hairpin-shaped conductor segment is inserted into a stator coil of a motor, and each is bent and formed at a coil end portion opposite to the inserted side, and another is disposed in a circumferential direction. This is a method of forming an annular coil by welding a bent conductor of a hairpin-shaped coil. Although this method has the effect of increasing the slot space factor, it requires bending and forming a thick solid rectangular conductor at the time of manufacturing, so stress on the stator core, damage to the slot insulator, and However, there is a problem that it is difficult to secure the reliability of the welded joint due to the remaining residual stress at the time of bending, and there is room for improvement in the manufacturing method. In addition, there is a problem that the coil end becomes large on the welding side because a space around the welded portion must be provided for welding.
 それらの改善を試みた方法に特許文献2が挙げられる。特許文献2の構造では、セグメント導体挿入方式の固定子コイルを軸方向に分割し、分割した端面をV字形状として組合せ可能な形状とし、そのV形状の組合せ部に導電ペースト接着剤を持いて接合して導体コイルを形成する方法が示されている。この方法では、コイルエンド部での溶接が無くなるため、コイルエンド部の形状を最適に設計することによってコイルの抵抗値を低く抑えられる効果が期待できる。しかし、導体同士を接着剤の塗布によって一つずつ組み立てていく必要があるため、工数の増加と信頼性の確保に課題がある。導電ペースト接着剤を用いない場合には、V形状の嵌合部は、一般的に面で接触することは困難であり、V面のどこかの線接触となることが知られている。しかも、製造バラつきを考えるとすべての線が同一の軸方向面で保持されるとは考えにくく、1本1本をしっかりと接続(接触)させられる位置に管理することは困難であると想定される。 方法 Patent Document 2 is mentioned as a method of trying to improve them. In the structure of Patent Document 2, the stator coil of the segment conductor insertion type is divided in the axial direction, the divided end faces are formed into a shape that can be combined as a V-shape, and the V-shaped combination portion has a conductive paste adhesive. A method of joining to form a conductor coil is shown. In this method, since welding at the coil end portion is eliminated, an effect of suppressing the resistance value of the coil by designing the shape of the coil end portion optimally can be expected. However, since it is necessary to assemble the conductors one by one by applying an adhesive, there is a problem in increasing man-hours and securing reliability. It is known that when a conductive paste adhesive is not used, it is generally difficult for a V-shaped fitting portion to make contact with a surface, and the V-shaped fitting portion makes a line contact somewhere on the V surface. Moreover, considering the manufacturing variability, it is unlikely that all the wires are held on the same axial surface, and it is assumed that it is difficult to manage the wires at a position where each wire can be firmly connected (contacted). You.
 特許文献3には、軸方向に分割したコイルを突起と穴、または、凸形状と凹形状で接続する構成が示されている。こちらも、接続信頼性の確保のために、接続部が見える状態で接続することを特徴としている。接続処理を行った後に、分割した固定子コアの一部を周方向からはめ込んで組立てていくといった内容となっている。こちらも、接触接続部の挿入の信頼性確認、工数の増加、コア組立工数の増大などの課題がある。 Patent Document 3 discloses a configuration in which coils divided in the axial direction are connected by protrusions and holes or convex and concave shapes. This is also characterized in that the connection is made in a state where the connection portion is visible in order to ensure connection reliability. After the connection process, a part of the split stator core is fitted in the circumferential direction and assembled. Here, too, there are problems such as the reliability check of the insertion of the contact connection portion, an increase in man-hours, and an increase in man-hours for assembling the core.
 特許文献4には、特許文献3と同様に凹凸のコイル端面同士を接続する工法が示されている。スロットに挿入した後にコイルの一部に応力を加えて挿入したコイルを拡幅させてカシメ効果により信頼性の高い接続(導電性の確保)を満足する内容である。コアに挿入した後に拡幅する手段の記載が明確では無いが、接続箇所すべてでやるとなると拡幅工程の工数増加などが懸念される。 Patent Literature 4 discloses a method of connecting the coil end surfaces having irregularities as in Patent Literature 3. After the insertion into the slot, stress is applied to a part of the coil to widen the inserted coil, thereby satisfying a highly reliable connection (securing conductivity) by a caulking effect. Although the description of the means for widening after being inserted into the core is not clear, there is a concern that if it is performed at all the connection points, the number of steps in the widening step will increase.
特開2011-239651号公報JP 2011-239651 A 特開2015-23771号公報JP 2015-23773 A 特開2013-208038号公報JP 2013-208038 A 特開2016-187245号公報JP 2016-187245 A
 本発明の課題は、セグメント導体同士を信頼性高く接続することである。 課題 An object of the present invention is to connect segment conductors with high reliability.
 本発明に係る分布巻ラジアルギャップ型回転電機及びその固定子は、U字状に成形した複数のセグメント導体と、前記複数のセグメント導体が分布巻の状態で挿入される固定子コアと、を備え、前記複数のセグメント導体は、互いに接続される先端部に凸形状と凹形状がそれぞれ形成され、前記凸形状と前記凹形状は、軸方向垂直方向が接触面となる組み合わせ面を有し、前記凸形状の凸側寸法は、前記凹形状の凹側寸法よりも大きく形成され、前記複数のセグメント導体により構成されるコイルエンドが、樹脂またはその他の絶縁物または高熱伝導部材で一体化されるコイル群を構成する。 A distributed winding radial gap type rotating electric machine and a stator thereof according to the present invention include a plurality of segment conductors formed in a U shape, and a stator core into which the plurality of segment conductors are inserted in a distributed winding state. The plurality of segment conductors are each formed with a convex shape and a concave shape at a tip portion connected to each other, and the convex shape and the concave shape have a combined surface in which an axial vertical direction is a contact surface, The convex-side dimension of the convex shape is formed larger than the concave-side dimension of the concave shape, and the coil end formed by the plurality of segment conductors is integrated with a resin or other insulating material or a high heat conductive member. Make up a group.
 本発明により、セグメント導体同士を信頼性高く接続することができる。 According to the present invention, the segment conductors can be connected with high reliability.
本実施形態に係るセグメント導体3及びセグメント導体4の分解斜視図である。FIG. 2 is an exploded perspective view of a segment conductor 3 and a segment conductor 4 according to the embodiment. 本実施形態に係るセグメント導体3及びセグメント導体4の接続部近傍の拡大斜視図であり、左側が接続前であり、右側が接続後である。It is an enlarged perspective view near the connection part of the segment conductor 3 and the segment conductor 4 according to this embodiment, the left side is before connection, and the right side is after connection. 本実施形態に係るラジアルギャップ型回転電機の樹脂モールド部分の展開斜視図である。It is a development perspective view of the resin mold part of the radial gap type rotary electric machine concerning this embodiment. 図1に示された実施形態に係るスロット絶縁用の樹脂製のボビン2の斜視図である。FIG. 2 is a perspective view of a resin-made bobbin 2 for slot insulation according to the embodiment shown in FIG. 1. 本実施形態に係るボビン2を固定子コアに挿入した状態を示す部分斜視図である。It is a partial perspective view showing the state where bobbin 2 concerning this embodiment was inserted in the stator core. 他の実施形態に係る絶縁紙7の斜視図である。It is a perspective view of insulating paper 7 concerning other embodiments. 絶縁紙7が折り曲げられた状態を示す斜視図である。It is a perspective view showing the state where insulating paper 7 was bent. 絶縁紙7を固定子コア1に挿入した状態を示す部分斜視図である。FIG. 3 is a partial perspective view showing a state where insulating paper 7 is inserted into a stator core 1. 本実施形態に係るセグメント導体3の固定子コア1への配置例を示す部分斜視図である。FIG. 3 is a partial perspective view showing an example of disposition of segment conductors 3 on a stator core 1 according to the present embodiment. 図4(a)に示された固定子コア1の上面図である。FIG. 5 is a top view of the stator core 1 shown in FIG. 図4(a)で示されたセグメント導体3を周方向に48個並べた状態(コイルがすべて挿入された状態)のコイルエンド部を示す部分斜視図である。FIG. 5 is a partial perspective view showing a coil end portion in a state where 48 segment conductors 3 shown in FIG. 4A are arranged in a circumferential direction (a state in which all coils are inserted). 図4(c)の固定子コア1を取り除いき複数のセグメント導体3だけを示す斜視図である。FIG. 5 is a perspective view showing a plurality of segment conductors 3 with the stator core 1 of FIG. 4C removed. 図5(a)で示されたセグメント導体3のコイル群のコイルエンドの頂点部近くの一部を樹脂モールドリング部6によってコイル群を固めた状態を示す斜視図である。FIG. 6 is a perspective view showing a state in which a part near a vertex of a coil end of a coil group of the segment conductor 3 shown in FIG. 図5(c)で示された別体に構成された樹脂モールドリング部6を示す下面図である。It is a bottom view which shows the resin mold ring part 6 comprised separately as shown in FIG.5 (c). 別体に構成された樹脂モールドリング部6の全体斜視図である。FIG. 4 is an overall perspective view of a resin mold ring portion 6 formed separately. 図6(b)に示された樹脂モールドリング部6をコイル群に接続する前の全体斜視図である。FIG. 7 is an overall perspective view before connecting a resin mold ring portion 6 shown in FIG. 6B to a coil group. 図5及び図6で示された樹脂モールドリング部6で一体化されたセグメント導体3及び4のコイル群を固定子コア1に組み付ける状態を示す斜視図を示す。FIG. 7 is a perspective view showing a state where a coil group of the segment conductors 3 and 4 integrated by the resin mold ring portion 6 shown in FIGS. 5 and 6 is assembled to the stator core 1. 樹脂モールドリング部6で一体化されたセグメント導体3及び4のコイル群を固定子コア1に組み付けた状態を示す斜視図を示す。FIG. 2 is a perspective view showing a state where a coil group of segment conductors 3 and 4 integrated by a resin mold ring portion 6 is assembled to a stator core 1. 本実施形態に係る固定子と回転子の関係を説明する斜視図である。It is a perspective view explaining the relation between a stator and a rotor concerning this embodiment. 本実施形態に係るモータが組み立てられた形態を示す軸方向の断面図である。It is an axial sectional view showing the form where the motor concerning this embodiment was assembled. セグメント導体3とセグメント導体4の接続形態を示す斜視図である。It is a perspective view which shows the connection form of the segment conductor 3 and the segment conductor 4. セグメント導体3とセグメント導体4の接続形態を示す正面図である。It is a front view which shows the connection form of the segment conductor 3 and the segment conductor 4. セグメント導体3とセグメント導体4の嵌合部の比較例としての製作方法を示す部分斜視図である。It is a fragmentary perspective view showing a manufacturing method as a comparative example of a fitting part of segment conductor 3 and segment conductor 4. 本実施形態に係るセグメント導体3とセグメント導体4の嵌合部の製作方法を示す部分斜視図である。It is a fragmentary perspective view showing the manufacturing method of the fitting part of segment conductor 3 and segment conductor 4 concerning this embodiment. セグメント導体3とセグメント導体4の先端部周辺の部分斜視図である。FIG. 4 is a partial perspective view of the vicinity of the distal ends of the segment conductors 3 and 4. 他の実施形態に係るボビン2の斜視図である。It is a perspective view of bobbin 2 concerning other embodiments. 固定子コア1のティース部5がボビン2に挿入される前の全体斜視図である。FIG. 3 is an overall perspective view before teeth portions 5 of stator core 1 are inserted into bobbin 2. ティース部5が固定子コア1に固定された部分斜視図である。FIG. 3 is a partial perspective view in which a tooth portion 5 is fixed to a stator core 1. 他の実施形態に係るセグメント導体3とセグメント導体4の斜視図である。It is a perspective view of segment conductor 3 and segment conductor 4 concerning other embodiments. 他の実施形態に係るセグメント導体3とセグメント導体4のボビン2への接続状態を示す斜視図である。It is a perspective view showing the connection state of segment conductor 3 and segment conductor 4 to bobbin 2 concerning other embodiments.
 本発明の実施形態を説明する前に本発明の原理について説明する。 原理 Before describing the embodiments of the present invention, the principle of the present invention will be described.
 分布巻ラジアルギャップ型モータ固定子コイルをヘアピン状(U字状)に成形したセグメント導体を、固定子軸方向の一部で軸方向双方向から挿入されたコイル同士が接続される構造のセグメント導体接続構造固定子において、セグメント導体の2つの先端部は、凸形状と凹形状などの軸方向垂直方向が接触面となる組み合わせ形状を有し、その凹凸の寸法関係は、しまりばめの寸法関係、すなわち、凸側寸法が凹側寸法より大きい形状を有し、周方向に配置されるすべてのコイルを挿入される状態に整列保持した状態で、コイルエンドの先端の一部を樹脂またはその他の絶縁物や、高熱伝導部材などで一体化する。 A segment conductor formed by shaping a distributed winding radial gap type motor stator coil into a hairpin shape (U-shape), and a segment conductor having a structure in which coils inserted from both directions in the axial direction at a part in the stator axial direction are connected. In the connection structure stator, the two end portions of the segment conductor have a combination shape in which the vertical direction in the axial direction such as a convex shape and a concave shape is a contact surface, and the dimensional relationship of the unevenness is the dimensional relationship of the interference fit. In other words, in a state where the convex side dimension is larger than the concave side dimension and all the coils arranged in the circumferential direction are aligned and held in a state of being inserted, a part of the tip of the coil end is made of resin or other resin. It is integrated with an insulator or a high heat conductive member.
 これにより、コイルの位置決めが確実に行われるとともに、コイルをスロット部に挿入する時の軸方向挿入力を均一に、しかも軸方向に確実に伝えることが可能にできる。前述した、凹凸の先端形状のしまり嵌め以上の嵌合、圧入公差では、非常に大きな挿入力を必要とするため圧入時には、嵌合部に対して軸方向に平行な応力をしっかりとかける必要があるが、前述したコイルエンドの一体化部分が無い場合には、コイルエンドの頂点部を押すことになるが、コイルの傾きや、複数本のコイルの頂点が別々に押し治具にあたるために、コイルの坐屈が発生してうまく挿入することが困難である。 (4) Thereby, the coil can be reliably positioned, and the axial insertion force when the coil is inserted into the slot portion can be transmitted uniformly and reliably in the axial direction. In the above-mentioned fitting and press-fitting tolerances that are more than the tight fit of the tip shape of the irregularities, an extremely large insertion force is required, so it is necessary to apply firmly parallel stress in the axial direction to the fitting part during press-fitting. However, if there is no integrated part of the coil end as described above, the vertex of the coil end will be pushed, but since the inclination of the coil and the vertices of multiple coils separately hit the pressing jig, It is difficult for the coil to be inserted properly due to buckling of the coil.
 本発明により、コイルに均一に応力をかけて挿入できるので、1回の挿入工程だけで、すべての嵌合部分の接続ができることになる。また、固定子コアのスロット部分には、コイルとコアの絶縁短絡を防止するための絶縁樹脂ボビン、スロットライナーなどを設け、スロット部に対してコイルを軸方向に平行に挿入するのを支援する構造を合わせて採用することも重要である。さらに、挿入後、両端コイルエンドに配置されたコイルエンド先端部の樹脂などのモールド部分をモータハウジングや、ベアリング保持部へと接触配置させることによって、固定子コイルに軸方向の応力を与え続け、モータとしての使用時に振動などによって、嵌合、圧入したコイル接続部が抜け出てこないように保持する構造を採用する。これによって、接続信頼性を高められる。さらにこの構造は、コイルエンド部からベアリング保持部や、ハウジングへの熱伝導率を高められる構造となるため、使用時のモータの温度上昇低減や、銅損の低減にも寄与できる。 According to the present invention, since the coil can be inserted with a uniform stress applied thereto, all the fitting portions can be connected with only one insertion step. The slot portion of the stator core is provided with an insulating resin bobbin, a slot liner, and the like for preventing an insulation short circuit between the coil and the core, and assists in inserting the coil in the slot portion in the axial direction. It is also important to adopt the structure together. Furthermore, after insertion, by placing the mold portion such as resin at the end of the coil end disposed at the coil end on both ends in contact with the motor housing and the bearing holding portion, the axial stress is continuously applied to the stator coil, When used as a motor, a structure is adopted in which the fitted and press-fitted coil connection portion is prevented from coming out due to vibration or the like. Thereby, connection reliability can be improved. Further, since this structure has a structure in which the heat conductivity from the coil end portion to the bearing holding portion and the housing can be increased, it can contribute to a reduction in motor temperature rise during use and a reduction in copper loss.
 上記のように構成された固定子コイルの接続は、すべてのコイルに均一となるように応力をかけて挿入できるので、1回の挿入工程だけで、すべての嵌合部分の接続ができる。また、固定子コアのスロット部分には、コイルとコアの絶縁短絡を防止するための絶縁樹脂ボビン、スロットライナーなどを設けているため、絶縁性能も確保可能である。さらに、挿入後、両端コイルエンドに配置されたコイルエンド先端部の樹脂などのモールド部分をモータハウジングや、ベアリング保持部へと接触配置させることによって、固定子コイルに軸方向の応力を与え続け、モータとしての使用時に振動などによって、嵌合、圧入したコイル接続部が抜け出てこないように保持する構造を採用する。これによって、接続信頼性を高められる。さらにこの構造は、コイルエンド部からベアリング保持部や、ハウジングへの熱伝導率を高められる構造となるため、使用時のモータの温度上昇低減や、銅損の低減にも寄与できる。製造時の溶接や曲げ工程の削減が可能である。 固定 The stator coils configured as described above can be inserted by applying stress to all the coils so as to be uniform, so that all the fitting portions can be connected by only one insertion step. Further, since an insulating resin bobbin, a slot liner, and the like for preventing a short circuit between the coil and the core are provided in the slot portion of the stator core, insulation performance can be ensured. Furthermore, after insertion, by placing the mold portion such as resin at the end of the coil end disposed at the coil end on both ends in contact with the motor housing and the bearing holding portion, the axial stress is continuously applied to the stator coil, When used as a motor, a structure is adopted in which the fitted and press-fitted coil connection portion is prevented from coming out due to vibration or the like. Thereby, connection reliability can be improved. Further, since this structure has a structure in which the heat conductivity from the coil end portion to the bearing holding portion and the housing can be increased, it can contribute to a reduction in motor temperature rise during use and a reduction in copper loss. Welding and bending processes during manufacturing can be reduced.
 以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings and the like. The following description shows specific examples of the content of the present invention, and the present invention is not limited to these descriptions, and various modifications by those skilled in the art within the technical idea disclosed in the present specification. Changes and modifications are possible. In all the drawings for describing the present invention, components having the same function are denoted by the same reference numerals, and repeated description thereof may be omitted.
 図1は、本発明の一実施形態に係るラジアルギャップ型回転電機の固定子において、セグメント導体を軸方向で分割したものを固定子コアの中で再接続する構造を示す。 FIG. 1 shows a structure of a stator of a radial gap type rotating electric machine according to one embodiment of the present invention, in which segment conductors divided in an axial direction are reconnected in a stator core.
 図1(a)は、本実施形態に係るセグメント導体3及びセグメント導体4の分解斜視図である。 
 図1(a)に示されるように、セグメント導体4は、2つの足を持つヘアピン形状又はU字形状である。またセグメント導体3の先端部は、凸形状である。
FIG. 1A is an exploded perspective view of the segment conductor 3 and the segment conductor 4 according to the present embodiment.
As shown in FIG. 1A, the segment conductor 4 has a hairpin shape having two legs or a U-shape. The tip of the segment conductor 3 has a convex shape.
 セグメント導体3の軸方向反対側には、へアピン形状またはU字形状のセグメント導体4が設けられる。セグメント導体4の先端部は、凹形状である。セグメント導体3とセグメント導体4が、波巻が形成されるように、固定子コア1の軸方向長の中で接続される。 へ A hairpin-shaped or U-shaped segment conductor 4 is provided on the opposite side of the segment conductor 3 in the axial direction. The tip of the segment conductor 4 has a concave shape. The segment conductor 3 and the segment conductor 4 are connected in the axial length of the stator core 1 so that a wave winding is formed.
 図1(b)は、本実施形態に係るセグメント導体3とセグメント導体4の接続部近傍の拡大斜視図であり、左側が接続前であり、右側が接続後である。 FIG. 1B is an enlarged perspective view of the vicinity of the connection between the segment conductor 3 and the segment conductor 4 according to the present embodiment, where the left side is before connection and the right side is after connection.
 セグメント導体3とセグメント導体4の接続部は、凸形状と凹形状がほぼ同一形状で噛み合うように形成され軸方向と平行な面を導体断面積よりも大きくするような形状として軸方向に平行な面で接触接続が行えるようになっている。 The connecting portion between the segment conductor 3 and the segment conductor 4 is formed so that the convex shape and the concave shape are meshed with substantially the same shape, and is formed in such a shape that the surface parallel to the axial direction is larger than the conductor cross-sectional area. The contact connection can be made on the surface.
 これは、軸方向の同一箇所で接続を確保することが困難になった場合、軸方向に接触する構造や、V字形状で斜め面が接触するような形状とする。これにより、製周方向や径方向に多数あるコイルらの軸方向長さが異なった場合でも、造誤差や組立誤差を抑制することができる。 (4) When it is difficult to secure the connection at the same position in the axial direction, a structure that makes contact in the axial direction, or a V-shaped shape that makes contact with an inclined surface is used. Thereby, even when the axial lengths of a large number of coils in the circumferential direction or the radial direction are different, it is possible to suppress the fabrication error and the assembly error.
 図1(c)は、本実施形態に係るラジアルギャップ型回転電機の樹脂モールド部分の展開斜視図である。 FIG. 1C is an exploded perspective view of a resin mold portion of the radial gap type rotating electric machine according to the present embodiment.
 本実施形態に係る固定子コア1のスロット数は、周方向に48スロットである。固定子コア1のスロット部は、周方向に7.5度の角度ピッチをもって配置される。 固定 The stator core 1 according to the present embodiment has 48 slots in the circumferential direction. The slots of the stator core 1 are arranged at an angular pitch of 7.5 degrees in the circumferential direction.
 セグメント導体3及び4により構成されるコイルと固定子コア1との間の絶縁を確保するために、スロット部には絶縁物を設ける。本実施形態では、プラスチック製のボビン2がスロット部に配置される。 (4) In order to ensure insulation between the coil constituted by the segment conductors 3 and 4 and the stator core 1, an insulator is provided in the slot portion. In the present embodiment, a plastic bobbin 2 is disposed in the slot.
 セグメント導体3は、周方向に挿入される状態で整列させた状態で、コイルエンドの頂点部を含む部分を樹脂モールドリング部6によりでモールドされて、樹脂モールドリング部6とセグメント導体3のヘアピンコイル群が一体化される。 In a state where the segment conductors 3 are aligned in a state of being inserted in the circumferential direction, a portion including the apex of the coil end is molded by the resin mold ring portion 6, and the hairpin of the resin mold ring portion 6 and the segment conductor 3 is formed. The coil group is integrated.
 ヘアピンコイル群のコイルエンドの一部を固定されることで、コイル群は、大掛かりな治具を使用することなく安定してハンドリングすることができる。樹脂モールドリング部6により一体化されたヘアピンコイル群が、固定子コア1のスロット部に挿入される。 By fixing a part of the coil end of the hairpin coil group, the coil group can be stably handled without using a large-scale jig. The hairpin coil group integrated by the resin mold ring 6 is inserted into the slot of the stator core 1.
 一方、軸方向反対側のセグメント導体4によるコイル群も同様にコイルエンド部の頂点部分が樹脂モールドリング部によりモールドされて、樹脂モールドリング部8とセグメント導体4のコイル群が一体化される。樹脂モールドリング部8により一体化されたコイル群が固定子コア1のスロット部に挿入され、さらにプレスなどの加圧装置によって所定の位置まで押し込むことにより、ヘアピンコイル群と完全な接続部の結合が為される。 On the other hand, the coil group of the segment conductors 4 on the opposite side in the axial direction is similarly molded at the apex of the coil end portion by the resin mold ring portion, and the resin mold ring portion 8 and the coil group of the segment conductors 4 are integrated. The coil group integrated by the resin mold ring portion 8 is inserted into the slot portion of the stator core 1 and further pressed into a predetermined position by a pressing device such as a press, so that the hairpin coil group and the complete connection portion are connected. Is performed.
 従来の固定子の製造方法では、コイル群を挿入するときに、コイルのコイルエンド頂点部に応力を付与するため、コイルが傾いたり、多数のコイルの挿入量や挿入力が異なったりするため、コイル同士を完全に結合することが困難であった。 In a conventional stator manufacturing method, when inserting a coil group, a stress is applied to a coil end apex portion of the coil, so that the coil is inclined, or the insertion amount or insertion force of a large number of coils is different, It was difficult to completely connect the coils.
 またコイル群を固定子コアに挿入後に、コイル群の位置調整のために、一つ一つのコイルのコイルエンド部頂点に軸方向応力を加えて軸方向の寸法を正そうとしても、一つのコイルの足は、周方向に2つのコイルの足とつながっている。その2つのコイルの軸方向位置がばらつきを有するので、完全な位置決めが困難であった。 Also, after inserting the coil group into the stator core, to adjust the position of the coil group, apply axial stress to the apex of the coil end of each coil to correct the axial dimension. Is connected to the two coil legs in the circumferential direction. Since the axial positions of the two coils vary, it has been difficult to perform perfect positioning.
 一方、本実施形態では、コイル群は一体化されており、軸方向の双方向とも、嵌合部の位置は概ねそろっているので、全体に圧力を加えることで結合を強固かつ安定に実行できる。 On the other hand, in the present embodiment, the coil group is integrated, and the positions of the fitting portions are substantially aligned in both directions in the axial direction, so that the coupling can be performed firmly and stably by applying pressure to the whole. .
 図2(a)は、図1に示された実施形態に係るスロット絶縁用の樹脂製のボビン2の斜視図である。図2(b)は、本実施形態に係るボビン2を固定子コア1に挿入した状態を示す部分斜視図である。 FIG. 2A is a perspective view of a resin-made bobbin 2 for slot insulation according to the embodiment shown in FIG. FIG. 2B is a partial perspective view illustrating a state where the bobbin 2 according to the present embodiment is inserted into the stator core 1.
 図2(b)に示されるように、固定子コア1のスロット形状は、スロット(溝)部の形状が、セグメント導体3及び4が入る溝の部分が長方形断面を有するストレートスロットである。開口部は、ギャップ側、言い換えると回転子と面する側に形成される。このような開口部は、オープンスロット形状と称される。 (As shown in FIG. 2B, the slot shape of the stator core 1 is such that the shape of the slot (groove) is a straight slot in which the groove portion in which the segment conductors 3 and 4 enter has a rectangular cross section. The opening is formed on the gap side, in other words, on the side facing the rotor. Such an opening is called an open slot shape.
 図2(a)に示されるボビン2において、固定子コア1のスロット部に入る部分は、ストレートスロットに挿入可能な平行面形状となっている。 部分 In the bobbin 2 shown in FIG. 2 (a), the portion of the stator core 1 that enters the slot has a parallel surface shape that can be inserted into a straight slot.
 そしてボビン2において、固定子コア1から軸方向にはみ出る部分には、周方向への突起(言い換えると鍔部)を設け、この突起により軸方向に位置決めができる構造となっている。 In the bobbin 2, a portion that protrudes in the axial direction from the stator core 1 is provided with a protrusion in the circumferential direction (in other words, a flange portion), and the protrusion allows positioning in the axial direction.
 また、図2(a)に示されるボビン2において、セグメント導体3及び4が1本ごとに絶縁されるよう、部屋2aないし2fによって分けられた構造となっている。これにより、セグメント導体3及び4の位置決めや、セグメント導体3とセグメント導体4の間の絶縁がスムーズにできる。 (2) The bobbin 2 shown in FIG. 2A has a structure in which the segment conductors 3 and 4 are separated from each other by the rooms 2a to 2f so that the segment conductors 3 and 4 are insulated one by one. Thereby, the positioning of the segment conductors 3 and 4 and the insulation between the segment conductors 3 and 4 can be smoothly performed.
 この樹脂製のボビン2は、通常熱可塑性のプラスチックの成形体で構成され、耐熱性の高い、PP、PBT、PPS、LCPなどに構成されることが好ましい。また近年、ガラスファイバーやシリカなどの含有によって、強度や熱伝導率を高めた材料があるのでそれらを用いることが望ましい。 樹脂 The bobbin 2 made of resin is usually made of a molded article of thermoplastic plastic, and is preferably made of PP, PBT, PPS, LCP or the like having high heat resistance. In recent years, there is a material whose strength and thermal conductivity are increased by the inclusion of glass fiber, silica, or the like.
 ボビン2は、スロットの幅方向寸法に対して、組立可能な公差の範囲で製作し、周方向や径方向や軸方向へのガタが無いように設置することが望ましい。 It is desirable that the bobbin 2 be manufactured within a range of a tolerance in which the slot can be assembled with respect to the width dimension of the slot, and that the bobbin 2 is installed so that there is no backlash in the circumferential direction, the radial direction, or the axial direction.
 本実施形態の固定子コア1は、ティース部5と、それ以外のコアバック部に分割される。固定子コア1が分割されかつ組立されて構成される分割コアの場合には、その分割部を覆うようにボビン2の前述した鍔部を重ねる。これにより、ボビン2が挿入された後は、分割コアがばらけないように保持できる。 固定 The stator core 1 of the present embodiment is divided into the teeth portion 5 and the other core back portion. When the stator core 1 is a split core configured by being split and assembled, the above-mentioned flange portion of the bobbin 2 is overlapped so as to cover the split portion. As a result, after the bobbin 2 is inserted, the divided cores can be held so as not to come apart.
 この時のティース部5には、鉄基アモルファス金属や、低損失電磁鋼板、高飽和磁化のナノ結晶合金箔帯などで構成されるものを採用することで、主磁束の鉄損を大幅に低減することが可能である。 At this time, the iron part of the main magnetic flux is greatly reduced by adopting a material composed of an iron-based amorphous metal, a low-loss magnetic steel sheet, a nanocrystalline alloy foil strip with high saturation magnetization, etc. It is possible to
 図3(a)は、他の実施形態に係る絶縁紙7の斜視図である。図3(b)は、絶縁紙7が折り曲げられた状態を示す斜視図である。図3(c)は、絶縁紙7を固定子コア1に挿入した状態を示す部分斜視図である。 FIG. 3A is a perspective view of the insulating paper 7 according to another embodiment. FIG. 3B is a perspective view illustrating a state in which the insulating paper 7 is bent. FIG. 3C is a partial perspective view showing a state where the insulating paper 7 is inserted into the stator core 1.
 絶縁紙7は、厚さが0.2mm以下と非常に薄く、アラミドなどの高強度かつ絶縁体により構成されたノーメックスなどが望ましい。また絶縁紙7は、固定子コア1の軸方向長よりも数mm長く形成される。 (4) The insulating paper 7 is very thin, having a thickness of 0.2 mm or less, and is desirably made of Nomex or the like made of a high-strength insulating material such as aramid. The insulating paper 7 is formed to be several mm longer than the axial length of the stator core 1.
 図3(a)に示されるように、絶縁紙7は、間隔を空けて谷折りされる。そして図3(a)に示されるように、絶縁紙7は、断面がB字型の形状であるスロットライナーとなる。 絶 縁 As shown in FIG. 3 (a), the insulating paper 7 is folded in valleys at intervals. Then, as shown in FIG. 3A, the insulating paper 7 becomes a slot liner having a B-shaped cross section.
 このスロットライナーが複数設けられかつ固定子コア1の1つのスロットに複数個配置することで、絶縁構造が為される。図3(c)に示されるように、3個のB字型の絶縁紙7がスロットに径方向に3個配置される。 絶 縁 By providing a plurality of the slot liners and arranging a plurality of the slot liners in one slot of the stator core 1, an insulating structure is formed. As shown in FIG. 3C, three B-shaped insulating papers 7 are arranged in the slot in the radial direction.
 このスロットライナーは、スロットの軸方向から挿入することができるため、図示のように、アスロットの形状はセミクローズドスロット(スロット開口部が半分閉じているスロット形状)であってもよい。 た め Since the slot liner can be inserted from the axial direction of the slot, the shape of the aslot may be a semi-closed slot (a slot shape in which the slot opening is half closed) as shown in the figure.
 図3(a)ないし(c)に示される実施形態では、固定子コア1を電磁鋼板の一体もので構成した場合の例を示したが、先に示した分割コア構造の場合においても採用可能である。絶縁紙スロットライナーを採用するメリットは、紙が厚さ0.2mm以下と薄いために、導体の占積率を高めることが可能である。樹脂ボビン成形体の厚さは、現在のところ、軸方向長などにもよるが0.3mm程度が限界である。 In the embodiment shown in FIGS. 3A to 3C, an example is shown in which the stator core 1 is formed of an integral electromagnetic steel plate, but the stator core 1 can also be used in the case of the split core structure described above. It is. The merit of using the insulating paper slot liner is that the space factor of the conductor can be increased because the paper is as thin as 0.2 mm or less. At present, the thickness of the molded resin bobbin depends on the axial length and the like, but the limit is about 0.3 mm.
 図4(a)は、本実施形態に係るセグメント導体3の固定子コア1への配置例を示す部分斜視図である。 FIG. 4A is a partial perspective view showing an example of the arrangement of the segment conductors 3 on the stator core 1 according to the present embodiment.
 本実施形態では、固定子コア1は48個のスロットを設ける。そして、固定子コア1の回転子磁極数が8極である場合、セグメント導体3により構成される分布巻コイルの跨りは45度の角度を有する。 で は In the present embodiment, the stator core 1 has 48 slots. When the number of rotor magnetic poles of the stator core 1 is eight, the distributed winding coil formed by the segment conductors 3 has an angle of 45 degrees.
 図4(a)に示されるように、それぞれのセグメント導体3は、6スロットを飛び越えて跨っている。ひとつのスロット角度が7.5度であるため、セグメント導体3の足同士の角度は45度の角度となっている。 4) As shown in FIG. 4A, each segment conductor 3 jumps over six slots. Since one slot angle is 7.5 degrees, the angle between the legs of the segment conductor 3 is 45 degrees.
 図4(b)は、図4(a)に示された固定子コア1の上面図である。 4 (b) is a top view of the stator core 1 shown in FIG. 4 (a).
 セグメント導体3の片方の足は、径方向の外周側1層目のスロット挿入穴に配置される。セグメント導体3のコイルエンド頂点部で折り曲げられる。そしてセグメント導体3のもう片方の足は、径方向の外周側2層目に入っている。ここで、一つのセグメント導体3を挿入した状態では、隣のスロットを塞いでしまうので、隣り合う次のコイルの挿入が困難であることがわかる。 片 One foot of the segment conductor 3 is arranged in the slot insertion hole of the first layer on the outer peripheral side in the radial direction. It is bent at the apex of the coil end of the segment conductor 3. The other leg of the segment conductor 3 is in the second layer on the outer peripheral side in the radial direction. Here, in the state where one segment conductor 3 is inserted, the adjacent slot is closed, so that it is difficult to insert the next adjacent coil.
 図4(c)は、図4(a)で示されたセグメント導体3を周方向に48個並べた状態(コイルがすべて挿入された状態)のコイルエンド部を示す部分斜視図である。セグメント導体3が整列されて並んでいる状態では、干渉なく挿入ができる形状となっている。 4 (c) is a partial perspective view showing a coil end portion in a state where 48 segment conductors 3 shown in FIG. 4 (a) are arranged in a circumferential direction (a state in which all coils are inserted). When the segment conductors 3 are aligned and arranged, the shape is such that they can be inserted without interference.
 図5(a)は、図4(c)の固定子コア1を取り除いき複数のセグメント導体3だけを示す斜視図である。セグメント導体3が固定子コア1に挿入される状態で整列した状態では、セグメント導体3のコイルエンド部はきれいに整列され、スロットに挿入されるコイルも軸方向と径方向と周方向とも整列されていることがわかる。この状態を保持できれば、固定子コア1への挿入が容易となることがわかる。そこで、この状態を保ったまま、セグメント導体3のコイル群を固定することを考えた。 FIG. 5A is a perspective view of the stator core 1 shown in FIG. When the segment conductors 3 are aligned while being inserted into the stator core 1, the coil ends of the segment conductors 3 are neatly aligned, and the coils inserted into the slots are also aligned in the axial, radial, and circumferential directions. You can see that there is. It can be seen that if this state can be maintained, insertion into the stator core 1 becomes easy. Therefore, it was considered to fix the coil group of the segment conductor 3 while keeping this state.
 図5(b)は、図5(a)で示されたセグメント導体3のコイル群のコイルエンドの頂点部近くの一部を樹脂モールドリング部6によってコイル群を固めた状態を示す斜視図である。 FIG. 5B is a perspective view showing a state in which a part of the coil group of the coil group of the segment conductor 3 shown in FIG. is there.
 これによって、セグメント導体3のコイル群はその姿勢を保ち、コイル群を一体ものとして扱うことが出来るようになる。この一体化されたコイル群を図1(c)で示したように組立するのである。 This allows the coil group of the segment conductor 3 to maintain its posture, and the coil group can be handled as an integral unit. The integrated coil group is assembled as shown in FIG.
 図6(a)は、図5(c)で示された別体に構成された樹脂モールドリング部6を示す下面図である。 FIG. 6A is a bottom view showing the resin mold ring portion 6 formed separately as shown in FIG. 5C.
 樹脂モールドリング部6は、あらかじめモールド成形される。樹脂モールドリング部6は、リング状部品の片面に、整列されたコイルエンド群のコイルエンド頂点部が精度よく保持されるような複数の凹み形状が形成される。 The resin mold ring 6 is molded in advance. The resin mold ring portion 6 is formed with a plurality of concave shapes on one surface of the ring-shaped component such that the coil end apexes of the aligned coil end groups are accurately held.
 図6(b)は、別体に構成された樹脂モールドリング部6の全体斜視図である。 FIG. 6B is an overall perspective view of the resin mold ring portion 6 formed separately.
 径方向に3層分設けられるセグメント導体3はそれぞれ、樹脂モールドリング部6の円環状の壁によって絶縁及び隔離される。 セ グ メ ン ト The segment conductors 3 provided in three layers in the radial direction are insulated and isolated from each other by the annular wall of the resin mold ring portion 6.
 また樹脂モールドリング部6は、セグメント導体3のコイルエンドの頂点部分の形状をしっかり保持できる同一形状を有している。 The resin mold ring 6 has the same shape that can firmly hold the shape of the vertex portion of the coil end of the segment conductor 3.
 この樹脂モールドリング部6をセグメント導体3のコイル群に被せて接着固定することによって、図5(b)で示した構造と同様の効果を得ることができる。樹脂モールドに比べ、大規模な設備が不要であること、接着剤の選定によっては、早く硬化させられる可能性もある。また、部品として作り込みが可能なので、肉厚を薄くすることや、樹脂の材質を種々選ぶことができるなどの功かもある。さらに、セラミックなどの高熱伝導部材での構成も可能である。 被 By covering the resin mold ring portion 6 over the coil group of the segment conductor 3 and bonding and fixing the same, the same effect as the structure shown in FIG. 5B can be obtained. Compared with the resin mold, large-scale equipment is not required, and depending on the selection of the adhesive, there is a possibility that the resin can be cured quickly. In addition, since it can be manufactured as a part, it is also advantageous that the thickness can be reduced, and various kinds of resin materials can be selected. Further, a configuration using a high heat conductive member such as ceramics is also possible.
 図7(a)は、図5及び図6で示された樹脂モールドリング部6で一体化されたセグメント導体3及び4のコイル群を固定子コア1に組み付ける途中の状態を示す斜視図を示す。図7(b)は、樹脂モールドリング部6で一体化されたセグメント導体3及び4のコイル群を固定子コア1に組み付けた状態を示す斜視図を示す。 FIG. 7A is a perspective view showing a state in which the coil group of the segment conductors 3 and 4 integrated by the resin mold ring portion 6 shown in FIGS. 5 and 6 is being assembled to the stator core 1. . FIG. 7B is a perspective view showing a state where the coil group of the segment conductors 3 and 4 integrated by the resin mold ring portion 6 is assembled to the stator core 1.
 図7(a)に示されるように、軸方向上部から凸型の先端を持つセグメント導体3のコイル群が固定子コア1に挿入される。また軸方向下側から先端部に凹型の接続部を有するセグメント導体4のコイル群がボビン2を介してスロットに挿入される。 コ イ ル As shown in FIG. 7A, a coil group of the segment conductor 3 having a convex tip is inserted into the stator core 1 from the axial top. In addition, a coil group of the segment conductor 4 having a concave connection portion at the distal end from the lower side in the axial direction is inserted into the slot via the bobbin 2.
 固定子コア1の軸方向下側からセグメント導体4のコイル群が挿入後は、プレスによる軸方向加圧によって、セグメント導体3のコイル群、固定子コア1、セグメント導体4のコイル群が軸方向の寸法関係で所定の位置になるように加圧成形する。 After the coil group of the segment conductor 4 is inserted from below the stator core 1 in the axial direction, the coil group of the segment conductor 3 and the coil group of the stator core 1 and the segment conductor 4 are axially pressed by a press. Pressure molding is performed so as to be at a predetermined position according to the dimensional relationship.
 セグメント導体3及び4のコイル群の先端形状は、前述したように、しまり嵌め以上に寸法関係となっているが、樹脂モールドリング部6に軸方向に平行な加圧をすることにより、均一に応力がかけられるので、しっかりと結合することができる。 As described above, the tip shapes of the coil groups of the segment conductors 3 and 4 are in a dimensional relationship more than the tight fit, but by pressing the resin mold ring portion 6 in parallel in the axial direction, the uniform shape is obtained. Since stress is applied, a firm connection can be achieved.
 図8(a)は、本実施形態に係る固定子と回転子の関係を説明する斜視図である。 FIG. 8A is a perspective view illustrating the relationship between the stator and the rotor according to the present embodiment.
 本実施形態に係るモータの回転子は、永久磁石12と、永久磁石12を収納しかつ回転するロータコア13と、ロータコア13を支持する軸11と、を備える。本実施例では永久磁石同期モータの場合の例を示しているが、回転子は、誘導モータの籠型導体回転子でも、リラクタンスモータの磁性体突極回転子でも良い。 The rotor of the motor according to the present embodiment includes a permanent magnet 12, a rotor core 13 that houses and rotates the permanent magnet 12, and a shaft 11 that supports the rotor core 13. Although the present embodiment shows an example of a permanent magnet synchronous motor, the rotor may be a cage-type conductor rotor of an induction motor or a magnetic salient pole rotor of a reluctance motor.
 永久磁石同期モータの場合は、ロータコア13の内部または表面に永久磁石12が配置されている。固定子の内側に回転子が配置され、ギャップを介して回転子表面と固定子内面が対向し、磁束のやり取りを行ってモータとして動作する。 In the case of a permanent magnet synchronous motor, the permanent magnet 12 is disposed inside or on the surface of the rotor core 13. The rotor is disposed inside the stator, and the rotor surface and the stator inner surface face each other via a gap, and exchange magnetic flux to operate as a motor.
 図8(b)は、本実施形態に係るモータが組み立てられた形態を示す軸方向の断面図である。 FIG. 8B is an axial cross-sectional view showing an assembled form of the motor according to the present embodiment.
 軸11には、軸11の出力側にボールベアリング14、反出力側にボールベアリング15が接触される。ボールベアリング14及び15の外周が固定された状態でベアリングの内周面が軸と一体となって回転可能に保持される。 The shaft 11 is in contact with a ball bearing 14 on the output side of the shaft 11 and a ball bearing 15 on the opposite side. With the outer peripheries of the ball bearings 14 and 15 fixed, the inner peripheral surface of the bearing is held rotatably integrally with the shaft.
 ボールベアリング14の外周は、出力側軸受保持部16により保持される。ボールベアリング15の外周は、反出力側軸受保持部17で保持される。 外 周 The outer periphery of the ball bearing 14 is held by the output side bearing holding portion 16. The outer periphery of the ball bearing 15 is held by the non-output side bearing holding portion 17.
 出力側軸受保持部16及び反出力側軸受保持部17はハウジング20により、同軸度を保った状態で構成される。 The output-side bearing holding portion 16 and the non-output-side bearing holding portion 17 are configured by the housing 20 in a state where coaxiality is maintained.
 ハウジング20には、軸方向にボルト18及び19で締め付けて軸方向に応力を加えて保持される構成となっている。固定子は、ハウジング20の軸方向の所定の場所に保持され固定されている。この状態で、コイル群を一体化している樹脂モールドリング部6は、出力側及び反出力側とも、軸受保持部の軸方向面と接触し、軸方向に応力をかけた状態で保持される。 The housing 20 is configured to be tightened in the axial direction by bolts 18 and 19 to apply stress in the axial direction and to be held. The stator is held and fixed at a predetermined position in the axial direction of the housing 20. In this state, the resin mold ring portion 6 in which the coil group is integrated is in contact with the axial surface of the bearing holding portion on both the output side and the non-output side, and is held in a state where stress is applied in the axial direction.
 これによって、モータとして回転子がトルク脈動や、負荷変動により振動して、固定子に振動や応力が加わった場合においても、ハウジング20が固定子コイル群が抜け出てきたりすることを防ぐ。 This prevents the housing 20 from coming out of the stator coil group even when the rotor as a motor vibrates due to torque pulsation or load fluctuation, and vibration or stress is applied to the stator.
 また、この構造により、コイルエンド部分から、軸受保持部にコイルで発生したジュール損失による発熱を熱伝導によって冷却できる効果も有する。さらに、樹脂モールドしていないコイルエンド部分には、通常、冷却油(潤滑油)をかける冷却法が採用されることが多く、樹脂で囲われていないセグメント導体3及び4のコイルエンドに直接塗布することができるため、油冷効果を減少させることが無い。 構造 This structure also has an effect that heat generated by Joule loss generated in the coil in the bearing holding portion can be cooled by heat conduction from the coil end portion. Further, a cooling method in which a cooling oil (lubricating oil) is usually applied to the coil end portion that is not resin-molded is often adopted, and is directly applied to the coil ends of the segment conductors 3 and 4 not surrounded by resin. Therefore, the oil cooling effect is not reduced.
 また、セグメント導体3及び4をしっかりと軸方向に保持し続けることで、セグメント導体3及び4の完全な固定が出来るので、これまでセグメント導体3及び4の固定に必要であったワニス処理(樹脂によるコイルの固定)工程が不要となり、モータの製造工程を短縮することができる。ワニス処理は、ワニスを乾燥させる乾燥炉(通常は連続炉)が必要となるため、その乾燥炉の投資費用、製造時の熱量(電気代)などの費用の低減にもつながる。 Further, since the segment conductors 3 and 4 can be completely fixed by keeping the segment conductors 3 and 4 firmly in the axial direction, a varnish treatment (resin) which has been necessary for fixing the segment conductors 3 and 4 until now is possible. This eliminates the need for the step of fixing the coil, thereby shortening the motor manufacturing process. Since the varnish treatment requires a drying furnace (usually a continuous furnace) for drying the varnish, it also leads to a reduction in investment costs of the drying furnace and costs such as the amount of heat (electricity cost) during production.
 図9(a)は、セグメント導体3とセグメント導体4の接続形態を示す斜視図である。図9(b)は、セグメント導体3とセグメント導体4の接続形態を示す正面図である。 FIG. 9A is a perspective view showing a connection form between the segment conductors 3 and 4. FIG. 9B is a front view showing a connection form between the segment conductors 3 and 4.
 セグメント導体3の凸部とセグメント導体4の凹部の接続は、ボビン2内で区切られた部屋の中で行われるため、ボビン2のスロットの幅方向の寸法をしっかり設計することが重要である。 (4) Since the connection between the convex portion of the segment conductor 3 and the concave portion of the segment conductor 4 is performed in a room partitioned within the bobbin 2, it is important to properly design the width dimension of the slot of the bobbin 2.
 凹凸形状の場合、凸と凹の寸法をしまり嵌め以上の寸法で作成しても、ボビンスロットの寸法が緩いと凹の溝が外側に開いてしまって、きちんと接続できない状態となる。従って、ボビン2の幅方向の寸法は、セグメント導体3とセグメント導体4の平角の外形寸法とほぼ同等であることが望ましい。 (4) In the case of an uneven shape, even if the convex and concave dimensions are made larger than the tight fit, if the dimensions of the bobbin slot are loose, the concave groove will open to the outside, and it will be impossible to connect properly. Therefore, it is desirable that the dimension of the bobbin 2 in the width direction is substantially equal to the flat outer dimensions of the segment conductors 3 and 4.
 組立のための隙間公差は、少なくとも本実施例の2mmから3mm程度の外径寸法の場合で20ミクロン程度とし、嵌合時に外に開かないような寸法関係としたい。 隙間 The clearance tolerance for assembly should be at least about 20 microns in the case of an outer diameter of at least about 2 mm to 3 mm in the present embodiment, and it is desired to have a dimensional relationship so as not to open outside when fitted.
 また、図9(b)に示されるように、セグメント導体3とセグメント導体4のヘアピンコイルの足がそれぞれ異なる長さとなっている状態を示している。これにより、接続される箇所が軸方向で異なるので、径方向の溝一つ置きに異なる軸方向位置で接続される。 {Circle around (5)}, as shown in FIG. 9 (b), shows a state in which the legs of the hairpin coils of the segment conductors 3 and 4 have different lengths. As a result, the connection locations are different in the axial direction, so that connection is made at different axial positions in every other radial groove.
 図10(a)は、セグメント導体3とセグメント導体4の嵌合部の比較例としての製作方法を示す部分斜視図である。 FIG. 10A is a partial perspective view showing a manufacturing method as a comparative example of a fitting portion between the segment conductor 3 and the segment conductor 4.
 セグメント導体3とセグメント導体4は平角線の状態から、凸部と凹部を同時にプレス打ち抜きすることで、材料の歩留りを上げ、プレス回数を最小とすることができる。このときには、凹部と凸部の寸法関係はAで示すように同一の寸法となってしまう。スプリングバックにより、多少の寸法差はできるが、積極的に溝と突起の寸法を設定することは困難である。 The segment conductor 3 and the segment conductor 4 can be stamped out of the convex portion and the concave portion at the same time from the state of the rectangular wire to increase the material yield and minimize the number of presses. At this time, the dimensional relationship between the concave portion and the convex portion is the same as indicated by A. Although a slight dimensional difference can be caused by springback, it is difficult to actively set the dimensions of the groove and the projection.
 図10(b)は、本実施形態に係るセグメント導体3とセグメント導体4の嵌合部の製作方法を示す部分斜視図である。 FIG. 10B is a partial perspective view illustrating a method of manufacturing a fitting portion between the segment conductor 3 and the segment conductor 4 according to the present embodiment.
 セグメント導体3とセグメント導体4の先端を互いに違う箇所で寸法を規定してプレス加工し、溝の寸法をB、突起の寸法をCのように異なった寸法関係にする。このとき、B=1.5(-0.02mm~0mm)、C=1.5(0mm~+0.02mm)などのように凸部の寸法を大きく設定ししまり嵌めとすることが望ましい。 (4) The ends of the segment conductor 3 and the segment conductor 4 are press-worked by defining dimensions at different places, and the dimensions of the grooves are set to B and the dimensions of the projections are set to different dimensions, such as C. At this time, it is desirable to set the size of the protrusion to a large value such as B = 1.5 (−0.02 mm to 0 mm), C = 1.5 (0 mm to +0.02 mm), and to fit tightly.
 図10(c)は、セグメント導体3とセグメント導体4の先端部周辺の部分斜視図である。 FIG. 10C is a partial perspective view of the vicinity of the distal ends of the segment conductors 3 and 4.
 セグメント導体3とセグメント導体4の加工は微小な寸法の管理が困難であるため、余裕のある寸法関係に打ち抜きしておき、スズ、金、銀などの導電性メッキ21及び22によってその寸法を作り込む方法を示している。導電性メッキ21及び22は、銅の腐食対策にも有効であり、切断した後に、平角導体のエナメル被膜がついている部分以外の打ち抜き切断部にメッキを施す方法も有益である。 Since it is difficult to control minute dimensions when processing the segment conductors 3 and 4, the blanks are punched into a marginal dimensional relationship, and the dimensions are made by conductive plating 21 and 22 such as tin, gold, and silver. It shows how to insert. The conductive platings 21 and 22 are also effective in preventing corrosion of copper, and it is also useful to apply a plating to a punched and cut portion other than a portion of the rectangular conductor having an enamel coating after cutting.
 図11(a)は、他の実施形態に係るボビン2の斜視図である。図11(b)は、固定子コア1のティース部5がボビン2に挿入される前の全体斜視図である。図11(c)は、ティース部5が固定子コア1に固定された部分斜視図である。 FIG. 11A is a perspective view of a bobbin 2 according to another embodiment. FIG. 11B is an overall perspective view before the teeth portion 5 of the stator core 1 is inserted into the bobbin 2. FIG. 11C is a partial perspective view in which the teeth portion 5 is fixed to the stator core 1.
 固定子コア1がティース部5とコアバック部分に分かれた構造の分割コアにおいて、ティース部5の材料の保持をボビン2で行う。ティース部5は、磁束が集中するため、カシメなどの残留応力で鉄損が増加するので、切断しただけの状態で保持を行いたい。 に お い て In the divided core having the structure in which the stator core 1 is divided into the teeth portion 5 and the core back portion, the material of the teeth portion 5 is held by the bobbin 2. Since the magnetic flux is concentrated in the teeth portion 5 and the iron loss increases due to the residual stress such as caulking, it is desirable to hold the teeth portion 5 in a state where it is just cut.
 その場合に図11(a)に示すような樹脂製のボビン2で保持を行うことが有効である。ティース部5を構成する材料は、鉄基アモルファス箔帯や、高磁束密度が実現可能なナノ結晶合金、またはファインメットや、6.5%Si含有の薄電磁鋼板などが挙げられる。これらの鉄心を切断したものを図11(b)に示すようにボビン2に挿入することで保持を行う。この時のボビン2は、セグメント導体3とセグメント導体4が挿入される部屋を区切るための壁を有している。ティース部5をコアバックコアに組み立てた状態を図11(c)に示す。 に In that case, it is effective to hold with a resin bobbin 2 as shown in FIG. Examples of the material forming the teeth portion 5 include an iron-based amorphous foil strip, a nanocrystalline alloy capable of realizing a high magnetic flux density, finemet, and a thin electromagnetic steel sheet containing 6.5% Si. These cores are cut and inserted into the bobbin 2 as shown in FIG. The bobbin 2 at this time has a wall for separating the room into which the segment conductors 3 and 4 are inserted. FIG. 11C shows a state in which the teeth portion 5 is assembled to the core back core.
 図12(a)は、他の実施形態に係るセグメント導体3とセグメント導体4の斜視図である。図12(b)は、他の実施形態に係るセグメント導体3とセグメント導体4のボビン2への接続状態を示す斜視図である。 FIG. 12A is a perspective view of a segment conductor 3 and a segment conductor 4 according to another embodiment. FIG. 12B is a perspective view showing a state in which the segment conductors 3 and 4 are connected to the bobbin 2 according to another embodiment.
 図1及び図9で示した向きと90度回転した方向に溝(凹部)、突起(凸部)が向いている形状となっている。これは、図12(b)に示すように、図11で示したボビン2が、隣り合わせで重なるとき、接続箇所の横断面の凹面がボビンの壁同士の合わさり面に来ることを避けるためである。 溝 The groove (concave part) and the protrusion (convex part) are oriented in the direction rotated by 90 degrees from the direction shown in FIGS. 1 and 9. This is because, as shown in FIG. 12 (b), when the bobbins 2 shown in FIG. 11 overlap side by side, the concave surface of the cross section of the connection portion does not come to the mating surface between the bobbin walls. .
 同一のスロットには、同相のコイルが配置されるため、電位差は少なく、荷電部が露出していても問題無いのであるが、その面が大きいと、不純物の含有などによって接触し、並列コイルとなってしまうことを少しでも避けるためである。 Since the same-phase coil is arranged in the same slot, the potential difference is small, and there is no problem even if the charged portion is exposed. This is to avoid becoming a little.
 このような場合には、スロット内のワニス含浸処理や、スロット内部に潤滑油(ATF)の侵入を防止するためのシール処理を行うことも必要である。ティース部(一体型コアでもティース部が高級グレード鋼板であるばあいも含んで)に磁気特性の優れた材料を用いる場合に、セグメント導体3とセグメント導体4を曲げる工程を経ることによってセグメント導体3とセグメント導体4から固定子ティース部分に応力を付与することになる。 In such a case, it is necessary to perform a varnish impregnation process in the slot and a sealing process to prevent intrusion of lubricating oil (ATF) into the slot. In the case where a material having excellent magnetic properties is used for the teeth portion (including the case where the teeth portion is a high-grade steel sheet even in the case of an integral core), the segment conductors 3 and 4 are bent by bending the segment conductors 3 and 4. And the segment conductor 4 applies stress to the stator teeth.
 この場合、高級鉄板は、応力をかけると磁気特性が劣化して磁化特性が悪くなったり、鉄損が大幅に増加したりする。本実施形態の組み合て方法ではセグメント導体3とセグメント導体4には、軸方向に平行な応力しかかからないため、ティースコアにはまったく応力をかけることなく製造することが可能である。また、余計な応力がかからないので、絶縁性能にも負担をかけないことも大きな効果である。 In this case, when a stress is applied to the high-grade iron plate, the magnetic characteristics are deteriorated, the magnetization characteristics are deteriorated, and the iron loss is greatly increased. According to the combination method of the present embodiment, only the stress parallel to the axial direction is applied to the segment conductor 3 and the segment conductor 4, so that the tee core can be manufactured without applying any stress. Also, since no extra stress is applied, it is also a great effect that no load is imposed on the insulation performance.
1…固定子コア、2…ボビン、3…セグメント導体、4…セグメント導体、5…ティース部、6…樹脂モールドリング部、7…絶縁紙、8…樹脂モールドリング部、11…軸、12…永久磁石、13…ロータコア、14…ボールベアリング、15…ボールベアリング、16…出力軸側軸受保持部、17…反出力軸側軸受保持部、18…ボルト、19…ボルト、20…ハウジング、21…導電性メッキ、22…導電性メッキ DESCRIPTION OF SYMBOLS 1 ... Stator core, 2 ... Bobbin, 3 ... Segment conductor, 4 ... Segment conductor, 5 ... Teeth part, 6 ... Resin mold ring part, 7 ... Insulating paper, 8 ... Resin mold ring part, 11 ... Shaft, 12 ... Permanent magnet, 13 ... Rotor core, 14 ... Ball bearing, 15 ... Ball bearing, 16 ... Output shaft side bearing holding part, 17 ... Non-output shaft side bearing holding part, 18 ... Bolt, 19 ... Bolt, 20 ... Housing, 21 ... Conductive plating, 22 ... conductive plating

Claims (9)

  1.  U字状に成形した複数のセグメント導体と、
     前記複数のセグメント導体が分布巻の状態で挿入される固定子コアと、を備え、
     前記複数のセグメント導体は、互いに接続される先端部に凸形状と凹形状がそれぞれ形成され、
     前記凸形状と前記凹形状は、軸方向垂直方向が接触面となる組み合わせ面を有し、
     前記凸形状の凸側寸法は、前記凹形状の凹側寸法よりも大きく形成され、
     前記複数のセグメント導体により構成されるコイルエンドが、樹脂またはその他の絶縁物または高熱伝導部材で一体化されるコイル群を構成する分布巻ラジアルギャップ型回転電機の固定子。
    A plurality of U-shaped segment conductors;
    A stator core in which the plurality of segment conductors are inserted in a distributed winding state,
    The plurality of segment conductors are each formed with a convex shape and a concave shape at a distal end connected thereto,
    The convex shape and the concave shape have a combination surface in which the axial vertical direction is a contact surface,
    The convex side dimension of the convex shape is formed larger than the concave side dimension of the concave shape,
    A stator of a distributed winding radial gap type rotating electric machine, wherein a coil end constituted by the plurality of segment conductors constitutes a coil group integrated with a resin or other insulating material or a high heat conductive member.
  2.  請求項1に記載された分布巻ラジアルギャップ型回転電機の固定子であって、
     前記コイル群は、前記固定子コアを境に軸方向のどちらか一方だけに形成される分布巻ラジアルギャップ型回転電機の固定子。
    A stator of the distributed winding radial gap type rotating electric machine according to claim 1, wherein
    The stator of the distributed winding radial gap type rotating electric machine, wherein the coil group is formed only in one of the axial directions with the stator core as a boundary.
  3.  請求項1に記載された分布巻ラジアルギャップ型回転電機の固定子であって、
     前記コイル群は、前記固定子コアを境に軸方向の双方に形成される分布巻ラジアルギャップ型回転電機の固定子。
    A stator of the distributed winding radial gap type rotating electric machine according to claim 1, wherein
    The stator of the distributed winding radial gap type rotating electric machine wherein the coil group is formed in both axial directions with the stator core as a boundary.
  4.  請求項1ないし3に記載されたいずれかの分布巻ラジアルギャップ型回転電機の固定子であって、
     前記コイル群において、樹脂成型品と前記コイルエンドを接着剤により接続される分布巻ラジアルギャップ型回転電機の固定子。
    A stator of the distributed winding radial gap type rotating electric machine according to any one of claims 1 to 3, wherein
    In the coil group, a stator of a distributed winding radial gap type rotating electric machine in which a resin molded product and the coil end are connected by an adhesive.
  5.  請求項1ないし4に記載されたいずれかの分布巻ラジアルギャップ型回転電機の固定子であって、
     前記セグメント導体同士の接続部は、前記固定子コアに設けられたボビンにより構成されたスロット溝に配置される挿入される分布巻ラジアルギャップ型回転電機の固定子。
    A stator of the distributed winding radial gap type rotating electric machine according to any one of claims 1 to 4, wherein
    The stator of the distributed winding radial gap type rotating electric machine, wherein the connection between the segment conductors is disposed in a slot formed by a bobbin provided in the stator core.
  6.  請求項1ないし4に記載されたいずれかの分布巻ラジアルギャップ型回転電機の固定子であって、
     前記セグメント導体同士の接続部は、前記固定子コアに設けられた絶縁紙で覆われた状態でスロット溝に挿入される分布巻ラジアルギャップ型回転電機の固定子。
    A stator of the distributed winding radial gap type rotating electric machine according to any one of claims 1 to 4, wherein
    A stator of a distributed winding radial gap type rotating electric machine, wherein a connection portion between the segment conductors is inserted into a slot groove while being covered with insulating paper provided on the stator core.
  7.  請求項1ないし6に記載されたいずれかの分布巻ラジアルギャップ型回転電機の固定子であって、
     前記セグメント導体同士の接続部である前記凸形状と前記凹形状は、スズ、金、銀を含有するメッキ処理が施される分布巻ラジアルギャップ型回転電機の固定子。
    A stator of the distributed winding radial gap type rotating electric machine according to any one of claims 1 to 6, wherein
    The stator of the distributed winding radial gap type rotating electric machine, wherein the convex shape and the concave shape, which are connection portions of the segment conductors, are plated with tin, gold, and silver.
  8.  請求項1ないし7に記載されたいずれかの分布巻ラジアルギャップ型回転電機の固定子であって、
     前記固定子コアは、アモルファスやナノ結晶合金を含む材料でありかつコアバック部分よりも磁気特性に優れる材料により構成されるティース部を有する分布巻ラジアルギャップ型回転電機の固定子。
    A stator of the distributed winding radial gap type rotating electric machine according to any one of claims 1 to 7, wherein:
    The stator of the distributed winding radial gap type rotating electric machine, wherein the stator core is made of a material containing an amorphous or nanocrystalline alloy and has a teeth portion made of a material having better magnetic properties than the core back portion.
  9.  請求項1ないし8に記載されたいずれかの固定子を備える分布巻ラジアルギャップ型回転電機であって、
     前記固定子のコイルエンド頂点部に配置される樹脂モールド部分をモータ筺体部分と接触させて保持させる分布巻ラジアルギャップ型回転電機。
    A distributed winding radial gap type rotating electric machine comprising any one of the stators according to claim 1,
    A distributed winding radial gap type rotating electric machine in which a resin mold portion disposed at a coil end vertex of the stator is brought into contact with and held by a motor housing portion.
PCT/JP2019/019024 2018-07-18 2019-05-14 Distributed-winding, radial-gap-type rotary electric machine and stator thereof WO2020017133A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980019879.5A CN112368912B (en) 2018-07-18 2019-05-14 Radial gap type rotary motor with distributed winding method and stator thereof
JP2020530906A JP7142700B2 (en) 2018-07-18 2019-05-14 Distributed winding radial gap type rotary electric machine and its stator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-134662 2018-07-18
JP2018134662 2018-07-18

Publications (1)

Publication Number Publication Date
WO2020017133A1 true WO2020017133A1 (en) 2020-01-23

Family

ID=69164674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019024 WO2020017133A1 (en) 2018-07-18 2019-05-14 Distributed-winding, radial-gap-type rotary electric machine and stator thereof

Country Status (3)

Country Link
JP (1) JP7142700B2 (en)
CN (1) CN112368912B (en)
WO (1) WO2020017133A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021165519A1 (en) * 2020-02-20 2021-08-26 Elringklinger Ag Winding a production method for same
JP2021126031A (en) * 2020-02-10 2021-08-30 株式会社日立ハイテク Coil bobbin, stator core of distributed winding radial gap type rotary electric machine, and distributed winding radial gap type rotary electric machine
JP2022026498A (en) * 2020-07-31 2022-02-10 本田技研工業株式会社 Magnetizing yoke and manufacturing method of the same
WO2022037934A1 (en) * 2020-08-19 2022-02-24 Robert Bosch Gmbh Electric machine
CN115967211A (en) * 2023-02-14 2023-04-14 蔚来动力科技(合肥)有限公司 Motor stator and motor
WO2023062868A1 (en) 2021-10-12 2023-04-20 株式会社日立産機システム Rotating electric machine and industrial machine
US11658530B2 (en) 2021-07-15 2023-05-23 Stoneridge, Inc. Modular brushless DC (BLDC) motor construction
WO2023139918A1 (en) * 2022-01-20 2023-07-27 株式会社日立産機システム Rotary electric machine and industrial machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005269782A (en) * 2004-03-18 2005-09-29 Nissan Motor Co Ltd Stator structure of motor and manufacturing method of motor stator
JP2009194999A (en) * 2008-02-13 2009-08-27 Denso Corp Manufacturing method of stator coil
JP2016187245A (en) * 2015-03-27 2016-10-27 本田技研工業株式会社 Manufacturing method of stator and stator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62189948A (en) * 1986-02-13 1987-08-19 Toshiba Corp Insulation treating method for coil end connecting section for rotary electric machine
US8841811B2 (en) * 2010-08-18 2014-09-23 Remy Technologies Llc Conductor insulation arrangement for an electric machine
JP5839851B2 (en) * 2011-06-23 2016-01-06 日立オートモティブシステムズ株式会社 Rotating electric machine
EP2933901B1 (en) * 2014-04-15 2016-10-26 Siemens Aktiengesellschaft Stator of an electric machine and production thereof
JP6137117B2 (en) * 2014-10-28 2017-05-31 トヨタ自動車株式会社 Stator winding connection end insulation method
WO2017047247A1 (en) * 2015-09-17 2017-03-23 日立オートモティブシステムズ株式会社 Rotary electric machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005269782A (en) * 2004-03-18 2005-09-29 Nissan Motor Co Ltd Stator structure of motor and manufacturing method of motor stator
JP2009194999A (en) * 2008-02-13 2009-08-27 Denso Corp Manufacturing method of stator coil
JP2016187245A (en) * 2015-03-27 2016-10-27 本田技研工業株式会社 Manufacturing method of stator and stator

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021126031A (en) * 2020-02-10 2021-08-30 株式会社日立ハイテク Coil bobbin, stator core of distributed winding radial gap type rotary electric machine, and distributed winding radial gap type rotary electric machine
JP7344807B2 (en) 2020-02-10 2023-09-14 株式会社日立ハイテク Coil bobbin, stator core of distributed winding radial gap type rotating electrical machine, and distributed winding radial gap type rotating electrical machine
WO2021165519A1 (en) * 2020-02-20 2021-08-26 Elringklinger Ag Winding a production method for same
JP2022026498A (en) * 2020-07-31 2022-02-10 本田技研工業株式会社 Magnetizing yoke and manufacturing method of the same
CN114069894A (en) * 2020-07-31 2022-02-18 本田技研工业株式会社 Yoke and method of manufacturing the same
JP7124017B2 (en) 2020-07-31 2022-08-23 本田技研工業株式会社 Magnetizing yoke and manufacturing method thereof
US11621593B2 (en) 2020-07-31 2023-04-04 Honda Motor Co., Ltd. Magnetizing yoke and manufacturing method thereof
WO2022037934A1 (en) * 2020-08-19 2022-02-24 Robert Bosch Gmbh Electric machine
US11658530B2 (en) 2021-07-15 2023-05-23 Stoneridge, Inc. Modular brushless DC (BLDC) motor construction
WO2023062868A1 (en) 2021-10-12 2023-04-20 株式会社日立産機システム Rotating electric machine and industrial machine
WO2023139918A1 (en) * 2022-01-20 2023-07-27 株式会社日立産機システム Rotary electric machine and industrial machine
CN115967211A (en) * 2023-02-14 2023-04-14 蔚来动力科技(合肥)有限公司 Motor stator and motor

Also Published As

Publication number Publication date
JPWO2020017133A1 (en) 2021-03-11
CN112368912A (en) 2021-02-12
JP7142700B2 (en) 2022-09-27
CN112368912B (en) 2023-09-08

Similar Documents

Publication Publication Date Title
WO2020017133A1 (en) Distributed-winding, radial-gap-type rotary electric machine and stator thereof
US11444502B2 (en) Coil bobbin, stator core of distributed winding radial gap-type rotating electric machine, and distributed winding radial gap-type rotating electric machine
JP5879121B2 (en) Axial gap rotating electric machine
JP5314908B2 (en) Rotating electric machine stator and rotating electric machine
JP2001238377A (en) Rotating electric machine
JP6576549B2 (en) Armature manufacturing method, rotating electrical machine manufacturing method, and armature manufacturing apparatus
CN111033980B (en) Divided core connection body and armature manufacturing method
JP5352979B2 (en) Stator for rotating electric machine and method for manufacturing the same
JP2008104288A (en) Capacitor motor, and manufacturing method therefor
WO2020174817A1 (en) Dynamo-electric machine stator, dynamo-electric machine, method for manufacturing dynamo-electric machine stator, and method for manufacturing dynamo-electric machine
CN108028558B (en) Rotating electrical machine and method for manufacturing rotating electrical machine
WO2020255614A1 (en) Coil, and stator, rotor, and motor equipped with same, and manufacturing method for coil
JP7254140B1 (en) Rotating electric machine
US11677290B2 (en) Motor
JP4241321B2 (en) Rotating electric machine stator
JP2003230236A (en) Dynamo-electric machine
JP4386909B2 (en) motor
JP2018133850A (en) Rotary electric machine
JP6843272B2 (en) Manufacturing method of stator of rotary electric machine and stator of rotary electric machine
JP4372130B2 (en) motor
JP7195180B2 (en) Stator and rotating electric machine
JP2014050236A (en) Rotary electric machine
JP7166207B2 (en) Rotating electric machine and its manufacturing method
WO2021256178A1 (en) Molding coil, stator, and rotary electric machine
JP2010142095A (en) Electric motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19838809

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020530906

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19838809

Country of ref document: EP

Kind code of ref document: A1