WO2020015607A1 - 一种分光装置 - Google Patents

一种分光装置 Download PDF

Info

Publication number
WO2020015607A1
WO2020015607A1 PCT/CN2019/095989 CN2019095989W WO2020015607A1 WO 2020015607 A1 WO2020015607 A1 WO 2020015607A1 CN 2019095989 W CN2019095989 W CN 2019095989W WO 2020015607 A1 WO2020015607 A1 WO 2020015607A1
Authority
WO
WIPO (PCT)
Prior art keywords
wedge
beam splitter
light
shaped beam
shaped
Prior art date
Application number
PCT/CN2019/095989
Other languages
English (en)
French (fr)
Inventor
徐建旭
兰艳平
Original Assignee
上海微电子装备(集团)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微电子装备(集团)股份有限公司 filed Critical 上海微电子装备(集团)股份有限公司
Publication of WO2020015607A1 publication Critical patent/WO2020015607A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/144Beam splitting or combining systems operating by reflection only using partially transparent surfaces without spectral selectivity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only

Definitions

  • Embodiments herein relate to the field of optics, for example, to a spectroscopic device.
  • Figure 1 is a schematic diagram of the light splitting scene in the related technology. Along the direction of light beam transmission, the light is split by a spectroscopic element, and the light beam enters each measurement module to realize simultaneous measurement of multiple modules.
  • FIG. 1 is a schematic diagram of the direction of the light rays of the window sheet or beam splitter in the related art.
  • the window sheeting uses the inherent characteristics of the optical material: the optical material has a certain reflection and transmission for any applicable waveband, so that The beam is divided into transmitted light and reflected light, but because the front and back surfaces of the optical element are reflected, and the reflectivity of the front and back surfaces are similar, the thickness of the lens is limited, which is not enough to separate the light spots on the front and back surfaces.
  • Beamsplitters use coatings on optical materials to achieve different splitting ratios. However, due to the nature of optical materials, reflected light is unavoidable on the rear surface, which will still cause the same problems as window splitting.
  • the beamsplitter also includes wedge beamsplitters.
  • Figure 3 is a schematic diagram of the beam direction of the wedge beamsplitters in the related art. Referring to Figure 3, the beam is incident from an inclined plane. The different thicknesses of the wedge beamsplitters are used to make The front and back surfaces have different reflection angles to achieve beam splitting, but the transmission direction of the transmitted light and the incident light generated by the wedge beam splitter will deflection, which affects the normal operation of the optical system in which the beam splitter is located.
  • This article provides a spectroscopic device to obtain reflected light that does not interfere with each other, does not change the shape and size of the beam while splitting the light, and the transmitted light travels in the same direction as the incident light.
  • An embodiment of the present invention provides a light splitting device, including:
  • a first wedge-shaped beam splitter and a second wedge-shaped beam splitter which are sequentially arranged along a beam propagation direction;
  • first wedge-shaped beam splitter and the second wedge-shaped beam splitter are configured to pass incident light through the first wedge-shaped beam splitter to generate a first transmitted light; and pass the first transmitted light through the first
  • the second wedge-shaped beam splitter forms a second transmitted light parallel to the incident light.
  • FIG. 1 is a schematic diagram of a spectroscopic scene in the related art
  • FIG. 2 is a schematic diagram of the direction of the splitting light rays of a window sheet or a beam splitter in the related art
  • FIG. 3 is a schematic diagram of a beam direction of a wedge beam splitter in the related art
  • FIG. 4 is a schematic structural diagram of a spectroscopic device according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of another spectroscopic device according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of still another spectroscopic device according to an embodiment of the present invention.
  • FIG. 7 is a distance principle diagram of a wedge-shaped beam splitter provided by an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of still another spectroscopic device according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of still another spectroscopic device according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of still another spectroscopic device according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a spectroscopic device according to an embodiment of the present invention.
  • the spectroscopic device includes: a first wedge-shaped beam splitter 11 and a second wedge-shaped beam splitter 12 which are sequentially arranged along a beam propagation direction;
  • the first wedge-shaped beam splitter 11 and the second wedge-shaped beam splitter 12 are configured to: pass incident light through the first wedge-shaped beam splitter 11 to generate first transmitted light 1-T; and pass the first transmitted light 1-T through the first
  • the second wedge-shaped beam splitter 12 forms a second transmitted light 2-T parallel to the incident light.
  • first wedge-shaped beam splitter 11 and the second wedge-shaped beam splitter 12 are non-parallel front and back beam splitters with a certain angle.
  • the first wedge-shaped beam splitter 11 includes the first The light receiving surface 111 and the first light emitting surface 112.
  • the second wedge-shaped beam splitter 12 includes a second light receiving surface 121 and a second light emitting surface 122 in this order.
  • the optical materials used by the first wedge-shaped beam splitter 11 and the second wedge-shaped beam splitter 12 have a certain reflection and transmission for any applicable wavelength band.
  • the incident light 1 can be divided into the first transmitted light 1-T and the first reflected light 1 -R1, and after the incident light 1 enters the first wedge beam splitter 11, the light exit surface of the first wedge beam splitter 11 will also be reflected, and then it will pass through the light receiving surface of the first wedge beam splitter 11 to form a second reflection.
  • the light 1-R2, the second reflected light 1-R2, and the exit direction of the first reflected light 1-R1 have a large deviation, thereby ensuring that the first reflected light 1-R1 is not interfered by the second reflected light 1-R2,
  • the incident light 1 is reflected multiple times on the light-receiving surface and the light-emitting surface.
  • the reflected light emitted after the reflection has a smaller propagation direction than the first reflected light 1-R1. Large deviations, therefore, the spot shape and light intensity distribution of the first reflected light 1-R1 will not be distorted by the interference of other reflected light.
  • the first transmitted light 1-T can also generate reflected light and the second transmitted light 2-T after passing through the second wedge-shaped beam splitter 12.
  • the second wedge-shaped beam splitter 12 can be properly set and selected. The wedge angle, placement position, and refractive index of the beam splitter ensure that the second transmitted light 2-T is parallel to the incident light 1.
  • the beam splitting device uses a wedge-shaped beam splitter to separate the reflected light on different surfaces to obtain reflected light that does not interfere with each other.
  • the beam splitting does not change the shape and size of the beam.
  • Beamsplitters use the previous wedge-shaped beamsplitter to change the transmitted light in the propagation direction and perform angle compensation to ensure that the final transmitted light travels in the same direction as the incident light.
  • an optical film layer is disposed on the first light receiving surface 111 of the first wedge-shaped beam splitter 11, and the optical film layer has a predetermined transmittance ratio.
  • a splitting ratio that meets the requirements of the optical system can be formed to adapt to different types of splitting.
  • the incident angle ⁇ when the incident light 1 enters the first wedge beam splitter 11 is 45 degrees.
  • the incident angle ⁇ is 45 degrees.
  • FIG. 5 is a schematic structural diagram of another spectroscopic device provided by an embodiment of the present invention.
  • the first wedge-shaped spectroscope 11 and the second wedge-shaped spectroscope 12 may be made of materials with the same refractive index.
  • the transmitted light 2-T is parallel to the incident light 1, and the shape and position of the second wedge-shaped beam splitter 12 need to be reasonably set, which involves the incident angle of the first transmitted light 1-T into the second wedge-shaped beam splitter 12, that is, at the first
  • the refractive index of the wedge-shaped beam splitter 12 is determined, by properly setting the incident angle, the exit angle of the second transmitted light 2-T can be determined, and the second transmitted light 2-T and the incident light 1 can be ensured.
  • the direction of transmission is the same.
  • the first wedge-shaped beam splitter 11 includes a first light-receiving surface 111 and a first light-emitting surface 112 in order
  • the second wedge-shaped beam splitter 12 includes a second light-receiving surface 121 and a second light-emitting surface 122 in order
  • the first light receiving surface 111 and the second light emitting surface 122 may be designed to be parallel, and the first light emitting surface 112 and the second light receiving surface 121 may be parallel .
  • FIG. 6 is a schematic structural diagram of still another spectroscopic device according to an embodiment of the present invention.
  • the first wedge-shaped beam splitter 11 and the second wedge-shaped beam splitter 12 have the same shape.
  • the first wedge beam splitter 11 and the second wedge beam splitter 12 having the same shape are used, that is, the two wedge beam splitters have the same size and thickness.
  • the refractive indexes are the same, that is, when they are made of the same material, It is only necessary to place the first wedge beam splitter 11 and the second wedge beam splitter 12 in parallel.
  • the first wedge beam splitter 11 and the second wedge beam splitter 12 are symmetrically placed at the center, and the propagation direction of the second transmitted light 2-T It can be guaranteed to be parallel to the incident light 1.
  • FIG. 7 is a distance principle diagram of a wedge-shaped beam splitter provided by an embodiment of the present invention.
  • the second transmitted light 2-T and the incident light 1 ensure that the propagation directions are parallel, the second transmitted light 2-T and the incident light 1 A translation occurs in the y-dimension. In the optical system, if the translation is too large, it may cause the second transmitted light 2-T to be blocked by the optical element and affect the normal optical path propagation.
  • the distance between the first wedge-shaped beam splitter 11 and the second wedge-shaped beam splitter 12 can be adjusted by the size of the first wedge beam splitter 11, and the translation amount of the second transmitted light 2-T in the y dimension can be adjusted.
  • the refractive index of the medium space in which the wedge beam splitter is placed is n0
  • the refractive index of the first wedge beam splitter 11 is n1
  • the wedge angle of the first wedge beam splitter is ⁇ 1
  • the refractive index of the second wedge beam splitter is n2
  • the wedge angle of the second wedge beam splitter is ⁇ 2
  • the incident angle ⁇ 1 of the light beam 1 incident on the first wedge beam splitter 11 the refraction angle ⁇ 1 generated on the plane of the first wedge beam splitter 11
  • the refractive index of the first wedge beam splitter 11 and the second wedge beam splitter 12 can be set to n1, and the wedge angles are both ⁇ .
  • the refraction angle generated on the light-receiving surface of the first wedge-shaped beam splitter 11 is ⁇
  • the incident angle on the light-emitting surface of the first wedge-shaped beam splitter 11 is ( ⁇ - ⁇ )
  • the exit angle is the same as the incident angle, and the beam exit position is shifted in the Y direction by ⁇ y.
  • the refractive index of the medium space where the wedge-shaped beam splitter is placed is n0.
  • the incident angle ⁇ of the light beam incident on the first wedge-shaped beam splitter 11 and the refraction angle ⁇ generated at the incident surface of the first wedge-shaped beam splitter 11 are wedge-shaped.
  • the distance in the Z direction between the exit point of the beam 1 from the first wedge beam splitter 11 and the incident point of the beam from the second wedge beam splitter 12 is ⁇ z.
  • the distance along the Z direction is ⁇ z1
  • the distance in the Z direction between the incident point of the light beam and the exit point of the second wedge beam splitter 1 is ⁇ z2
  • the beam shift amount ⁇ y can be adjusted according to the distance between the two wedge beam splitters.
  • FIG. 8 is a schematic structural diagram of still another spectroscopic device according to an embodiment of the present invention.
  • the spectroscopic device further includes a guide rail 21, at least one of the first wedge-shaped beam splitter 11 and the second wedge-shaped beam splitter 12.
  • One is disposed on the guide rail 21.
  • at least one of the first wedge-shaped beam splitter 11 or the second wedge-shaped beam splitter 12 may be disposed on a guide rail, so as to ensure that the first wedge-shaped beam splitter 11 or the second wedge-shaped beam splitter 12 can be maintained during the movement. They are parallel to each other, and the translation amount of the second transmitted light 2-T in the y-dimension is adjusted by changing the distance between the two wedge-shaped beam splitters.
  • FIG. 9 is a schematic structural diagram of still another spectroscopic device according to an embodiment of the present invention.
  • incident light 1 passes through a first light receiving surface 111 of a first wedge beam splitter 11 to generate a first reflected light R1 and passes through a first light emitting surface.
  • 112 generates a second reflected light R2; the second reflected light R2 is reflected multiple times in the first wedge beam splitter 11 to form a third transmitted light T3; the incident light passes through the second light receiving surface 121 of the second wedge beam splitter 12 to generate a third
  • the reflected light R3 generates a fourth reflected light R4 through the second light emitting surface 122.
  • the fourth reflected light R4 is reflected multiple times in the second wedge-shaped beam splitter 12 to form a fourth transmitted light T4.
  • the first light-emitting surface 112 of the first wedge-shaped beam splitter 11 is provided with a first baffle 31, and the first baffle 31 is configured to block the third transmitted light T3; in some embodiments, the second wedge-shaped beam splitter
  • the second light emitting surface 122 of the mirror 12 is provided with a second blocking sheet 32, and the second blocking sheet 32 is configured to block the fourth transmitted light T4.
  • the second reflected light R2 is reflected a plurality of times in the first wedge beam splitter 11 to form a third transmitted light T3, and the fourth reflected light R4 is reflected in the second wedge beam splitter 12 to form a fourth transmitted light T4,
  • the third transmitted light T3 and the fourth transmitted light T4 represent the transmitted light that is finally emitted from the light exit surface through reflections inside the wedge beam splitter except the first transmitted light T1 and the second transmitted light T2.
  • a baffle plate 31 and a second baffle plate 32 ensure that the transmitted transmitted light can be limited to the second transmitted light, so that the transmitted light separated by the spectroscopic device will not be disturbed by other transmitted light beams and affect the entire optical system. .
  • FIG. 10 is a schematic structural diagram of still another spectroscopic device according to an embodiment of the present invention.
  • the spectroscopic device further includes a third wedge-shaped beam splitter 13 and a fourth wedge-shaped beam splitter 14 which are sequentially disposed along a beam propagation direction; a third wedge-shaped beam splitter 14;
  • the beam splitter 13 and the fourth wedge beam splitter 14 are both located on the second light exit surface 122 side of the second wedge beam splitter 14, and the third wedge beam splitter 13 and the fourth wedge beam splitter 14 and the first wedge beam splitter 11 and the first
  • the two wedge-shaped beam splitter 12 is mirror-symmetrical on an axial plane perpendicular to the incident light 1.
  • the third wedge-shaped beam splitter 13 has the same refractive index as the first wedge-shaped beam splitter 11, and the fourth wedge-shaped beam splitter 14 and the second wedge-shaped beam splitter 12 refract. The rate is the same.
  • the third wedge beam splitter 13 has the same refractive index as the first wedge beam splitter 11.
  • the fourth wedge-shaped beam splitter 14 has the same refractive index as the second wedge-shaped beam splitter 12, which ensures that the optical path of the second transmitted light 2-T in the third wedge-shaped beam splitter 13 and the fourth wedge-shaped beam splitter 14 and the incident light in the first
  • the optical path of the one wedge beam splitter and the second wedge beam splitter is mirror-symmetrical, so that the distance between the first wedge beam splitter 11 and the second wedge beam splitter 12 can be adjusted arbitrarily, and the final transmitted transmitted light T and incident light 1 will not A translation is generated in the y dimension, thereby reducing the optical path of the incident light 1.
  • it can ensure that the light is split without affecting the normal operation of the optical system.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

一种分光装置,包括:沿光束传播方向依次设置的第一楔形分光镜(11)和第二楔形分光镜(12);其中,第一楔形分光镜(11)和第二楔形分光镜(12)设置为:使入射光(1)经过第一楔形分光镜(11)后产生第一透射光(1-T);并使第一透射光(1-T)经过第二楔形分光镜(12)后形成与入射光(1)行的第二透射光(2-T)。

Description

一种分光装置
本公开要求在2018年07月19日提交中国专利局、申请号为201810798488.5的中国专利申请的优先权,以上申请的全部内容通过引用结合在本公开中。
技术领域
本文实施例涉及光学领域,例如涉及一种分光装置。
背景技术
在光学系统中,特别是测试系统中存在多种参数同时测试的需求,就需要多路分光到各测试模块,图1是相关技术中的分光场景示意图,参考图1,光从光源出射后,沿着光束传输的方向,使用分光元件分光,光束进入各测量模块,实现多模块同时测量。
在光学系统中,分光装置的使用非常普遍,分光装置主要用于分光,把一束光分成两束或多束。传统的分光装置有窗口片、分光镜、楔形分光镜。图2是相关技术中的窗口片或分光镜分光光线走向示意图,参考图2,窗口片分光则利用了光学材料的固有特性:光学材料对任何适用的波段具有一定的反射和透射,从而把一束光分成透射光和反射光,但因为光学元件的前后表面都会反射,且前后表面的反射率相近,镜片的厚度有限,不足以把前后表面的光斑分开,前后表面的反射光斑会互相重合,造成光斑尺寸变大,光斑形状和光强分布失真。分光镜分光则是通过在光学材料上镀膜实现不同的分光比,但是由于光学材料的本性,在后表面上不可避免出现反射光,仍然会造成与窗口片分光同样的问题,前后表面的反射光斑会互相重合,造成光斑尺寸变大,光斑形状和光强分布失真。除窗口片和分光镜外,分光装置还包括楔形分光镜分光,图3是相关技术中楔形分光镜的分光光线走向示意图,参考图3,光束从斜面入射,利用楔形分光镜不同的厚度,使前表面和后表面的反射角度不相同,进而实现分光,但是由楔形分光镜分光产生的透射光与入射光的传播方向会产生偏折,影响分光装置所处的光学系统的正常工作。
发明内容
本文提供一种分光装置,以得到相互不干扰的反射光,在分光的同时不改变光束的形貌和尺寸,且透射光沿着与入射光相同的方向传播。
本发明实施例提供了一种分光装置,包括:
沿光束传播方向依次设置的第一楔形分光镜和第二楔形分光镜;
其中,所述第一楔形分光镜和所述第二楔形分光镜设置为:使入射光经过所述第一楔形分光镜后产生第一透射光;并使所述第一透射光经过所述第二楔形分光镜后形成与所述入射光平行的第二透射光。
附图说明
图1是相关技术中的分光场景示意图;
图2是相关技术中的窗口片或分光镜分光光线走向示意图;
图3是相关技术中楔形分光镜的分光光线走向示意图;
图4为本发明实施例提供的一种分光装置的结构示意图;
图5是本发明实施例提供的另一种分光装置的结构示意图;
图6是本发明实施例提供的又一种分光装置的结构示意图;
图7是本发明实施例提供的楔形分光镜距离原理图;
图8是本发明实施例提供的又一种分光装置的结构示意图;
图9是本发明实施例提供的又一种分光装置的结构示意图;
图10是本发明实施例提供的又一分光装置的结构示意图。
具体实施方式
下面结合附图和实施例对本文作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本文,而非对本文的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本文相关的部分而非全部结构。
图4为本发明实施例提供的一种分光装置的结构示意图,参考图4,该分光装置包括:沿光束传播方向依次设置的第一楔形分光镜11和第二楔形分光镜12;其中,所述第一楔形分光镜11和所述第二楔形分光镜12设置为:使入射光经过第一楔形分光镜11后产生第一透射光1-T;并使第一透射光1-T经过第二楔形分光镜12后形成与入射光平行的第二透射光2-T。
本实施例中,第一楔形分光镜11和第二楔形分光镜12为一种正反面不平行的,具有一定夹角的分光镜,沿光束传播方向,第一楔形分光镜11依次包括第一受光面111和第一出光面112,第二楔形分光镜12依次包括第二受光面121和第二出光面122。第一楔形分光镜11和第二楔形分光镜12采用的光学材料对 任何适用的波段具有一定的反射和透射,因此,可把入射光1分成第一透射光1-T和第一反射光1-R1,而入射光1在进入第一楔形分光镜11后,在第一楔形分光镜11的出光面也会产生反射,进而透过第一楔形分光镜11的受光面出射,形成第二反射光1-R2,第二反射光1-R2与第一反射光1-R1的出射方向存在较大偏差,因而保证了第一反射光1-R1不受第二反射光1-R2的干扰,并且,入射光1在进入第一楔形分光镜11后,会在受光面和出光面进行多次反射,同理,反射后出射的反射光均与第一反射光1-R1的传播方向具有较大偏差,因此,第一反射光1-R1的光斑形状和光强分布不会因其他反射光的干扰而失真。继续参考图4,第一透射光1-T通过第二楔形分光镜12后同样可以产生反射光和第二透射光2-T,此时,第二楔形分光镜12可通过合理地设置和选择楔角、放置位置以及分光镜折射率,保证第二透射光2-T与入射光1平行。
本发明实施例提供的分光装置,利用楔形分光镜,可将不同表面的反射光分离,得到相互不干扰的反射光,在分光的同时不改变光束的形貌和尺寸,同时,通过另外一个楔形分光镜,将由前一个楔形分光镜改变了传播方向的透射光,进行角度补偿,保证了最终出射的透射光沿着与入射光相同的方向传播。
继续参考图4,可选地,第一楔形分光镜11的第一受光面111上设置有光学膜层,光学膜层具有预设的透反比。通过光学膜层可以形成满足光学系统要求的分光比,以适应不同类型的分光。
可选地,入射光1入射第一楔形分光镜11时的入射角θ为45度。通过设置入射角为45度,可以保证该分光装置分出的第一反射光1-R1与原入射光1的光路垂直,进一步地可以为第一反射光的采集装置余留足够的空间,保证第一反射光的测试装置不会干扰正常的光学系统。
图5是本发明实施例提供的另一种分光装置的结构示意图,参考图5,第一楔形分光镜11和第二楔形分光镜12可采用相同折射率的材料制成,而为了保证第二透射光2-T和入射光1平行,需要对第二楔形分光镜12的形状和位置进行合理设置,其中涉及第一透射光1-T入射第二楔形分光镜12的入射角,即在第二楔形分光镜12的折射率确定的情况下,通过合理设置入射角,即可确定出射的第二透射光2-T的出射角度,即可保证第二透射光2-T与入射光1的传播方向一致。
继续参考图5,沿光束传播方向,第一楔形分光镜11依次包括第一受光面111和第一出光面112,第二楔形分光镜12依次包括第二受光面121和第二出 光面122;在一些实施例中,为了方便第二楔形分光镜12的位置放置和形状的设计制作,可设计第一受光面111和第二出光面122平行,第一出光面112和第二受光面121平行。
图6是本发明实施例提供的又一种分光装置的结构示意图,参考图6,在一些实施例中,第一楔形分光镜11与第二楔形分光镜12形状相同。如图6所示,采用形状相同的第一楔形分光镜11和第二楔形分光镜12,即两楔形分光镜的大小和厚度相同,在折射率相同,即采用同一种材料制备的情况下,只需平行放置第一楔形分光镜11和第二楔形分光镜12即可,此时第一楔形分光镜11和第二楔形分光镜12为中心对称放置,第二透射光2-T的传播方向可以保证与入射光1平行。
可选地,第一楔形分光镜11与第二楔形分光镜12之间的距离可调。图7是本发明实施例提供的楔形分光镜距离原理图,参考图7,第二透射光2-T与入射光1虽然保证了传播方向平行,但第二透射光2-T与入射光1在y维度上发生了平移,在光学系统中,如果该平移过大时,可能导致第二透射光2-T被光学元件遮挡,影响正常的光路传播,因此,根据实际的光学系统及光学元件的大小来调节第一楔形分光镜11和第二楔形分光镜12的间距,进而可以调节第二透射光2-T在y维度上的平移量。示例性的,假设楔形分光镜所放置介质空间的折射率为n0,第一楔形分光镜11的折射率为n1,第一楔形分光镜的楔角为δ1,第二楔形分光镜的折射率为n2,第二楔形分光镜的楔角为δ2,根据折射定律,光束1入射到第一楔形分光镜11的入射角α1,在第一楔形分光镜11平面产生的折射角γ1,第一投射光1-T入射到第二楔形分光镜12的入射角α2,在第二楔形分光镜12平面产生的折射角γ2,光束传输过程中满足如下关系:n0*sinα1=n1*sinγ1,n1*sin(γ1-δ1)=n0*sinβ1,n0*sinα2=n2*sinγ2,n2*sin(γ2+δ2)=n0*sinα1。当第一楔形分光镜11和第二楔形分光镜12形状相同,且采用同样的折射率材料时,可设第一楔形分光镜11和第二楔形分光镜的折射率为n1,楔角均为δ。假设光束1以α入射第一块楔形板的平面,在第一楔形分光镜11的受光面产生的折射角为γ,在第一楔形分光镜11的出光面的入射角为(γ-δ),则以β角从第一块楔形分光镜11的出光面出射,以β角从第二块楔形分光镜12的受光面入射,以α角从第二块楔形分光镜12的出射面出射。光束经过两块楔形分光镜后,出射角与入射角相同,光束出射位置沿Y方向产生△y的偏移。假设楔形分光镜放置的介质空间的折射率为n0,根据折射定律,光束入射到第 一块楔形分光镜11的入射角α,在第一块楔形分光镜11入射面产生的折射角γ,楔形分光镜的楔角δ,出射角为β,光束传输过程中满足如下关系:n0*sinα=n1*sinγ,n1*sin(γ-δ)=n0*sinβ,n0*sinβ=n1*sin(γ-δ),n1*sinγ=n0*sinα。假设光束1从第一楔形分光镜11出射点与光束从第二楔形分光镜12的入射点之间沿Z向的距离为△z,第一楔形分光镜11的光束入射点与光束出射点之间沿Z向的距离为△z1,第二楔形分光镜1的光束入射点与光束出射点之间沿Z向的距离为△z2,则产生的光束量为△y=△z*tan(α-β-δ)+(△z1+△z2)*tan(α-γ),由此,可根据第一楔形分光镜11和第二楔形分光镜12的楔角、厚度、以及入射光的入射角,来确定光束平移量△y,进一步地,可根据两楔形分光镜的间距,来调节光束的平移量△y。
图8是本发明实施例提供的又一种分光装置的结构示意图,参考图8,可选地,该分光装置还包括导轨21,第一楔形分光镜11和第二楔形分光镜12中至少之一设置于导轨21上。在一些实施例中,可将第一楔形分光镜11或第二楔形分光镜12中的至少一个设置于导轨上,保证第一楔形分光镜11或第二楔形分光镜12在移动过程中能够保持相互平行,同时通过两楔形分光镜间距的改变调节第二透射光2-T在y维度上的平移量。
图9是本发明实施例提供的又一种分光装置的结构示意图,参考图9,入射光1经过第一楔形分光镜11的第一受光面111产生第一反射光R1,经第一出光面112产生第二反射光R2;第二反射光R2在第一楔形分光镜11内多次反射后形成第三透射光T3;入射光经过第二楔形分光镜12的第二受光面121产生第三反射光R3,经第二出光面122产生第四反射光R4;第四反射光R4在第二楔形分光镜12内多次反射后形成第四透射光T4。在一些实施例中,第一楔形分光镜11的第一出光面112设置有第一挡片31,第一挡片31设置为遮挡第三透射光T3;在一些实施例中,第二楔形分光镜12的第二出光面122设置有第二挡片32,第二挡片32设置为遮挡第四透射光T4。
其中,第二反射光R2在第一楔形分光镜11内多次反射后形成第三透射光T3,第四反射光R4在第二楔形分光镜12内多次反射后形成第四透射光T4,此处第三透射光T3和第四透射光T4表示除第一透射光T1和第二透射光T2外的其他经过楔形分光镜内部的反射最终由出光面出射的透射光,由此,通过第一挡片31和第二挡片32,保证了出射的透射光可以仅限于第二透射光,从而使由该分光装置分出的透射光不会被其他透射光束所干扰,而影响整个光学系统。
图10是本发明实施例提供的又一分光装置的结构示意图,参考图10,该分光装置还包括沿光束传播方向依次设置的第三楔形分光镜13和第四楔形分光镜14;第三楔形分光镜13和第四楔形分光镜14均位于第二楔形分光镜14的第二出光面122一侧,且第三楔形分光镜13和第四楔形分光镜14与第一楔形分光镜11和第二楔形分光镜12以垂直入射光1的轴向的平面呈镜像对称,第三楔形分光镜13与第一楔形分光镜11折射率相同,第四楔形分光镜14与第二楔形分光镜12折射率相同。
通过设置与第一楔形分光镜11和第二楔形分光镜12镜像对称的第三楔形分光镜13和第四楔形分光镜14,并且第三楔形分光镜13与第一楔形分光镜11折射率相同,第四楔形分光镜14与第二楔形分光镜12折射率相同,即保证了第二透射光2-T在第三楔形分光镜13和第四楔形分光镜14中的光路与入射光在第一楔形分光镜和第二楔形分光镜中光路呈镜像对称,由此可以任意调节第一楔形分光镜11和第二楔形分光镜12的间距,而最终出射的透射光T与入射光1不会在y维度上产生平移,从而还原了入射光1的光路,对于需要根据光束位置进行测量、成像等工作的光学系统,能够保证分光的同时不影响光学系统的正常工作。

Claims (11)

  1. 一种分光装置,包括:
    沿光束传播方向依次设置的第一楔形分光镜(11)和第二楔形分光镜(12);
    其中,所述第一楔形分光镜(11)和所述第二楔形分光镜(12)设置为:使入射光(1)经过所述第一楔形分光镜(11)后产生第一透射光(1-T);并使所述第一透射光(1-T)经过所述第二楔形分光镜(12)后形成与所述入射光(1)平行的第二透射光(2-T)。
  2. 根据权利要求1所述的分光装置,其中,所述第一楔形分光镜(11)和所述第二楔形分光镜(12)的折射率相同。
  3. 根据权利要求1或2所述的分光装置,其中,沿光束传播方向,所述第一楔形分光镜(11)依次包括第一受光面(111)和第一出光面(112),所述第二楔形分光镜(12)依次包括第二受光面(121)和第二出光面(122);
    所述第一受光面(111)和所述第二出光面(122)平行,所述第一出光面(112)和所述第二受光面(121)平行。
  4. 根据权利要求1-3任一项所述的分光装置,其中,所述第一楔形分光镜(11)与所述第二楔形分光镜(12)形状相同。
  5. 根据权利要求1所述的分光装置,其中,所述第一楔形分光镜(11)与所述第二楔形分光镜(12)之间的距离可调。
  6. 根据权利要求1或5所述的分光装置,还包括导轨(21),所述第一楔形分光镜(11)和所述第二楔形分光镜(12)中至少之一设置于所述导轨(21)上。
  7. 根据权利要求1所述的分光装置,其中,沿光束传播方向,所述第一楔形分光镜(11)依次包括第一受光面(111)和第一出光面(112),所述第一楔形分光镜(11)的所述第一受光面(111)上设置有光学膜层,所述光学膜层具有预设的透反比。
  8. 根据权利要求1所述的分光装置,其中,沿光束传播方向,所述第一楔形分光镜(11)依次包括第一受光面(111)和第一出光面(112),所述第二楔形分光镜(12)依次包括第二受光面(121)和第二出光面(122);
    所述第一楔形分光镜(11)的所述第一出光面(112)设置有第一挡片(31),所述第一挡片(31)设置为遮挡第三透射光;
    其中,所述入射光(1)经所述第一出光面(112)产生第二反射光(1-R2);所述第三透射光(T3)为所述第二反射光(1-R2)在所述第一楔形分光镜(11) 内多次反射后形成。
  9. 根据权利要求1或8所述的分光装置,其中,沿光束传播方向,所述第一楔形分光镜(11)依次包括第一受光面(111)和第一出光面(112),所述第二楔形分光镜(12)依次包括第二受光面(121)和第二出光面(122);所述第二楔形分光镜(12)的所述第二出光面(122)设置有第二挡片(32),所述第二挡片(32)设置为遮挡第四透射光(T4);
    其中,所述入射光(1)经所述第二出光面(122)产生第四反射光(R4);所述第四透射光(T4)为所述第四反射光(R4)在所述第二楔形分光镜(12)内多次反射后形成。
  10. 根据权利要求1-9任一项所述的分光装置,还包括沿光束传播方向依次设置的第三楔形分光镜(13)和第四楔形分光镜(14);
    所述第三楔形分光镜(13)和所述第四楔形分光镜(14)均位于所述第二楔形分光镜(12)的第二出光面(122)一侧,且所述第三楔形分光镜(13)和所述第四楔形分光镜(14)与所述第一楔形分光镜(11)和第二楔形分光镜(12)设置为以垂直于入射光(1)的轴向的平面呈镜像对称,所述第三楔形分光镜(13)与所述第一楔形分光镜(11)折射率相同,所述第四楔形分光镜(14)与所述第二楔形分光镜(12)折射率相同。
  11. 根据权利要求1所述的分光装置,其中,所述第一楔形分光镜(11)设置为:使所述入射光(1)入射所述第一楔形分光镜(11)的入射角为45度。
PCT/CN2019/095989 2018-07-19 2019-07-15 一种分光装置 WO2020015607A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810798488.5A CN110737098B (zh) 2018-07-19 2018-07-19 一种分光装置
CN201810798488.5 2018-07-19

Publications (1)

Publication Number Publication Date
WO2020015607A1 true WO2020015607A1 (zh) 2020-01-23

Family

ID=69163615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095989 WO2020015607A1 (zh) 2018-07-19 2019-07-15 一种分光装置

Country Status (3)

Country Link
CN (1) CN110737098B (zh)
TW (1) TWI719540B (zh)
WO (1) WO2020015607A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112230234A (zh) * 2020-10-15 2021-01-15 北醒(北京)光子科技有限公司 一种非同轴激光雷达

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103063411A (zh) * 2012-12-13 2013-04-24 华中科技大学 一种高功率线偏振激光光束性能的测量装置
CN103424190A (zh) * 2013-09-02 2013-12-04 南京理工大学 双楔板色散剪切干涉超光谱成像装置及方法
KR20140134757A (ko) * 2013-05-13 2014-11-25 한국기계연구원 레이저 광학헤드
CN107160032A (zh) * 2017-07-18 2017-09-15 上海嘉强自动化技术有限公司 一种间距与分光能量可调三光点激光焊接光学系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4822974A (en) * 1988-02-18 1989-04-18 United Technologies Corporation Laser hold drilling system with lens and two wedge prisms including axial displacement of at least one prism
US6628461B2 (en) 2001-01-10 2003-09-30 Finisar Corporation Method and apparatus for a polarization beam splitter/combiner with an integrated optical isolator
JP5230236B2 (ja) * 2008-03-31 2013-07-10 大日本スクリーン製造株式会社 露光装置
CN103064241A (zh) * 2013-01-17 2013-04-24 成都迅达光电有限公司 一种用于投影仪的可减少光学能量损失的led照明光路
JP2016156975A (ja) * 2015-02-25 2016-09-01 湖北工業株式会社 偏光無依存型光アイソレータ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103063411A (zh) * 2012-12-13 2013-04-24 华中科技大学 一种高功率线偏振激光光束性能的测量装置
KR20140134757A (ko) * 2013-05-13 2014-11-25 한국기계연구원 레이저 광학헤드
CN103424190A (zh) * 2013-09-02 2013-12-04 南京理工大学 双楔板色散剪切干涉超光谱成像装置及方法
CN107160032A (zh) * 2017-07-18 2017-09-15 上海嘉强自动化技术有限公司 一种间距与分光能量可调三光点激光焊接光学系统

Also Published As

Publication number Publication date
TWI719540B (zh) 2021-02-21
CN110737098A (zh) 2020-01-31
CN110737098B (zh) 2021-08-17
TW202008034A (zh) 2020-02-16

Similar Documents

Publication Publication Date Title
US11360305B2 (en) Optical system and wearable display apparatus having the same
EP2458424B1 (en) Beam splitter for 3D camera, and 3D image acquisition apparatus employing the beam splitter
US9446478B2 (en) Device for applying laser radiation and device for reproducing a linear light distribution
US8009363B2 (en) Prism beamsplitters
US20100290128A1 (en) Optical module
JP6383166B2 (ja) 光照射装置および描画装置
US11886022B2 (en) Beam expander and beam expansion method
WO2020015607A1 (zh) 一种分光装置
US11002978B2 (en) Microscope having a beam splitter assembly
JP7273041B2 (ja) レーザ・プロジェクタ及び回折ディスプレイ・デバイス
JP2010008487A (ja) 光モジュールおよび分散補償装置
TW201508334A (zh) 測距儀及其分合光稜鏡裝置
JP6345963B2 (ja) 光照射装置および描画装置
TWI669563B (zh) 投影模組
CN111458893B (zh) 一种分光装置
JP2020187117A (ja) 光学系、光学遅延線、及びoct装置
KR100903657B1 (ko) 라인 빔 생성기 및 그 제조 방법
KR102397685B1 (ko) 레이저 가공 장치
TWI383177B (zh) 光學系統
WO2007014773A1 (en) Optical system for attenuating and imaging an optical beam for a subsequent intensity measurement
JP2017015633A (ja) 光干渉計
JP2003315697A (ja) 分散補償器
CN116047783A (zh) 一种激光散斑抑制装置及方法
CN110673351A (zh) 一种可设置不同分光比的保偏薄膜激光分光系统
JPH052147A (ja) 光路合成光学系

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19838873

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19838873

Country of ref document: EP

Kind code of ref document: A1