JP5879121B2 - Axial gap rotating electric machine - Google Patents

Axial gap rotating electric machine Download PDF

Info

Publication number
JP5879121B2
JP5879121B2 JP2011284703A JP2011284703A JP5879121B2 JP 5879121 B2 JP5879121 B2 JP 5879121B2 JP 2011284703 A JP2011284703 A JP 2011284703A JP 2011284703 A JP2011284703 A JP 2011284703A JP 5879121 B2 JP5879121 B2 JP 5879121B2
Authority
JP
Japan
Prior art keywords
holding member
coil
stator
iron core
axial gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011284703A
Other languages
Japanese (ja)
Other versions
JP2013135541A (en
Inventor
榎本 裕治
裕治 榎本
正木 良三
良三 正木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2011284703A priority Critical patent/JP5879121B2/en
Priority to PCT/JP2012/070053 priority patent/WO2013099343A1/en
Priority to CN201290000752.2U priority patent/CN204205774U/en
Publication of JP2013135541A publication Critical patent/JP2013135541A/en
Application granted granted Critical
Publication of JP5879121B2 publication Critical patent/JP5879121B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Description

本発明は軸方向にギャップを有するアキシャルギャップモータの構造に関する。   The present invention relates to a structure of an axial gap motor having a gap in the axial direction.

近年、産業用機器や家電品,自動車部品などにおいて、省エネルギー化の必要性が重要視されるようになってきた。現在、国内の火力,水力,原子力,風力などの発電所において作られる電気のほとんどは、電磁応用製品である回転電機(発電機)によって作られている。また、国内で使用される電力使用量のうちの半分以上は、回転電機の駆動によって消費されている。これらの回転電機などの電磁応用製品では、鉄心部に軟磁性材料が用いられており、この鉄心部の損失を低減することが、これらの製品の高効率化を実現する手段となっている。また、別の効率向上策としては、磁力の高い永久磁石を用いることにより、所定電流当たりのマグネットトルクを増加させて必要トルクを低い電流で得られるようにして、電流による導体のジュール熱による損失(銅損)を低減する手段がある。   In recent years, the necessity of energy saving has been regarded as important in industrial equipment, home appliances, automobile parts, and the like. Currently, most of the electricity produced in domestic power plants such as thermal power, hydropower, nuclear power, and wind power is produced by rotating electrical machines (generators) that are electromagnetic application products. Further, more than half of the amount of power used in the country is consumed by driving the rotating electrical machine. In these electromagnetic application products such as rotating electrical machines, a soft magnetic material is used for the iron core portion, and reducing the loss of the iron core portion is a means for realizing high efficiency of these products. Another measure to improve efficiency is to use a permanent magnet with a high magnetic force to increase the magnet torque per predetermined current so that the required torque can be obtained at a low current. There is a means for reducing (copper loss).

永久磁石モータの高効率化の方法として、特許文献1が挙げられている。特許文献1では、永久磁石モータに使用する軟磁性材料に低損失なアモルファスを用いるためにアキシャルギャップ型のモータとし、さらに、銅損を低減するために永久磁石のボリュームを増やす構造として、軸方向の2面を回転子とする構成のモータが提案されている。しかし、この構造は、回転子が固定子に対して軸方向の両側に存在するために、固定子が軸方向中央部に孤立して配置される構造となる。このため、固定子とその周囲に巻回された固定子コイルを樹脂などによってモールドすることによって固定している。この固定方法は、容量の小さいモータで実用化されているが、樹脂モールド時の固定子鉄心や固定子コイルのモールド金型内での位置決め精度を確保するのが困難なことや、樹脂自体の価格が高価であるため、モータの価格が割高になるなどの課題がある。また、固定子コイルや鉄心の熱による膨張収縮などによって樹脂にかかる応力により固定子保持の長期信頼性にも課題がある。   Patent Document 1 is cited as a method for improving the efficiency of a permanent magnet motor. In Patent Document 1, an axial gap type motor is used in order to use a low-loss amorphous material for a soft magnetic material used in a permanent magnet motor, and the volume of the permanent magnet is increased in order to reduce copper loss. A motor having a configuration in which the two surfaces are rotors has been proposed. However, this structure is a structure in which the rotor is present on both sides in the axial direction with respect to the stator, so that the stator is disposed in the center in the axial direction. For this reason, the stator and the stator coil wound around the stator are fixed by molding with a resin or the like. Although this fixing method has been put into practical use with a motor with a small capacity, it is difficult to ensure the positioning accuracy of the stator core and the stator coil in the mold of the resin molding, Since the price is high, there are problems such as high price of the motor. In addition, there is a problem in the long-term reliability of the stator holding due to stress applied to the resin due to expansion and contraction due to heat of the stator coil and the iron core.

上記問題を解決するための方法として、特許文献2が提案されている。ここでは、アキシャルギャップモータの回転子を片側の1つだけとして、固定子胴部にバックヨークを追加して設け、その鉄心で構成されるバックヨークをハウジングと焼嵌めや圧入等の方法を用いて締結するものである。ただし、固定子鉄心とバックヨーク、固定子鉄心胴部とその周囲に巻回される固定子コイルの固定方法は、特許文献1と同様に樹脂によるモールドを採用することが望ましく、先に述べたコイルや鉄心の熱膨張,収縮による樹脂の信頼性に課題が残る。   As a method for solving the above problem, Patent Document 2 has been proposed. Here, the rotor of the axial gap motor is only one on one side, a back yoke is additionally provided on the stator body, and the back yoke composed of the iron core is used by a method such as shrink fitting or press fitting with the housing. To conclude. However, as for the fixing method of the stator core and the back yoke, the stator core body and the stator coil wound around the stator core, it is desirable to employ a resin mold, as in Patent Document 1, as described above. Problems remain in resin reliability due to thermal expansion and contraction of coils and iron cores.

特開2010−115069号公報JP 2010-115069 A 特開2010−051075号公報JP 2010-051075 A

上記2つの特許文献に開示されているような構造のモータでは、固定子鉄心と固定子コイルを樹脂で一体化することによる組立工数の増大と、樹脂部材追加によるその分の価格上昇と、熱膨張収縮などによる信頼性の低下等の課題を有している。   In a motor having a structure as disclosed in the above two patent documents, an increase in assembly man-hours by integrating the stator core and the stator coil with resin, a corresponding increase in price due to the addition of resin members, and heat There are problems such as a decrease in reliability due to expansion and contraction.

本発明の目的は、組立性を改善し、低コストで、高い信頼性を有するアキシャルギャップ型の回転電機を提供することにある。   An object of the present invention is to provide an axial gap type rotating electrical machine with improved assemblability, low cost, and high reliability.

上記課題を解決するために、本発明はアキシャル型モータの固定子鉄心を保持する機能と、その固定子鉄心の周囲に巻回する固定子コイルを鉄心部と絶縁を保って保持する機能とを備えた非導電性かつ非磁性の鉄心・コイル保持部材を周方向,軸方向とも位置決めし、かつ、モータハウジングへの固定を容易にする構造を提案する。   In order to solve the above problems, the present invention has a function of holding a stator core of an axial motor and a function of holding a stator coil wound around the stator core while maintaining insulation from the core. A non-conductive and non-magnetic iron core / coil holding member provided is positioned in both the circumferential direction and the axial direction, and a structure that facilitates fixing to the motor housing is proposed.

具体的な構造としては、軸方向両面に回転子を有するアキシャルギャップ回転電機において、非導電性、かつ、非磁性の材質で構成される固定子鉄心保持機能兼、コイル巻回機能を備えた鉄心とコイルとを保持する保持部材を、固定子のスロット数で等分した角度を有して周方向に複数個配置される構造とし、外周側の鍔部の肉厚をコア保持部分よりコイルが入る側と反対方向に厚くして強度を向上させて構成し、その厚くなった鍔部の軸方向片側面を、外周部と接触して保持するモータハウジングの段付き部に位置決めし、鍔部の軸方向反対側面を軸方向位置決めするためのハウジング内径に接触する径を有する円筒リング状の保持部材で軸方向を押さえつけて保持される構造とすることで、軸方向に固定を行う。   Specifically, in an axial gap rotating electrical machine having rotors on both sides in the axial direction, an iron core having a stator core holding function and a coil winding function made of a non-conductive and non-magnetic material. The holding member that holds the coil and the coil has a structure in which a plurality of holding members are arranged in the circumferential direction with an angle equally divided by the number of slots of the stator. Thicken in the opposite direction to the entering side to improve strength, and position the thickened collar part on one side in the axial direction on the stepped part of the motor housing that is held in contact with the outer periphery. It is fixed in the axial direction by adopting a structure in which the axial direction is pressed down and held by a cylindrical ring-shaped holding member having a diameter in contact with the inner diameter of the housing for axially positioning the opposite side surface.

上記の構造とすることで、コイルを巻回した固定子鉄心,鉄心とコイルとを保持する保持部材や固定子コイルは樹脂モールドされずにハウジングに固定できるため、コイルの温度上昇によって熱膨張や収縮があった場合でも、ハウジングとの締結部に与える影響はほとんど無いと考えられる。また、樹脂モールドを行わないために、その組立(モールド)工程や、樹脂のコストを削減可能であり、上記の課題が解決でき、外観上通常のモータと同様の扱いが可能なモータ構成が可能とできる。   With the above structure, the stator core around which the coil is wound, the holding member that holds the core and the coil, and the stator coil can be fixed to the housing without being resin-molded. Even if there is contraction, it is considered that there is almost no influence on the fastening portion with the housing. Also, since resin molding is not performed, the assembly (molding) process and resin cost can be reduced, the above problems can be solved, and a motor configuration that can be handled in the same way as a normal motor in appearance is possible. And can.

本発明によれば、前述した公知文献のようにコイルを巻回した固定子鉄心,鉄心とコイルとを保持する保持部材や固定子コイルを樹脂モールドしないでハウジングに固定できるため、コイルの温度上昇によって熱膨張や収縮があった場合でも、ハウジングとの締結部に与える影響はほとんど無く、また、樹脂モールドを行わないために、その組立(モールド)工程や、樹脂のコストを削減可能である。   According to the present invention, since the stator core around which the coil is wound, the holding member for holding the core and the coil, and the stator coil can be fixed to the housing without resin molding as in the above-mentioned known literature, the temperature of the coil increases. Even when thermal expansion or contraction occurs due to the above, there is almost no influence on the fastening portion with the housing, and since the resin molding is not performed, the assembly (molding) process and the cost of the resin can be reduced.

本発明のアキシャルギャップモータの固定子鉄心保持機能兼コイル保持機能を備えた鉄心・コイル保持部材1の斜視図である。1 is a perspective view of an iron core / coil holding member 1 having a stator core holding function and a coil holding function of an axial gap motor of the present invention. FIG. 鉄心・コイル保持部材1にコイルを巻回して、鉄心を保持した状態でモータハウジングに組立を行った状態を中央部の断面を含んで示した斜視図である。It is the perspective view which showed the state which assembled the motor housing in the state which wound the coil around the iron core / coil holding member 1 and held the iron core, including the cross section of the central portion. 本発明の鉄心・コイル保持部材1と鉄心の保持構造について説明する図である。It is a figure explaining the iron core and coil holding member 1 of this invention, and the holding structure of an iron core. 本発明の鉄心・コイル保持部材1の保持強度向上のための各種パターンを示す図である。It is a figure which shows the various patterns for the holding strength improvement of the iron core and coil holding member 1 of this invention. 本発明の鉄心・コイル保持部材1の保持強度向上のための各種パターンでの軸方向固定の構成例を示す図である。It is a figure which shows the structural example of the axial direction fixation in the various patterns for the holding strength improvement of the iron core and coil holding member 1 of this invention. 本発明の第2の実施例の鉄心・コイル保持部材1を斜視図によって示す図である。It is a figure which shows the iron core and coil holding member 1 of 2nd Example of this invention with a perspective view. 本発明の鉄心・コイル保持部材1を用いた固定子を用いたアキシャルギャップモータの構成を斜視図で示した図である。It is the figure which showed the structure of the axial gap motor using the stator using the iron core and coil holding member 1 of this invention with the perspective view. 鉄心の構造を示す図である。It is a figure which shows the structure of an iron core.

以下、本発明の実施例を図面を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

以下、本発明の第1の実施例について図1及び図2を用いて説明する。
図1に本発明のアキシャルギャップモータの固定子鉄心保持機能兼コイル保持機能を備えた鉄心・コイル保持部材(鉄心とコイルとを保持する保持部材)1の斜視図を示す。この鉄心・コイル保持部材1は、非導電性でかつ、非磁性の材料で構成される。この鉄心・コイル保持部材1の開き角度θは、360度をモータの固定子100のスロット数で割った角度(この場合は40度)となるように構成する。また、中央の扇型形状の孔4は貫通孔であり、ここに固定子鉄心が配置されるものである。この固定子鉄心の周方向には、鉄心とコイルが電気的に絶縁されるように鉄心・コイル保持部材1の胴部3にコイルを巻回し、軸方向(紙面上下方向)にはみ出さないように保持するための鍔部2,2′を有している。この鍔部2の外周側の一部には、強度を高めるために、一部の厚みをコイル巻回部分よりも厚く構成している箇所6(厚肉部)を周方向に設けている。鍔部2に設けた厚肉部6は、鍔部2′の最外径よりもさらに径が大きくなる部分に設けられており、鍔部2′の最外周に対して径方向外側に寸法d1だけ突き出すように設けられている。これは、通常はコイルを巻回する部分の鍔部や胴部の肉厚が薄いほど、この領域に配置する導電材料(コイル)の断面積を大きくでき、コイルからの損失を小さくできるためである。また、固定子100の軸方向両面には、狭ギャップを介して回転子が配置されるため、固定子鉄心とその周囲に巻回したコイルの領域の軸方向両端部には構造物を突出させられないためである。また、鍔部2,2′の周方向端部に切り欠き8を設けた構造とした。切り欠き8は、径方向において、ほぼ胴部3が設けられる範囲全体に渡って設けられている。これは、コイルを巻回した後に、隣合うコイルとの間に相間絶縁のための部材を保持するための位置決めのための溝である。さらに図1には、内径側の鍔部2に、軸方向の段付き部5を形成した。この段付き部5により、内周側に配置する部品の軸方向位置決めを行うことが目的である。また、鍔部2,2′の少なくともいずれか一方の一部にはコイルの端末線を引き出すための切り欠き7を少なくとも一か所以上設けることも必要である。
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 shows a perspective view of an iron core / coil holding member (holding member for holding an iron core and a coil) 1 having a stator core holding function and a coil holding function of the axial gap motor of the present invention. The iron core / coil holding member 1 is made of a non-conductive and non-magnetic material. The opening angle θ of the iron core / coil holding member 1 is configured to be an angle obtained by dividing 360 degrees by the number of slots of the stator 100 of the motor (in this case, 40 degrees). The central fan-shaped hole 4 is a through-hole, and a stator core is disposed here. In the circumferential direction of the stator core, the coil is wound around the body 3 of the iron core / coil holding member 1 so that the iron core and the coil are electrically insulated from each other so as not to protrude in the axial direction (up and down direction on the paper surface). 2 and 2 'for holding. In order to increase the strength, a part 6 (thick part) having a part thicker than the coil winding part is provided in a part of the outer peripheral side of the flange part 2 in the circumferential direction. The thick wall portion 6 provided in the flange portion 2 is provided in a portion where the diameter is further larger than the outermost diameter of the flange portion 2 ', and the dimension d is radially outward with respect to the outermost periphery of the flange portion 2'. It is provided so that only one sticks out. This is because the cross-sectional area of the conductive material (coil) disposed in this region can be increased and the loss from the coil can be reduced as the thickness of the collar or body of the portion around which the coil is wound is usually reduced. is there. In addition, since the rotor is disposed on both sides in the axial direction of the stator 100 via a narrow gap, a structure is projected from both ends in the axial direction of the stator core and the coil wound around the stator core. It is because it is not possible. Moreover, it was set as the structure which provided the notch 8 in the circumferential direction edge part of the collar parts 2 and 2 '. The notch 8 is provided over the entire range in which the body portion 3 is provided in the radial direction. This is a positioning groove for holding a member for interphase insulation between adjacent coils after winding the coil. Further, in FIG. 1, a stepped portion 5 in the axial direction is formed on the flange portion 2 on the inner diameter side. The purpose of this stepped portion 5 is to perform axial positioning of components arranged on the inner peripheral side. It is also necessary to provide at least one notch 7 for drawing out the terminal wire of the coil in a part of at least one of the flange portions 2 and 2 '.

図2は、9スロットの固定子鉄心を持つアキシャルギャップ構造のモータ固定子を示している。図1に示した鉄心・コイル保持部材1にコイルを巻回して、鉄心を保持した状態でモータハウジングに組立を行った状態を中央部の断面を含んで示した斜視図である。鉄心・コイル保持部材1の中央部貫通孔には、固定子鉄心11が配置されている。固定子鉄心11と電気的に絶縁されて鉄心・コイル保持部材1の周囲をコイル12が巻回されている。巻回されたコイル12の端末線は、3つのコイルが連続で巻回されてつながっており、3つずつのコイルの最終端が、ひとつにまとめて接続されており、モータ固定子100の外部には、3本の端末線13u,13v,13wが出力される。コイル12と固定子鉄心11が保持された鉄心・コイル保持部材1は、周方向に接触して配置され、9個で360度となって周方向に位置決めされる。この状態で、モータ固定子ハウジング14に圧入,焼嵌め固定で挿入されて、軸方向は、鍔部2の厚肉部6の端面を、ハウジング内径を異ならせることで構成される段付き構造部14aに接触固定することで、位置決めされる構造となっている。また、その厚めとなった鍔部2の厚肉部6のもう片方の端面をハウジングの内径部に圧入する外径を有した円筒状リングのカラー15によって押さえる構造として、鉄心・コイル保持部材1を軸方向に固定する構造とした。   FIG. 2 shows an axial gap structure motor stator having a 9-slot stator core. FIG. 2 is a perspective view showing a state in which a coil is wound around the iron core / coil holding member 1 shown in FIG. A stator core 11 is disposed in the central through hole of the core / coil holding member 1. A coil 12 is wound around the iron core / coil holding member 1 so as to be electrically insulated from the stator iron core 11. The terminal wire of the wound coil 12 is connected by three coils being continuously wound, and the final ends of the three coils are connected together and connected to the outside of the motor stator 100. Output three terminal lines 13u, 13v, 13w. The iron core / coil holding member 1 holding the coil 12 and the stator core 11 is arranged in contact with the circumferential direction, and nine pieces are positioned in the circumferential direction at 360 degrees. In this state, it is inserted into the motor stator housing 14 by press-fitting and shrink-fitting and fixed, and the axial direction is a stepped structure portion formed by making the end surface of the thick portion 6 of the flange portion 2 different in housing inner diameter. It is structured to be positioned by contact fixing to 14a. In addition, as a structure in which the other end face of the thick part 6 of the thickened collar part 2 is pressed by a collar 15 of a cylindrical ring having an outer diameter for press-fitting into the inner diameter part of the housing, the iron core / coil holding member 1 The structure is fixed in the axial direction.

また、内径部は、この例では、すべり軸受け部16の段付き部を鉄心・コイル保持部材1の内周側に設けられた段付き部5に組み合わせることによって、鉄心・コイル保持部材1の集合体である固定子100と軸受け部16の同軸度を保証する構成としている。また、軸方向反対側についても同様に、鉄心・コイル保持部材1の内周側に設けられた段付き部5に組み合わせ可能なリング形状のカラー17を軸受け部16の外周部に圧入して固定して、鉄心・コイル保持部材1の集合体である固定子が周方向、および、軸方向に拘束される構造としている。   In this example, the inner diameter portion is a set of the iron core / coil holding member 1 by combining the stepped portion of the sliding bearing portion 16 with the stepped portion 5 provided on the inner peripheral side of the iron core / coil holding member 1. The configuration is such that the coaxiality between the stator 100 and the bearing portion 16 as a body is guaranteed. Similarly, on the opposite side in the axial direction, a ring-shaped collar 17 that can be combined with the stepped portion 5 provided on the inner peripheral side of the iron core / coil holding member 1 is press-fitted and fixed to the outer peripheral portion of the bearing portion 16. And the stator which is an aggregate | assembly of the iron core and the coil holding member 1 is set as the structure restrained in the circumferential direction and an axial direction.

次に図3を用いて、鉄心・コイル保持部材1と鉄心の保持構造について説明する。図3(a)から(d)にはそれぞれ別の方法による鉄心の保持方法をそれぞれ斜視図で示している。まず図3(a)は、鉄心・コイル保持部材1に鉄心を圧入固定する方法である。図示のように、鉄心・コイル保持部材1に鉄心を挿入して組立を行う方法であるが、鉄心の寸法を、鉄心・コイル保持部材1の貫通孔4よりも若干大きくして挿入することにより、その圧力(摩擦)によって固定子鉄心を保持することが可能である。また、圧入で無く、隙間嵌め公差での挿入組立の場合は、接着材の塗布などによる固定も可能である。   Next, the iron core / coil holding member 1 and the iron core holding structure will be described with reference to FIG. FIGS. 3A to 3D are perspective views showing different methods of holding the iron core. First, FIG. 3A shows a method of press-fitting and fixing an iron core to the iron core / coil holding member 1. As shown in the figure, the iron core is inserted into the iron core / coil holding member 1 for assembly. By inserting the iron core to be slightly larger than the through hole 4 of the iron core / coil holding member 1 The stator core can be held by the pressure (friction). In addition, in the case of insertion assembly with a clearance fit tolerance instead of press-fitting, fixing by applying an adhesive or the like is also possible.

図3(b)には、固定子鉄心11を鉄心・コイル保持部材1の貫通孔4に挿入後、絶縁部材でテーピングする方法を示している。この場合には、巻き線(コイル)を巻回してからの固定が有効と考えられる。固定子鉄心11、を挿入,巻回したコイルを包むように、鍔部に設けられた切り欠き8に合わせた幅の薄手の絶縁テープによって固定する方法である。この場合、この絶縁テープによって、固定子100として周方向に配置した時にコイルの隣合うコイル間に絶縁がなされるので、信頼性が高い固定子が得られる。絶縁テープの材質は、各種の材料が利用できるものと考えられ、PP,PPS,ポリイミド,ノーメックス,アラミド紙など、絶縁等級に相応しい材料を選定することが望ましい。   FIG. 3B shows a method in which the stator iron core 11 is inserted into the through hole 4 of the iron core / coil holding member 1 and then taped with an insulating member. In this case, fixing after winding a coil (coil) is considered effective. In this method, the stator core 11 is fixed with a thin insulating tape having a width corresponding to the notch 8 provided in the collar so as to wrap the coil inserted and wound. In this case, since this insulating tape insulates between adjacent coils when the stator 100 is disposed in the circumferential direction, a highly reliable stator can be obtained. It is considered that various materials can be used as the material of the insulating tape, and it is desirable to select a material suitable for the insulation grade, such as PP, PPS, polyimide, Nomex, and aramid paper.

図3(c)は、(b)図に示す絶縁テープと同様の効果を熱収縮材料によって構成する例である。先に示したテープ巻付けは、一つ一つに巻く作業が必要となり、製造工数が増加する。このため、あらかじめ挿入し易い寸法に成形された熱収縮チューブなどの部材を挿入し、ドライヤー乾燥などにより収縮させて構成することで工程の簡素化が図れるものである。   FIG. 3C is an example in which the same effect as that of the insulating tape shown in FIG. The tape winding described above requires the work of winding one by one, increasing the number of manufacturing steps. For this reason, it is possible to simplify the process by inserting a member such as a heat-shrinkable tube, which has been formed in a size that can be easily inserted in advance, and shrinking it by dryer drying or the like.

図3(d)は、固定子鉄心11を金型内に配置して、その表面に射出成形によって鉄心・コイル保持部材1を一体化する手法である。(a)図から(c)図までの方法に比べて部品化するため扱いやすく、強度も高いなどの利点があると考えられる。この場合には、コイルは、固定子鉄心11と鉄心・コイル保持部材1が一体になった後に巻回する必要があり、先に述べたような隣合うコイルとの相間絶縁は、別途設けなければならない。   FIG.3 (d) is the method of arrange | positioning the stator core 11 in a metal mold | die, and integrating the core and the coil holding member 1 on the surface by injection molding. Compared to the method shown in FIGS. (A) to (c), it is considered that there are advantages such as easy handling and high strength because it is made into parts. In this case, the coil must be wound after the stator core 11 and the iron core / coil holding member 1 are integrated, and the interphase insulation as described above must be provided separately. I must.

図4には、鉄心・コイル保持部材1の保持強度向上のための各種パターンを示す。(a)図はこれまで述べてきた鉄心・コイル保持部材1を示しており、外周方向鍔部の一か所のみに厚肉部6が設けられている例である。(b)図は、厚肉部6が、軸方向両側の鍔部2,2′に構成される例を示す。(c)図は、内周方向も強固に軸方向を固定する場合の例を示しており、内周部にも厚肉部6を1か所設けている例である。(d)図は鍔部2,2′の内周側にそれぞれ厚肉部6を設けている例を示す。   FIG. 4 shows various patterns for improving the holding strength of the iron core / coil holding member 1. (A) The figure has shown the iron core and coil holding member 1 described so far, and is the example in which the thick part 6 is provided only in one place of the outer peripheral direction collar part. (B) The figure shows an example in which the thick portion 6 is formed in the flange portions 2 and 2 'on both sides in the axial direction. (C) The figure has shown the example in the case of fixing an axial direction firmly also in an inner peripheral direction, and is an example which provided one thick part 6 also in the inner peripheral part. (D) The figure shows the example which has provided the thick part 6 in the inner peripheral side of the collar parts 2 and 2 ', respectively.

図5は、その軸方向固定の構成例を示す。(a)図は、図2で示したとおり、厚めに構成された鍔部6をハウジング14の段付き構造部14aと、カラー15による抑えにより軸方向に固定する構造を示す。(b)図は、図4(b)に示したように、軸方向両側の鍔部2,2′に厚肉部6が構成される例を示しており、この場合には、ハウジング14の段付き構造14aと紙面で図示する上側の厚肉部6を、非磁性、かつ、非導電性のカラー18を挟み、軸方向端部下側からさらに円筒リング形状のカラー15で押さえる構造となる。このとき、軸方向中央部に位置するカラー18は、セラミクス等の材質などが考えられ、強度を保つ以外に、コイルから発生するジュール熱をハウジング14に伝熱させる目的で、熱伝導率の高い材質とすることが有効である。また、熱伝導ジェル等の接着剤系の部材16を挿入し、軸方向の固定は、鉄心・コイル保持部材1の剛性で保つという方法も考えられる。   FIG. 5 shows an example of the axially fixed configuration. (A) As shown in FIG. 2, the figure shows a structure in which the thickly configured flange portion 6 is fixed in the axial direction by the stepped structure portion 14 a of the housing 14 and the collar 15. FIG. 4B shows an example in which the thick portions 6 are formed on the flange portions 2 and 2 ′ on both sides in the axial direction, as shown in FIG. The stepped structure 14a and the upper thick portion 6 shown in the drawing are sandwiched between the non-magnetic and non-conductive collars 18, and are further pressed by the cylindrical ring-shaped collar 15 from the lower side in the axial direction. At this time, the collar 18 positioned in the central portion in the axial direction may be made of a material such as ceramics, and has high thermal conductivity for the purpose of transferring Joule heat generated from the coil to the housing 14 in addition to maintaining strength. It is effective to use a material. Further, a method of inserting an adhesive member 16 such as a heat conductive gel and maintaining the axial direction with the rigidity of the iron core / coil holding member 1 is also conceivable.

続いて、本発明の第2の実施例について図6を用いて説明する。
第1の実施例では、鉄心・コイル保持部材1の鍔部2,2′に厚みをもたせる、すなわち厚肉部6を設けることにより軸方向固定する強度を保つ例を示した。第2の実施例では、別の方法によって鉄心・コイル保持部材1の鍔部2,2′の剛性等の機械的強度を向上し、軸方向の固定を行う方法を説明する。
Subsequently, a second embodiment of the present invention will be described with reference to FIG.
In the first embodiment, an example has been shown in which the flanges 2 and 2 'of the iron core / coil holding member 1 have a thickness, that is, by providing the thick portion 6, the strength of fixing in the axial direction is maintained. In the second embodiment, a method of improving the mechanical strength such as rigidity of the flange portions 2 and 2 'of the iron core / coil holding member 1 by another method and fixing in the axial direction will be described.

図6は、第2の実施例の鉄心・コイル保持部材1を斜視図によって示している。図6(a)には、鉄心・コイル保持部材1の中に挿入する金属製のフレーム26の形状を示す。フレーム26は、外周部の鍔部を構成する部分26aと、径方向のコイル巻回部分の鍔部を構成する部分26bとを有する形状となっている。この材質は、アキシャルギャップモータの磁石回転子からの磁束を遮ることが無いように非磁性金属である必要がある。また、導電性金属の場合は、固定子鉄心を囲むように構成すると、その周囲に渦電流が発生するため、周方向の一部がつながらないことが重要である。この例では、内周側がつながらないように構成している。セラミクスなどの部材で構成する場合には、そのような考慮は不要である。この厚みは、鉄心・コイル保持部材1の鍔部の厚みの半分程度とすることが望ましい。あまり厚いとコイルの占積率が低下して損失増加につながるためである。このフレーム26をインサート成形して鉄心・コイル保持部材1と一体化した形状を図6(c)に示す。図1で示した鉄心・コイル保持部材1のように、鍔部を厚めにしなくとも、金属製のフレーム(骨格)で強度が向上されているため、このままの厚みで固定することが可能となる。コイルが巻かれる面は、絶縁物(樹脂)で構成され、それ以外の部分で強度向上のための金属骨格が表面に出ている構造となる。完全に樹脂の中に埋め込まれる構造でも問題はない。   FIG. 6 is a perspective view showing the iron core / coil holding member 1 of the second embodiment. FIG. 6A shows the shape of the metal frame 26 inserted into the iron core / coil holding member 1. The frame 26 has a shape having a portion 26a constituting a collar portion of the outer peripheral portion and a portion 26b constituting a collar portion of a coil winding portion in the radial direction. This material needs to be a non-magnetic metal so as not to block the magnetic flux from the magnet rotor of the axial gap motor. In the case of a conductive metal, if it is configured so as to surround the stator core, an eddy current is generated around it, so it is important that a part in the circumferential direction is not connected. In this example, the inner peripheral side is not connected. Such a consideration is not necessary when it is made of a member such as ceramics. This thickness is desirably about half of the thickness of the collar portion of the iron core / coil holding member 1. This is because if the thickness is too large, the space factor of the coil decreases and the loss increases. A shape in which the frame 26 is insert-molded and integrated with the iron core / coil holding member 1 is shown in FIG. As in the iron core / coil holding member 1 shown in FIG. 1, since the strength is improved by a metal frame (framework) without increasing the thickness of the collar portion, it is possible to fix it with the thickness as it is. . The surface on which the coil is wound is made of an insulating material (resin), and has a structure in which a metal skeleton for improving the strength is exposed on the surface in other portions. There is no problem even if the structure is completely embedded in the resin.

尚、フレーム部分26a,26bは、鍔部2,2′のいずれか一方に設けてもよく、また両方に設けても良い。   The frame portions 26a and 26b may be provided on either one of the flange portions 2 and 2 ', or may be provided on both.

図6(b)には、軸方向にも強度を向上した金属骨格(フレーム27)の例を示す。フレーム27は、(a)図の鍔部2,2′の一部を構成する部分26a,26bと同様に、鍔部2,2′の一部を構成する部分27a,27bを有しているが、軸方向にもフレーム部分27cを構成し、上下の鍔部2,2′を高強度化する構成である。これを内蔵した鉄心・コイル保持部材1を図6(d)に示す。これにより、軸方向両側の鍔部2,2′とそれを支える強度が向上できるため、図5(b)に示した方法により軸方向の固定が可能となる。   FIG. 6B shows an example of a metal skeleton (frame 27) whose strength is improved also in the axial direction. The frame 27 has portions 27a and 27b that constitute a part of the flanges 2 and 2 ', similarly to the parts 26a and 26b that constitute a part of the flanges 2 and 2' in FIG. However, the frame portion 27c is also formed in the axial direction to increase the strength of the upper and lower flange portions 2, 2 '. The iron core / coil holding member 1 incorporating this is shown in FIG. As a result, the flanges 2 and 2 ′ on both sides in the axial direction and the strength for supporting them can be improved, so that the axial direction can be fixed by the method shown in FIG.

図6(e)には、樹脂に炭素繊維,アラミド繊維,ナノフィラー叉はコアシェル型の粒子などのGF(グラスファイバー)を含有した樹脂による高強度化を加えた鉄心・コイル保持部材1を示す。これによって、鍔部2,2′の厚みによる強度向上と、樹脂本来の強度向上によって保持強度の向上がはかれるものである。   FIG. 6 (e) shows an iron core / coil holding member 1 obtained by adding strength to a resin containing GF (glass fiber) such as carbon fiber, aramid fiber, nanofiller or core-shell type particles in the resin. . As a result, the holding strength can be improved by improving the strength by the thickness of the flange portions 2 and 2 'and by improving the original strength of the resin.

上記のほか、鉄心・コイル保持部材1を、金属製の保持部材を非導電性部材でコーティングして構成しても良い。   In addition to the above, the iron core / coil holding member 1 may be configured by coating a metal holding member with a non-conductive member.

続いて、本発明の第3の実施例について図7を用いて説明する。
図7は、これまで説明してきた鉄心・コイル保持部材1を用いた固定子100を用いたアキシャルギャップモータの構成を斜視図で示したものである。回転子ヨーク31とそれに貼り付けられた永久磁石32と永久磁石間スペーサ33とで構成される回転子200a,200bが、図2に示した固定子100に対して軸方向両側に設けられている。固定子100に対して軸方向両側に設けられる2つの回転子200a,200bは、シャフト34を介して連結されており、すべり軸受け16によって固定子100に対して回転可能に構成されている。回転子200a,200bは、コイル電流によってトルクを発生し、モータとして動作する。固定子100には、そのトルクの反力による回転力がかかるのと、磁石による吸引力で軸方向への力が加わることになる。これまで述べてきたようにこれらの力に対して、軸方向の固定、及び、回転方向の固定が必要であり、鉄心・コイル保持部材1の鍔部2,2′によって充分な固定を行う構造となっている。
Subsequently, a third embodiment of the present invention will be described with reference to FIG.
FIG. 7 is a perspective view showing a configuration of an axial gap motor using the stator 100 using the iron core / coil holding member 1 described so far. Rotors 200a and 200b each including a rotor yoke 31, a permanent magnet 32 attached thereto, and a spacer 33 between permanent magnets are provided on both sides in the axial direction with respect to the stator 100 shown in FIG. . Two rotors 200 a and 200 b provided on both sides in the axial direction with respect to the stator 100 are connected via a shaft 34, and are configured to be rotatable with respect to the stator 100 by a sliding bearing 16. The rotors 200a and 200b generate torque by a coil current and operate as a motor. The stator 100 receives a rotational force due to the reaction force of the torque, and an axial force is applied by the attractive force of the magnet. As described above, it is necessary to fix these forces in the axial direction and in the rotational direction, and a structure that sufficiently fixes the flanges 2 and 2 ′ of the iron core / coil holding member 1. It has become.

図8には、鉄心の構造が異なる実施例について示す。(a)図には、電磁鋼板、または鉄基アモルファス,ファインメット,ナノクリスタル材料などの箔帯を周方向に積層した構造の鉄心を示すこのような鉄心を扇型形状に構成した鉄心を利用する場合に本発明の鉄心・コイル保持部材1が有効である。また(b)図は、圧粉磁心,フェライトなどの粉末を圧縮成形した鉄心を利用する例である。(c)図は、電磁鋼板、または鉄基アモルファス,ファインメット,ナノクリスタル材料などの箔帯を周方向に積層した構造の鉄心を示すこのような鉄心を長方形断面として構成する例を示している。(d)図は、(a)図から(c)図に示した軟磁性材料の鉄心に方向性を付与した鉄心を示す。本発明のアキシャルギャップモータでは、軸方向にしか磁束の流れは無いために、この方向に異方性をつける構造としたものである。   In FIG. 8, it shows about the Example from which the structure of an iron core differs. (A) The figure shows the iron core in which a magnetic steel sheet or iron core with a structure in which foil strips of iron-based amorphous, finemet, nanocrystal materials, etc. are laminated in the circumferential direction is formed in a fan shape. In this case, the iron core / coil holding member 1 of the present invention is effective. FIG. 4B shows an example in which an iron core obtained by compression molding powder such as a dust core and ferrite is used. (C) The figure has shown the example which comprises such an iron core which shows the iron core of the structure which laminated | stacked foil strips, such as an electromagnetic steel plate or iron-based amorphous | non-crystalline amorphous, fine met, and nanocrystal material, in the circumferential direction as a rectangular cross section. . (D) The figure shows the iron core which provided directionality to the iron core of the soft magnetic material shown in the (a) figure to the (c) figure. In the axial gap motor of the present invention, since the magnetic flux flows only in the axial direction, an anisotropy is provided in this direction.

本発明のアキシャル型構造のモータは小型,高効率,低騒音を目的とした幅広いモータに応用することができる。また、本発明のモータ構造を用いたシステムは小形化,高効率化可能であり、ファン,ポンプシステム,家電用モータ,自動車補機類の駆動用,小形風力発電等の一般的な回転機システムに幅広く応用することが可能である。   The motor of the axial type structure of the present invention can be applied to a wide range of motors aimed at small size, high efficiency and low noise. Further, the system using the motor structure of the present invention can be reduced in size and efficiency, and a general rotating machine system such as a fan, a pump system, a motor for home appliances, a driving of automobile auxiliary machinery, a small wind power generation, etc. It can be widely applied to.

1 鉄心・コイル保持部材
2 鍔部
3 胴部
4 固定子鉄心保持用貫通孔
5 内周側段付き部
6 外周側肉厚構造鍔部
7 コイル端末引き出し用切り欠き部
8 相間絶縁物位置決め用切り欠き部
11 固定子鉄心
12 固定子コイル
13u,13v,13w コイル端末線
14 モータ固定子ハウジング
15 固定子軸方向保持用カラー
16 軸受け部
17 軸受け部固定用カラー
18 軸方向中央部カラー
21 絶縁テープ
22 熱収縮部材
23 射出成型用金型
24 鉄心・コイル保持部材成形用キャビティ
25 樹脂注入用スプール
26 板状フレーム
27 軸方向強度向上フレーム
31 ロータヨーク
32 永久磁石
33 磁石間スペーサ
34 シャフト
DESCRIPTION OF SYMBOLS 1 Iron core / coil holding member 2 Gutter part 3 Body part 4 Stator iron core holding through-hole 5 Inner peripheral side stepped part 6 Outer peripheral side thick structure collar part 7 Coil terminal pull-out notch part 8 Interphase insulator positioning cut Notch portion 11 Stator iron core 12 Stator coils 13u, 13v, 13w Coil end wire 14 Motor stator housing 15 Stator axial holding collar 16 Bearing portion 17 Bearing portion fixing collar 18 Axial central portion collar 21 Insulating tape 22 Heat shrinkable member 23 Injection mold 24 Iron core / coil holding member molding cavity 25 Resin injection spool 26 Plate frame 27 Axial strength improvement frame 31 Rotor yoke 32 Permanent magnet 33 Intermagnet spacer 34 Shaft

Claims (5)

2つの回転子と、  Two rotors,
前記2つの回転子に挟まれた固定子と、  A stator sandwiched between the two rotors;
前記2つの回転子と前記固定子を収納するハウンジングと、を備え、  A housing for housing the two rotors and the stator,
前記固定子は、固定子鉄心と、当該固定子鉄心を保持しかつ非導電性及び非磁性材料で構成された保持部材と、当該保持部材に巻回されたコイルと、当該保持部材の鍔部に固定された金属製のフレームと、を有し、  The stator includes a stator core, a holding member that holds the stator core and is made of a non-conductive and non-magnetic material, a coil wound around the holding member, and a flange portion of the holding member A metal frame fixed to the
前記ハウンジングは、内周部に段差を形成し、  The housing forms a step in the inner periphery,
前記保持部材は、当該保持部材の鍔部が前記フレームを挟んだ状態で、前記段差と対向するように、前記ハウンジングの内周部に固定されるアキシャルギャップ回転電機。  The holding member is an axial gap rotating electrical machine that is fixed to the inner peripheral portion of the housing so that the flange portion of the holding member faces the step in a state where the frame sandwiches the frame.
請求項1に記載のアキシャルギャップ回転電機において、
前記鍔部は、前記段差と対向する第1鍔部と、前記段差と対向しない第2鍔部と、を有し、
前記フレームは、前記第1鍔部と対向する第1フレーム部と、前記第2鍔部と対向する第2フレーム部と、を有するアキシャルギャップ回転電機。
In the axial gap rotating electrical machine according to claim 1,
The flange has a first flange facing the step and a second flange not facing the step,
An axial gap rotating electrical machine in which the frame includes a first frame portion facing the first flange portion and a second frame portion facing the second flange portion.
請求項1または2に記載のアキシャルギャップ回転電機において、
前記保持部材は、前記固定子鉄心を収納する胴部を有し、
前記フレームは、前記胴部と対向する第3フレーム部を有するアキシャルギャップ回転電機。
In the axial gap rotating electrical machine according to claim 1 or 2,
The holding member has a body portion that houses the stator core;
The axial gap rotating electric machine, wherein the frame has a third frame portion facing the body portion.
請求項2に記載のアキシャルギャップ回転電機において、
前記保持部材と固定子鉄心及びコイルとを絶縁テープによって固定することで、周方向の相間絶縁がなされていることを特徴とするアキシャルギャップ回転電機。
In the axial gap rotating electrical machine according to claim 2,
An axial gap rotating electrical machine characterized in that the interphase insulation in the circumferential direction is achieved by fixing the holding member, the stator core and the coil with an insulating tape.
請求項2に記載のアキシャルギャップ回転電機において、
前記保持部材と固定子鉄心及びコイルとを熱収縮部材によって固定することで、周方向の相間絶縁がなされていることを特徴とするアキシャルギャップ回転電機。
In the axial gap rotating electrical machine according to claim 2,
An axial gap rotating electrical machine, wherein the holding member, the stator core, and the coil are fixed by a heat shrinkable member so as to achieve interphase insulation in the circumferential direction.
JP2011284703A 2011-12-27 2011-12-27 Axial gap rotating electric machine Expired - Fee Related JP5879121B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011284703A JP5879121B2 (en) 2011-12-27 2011-12-27 Axial gap rotating electric machine
PCT/JP2012/070053 WO2013099343A1 (en) 2011-12-27 2012-08-07 Axial gap rotating electrical machine
CN201290000752.2U CN204205774U (en) 2011-12-27 2012-08-07 Axial-gap rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011284703A JP5879121B2 (en) 2011-12-27 2011-12-27 Axial gap rotating electric machine

Publications (2)

Publication Number Publication Date
JP2013135541A JP2013135541A (en) 2013-07-08
JP5879121B2 true JP5879121B2 (en) 2016-03-08

Family

ID=48696857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011284703A Expired - Fee Related JP5879121B2 (en) 2011-12-27 2011-12-27 Axial gap rotating electric machine

Country Status (3)

Country Link
JP (1) JP5879121B2 (en)
CN (1) CN204205774U (en)
WO (1) WO2013099343A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105684269A (en) * 2013-11-22 2016-06-15 株式会社日立制作所 Axial gap type rotating electric machine
JP6210002B2 (en) * 2014-03-19 2017-10-11 マツダ株式会社 Axial gap type rotating electrical machine
WO2015145901A1 (en) * 2014-03-28 2015-10-01 株式会社日立産機システム Axial-air-gap motor and bobbin for motor
EP3131188B1 (en) * 2014-04-11 2022-02-23 Hitachi Industrial Equipment Systems Co., Ltd. Axial air gap rotating electric machine
WO2015159418A1 (en) * 2014-04-18 2015-10-22 株式会社日立産機システム Axial air gap rotating electric machine
EP3136552B1 (en) * 2014-04-21 2020-02-12 Hitachi Industrial Equipment Systems Co., Ltd. Axial air gap rotating electric machine and rotating electric machine bobbin
TWI558067B (en) * 2015-09-18 2016-11-11 財團法人工業技術研究院 Winding frame structure for motors
CN108604843B (en) * 2015-11-25 2020-10-16 巨铠实业股份有限公司 Coreless motor structure
JP6740865B2 (en) * 2016-11-07 2020-08-19 株式会社デンソー Brushless motor
DE112017005600T5 (en) 2016-11-07 2019-09-12 Denso Corporation Mounting structure for a vehicle engine, equipment in a vehicle, and brushless motor
WO2018084108A1 (en) * 2016-11-07 2018-05-11 株式会社デンソー Attachment structure for vehicle motor, in-vehicle equipment, and brushless motor
CN110073578A (en) * 2017-01-31 2019-07-30 株式会社日立产机系统 Axial-gap rotary electric machine
CN109478809B (en) * 2017-01-31 2020-09-18 株式会社日立产机系统 Axial gap type rotating electric machine
US10818427B2 (en) * 2018-01-12 2020-10-27 Regal Beloit America, Inc. Stator assembly including a bobbin having an extension tab and a retention rib
JP7262926B2 (en) * 2018-03-16 2023-04-24 株式会社日立製作所 Radial gap type rotary electric machine
JP6595033B2 (en) * 2018-04-13 2019-10-23 株式会社日立産機システム Axial air gap type rotating electrical machine
CN109802539A (en) * 2019-01-31 2019-05-24 高宪立 Building block system stator disc, magneto and its method for control speed
KR102136031B1 (en) * 2019-07-30 2020-07-20 주식회사 세원공업 Cored AFPM motor
US11646611B2 (en) 2021-07-28 2023-05-09 GM Global Technology Operations LLC Locking mechanism for segmented stator core
US11689073B2 (en) 2021-08-13 2023-06-27 GM Global Technology Operations LLC Rotor core design
WO2023112829A1 (en) * 2021-12-14 2023-06-22 株式会社プロテリアル Single-phase rotary electric machine, and vacuum cleaner, electric aircraft, and electric machine to which single-phase rotary electric machine is applied
DE102022002674A1 (en) 2022-07-22 2024-01-25 Mercedes-Benz Group AG Pole plate for an electrical pole of an electrical machine, as well as pole tooth, electrical machine and method for producing a pole tooth

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6285661A (en) * 1985-10-08 1987-04-20 Hitachi Ltd Armature for rotary electric machine
JPH11178264A (en) * 1997-12-10 1999-07-02 Fuji Electric Co Ltd Armature winding for low-voltage electric machine
JP4234831B2 (en) * 1998-12-28 2009-03-04 日本電産シバウラ株式会社 Axial gap motor
JP3718120B2 (en) * 2000-12-05 2005-11-16 株式会社荏原製作所 Salient pole concentrated winding motor
JP4305649B2 (en) * 2003-02-26 2009-07-29 株式会社富士通ゼネラル Axial gap type electric motor
JP2005110372A (en) * 2003-09-29 2005-04-21 Aisin Seiki Co Ltd Axial gap motor
WO2007013171A1 (en) * 2005-07-29 2007-02-01 Wittenstein Ternary Co., Ltd. Motor device with built-in drive controls and actuator integral with the motor device
JP2007312560A (en) * 2006-05-22 2007-11-29 Toyota Motor Corp Insulator and rotary electric machine
US20080061649A1 (en) * 2006-09-08 2008-03-13 Lg Electronics Inc. Axial gap motor and method for manufacturing the same
JP4853652B2 (en) * 2007-01-31 2012-01-11 株式会社富士通ゼネラル Axial air gap type electric motor
JP2008245504A (en) * 2007-10-24 2008-10-09 Daikin Ind Ltd Manufacturing method of armature core, and armature core
JP5269728B2 (en) * 2009-09-07 2013-08-21 株式会社日立エレクトリックシステムズ High toughness and high thermal conductivity curable resin composition, cured product thereof and molded electric machine
JP5567311B2 (en) * 2009-10-22 2014-08-06 株式会社日立産機システム Axial gap motor, compressor, motor system, and generator

Also Published As

Publication number Publication date
JP2013135541A (en) 2013-07-08
CN204205774U (en) 2015-03-11
WO2013099343A1 (en) 2013-07-04

Similar Documents

Publication Publication Date Title
JP5879121B2 (en) Axial gap rotating electric machine
JP7142700B2 (en) Distributed winding radial gap type rotary electric machine and its stator
JP7344807B2 (en) Coil bobbin, stator core of distributed winding radial gap type rotating electrical machine, and distributed winding radial gap type rotating electrical machine
JP5958502B2 (en) Rotor and rotating electric machine using the same
CN108370178B (en) Axial gap type rotating electric machine and method for manufacturing same
JP6434694B2 (en) Rotating electrical machinery
US20160268866A1 (en) Axial gap type rotating electrical machine
JP5314908B2 (en) Rotating electric machine stator and rotating electric machine
JP2015012679A (en) Axial gap type rotary electric machine
JP2012016141A (en) Stator of rotation electrical machine
JP6545393B2 (en) Conscious pole rotor, motor and air conditioner
WO2018037449A1 (en) Consequent-pole-type rotor, electric motor, and air conditioner
JP2010239691A (en) Stator of rotary electric machine, and rotary electric machine
JP2012143064A (en) Stator of rotary electric machine and method of manufacturing the same
CN111245164B (en) Rotating electric machine and method for manufacturing same
JP2013207946A (en) Rotary electric machine
JP6824348B2 (en) Manufacturing method of single-phase brushless motor, single-phase brushless motor, vacuum cleaner equipped with single-phase brushless motor, and manufacturing method of vacuum cleaner
JP2012235696A (en) Stator of rotary electric machine
JP2012060747A (en) Method of manufacturing stator of an electric motor, and method of positioning coil for stationary part
JP2017060274A (en) Permanent magnet rotary electric machine
JP2020036437A (en) Polyphase claw pole motor
WO2011114758A1 (en) Stator and dynamo-electric machine
JP2019097258A (en) Magnetic wedge for rotating electrical machine, manufacturing method of magnetic wedge for rotating electrical machine, and rotating electrical machine
JP2012090486A (en) Stator of rotary electric machine
JP7166207B2 (en) Rotating electric machine and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160201

R150 Certificate of patent or registration of utility model

Ref document number: 5879121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees