WO2015159418A1 - Axial air gap rotating electric machine - Google Patents

Axial air gap rotating electric machine Download PDF

Info

Publication number
WO2015159418A1
WO2015159418A1 PCT/JP2014/060998 JP2014060998W WO2015159418A1 WO 2015159418 A1 WO2015159418 A1 WO 2015159418A1 JP 2014060998 W JP2014060998 W JP 2014060998W WO 2015159418 A1 WO2015159418 A1 WO 2015159418A1
Authority
WO
WIPO (PCT)
Prior art keywords
air gap
axial air
electrical machine
rotating electrical
stator
Prior art date
Application number
PCT/JP2014/060998
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 秀一
博洋 床井
利文 鈴木
酒井 亨
潤 櫻井
友則 川越
山崎 克之
恭永 米岡
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to JP2016513590A priority Critical patent/JP6375370B2/en
Priority to PCT/JP2014/060998 priority patent/WO2015159418A1/en
Priority to TW104103615A priority patent/TWI583101B/en
Publication of WO2015159418A1 publication Critical patent/WO2015159418A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • H02K3/524Fastening salient pole windings or connections thereto applicable to stators only for U-shaped, E-shaped or similarly shaped cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/12Machines characterised by the bobbins for supporting the windings

Definitions

  • the present invention relates to an axial gap type rotating electric machine, and more particularly to an axial air gap type rotating electric machine having a bobbin between a core and a coil.
  • An axial gap type rotating electrical machine has a cylindrical stator and a disk-shaped rotor arranged opposite to a rotating shaft.
  • the stator includes a plurality of cores arranged in the circumferential direction, armature windings wound around the cores, and bobbins (insulators) that insulate the cores from the windings. Since the gap surface that generates torque increases in proportion to the square of the diameter, the rotating electrical machine is suitable for a thin shape.
  • a double rotor type axial gap type rotating electrical machine in which a single stator is sandwiched between two rotors can secure twice the gap area, and thus may have better characteristics. It is attracting attention as a structure.
  • a double rotor type axial gap type rotating electrical machine since the stator core is independently arranged, a plurality of core members composed of a core, a coil and a bobbin are often arranged in an annular shape and held by a mold resin.
  • the position of the core affects the magnetic flux distribution in the rotating electrical machine, and if the positioning accuracy is insufficient, it causes a decrease in torque, an increase in cogging torque, and an increase in vibration and noise. Therefore, various studies have been made on the positioning of the core.
  • Patent Document 1 discloses a core member positioning method using a bobbin. Specifically, a locking protrusion is provided on the surface of the bobbin in the rotation axis direction, and the adjacent cores are connected to each other via a connector to fix the bobbin in a ring shape, or the protrusion is formed in the rotation axis direction of the core member. Disclosed is a method of positioning a core by providing a recess to be fitted with the mold.
  • a plurality of stator core members composed of a substantially columnar iron core, a coil wound around the outer periphery of the iron core, and a bobbin disposed between the iron core and the coil are arranged in an annular shape around the rotation axis
  • An axial air gap type rotating electrical machine having a stator integrally molded with resin, and at least one rotor facing the end surface of the iron core through a predetermined air gap in the rotational axis radial direction
  • the bobbin has a cylindrical shape including a cylindrical portion that holds the outer periphery of the iron core and an outer cylindrical portion around which the coil is wound.
  • the stator Those comprising a abutment portion for positioning the rotational axis direction of Amenba is an axial air gap type rotary electric machine.
  • the radial positioning of the core is facilitated. Further, it is possible to form the surface of the stator core into a desired shape (for example, a flat surface) without requiring processing such as unevenness on the mold. Problems, configurations, and effects other than those described above will become apparent from the following description.
  • FIG. 1 It is a perspective view showing typically the armature composition of the double rotor type axial air gap type rotating electrical machine by a 1st embodiment to which the present invention is applied. It is a perspective view which shows typically the structure of the core member (except a coil) by 1st Embodiment. It is a side view which shows typically the resin mold of the stator by 1st Embodiment. It is a top view which shows the relationship between the core member by 1st Embodiment, and a core metal mold
  • FIG. 1 shows a schematic configuration of a double rotor type axial air gap type permanent magnet synchronous motor 1 (hereinafter sometimes referred to as “motor 1”) to which the present invention is applied.
  • motor 1 a double rotor type axial air gap type permanent magnet synchronous motor 1
  • the motor 1 has a cylindrical stator 19 and two disk-shaped rotors 30 facing each other in the rotation axis direction A.
  • the stator 19 has a substantially cylindrical shape in which a plurality of core members 20 forming one slot are arranged in an annular shape around a rotation axis.
  • the core members 20 and the inner periphery of the housing 40 are integrally formed by resin molding.
  • the core member 20 is integrally formed on the inner periphery of the housing 40 by resin molding.
  • the present invention is not limited to this, and after the core members 20 are integrally formed by resin molding, the housing You may fix with 40 and a volt
  • the rotor 30 includes a permanent magnet 31 that faces the end surface of the core 21 and a yoke 32 that holds the permanent magnet 31. Permanent magnets 31 having different magnetic poles are alternately arranged on the disk-shaped yoke 32. A back yoke may be disposed between the permanent magnet 31 and the yoke 32.
  • the yoke 32 is coupled to a shaft (rotating shaft) and is held by the end bracket in a rotatable state via a bearing.
  • the end bracket is mechanically connected to the housing 40.
  • a terminal box is provided on the outer peripheral side surface of the housing 40, and the primary-side electric wire and the secondary-side electric wire are electrically connected via the terminal block. A connecting wire drawn from the coil is connected to the secondary side.
  • FIG. 2 shows the configuration of the core member 20.
  • the core member 20 includes a core 21, a bobbin 22, and a coil 23.
  • the core 21 has a columnar shape whose end surface is a substantially trapezoidal shape.
  • the core 21 is formed by laminating plate-like members containing a thin magnetic material cut at a predetermined width in the rotational axis radial direction. In the present embodiment, plate-like members whose width gradually increases from the direction of the rotation axis toward the housing 40 are stacked.
  • the magnetic material amorphous is used, but is not limited thereto.
  • the bobbin 22 is made of an insulating member such as resin.
  • the bobbin 22 has a cylindrical portion 22a having an inner diameter that approximately matches the outer diameter of the core 21, and a flange portion 22b that extends a predetermined width from the vicinity of both ends of the cylindrical portion over the entire circumference in the vertical direction.
  • the coil 23 is wound between the two flange portions 22b at the outer tube portion of the tube portion 22a.
  • the end surface of the bobbin cylinder portion 22a on the side of the rotation axis is provided with an abutting portion 10.
  • the abutting portion 10 comes into contact with a cylindrical mold placed at the center of the ring to position each core member 20 in the radial direction.
  • the abutting portion 10 has a shape of a horizontal plane orthogonal to the radial straight line from the center of the mold.
  • the abutting portion 10 is positioned in the radial direction by contacting the outer periphery of the cylindrical mold die and an approximately one point of the abutting portion 10 that is a horizontal plane (which can be said to be a line in the rotational axis direction because of the thickness). Is what you do.
  • the structure which provides the abutting part 10 in the up-and-down collar part 22b any one may be sufficient.
  • FIG. 3 schematically shows the side direction when the motor 1 is resin-molded.
  • the mold is composed of a lower mold 52 having an outer peripheral shape substantially coinciding with the inner peripheral shape of the housing 40, a cylindrical core mold 51, and an upper mold (not shown) inserted from the other opening of the housing.
  • the bottom surface of the stator 19 is formed by the lower mold 52
  • the upper surface is formed by the upper mold
  • the inner peripheral surface is formed by the core mold 51.
  • the core member 20 is arranged at a predetermined position in the radial direction by combining the inner peripheral abutting surface 10 of the bobbin collar 22b and the core mold 51 (see FIG. 4).
  • the upper mold is lowered in the state shown in FIGS. 3 and 4, and the core member 20 is sandwiched and fixed. Thereafter, the resin is injected into substantially the entire stator 19, including between the core members 20, the housing 40, and the core mold 51.
  • FIG. 5 shows a top view of the stator 19 after resin molding (for the sake of simplicity, a part of the resin is omitted).
  • the inner peripheral side surface of the stator 19 on the rotating shaft side has a cylindrical shape corresponding to the outer peripheral surface of the columnar core mold. The rotating shaft passes through this cylindrical space.
  • the core member 20 can be easily arranged at a predetermined position in the radial direction. Moreover, since it is not necessary to provide a convex part and a recessed part in a mold, the contact surface of resin and metal mold
  • the aspect of the abutting part 10 is not limited to this.
  • the abutting portion may be planar.
  • the core mold may be formed to have a substantially regular polygon (decagon) shape.
  • protrusions that protrude the same length in the radial direction may be provided at two locations on the flat surface of the abutting portion 10.
  • the core member 22 can be positioned not only in the radial direction but also in the circumferential direction.
  • One feature of the motor 1 according to the second embodiment is that it further includes a convex portion 11 (also referred to as a “circumferential butting portion”) at a portion facing an adjacent bobbin.
  • FIG. 7 shows a state where the core member 20 of the second embodiment is arranged in a mold.
  • symbol is used and description is abbreviate
  • the convex portion 11 is provided at a part of the left and right side end portions in the rotation axis rotation direction of the flange portion 22b, and further extends in the rotation axis rotation direction.
  • the convex portion 11 has a function of contacting the circumferential abutting portion 11 of the adjacent core member 20 and positioning the core member 20 in the circumferential direction when the core member 20 is arranged in the mold. Adjacent core members 20 are in contact with each other via the convex portion 11, in other words, it can be said that the flange portions 22 of the core member 20 are in contact with and adjacent to only the convex portion 11.
  • the structure which the convex part 11 is provided only in the one collar part 22 of an axial rotation direction, and contacts the other side collar part 22 of the adjacent core member 11 may be sufficient.
  • the left and right convex portions 11 may be provided shifted in the direction of the rotation axis, or a plurality of convex portions may be provided.
  • FIG. 8 shows a perspective view of the stator 19 of the second embodiment.
  • the convex portion 11 further protrudes in the direction of the rotation axis and is thicker than the flange portion 22.
  • the abutting portion 10 also projects in the direction of the rotation axis, like the convex portion 11. Due to this protrusion, the contact with the core mold 51 is further stabilized. For example, even when the abutting portion 10 is slightly displaced in the axial direction due to the bobbin production intersection, the insertion of the core 21 or the deformation of the bobbin in the winding process, the positioning function of the core member is not reduced. It can be arranged at the position.
  • the core member 20 can be arrange
  • the convex portion 11 dramatically improves the accuracy of the circumferential dimension between the cores.
  • FIG. 9 shows a perspective view of the stator 19 of the third embodiment.
  • symbol is used and description is abbreviate
  • the core member 20 of the present embodiment includes the first conductive member 60 on the output shaft side surface of the bobbin collar 22b and on the surface from the housing 40.
  • the first conductive member 60 has a thin plate shape, and includes a hole portion 60a that is engaged with the protrusion 23b of the flange portion 22b, and a fastening portion 70 that connects the end portions of the first conductive member 60 of the adjacent core member 20 to each other.
  • the fastening part 70 is fastened by a blind rivet or the like. Since the blind rivet can be fastened by work only from the rotor 30 side, workability can be improved. However, the fastening part 70 may be fastened by screws, bolts, or the like.
  • the first conductive member 60 has an end surface on the core side and an end surface on the housing 40 side which are in contact with the inner periphery of the core 21 or the housing 40, respectively, and are electrically connected.
  • the first conductive member 60 also has a function as a core cooling plate.
  • the core members 20 are mechanically connected by fastening the first conductive members 60 after positioning the core members 20 by the inner peripheral abutting surface 10 of the bobbin and the convex portions 11. It is like that. For this reason, the position shift of the core member 20 can be prevented in the step of placing the mold on the core member 20 and the step of injecting the mold resin. As a result, the position accuracy of the core 21 is increased, and the torque of the motor 1 can be improved, the cogging torque can be reduced, and the vibration and noise can be reduced.
  • the first conductive member 60 conducted to the housing 40 can reduce the electrostatic capacitance between the coil 23 and the rotor 30 and suppress the occurrence of bearing electrolytic corrosion due to the shaft voltage. Furthermore, since the first conductive member 60 is formed of a metal material such as aluminum or iron and has a conductivity of several tens to several hundred times that of the mold resin, it also has an effect of improving the cooling capacity of the stator 19.
  • a reduction in thermal resistance between the coil 23 serving as a main heat source and the housing 40 is effective in improving heat dissipation.
  • the first conductive member By disposing the first conductive member on the outer periphery, the heat of the coil is transmitted to the housing 40 via the first conductive member.
  • an eddy current may be generated when a leakage magnetic flux is linked to the first conductive member 60. Therefore, in order to improve the cooling performance and simultaneously reduce the eddy current loss, it is desirable to use a nonmagnetic and high thermal conductivity metal material such as aluminum as the first conductive member 70.
  • the shape of the first conductive member 60, the engagement structure between the conductive member and the bobbin, and the fastening structure between the first conductive members 60 are not limited to this embodiment.
  • the first conductive member 60 is formed on both surfaces of the stator (surfaces on the output shaft side and the non-output shaft side), but may be installed only on one surface. Separately, conducting electrical conduction between the core 21 and the housing 40 and shielding between the rotor 23 and the coil 23 not covered with the first conductive member 60 enables further suppression of the electrolytic corrosion of the bearing.
  • the fourth embodiment is characterized in that the second conductive member 80 is provided on the surface of the flange portion 22b.
  • FIG. 10 shows a plan view when the core member 20 is arranged in a mold.
  • symbol is used and description is abbreviate
  • the motor 1 has a cylindrical second conductive member 80 electrically connected to the housing 40 on the inner periphery of the center of the rotation axis of the stator 19. That is, one end portion is connected to the outer periphery of the second conductive member 80, and the other end portion has connection means such as a lead wire connected to the inner periphery of the housing 40 or the first conductive member.
  • the second conductive member 80 is disposed on the outer periphery of the cylindrical core mold 51, and the inner peripheral abutting surface 10 of the bobbin is disposed so as to abut against the second conductive member 80.
  • the outer periphery of the second conductive member is fixed to and integrated with a portion of each core member 20 in the rotational axis direction by a resin mold.
  • the core mold 51 after the resin molding, the core mold 51 can be easily pulled out, and there is no need to consider the peeling of the resin. Moreover, since the electrostatic capacitance between the coil 22 and the shaft is reduced by the second conductive member 80, it is possible to suppress the occurrence of bearing electrolytic corrosion due to the shaft voltage.
  • the second conductive member 80 may be constituted by a single thin plate and held by pressing the inner peripheral abutting surface 10 while being wound around the core mold 51.
  • the second conductive member can be configured at a low cost.
  • the number and position of the gaps are not limited to this embodiment.
  • a double rotor type axial gap type permanent magnet synchronous motor has been described.
  • another form of an axial gap type permanent magnet synchronous motor may be used.
  • a synchronous reluctance motor, a switched reluctance motor, an induction motor, or the like that does not include a permanent magnet may be used.
  • a generator may be used instead of a motor.
  • the bobbin 22 in each of the above embodiments is formed from an insulating resin and is manufactured by resin molding.
  • the present invention is not limited to this, and can be manufactured by a three-dimensional modeling machine or the like described below. That is, the bobbin 22 itself can be manufactured not only by a three-dimensional modeling machine but also by manufacturing a mold for resin molding by layer modeling with a three-dimensional modeling machine or by cutting with a cutting RP device. 22 can be obtained.
  • an optical modeling method As the layered modeling, an optical modeling method, a powder sintering layered modeling method, an ink jet method, a resin dissolution lamination method, a gypsum powder method, a sheet molding method, a film transfer image lamination method, a metal stereolithography combined processing method, and the like can be applied.
  • the data for additive manufacturing and cutting is generated by processing 3D data generated by CAD, CG software, or a 3D scanner into NC data by CAM. Three-dimensional modeling is performed by inputting the data to a three-dimensional modeling machine or a cutting RP device. Note that NC data may be directly generated from 3D data by CAD / CAM software.
  • a data provider or servicer who created 3D data or NC data can be distributed in a predetermined file format via a communication line such as the Internet, and the user
  • a communication line such as the Internet
  • the data provider to record 3D data or NC data on a non-volatile recording medium and provide it to the user.
  • the stator and disk-shaped rotor which were resin-molded in the cylindrical shape will face each other through a predetermined air gap in the rotating shaft direction.
  • a method of manufacturing a bobbin used for a stator core member for one slot of an axial air gap type rotating electrical machine wherein the bobbin has an inner diameter substantially matching an outer diameter of a core having a substantially trapezoidal columnar end surface And a cylindrical shape with a substantially cross-sectional trapezoidal section around which the coil is wound, and in the vicinity of both end portions of the outer cylinder portion, a predetermined length from the outer cylinder portion over the entire circumference in the vertical direction.
  • the axial which the stator and disk-shaped rotor which were resin-molded in the cylindrical shape face each other through the predetermined air gap in the rotating shaft direction.
  • a cylindrical shape having a substantially cross-sectional trapezoidal shape including an inner cylinder portion having an outer cylinder portion around which a coil is wound, and extending from the outer cylinder portion to the entire circumference in the vertical direction in the vicinity of both end portions of the outer cylinder portion.
  • the end surface (upper bottom end surface) on the side of the rotational axis of the collar is disposed in the axial direction of the stator during resin molding of the stator. At least one point in contact with the mold
  • the data for three-dimensional modeling machine bobbin is of a method of transmitting and distributing through a communication line.
  • the core mold 51 may have a polygonal shape corresponding to the number of slots in addition to the cylindrical shape. Since the arrangement area of the core members 20 for one slot becomes clear, it becomes easy to keep the circumferential distance between the core members 20 within a predetermined range.
  • the core member 51 can be arranged so as to be within 30 °, which is an angle corresponding to one slot, by configuring the core mold 51 to have a regular dodecagon.
  • a mark for the reference position is provided on the die, and the circumferential direction between the polygonal core die 51 and the housing 40 is provided. For example, the positional relationship may be obtained.

Abstract

The purpose of the present invention is to simply and reliably perform positioning when resin-molding a stator used in an axial air gap rotating electric machine. For example, the axial air gap rotating electric machine has: a stator having a plurality of stator core members (20) arranged in a ring shape and formed by being integrally resin-molded, said stator core members each including an iron core (21), a coil (23), and a bobbin (22) disposed between the iron core and the coil; and a rotor (30) that plane-faces the stator with an air gap interposed therebetween in a radial direction. The bobbin has a tubular shape equipped with a tubular portion (22a) and an outer tubular portion around which a coil is wound, and has a flange portion (22b) extending from both end vicinities of the outer tubular portion in a perpendicular direction by a predetermined length. The bobbin is equipped with a touch portion (10) at the end surface of the flange portion on the rotational axis center side, wherein touch portion makes contact with a die at at least one point and performs positioning in a rotational axis center direction, said die being disposed in the axial center direction of the stator during resin molding. The bobbin is also equipped with a protrusion portion (11).

Description

アキシャルエアギャップ型回転電機Axial air gap type rotating electrical machine
 本発明は,アキシャルギャップ型回転電機に係り、コアとコイルの間にボビンを有するアキシャルエアギャップ型回転電機に関する。 The present invention relates to an axial gap type rotating electric machine, and more particularly to an axial air gap type rotating electric machine having a bobbin between a core and a coil.
 アキシャルギャップ型回転電機は,円筒状の固定子と円盤状の回転子を,回転軸に対向して配置したものである。固定子は,周方向に複数配置したコアとこれに巻回された電機子巻線およびコアと巻線間を絶縁するボビン(インシュレータ)からなる。トルクを発生するギャップ面が,おおよそ径の2乗に比例して増加するため,薄型形状に好適な回転電機である。特に、2枚の回転子で1つの固定子を挟み込んだダブルロータ型のアキシャルギャップ型回転電機は,2倍のギャップ面積を確保することができることから、より優れた特性を得られる可能性がある構造として注目されている。 An axial gap type rotating electrical machine has a cylindrical stator and a disk-shaped rotor arranged opposite to a rotating shaft. The stator includes a plurality of cores arranged in the circumferential direction, armature windings wound around the cores, and bobbins (insulators) that insulate the cores from the windings. Since the gap surface that generates torque increases in proportion to the square of the diameter, the rotating electrical machine is suitable for a thin shape. In particular, a double rotor type axial gap type rotating electrical machine in which a single stator is sandwiched between two rotors can secure twice the gap area, and thus may have better characteristics. It is attracting attention as a structure.
 ダブルロータ型のアキシャルギャップ型回転電機では,固定子のコアが独立して配置されるため、コア、コイル及びボビンからなる複数のコアメンバを、環状に配列してモールド樹脂で保持することが多い。コアの位置は,回転電機内の磁束分布に影響し、位置決め精度が不十分な場合、トルクの低下やコギングトルクの増加,振動・騒音の増加などを引き起こす。そこで、コアの位置決めに関し,種々の検討がなされてきている。 In a double rotor type axial gap type rotating electrical machine, since the stator core is independently arranged, a plurality of core members composed of a core, a coil and a bobbin are often arranged in an annular shape and held by a mold resin. The position of the core affects the magnetic flux distribution in the rotating electrical machine, and if the positioning accuracy is insufficient, it causes a decrease in torque, an increase in cogging torque, and an increase in vibration and noise. Therefore, various studies have been made on the positioning of the core.
 特許文献1には、ボビンを用いたコアメンバの位置決め方法が開示されている。具体的には、ボビンの回転軸方向の表面に係止凸部を設け、連結具を介して隣接するコア同士で連結してボビンを環状に固定する方法やコアメンバの回転軸方向に凸部を設け、モールド金型にそれと嵌合する凹部を設けてコアを位置決めする方法を開示する。 Patent Document 1 discloses a core member positioning method using a bobbin. Specifically, a locking protrusion is provided on the surface of the bobbin in the rotation axis direction, and the adjacent cores are connected to each other via a connector to fix the bobbin in a ring shape, or the protrusion is formed in the rotation axis direction of the core member. Disclosed is a method of positioning a core by providing a recess to be fitted with the mold.
特開2006-67650号公報JP 2006-67650 A
 位置決め機能のために新たな部品を追加することは,コスト増加の原因となる。したがって、ボビンという形状自由度の大きい部品で、間接的にコアを位置決めするのは、製作面や位置決め精度の点で利点があると考えられる。
  しかしながら、特許文献1のように、モールド型に凹凸部を設けて位置決めする方法は、位置決めを行う凹凸部にモールド樹脂が介入する恐れがある。樹脂が位置決め部の隙間に介入すると、成形体の離型性が悪化し,作業性の低下やモールド部の破損などの不良発生の原因となる。さらに、モールド金型に位置決めのための加工を加えると、スロット数やコア形状などの設計変更に同一のモールド型で対応することが困難になるという課題もある。
  簡便且つ確実に位置決めができるボビンが望まれる。
Adding new parts for the positioning function causes an increase in cost. Therefore, indirect positioning of the core with a bobbin having a large shape freedom is considered advantageous in terms of manufacturing surface and positioning accuracy.
However, as in Patent Document 1, in the method of positioning by providing an uneven portion on a mold, there is a risk that the mold resin may intervene in the uneven portion that performs positioning. If the resin intervenes in the gap between the positioning portions, the mold release property of the molded body is deteriorated, which may cause defects such as deterioration of workability and damage to the mold portion. Further, when positioning processing is added to the mold, there is a problem that it is difficult to cope with design changes such as the number of slots and the core shape with the same mold.
A bobbin that can be simply and reliably positioned is desired.
 上記課題を解決するために、例えば、特許請求の範囲に記載の構成を適用する。即ち概略柱体の鉄心と、鉄心の外周に巻き回されるコイルと、前記鉄心と前記コイルの間に配置されたボビンとからなる複数のステータコアメンバが、回転軸を中心に環状に配列され、一体的に樹脂モールド成形されてなるステータと、回転軸径方向に所定のエアギャップを介して、前記鉄心の端面と面対向する少なくとも1つのロータとを有するアキシャルエアギャップ型回転電機であって、前記ボビンが、前記鉄心外周を保持する筒部と、前記コイルが巻き回される外筒部とを備える筒形状を有するものであり、前記外筒部の両端部近傍に、該外筒部から鉛直方向に所定の長さ延伸する鍔部を有し、該鍔部の回転軸芯側の端面に、前記樹脂モールド成形時に前記固定子の軸心方向に配置される型と少なくとも一点で接触し、前記ステータコアメンバの回転軸芯方向の位置決めをする突き当て部を備えるものであるアキシャルエアギャップ型回転電機である。 In order to solve the above problems, for example, the configuration described in the claims is applied. That is, a plurality of stator core members composed of a substantially columnar iron core, a coil wound around the outer periphery of the iron core, and a bobbin disposed between the iron core and the coil are arranged in an annular shape around the rotation axis, An axial air gap type rotating electrical machine having a stator integrally molded with resin, and at least one rotor facing the end surface of the iron core through a predetermined air gap in the rotational axis radial direction, The bobbin has a cylindrical shape including a cylindrical portion that holds the outer periphery of the iron core and an outer cylindrical portion around which the coil is wound. From the outer cylindrical portion in the vicinity of both ends of the outer cylindrical portion, It has a flange portion extending a predetermined length in the vertical direction, and contacts at least one point with a mold disposed in the axial direction of the stator at the time of resin molding at the end surface on the rotation axis side of the flange portion. The stator Those comprising a abutment portion for positioning the rotational axis direction of Amenba is an axial air gap type rotary electric machine.
 本発明の一側面によれば、コアの径方向位置決めが容易となる。また、モールド型への凹凸といった加工を不要とし、所望の形状(例えば、平面)にステータコアの表面を成形することができる。
  上記した以外の課題、構成および効果は、以下の記載から明らかになる。
According to one aspect of the present invention, the radial positioning of the core is facilitated. Further, it is possible to form the surface of the stator core into a desired shape (for example, a flat surface) without requiring processing such as unevenness on the mold.
Problems, configurations, and effects other than those described above will become apparent from the following description.
本発明を適用した第1実施形態によるダブルロータ式アキシャルエアギャップ型回転電機の電機子構成を模式的に示す斜視図である。It is a perspective view showing typically the armature composition of the double rotor type axial air gap type rotating electrical machine by a 1st embodiment to which the present invention is applied. 第1実施形態によるコアメンバ(コイルを除く)の構成を模式的に示す斜視図である。It is a perspective view which shows typically the structure of the core member (except a coil) by 1st Embodiment. 第1実施形態によるステータの樹脂モールドの様を模式的に示す側面図である。It is a side view which shows typically the resin mold of the stator by 1st Embodiment. 第1実施形態によるコアメンバと、コア金型との関係を示す上面図である。It is a top view which shows the relationship between the core member by 1st Embodiment, and a core metal mold | die. 第1実施形態による樹脂モールド成形後のボビンとコア金型の関係を示す上面図である。It is a top view which shows the relationship between the bobbin after the resin mold shaping | molding by 1st Embodiment, and a core metal mold | die. 第2実施形態によるコアメンバとコア金型の関係を示す上面図である。It is a top view which shows the relationship between the core member and core metal mold | die by 2nd Embodiment. 第2実施形態によるコアメンバの構成を示す斜視図である。It is a perspective view which shows the structure of the core member by 2nd Embodiment. 第2実施形態によるコアメンバの構成を示す斜視図である。It is a perspective view which shows the structure of the core member by 2nd Embodiment. 第3実施形態によるコアメンバの構成を示す斜視図である。It is a perspective view which shows the structure of the core member by 3rd Embodiment. 第4実施形態によるコアメンバの構成を示す斜視図である。It is a perspective view which shows the structure of the core member by 4th Embodiment.
〔第1実施形態〕
 以下、図面を用いて本発明を実施するための形態を説明する。図1に、本発明を適用したダブルロータ型のアキシャルエアギャップ型永久磁石同期モータ1(以下、「モータ1」という場合がある。)の概要構成を示す。
[First Embodiment]
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. FIG. 1 shows a schematic configuration of a double rotor type axial air gap type permanent magnet synchronous motor 1 (hereinafter sometimes referred to as “motor 1”) to which the present invention is applied.
 モータ1は、円筒状の1つの固定子19と,円盤状の2枚の回転子30とが回転軸方向Aに対向したものである。固定子19は、1スロット分をなす複数のコアメンバ20が回転軸を中心に環状に配列された概略円筒形の形状を有する。固定子19は、コアメンバ20同士及びハウジング40の内周が、樹脂モールドによって一体に成形されるようになっている。なお、本実施形態では、樹脂モールドによってコアメンバ20をハウジング40内周で一体に成形するものとするが、本発明はこれに限るものではなく、コアメンバ20同士を樹脂モールドによって一体成形した後、ハウジング40とボルト等で固定してもよい。 The motor 1 has a cylindrical stator 19 and two disk-shaped rotors 30 facing each other in the rotation axis direction A. The stator 19 has a substantially cylindrical shape in which a plurality of core members 20 forming one slot are arranged in an annular shape around a rotation axis. In the stator 19, the core members 20 and the inner periphery of the housing 40 are integrally formed by resin molding. In this embodiment, the core member 20 is integrally formed on the inner periphery of the housing 40 by resin molding. However, the present invention is not limited to this, and after the core members 20 are integrally formed by resin molding, the housing You may fix with 40 and a volt | bolt etc.
 回転子30は、コア21端面と対向する永久磁石31と、永久磁石31を保持するヨーク32とからなる。ディスク状のヨーク32に、交互に磁極の異なる永久磁石31が配置される。なお、永久磁石31とヨーク32との間にバックヨークを配設してもよい。図示しないが、ヨーク32はシャフト(回転軸)に結合されており、軸受を介して回転自在な状態でエンドブラケットに保持される。エンドブラケットは、ハウジング40と機械的に接続される。ハウジング40の外周側面には端子箱が設けられ、1次側の電線と2次側の電線が端子台を介し電気的に接続される。2次側には、コイルから引き出された渡り線が接続される。 The rotor 30 includes a permanent magnet 31 that faces the end surface of the core 21 and a yoke 32 that holds the permanent magnet 31. Permanent magnets 31 having different magnetic poles are alternately arranged on the disk-shaped yoke 32. A back yoke may be disposed between the permanent magnet 31 and the yoke 32. Although not shown, the yoke 32 is coupled to a shaft (rotating shaft) and is held by the end bracket in a rotatable state via a bearing. The end bracket is mechanically connected to the housing 40. A terminal box is provided on the outer peripheral side surface of the housing 40, and the primary-side electric wire and the secondary-side electric wire are electrically connected via the terminal block. A connecting wire drawn from the coil is connected to the secondary side.
 図2に、コアメンバ20の構成を示す。なお、本図ではコイル23を省略している。コアメンバ20は、コア21と、ボビン22と、コイル23とを有する。コア21は、端面が概略台形の形状となる柱体形状を有する。コア21は、所定幅で切断された薄い磁性体材料を含有する板状部材を、回転軸径方向に積層してなる。本実施形態では、回転軸心方向からハウジング40側に向かうにつれて幅が徐々に大となる板状部材を積層するようになっている。磁性体材料としては、アモルファスを用いるものとするが、これに限るものではない。 FIG. 2 shows the configuration of the core member 20. In this figure, the coil 23 is omitted. The core member 20 includes a core 21, a bobbin 22, and a coil 23. The core 21 has a columnar shape whose end surface is a substantially trapezoidal shape. The core 21 is formed by laminating plate-like members containing a thin magnetic material cut at a predetermined width in the rotational axis radial direction. In the present embodiment, plate-like members whose width gradually increases from the direction of the rotation axis toward the housing 40 are stacked. As the magnetic material, amorphous is used, but is not limited thereto.
 ボビン22は、樹脂等の絶縁部材からなる。ボビン22は、コア21の外径と概略一致する内径を有する筒部22aと、該筒部の両端開口部近傍から鉛直方向の全周に渡って所定の幅延伸する鍔部22bとを有する。筒部22aの外筒部で、2つの鍔部22b間をコイル23が巻き回されるようになっている。 The bobbin 22 is made of an insulating member such as resin. The bobbin 22 has a cylindrical portion 22a having an inner diameter that approximately matches the outer diameter of the core 21, and a flange portion 22b that extends a predetermined width from the vicinity of both ends of the cylindrical portion over the entire circumference in the vertical direction. The coil 23 is wound between the two flange portions 22b at the outer tube portion of the tube portion 22a.
 また、ボビン筒部22aの回転軸芯側の端面は、突き当て部10を備える。突き当て部10は、コアメンバ22を環状に配列して樹脂モールド成形する際、環の中心に配置される円筒形のモールド型と接触し、各コアメンバ20の径方向位置決めを行うようになっている。第1実施形態において、突き当て部10は、モールド型の中心からの径方向直線に対して直交する水平平面の形状となる。即ち突き当て部10は、円筒形モールド型外周と、水平面である突き当て部10の概略一点(厚みがあるので回転軸方向の線であるとも言える)と接触することで、径方向の位置決めを行うものである。なお、本実施形態では、上下の鍔部22bに突き当て部10を設ける構成としたが、何れか一方でもよい。 Also, the end surface of the bobbin cylinder portion 22a on the side of the rotation axis is provided with an abutting portion 10. When the core member 22 is annularly arranged and resin molded, the abutting portion 10 comes into contact with a cylindrical mold placed at the center of the ring to position each core member 20 in the radial direction. . In the first embodiment, the abutting portion 10 has a shape of a horizontal plane orthogonal to the radial straight line from the center of the mold. In other words, the abutting portion 10 is positioned in the radial direction by contacting the outer periphery of the cylindrical mold die and an approximately one point of the abutting portion 10 that is a horizontal plane (which can be said to be a line in the rotational axis direction because of the thickness). Is what you do. In addition, in this embodiment, although it was set as the structure which provides the abutting part 10 in the up-and-down collar part 22b, any one may be sufficient.
 図3に、モータ1を樹脂モールドする際の側面方向の様を模式的に示す。モールド型は、ハウジング40の内周形状とほぼ一致した外周形状を有する下型52、円筒状のコア金型51及びハウジングの他方開口から挿入される図示しない上型とからなる。固定子19の底面は下型52により、上面は上型により、内周面はコア金型51により形成される。コアメンバ20は、ボビン鍔部22bの内周突き当て面10と、コア金型51とを合わせることにより、径方向の所定位置に配置される(図4参照)。図3及び図4の状態で上型が降ろされ、コアメンバ20が挟み込まれて固定される。その後、各コアメンバ20間、ハウジング40との間、コア金型51との間を始め、ステータ19の略全体に樹脂が注入されるようになっている。 FIG. 3 schematically shows the side direction when the motor 1 is resin-molded. The mold is composed of a lower mold 52 having an outer peripheral shape substantially coinciding with the inner peripheral shape of the housing 40, a cylindrical core mold 51, and an upper mold (not shown) inserted from the other opening of the housing. The bottom surface of the stator 19 is formed by the lower mold 52, the upper surface is formed by the upper mold, and the inner peripheral surface is formed by the core mold 51. The core member 20 is arranged at a predetermined position in the radial direction by combining the inner peripheral abutting surface 10 of the bobbin collar 22b and the core mold 51 (see FIG. 4). The upper mold is lowered in the state shown in FIGS. 3 and 4, and the core member 20 is sandwiched and fixed. Thereafter, the resin is injected into substantially the entire stator 19, including between the core members 20, the housing 40, and the core mold 51.
 図5に、樹脂モールド後のステータ19の上面図を示す(簡単のため、樹脂は一部省略して表わしている。)。ステータ19の回転軸側の内周側面は、円柱状のコア金型の外周面に対応した円筒形となる。この円筒型の空間を回転軸が貫通することになる。 FIG. 5 shows a top view of the stator 19 after resin molding (for the sake of simplicity, a part of the resin is omitted). The inner peripheral side surface of the stator 19 on the rotating shaft side has a cylindrical shape corresponding to the outer peripheral surface of the columnar core mold. The rotating shaft passes through this cylindrical space.
 このような第1実施形態によれば、コアメンバ20を径方向の所定位置に容易に配置することができる。また、モールド型に凸部や凹部を設ける必要がないため、樹脂と金型の接触面が最小となり、離型性に優れる。以上より,位置決め作業やモールド作業の作業時間の短縮及びモールド作業の歩留りが向上する。更に、モータ1は、ボビン鍔部22bの軸心側に突き当て面10を設けたものであり、位置決めのための追加部品を伴わないことから、コスト面にも優れる。 According to the first embodiment, the core member 20 can be easily arranged at a predetermined position in the radial direction. Moreover, since it is not necessary to provide a convex part and a recessed part in a mold, the contact surface of resin and metal mold | die becomes the minimum, and it is excellent in mold release property. As described above, the working time of the positioning work and the molding work is shortened and the yield of the molding work is improved. Furthermore, the motor 1 is provided with the abutting surface 10 on the axial center side of the bobbin collar 22b, and is not accompanied by an additional part for positioning, so that it is excellent in cost.
 以上、第1実施形態について説明したが、突き当て部10の態様はこれに限定されるものではない。例えば、 図6に示すように、突き当て部が平面状であってもよい。この場合、コア金型を概略正多角形(12角形)の形状となるように形成してもよい。
更には、突き当て部10の平面2箇所に、径方向に同一長さ突出する突起を設けてもよい。何れも径方向のみならず、コアメンバ22を周方向にも位置決めすることができる。
〔第2実施形態〕
 第2実施形態のモータ1は、隣接するボビンとの対向部に凸部11(「周方向突き当て部」ともいう。)を更に備える点を特徴の一つとする。
  図7に、第2実施形態のコアメンバ20をモールド型に配置したときの様を示す。なお、第1実施形態と同一の箇所に関しては同一符号を用い、説明を省略する。
As mentioned above, although 1st Embodiment was described, the aspect of the abutting part 10 is not limited to this. For example, as shown in FIG. 6, the abutting portion may be planar. In this case, the core mold may be formed to have a substantially regular polygon (decagon) shape.
Furthermore, protrusions that protrude the same length in the radial direction may be provided at two locations on the flat surface of the abutting portion 10. In any case, the core member 22 can be positioned not only in the radial direction but also in the circumferential direction.
[Second Embodiment]
One feature of the motor 1 according to the second embodiment is that it further includes a convex portion 11 (also referred to as a “circumferential butting portion”) at a portion facing an adjacent bobbin.
FIG. 7 shows a state where the core member 20 of the second embodiment is arranged in a mold. In addition, about the same location as 1st Embodiment, the same code | symbol is used and description is abbreviate | omitted.
 凸部11は、鍔部22bの回転軸回転方向の左右側面端部の一部に設けられ、回転軸回転方向に更に延伸するものである。凸部11は、モールド型にコアメンバ20を配列した際、隣接するコアメンバ20の周方向突き当て部11と接触し、コアメンバ20の周方向の位置決めを行う機能を有する。隣接するコアメンバ20同士は、凸部11を介して接触するようになっており、換言すると、コアメンバ20の鍔部22同士は、凸部11とのみ接触して隣接する関係にあるといえる。なお、凸部11は、軸回転方向の一方の鍔部22にのみ設けられ、隣接するコアメンバ11の他方側鍔部22と接触する構成でもよい。或いは、左右の凸部11が回転軸心方向にずらして設けられてもよいし、複数の凸部が設けられてもよい。 The convex portion 11 is provided at a part of the left and right side end portions in the rotation axis rotation direction of the flange portion 22b, and further extends in the rotation axis rotation direction. The convex portion 11 has a function of contacting the circumferential abutting portion 11 of the adjacent core member 20 and positioning the core member 20 in the circumferential direction when the core member 20 is arranged in the mold. Adjacent core members 20 are in contact with each other via the convex portion 11, in other words, it can be said that the flange portions 22 of the core member 20 are in contact with and adjacent to only the convex portion 11. In addition, the structure which the convex part 11 is provided only in the one collar part 22 of an axial rotation direction, and contacts the other side collar part 22 of the adjacent core member 11 may be sufficient. Alternatively, the left and right convex portions 11 may be provided shifted in the direction of the rotation axis, or a plurality of convex portions may be provided.
 図8に、第2実施形態の固定子19の斜視図を示す。凸部11は、更に、回転軸方向に突出しており、鍔部22よりも厚みが大となっている。また、突き当て部10も、凸部11と同様に、回転軸方向に突出する。この突出により、コア型51との接触が更に安定する。例えば、ボビンの製作交差や、コア21の挿入や巻線工程におけるボビンの変形に伴い、突き当て部10が軸方向にわずかにずれた場合においても,コアメンバの位置決め機能が低下することなく,所定の位置に配置することができる。 FIG. 8 shows a perspective view of the stator 19 of the second embodiment. The convex portion 11 further protrudes in the direction of the rotation axis and is thicker than the flange portion 22. The abutting portion 10 also projects in the direction of the rotation axis, like the convex portion 11. Due to this protrusion, the contact with the core mold 51 is further stabilized. For example, even when the abutting portion 10 is slightly displaced in the axial direction due to the bobbin production intersection, the insertion of the core 21 or the deformation of the bobbin in the winding process, the positioning function of the core member is not reduced. It can be arranged at the position.
 また、凸部11は,回転軸から放射状に配置されているため、コアメンバ20を下型52上で径方向にスライドさせることで所定の位置に配置することができ、組立の作業性に優れる。凸部11により、コア間の周方向寸法の精度が飛躍的に向上する。
〔第3実施形態〕
 第3実施形態は、鍔部22bの面上に第1の導電部材60を有する点を特徴の一つとする。
Moreover, since the convex part 11 is arrange | positioned radially from the rotating shaft, the core member 20 can be arrange | positioned in a predetermined position by sliding to the radial direction on the lower mold | type 52, and it is excellent in assembly workability | operativity. The convex portion 11 dramatically improves the accuracy of the circumferential dimension between the cores.
[Third Embodiment]
The third embodiment is characterized in that the first conductive member 60 is provided on the surface of the flange 22b.
 図9に、第3実施形態の固定子19の斜視図を示す。なお、上記他の実施形態と同一の箇所に関しては同一符号を用い,説明を省略する。 FIG. 9 shows a perspective view of the stator 19 of the third embodiment. In addition, about the same location as said other embodiment, the same code | symbol is used and description is abbreviate | omitted.
 本実施形態のコアメンバ20は、ボビン鍔部22bの出力軸側表面であって、ハウジング40よりの面上に、第1導電部材60を備える。第1導電部材60は、薄板状であって、鍔部22bの突起23bに係止する穴部60a、隣接するコアメンバ20の第1の導電部材60の端部同士を接続する締結部70を備える。締結部70は、ブラインドリベット等により締結するようになっている。ブラインドリベットは、回転子30側からのみの作業で締結できるため作業性を向上することができるが、締結部70は、ネジやボルトなどで締結されてもよい。 The core member 20 of the present embodiment includes the first conductive member 60 on the output shaft side surface of the bobbin collar 22b and on the surface from the housing 40. The first conductive member 60 has a thin plate shape, and includes a hole portion 60a that is engaged with the protrusion 23b of the flange portion 22b, and a fastening portion 70 that connects the end portions of the first conductive member 60 of the adjacent core member 20 to each other. . The fastening part 70 is fastened by a blind rivet or the like. Since the blind rivet can be fastened by work only from the rotor 30 side, workability can be improved. However, the fastening part 70 may be fastened by screws, bolts, or the like.
 第1導電部材60は、そのコア側端面と、ハウジング40側端面とが、夫々コア21或いはハウジング40の内周と接触しており、電気的に接続される。また、第1導電部材60は、コアの冷却板としての機能も有する。 The first conductive member 60 has an end surface on the core side and an end surface on the housing 40 side which are in contact with the inner periphery of the core 21 or the housing 40, respectively, and are electrically connected. The first conductive member 60 also has a function as a core cooling plate.
 本実施形態のモータ1では、ボビンの内周突き当て面10と、凸部11により各コアメンバ20を位置決めした後、第1導電部材60同士を締結することで、コアメンバ20を機械的に接続するようになっている。このため、コアメンバ20上へのモールド上型の載置工程及びモールド樹脂の注入工程において、コアメンバ20の位置ずれを防止できる。その結果、コア21の位置精度が高まり、モータ1のトルク向上、コギングトルクの低減及び振動・騒音の低減を図ることができる。 In the motor 1 of the present embodiment, the core members 20 are mechanically connected by fastening the first conductive members 60 after positioning the core members 20 by the inner peripheral abutting surface 10 of the bobbin and the convex portions 11. It is like that. For this reason, the position shift of the core member 20 can be prevented in the step of placing the mold on the core member 20 and the step of injecting the mold resin. As a result, the position accuracy of the core 21 is increased, and the torque of the motor 1 can be improved, the cogging torque can be reduced, and the vibration and noise can be reduced.
 同時に、ハウジング40に導通した第1導電部材60は、コイル23と回転子30間の静電容量を低減し、軸電圧による軸受電食の発生を抑制することができる。更に、第1導電部材60は、アルミや鉄などの金属材料で形成され、モールド樹脂の数10から数100倍の導電率を有するため、固定子19の冷却能力を向上する効果も有する。 At the same time, the first conductive member 60 conducted to the housing 40 can reduce the electrostatic capacitance between the coil 23 and the rotor 30 and suppress the occurrence of bearing electrolytic corrosion due to the shaft voltage. Furthermore, since the first conductive member 60 is formed of a metal material such as aluminum or iron and has a conductivity of several tens to several hundred times that of the mold resin, it also has an effect of improving the cooling capacity of the stator 19.
 固定子19が樹脂で保持されるモータ1では、主要な熱源となるコイル23と、ハウジング40との熱抵抗の低減が放熱性の向上に有効である。第1導電部材を外周に配置することで、第1導電部材を介しコイルの熱がハウジング40に伝達する。一方、第1導電部材60に漏れ磁束が鎖交すると渦電流が発生する場合がある。このため冷却性能を高め、同時に渦電流損失を低減するためには、第1導電部材70としてアルミのような非磁性かつ高熱伝導率の金属材料を使用することが望ましい。 In the motor 1 in which the stator 19 is held by resin, a reduction in thermal resistance between the coil 23 serving as a main heat source and the housing 40 is effective in improving heat dissipation. By disposing the first conductive member on the outer periphery, the heat of the coil is transmitted to the housing 40 via the first conductive member. On the other hand, an eddy current may be generated when a leakage magnetic flux is linked to the first conductive member 60. Therefore, in order to improve the cooling performance and simultaneously reduce the eddy current loss, it is desirable to use a nonmagnetic and high thermal conductivity metal material such as aluminum as the first conductive member 70.
 なお,第1導電部材60の形状や、導電部材とボビンの係止構造及び第1導電部材60同士の締結構造は本実施形態に限定されない。本実施形態では,固定子の両面(出力軸側及び反出力軸側の表面)に第1導電部材60を形成したが、片面のみに設置してもよい。別途、コア21と、ハウジング40との導通及び第1導電部材60で覆われていないコイル23と回転子30間の遮蔽を実施することで、軸受電食の更なる抑制が可能になる。 Note that the shape of the first conductive member 60, the engagement structure between the conductive member and the bobbin, and the fastening structure between the first conductive members 60 are not limited to this embodiment. In the present embodiment, the first conductive member 60 is formed on both surfaces of the stator (surfaces on the output shaft side and the non-output shaft side), but may be installed only on one surface. Separately, conducting electrical conduction between the core 21 and the housing 40 and shielding between the rotor 23 and the coil 23 not covered with the first conductive member 60 enables further suppression of the electrolytic corrosion of the bearing.
 〔第4実施形態〕
  第4実施形態は、鍔部22bの面上に第2導電部材80を有する点を特徴の一つとする。
  図10に、コアメンバ20をモールド型に配置したときの平面図を示す。なお、上記他の実施形態と同一の箇所に関しては同一符号を用い,説明を省略する。
[Fourth Embodiment]
The fourth embodiment is characterized in that the second conductive member 80 is provided on the surface of the flange portion 22b.
FIG. 10 shows a plan view when the core member 20 is arranged in a mold. In addition, about the same location as said other embodiment, the same code | symbol is used and description is abbreviate | omitted.
 モータ1は、固定子19の回転軸芯中央の内周にハウジング40と電気的に接続された円筒状の第2導電部材80を有する。即ち一方端部が、第2導電部材80の外周と接続され、他方端部がハウジング40内周或いは第1導電部材と接続されたリード線等の接続手段を有する。第2導電部材80は、円筒状のコア金型51の外周に配置され,ボビンの内周突き当て面10は、第2導電部材80に突き当てるように配置されている。そして、第2導電部材の外周は、各コアメンバ20の回転軸芯方向の部分と、樹脂モールドによって固定され一体となるようになっている。 The motor 1 has a cylindrical second conductive member 80 electrically connected to the housing 40 on the inner periphery of the center of the rotation axis of the stator 19. That is, one end portion is connected to the outer periphery of the second conductive member 80, and the other end portion has connection means such as a lead wire connected to the inner periphery of the housing 40 or the first conductive member. The second conductive member 80 is disposed on the outer periphery of the cylindrical core mold 51, and the inner peripheral abutting surface 10 of the bobbin is disposed so as to abut against the second conductive member 80. The outer periphery of the second conductive member is fixed to and integrated with a portion of each core member 20 in the rotational axis direction by a resin mold.
 第4実施形態によれば、樹脂モールド後に、コア金型51を容易に抜くことができ、樹脂の剥離を考慮する必要がない。また、第2導電部材80により、コイル22と、シャフトとの間の静電容量が低減するため,軸電圧による軸受電食の発生を抑制することができる。 According to the fourth embodiment, after the resin molding, the core mold 51 can be easily pulled out, and there is no need to consider the peeling of the resin. Moreover, since the electrostatic capacitance between the coil 22 and the shaft is reduced by the second conductive member 80, it is possible to suppress the occurrence of bearing electrolytic corrosion due to the shaft voltage.
 なお、第2導電部材80を1枚の薄板で構成し、コア金型51に巻き付けた状態で内周突き当て面10を押し当てることで保持してもよい。この場合,第2導電部材を安価に構成することができる。
  なお、間隙の数や位置は本実施形態に限定されない。
Note that the second conductive member 80 may be constituted by a single thin plate and held by pressing the inner peripheral abutting surface 10 while being wound around the core mold 51. In this case, the second conductive member can be configured at a low cost.
The number and position of the gaps are not limited to this embodiment.
 本実施例では,ダブルロータ型のアキシャルギャップ型永久磁石同期モータの例を説明したが,他の形態のアキシャルギャップ型永久磁石同期モータであってもよい。また,永久磁石を備えていない,シンクロナスリラクタンスモータやスイッチトリラクタンスモータ,誘導モータなどであってもよい。さらには,モータではなく発電機であってもよい。 In this embodiment, an example of a double rotor type axial gap type permanent magnet synchronous motor has been described. However, another form of an axial gap type permanent magnet synchronous motor may be used. Further, a synchronous reluctance motor, a switched reluctance motor, an induction motor, or the like that does not include a permanent magnet may be used. Furthermore, a generator may be used instead of a motor.
 〔製造方法〕
  上記各実施形態のボビン22は、絶縁性を有する樹脂から形成されるものであり、樹脂成形によって製造されるものである。しかしながら、本発明はこれに限定されるものではなく、以下に示す三次元造形機等によって、製造することも可能である。即ちボビン22そのものを三次元造形機で製造するのみならず樹脂成形用の金型を、三次元造形機で積層造形したり、切削RP装置によって切削加工したりすることで得る製造することでもボビン22を得ることができる。
〔Production method〕
The bobbin 22 in each of the above embodiments is formed from an insulating resin and is manufactured by resin molding. However, the present invention is not limited to this, and can be manufactured by a three-dimensional modeling machine or the like described below. That is, the bobbin 22 itself can be manufactured not only by a three-dimensional modeling machine but also by manufacturing a mold for resin molding by layer modeling with a three-dimensional modeling machine or by cutting with a cutting RP device. 22 can be obtained.
 積層造形としては、光造形方式、粉末焼結積層造形方式、インクジェット方式、樹脂溶解積層方式、石膏パウダー方式、シート成形方式、フィルム転写イメージ積層方式及び金属光造形複合加工方式等が適用できる。
  上記積層造形や切削加工用のデータは、CADやCGソフトウェア又は3Dスキャナで生成した3DデータをCAMによってNCデータに加工することで生成される。該データを3次元造形機又は切削RP装置に入力することで三次元造形が行われる。なお、CAD/CAMソフトウェアによって、3Dデータから直接NCデータを生成してもよい。
As the layered modeling, an optical modeling method, a powder sintering layered modeling method, an ink jet method, a resin dissolution lamination method, a gypsum powder method, a sheet molding method, a film transfer image lamination method, a metal stereolithography combined processing method, and the like can be applied.
The data for additive manufacturing and cutting is generated by processing 3D data generated by CAD, CG software, or a 3D scanner into NC data by CAM. Three-dimensional modeling is performed by inputting the data to a three-dimensional modeling machine or a cutting RP device. Note that NC data may be directly generated from 3D data by CAD / CAM software.
 また、ボビン22やその樹脂射出成型用金型を得る方法として、3Dデータ又はNCデータを作成したデータ提供者やサービサーが、インターネット等の通信線を介して所定のファイル形式で配信可能とし、ユーザが当該データを3D造形機やそれを制御するコンピュータ等にダウンロード又はクラウド型サービスとしてアクセスし、3次元造形機で成形出力することでボビン7を製造することもできる。なお、データ提供者が3DデータやNCデータを不揮発性の記録媒体に記録して、ユーザに提供する方法も可能である。 In addition, as a method of obtaining the bobbin 22 and its resin injection mold, a data provider or servicer who created 3D data or NC data can be distributed in a predetermined file format via a communication line such as the Internet, and the user However, it is also possible to manufacture the bobbin 7 by downloading the data to a 3D modeling machine, a computer that controls the data, or accessing the data as a cloud-type service and molding and outputting the data with a three-dimensional modeling machine. It is also possible for the data provider to record 3D data or NC data on a non-volatile recording medium and provide it to the user.
 このような製造方法による本実施形態のボビン22の一態様を示せば、円筒形状に樹脂モールドされたステータ及びディスク状のロータが、回転軸方向に所定のエアギャップを介して面対向してなるアキシャルエアギャップ型回転電機の1スロット分のステータコアメンバに用いるボビンの製造方法であって、前記ボビンが、端面が概略台形の柱体からなるコアの外径と概略一致する内径を有する内筒部と、コイルが巻き回される外筒部とを備える概略断面台形の筒形状を有し、前記外筒部の両端部近傍に、該外筒部から鉛直方向の全周に渡って所定の長さ延伸する鍔部を有し、該鍔部の回転軸芯側の端面(上底側端面)が、前記固定子の樹脂モールド成形時に前記固定子の軸心方向に配置される型と少なくとも一点で接触するものである三次元データに基づいて三次元造形機で製造する方法である。 If the one aspect | mode of the bobbin 22 of this embodiment by such a manufacturing method is shown, the stator and disk-shaped rotor which were resin-molded in the cylindrical shape will face each other through a predetermined air gap in the rotating shaft direction. A method of manufacturing a bobbin used for a stator core member for one slot of an axial air gap type rotating electrical machine, wherein the bobbin has an inner diameter substantially matching an outer diameter of a core having a substantially trapezoidal columnar end surface And a cylindrical shape with a substantially cross-sectional trapezoidal section around which the coil is wound, and in the vicinity of both end portions of the outer cylinder portion, a predetermined length from the outer cylinder portion over the entire circumference in the vertical direction. And at least one point with a mold in which the end surface (upper bottom side end surface) on the rotation axis side of the flange portion is arranged in the axial direction of the stator during resin molding of the stator. In contact with A process for producing a three-dimensional modeling machine on the basis of the dimension data.
 更に、このような製造方法によるボビン22の他の態様を示せば、円筒形状に樹脂モールドされたステータ及びディスク状のロータが、回転軸方向に所定のエアギャップを介して面対向してなるアキシャルエアギャップ型回転電機の1スロット分のステータコアメンバに用いるボビンの三次元造形機用データの伝送・配信方法であって、端面が概略台形の柱体からなるコアの外径と概略一致する内径を有する内筒部と、コイルが巻き回される外筒部とを備える概略断面台形の筒形状を有し、前記外筒部の両端部近傍に、該外筒部から鉛直方向の全周に渡って所定の長さ延伸する鍔部を有し、該鍔部の回転軸芯側の端面(上底側端面)が、前記固定子の樹脂モールド成形時に前記固定子の軸心方向に配置される型と少なくとも一点で接触するものであるボビンの三次元造形機用データを、通信線を介して伝送・配信する方法である。 Furthermore, if the other aspect of the bobbin 22 by such a manufacturing method is shown, the axial which the stator and disk-shaped rotor which were resin-molded in the cylindrical shape face each other through the predetermined air gap in the rotating shaft direction. A method for transmitting and distributing bobbin three-dimensional modeling machine data used for a stator core member for one slot of an air gap type rotating electrical machine, wherein an inner diameter substantially coincides with an outer diameter of a core having a substantially trapezoidal column. A cylindrical shape having a substantially cross-sectional trapezoidal shape including an inner cylinder portion having an outer cylinder portion around which a coil is wound, and extending from the outer cylinder portion to the entire circumference in the vertical direction in the vicinity of both end portions of the outer cylinder portion. And the end surface (upper bottom end surface) on the side of the rotational axis of the collar is disposed in the axial direction of the stator during resin molding of the stator. At least one point in contact with the mold The data for three-dimensional modeling machine bobbin is of a method of transmitting and distributing through a communication line.
 以上、本発明を実施するための形態について説明したが、本発明は上記態様に限定されるものではなく、その趣旨を逸脱することのない範囲で、種々の変更が可能である。例えば、コア金型51は円筒形状以外にも、断面形状がスロット数に応じた多角形であってもよい。1スロット分のコアメンバ20の配置領域が明確になるため,コアメンバ20間の周方向の距離を所定の範囲に納めることが容易になる。12スロットの固定子の場合、コア金型51の断面を正12角形で構成することで、コアメンバ20を1スロット分の角度である30°に収まるように配置することができる。なお、ハウジング40と、固定子との周方向の位置関係を出す必要がある場合には、金型に基準位置の目印を設け、多角形のコア金型51と、ハウジング40との周方向の位置関係がでるようにするなどしてもよい。 As mentioned above, although the form for implementing this invention was demonstrated, this invention is not limited to the said aspect, A various change is possible in the range which does not deviate from the meaning. For example, the core mold 51 may have a polygonal shape corresponding to the number of slots in addition to the cylindrical shape. Since the arrangement area of the core members 20 for one slot becomes clear, it becomes easy to keep the circumferential distance between the core members 20 within a predetermined range. In the case of a 12-slot stator, the core member 51 can be arranged so as to be within 30 °, which is an angle corresponding to one slot, by configuring the core mold 51 to have a regular dodecagon. In addition, when it is necessary to determine the positional relationship in the circumferential direction between the housing 40 and the stator, a mark for the reference position is provided on the die, and the circumferential direction between the polygonal core die 51 and the housing 40 is provided. For example, the positional relationship may be obtained.
1…ダブルロータ型アキシャルギャップ型永久磁石同期モータ(モータ)、10…(内周)突き当て部、11…凸部(周方向突き当て部)、19…固定子、20…コアメンバ、21…コア、22…ボビン、23…コイル、22a…筒部、22b…鍔部、23c…突起部、24…モールド樹脂、25…コアメンバ、30…回転子、31…永久磁石、32…ヨーク、40…ハウジング、51…コア金型、52…下金型、60…第1導電部材、70…締結部材、80…第2導電部材、A…回転軸 DESCRIPTION OF SYMBOLS 1 ... Double rotor type axial gap type permanent magnet synchronous motor (motor), 10 ... (inner circumference) abutting part, 11 ... Convex part (circumferential direction abutting part), 19 ... Stator, 20 ... Core member, 21 ... Core , 22 ... bobbin, 23 ... coil, 22a ... cylindrical part, 22b ... collar part, 23c ... projection part, 24 ... mold resin, 25 ... core member, 30 ... rotor, 31 ... permanent magnet, 32 ... yoke, 40 ... housing , 51 ... Core mold, 52 ... Lower mold, 60 ... First conductive member, 70 ... Fastening member, 80 ... Second conductive member, A ... Rotating shaft

Claims (8)

  1.  概略柱体の鉄心と、鉄心の外周に巻き回されるコイルと、前記鉄心と前記コイルの間に配置されたボビンとからなる複数のステータコアメンバが、回転軸を中心に環状に配列され、一体的に樹脂モールド成形されてなるステータと、回転軸径方向に所定のエアギャップを介して、前記鉄心の端面と面対向する少なくとも1つのロータとを有するアキシャルエアギャップ型回転電機であって、
     前記ボビンが、前記鉄心外周を保持する筒部と、前記コイルが巻き回される外筒部とを備える筒形状を有するものであり、
     前記外筒部の両端部近傍に、該外筒部から鉛直方向に所定の長さ延伸する鍔部を有し、
     該鍔部の回転軸芯側の端面に、前記樹脂モールド成形時に前記固定子の軸心方向に配置される型と少なくとも一点で接触し、前記ステータコアメンバの回転軸芯方向の位置決めをする突き当て部を備えるものであるアキシャルエアギャップ型回転電機。
    A plurality of stator core members each consisting of an iron core having a substantially columnar body, a coil wound around the outer periphery of the iron core, and a bobbin disposed between the iron core and the coil are arranged in an annular shape around the rotation axis, and are integrated An axial air gap type rotating electrical machine having a stator formed by resin molding, and at least one rotor facing the end surface of the iron core via a predetermined air gap in the rotational axis radial direction,
    The bobbin has a cylindrical shape including a cylindrical portion that holds the outer periphery of the iron core and an outer cylindrical portion around which the coil is wound,
    In the vicinity of both ends of the outer cylinder part, it has a flange part extending a predetermined length in the vertical direction from the outer cylinder part,
    The end face of the flange portion on the side of the rotation axis contacts at least one point with the mold disposed in the axial direction of the stator during the resin molding, and positions the stator core member in the direction of the rotation axis An axial air gap type rotating electrical machine that includes a section.
  2.  請求項1に記載のアキシャルエアギャップ型回転電機であって、
     前記突き当て部を含む前記ステータコアメンバの回転軸に沿った内側面が、前記ステータコアメンバの数に応じた多角形の形状に成形されたものであるアキシャルエアギャップ型回転電機。
    The axial air gap type rotating electrical machine according to claim 1,
    An axial air gap type rotating electrical machine in which an inner side surface along the rotation axis of the stator core member including the abutting portion is formed into a polygonal shape corresponding to the number of the stator core members.
  3.  請求項1に記載のアキシャルエアギャップ型回転電機であって、
     前記ボビンが、前記鍔部の回転軸回転方向の左右両端面に、水平方向に延伸する凸部を更に有するものであり、
     隣接するボビンの凸部同士が接触して、前記複数のステータコアの回転軸回転方向の位置決めを行うものであるアキシャルエアギャップ型回転電機。
    The axial air gap type rotating electrical machine according to claim 1,
    The bobbin further includes convex portions extending in the horizontal direction on both left and right end surfaces in the rotation axis rotation direction of the flange portion,
    An axial air gap type rotating electrical machine in which the convex portions of adjacent bobbins are in contact with each other to position the plurality of stator cores in the rotational axis rotation direction.
  4.  請求項1に記載のアキシャルエアギャップ型回転電機であって、
     前記ボビンが、前記鍔部の回転軸回転方向の左右端面の少なくとも一方に、水平方向に延伸する凸部を更に有するものであり、
     隣接対向する鍔部の端面と前記凸部が接触して、前記複数のステータコアの回転軸回転方向の位置決めを行うものであるアキシャルエアギャップ型回転電機。
    The axial air gap type rotating electrical machine according to claim 1,
    The bobbin further has a convex portion extending in the horizontal direction on at least one of the left and right end surfaces in the rotation axis rotation direction of the collar portion,
    An axial air gap type rotating electrical machine in which the end surfaces of the adjacent flange portions and the convex portions are in contact with each other to position the plurality of stator cores in the rotational axis rotation direction.
  5.  請求項2~4の何れか一項に記載のアキシャルエアギャップ型回転電機であって、
     前記突き当て部及び前記凸部の前記回転軸方向厚みが、前記鍔部の他の部分よりも大であるアキシャルエアギャップ型回転電機。
    An axial air gap type rotating electrical machine according to any one of claims 2 to 4,
    An axial air gap type rotating electrical machine in which the thickness in the rotation axis direction of the abutting portion and the convex portion is larger than that of other portions of the flange portion.
  6.  請求項2~4の何れか一項に記載のアキシャルエアギャップ型回転電機であって、
     前記ステータコアが、前記鍔部の面うち回転軸径方向にあるハウジング内周側の表面部分に、前記ハウジング内周に沿って延伸すると共に前記コア及び前記ハウジング内周面と接触する第1導電部材を有するものであり、
     該第1導電部材が、左右両方に隣接するステータコアが有する第1導電部材と互いに接続されるものであるアキシャルエアギャップ型回転電機。
    An axial air gap type rotating electrical machine according to any one of claims 2 to 4,
    A first conductive member that extends along the inner circumference of the housing on a surface portion on the inner circumference side of the housing in the radial direction of the rotation axis of the surface of the flange portion and contacts the core and the inner circumference surface of the housing. Having
    An axial air gap type rotating electrical machine in which the first conductive member is connected to a first conductive member of a stator core adjacent to both the left and right sides.
  7.  請求項2~4の何れか一項に記載のアキシャルエアギャップ型回転電機であって、
     前記ステータの回転軸に沿った内側面に、前記突き当て部と少なくとも一点で接触し、前記ステータコアメンバの回転軸方向幅と概略同一の回転軸方向幅を有する筒形状の部材を更に有するものであり、
     該部材の外周が、前記樹脂モールドによってステータコアと一体に成形されるものであるアキシャルエアギャップ型回転電機。
    An axial air gap type rotating electrical machine according to any one of claims 2 to 4,
    It further has a cylindrical member that contacts at least one point with the abutting portion on the inner surface along the rotation axis of the stator and has a rotation axis direction width substantially the same as the rotation axis direction width of the stator core member. Yes,
    An axial air gap type rotating electrical machine in which an outer periphery of the member is formed integrally with a stator core by the resin mold.
  8.  請求項7に記載のアキシャルエアギャップ型回転電機であって、
     前記部材が、導電性の部材からなる第2導電部材であり、
     該第2導電部材が、前記ハウジング外周と電気的に接続された接続手段を有するものであるアキシャルエアギャップ型回転電機。
    An axial air gap type rotating electrical machine according to claim 7,
    The member is a second conductive member made of a conductive member;
    An axial air gap type rotating electrical machine in which the second conductive member has connection means electrically connected to the outer periphery of the housing.
PCT/JP2014/060998 2014-04-18 2014-04-18 Axial air gap rotating electric machine WO2015159418A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016513590A JP6375370B2 (en) 2014-04-18 2014-04-18 Axial air gap type rotating electrical machine
PCT/JP2014/060998 WO2015159418A1 (en) 2014-04-18 2014-04-18 Axial air gap rotating electric machine
TW104103615A TWI583101B (en) 2014-04-18 2015-02-03 Axial air gap type rotary motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/060998 WO2015159418A1 (en) 2014-04-18 2014-04-18 Axial air gap rotating electric machine

Publications (1)

Publication Number Publication Date
WO2015159418A1 true WO2015159418A1 (en) 2015-10-22

Family

ID=54323659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060998 WO2015159418A1 (en) 2014-04-18 2014-04-18 Axial air gap rotating electric machine

Country Status (3)

Country Link
JP (1) JP6375370B2 (en)
TW (1) TWI583101B (en)
WO (1) WO2015159418A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018216667A1 (en) * 2017-05-22 2018-11-29 日本電産株式会社 Rotor and motor having said rotor
US10886803B2 (en) * 2017-01-31 2021-01-05 Hitachi Industrial Equipment Systems Co., Ltd. Axial gap-type rotary electrical machine
WO2021157170A1 (en) * 2020-02-04 2021-08-12 株式会社日立産機システム Axial cap-type rotary electric machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005051929A (en) * 2003-07-29 2005-02-24 Fujitsu General Ltd Motor
JP2013135541A (en) * 2011-12-27 2013-07-08 Hitachi Industrial Equipment Systems Co Ltd Axial gap rotary electric machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006067650A (en) * 2004-08-25 2006-03-09 Fujitsu General Ltd Axial gap motor
JP5965228B2 (en) * 2012-07-06 2016-08-03 株式会社日立製作所 Axial gap type rotating electrical machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005051929A (en) * 2003-07-29 2005-02-24 Fujitsu General Ltd Motor
JP2013135541A (en) * 2011-12-27 2013-07-08 Hitachi Industrial Equipment Systems Co Ltd Axial gap rotary electric machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10886803B2 (en) * 2017-01-31 2021-01-05 Hitachi Industrial Equipment Systems Co., Ltd. Axial gap-type rotary electrical machine
WO2018216667A1 (en) * 2017-05-22 2018-11-29 日本電産株式会社 Rotor and motor having said rotor
JPWO2018216667A1 (en) * 2017-05-22 2020-03-19 日本電産株式会社 Rotor and motor having the rotor
US11159068B2 (en) 2017-05-22 2021-10-26 Nidec Corporation Rotor and motor including the rotor
JP7014227B2 (en) 2017-05-22 2022-02-01 日本電産株式会社 Rotor and motor with the rotor
WO2021157170A1 (en) * 2020-02-04 2021-08-12 株式会社日立産機システム Axial cap-type rotary electric machine

Also Published As

Publication number Publication date
JP6375370B2 (en) 2018-08-15
TWI583101B (en) 2017-05-11
TW201541813A (en) 2015-11-01
JPWO2015159418A1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
TWI583109B (en) Axial air gap type rotary motor and rotary tube with rotating electrical machine
JP5879121B2 (en) Axial gap rotating electric machine
JP6294469B2 (en) Axial air gap type rotating electrical machine
JP5267091B2 (en) Stator for rotating electrical machine
US20150001979A1 (en) Axial Gap Rotating Electric Machine
WO2015145901A1 (en) Axial-air-gap motor and bobbin for motor
WO2019077983A1 (en) Axial gap-type dynamo-electric machine
JP6768142B2 (en) Axial gap type rotary electric machine
JP6375370B2 (en) Axial air gap type rotating electrical machine
JP6595033B2 (en) Axial air gap type rotating electrical machine
WO2018180720A1 (en) Electric motor and method for producing same
JP2011193564A (en) Stator for axial gap type rotating electrical machines and method of manufacturing the same
JP6462714B2 (en) Axial gap type rotating electrical machine and insulating member
JP2018143049A (en) Method of manufacturing motor and motor
JP2015027175A (en) Rotating electrical machine and method of manufacturing rotating electrical machine
JP2018143048A (en) Method for molding resin casing and motor
JP2007074844A (en) Stator core, motor
KR20200079430A (en) Bobbin structure of armature
JP2013115974A (en) Stator of rotary electric machine
JP2012090486A (en) Stator of rotary electric machine
WO2015162825A1 (en) Axial air gap dynamo-electric machine and dynamo-electric machine bobbin
KR20140114583A (en) A rotor and a motor including the same
JP2014193046A (en) Dynamo-electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14889490

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016513590

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14889490

Country of ref document: EP

Kind code of ref document: A1