WO2020015561A1 - 图像传感器、移动终端及图像拍摄方法 - Google Patents

图像传感器、移动终端及图像拍摄方法 Download PDF

Info

Publication number
WO2020015561A1
WO2020015561A1 PCT/CN2019/095367 CN2019095367W WO2020015561A1 WO 2020015561 A1 WO2020015561 A1 WO 2020015561A1 CN 2019095367 W CN2019095367 W CN 2019095367W WO 2020015561 A1 WO2020015561 A1 WO 2020015561A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
sub
infrared
pixels
green
Prior art date
Application number
PCT/CN2019/095367
Other languages
English (en)
French (fr)
Inventor
王丹妹
周华昭
朱盼盼
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to KR1020217004094A priority Critical patent/KR102374428B1/ko
Priority to EP19838484.4A priority patent/EP3826291A4/en
Publication of WO2020015561A1 publication Critical patent/WO2020015561A1/zh
Priority to US17/151,745 priority patent/US11996421B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14605Structural or functional details relating to the position of the pixel elements, e.g. smaller pixel elements in the center of the imager compared to pixel elements at the periphery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/703SSIS architectures incorporating pixels for producing signals other than image signals
    • H04N25/705Pixels for depth measurement, e.g. RGBZ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14629Reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14649Infrared imagers
    • H01L27/1465Infrared imagers of the hybrid type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/131Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements including elements passing infrared wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/33Transforming infrared radiation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1684Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675
    • G06F1/1686Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675 the I/O peripheral being an integrated camera
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof

Definitions

  • the present disclosure relates to the field of image processing technologies, and in particular, to an image sensor, a mobile terminal, and an image capturing method.
  • CMOS Complementary Metal Oxide Semiconductor
  • Red, R red
  • Green, G green
  • Blue, B Improved Bayer mode four-in-one pixel array layout mode; as shown in Figure 1a and Figure 1b, although this arrangement can improve the dark state photographic effect compared to Bayer mode, the disadvantage is that it cannot detect the distance of the object, and can only be used When receiving natural light, it is used to take pictures and record images under normal light.
  • the pixel array arrangement pattern of the full-pixel dual-core focusing 2PD technology is shown in Figures 1c and 1d.
  • This arrangement can only be used to receive natural light and used to take pictures and record images. Compared to the 4-in-1 RGB arrangement technology solution, It can detect the distance of the object and complete the focusing action more quickly; however, the effect of taking photos in the dark state is not ideal.
  • the pixel array arrangement mode of the image sensor in the related art has the problems of slow focusing or inability to improve the shooting effect in the dark state, which affects the shooting experience of the user.
  • the embodiments of the present disclosure provide an image sensor, a mobile terminal, and an image shooting method to solve the problem that the pixel array arrangement mode of the image sensor in the related art is slow to focus or cannot improve the shooting effect in the dark state, which affects the shooting experience of the user.
  • an image sensor including:
  • a pixel array including a preset number of pixel units arranged in a predetermined manner, the pixel unit including a first pixel and a second pixel adjacent to the first pixel position, the first pixel including a red sub-pixel, a green sub-pixel, and A blue sub-pixel, a second pixel including at least one of a red sub-pixel and a blue sub-pixel, and a green sub-pixel and an infrared sub-pixel, and the first pixel and the second pixel are all full-pixel dual-core focus pixels, the first pixel And the sub-pixels in the second pixel are arranged in a four-in-one manner;
  • the position of the infrared sub-pixel in the second pixel is the same as the position of the red sub-pixel, green sub-pixel, blue sub-pixel, first combined sub-pixel, or second combined sub-pixel in the first pixel.
  • the first combined sub-pixel Is a combination of 1/2 red sub pixels and 1/2 green sub pixels adjacent to each other
  • the second combined sub pixel is a combination of 1/2 green sub pixels and 1/2 blue sub pixels adjacent to each other; or
  • the position of the 1/2 infrared sub-pixel in the second pixel is the same as the position of the 1/2 red sub-pixel, 1/2 green sub-pixel, or 1/2 blue sub-pixel in the first pixel, and two adjacent The 1/2 infrared sub-pixels in the second pixel are combined to form a complete infrared sub-pixel.
  • an embodiment of the present disclosure provides a mobile terminal including an imaging system and an infrared transmitting module.
  • the imaging system includes:
  • a driving module for driving the lens module to move
  • a filtering module provided between the lens module and the image sensor
  • An image data processing module connected to the image sensor
  • a display module connected to the image data processing module
  • the infrared emitting module is disposed on the periphery of the lens module.
  • an embodiment of the present disclosure further provides an image shooting method, which is applied to a mobile terminal.
  • the mobile terminal includes an infrared transmitting module and the foregoing image sensor.
  • the method includes:
  • Emitting infrared light through an infrared transmitting module Emitting infrared light through an infrared transmitting module
  • stereoscopic information acquisition is performed on the object to be photographed.
  • an image sensor is formed by using a 2PD pixel array in which four-in-one RGB sub-pixels are combined with infrared sub-pixels, and shooting is performed according to the image sensor. Based on the recorded image, the object to be captured and movement can be detected.
  • the distance between the terminals realizes fast focusing and background blurring, and at the same time, it can improve the dark imaging effect of the image and realize the related application functions of stereo photography. While ensuring the user's shooting experience, the mobile terminal's functions are diversified.
  • FIG. 1a shows a four-in-one RGB arrangement diagram in the related art
  • Figure 1b shows a cross-sectional view of a four-in-one pixel
  • FIG. 1c shows a pixel array layout of 2PD
  • Figure 1d shows a cross-sectional view of a 2PD pixel
  • FIG. 2a shows one of the schematic diagrams of a pixel unit provided by an embodiment of the present disclosure
  • FIG. 2b shows a second schematic diagram of a pixel unit provided by an embodiment of the present disclosure
  • 2c shows a third schematic diagram of a pixel unit provided by an embodiment of the present disclosure
  • FIG. 3a shows a fourth schematic diagram of a pixel unit provided by an embodiment of the present disclosure
  • 3b shows the fifth schematic diagram of a pixel unit provided by an embodiment of the present disclosure
  • FIG. 4a shows a sixth schematic diagram of a pixel unit provided by an embodiment of the present disclosure
  • FIG. 4b shows a seventh schematic diagram of a pixel unit provided by an embodiment of the present disclosure
  • FIG. 5a shows the eighth schematic diagram of a pixel unit provided by an embodiment of the disclosure
  • FIG. 5b shows a ninth schematic diagram of a pixel unit provided by an embodiment of the present disclosure
  • FIG. 6 shows a pixel cross-sectional view provided by an embodiment of the present disclosure
  • FIG. 7a is a schematic diagram of a mobile terminal according to an embodiment of the present disclosure.
  • FIG. 7b shows a schematic diagram of an imaging system provided by an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of an image capturing method according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a hardware structure of a mobile terminal according to an embodiment of the present disclosure.
  • An embodiment of the present disclosure provides an image sensor, including:
  • a pixel array including a predetermined number of pixel units arranged in a predetermined manner, the pixel unit including a first pixel and a second pixel adjacent to the first pixel position, as shown in FIGS. 2a to 2c, 3a to 3b 4a to 4b, the first pixel includes a red subpixel, a green subpixel, and a blue subpixel, and the second pixel includes at least one of a red subpixel and a blue subpixel, and a green subpixel and an infrared subpixel.
  • Pixels, and the first and second pixels are all-pixel dual-core focusing pixels, and the sub-pixels in the first and second pixels are arranged in a four-in-one manner;
  • the position of the infrared sub-pixel in the second pixel is the same as the position of the red sub-pixel, green sub-pixel, blue sub-pixel, first combined sub-pixel, or second combined sub-pixel in the first pixel.
  • the first combined sub-pixel Is a combination of 1/2 red sub pixels and 1/2 green sub pixels adjacent to each other
  • the second combined sub pixel is a combination of 1/2 green sub pixels and 1/2 blue sub pixels adjacent to each other; or
  • the position of the 1/2 infrared sub-pixel in the second pixel is the same as the position of the 1/2 red sub-pixel, 1/2 green sub-pixel, or 1/2 blue sub-pixel in the first pixel, and two adjacent The 1/2 infrared sub-pixels in the second pixel are combined to form a complete infrared sub-pixel.
  • the pixel array included in the image sensor provided in the embodiment of the present disclosure includes a preset number of pixel units, and the preset number of pixel units are arranged in a predetermined manner.
  • the preset number of pixel units each include a first pixel and a second pixel.
  • the first pixel is different from the second pixel.
  • the first pixel includes a red sub-pixel (R), a green sub-pixel (G), and a blue sub-pixel.
  • Pixel (B) the second pixel includes at least one of a red sub-pixel and a blue sub-pixel, and further includes a green sub-pixel and an infrared sub-pixel (IR).
  • the first pixel and the second pixel in the embodiment of the present disclosure are all-pixel dual-core focus (2PD) pixels.
  • 2PD pixels By using the 2PD pixels, the object distance can be detected and the focusing action can be completed more quickly.
  • the first pixel and the second pixel here
  • the pixels are 2PD pixels, that is, the sub-pixels in the first pixel and the second pixel are 2PD sub-pixels. At the same time, the sub-pixels in the first pixel and the second pixel are arranged in a four-in-one manner.
  • This four-in-one arrangement makes a sub-pixel include four corresponding units, and the structure of the four units is: Two units are located on the upper level, the other two units are located on the lower level, and the two units on the lower level correspond to the two units on the upper level. That is, the first unit and the second unit are sequentially arranged and adjacent to each other, the third unit is located below the first unit, and the fourth unit is located below the second unit.
  • each unit is divided into two.
  • the red sub-pixel includes four red cells
  • the green sub-pixel includes four green cells
  • the blue sub-pixel includes four blue cells.
  • Each cell is divided into two.
  • the red, green, and blue sub-pixels in the first pixel are arranged in a certain manner, and the first pixel includes a red sub-pixel, a blue sub-pixel, and two green sub-pixels. It is convenient to distinguish the two green sub-pixels as a first green sub-pixel and a second green sub-pixel, respectively, where the first green sub-pixel is the same as the second green sub-pixel.
  • the red sub-pixel is adjacent to the first green sub-pixel
  • the second green sub-pixel is located below the red sub-pixel
  • the blue sub-pixel is located below the first green sub-pixel
  • the second green sub-pixel is adjacent to the blue sub-pixel .
  • the second pixel includes at least one of a red subpixel and a blue subpixel, and further includes a green subpixel and an infrared subpixel, that is, the second pixel may include a red subpixel, a green subpixel, and an infrared subpixel, and may include The green subpixel, the blue subpixel, and the infrared subpixel may further include a green subpixel, a red subpixel, a blue subpixel, and an infrared subpixel.
  • the position of the infrared sub-pixel in the second pixel may be the same as the position of a certain sub-pixel in the first pixel, or may be the same as the position of two 1/2 different sub-pixels adjacent to each other in the first pixel.
  • the position of the 1/2 infrared sub-pixel in the second pixel is the same as the position of any 1/2 sub-pixel in the first pixel.
  • the 1/2 infrared of two adjacent second pixels can be used.
  • the sub-pixels are combined to form a complete infrared sub-pixel.
  • the position of the 1/2 infrared sub-pixel in the second pixel is the same as the position of the 1/2 red sub-pixel in the first pixel, and the position of the 1/2 infrared sub-pixel in the second pixel is the same as the 1/2 green sub-pixel.
  • the pixels are in the same position in the first pixel, so far, a complete infrared sub-pixel can be formed by combining 1/2 infrared sub-pixels in two adjacent second pixels.
  • the mobile terminal by improving the arrangement method of the RGB pixel array, and changing the arrangement method of the RGB pixel array to a four-in-one RGB-Infrared Radiation (IR) pixel array arrangement, the mobile terminal can be made Under the condition of receiving infrared light, image shooting is performed to realize dark state imaging to ensure the user shooting experience.
  • IR Infrared Radiation
  • the image sensor of the embodiment of the present disclosure can detect the distance between the object to be photographed and the mobile terminal, realize fast focusing and background blurring.
  • the imaging effect of the image can be improved, and related applications of stereo photography can be realized. Function, while ensuring the user's shooting experience, enhance the functionality of the mobile terminal.
  • the position of the infrared sub-pixel in the second pixel is in combination with the red sub-pixel, green sub-pixel, blue sub-pixel, and first combination.
  • the position of the sub-pixel or the second combined sub-pixel in the first pixel is the same.
  • the first combined sub-pixel is a combination of the 1/2 red sub-pixel and the 1/2 green sub-pixel adjacent to each other, and the second combined sub-pixel is the position.
  • the infrared sub-pixel replaces the red sub-pixel in the first pixel.
  • the position of the infrared sub-pixel in the second pixel is the same as that of the red sub-pixel.
  • the pixels are in the same position in the first pixel.
  • the infrared sub-pixel replaces the blue sub-pixel in the first pixel.
  • the position of the infrared sub-pixel in the second pixel and the blue The positions of the sub-pixels in the first pixel are the same.
  • the infrared sub-pixel may replace a green sub-pixel in the first pixel.
  • the infrared sub-pixel is in the second pixel.
  • the position in is the same as the position of a green sub-pixel in the first pixel.
  • the second pixel may include a red subpixel, a green subpixel, a 1/2 blue subpixel, 1/2 green sub-pixel and one infrared sub-pixel, the infrared sub-pixel replaces the 1/2 green sub-pixel and 1/2 blue sub-pixel in the first pixel, that is, the position of the infrared sub-pixel in the second pixel
  • the positions of the 1/2 green sub-pixel and the 1/2 blue sub-pixel adjacent to the position are the same in the first pixel.
  • the second pixel may also include a blue sub-pixel, a green sub-pixel, a 1/2 red sub-pixel, 1/2 green sub-pixel and one infrared sub-pixel.
  • the infrared sub-pixel replaces the 1/2 green sub-pixel and 1/2 red sub-pixel in the first pixel, that is, the position of the infrared sub-pixel in the second pixel is the same
  • the positions of the 1 ⁇ 2 green sub-pixel and the 1 ⁇ 2 red sub-pixel adjacent to each other in the first pixel are the same.
  • the pixel unit when the position of the infrared sub-pixel in the second pixel is in the first pixel with the red sub-pixel, green sub-pixel, blue sub-pixel, first combined sub-pixel, or second combined sub-pixel
  • the pixel unit when the positions are the same, includes a second pixel and at least one first pixel.
  • the pixel unit includes a second pixel and a first pixel, refer to the example shown in FIG. 5a.
  • the pixel unit includes a first pixel and a second pixel, and the second pixel includes a red sub-pixel. , Two green sub-pixels and one infrared sub-pixel.
  • the first pixel includes a red sub-pixel, two green sub-pixels, and a blue sub-pixel. At this time, the ratio of the infrared sub-pixels in the pixel unit is 1/8. It should be noted that the sub-pixels here are arranged in a four-in-one manner. Each sub-pixel includes four corresponding units, and each unit is divided into two.
  • the second pixel may include one blue sub-pixel, two green sub-pixels, and one infrared sub-pixel
  • the first pixel includes one red sub-pixel, Two green sub-pixels and one blue sub-pixel.
  • the ratio of infrared sub-pixels in the pixel unit is 1/12.
  • the sub-pixels here are arranged in a four-in-one manner, and each sub-pixel includes four corresponding Units, and each unit is divided into two.
  • the pixel unit includes three first pixels and one second pixel, for example, as shown in FIG. 3a, the pixel unit includes three first pixels and one second pixel, and the second pixel includes one blue sub-pixel.
  • a green sub-pixel, a 1/2 red sub-pixel, a 1/2 green sub-pixel, and an infrared sub-pixel you can take the 1/2 red sub-pixel and the 1/2 green sub-pixel of the 2PD sub-pixel on the basis of the first pixel
  • the pixel is an infrared sub-pixel.
  • the first pixel includes a red sub-pixel, two green sub-pixels, and a blue sub-pixel. At this time, the infrared sub-pixels occupy 1/16 of the pixel unit.
  • the sub-pixels here are all Arranged in a four-in-one manner, each sub-pixel includes four corresponding units, and each unit is divided into two.
  • the position of the 1/2 infrared sub-pixel in the second pixel and the 1/2 red sub-pixel, 1/2 green sub-pixel, or 1/2 blue sub-pixel The pixels are in the same position in the first pixel, and the 1/2 infrared sub-pixels in two adjacent second pixels are combined to form a complete infrared sub-pixel.
  • the second pixel may include only 1/2 infrared sub-pixels, and a complete infrared sub-pixel may be obtained by combining two second pixels.
  • the position of the 1/2 infrared sub-pixel in the second pixel may be the same as the position of the 1/2 red sub-pixel in the first pixel, or may be The position of the green sub-pixel in the first pixel may be the same, or may be the same as the position of the 1/2 blue sub-pixel in the first pixel.
  • the position of the 1/2 infrared sub-pixel in a second pixel is the same as the position of the 1/2 red sub-pixel in the first pixel, then the position of the 1/2 infrared sub-pixel in another second pixel is equal to 1
  • the position of the / 2 green sub-pixel in the first pixel is the same.
  • the position of the 1/2 infrared sub-pixel in a second pixel is the same as the position of the 1/2 green sub-pixel in the first pixel, then the position of the 1/2 infrared sub-pixel in another second pixel is 1
  • the position of the / 2 blue sub-pixel or the 1/2 red sub-pixel in the first pixel is the same.
  • the pixel unit when the position of the 1/2 infrared sub-pixel in the second pixel is the same as the position of the 1/2 red sub-pixel, 1/2 green sub-pixel, or 1/2 blue sub-pixel in the first pixel, and When the 1/2 infrared sub-pixels of two adjacent second pixels are combined to form a complete infrared sub-pixel, the pixel unit includes two second pixels and zero or more first pixels.
  • the pixel unit includes two second pixels and a first pixel whose number is greater than or equal to zero.
  • two second pixels are included.
  • the pixel unit includes two second pixels, where a second pixel includes a red subpixel, a green subpixel, a blue subpixel, a 1/2 green subpixel, and a 1
  • the / 2 infrared sub-pixel includes one red sub-pixel, two green sub-pixels, a 1/2 blue sub-pixel, and a 1/2 infrared sub-pixel in another second pixel.
  • the position of the 1/2 infrared sub-pixel in a second pixel is the same as the position of the 1/2 green sub-pixel in the first pixel, and the position of the 1/2 infrared sub-pixel in another second pixel is 1 / 2
  • the position of the blue sub-pixel in the first pixel is the same.
  • the proportion of infrared sub-pixels in the pixel unit is 1/8.
  • the pixel unit When the number of pixels in the pixel unit is three, it includes two second pixels and one first pixel.
  • the pixel unit includes two second pixels and one first pixel, and one second pixel includes one red sub-pixel, one green sub-pixel, one blue sub-pixel, 1/2 green sub-pixel, and 1 / 2 infrared sub-pixels, including 1/2 red sub-pixels, two green sub-pixels, one blue sub-pixel, and 1/2 infrared sub-pixels in another second pixel.
  • the position in the two pixels is the same as the position of the 1/2 green sub-pixel in the first pixel, the position of the 1/2 infrared sub-pixel in the other second pixel and the position of the 1/2 red sub-pixel in the first pixel the same.
  • the ratio of the infrared sub-pixels in the pixel unit is 1/12.
  • the pixel unit When the number of pixels in the pixel unit is four, it includes two second pixels and two first pixels.
  • the pixel unit includes two second pixels and two first pixels, where a second pixel includes a red sub-pixel, a green sub-pixel, a blue sub-pixel, 1 / 2 green sub-pixel and 1/2 infrared sub-pixel, including a blue sub-pixel, two green sub-pixels, 1/2 red sub-pixel, and 1/2 infrared sub-pixel in another second pixel, at this time 1 / 2
  • the position of the infrared sub-pixel in a second pixel is the same as the position of the 1/2 green sub-pixel in the first pixel, and the position of the 1/2 infrared sub-pixel in the other second pixel is 1/2 of the red sub-pixel
  • the position in the first pixel is the same.
  • the ratio of the infrared sub-pixels in the pixel unit is 1/16.
  • the sub-pixels here are arranged in a four-in-one manner. Each
  • the pixel array can be an RGB + IR pixel unit with 1/8 ratio, an RGB + IR pixel unit with 1/12 ratio or an RGB + IR pixel unit with 1/16 ratio as a pixel unit array. Perform periodic array arrangement.
  • the pixel array can also be in other forms, which will not be enumerated here.
  • the density (ie, the ratio) of the infrared sub-pixels in the pixel unit is 1 / 4n, and n is an integer greater than or equal to 2, and the pixel array size applicable to the infrared sub-pixels is not limited.
  • the foregoing are only a few corresponding implementations of infrared sub-pixel picking, and may also be other picking methods. Other picking methods in the embodiments of the present disclosure are not described here one by one.
  • the position of the infrared sub-pixel in the pixel unit (the position of the second pixel) is not specifically limited in the embodiment of the present disclosure.
  • a red, green or blue four-in-one sub-pixel of a 2PD sub-pixel can be taken as an infrared sub-pixel, which is convenient for diversifying the form of the pixel unit. It can also take 1/2 red and 1 of a 2PD sub-pixel / 2 green four-in-one sub-pixels or 1/2 blue and 1/2 green four-in-one sub-pixels are infrared sub-pixels, which can reduce the impact of IR bad points during RGB processing.
  • the red sub-pixel includes a semiconductor layer, a metal layer, a photodiode, a red filter, and a micromirror which are sequentially stacked
  • the green sub-pixel includes a semiconductor layer, a metal layer, a photodiode, and green which are sequentially stacked.
  • Filters and micromirrors; blue sub-pixels include semiconductor layers, metal layers, photodiodes, blue filters, and micromirrors that are sequentially stacked; infrared sub-pixels include semiconductor layers, metal layers, and photodiodes that are sequentially stacked , Infrared filters and micromirrors.
  • the semiconductor layer, metal layer, photodiode, red filter, and micromirror included in the red sub-pixel are arranged in order from bottom to top.
  • the semiconductor layer, metal layer, photodiode, green filter, and micromirror included in the corresponding green sub-pixel are arranged in order from bottom to top.
  • the semiconductor layer, the metal layer, the photodiode, the blue filter, and the micromirror included in the blue sub-pixel are arranged in order from bottom to top.
  • the semiconductor layer, metal layer, photodiode, infrared filter, and micromirror included in the infrared filter are arranged in order from bottom to top.
  • the semiconductor layer here may be a silicon substrate, but is not limited thereto.
  • the structures of the red, green, blue, and infrared sub-pixels can be seen in FIG. 6. Although only the green and infrared sub-pixels are shown in FIG. 6, the structures of the red and blue sub-pixels can be obtained based on this.
  • the green filter can be replaced with a red or blue filter to obtain a red sub-pixel or blue sub-pixel structure.
  • the red, green, and blue subpixels are used to obtain the color information of the pixels of the composite image, which block the entry of infrared rays; for example, only visible light with a wavelength of 380 to 700nm is allowed to enter, which can directly generate a complete and realistic color image under high illumination .
  • the infrared wavelength is 750 ⁇ 1100nm. The infrared imaging effect can be improved through the infrared band, and the infrared ranging function can be realized.
  • the RGB sub-pixel points are light-receiving elements corresponding to wavelength light of each RGB color
  • the IR sub-pixel points are light-receiving elements corresponding to infrared light.
  • the image sensor is a complementary metal oxide semiconductor CMOS image sensor, a charge-coupled element CCD image sensor, or a quantum thin film image sensor.
  • the four-in-one RGB-IR pixel array arrangement of the present disclosure is not limited to the applicable image sensor type. It can be a CMOS-based image sensor or a charge-coupled device (CCD) image sensor. It can also be an image sensor based on a quantum thin film, of course, it can also be other types of image sensors. And the image sensor in the embodiment of the present disclosure can be applied to any electronic product including a camera module.
  • An embodiment of the present disclosure further provides a mobile terminal.
  • the mobile terminal 1 includes an imaging system 2 and an infrared transmitting module 3.
  • the imaging system 2 includes the image sensor 21 described above, and further includes:
  • the display module 26 is connected to the data processing module 25.
  • the infrared emitting module 3 is disposed on the periphery of the lens module 22.
  • the mobile terminal 1 includes an imaging system 2 and an infrared transmitting module 3.
  • the imaging system 2 includes the image sensor 21 described above.
  • the imaging system 2 further includes a lens module 22 for focusing light. 22 is connected to the driving module 23, and the driving module 23 is configured to adjust the position of the lens module 22 according to the distance of the object to be photographed.
  • a filter module 24 is provided between the lens module 22 and the image sensor 21, where light is focused by the lens module 22, and after passing through the filter module 24, it can be focused on the pixel array of the image sensor 21.
  • the image sensor 21 is connected to an image data processing module 25, and the image data processing module 25 is connected to a display module 26. After the light is focused on the pixel array of the image sensor 21, after the image sensor 21 performs photoelectric conversion, the data is transmitted to the image data processing module 25. After the image data processing module 25 processes the data, it is displayed in the form of a picture on the display module 26 Render.
  • the 2PD pixels in the image sensor 21 can be used to obtain the phase difference, so as to obtain the distance between the object and the imaging surface, thereby achieving fast focusing.
  • the four-in-one RGB + IR pixel array arrangement based on the 2PD image sensor in the present disclosure can be used with the infrared transmitting module 3 to realize stereo related functions, such as: face recognition unlocking, secure payment, stereo imaging and other terminal applications.
  • stereo related functions such as: face recognition unlocking, secure payment, stereo imaging and other terminal applications.
  • the filter module 24 in the embodiment of the present disclosure can pass a light wavelength of 380 nm to 1100 nm. At this time, after the light is focused by the lens module 22, it can be filtered by the filtering module 24, wherein the filtering module 24 can be used to pass natural light and infrared light, and can be used to ensure the imaging effect of the imaging system 2.
  • the infrared emitting module 3 on the mobile terminal is disposed on the periphery of the lens module 22.
  • the infrared transmitting module 3 emits infrared rays, and the infrared rays will be reflected after encountering obstacles; when the imaging system 2 captures the reflected infrared rays, it performs photoelectric conversion through infrared sub-pixels, and can obtain the time difference between the infrared rays being emitted and being received. Because the speed of light propagation is fixed, the distance between the obstacle and the mobile terminal can be calculated, and finally the distance from each minimal unit on the obstacle to the mobile terminal can be obtained to realize the stereo imaging recording function. Of course, the distance between each infrared light reflection point on the obstacle and the mobile terminal can also be obtained by acquiring the phase difference of the infrared light.
  • the mobile terminal forms an image sensor by using a 2PD pixel array in which four-in-one RGB sub-pixels are combined with infrared sub-pixels, and performs shooting according to the image sensor. Based on the recorded image, it can detect the to-be-photographed
  • the distance between the object and the mobile terminal enables fast focusing and background blurring, and at the same time, it can improve the dark imaging effect of the image, and realize the related application functions of stereo photography. While ensuring the user's shooting experience, the mobile terminal's functions are diversified. .
  • An embodiment of the present disclosure also provides an image shooting method, which is applied to a mobile terminal.
  • the mobile terminal includes the image sensor described above, and further includes an infrared transmitting module. As shown in FIG. 8, the method includes:
  • Step 801 Transmit infrared light through an infrared transmitting module.
  • the infrared transmitting module on the mobile terminal can emit infrared rays.
  • the infrared rays will be reflected after encountering the object to be photographed, and the reflected infrared light will be received by the imaging system of the mobile terminal.
  • the image sensor of the mobile terminal forms a four-in-one RGB-IR pixel array, so photoelectric conversion can be performed through infrared sub-pixels.
  • Step 802 Obtain the distance between each infrared light reflection point on the to-be-photographed object and the mobile terminal according to the infrared light reflected by the to-be-photographed object.
  • the process of actually acquiring the distance between the object to be photographed and the imaging surface, and acquiring the distance between each infrared light reflection point on the object to be photographed and the mobile terminal is: A pixel array including a second pixel receives infrared light reflected by each infrared light reflection point on the object to be photographed; according to the time difference between sending and receiving infrared light and the propagation speed of the infrared light or obtaining the phase difference of the infrared light, the object to be photographed is obtained The distance between each infrared light reflection point on the mobile terminal and the mobile terminal.
  • photoelectric conversion is performed through the infrared sub-pixels to obtain the time difference between the infrared emission and the infrared reception. Since the light propagation speed is fixed, it can be calculated based on 1/2 of the product of the time difference and the propagation speed.
  • the distance of the obstacle from the mobile terminal The time taken by the mobile terminal to receive the infrared light reflected by each infrared light reflection point is different. Therefore, a distance can be calculated for each infrared light reflection point, and the distance between each infrared light reflection point and the mobile terminal can be obtained.
  • the distance between each infrared light reflection point and the mobile terminal can also be obtained by acquiring the phase difference of the infrared light. For details, refer to Time of Flight (TOF) technology, which is not described in detail here.
  • TOF Time of Flight
  • the pixel array of the image sensor according to the embodiment of the present disclosure includes a preset number of pixel units arranged in a predetermined manner.
  • the pixel unit includes a first pixel and a second pixel.
  • the first pixel includes a red sub-pixel, a green sub-pixel, and a blue pixel.
  • a sub-pixel, the second pixel includes at least one of a red sub-pixel and a blue sub-pixel, and a green sub-pixel and an infrared sub-pixel, and the first pixel and the second pixel are all full-pixel dual-core focus pixels, the first pixel and the first pixel
  • the sub-pixels in the two pixels are arranged in a four-in-one manner; the position of the infrared sub-pixels in the second pixel is combined with the red sub-pixel, the green sub-pixel, the blue sub-pixel, the first combined sub-pixel, or the second combined
  • the sub-pixels have the same position in the first pixel.
  • the first combined sub-pixel is a combination of 1/2 red sub-pixels and 1/2 green sub-pixels that are adjacent to each other, and the second combined sub-pixel is 1/2 that is adjacent to each other.
  • the combination of the green sub-pixel and the 1/2 blue sub-pixel; or the position of the 1/2 infrared sub-pixel in the second pixel, and the 1/2 red sub-pixel, 1/2 green sub-pixel, or 1/2 blue sub-pixel Pixel in first pixel The same position, and the two sub-pixel combination infrared 1 ⁇ 2 second pixels formed adjacent to a complete infrared subpixel.
  • Step 803 Acquire stereo information according to the distance between each infrared light reflection point on the object to be photographed and the mobile terminal.
  • the image shooting method forms an image sensor by using a 2PD pixel array that combines four-in-one RGB sub-pixels and infrared sub-pixels, and performs shooting according to the image sensor. Based on the recorded image, it can detect The distance between the subject and the mobile terminal enables fast focusing and background blurring, and at the same time can improve the dark imaging effect of the image, and realize the related application functions of stereo photography. While ensuring the user's shooting experience, ensure that the mobile terminal has a variety of functions Into.
  • the mobile terminal 900 includes, but is not limited to, a radio frequency unit 901, a network module 902, an audio output unit 903, an input unit 904, a sensor 905, and a display unit. 906, a user input unit 907, an interface unit 908, a memory 909, a processor 910, and a power source 911 and other components.
  • the mobile terminal 900 further includes an imaging system and an infrared transmitting module.
  • the imaging system includes an image sensor and a lens module; a driving module for driving the lens module to move; a filtering module provided between the lens module and the image sensor; and an image An image data processing module connected to the sensor; and a display module connected to the image data processing module, wherein the infrared emitting module is disposed on the periphery of the lens module.
  • the filter module can pass the light wavelength of 380nm to 1100nm.
  • the image sensor includes a pixel array including a preset number of pixel units arranged in a predetermined manner.
  • the pixel unit includes a first pixel and a second pixel adjacent to the first pixel position.
  • the first pixel includes a red sub-pixel.
  • Pixel, green sub-pixel and blue sub-pixel, the second pixel includes at least one of red sub-pixel and blue sub-pixel and green sub-pixel and infrared sub-pixel, and the first pixel and the second pixel are all full-pixel dual-core Focusing pixels, the sub-pixels in the first pixel and the second pixel are arranged in a four-in-one manner;
  • the position of the infrared sub-pixel in the second pixel is the same as the position of the red sub-pixel, green sub-pixel, blue sub-pixel, first combined sub-pixel, or second combined sub-pixel in the first pixel.
  • the first combined sub-pixel Is a combination of 1/2 red sub pixels and 1/2 green sub pixels adjacent to each other
  • the second combined sub pixel is a combination of 1/2 green sub pixels and 1/2 blue sub pixels adjacent to each other; or
  • the position of the 1/2 infrared sub-pixel in the second pixel is the same as the position of the 1/2 red sub-pixel, 1/2 green sub-pixel, or 1/2 blue sub-pixel in the first pixel, and two adjacent The 1/2 infrared sub-pixels in the second pixel are combined to form a complete infrared sub-pixel.
  • the unit includes a second pixel and at least one first pixel.
  • the position of the 1/2 infrared sub-pixel in the second pixel is the same as the position of the 1/2 red sub-pixel, 1/2 green sub-pixel, or 1/2 blue sub-pixel in the first pixel, and two When 1/2 of the infrared sub-pixels of two adjacent second pixels are combined to form a complete infrared sub-pixel, the pixel unit includes two second pixels and zero or more first pixels.
  • the red sub-pixel includes a semiconductor layer, a metal layer, a photodiode, a red filter, and a micromirror, which are sequentially stacked.
  • the green sub-pixel includes a semiconductor layer, a metal layer, a photodiode, a green filter, and micro-mirror, which are sequentially stacked.
  • Mirrors; blue sub-pixels include semiconductor layers, metal layers, photodiodes, blue filters, and micromirrors that are sequentially stacked; infrared sub-pixels include semiconductor layers, metal layers, photodiodes, and infrared filters that are sequentially stacked And micromirrors.
  • the image sensor is a complementary metal oxide semiconductor CMOS image sensor, a charge-coupled element CCD image sensor, or a quantum thin film image sensor.
  • the structure of the mobile terminal shown in FIG. 9 does not constitute a limitation on the mobile terminal.
  • the mobile terminal may include more or less components than shown in the figure, or some components may be combined, or different components. Layout.
  • the mobile terminal includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a car terminal, a wearable device, and a pedometer.
  • the processor 910 is configured to: transmit infrared light through an infrared transmitting module; obtain the distance between each infrared light reflection point on the to-be-photographed object and the mobile terminal according to the infrared light reflected by the to-be-photographed object; The distance between the light reflection point and the mobile terminal controls the imaging system to obtain stereoscopic information about the subject to be photographed.
  • an image sensor is formed by using a 2PD pixel array in which four-in-one RGB sub-pixels are combined with infrared sub-pixels, and shooting is performed according to the image sensor. Based on the recorded image, the detection between the object to be photographed and the mobile terminal can be performed. Distance, to achieve fast focus and background blur, at the same time can improve the dark imaging effect of the image, to achieve the relevant application functions of stereo photography, while ensuring the user's shooting experience, while ensuring that the mobile terminal's functions are diversified.
  • the radio frequency unit 901 may be used to receive and send signals during the process of transmitting and receiving information or during a call. Specifically, the downlink data from the base station is received and processed by the processor 910; The uplink data is sent to the base station.
  • the radio frequency unit 901 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 901 can also communicate with a network and other devices through a wireless communication system.
  • the mobile terminal provides users with wireless broadband Internet access through the network module 902, such as helping users to send and receive email, browse web pages, and access streaming media.
  • the audio output unit 903 may convert audio data received by the radio frequency unit 901 or the network module 902 or stored in the memory 909 into audio signals and output them as sound. Also, the audio output unit 903 may also provide audio output (for example, call signal reception sound, message reception sound, etc.) related to a specific function performed by the mobile terminal 900.
  • the audio output unit 903 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 904 is used for receiving audio or video signals.
  • the input unit 904 may include a graphics processing unit (Graphics Processing Unit, GPU) 9041 and a microphone 9042.
  • the graphics processor 9041 pairs images of still pictures or videos obtained by an image capturing device (such as a camera) in a video capturing mode or an image capturing mode. Data is processed.
  • the processed image frame can be displayed on the display unit 906, where the display unit is the above-mentioned display module.
  • the image frames processed by the graphics processor 9041 may be stored in the memory 909 (or other storage medium) or transmitted via the radio frequency unit 901 or the network module 902.
  • the graphics processor 9041 is the above-mentioned image data processing module.
  • the microphone 9042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to a mobile communication base station via the radio frequency unit 901 in the case of a telephone call mode.
  • the mobile terminal 900 further includes at least one sensor 905, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 9061 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 9061 and the mobile terminal 900 when the mobile terminal 900 moves to the ear. / Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (generally three axes), and can detect the magnitude and direction of gravity when it is stationary, which can be used to identify mobile terminal attitudes (such as horizontal and vertical screen switching, related games , Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tap), etc .; sensor 905 may also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, Infrared sensors, etc. are not repeated here.
  • the display unit 906 is configured to display information input by the user or information provided to the user.
  • the display unit 906 may include a display panel 9061.
  • the display panel 9061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the user input unit 907 may be configured to receive inputted numeric or character information, and generate key signal inputs related to user settings and function control of the mobile terminal.
  • the user input unit 907 includes a touch panel 9071 and other input devices 9072.
  • Touch panel 9071 also known as touch screen, can collect user's touch operations on or near it (such as the user using a finger, stylus, etc. any suitable object or accessory on touch panel 9071 or near touch panel 9071 operating).
  • the touch panel 9071 may include two parts, a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, and detects the signal caused by the touch operation, and transmits the signal to the touch controller; the touch controller receives touch information from the touch detection device, converts it into contact coordinates, and sends it To the processor 910, receive the command sent by the processor 910 and execute it.
  • various types such as resistive, capacitive, infrared, and surface acoustic wave can be used to implement the touch panel 9071.
  • the user input unit 907 may further include other input devices 9072.
  • other input devices 9072 may include, but are not limited to, a physical keyboard, function keys (such as volume control keys, switch keys, etc.), a trackball, a mouse, and a joystick, and details are not described herein again.
  • the touch panel 9071 may be overlaid on the display panel 9061.
  • the touch panel 9071 detects a touch operation on or near the touch panel 9071, the touch panel 9071 transmits the touch operation to the processor 910 to determine the type of the touch event.
  • the type of event provides corresponding visual output on the display panel 9061.
  • the touch panel 9071 and the display panel 9061 are implemented as two independent components to implement input and output functions of the mobile terminal, in some embodiments, the touch panel 9071 and the display panel 9061 can be integrated. The implementation of the input and output functions of the mobile terminal is not specifically limited here.
  • the interface unit 908 is an interface for connecting an external device with the mobile terminal 900.
  • the external device may include a wired or wireless headset port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, and audio input / output (I / O) port, video I / O port, headphone port, and more.
  • the interface unit 908 may be used to receive an input (e.g., data information, power, etc.) from an external device and transmit the received input to one or more elements within the mobile terminal 900 or may be used for the mobile terminal 900 and external Transfer data between devices.
  • the memory 909 may be used to store software programs and various data.
  • the memory 909 may mainly include a storage program area and a storage data area, where the storage program area may store an operating system, at least one application required by a function (such as a sound playback function, an image playback function, etc.), etc .; the storage data area may store data according to Data (such as audio data, phone book, etc.) created by the use of mobile phones.
  • the memory 909 may include a high-speed random access memory, and may further include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 910 is a control center of the mobile terminal, and uses various interfaces and lines to connect various parts of the entire mobile terminal.
  • the processor 910 runs or executes software programs and / or modules stored in the memory 909, and calls data stored in the memory 909. , Perform various functions of the mobile terminal and process data, so as to monitor the mobile terminal as a whole.
  • the processor 910 may include one or more processing units; optionally, the processor 910 may integrate an application processor and a modem processor, wherein the application processor mainly processes an operating system, a user interface, and an application program, etc.
  • the tuning processor mainly handles wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 910.
  • the mobile terminal 900 may further include a power source 911 (such as a battery) for supplying power to various components.
  • a power source 911 such as a battery
  • the power source 911 may be logically connected to the processor 910 through a power management system, thereby implementing management of charging, discharging, and power consumption through the power management system. Management and other functions.
  • the mobile terminal 900 includes some functional modules that are not shown, and details are not described herein again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Color Television Image Signal Generators (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

提供了一种图像传感器、移动终端及图像拍摄方法,该图像传感器的像素阵列包括预设数目个像素单元,像素单元包括全像素双核对焦的第一和第二像素,第一像素包括红绿蓝子像素,第二像素包括红蓝子像素中的至少一种以及绿和红外子像素,各子像素呈四合一方式排列;第二像素中的红外子像素与红、绿、蓝、第一组合或第二组合子像素在第一像素中的位置相同,第一组合子像素是相邻的1/2红绿子像素;第二组合子像素是相邻的1/2绿蓝子像素;或者第二像素中的1/2红外子像素与1/2红绿或蓝子像素在第一像素中的位置相同,两个相邻第二像素中的1/2红外子像素形成红外子像素。

Description

图像传感器、移动终端及图像拍摄方法
相关申请的交叉引用
本申请主张在2018年7月19日在中国提交的中国专利申请号No.201810798680.4的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及图像处理技术领域,尤其涉及一种图像传感器、移动终端及图像拍摄方法。
背景技术
相关技术中,智能电子产品已经逐渐成为人们生活中的必需品,拍照功能作为电子产品的一重要配置也在逐渐发展。但随着拍照功能的推广和普及,人们已经不在满足当前的智能电子产品中摄像头仅有的拍照功能,更加期望实现拍照效果多样化、玩法多样化以及功能多样化。
市场上,基于互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)的图像传感器像素阵列排布中,有一种常用的基于红色(Red,R)绿色(Green,G)蓝色(Blue,B)拜耳模式改进的四合一像素阵列排布模式;如图1a和图1b所示,此种排布方式虽然相对拜耳模式可以提升暗态拍照效果,但是缺点是不能检测物体距离,且只能用于接受自然光,用于正常光照时拍照记录图像。
全像素双核对焦2PD技术的像素阵列排布模式如图1c和图1d所示,此种排布方式也只能用于接受自然光,用于拍照记录图像,相对四合一RGB排布技术方案,可以检测物体距离,更加快速的完成对焦动作;但是暗态拍照效果不理想。
其中2PD相位检测技术原理说明如下:由图1c和图1d可见,像素阵列中部分R,G和B子像素被一分为二,根据不同入射方向获取的光能量不一样,从而左边子像素点和右边子像素点即构成一对相位检测对;当左边子像素点和右边子像素点亮度值均达到相对最大峰值时,此刻图像相对最清晰, 即为合焦,然后通过算法计算获得物距,从而实现快速对焦。
综上所述,相关技术中的图像传感器的像素阵列排布模式,存在对焦缓慢或不能提升暗态拍摄效果,影响用户拍摄体验的问题。
发明内容
本公开实施例提供一种图像传感器、移动终端及图像拍摄方法,以解决相关技术中的图像传感器的像素阵列排布模式,存在对焦缓慢或不能提升暗态拍摄效果,影响用户拍摄体验的问题。
第一方面,本公开实施例提供一种图像传感器,包括:
像素阵列,像素阵列包括按照预定方式排布的预设数目个像素单元,像素单元包括第一像素和与第一像素位置相邻的第二像素,第一像素包括红色子像素、绿色子像素和蓝色子像素,第二像素包括红色子像素和蓝色子像素中的至少一种以及绿色子像素和红外子像素,且第一像素和第二像素均为全像素双核对焦像素,第一像素和第二像素中的子像素均呈四合一方式排列;
红外子像素在第二像素中的位置,与红色子像素、绿色子像素、蓝色子像素、第一组合子像素或者第二组合子像素在第一像素中的位置相同,第一组合子像素是位置相邻的1/2红色子像素和1/2绿色子像素的组合,第二组合子像素是位置相邻的1/2绿色子像素和1/2蓝色子像素的组合;或者
1/2红外子像素在第二像素中的位置,与1/2红色子像素、1/2绿色子像素或者1/2蓝色子像素在第一像素中的位置相同,且两个相邻第二像素中的1/2红外子像素组合形成一完整的红外子像素。
第二方面,本公开实施例提供一种移动终端,包括成像系统以及红外发射模块,成像系统包括:
上述的图像传感器;
透镜模组;
用于驱动透镜模组移动的驱动模块;
设置于透镜模组与图像传感器之间的滤波模块;
与图像传感器连接的图像数据处理模块;以及
与图像数据处理模块连接的显示模块;
其中红外发射模块设置于透镜模组的周缘。
第三方面,本公开实施例还提供一种图像拍摄方法,应用于移动终端,移动终端包括红外发射模块以及上述的图像传感器,该方法包括:
通过红外发射模块发射红外光;
根据待拍摄对象所反射的红外光获取待拍摄对象上各个红外光反射点与移动终端之间的距离;
根据待拍摄对象上各个红外光反射点与移动终端之间的距离,对待拍摄对象进行立体信息获取。
本公开技术方案,通过采用四合一排布的RGB子像素与红外子像素结合的2PD像素阵列形成图像传感器,根据图像传感器执行拍摄,可以在拍摄记录图像的基础上,检测待拍摄对象与移动终端之间的距离,实现快速对焦和背景虚化,同时可提升图像的暗态成像效果,实现立体拍照的相关应用功能,在保证用户拍摄体验的同时,保证移动终端的功能多样化。
附图说明
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
图1a表示相关技术中四合一RGB排布示意图;
图1b表示四合一像素切面图;
图1c表示2PD的像素阵列排布图;
图1d表示2PD像素切面图;
图2a表示本公开实施例提供的像素单元的示意图之一;
图2b表示本公开实施例提供的像素单元的示意图之二;
图2c表示本公开实施例提供的像素单元的示意图之三;
图3a表示本公开实施例提供的像素单元的示意图之四;
图3b表示本公开实施例提供的像素单元的示意图之五;
图4a表示本公开实施例提供的像素单元的示意图之六;
图4b表示本公开实施例提供的像素单元的示意图之七;
图5a表示本公开实施例提供的像素单元的示意图之八;
图5b表示本公开实施例提供的像素单元的示意图之九;
图6表示本公开实施例提供的像素切面图;
图7a表示本公开实施例提供的移动终端示意图;
图7b表示本公开实施例提供的成像系统示意图;
图8表示本公开实施例提供的图像拍摄方法示意图;
图9表示本公开实施例提供的移动终端硬件结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开实施例提供一种图像传感器,包括:
像素阵列,像素阵列包括按照预定方式排布的预设数目个像素单元,像素单元包括第一像素和与第一像素位置相邻的第二像素,如图2a至图2c、图3a至图3b以及图4a至图4b所示,第一像素包括红色子像素、绿色子像素和蓝色子像素,第二像素包括红色子像素和蓝色子像素中的至少一种以及绿色子像素和红外子像素,且第一像素和第二像素均为全像素双核对焦像素,第一像素和第二像素中的子像素均呈四合一方式排列;
红外子像素在第二像素中的位置,与红色子像素、绿色子像素、蓝色子像素、第一组合子像素或者第二组合子像素在第一像素中的位置相同,第一组合子像素是位置相邻的1/2红色子像素和1/2绿色子像素的组合,第二组合子像素是位置相邻的1/2绿色子像素和1/2蓝色子像素的组合;或者
1/2红外子像素在第二像素中的位置,与1/2红色子像素、1/2绿色子像素或者1/2蓝色子像素在第一像素中的位置相同,且两个相邻第二像素中的1/2红外子像素组合形成一完整的红外子像素。
本公开实施例提供的图像传感器所包含的像素阵列,包含预设数目个像 素单元,其中预设数目个像素单元按照预定方式进行排布。预设数目个像素单元均包括第一像素以及第二像素,其中第一像素与第二像素有所区别,第一像素中包括红色子像素(R)、绿色子像素(G)和蓝色子像素(B),第二像素中包括红色子像素和蓝色子像素中的至少一种,还包括绿色子像素和红外子像素(IR),通过在第二像素中设置红外子像素,可以在接收红外光的情况下进行图像拍摄,实现暗态成像,保证用户拍摄体验。
其中,本公开实施例中的第一像素以及第二像素均为全像素双核对焦(2PD)像素,通过采用2PD像素可以检测物体距离,更加快速的完成对焦动作,这里的第一像素以及第二像素均为2PD像素,也就是第一像素和第二像素中的子像素均为2PD子像素。同时第一像素与第二像素中的子像素均呈四合一方式排列,这种四合一的排布方式使得一个子像素中包括4个对应的单元,其中4个单元的结构形式为:两个单元位于上层,另外两个单元位于下层,且下层的两个单元与上层的两个单元对应排列。即第一单元与第二单元依次排列且相邻,第三单元位于第一单元下方,第四单元位于第二单元下方。
同时由于子像素为2PD子像素,每一个单元被一分为二。例如红色子像素中包括4个红色单元,绿色子像素中包括4个绿色单元,蓝色子像素中包括4个蓝色单元,每一个单元均被一分为二。
第一像素中的红色子像素、绿色子像素和蓝色子像素按照一定的方式进行排列,且第一像素中包含一个红色子像素、一个蓝色子像素以及两个绿色子像素,在这里为了便于区别将两个绿色子像素分别称为第一绿色子像素和第二绿色子像素,其中第一绿色子像素与第二绿色子像素相同。红色子像素与第一绿色子像素相邻,第二绿色子像素位于红色子像素的下方,蓝色子像素位于第一绿色子像素的下方,且第二绿色子像素与蓝色子像素相邻。
第二像素中包括红色子像素和蓝色子像素中的至少一种,还包括绿色子像素以及红外子像素,即第二像素中可以包括红色子像素、绿色子像素和红外子像素,可以包括绿色子像素、蓝色子像素以及红外子像素,还可以包括绿色子像素、红色子像素、蓝色子像素以及红外子像素。
其中红外子像素在第二像素中的位置可以与第一像素中某一子像素的位 置相同,还可以与第一像素中位置相邻的两个1/2不同子像素的位置相同。当然还可以是1/2红外子像素在第二像素中的位置与第一像素中任一1/2子像素的位置相同,此时可由两个相邻的第二像素中的1/2红外子像素组合形成一完整的红外子像素。例如1/2红外子像素在第二像素中的位置与1/2红色子像素在第一像素中的位置相同,另外1/2红外子像素在第二像素中的位置与1/2绿色子像素在第一像素中的位置相同,至此可以通过相邻两个第二像素中的1/2红外子像素组合形成完整的红外子像素。
本公开实施例,通过在RGB像素阵列排布方式上进行改进,将RGB像素阵列排布方式改为四合一的RGB-红外(Infrared Radiation,IR)的像素阵列排布方式,可以使得移动终端在接收红外光的情况下进行图像拍摄,实现暗态成像,保证用户拍摄体验。
同时本公开实施例的图像传感器可以实现检测待拍摄对象与移动终端之间的距离,实现快速对焦和背景虚化,通过与红外发射模块配合,可提升图像的成像效果,实现立体拍照的相关应用功能,在保证用户拍摄体验的同时,增强移动终端的功能性。
在本公开实施例中,如图2a至图2c、图3a以及图3b所示,红外子像素在第二像素中的位置与与红色子像素、绿色子像素、蓝色子像素、第一组合子像素或者第二组合子像素在第一像素中的位置相同,第一组合子像素是位置相邻的1/2红色子像素和1/2绿色子像素的组合,第二组合子像素是位置相邻的1/2绿色子像素和1/2蓝色子像素的组合。
当第二像素中包括蓝色子像素、绿色子像素和红外子像素时,红外子像素替代了第一像素中的红色子像素,此时红外子像素在第二像素中的位置,与红色子像素在第一像素中的位置相同。
当第二像素中包括红色子像素、绿色子像素和红外子像素时,红外子像素替代了第一像素中的蓝色子像素,此时红外子像素在第二像素中的位置,与蓝色子像素在第一像素中的位置相同。
当第二像素中包括红色子像素、绿色子像素、蓝色子像素和红外子像素时,可以是红外子像素替代了第一像素中的一绿色子像素,此时红外子像素在第二像素中的位置,与一绿色子像素在第一像素中的位置相同。
当第二像素中包括红色子像素、绿色子像素、蓝色子像素和红外子像素时,还可以是第二像素中包括一个红色子像素、一个绿色子像素、1/2蓝色子像素、1/2绿色子像素以及一个红外子像素,此时红外子像素代替了第一像素中的1/2绿色子像素和1/2蓝色子像素,即红外子像素在第二像素中的位置与位置相邻的1/2绿色子像素和1/2蓝色子像素在第一像素中的位置相同。
当第二像素中包括红色子像素、绿色子像素、蓝色子像素和红外子像素时,也可以是第二像素中包括一个蓝色子像素、一个绿色子像素、1/2红色子像素、1/2绿色子像素以及一个红外子像素,此时红外子像素代替了第一像素中的1/2绿色子像素和1/2红色子像素,即红外子像素在第二像素中的位置与位置相邻的1/2绿色子像素和1/2红色子像素在第一像素中的位置相同。
在上述实施例的基础上,当红外子像素在第二像素中的位置,与红色子像素、绿色子像素、蓝色子像素、第一组合子像素或者第二组合子像素在第一像素中的位置相同时,像素单元中包括一个第二像素以及至少一个第一像素。
若红外子像素在第二像素中的位置,与红色子像素、绿色子像素、蓝色子像素、第一组合子像素或者第二组合子像素在第一像素中的位置相同时,此时像素单元中第二像素的数量为一个,第一像素的数量可以大于或者等于一个。当像素单元中包括一个第二像素以及一个第一像素时,可参见图5a所示的举例情况,像素单元中包括一个第一像素以及一个第二像素,其中第二像素中包括一个红色子像素、两个绿色子像素以及一个红外子像素,第一像素中包括一个红色子像素、两个绿色子像素以及一个蓝色子像素,此时红外子像素在像素单元中的占比为1/8,需要说明的是,这里的子像素均呈四合一方式排列,每一子像素包括四个对应的单元,且每一单元被一分为二。
当像素单元中包括两个第一像素以及一个第二像素时,第二像素中可以包括一个蓝色子像素、两个绿色子像素以及一个红外子像素,第一像素中包括一个红色子像素、两个绿色子像素以及一个蓝色子像素,此时红外子像素在像素单元中的占比为1/12,这里的子像素均呈四合一方式排列,每一子像素包括四个对应的单元,且每一单元被一分为二。
当像素单元中包括三个第一像素以及一个第二像素,例如,如图3a所示, 像素单元中包括三个第一像素以及一个第二像素,其中第二像素中包括一个蓝色子像素、一个绿色子像素、1/2红色子像素、1/2绿色子像素以及一个红外子像素,可以在第一像素的基础上取2PD子像素的1/2红色子像素和1/2绿色子像素为红外子像素,第一像素中包括一个红色子像素、两个绿色子像素以及一个蓝色子像素,此时红外子像素在像素单元中的占比为1/16,这里的子像素均呈四合一方式排列,每一子像素包括四个对应的单元,且每一单元被一分为二。
上述对应的几种取点方式仅用于举例说明,还可以是其他的取点方式,这里不再一一介绍。
在本公开实施例中,如图4a和图4b所示,1/2红外子像素在第二像素中的位置与1/2红色子像素、1/2绿色子像素或者1/2蓝色子像素在第一像素中的位置相同,且相邻两个第二像素中的1/2红外子像素组合形成一完整的红外子像素。
在第二像素中可以仅包含1/2红外子像素,通过两个第二像素进行组合可以得到一个完整的红外子像素。
当第二像素中包含1/2红外子像素时,1/2红外子像素在第二像素中的位置可以与1/2红色子像素在第一像素中的位置相同,还可以与1/2绿色子像素在第一像素中的位置相同,也可以与1/2蓝色子像素在第一像素中的位置相同。
当1/2红外子像素在一第二像素中的位置与1/2红色子像素在第一像素中的位置相同时,则在另一第二像素中1/2红外子像素的位置与1/2绿色子像素在第一像素中的位置相同。当1/2红外子像素在一第二像素中的位置与1/2绿色子像素在第一像素中的位置相同时,则在另一第二像素中1/2红外子像素的位置与1/2蓝色子像素或1/2红色子像素在第一像素中的位置相同。
相应的,当1/2红外子像素在第二像素中的位置,与1/2红色子像素、1/2绿色子像素或者1/2蓝色子像素在第一像素中的位置相同,且两个相邻第二像素中的1/2红外子像素组合形成一完整的红外子像素时,像素单元中包括两个第二像素以及大于或者等于零个第一像素。
像素单元中像素的数量至少为两个,则像素单元中包括两个第二像素以 及数量大于或者等于零的第一像素。当像素单元中像素的数量为两个时,包括两个第二像素。例如,如图5b所示,像素单元中包括两个第二像素,其中在一第二像素中包括一个红色子像素、一个绿色子像素、一个蓝色子像素、1/2绿色子像素以及1/2红外子像素,在另一第二像素中包括一个红色子像素、两个绿色子像素、1/2蓝色子像素以及1/2红外子像素。此时1/2红外子像素在一第二像素中的位置与1/2绿色子像素在第一像素中的位置相同,在另一第二像素中1/2红外子像素的位置与1/2蓝色子像素在第一像素中的位置相同。红外子像素在像素单元中的占比为1/8。
当像素单元中像素的数量为三个时,包括两个第二像素以及一个第一像素。例如,像素单元中包括两个第二像素以及一个第一像素,其中在一第二像素中包括一个红色子像素、一个绿色子像素、一个蓝色子像素、1/2绿色子像素以及1/2红外子像素,在另一第二像素中包括1/2红色子像素、两个绿色子像素、一个蓝色子像素以及1/2红外子像素,此时1/2红外子像素在一第二像素中的位置与1/2绿色子像素在第一像素中的位置相同,在另一第二像素中1/2红外子像素的位置与1/2红色子像素在第一像素中的位置相同。红外子像素在像素单元中的占比为1/12。
当像素单元中像素的数量为四个时,包括两个第二像素以及两个第一像素。例如,如图4b所示,像素单元中包括两个第二像素以及两个第一像素,其中在一第二像素中包括一个红色子像素、一个绿色子像素、一个蓝色子像素、1/2绿色子像素以及1/2红外子像素,在另一第二像素中包括一个蓝色子像素、两个绿色子像素、1/2红色子像素以及1/2红外子像素,此时1/2红外子像素在一第二像素中的位置与1/2绿色子像素在第一像素中的位置相同,在另一第二像素中1/2红外子像素的位置与1/2红色子像素在第一像素中的位置相同。红外子像素在像素单元中的占比为1/16,这里的子像素均呈四合一方式排列,每一子像素包括四个对应的单元,且每一单元被一分为二。
像素阵列可以是由1/8占比的RGB+IR像素单元、1/12占比的RGB+IR像素单元或1/16占比的RGB+IR像素单元作为一个像素单位阵列,像素单位阵列再进行周期性阵列排布组成。当然像素阵列还可以是其他形式,这里不再列举。
其中红外子像素在像素单元中的密度(即占比)为1/4n,且n为大于或者等于2的整数,且红外子像素所适用的像素阵列大小不限。上述仅仅为几种对应的红外子像素取点实施方式,还可以是其他的取点方式,本公开实施例中其他的取点方式这里不再一一介绍。红外子像素在像素单元中的取点位置(第二像素的位置)本公开实施例中不做具体限制。
上述的像素单元形式,可以取2PD子像素的红色、绿色或者蓝色的四合一子像素为红外子像素,便于像素单元的形式多样化,还可以取2PD子像素的1/2红色和1/2绿色四合一的子像素或者取1/2蓝色和1/2绿色四合一的子像素为红外子像素,可以减少RGB处理时IR坏点影响。
在本公开实施例中,红色子像素包括依次堆叠设置的半导体层、金属层、光电二极管、红色滤光片以及微镜;绿色子像素包括依次堆叠设置的半导体层、金属层、光电二极管、绿色滤光片以及微镜;蓝色子像素包括依次堆叠设置的半导体层、金属层、光电二极管、蓝色滤光片以及微镜;红外子像素包括依次堆叠设置的半导体层、金属层、光电二极管、红外滤光片以及微镜。
红色子像素所包含的半导体层、金属层、光电二极管、红色滤光片以及微镜,由下至上依次排列。相应的绿色子像素所包含的半导体层、金属层、光电二极管、绿色滤光片以及微镜,由下至上依次排列。蓝色子像素所包含的半导体层、金属层、光电二极管、蓝色滤光片以及微镜,由下至上依次排列。红外滤光片所包含的半导体层、金属层、光电二极管、红外滤光片以及微镜,由下至上依次排列。这里的半导体层可以为硅基板,但并不局限于此。红色、绿色、蓝色以及红外子像素的结构可参见图6所示,图6中虽然只示出了绿色以及红外子像素,但在此基础上可以将获知红色与蓝色子像素的结构。可将绿色滤光片替换为红色或者蓝色滤光片,即可获得红色子像素或蓝色子像素的结构。
红色、绿色以及蓝色子像素用于获取合成图像的像素的色彩信息,其阻挡红外线的进入;例如,仅使波长在380~700nm的可见光进入,可在高照度下直接生成色彩完整逼真的图像。红外波长为750~1100nm,通过红外波段可提升暗态成像效果,实现红外测距功能。
由以上说明可见,RGB子像素点是对应于每种RGB颜色的波长光的光 接收元件,IR子像素点是对应红外光的光接收元件。
在本公开实施例中,图像传感器为互补金属氧化物半导体CMOS图像传感器、电荷耦合元件CCD图像传感器或量子薄膜图像传感器。
本公开四合一的RGB-IR的像素阵列排布方式,适用的图像传感器类型不限,可以是基于CMOS的图像传感器,可以是基于电荷耦合元件(Charge-coupled Device,CCD)的图像传感器,也可以是基于量子薄膜的图像传感器,当然还可以是其他类型的图像传感器。且本公开实施例的图像传感器可适用于任何包含摄像头模组的电子产品中。
本公开实施例还提供一种移动终端,如图7a和图7b所示,移动终端1包括成像系统2以及红外发射模块3,成像系统2包括上述的图像传感器21,还包括:
透镜模组22;用于驱动透镜模组22移动的驱动模块23;设置于透镜模组22与图像传感器21之间的滤波模块24;与图像传感器21连接的图像数据处理模块25;以及与图像数据处理模块25连接的显示模块26;其中红外发射模块3设置于透镜模组22的周缘。
本公开实施例的移动终端1包括成像系统2,还包括红外发射模块3,其中成像系统2包括上述的图像传感器21,成像系统2还包括用于对光线聚焦的透镜模组22,透镜模组22与驱动模块23连接,驱动模块23用于随着待拍摄对象的远近,从而进行调整透镜模组22的位置。
在透镜模组22与图像传感器21之间设置有滤波模块24,其中在光线通过透镜模组22聚焦,经过滤波模块24后,可以聚焦在图像传感器21的像素阵列上。图像传感器21与图像数据处理模块25连接,图像数据处理模块25与显示模块26连接。在光线聚焦在图像传感器21的像素阵列上之后,图像传感器21进行光电转换后,将数据传输给图像数据处理模块25,图像数据处理模块25对数据进行处理后在显示模块26上以图片的形式呈现。
其中在驱动模块23调整透镜模组22的位置之后,可以利用图像传感器21中的2PD像素获取相位差,从而获取物体与成像面距离,进而实现快速对焦。
另外,本公开中基于2PD图像传感器的四合一的RGB+IR像素阵列排布 方式,可以配合红外发射模块3实现立体相关功能,例如:人脸识别解锁,安全支付,立体成像等终端应用,在保证成像的基础上,提升移动终端的功能性。
本公开实施例中的滤波模块24可通过380nm至1100nm的光波长。此时在光线通过透镜模组22聚焦后,可通过滤波模块24进行滤波,其中滤波模块24可用于自然光和红外光的通过,可用于保证成像系统2的成像效果。
其中,移动终端上的红外发射模块3设置于透镜模组22的周缘。红外发射模块3发出红外线,红外线在遇到障碍物后会发生反射;当成像系统2捕捉到反射回来的红外光线后,经过红外子像素进行光电转换,可获取红外线从发射到接收到红外线的时间差,由于光的传播速度固定,从而可以计算出障碍物距离移动终端的距离,最终可获取障碍物上每个极小单位到移动终端的距离,实现立体成像记录功能。当然还可以通过获取红外光相位差的方式,获取障碍物上各个红外光反射点与移动终端之间的距离。
本公开实施例的移动终端,通过采用四合一排布的RGB子像素与红外子像素结合的2PD像素阵列形成图像传感器,根据图像传感器执行拍摄,可以在拍摄记录图像的基础上,检测待拍摄对象与移动终端之间的距离,实现快速对焦和背景虚化,同时可提升图像的暗态成像效果,实现立体拍照的相关应用功能,在保证用户拍摄体验的同时,保证移动终端的功能多样化。
本公开实施例还提供一种图像拍摄方法,应用于移动终端,移动终端包括上述的图像传感器,还包括红外发射模块,如图8所示,该方法包括:
步骤801、通过红外发射模块发射红外光;
移动终端上的红外发射模块可以发出红外线,红外线在遇到待拍摄对象后会发生反射,其反射的红外光会被移动终端的成像系统所接收。其中移动终端的图像传感器形成四合一的RGB-IR的像素阵列,因此可通过红外子像素进行光电转换。
步骤802、根据待拍摄对象所反射的红外光获取待拍摄对象上各个红外光反射点与移动终端之间的距离。
在获取待拍摄对象与移动终端之间的距离时,实际为获取待拍摄对象与成像面之间的距离,获取待拍摄对象上各个红外光反射点与移动终端之间的 距离的过程为:通过包含第二像素的像素阵列接收待拍摄对象上各个红外光反射点所反射的红外光;根据发送与接收红外光的时间差以及红外光的传播速度或者通过获取红外光的相位差,获取待拍摄对象上各个红外光反射点与移动终端之间的距离。
当捕捉到反射回来的红外光线后,经过红外子像素进行光电转换,可获取红外线从发射到接收到红外线的时间差,由于光的传播速度固定,从而可以根据时间差与传播速度乘积的1/2计算出障碍物距离移动终端的距离。其中移动终端接收到各个红外光反射点反射红外光的时间有所区别,因此针对每一个红外光反射点可以对应计算一距离,进而可以获得各个红外光反射点与移动终端之间的距离。还可以通过获取红外光的相位差的方式获取各个红外光反射点与移动终端之间的距离,具体参见飞行时间(Time of Flight,TOF)技术,这里不再详细阐述。
其中本公开实施例的图像传感器的像素阵列包括按照预定方式排布的预设数目个像素单元,像素单元包括第一像素和第二像素,第一像素包括红色子像素、绿色子像素和蓝色子像素,第二像素包括红色子像素和蓝色子像素中的至少一种以及绿色子像素和红外子像素,且第一像素和第二像素均为全像素双核对焦像素,第一像素和第二像素中的子像素均呈四合一方式排列;红外子像素在所述第二像素中的位置,与红色子像素、绿色子像素、蓝色子像素、第一组合子像素或者第二组合子像素在第一像素中的位置相同,第一组合子像素是位置相邻的1/2红色子像素和1/2绿色子像素的组合,第二组合子像素是位置相邻的1/2绿色子像素和1/2蓝色子像素的组合;或者1/2红外子像素在第二像素中的位置,与1/2红色子像素、1/2绿色子像素或者1/2蓝色子像素在第一像素中的位置相同,且相邻两个第二像素中的1/2红外子像素组合形成一完整的红外子像素。
步骤803、根据待拍摄对象上各个红外光反射点与移动终端之间的距离,对待拍摄对象进行立体信息获取。
在获取待拍摄对象上各个红外光反射点与移动终端之间的距离时,具体为获取待拍摄对象上每个极小单位到移动终端的距离,然后执行对待拍摄对象拍摄的流程,实现立体成像记录功能。
本公开实施例的图像拍摄方法,通过采用四合一排布的RGB子像素与红外子像素结合的2PD像素阵列形成图像传感器,根据图像传感器执行拍摄,可以在拍摄记录图像的基础上,检测待拍摄对象与移动终端之间的距离,实现快速对焦和背景虚化,同时可提升图像的暗态成像效果,实现立体拍照的相关应用功能,在保证用户拍摄体验的同时,保证移动终端的功能多样化。
图9为实现本公开各个实施例的一种移动终端的硬件结构示意图,该移动终端900包括但不限于:射频单元901、网络模块902、音频输出单元903、输入单元904、传感器905、显示单元906、用户输入单元907、接口单元908、存储器909、处理器910、以及电源911等部件。
移动终端900,还包括成像系统以及红外发射模块,成像系统包括图像传感器,透镜模组;用于驱动透镜模组移动的驱动模块;设置于透镜模组与图像传感器之间的滤波模块;与图像传感器连接的图像数据处理模块;以及与图像数据处理模块连接的显示模块,其中红外发射模块设置于透镜模组的周缘。
其中,滤波模块可通过380nm至1100nm的光波长。
其中,图像传感器包括:像素阵列,像素阵列包括按照预定方式排布的预设数目个像素单元,像素单元包括第一像素和与第一像素位置相邻的第二像素,第一像素包括红色子像素、绿色子像素和蓝色子像素,第二像素包括红色子像素和蓝色子像素中的至少一种以及绿色子像素和红外子像素,且第一像素和第二像素均为全像素双核对焦像素,第一像素和第二像素中的子像素均呈四合一方式排列;
红外子像素在第二像素中的位置,与红色子像素、绿色子像素、蓝色子像素、第一组合子像素或者第二组合子像素在第一像素中的位置相同,第一组合子像素是位置相邻的1/2红色子像素和1/2绿色子像素的组合,第二组合子像素是位置相邻的1/2绿色子像素和1/2蓝色子像素的组合;或者
1/2红外子像素在第二像素中的位置,与1/2红色子像素、1/2绿色子像素或者1/2蓝色子像素在第一像素中的位置相同,且相邻两个第二像素中的1/2红外子像素组合形成一完整的红外子像素。
其中,当红外子像素在第二像素中的位置,与红色子像素、绿色子像素、 蓝色子像素、第一组合子像素或者第二组合子像素在第一像素中的位置相同时,像素单元中包括一个第二像素以及至少一个第一像素。
其中,当1/2红外子像素在第二像素中的位置,与1/2红色子像素、1/2绿色子像素或者1/2蓝色子像素在第一像素中的位置相同,且两个相邻第二像素中的1/2红外子像素组合形成一完整的红外子像素时,像素单元中包括两个第二像素以及大于或者等于零个第一像素。
其中,红色子像素包括依次堆叠设置的半导体层、金属层、光电二极管、红色滤光片以及微镜;绿色子像素包括依次堆叠设置的半导体层、金属层、光电二极管、绿色滤光片以及微镜;蓝色子像素包括依次堆叠设置的半导体层、金属层、光电二极管、蓝色滤光片以及微镜;红外子像素包括依次堆叠设置的半导体层、金属层、光电二极管、红外滤光片以及微镜。
其中,图像传感器为互补金属氧化物半导体CMOS图像传感器、电荷耦合元件CCD图像传感器或量子薄膜图像传感器。
本领域技术人员可以理解,图9中示出的移动终端结构并不构成对移动终端的限定,移动终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,移动终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,处理器910用于:通过红外发射模块发射红外光;根据待拍摄对象所反射的红外光获取待拍摄对象上各个红外光反射点与移动终端之间的距离;根据待拍摄对象上各个红外光反射点与移动终端之间的距离,控制成像系统对待拍摄对象进行立体信息获取。
这样,通过采用四合一排布的RGB子像素与红外子像素结合的2PD像素阵列形成图像传感器,根据图像传感器执行拍摄,可以在拍摄记录图像的基础上,检测待拍摄对象与移动终端之间的距离,实现快速对焦和背景虚化,同时可提升图像的暗态成像效果,实现立体拍照的相关应用功能,在保证用户拍摄体验的同时,保证移动终端的功能多样化。
应理解的是,本公开实施例中,射频单元901可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器910处理;另外,将上行的数据发送给基站。通常,射频单元901包括但 不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元901还可以通过无线通信系统与网络和其他设备通信。
移动终端通过网络模块902为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元903可以将射频单元901或网络模块902接收的或者在存储器909中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元903还可以提供与移动终端900执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元903包括扬声器、蜂鸣器以及受话器等。
输入单元904用于接收音频或视频信号。输入单元904可以包括图形处理器(Graphics Processing Unit,GPU)9041和麦克风9042,图形处理器9041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元906上,这里的显示单元即为上述的显示模块。经图形处理器9041处理后的图像帧可以存储在存储器909(或其它存储介质)中或者经由射频单元901或网络模块902进行发送。其中图形处理器9041即为上述的图像数据处理模块。麦克风9042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元901发送到移动通信基站的格式输出。
移动终端900还包括至少一种传感器905,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板9061的亮度,接近传感器可在移动终端900移动到耳边时,关闭显示面板9061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别移动终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器905还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元906用于显示由用户输入的信息或提供给用户的信息。显示单元906可包括显示面板9061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板9061。
用户输入单元907可用于接收输入的数字或字符信息,以及产生与移动终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元907包括触控面板9071以及其他输入设备9072。触控面板9071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板9071上或在触控面板9071附近的操作)。触控面板9071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器910,接收处理器910发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板9071。除了触控面板9071,用户输入单元907还可以包括其他输入设备9072。具体地,其他输入设备9072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板9071可覆盖在显示面板9061上,当触控面板9071检测到在其上或附近的触摸操作后,传送给处理器910以确定触摸事件的类型,随后处理器910根据触摸事件的类型在显示面板9061上提供相应的视觉输出。虽然在图9中,触控面板9071与显示面板9061是作为两个独立的部件来实现移动终端的输入和输出功能,但是在某些实施例中,可以将触控面板9071与显示面板9061集成而实现移动终端的输入和输出功能,具体此处不做限定。
接口单元908为外部装置与移动终端900连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元908可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输 到移动终端900内的一个或多个元件或者可以用于在移动终端900和外部装置之间传输数据。
存储器909可用于存储软件程序以及各种数据。存储器909可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器909可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器910是移动终端的控制中心,利用各种接口和线路连接整个移动终端的各个部分,通过运行或执行存储在存储器909内的软件程序和/或模块,以及调用存储在存储器909内的数据,执行移动终端的各种功能和处理数据,从而对移动终端进行整体监控。处理器910可包括一个或多个处理单元;可选的,处理器910可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器910中。
移动终端900还可以包括给各个部件供电的电源911(比如电池),可选的,电源911可以通过电源管理系统与处理器910逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,移动终端900包括一些未示出的功能模块,在此不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体 现出来,该计算机软件产品存储在一个存储介质(如只读存储器(Read-Only Memory,ROM)/随机存取存储器(Random Access Memory,RAM)、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (8)

  1. 一种图像传感器,包括:
    像素阵列,所述像素阵列包括按照预定方式排布的预设数目个像素单元,所述像素单元包括第一像素和与所述第一像素位置相邻的第二像素,所述第一像素包括红色子像素、绿色子像素和蓝色子像素,所述第二像素包括所述红色子像素和所述蓝色子像素中的至少一种以及所述绿色子像素和红外子像素,且所述第一像素和所述第二像素均为全像素双核对焦像素,所述第一像素和所述第二像素中的子像素均呈四合一方式排列;
    所述红外子像素在所述第二像素中的位置,与所述红色子像素、所述绿色子像素、所述蓝色子像素、第一组合子像素或者第二组合子像素在所述第一像素中的位置相同,所述第一组合子像素是位置相邻的1/2红色子像素和1/2绿色子像素的组合,所述第二组合子像素是位置相邻的1/2绿色子像素和1/2蓝色子像素的组合;或者
    1/2红外子像素在所述第二像素中的位置,与1/2红色子像素、1/2绿色子像素或者1/2蓝色子像素在所述第一像素中的位置相同,且相邻两个所述第二像素中的1/2红外子像素组合形成一完整的所述红外子像素。
  2. 根据权利要求1所述的图像传感器,其中,
    当所述红外子像素在所述第二像素中的位置,与所述红色子像素、所述绿色子像素、所述蓝色子像素、所述第一组合子像素或者所述第二组合子像素在所述第一像素中的位置相同时,所述像素单元中包括一个所述第二像素以及至少一个所述第一像素。
  3. 根据权利要求1所述的图像传感器,其中,
    当1/2红外子像素在所述第二像素中的位置,与1/2红色子像素、1/2绿色子像素或者1/2蓝色子像素在所述第一像素中的位置相同,且两个相邻所述第二像素中的1/2红外子像素组合形成一完整的所述红外子像素时,所述像素单元中包括两个所述第二像素以及大于或者等于零个所述第一像素。
  4. 根据权利要求1所述的图像传感器,其中,
    所述红色子像素包括依次堆叠设置的半导体层、金属层、光电二极管、 红色滤光片以及微镜;
    所述绿色子像素包括依次堆叠设置的半导体层、金属层、光电二极管、绿色滤光片以及微镜;
    所述蓝色子像素包括依次堆叠设置的半导体层、金属层、光电二极管、蓝色滤光片以及微镜;
    所述红外子像素包括依次堆叠设置的半导体层、金属层、光电二极管、红外滤光片以及微镜。
  5. 根据权利要求1所述的图像传感器,其中,所述图像传感器为互补金属氧化物半导体CMOS图像传感器、电荷耦合元件CCD图像传感器或量子薄膜图像传感器。
  6. 一种移动终端,包括成像系统以及红外发射模块,所述成像系统包括:
    如权利要求1至5任一项所述的图像传感器;
    透镜模组;
    用于驱动所述透镜模组移动的驱动模块;
    设置于所述透镜模组与所述图像传感器之间的滤波模块;
    与所述图像传感器连接的图像数据处理模块;以及
    与所述图像数据处理模块连接的显示模块;
    其中红外发射模块设置于所述透镜模组的周缘。
  7. 根据权利要求6所述的移动终端,其中,所述滤波模块可通过380nm至1100nm的光波长。
  8. 一种图像拍摄方法,应用于包括红外发射模块以及如权利要求1所述的图像传感器的移动终端,所述方法包括:
    通过所述红外发射模块发射红外光;
    根据待拍摄对象所反射的红外光获取所述待拍摄对象上各个红外光反射点与所述移动终端之间的距离;
    根据所述待拍摄对象上各个红外光反射点与所述移动终端之间的距离,对所述待拍摄对象进行立体信息获取。
PCT/CN2019/095367 2018-07-19 2019-07-10 图像传感器、移动终端及图像拍摄方法 WO2020015561A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217004094A KR102374428B1 (ko) 2018-07-19 2019-07-10 그래픽 센서, 이동 단말 및 그래픽 촬영 방법
EP19838484.4A EP3826291A4 (en) 2018-07-19 2019-07-10 IMAGE SENSOR, MOBILE TERMINAL, AND IMAGE ACQUISITION METHOD
US17/151,745 US11996421B2 (en) 2018-07-19 2021-01-19 Image sensor, mobile terminal, and image capturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810798680.4A CN108965704B (zh) 2018-07-19 2018-07-19 一种图像传感器、移动终端及图像拍摄方法
CN201810798680.4 2018-07-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/151,745 Continuation US11996421B2 (en) 2018-07-19 2021-01-19 Image sensor, mobile terminal, and image capturing method

Publications (1)

Publication Number Publication Date
WO2020015561A1 true WO2020015561A1 (zh) 2020-01-23

Family

ID=64481918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095367 WO2020015561A1 (zh) 2018-07-19 2019-07-10 图像传感器、移动终端及图像拍摄方法

Country Status (5)

Country Link
US (1) US11996421B2 (zh)
EP (1) EP3826291A4 (zh)
KR (1) KR102374428B1 (zh)
CN (1) CN108965704B (zh)
WO (1) WO2020015561A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12009379B2 (en) * 2017-05-01 2024-06-11 Visera Technologies Company Limited Image sensor
CN108965704B (zh) * 2018-07-19 2020-01-31 维沃移动通信有限公司 一种图像传感器、移动终端及图像拍摄方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104969540A (zh) * 2013-12-12 2015-10-07 索尼公司 固态成像器件、固态成像器件的制造方法和电子设备
CN105611136A (zh) * 2016-02-26 2016-05-25 联想(北京)有限公司 一种图像传感器以及电子设备
US20170019583A1 (en) * 2015-07-13 2017-01-19 Canon Kabushiki Kaisha Image sensor and driving method thereof, and image capturing apparatus
JP2017038311A (ja) * 2015-08-12 2017-02-16 株式会社東芝 固体撮像装置
CN106878690A (zh) * 2015-12-14 2017-06-20 比亚迪股份有限公司 图像传感器的成像方法、成像装置和电子设备
CN107040724A (zh) * 2017-04-28 2017-08-11 广东欧珀移动通信有限公司 双核对焦图像传感器及其对焦控制方法和成像装置
CN107533210A (zh) * 2015-01-14 2018-01-02 因维萨热技术公司 相位检测自动聚焦
CN108965704A (zh) * 2018-07-19 2018-12-07 维沃移动通信有限公司 一种图像传感器、移动终端及图像拍摄方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7196391B2 (en) * 2002-02-05 2007-03-27 E-Phocus, Inc. MOS or CMOS sensor with micro-lens array
JP2007526453A (ja) 2004-01-28 2007-09-13 カネスタ インコーポレイテッド 単一チップの赤、緑、青、距離(rgb−z)センサー
JP2006237737A (ja) * 2005-02-22 2006-09-07 Sanyo Electric Co Ltd カラーフィルタアレイ及び固体撮像素子
KR20100018449A (ko) * 2008-08-06 2010-02-17 삼성전자주식회사 입체 이미지 센서의 픽셀 어레이
KR20110137700A (ko) * 2010-06-17 2011-12-23 삼성전자주식회사 광학 장치 및 광학장치를 이용한 이미징 장치
JP2013232694A (ja) * 2010-08-31 2013-11-14 Sanyo Electric Co Ltd 素子搭載用基板および光学モジュール
JP5513326B2 (ja) * 2010-09-07 2014-06-04 キヤノン株式会社 撮像素子及び撮像装置
EP2762943B1 (en) * 2011-09-29 2017-01-11 Fujifilm Corporation Solid state image capture element, image capture device, and focus control method
KR102086509B1 (ko) * 2012-11-23 2020-03-09 엘지전자 주식회사 3차원 영상 획득 방법 및 장치
JP2014239290A (ja) * 2013-06-06 2014-12-18 ソニー株式会社 焦点検出装置、電子機器、製造装置、製造方法
US9692992B2 (en) * 2013-07-01 2017-06-27 Omnivision Technologies, Inc. Color and infrared filter array patterns to reduce color aliasing
US20160182846A1 (en) * 2014-12-22 2016-06-23 Google Inc. Monolithically integrated rgb pixel array and z pixel array
KR20160114474A (ko) * 2015-03-24 2016-10-05 (주)실리콘화일 4-컬러 이미지 센서, 4-컬러 이미지 센서의 제조방법 및 이에 따른 4-컬러 이미지 센서
US9749556B2 (en) * 2015-03-24 2017-08-29 Semiconductor Components Industries, Llc Imaging systems having image sensor pixel arrays with phase detection capabilities
CN105049829B (zh) * 2015-07-10 2018-12-25 上海图漾信息科技有限公司 滤光片、图像传感器、成像装置以及三维成像系统
KR101733309B1 (ko) 2015-11-11 2017-05-08 재단법인 다차원 스마트 아이티 융합시스템 연구단 4 칼라 이미지 센서를 위해 듀얼 isp를 갖는 카메라 시스템
US10114465B2 (en) * 2016-01-15 2018-10-30 Google Llc Virtual reality head-mounted devices having reduced numbers of cameras, and methods of operating the same
WO2017169479A1 (ja) * 2016-03-31 2017-10-05 株式会社ニコン 撮像素子、及び、撮像装置
CN117116956A (zh) * 2016-04-29 2023-11-24 Lg伊诺特有限公司 相机模块及包括该相机模块的便携装置
WO2017193738A1 (zh) * 2016-05-09 2017-11-16 比亚迪股份有限公司 图像传感器、成像方法和成像装置
US10547829B2 (en) * 2016-06-16 2020-01-28 Samsung Electronics Co., Ltd. Image detecting device and image detecting method using the same
KR20180064629A (ko) * 2016-12-05 2018-06-15 삼성디스플레이 주식회사 표시 장치
JP6833597B2 (ja) * 2017-04-11 2021-02-24 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置
US10629105B2 (en) * 2017-06-15 2020-04-21 Google Llc Near-eye display with frame rendering based on reflected wavefront analysis for eye characterization
US11217617B2 (en) * 2017-06-21 2022-01-04 Sony Semiconductor Solutions Corporation Imaging element and solid-state imaging device
CN107205139A (zh) * 2017-06-28 2017-09-26 重庆中科云丛科技有限公司 多通道采集的图像传感器及采集方法
US10593712B2 (en) * 2017-08-23 2020-03-17 Semiconductor Components Industries, Llc Image sensors with high dynamic range and infrared imaging toroidal pixels
CN107613210B (zh) * 2017-09-30 2020-12-29 北京小米移动软件有限公司 图像显示方法及装置、终端、存储介质
JP7145943B2 (ja) * 2017-10-04 2022-10-03 グーグル エルエルシー 単一のカメラを使用した深度の推定
CN207543224U (zh) * 2017-11-24 2018-06-26 深圳先牛信息技术有限公司 图像传感器
CN207491128U (zh) * 2017-11-30 2018-06-12 北京中科虹霸科技有限公司 一种rgb+ir图像采集设备
CN108282644B (zh) * 2018-02-14 2020-01-10 北京飞识科技有限公司 一种单摄像头成像方法及装置
TWI754809B (zh) * 2019-04-11 2022-02-11 大陸商廣州立景創新科技有限公司 影像感測裝置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104969540A (zh) * 2013-12-12 2015-10-07 索尼公司 固态成像器件、固态成像器件的制造方法和电子设备
CN107533210A (zh) * 2015-01-14 2018-01-02 因维萨热技术公司 相位检测自动聚焦
US20170019583A1 (en) * 2015-07-13 2017-01-19 Canon Kabushiki Kaisha Image sensor and driving method thereof, and image capturing apparatus
JP2017038311A (ja) * 2015-08-12 2017-02-16 株式会社東芝 固体撮像装置
CN106878690A (zh) * 2015-12-14 2017-06-20 比亚迪股份有限公司 图像传感器的成像方法、成像装置和电子设备
CN105611136A (zh) * 2016-02-26 2016-05-25 联想(北京)有限公司 一种图像传感器以及电子设备
CN107040724A (zh) * 2017-04-28 2017-08-11 广东欧珀移动通信有限公司 双核对焦图像传感器及其对焦控制方法和成像装置
CN108965704A (zh) * 2018-07-19 2018-12-07 维沃移动通信有限公司 一种图像传感器、移动终端及图像拍摄方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3826291A4 *

Also Published As

Publication number Publication date
EP3826291A4 (en) 2021-08-11
CN108965704A (zh) 2018-12-07
KR102374428B1 (ko) 2022-03-15
KR20210028254A (ko) 2021-03-11
US20220367541A1 (en) 2022-11-17
EP3826291A1 (en) 2021-05-26
US11996421B2 (en) 2024-05-28
US20230069816A9 (en) 2023-03-02
CN108965704B (zh) 2020-01-31

Similar Documents

Publication Publication Date Title
WO2020015627A1 (zh) 图像传感器、移动终端及图像拍摄方法
CN108900750B (zh) 一种图像传感器及移动终端
WO2020015532A1 (zh) 图像传感器、移动终端及拍摄方法
WO2022143280A1 (zh) 图像传感器、摄像模组和电子设备
WO2020015560A1 (zh) 图像传感器及移动终端
CN108965666B (zh) 一种移动终端及图像拍摄方法
WO2020015626A1 (zh) 移动终端及图像拍摄方法
JP5542247B2 (ja) 撮像素子及び撮像装置
WO2019144956A1 (zh) 图像传感器、镜头模组、移动终端、人脸识别方法及装置
CN107948505A (zh) 一种全景拍摄方法及移动终端
US11996421B2 (en) Image sensor, mobile terminal, and image capturing method
CN108965703A (zh) 一种图像传感器、移动终端及图像拍摄方法
WO2019170121A1 (zh) 摄像头模组及移动终端
CN115278000A (zh) 图像传感器、图像生成方法、摄像头模组及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19838484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217004094

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2019838484

Country of ref document: EP