WO2017193738A1 - 图像传感器、成像方法和成像装置 - Google Patents

图像传感器、成像方法和成像装置 Download PDF

Info

Publication number
WO2017193738A1
WO2017193738A1 PCT/CN2017/079635 CN2017079635W WO2017193738A1 WO 2017193738 A1 WO2017193738 A1 WO 2017193738A1 CN 2017079635 W CN2017079635 W CN 2017079635W WO 2017193738 A1 WO2017193738 A1 WO 2017193738A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
color
infrared
light
output
Prior art date
Application number
PCT/CN2017/079635
Other languages
English (en)
French (fr)
Inventor
刘坤
郭先清
傅璟军
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2017193738A1 publication Critical patent/WO2017193738A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors

Definitions

  • the present application relates to the field of imaging technologies, and in particular, to an image sensor, an imaging method, and an imaging device.
  • a CMOS (Complementary Metal Oxide Semiconductor) image sensor mainly includes a Pixel Array (pixel array), a control circuit, an analog front end processing circuit, an A/D converter, an image signal processing circuit, and an associated memory cell.
  • CMOS image sensors are widely used in monitoring and in-vehicle applications. In terms of monitoring and vehicle, CMOS image sensors are required to obtain brilliant image information when light is sufficient, and to acquire signals in the near-infrared band in low light or no light conditions to obtain clear images.
  • the processing method in the related art generally involves adding a switchable IR before the light path of the image sensor. Cut filter.
  • the IR-cut filter is controlled in front of the CMOS image sensor chip to filter out the infrared band signal, thereby eliminating the influence of the infrared band signal on the visible light band image information, and making the image information more beautiful;
  • the IR-cut filter is controlled to move away from the CMOS image sensor chip, and the near-infrared light is applied to enable the near-infrared signal to be captured by the CMOS image sensor, thereby obtaining a clear image.
  • the processing method in the related art requires frequent switching of the IR-cut filter, and the frequent switching causes the IR-cut filter to be easily damaged, thereby affecting the quality of the whole machine. Furthermore, the related art generally adopts Switching the IR-cut filter mechanically or electromagnetically will inevitably generate noise during the IR-cut filter switching process.
  • an object of the present application is to provide an image sensor that does not require the addition of a switchable infrared filter, which saves cost and avoids noise caused by switching of the infrared filter.
  • a second object of the present application is to propose an imaging method of an image sensor.
  • a third object of the present application is to provide an image forming apparatus of an image sensor.
  • an embodiment of the first aspect of the present application provides an image sensor, including: a two-pass filter, wherein the two-pass filter only allows infrared light of a first wavelength range and visible light of a second wavelength range Passing through a pixel array disposed under the two-pass filter, the pixel array includes a plurality of pixel units, each of the pixel units including first to Nth color pixels and one and the first color pixel Corresponding color-infrared pixels, wherein the first to Nth color pixels include at least one first color pixel, one second color pixel, and one third color pixel, and the color-infrared pixel senses the visible light Specific color light in which the N color pixels sense a specific color light and the infrared light in the visible light, and N is an integer greater than or equal to 3.
  • An image sensor includes a two-pass filter and a pixel array.
  • the two-pass filter only allows infrared light of a first wavelength range and visible light of a second wavelength range
  • the pixel unit in the pixel array includes the first to a Nth color pixel and a color-infrared pixel corresponding to the first color pixel, wherein the color pixel senses specific color light and infrared light in visible light, and the color-infrared pixel only senses specific color light in visible light
  • the image sensor enables subsequent image processing to calculate the intensity of the infrared light induced by the pixel unit according to the output of the first color pixel and the output of the color-infrared pixel corresponding to the first color pixel, thereby enabling the illumination to be sufficient
  • the effect of infrared light on the image is removed to obtain a colorful image without adding a switchable infrared filter, which saves cost and avoids noise caused by infrared filter switching.
  • an image sensor according to the first aspect of the present application, the second aspect of the present application provides an image sensor imaging method, including: reading an output of the pixel array; An output of the first color pixel in the pixel unit and an output of the color-infrared pixel corresponding to the first color pixel acquire an infrared light intensity value sensed by each pixel unit; and acquire a brightness of a current shooting scene; When the brightness of the current scene is greater than the first preset value, the output of the pixel array is processed according to the infrared light intensity value sensed by each pixel unit, according to the processed output of the pixel array Generate a color image.
  • the output of the pixel array is read, and the infrared light sensed by the pixel unit is calculated according to the output of the first color pixel and the output of the color-infrared pixel corresponding to the first color pixel.
  • the intensity in turn, can remove the influence of infrared light on the image under sufficient illumination to obtain a colorful image without adding a switchable infrared filter in front of the image sensor, which saves cost and avoids infrared filtering.
  • an embodiment of the third aspect of the present application provides an image forming apparatus comprising the image sensor proposed by the embodiment of the first aspect of the present application and an image processing module connected to the image sensor.
  • the image processing module reads the output of the pixel array, and calculates the infrared light sensed by the pixel unit according to the output of the first color pixel and the output of the color-infrared pixel corresponding to the first color pixel.
  • the intensity in turn, can remove the effect of infrared light on the image under sufficient illumination to obtain a colorful image.
  • FIG. 1 is a schematic diagram of a Bayer pixel array in the related art
  • FIG. 3 is a schematic diagram of a Bayer pixel array and a cross section of a part of pixels in the related art
  • FIG. 4 is a schematic diagram showing the spectral response of an IR-cut filter in the related art
  • FIG. 5 is a schematic structural diagram of an image sensor in the related art
  • FIG. 6A is a block schematic diagram of an image sensor in accordance with an embodiment of the present application.
  • 6B is a schematic structural diagram of an image sensor according to an embodiment of the present application.
  • FIG. 8 is a spectral response curve of an IR-cut 850 material in accordance with an embodiment of the present application.
  • 9A is a spectral response curve of a green filter of a green pixel according to an embodiment of the present application.
  • 9B is a spectral response curve of a green-infrared pixel filter according to an embodiment of the present application.
  • FIG. 10A is a schematic diagram of spectral response information that can be sensed by a green pixel according to an embodiment of the present application.
  • FIG. 10B is a schematic diagram of spectral response information that can be sensed by a green-infrared pixel according to an embodiment of the present application.
  • 11A is a schematic diagram of a pixel array in accordance with an example of the present application.
  • 11B is a schematic cross-sectional view of a portion of a pixel in accordance with an example of the present application.
  • FIG. 12A is a schematic diagram of a pixel array in accordance with another example of the present application.
  • FIG. 12B is a schematic cross-sectional view of a portion of a pixel in accordance with another example of the present application.
  • FIGS. 13-16 are schematic diagrams of pixel arrays in accordance with various embodiments of the present application.
  • 17 is a schematic diagram of an image sensor in accordance with an embodiment of the present application.
  • FIG. 19 is a block schematic diagram of an imaging device in accordance with an embodiment of the present application.
  • the image sensor achieves the imaging purpose by acquiring components of RGB (red, green, blue; red, green and blue) in the environmental scene.
  • RGB red, green, blue
  • the pixel array of the image sensor adopts a bayer structure, as shown in FIG. 1 , that is, different pixels are covered by color filters covering different colors, so that the pixels covering the green filter sense green light, and cover the red filter.
  • the pixel senses red light, and the pixels that cover the blue filter sense blue light.
  • Figure 2 is a spectral response curve of the R/G/B color filter.
  • the color filter selectively transmits light of different wavelength ranges.
  • the red filter is fully transmissive to the near-infrared, and all color filters are all-passed after the wavelength is greater than 800 nm.
  • 3 is a cross-sectional view of a pixel array and a part of pixels, 3.1 is a green pixel, 3.2 is a blue pixel, 3.3 is a red pixel, 3.4 is a green filter, 3.5 is a red filter, 3.6 is a microlens, 3.7 is a blue The filter, 3.8 is the photodiode, and 3.9 is the green filter.
  • the light passes through the color filter and is absorbed by the photodiode. Since human vision can only perceive the visible band signal, in practical applications, considering the visual effect of humans, the related art needs to add an IR-cut filter (for filtering out the infrared light) before the pixel array of the image sensor.
  • FIG. 4 is a schematic diagram of the spectral response of an IR-cut filter.
  • the IR-c ut filter is fully transmissive in the visible range and cut off in the infrared band.
  • FIG. 5 is a conventional structure of an image sensor in the related art, and 5.1 is a pixel array.
  • an IR-cut filter 5.2, 5.3 is required before the pixel array.
  • Figure 6A is a block schematic diagram of an image sensor in accordance with one embodiment of the present application.
  • the image sensor 1000 of the embodiment of the present application includes a two-pass filter 100 and a pixel array 200.
  • the two-pass filter 100 only allows the infrared light of the first wavelength range and the visible light of the second wavelength range to pass.
  • the first wavelength range is from 810 nm to 870 nm
  • the second wavelength range is from 400 nm to 650 nm.
  • FIG. 6B is a schematic structural diagram of an image sensor according to an embodiment of the present application.
  • the image sensor of the embodiment of the present application adds a double-pass filter 100 in front of the pixel array 200, and the light reaches the image sensor.
  • the pixel array 200 is first filtered by the two-pass filter 100, wherein the spectral response of the two-pass filter 100 is as shown in FIG.
  • the two-pass filter 100 in the embodiment of the present application cuts off light having a wavelength of 650 nm to 810 nm and light having a wavelength greater than 870 nm, that is, the light in the second wavelength range and the light in the first wavelength range are transparent.
  • the two-pass filter 100 passes through the pixel array 200 of the image sensor.
  • the pixel array 200 includes a plurality of pixel units, and the pixel unit includes first to Nth color pixels and a color-infrared pixel corresponding to the first color pixel.
  • the first to Nth color pixels include at least one first color pixel, one second color pixel, and a third color image
  • the color-infrared pixel senses specific color light in visible light
  • the N color pixels sense specific color light and infrared light in visible light
  • N is an integer greater than or equal to 3.
  • the first color pixel is a red pixel
  • the second color pixel is a green pixel
  • the third color pixel is a blue pixel
  • the first color pixel is a yellow pixel
  • the second color pixel is a cyan pixel
  • the third color pixel is a third color pixel. Magenta pixels.
  • the first color pixel may be a red pixel, a blue pixel, or a green pixel.
  • the color-infrared pixel corresponding to the first color pixel may be a red-infrared pixel, a blue-infrared pixel, or a green-infrared pixel.
  • the light after the light passes through the two-pass filter 100 above the pixel array 200, the light includes infrared light of a first wavelength range and visible light of a second wavelength range. Since the color pixel has a filter of a specific color (for example, the red pixel has a red filter that allows red light and infrared light of a first wavelength range to pass), after the light is incident on the pixel array 200, the color pixel senses visible light.
  • the specific colored light for example, the red pixel senses the red light in the visible
  • the infrared light in the first wavelength range Color-infrared pixels only sense specific colored light in visible light, but not infrared light in the first wavelength range.
  • the first color pixel may be a yellow pixel, a magenta pixel, or a cyan pixel.
  • the color-infrared pixel corresponding to the first color pixel may be a yellow-infrared pixel, a magenta-infrared pixel, or a cyan-infrared pixel.
  • the light after the light passes through the two-pass filter 100 above the pixel array 200, the light includes infrared light of a first wavelength range and visible light of a second wavelength range. Since the color pixel has a filter of a specific color (for example, the yellow pixel has a yellow filter that allows yellow light and infrared light of the first wavelength range to pass), after the light is incident on the pixel array 200, the color pixel senses visible light.
  • the specific colored light for example, the yellow pixel senses the yellow light in the visible
  • the infrared light of the first wavelength range Color-infrared pixels only sense specific colored light in visible light, but not infrared light in the first wavelength range.
  • the color-infrared pixel may be implemented by depositing a layer of IR-cut 850 dielectric material above or below the color filter of the color pixel (the spectral response of the IR-cut 850 dielectric material is as shown in FIG.
  • the IR-cut850 dielectric material has an infrared light cutoff between 810 nm and 870 nm, that is, infrared light having a wavelength between 810 nm and 870 nm cannot pass through the IR-cut 850 dielectric material; or it can be: in color
  • the IR-cut850 dielectric material is incorporated into the filter, so that light passing through the color filter and passing through the IR-cut850 material, a certain range of light in the 850 nm band (ie, infrared light in the first wavelength range) cannot be projected onto the pixel.
  • the above materials are not limited to the IR-cut850 medium, as long as the material that filters out the infrared light of the first wavelength range can be realized.
  • the difference between the first color pixel and the color-infrared pixel corresponding to the first color pixel is illustrated by taking a green pixel and a green-infrared pixel as an example.
  • the spectral response curve of the green filter of the green pixel is shown in Figure 9A
  • green - The spectral response curve of the filter of the infrared pixel is shown in Fig. 9B.
  • the incident light passes through the filter of the double-pass filter 100 and then passes through the filter of each pixel, so that the spectral response information that the green pixel can sense is as shown in FIG. 10A, and the spectral response information that the green-infrared pixel can sense is as shown in FIG.
  • FIG. 10B it can be seen that the light that can be induced by the ordinary green pixel is the green light and the infrared light of the first wavelength range, and the light that the green-infrared pixel can sense is the green light.
  • the pixel unit includes a green pixel G2, a red pixel R, a blue pixel B, and a green-infrared pixel (G-IR), wherein the green-infrared pixel senses green in visible light Light, green pixels sense green light and infrared light in visible light, red pixels sense red light and infrared light in visible light, and blue pixels sense blue light and infrared light in visible light.
  • G-IR green-infrared pixel senses green in visible light Light
  • green pixels sense green light and infrared light in visible light
  • red pixels sense red light and infrared light in visible light
  • blue pixels sense blue light and infrared light in visible light.
  • one pixel unit includes first to third color pixels and one color-infrared pixel corresponding to the first color pixel, that is, the pixel unit includes green pixels 6.4, red pixels 6.3, and blue pixels. 6.2 and green-color pixels 6.1.
  • the green-infrared pixel can only sense the green light in the visible light, but can not sense the infrared light in the first wavelength range, and the ordinary green pixel can both sense the green light in the visible light and the infrared light in the first wavelength range. .
  • the image processing module can calculate the infrared sensed by the pixel unit according to the difference between the output of the ordinary green pixel and the output of the green-infrared pixel.
  • the light intensity value in turn, can subtract the infrared light that affects the image color information in the pixel unit to obtain a more vivid image; and when in a low light or no light shooting environment, fill light by the fill light (for example, The light is supplemented by an LED lamp having a wavelength of 850 nm to obtain a clear image.
  • the light of the complementary band can pass through the two-pass filter 100, and can pass through the ordinary green in the pixel unit of the embodiment of the present application.
  • Pixels, red pixels, and blue pixels, while the green-infrared pixels are insensitive to the light of the complemented band, that is, 3/4 of the pixels in the pixel array 200 can be used to collect the light of the complementary band, and thus can be based on The acquired light produces a clear black and white image.
  • FIG. 11B is a schematic cross-sectional view showing a part of pixels in the pixel array 200 corresponding to FIG. 11A.
  • 6.5 is a green filter
  • 6.6 is an IR-cut 850 dielectric material
  • 6.7 is a microlens
  • 6.8 is a blue filter
  • 6.9 is a photodiode
  • 6.10 is a red filter
  • 6.11 is a green filter.
  • the incident light passes through the filter of the two-pass filter 100 and then passes through the filters of the respective pixels.
  • the light that the ordinary cyan pixel can induce is the cyan light and the infrared light of the first wavelength range, and the cyan-infrared pixel can The sensed light is cyan.
  • the pixel unit includes a cyan pixel C2, a yellow pixel Y, a magenta pixel M, and a cyan-infrared pixel (C-IR), wherein the cyan-infrared pixel senses in visible light Cyan light, cyan pixels sense cyan and infrared light in visible light, yellow pixels sense yellow and infrared light in visible light, magenta pixels sense magenta and infrared in visible light.
  • C-IR cyan-infrared pixel senses in visible light Cyan light
  • cyan pixels sense cyan and infrared light in visible light
  • yellow pixels sense yellow and infrared light in visible light
  • magenta pixels sense magenta and infrared in visible light.
  • one pixel unit includes first to third color pixels and one and first color
  • the color-infrared pixels corresponding to the pixels that is, the pixel units include cyan pixels 7.4, yellow pixels 7.3, magenta pixels 7.2, and cyan-color pixels 7.1.
  • the cyan-infrared pixel can only sense the cyan light in the visible light, but can not sense the infrared light in the first wavelength range
  • the ordinary cyan pixel can sense the cyan light in the visible light and the infrared light in the first wavelength range.
  • the image processing module can calculate the infrared sensed by the pixel unit according to the difference between the output of the ordinary cyan pixel and the output of the cyan-infrared pixel.
  • the light intensity value in turn, can subtract the infrared light that affects the image color information in the pixel unit to obtain a more vivid image; and when in a low light or no light shooting environment, fill light by the fill light (for example, The light is supplemented by an LED lamp having a wavelength of 850 nm to obtain a clear image.
  • the light of the complementary band can pass through the two-pass filter 100, and can pass the ordinary cyan in the pixel unit of the embodiment of the present application.
  • Pixels, yellow pixels, and magenta pixels, while cyan-infrared pixels are insensitive to the light of the complemented band, that is, 3/4 of the pixels in the pixel array 200 can be used to collect the light of the complementary band, and thus can be collected according to the The light that is produced produces a clear black and white image.
  • FIG. 12B is a schematic cross-sectional view showing a part of pixels in the pixel array 200 corresponding to FIG. 12A.
  • 7.5 is a cyan filter
  • 7.6 is an IR-cut850 dielectric material
  • 7.7 is a microlens
  • 7.8 is a magenta filter
  • 7.9 is a photodiode
  • 7.10 is a yellow filter
  • 7.11 is a cyan filter.
  • N 4*n-1
  • n is an integer greater than 1
  • the first to Nth color pixels include at least one red pixel, one green pixel, and one blue pixel, wherein The first color pixel is a green pixel, and the color-infrared pixel corresponding to the first color pixel is a green-infrared pixel.
  • each pixel unit includes eight adjacent pixels, wherein seven pixels are ordinary color pixels (ie, the first to seventh color pixels are respectively Green pixels, red pixels, blue pixels, green pixels, red pixels, blue pixels, and green pixels), and the other is green-infrared pixels, that is, one green-infrared pixel is included in every eight adjacent pixels. . Then, by subtracting the output of the ordinary green pixel from the output of the green-infrared pixel, the difference obtained is the infrared light intensity value sensed by the pixel unit, thereby affecting the image color among the seven color pixels when the light is sufficient. The infrared light of the information is subtracted, and a more vivid image can be obtained.
  • the first to seventh color pixels are respectively Green pixels, red pixels, blue pixels, green pixels, red pixels, blue pixels, and green pixels
  • the other is green-infrared pixels, that is, one green-infrared pixel is included in every eight adjacent pixels.
  • N 4*n-1, n is an integer greater than 1, and the first to Nth color pixels include at least one red pixel, one green pixel, and one blue pixel, wherein The first color pixel is a red pixel, and the color-infrared pixel corresponding to the first color pixel is a red-infrared pixel.
  • the five color pixels include red pixels, green pixels, and blue pixels, and the other one is red-infrared pixels, that is, one red-infrared pixel is included in every sixteen adjacent pixels.
  • the red-infrared pixel can only sense the red light in the visible light, but can not sense the infrared light in the first wavelength range
  • the ordinary red pixel can both sense the red light in the visible light and the infrared light in the first wavelength range.
  • the difference obtained is the infrared light intensity value sensed by the pixel unit, and the infrared light that affects the image color information is subtracted when the light is sufficient, so that a more vivid image can be obtained.
  • N 4*n-1, n is an integer greater than 1, and the first to Nth color pixels include at least one red pixel, one green pixel, and one blue pixel, wherein The first color pixel is a blue pixel, and the color-infrared pixel corresponding to the first color pixel is a blue-infrared pixel.
  • the first color pixel is a blue pixel, that is, one pixel unit includes N color pixels (N color pixels include blue pixels, red pixels, and green pixels) and one blue-infrared pixel, that is, Each of the N+1 adjacent pixels contains a blue-infrared pixel.
  • the blue-infrared pixel can only sense the blue light in the visible light, but can not sense the infrared light in the first wavelength range, and the ordinary blue pixel can sense the blue light in the visible light and can sense the first wavelength range.
  • Infrared light then, by subtracting the output of the ordinary blue pixel from the output of the blue-infrared pixel, the difference obtained is the infrared light intensity value sensed by the pixel unit, thereby affecting the image when the light is sufficient
  • the infrared light of the color information is subtracted, and a more vivid image can be obtained.
  • N 4*n-1, n is an integer greater than 1, and at least one yellow pixel, one cyan pixel, and one magenta pixel are included in the first to Nth color pixels, wherein The first color pixel is a cyan pixel, and the color-infrared pixel corresponding to the first color pixel is a cyan-infrared pixel.
  • each pixel unit includes eight adjacent pixels, wherein seven pixels are ordinary color pixels (ie, the first to seventh color pixels are respectively Cyan, yellow, magenta, cyan, yellow, magenta, and cyan pixels, and the other is cyan-infrared, that is, every eight adjacent pixels contain a cyan-infrared pixel . Then, by subtracting the output of the ordinary cyan pixel from the output of the cyan-infrared pixel, the difference obtained is the infrared light intensity value sensed by the pixel unit, thereby affecting the image color among the seven color pixels when the light is sufficient. The infrared light of the information is subtracted, and a more vivid image can be obtained.
  • N 4*n-1
  • n is an integer greater than 1
  • at least one yellow pixel, one cyan pixel, and one magenta pixel are included in the first to Nth color pixels, wherein The first color pixel is a yellow pixel, and the color-infrared pixel corresponding to the first color pixel is a yellow-infrared pixel.
  • the five color pixels include yellow pixels, cyan pixels, and magenta pixels, and the other one is yellow-infrared pixels, that is, one yellow-infrared pixel is included in every sixteen adjacent pixels.
  • the yellow-infrared pixel can only sense the yellow light in the visible light, but can not sense the infrared light in the first wavelength range
  • the ordinary yellow pixel can both sense the yellow light in the visible light and the infrared light in the first wavelength range.
  • the difference obtained is the infrared light intensity value sensed by the pixel unit, and then the infrared light affecting the image color information when the light is sufficient.
  • the light is subtracted, you can get a more beautiful image.
  • N 4*n-1, n is an integer greater than 1, and the first to Nth color pixels include at least one yellow pixel, one cyan pixel, and one magenta pixel, wherein The first color pixel is a magenta pixel, and the color-infrared pixel corresponding to the first color pixel is a magenta-infrared pixel.
  • the first color pixel is a magenta pixel, that is, one pixel unit includes N color pixels (N color pixels include magenta pixels, yellow pixels, and cyan pixels) and one magenta-infrared pixel, that is, Each N+1 adjacent pixel contains a magenta-infrared pixel.
  • magenta-infrared pixels can only sense magenta light in visible light, but can not sense infrared light in the first wavelength range, while ordinary magenta pixels can sense magenta light in visible light and sense first wavelength.
  • the range of infrared light then, by subtracting the output of the ordinary magenta pixel from the output of the magenta-infrared pixel, the difference obtained is the infrared light intensity value sensed by the pixel unit, and then when the light is sufficient.
  • the infrared light that affects the color information of the image is subtracted, and a more vivid image can be obtained.
  • magenta is a color between red and blue, and its visible light wavelength is greater than the yellow light/green light wavelength, and in the spectrum, magenta is not a single wavelength of light, but is equivalent The red light is mixed with the blue light.
  • FIG. 17 is a schematic diagram of an image sensor according to an embodiment of the present application. As shown in FIG. 17, a two-pass filter is disposed between a lens group and a pixel array.
  • the image sensor of the embodiment of the present application includes a two-pass filter and a pixel array.
  • the two-pass filter only allows the infrared light of the first wavelength range and the visible light of the second wavelength range to pass
  • the pixel unit in the pixel array includes the first to the first N color pixels and a color-infrared pixel corresponding to the first color pixel, wherein the color pixel senses specific color light and infrared light in visible light, and the color-infrared pixel only senses specific color light in visible light
  • the subsequent image processing can calculate the intensity of the infrared light induced by the pixel unit according to the output of the first color pixel and the output of the color-infrared pixel corresponding to the first color pixel, thereby removing the infrared light under sufficient illumination conditions.
  • the present application proposes an imaging method of an image sensor.
  • FIG. 18 is a flow chart of an imaging method of an image sensor in accordance with an embodiment of the present application. As shown in Figure 18, this The imaging method of the image sensor of the application embodiment includes:
  • step S2 specifically includes: acquiring each pixel unit according to a difference between an output of the first color pixel in each pixel unit and an output of the color-infrared pixel corresponding to the first color pixel. Induced infrared light intensity value.
  • the adjacent four pixels constitute one pixel unit, that is, one green-infrared pixel is included in every four pixels, and then, in each pixel unit, the pixel unit is used.
  • the output of the green pixel minus the output of the green-infrared pixel can obtain the intensity of the infrared light intensity sensed by the pixel unit.
  • the same processing is performed for each pixel unit, and the infrared light intensity values sensed by all the pixel units are obtained.
  • the adjacent eight pixels constitute one pixel unit, that is, one green-infrared pixel is included in every eight pixels, and three ordinary green pixels are included in the eight pixels, then the green pixel is calculated.
  • any one of the three ordinary green pixels may be selected for calculation.
  • one green pixel closest to the position of the green-infrared pixel may be selected for calculation.
  • the output of the green-infrared pixel can also be subtracted from the average of the output of the three green pixels to obtain the infrared light intensity value sensed by the pixel unit.
  • the adjacent four pixels constitute one pixel unit, that is, one blue-infrared pixel is included in every four pixels, and then, in each pixel unit, the pixel unit is used.
  • the output of the cyan pixel minus the output of the cyan-infrared pixel can obtain the intensity of the infrared light intensity sensed by the pixel unit.
  • the same processing is performed for each pixel, and the infrared light intensity values sensed by all the pixel units are obtained.
  • the adjacent eight pixels constitute one pixel unit, that is, one cyan-infrared pixel is included in every eight pixels, and three common cyan pixels are included in the eight pixels, then the calculation is performed.
  • any one of the three ordinary cyan pixels may be selected for calculation.
  • one cyan pixel closest to the position of the cyan-infrared pixel may be selected for calculation.
  • the output of the cyan-infrared pixel can also be subtracted from the average of the output of the three cyan pixels to obtain the infrared light intensity value sensed by the pixel unit.
  • the output of the pixel array is processed according to the infrared light intensity value sensed by each pixel unit to generate a color image according to the output of the processed pixel array.
  • the brightness of the current shooting scene belongs to a situation where the light is sufficient, or is a situation of weak light or no light, wherein when the brightness of the current shooting scene is greater than the first preset value, it is determined that the light is sufficient.
  • S4 specifically includes: first to Nth color pixels in each pixel unit The output values are respectively subtracted from the corresponding infrared light intensity values to obtain the output of the processed pixel array, and a color image is generated based on the output of the processed pixel array.
  • the infrared light that affects the color of the image needs to be removed to obtain a colorful image.
  • the first to Nth color pixel output values in the pixel unit are respectively subtracted from the infrared light intensity values sensed by the pixel unit, thereby removing the infrared light to the pixel unit. Impact.
  • the color pixels in all the pixel units of the pixel array are subtracted from the infrared light intensity values sensed by the respective pixel units to obtain the output of the processed pixel array, and then the color image is generated according to the output of the processed pixel array, thus obtaining The color image is brighter due to the removal of infrared light.
  • the imaging method further includes: supplementing the image sensor with the infrared light of the first wavelength range when the brightness of the current shooting scene is less than or equal to the first preset value; and generating the black and white image according to the output of the pixel array.
  • the image sensor when in a low light or no light shooting environment, is complemented by a fill light (for example, by an LED lamp having a wavelength of 850 nm) to generate clear black and white according to the output of the pixel array. image.
  • a fill light for example, by an LED lamp having a wavelength of 850 nm
  • the light in the complementary band of the fill light can pass through the two-pass filter, and can pass through the ordinary green pixel, the red pixel and the blue pixel in the pixel unit of the embodiment of the present application, and the green-infrared pixel It is insensitive to the light of the complemented band, or may pass through the ordinary cyan pixels, yellow pixels, and magenta pixels in the pixel unit of the embodiment of the present application, and the cyan-infrared pixels are insensitive to the light of the complementary band. That is to say, 3/4 of the pixels in the pixel array can be used to collect the light of the complementary band, and thus a clear black and white image can be generated according to the collected light.
  • the imaging method of the image sensor of the embodiment of the present application reads the output of the pixel array, and calculates the infrared light sensed by the pixel unit according to the output of the first color pixel and the output of the color-infrared pixel corresponding to the first color pixel.
  • the intensity in turn, can remove the influence of infrared light on the image under sufficient illumination to obtain a colorful image without adding a switchable infrared filter in front of the image sensor, which saves cost and avoids infrared filtering.
  • the present application also proposes an image forming apparatus.
  • FIG. 19 is a block schematic diagram of an imaging device in accordance with an embodiment of the present application.
  • the imaging apparatus of the embodiment of the present application includes an image sensor 1000 and an image processing module 2000.
  • the image sensor 1000 has been described in detail in the foregoing embodiments, and details are not described herein again.
  • the image processing module 2000 is coupled to the image sensor 1000 for reading the output of the pixel array in the image sensor 1000 and based on the output of the first color pixel and the color corresponding to the first color pixel in each pixel unit -
  • the output of the infrared pixel acquires the intensity of the infrared light intensity sensed by each pixel unit, and obtains the brightness of the current shooting scene, and according to the intensity of the infrared light sensed by each pixel unit when the brightness of the current scene is greater than the first preset value
  • the value is processed on the output of the pixel array to generate a color image based on the output of the processed pixel array.
  • the image processing module 2000 is specifically configured to acquire each of the difference between the output of the first color pixel in each pixel unit and the output of the color-infrared pixel corresponding to the first color pixel.
  • the image processing module 2000 is specifically configured to: subtract the corresponding infrared light intensity values from the output values of the first to Nth color pixels in each pixel unit to obtain the processed The output of the pixel array and a color image is generated based on the output of the processed pixel array.
  • the infrared fill light 3000 is further included.
  • the infrared fill light 3000 is configured to supplement the image sensor 1000 with the infrared light of the first wavelength range when the brightness of the current shooting scene is less than or equal to the first preset value; the image processing module 2000 is further configured to use the brightness of the current shooting scene.
  • a black and white image is generated according to the output of the pixel array when less than or equal to the first preset value.
  • the unexpanded portion of the imaging device of the embodiment of the present application can refer to the corresponding portion of the imaging method of the previous embodiment, and will not be developed in detail herein.
  • the image processing module reads the output of the pixel array, and calculates the infrared light sensed by the pixel unit according to the output of the first color pixel and the output of the color-infrared pixel corresponding to the first color pixel.
  • the intensity in turn, can remove the influence of infrared light on the image under sufficient illumination to obtain a colorful image without adding a switchable infrared filter in front of the image sensor, which saves cost and avoids infrared filtering.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless otherwise explicitly stated and defined. , or integrated; can be mechanical or electrical connection; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements, unless otherwise specified Limited.
  • the specific meanings of the above terms in the present application can be understood on a case-by-case basis.

Abstract

本申请公开了一种图像传感器、成像方法和成像装置。图像传感器包括:双通滤波片,其只允许第一波长范围的红外光和第二波长范围的可见光通过;设置在双通滤波片下方的像素阵列,包括多个像素单元,每个像素单元包括第一至第N彩色像素(至少包括第一颜色像素、第二颜色像素和第三颜色像素)和一个与第一彩色像素对应的彩色-红外像素,彩色-红外像素感应可见光中的特定彩色光,N个彩色像素感应可见光中的特定彩色光和红外光。

Description

图像传感器、成像方法和成像装置
相关申请的交叉引用
本申请基于申请号为201610300570.1、申请日为2016年5月9日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及成像技术领域,尤其涉及一种图像传感器、成像方法和成像装置。
背景技术
CMOS(Complementary Metal Oxide Semiconductor,互补型金属氧化物半导体)图像传感器主要包括Pixel Array(像素阵列)、控制电路、模拟前端处理电路、A/D转换器、图像信号处理电路及相关存储单元等。目前,图像传感器在监控和车载方面得到广泛应用。在监控和车载方面,要求CMOS图像传感器在光线充足时能够获得艳丽的图像信息,在弱光或无光条件下能够采集近红外波段的信号以得到清晰的图像。
为了达到光线充足时获得艳丽的图像信息又能在低光或无光时可以采集近红外波段的图像信号,相关技术中的处理方法一般为:在图像传感器感光的光路前加入可以切换的IR-cut滤光片。在光线充足时控制IR-cut滤光片挡在CMOS图像传感器芯片之前,以滤除红外波段的信号,从而消除红外波段信号对可见光波段图像信息的影响,使图像信息更加艳丽;而在弱光或无光时,控制IR-cut滤光片从CMOS图像传感器芯片之前移开,并通过近红外补光,使近红外波段的信号能够被CMOS图像传感器采集,从而得到清晰的图像。然而,相关技术中的处理方法需要较频繁的对IR-cut滤光片进行切换,频繁的切换导致IR-cut滤光片容易损坏,进而影响整机的质量,再者,相关技术中通常采用机械或电磁的方式切换IR-cut滤光片,那么在IR-cut滤光片切换过程中不免会产生噪音。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本申请的一个目的在于提出一种图像传感器,无需增加可切换的红外滤光片,节约了成本,避免了红外滤光片切换时带来的噪声。
本申请的第二个目的在于提出一种图像传感器的成像方法。
本申请的第三个目的在于提出一种图像传感器的成像装置。
为了实现上述目的,本申请第一方面实施例提出了一种图像传感器,包括:双通滤波片,其中,所述双通滤波片只允许第一波长范围的红外光和第二波长范围的可见光通过;设置在所述双通滤波片下方的像素阵列,所述像素阵列中包括多个像素单元,所述每个像素单元包括第一至第N个彩色像素和一个与所述第一彩色像素对应的彩色-红外像素,其中,所述第一至第N个彩色像素中至少包括一个第一颜色像素、一个第二颜色像素和一个第三颜色像素,所述彩色-红外像素感应所述可见光中的特定彩色光,所述N个彩色像素感应所述可见光中的特定彩色光和所述红外光,N为大于或等于3的整数。
根据本申请实施例的图像传感器,包括双通滤波片和像素阵列,双通滤波片只允许第一波长范围的红外光和第二波长范围的可见光通过,像素阵列中的像素单元包括第一至第N个彩色像素和一个与所述第一彩色像素对应的彩色-红外像素,其中,彩色像素感应可见光中的特定彩色光和红外光,而彩色-红外像素只感应可见光中的特定彩色光,该图像传感器使得后续的图像处理根据第一彩色像素的输出和与第一彩色像素对应的彩色-红外像素的输出就能计算出像素单元感应到的红外光强度,进而可以在光照充足的条件下去除红外光对图像的影响以获得色彩艳丽的图像,而无需增加可切换的红外滤光片,既节约了成本,又避免了红外滤光片切换时带来的噪声。
为了实现上述目的,基于本申请第一方面实施例提出的图像传感器,本申请第二方面实施例提出了一种图像传感器的成像方法,包括:读取所述像素阵列的输出;根据每个所述像素单元中所述第一彩色像素的输出和与所述第一彩色像素对应的彩色-红外像素的输出获取所述每个像素单元感应到的红外光强度值;获取当前拍摄场景的亮度;当所述当前场景的亮度大于第一预设值时,根据所述每个像素单元感应到的红外光强度值对所述像素阵列的输出进行处理,以根据处理后的所述像素阵列的输出生成彩色图像。
根据本申请实施例的图像传感器的成像方法,读取像素阵列的输出,并根据第一彩色像素的输出和与第一彩色像素对应的彩色-红外像素的输出计算出像素单元感应到的红外光强度,进而可以在光照充足的条件下去除红外光对图像的影响以获得色彩艳丽的图像,而无需在图像传感器前增加可切换的红外滤光片,既节约了成本,又避免了红外滤光片切换时带来的噪声。
为了实现上述目的,本申请第三方面实施例提出了一种成像装置,该成像装置包括本申请第一方面实施例提出的图像传感器和与所述图像传感器相连的图像处理模块。
根据本申请实施例的成像装置,图像处理模块读取像素阵列的输出,并根据第一彩色像素的输出和与第一彩色像素对应的彩色-红外像素的输出计算出像素单元感应到的红外光强度,进而可以在光照充足的条件下去除红外光对图像的影响以获得色彩艳丽的图像, 而无需在图像传感器前增加可切换的红外滤光片,既节约了成本,又避免了红外滤光片切换时带来的噪声。
附图说明
图1是相关技术中的拜耳像素阵列的示意图;
图2是相关技术中的蓝色、绿色和红色滤镜的光谱响应曲线;
图3是相关技术中的拜耳像素阵列及部分像素的横切面的示意图;
图4是相关技术中的IR-cut滤光片的光谱响应示意图;
图5是相关技术中的图像传感器的结构示意图;
图6A是根据本申请一个实施例的图像传感器的方框示意图;
图6B是根据本申请一个具体实施例的图像传感器的结构示意图;
图7是根据本申请一个实施例的双通滤波片的光谱响应曲线;
图8是根据本申请一个实施例的IR-cut850材料的光谱响应曲线;
图9A是根据本申请一个实施例的绿色像素的绿色滤镜的光谱响应曲线;
图9B是根据本申请一个实施例的绿色-红外像素的滤镜的光谱响应曲线;
图10A是根据本申请一个实施例的绿色像素所能感应到的光谱响应信息的示意图;
图10B是根据本申请一个实施例的绿色-红外像素所能感应到的光谱响应信息的示意图;
图11A是根据本申请一个示例的像素阵列的示意图;
图11B是根据本申请一个示例的部分像素的横切面示意图;
图12A是根据本申请另一个示例的像素阵列的示意图;
图12B是根据本申请另一个示例的部分像素的横切面示意图;
图13-16分别是根据本申请不同实施例的像素阵列的示意图;
图17是根据本申请一个具体实施例的图像传感器的示意图;
图18是根据本申请一个实施例的图像传感器的成像方法的流程图;
图19是根据本申请一个实施例的成像装置的方框示意图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
首先,对相关技术中的图像传感器进行简要说明。图像传感器通过获取环境场景中RGB(red,green,blue;红绿蓝)的分量来达到成像目的。一般情况下,图像传感器的像素阵列采用bayer(拜耳)结构,如图1所示,即不同像素上面通过覆盖不同颜色的彩色滤镜,使覆盖绿色滤镜的像素感应绿光,覆盖红色滤镜的像素感应红光,覆盖蓝色滤镜的像素感应蓝光。图2是R/G/B彩色滤镜的光谱响应曲线,可以看出,在波长小于可见光波长的波段,例如,波长小于650nm的波段,彩色滤镜有选择的透过不同波长范围的光线,而在近红外波段,例如,波长大于660nm的波段,红色滤镜对近红外全部透过,波长大于800nm以后所有的彩色滤镜全通。图3是像素阵列及部分像素的横切面示意图,3.1为绿色像素,3.2为蓝色像素,3.3为红色像素,3.4为绿色滤镜,3.5为红色滤镜,3.6为微透镜,3.7为蓝色滤镜,3.8为光电二极管,3.9为绿色滤镜,光线透过彩色滤镜后被光电二极管吸收。由于人类视觉只能感知可见波段信号,在实际应用中,考虑到人类的视觉作用,相关技术中需要在图像传感器的像素阵列之前加IR-cut滤光片(用于将红外光滤掉)。图4为IR-cut滤光片的光谱响应示意图,IR-c ut滤光片在可见光波段全通,而在红外波段截止。图5是相关技术中图像传感器的一种常规结构,5.1为像素阵列,在光线充足的条件下希望得到较为艳丽的彩色图像信息时,需要在像素阵列之前加IR-cut滤光片5.2,5.3表示IR-cut滤光片和像素阵列的组合。而在弱光或无光的条件下,把IR-cut滤光片从像素阵列前移除,并通过补近红外光,使近红外信号可以被像素采集。
下面结合附图描述本申请实施例的图像传感器、图像传感器的成像方法和成像装置。
图6A是根据本申请一个实施例的图像传感器的方框示意图。如图6A所示,本申请实施例的图像传感器1000,包括双通滤波片100和像素阵列200。
其中,双通滤波片100只允许第一波长范围的红外光和第二波长范围的可见光通过。
在本申请的一个实施例中,第一波长范围为810nm~870nm,第二波长范围为400nm~650nm。
具体地,图6B为本申请一个具体实施例的图像传感器的结构示意图,如图6B所示,本申请实施例的图像传感器在像素阵列200前面加了双通滤波片100,光线在到达图像传感器的像素阵列200之前首先经过双通滤波片100的过滤,其中,双通滤波片100的光谱响应如图7所示。本申请实施例中的双通滤波片100对波长处于650nm~810nm的光线及波长大于870nm的光线截止,也就是说,处于第二波长范围内的光线和处于第一波长范围内的光线可以透过该双通滤波片100而达到图像传感器的像素阵列200。
设置在双通滤波片100下方的像素阵列200,像素阵列200中包括多个像素单元,像素单元包括第一至第N个彩色像素和一个与第一彩色像素对应的彩色-红外像素,其中,第一至第N个彩色像素中至少包括一个第一颜色像素、一个第二颜色像素和一个第三颜色像 素,彩色-红外像素感应可见光中的特定彩色光,N个彩色像素感应可见光中的特定彩色光和红外光,N为大于或等于3的整数。
其中,第一颜色像素为红色像素,第二颜色像素为绿色像素,第三颜色像素为蓝色像素;或者,第一颜色像素为黄色像素,第二颜色像素为青色像素,第三颜色像素为洋红色像素。
在本申请的一个实施例中,第一彩色像素可以是红色像素、蓝色像素或绿色像素。那么,与第一彩色像素对应的彩色-红外像素可以是红色-红外像素、蓝色-红外像素或绿色-红外像素。
具体地,光线透过像素阵列200上方的双通滤波片100之后,光线中包括第一波长范围的红外光和第二波长范围的可见光。由于彩色像素具有特定色彩的滤镜(例如,红色像素具有红色滤镜,该红色滤镜允许红色光和第一波长范围的红外光通过),这些光照射到像素阵列200后,彩色像素感应可见光中的特定彩色光(例如,红色像素感应可见中的红色光)和第一波长范围的红外光。而彩色-红外像素只感应可见光中的特定彩色光,而不能感应第一波长范围的红外光。
在本申请的另一个实施例中,第一彩色像素可以是黄色像素、洋红色像素或青色像素。那么,与第一彩色像素对应的彩色-红外像素可以是黄色-红外像素、洋红色-红外像素或青色-红外像素。
具体地,光线透过像素阵列200上方的双通滤波片100之后,光线中包括第一波长范围的红外光和第二波长范围的可见光。由于彩色像素具有特定色彩的滤镜(例如,黄色像素具有黄色滤镜,该黄色滤镜允许黄色光和第一波长范围的红外光通过),这些光照射到像素阵列200后,彩色像素感应可见光中的特定彩色光(例如,黄色像素感应可见中的黄色光)和第一波长范围的红外光。而彩色-红外像素只感应可见光中的特定彩色光,而不能感应第一波长范围的红外光。
在本申请的一个实施例中,彩色-红外像素的实现方式可以是:通过在彩色像素的彩色滤镜上方或下方沉积一层IR-cut850介质材料(IR-cut850介质材料的光谱响应如图8所示,该IR-cut850介质材料对波长在810nm到870nm之间的红外光截止,即波长在810nm到870nm之间的红外光不能透过该IR-cut850介质材料);也可以是:在彩色滤镜中掺入IR-cut850介质材料,使得光线透过彩色滤镜并穿过IR-cut850材料后,850nm波段一定范围内的光线(即第一波长范围的红外光)不能投射到该像素的光电二极管上。当然,上述的材料不限于IR-cut850介质,只要能实现滤除第一波长范围红外光的材料都可以。
具体地,以绿色像素和绿色-红外像素为例,说明第一彩色像素和与第一彩色像素对应的彩色-红外像素的区别。其中,绿色像素的绿色滤镜的光谱响应曲线如图9A所示,绿色- 红外像素的滤镜的光谱响应曲线如图9B所示。入射光线经过双通滤波片100的过滤之后再经过各个像素的滤镜,进而绿色像素所能感应到的光谱响应信息如图10A所示,绿色-红外像素所能感应到的光谱响应信息如图10B所示,可以看出,普通的绿色像素所能感应的光为绿色光和第一波长范围的红外光,而绿色-红外像素所能感应到的光为绿色光。
在本申请的一个实施例中,N=3,像素单元包括绿色像素G2、红色像素R、蓝色像素B和绿色-红外像素(G-IR),其中,绿色-红外像素感应可见光中的绿色光,绿色像素感应可见光中的绿色光和红外光,红色像素感应可见光中的红色光和红外光,蓝色像素感应可见光中的蓝色光和红外光。
具体地,如图11A所示,一个像素单元包括第一至第三个彩色像素和一个与第一彩色像素对应的彩色-红外像素,即像素单元包括绿色像素6.4、红色像素6.3、蓝色像素6.2和绿色-彩色像素6.1。其中,绿色-红外像素只能感应可见光中的绿色光,而不能感应第一波长范围的红外光,而普通的绿色像素既能感应可见光中的绿色光,又能感应第一波长范围的红外光。那么,在后续的图像处理过程中,当处于光线比较充足的拍摄环境时,图像处理模块根据普通的绿色像素的输出和绿色-红外像素的输出之差便可以计算出该像素单元感应到的红外光强度值,进而可以把该像素单元中影响图像色彩信息的红外光减去,从而得到较为艳丽的图像;而当处于弱光或无光的拍摄环境时,通过补光灯进行补光(例如,通过波长为850nm的LED灯进行补光)以获得清晰的图像,那么,所补波段的光可以透过双通滤波片100,并可以透过本申请实施例的像素单元中的普通的绿色像素、红色像素和蓝色像素,而绿色-红外像素对所补波段的光不敏感,也就是说,像素阵列200中3/4的像素都可以用于采集所补波段的光,进而可以根据采集到的光生成清晰的黑白图像。
另外,图11B所示为图11A对应的像素阵列200中部分像素的横切面示意图。如图11B所示,6.5为绿色滤镜,6.6为IR-cut850介质材料,6.7为微透镜,6.8为蓝色滤镜,6.9为光电二极管,6.10为红色滤镜,6.11为绿色滤镜。
以青色像素和青色-红外像素为例,说明第一彩色像素和与第一彩色像素对应的彩色-红外像素的区别。同理,入射光线经过双通滤波片100的过滤之后再经过各个像素的滤镜,普通的青色像素所能感应的光为青色光和第一波长范围的红外光,而青色-红外像素所能感应到的光为青色光。
在本申请的一个优选实施例中,N=3,像素单元包括青色像素C2、黄色像素Y、洋红色像素M和青色-红外像素(C-IR),其中,青色-红外像素感应可见光中的青色光,青色像素感应可见光中的青色光和红外光,黄色像素感应可见光中的黄色和红外光光,洋红色像素感应可见光中的洋红色光和红外光。
具体地,如图12A所示,一个像素单元包括第一至第三个彩色像素和一个与第一彩色 像素对应的彩色-红外像素,即像素单元包括青色像素7.4、黄色像素7.3、洋红色像素7.2和青色-彩色像素7.1。其中,青色-红外像素只能感应可见光中的青色光,而不能感应第一波长范围的红外光,而普通的青色像素既能感应可见光中的青色光,又能感应第一波长范围的红外光。那么,在后续的图像处理过程中,当处于光线比较充足的拍摄环境时,图像处理模块根据普通的青色像素的输出和青色-红外像素的输出之差便可以计算出该像素单元感应到的红外光强度值,进而可以把该像素单元中影响图像色彩信息的红外光减去,从而得到较为艳丽的图像;而当处于弱光或无光的拍摄环境时,通过补光灯进行补光(例如,通过波长为850nm的LED灯进行补光)以获得清晰的图像,那么,所补波段的光可以透过双通滤波片100,并可以透过本申请实施例的像素单元中的普通的青色像素、黄色像素和洋红色像素,而青色-红外像素对所补波段的光不敏感,也就是说,像素阵列200中3/4的像素都可以用于采集所补波段的光,进而可以根据采集到的光生成清晰的黑白图像。
另外,图12B所示为图12A对应的像素阵列200中部分像素的横切面示意图。如图12B所示,7.5为青色滤镜,7.6为IR-cut850介质材料,7.7为微透镜,7.8为洋红色滤镜,7.9为光电二极管,7.10为黄色滤镜,7.11为青色滤镜。
在本申请的一个实施例中,N=4*n-1,n为大于1的整数,第一至第N个彩色像素中至少包括一个红色像素、一个绿色像素和一个蓝色像素,其中,第一彩色像素为绿色像素,与第一彩色像素对应的彩色-红外像素为绿色-红外像素。
例如,以N=7为例,如图13所示,即每个像素单元中包括相邻的八个像素,其中七个像素为普通的彩色像素(即第一至第七个彩色像素分别为绿色像素、红色像素、蓝色像素、绿色像素、红色像素、蓝色像素和绿色像素),另外一个为绿色-红外像素,也就是说,每八个相邻的像素中含有一个绿色-红外像素。那么通过将普通的绿色像素的输出与绿色-红外像素的输出相减,得到的差值即为该像素单元感应到的红外光强度值,进而在光线充足时将七个彩色像素中影响图像色彩信息的红外光减去,便可以得到较为艳丽的图像。
在本申请的又一个实施例中,N=4*n-1,n为大于1的整数,第一至第N个彩色像素中至少包括一个红色像素、一个绿色像素和一个蓝色像素,其中,第一彩色像素为红色像素,与第一彩色像素对应的彩色-红外像素为红色-红外像素。
具体地,第一彩色像素为红色像素,以N=15为例,如图14所示,即一个像素单元中包括相邻的十六个像素,其中十五个像素为普通的彩色像素(十五个彩色像素中包括红色像素、绿色像素和蓝色像素),另外一个为红色-红外像素,也就是说,每十六个相邻的像素中含有一个红色-红外像素。其中,红色-红外像素只能感应可见光中的红色光,而不能感应第一波长范围的红外光,而普通的红色像素既能感应可见光中的红色光,又能感应第一波长范围的红外光,那么,通过将普通的红色像素的输出与红色-红外像素的输出相减, 得到的差值即为该像素单元感应到的红外光强度值,进而在光线充足时把影响图像色彩信息的红外光减去,便可以得到较为艳丽的图像。
在本申请的再一个实施例中,N=4*n-1,n为大于1的整数,第一至第N个彩色像素中至少包括一个红色像素、一个绿色像素和一个蓝色像素,其中,第一彩色像素为蓝色像素,与第一彩色像素对应的彩色-红外像素为蓝色-红外像素。
具体地,第一彩色像素为蓝色像素,即一个像素单元中包括N个彩色像素(N个彩色像素中包括蓝色像素、红色像素和绿色像素)和一个蓝色-红外像素,也就是说,每N+1个相邻的像素中含有一个蓝色-红外像素。其中,蓝色-红外像素只能感应可见光中的蓝色光,而不能感应第一波长范围的红外光,而普通的蓝色像素既能感应可见光中的蓝色光,又能感应第一波长范围的红外光,那么,通过将普通的蓝色像素的输出与蓝色-红外像素的输出相减,得到的差值即为该像素单元感应到的红外光强度值,进而在光线充足时把影响图像色彩信息的红外光减去,便可以得到较为艳丽的图像。
在本申请的另一个实施例中,N=4*n-1,n为大于1的整数,第一至第N个彩色像素中至少包括一个黄色像素、一个青色像素和一个洋红色像素,其中,第一彩色像素为青色像素,与第一彩色像素对应的彩色-红外像素为青色-红外像素。
例如,以N=7为例,如图15所示,即每个像素单元中包括相邻的八个像素,其中七个像素为普通的彩色像素(即第一至第七个彩色像素分别为青色像素、黄色像素、洋红色像素、青色像素、黄色像素、洋红色像素和青色像素),另外一个为青色-红外像素,也就是说,每八个相邻的像素中含有一个青色-红外像素。那么通过将普通的青色像素的输出与青色-红外像素的输出相减,得到的差值即为该像素单元感应到的红外光强度值,进而在光线充足时将七个彩色像素中影响图像色彩信息的红外光减去,便可以得到较为艳丽的图像。
在本申请的一个实施例中,N=4*n-1,n为大于1的整数,第一至第N个彩色像素中至少包括一个黄色像素、一个青色像素和一个洋红色像素,其中,第一彩色像素为黄色像素,与第一彩色像素对应的彩色-红外像素为黄色-红外像素。
具体地,第一彩色像素为黄色像素,以N=15为例,如图16所示,即一个像素单元中包括相邻的十六个像素,其中十五个像素为普通的彩色像素(十五个彩色像素中包括黄色像素、青色像素和洋红色像素),另外一个为黄色-红外像素,也就是说,每十六个相邻的像素中含有一个黄色-红外像素。其中,黄色-红外像素只能感应可见光中的黄色光,而不能感应第一波长范围的红外光,而普通的黄色像素既能感应可见光中的黄色光,又能感应第一波长范围的红外光,那么,通过将普通的黄色像素的输出与黄色-红外像素的输出相减,得到的差值即为该像素单元感应到的红外光强度值,进而在光线充足时把影响图像色彩信息的红外光减去,便可以得到较为艳丽的图像。
在本申请的又一个实施例中,N=4*n-1,n为大于1的整数,第一至第N个彩色像素中至少包括一个黄色像素、一个青色像素和一个洋红色像素,其中,第一彩色像素为洋红色像素,与第一彩色像素对应的彩色-红外像素为洋红色-红外像素。
具体地,第一彩色像素为洋红色像素,即一个像素单元中包括N个彩色像素(N个彩色像素中包括洋红色像素、黄色像素和青色像素)和一个洋红色-红外像素,也就是说,每N+1个相邻的像素中含有一个洋红色-红外像素。其中,洋红色-红外像素只能感应可见光中的洋红色光,而不能感应第一波长范围的红外光,而普通的洋红色像素既能感应可见光中的洋红色光,又能感应第一波长范围的红外光,那么,通过将普通的洋红色像素的输出与洋红色-红外像素的输出相减,得到的差值即为该像素单元感应到的红外光强度值,进而在光线充足时把影响图像色彩信息的红外光减去,便可以得到较为艳丽的图像。
其中,需要说明的是,洋红色为介于红色和蓝色之间的颜色,其可见光波长大于黄色光/绿色光波长,且在光谱中洋红色并不是单一波长的光,而是由等量的红色光与蓝色光混合而成。
当然,在本申请的其他实施例中,一个像素单元中所包括的像素的个数可以根据实际需要进行设定。例如,一个像素单元可以包括五个像素,即N=4,即一个像素单元包括相邻的五个像素,其中,四个像素为普通的彩色像素(例如,红色像素、绿色像素、绿色像素和蓝色像素),另外一个为红色-红外像素,也就是说,每五个相邻的像素中含有一个红色-红外像素;或者,四个像素为普通的彩色像素(例如,黄色像素、青色像素、青色像素和洋红色像素),另外一个为黄色-红外像素,也就是说,每五个相邻的像素中含有一个黄色-红外像素。
图17是根据本申请一个具体实施例的图像传感器的示意图,如图17所示,双通滤波片设置在镜头组和像素阵列之间。
本申请实施例的图像传感器,包括双通滤波片和像素阵列,双通滤波片只允许第一波长范围的红外光和第二波长范围的可见光通过,像素阵列中的像素单元包括第一至第N个彩色像素和一个与第一彩色像素对应的彩色-红外像素,其中,彩色像素感应可见光中的特定彩色光和红外光,而彩色-红外像素只感应可见光中的特定彩色光,该图像传感器使得后续的图像处理根据第一彩色像素的输出和与第一彩色像素对应的彩色-红外像素的输出就能计算出该像素单元感应到的红外光强度,进而可以在光照充足的条件下去除红外光对图像的影响以获得色彩艳丽的图像,而无需增加可切换的红外滤光片,既节约了成本,又避免了红外滤光片切换时带来的噪声。
在上述实施例的图像传感器的基础上,本申请提出了一种图像传感器的成像方法。
图18是根据本申请一个实施例的图像传感器的成像方法的流程图。如图18所示,本 申请实施例的图像传感器的成像方法,包括:
S1,读取像素阵列的输出。
S2,根据每个像素单元中第一彩色像素的输出和与第一彩色像素对应的彩色-红外像素的输出获取每个像素单元感应到的红外光强度值。
在本申请的一个实施例中,步骤S2具体包括:根据每个像素单元中第一彩色像素的输出和与第一彩色像素对应的彩色-红外像素的输出之间的差值获取每个像素单元感应到的红外光强度值。
例如,如图11A所示的像素阵列,相邻的四个像素组成一个像素单元,即每四个像素中含有一个绿色-红外像素,那么,在每个像素单元中,用该像素单元中的绿色像素的输出减去绿色-红外像素的输出就可以得到该像素单元所感应到的红外光强度值。对每个像素单元都进行同样的处理,便获得了所有像素单元感应到的红外光强度值。
如图13的像素阵列,相邻的八个像素组成一个像素单元,即每八个像素中含有一个绿色-红外像素,且该八个像素中包括三个普通的绿色像素,那么在计算绿色像素与绿色-红外像素的输出之差时,可以选择这三个普通的绿色像素中任一个进行计算,优选地,可以选择与绿色-红外像素的位置最接近的一个绿色像素进行计算。当然,也可用三个绿色像素的输出的平均值减去绿色-红外像素的输出,以得到该像素单元所感应到的红外光强度值。
又例如,如图12A所示的像素阵列,相邻的四个像素组成一个像素单元,即每四个像素中含有一个青色-红外像素,那么,在每个像素单元中,用该像素单元中的青色像素的输出减去青色-红外像素的输出就可以得到该像素单元所感应到的红外光强度值。对每个像素都进行同样的处理,便获得了所有像素单元感应到的红外光强度值。
如图15所述的像素阵列,相邻的八个像素组成一个像素单元,即每八个像素中含有一个青色-红外像素,且该八个像素中包括三个普通的青色像素,那么在计算青色像素与青色-红外像素的输出之差时,可以选择这三个普通的青色像素中任一个进行计算,优选地,可以选择与青色-红外像素的位置最接近的一个青色像素进行计算。当然,也可用三个青色像素的输出的平均值减去青色-红外像素的输出,以得到该像素单元所感应到的红外光强度值。
S3,获取当前拍摄场景的亮度。
S4,当前拍摄场景的亮度大于第一预设值时,根据每个像素单元感应到的红外光强度值对像素阵列的输出进行处理,以根据处理后的像素阵列的输出生成彩色图像。
具体地,判断当前拍摄场景的亮度属于光线充足的情况,还是属于弱光或无光的情况,其中,在当前拍摄场景的亮度大于第一预设值时,判断为光线充足的情况。
在本申请的一个实施例中,S4具体包括:将每个像素单元中的第一至第N个彩色像素 的输出值分别减去对应的红外光强度值,以获得处理后的像素阵列的输出,并根据处理后的像素阵列的输出生成彩色图像。
具体地,在判断当前拍摄场景的亮度大于第一预设值时,需要将影响图像色彩的红外光的去掉,以得到色彩艳丽的图像。以像素阵列中的一个像素单元为例,将该像素单元中的第一至第N个彩色像素输出值分别减去该像素单元感应到的红外光强度值,便去除了红外光对该像素单元的影响。将像素阵列的所有像素单元中的彩色像素都减去各自像素单元感应到的红外光强度值,以得到处理后的像素阵列的输出,进而根据处理后的像素阵列的输出生成彩色图像,这样得到的彩色图像由于去除了红外光的影响,颜色较为艳丽。
在本申请的一个实施例中,成像方法还包括:当前拍摄场景的亮度小于或等于第一预设值时,对图像传感器补充第一波长范围的红外光;以及根据像素阵列的输出生成黑白图像。
具体地,当处于弱光或无光的拍摄环境时,通过补光灯对图像传感器进行补光(例如,通过波长为850nm的LED灯进行补光),以根据像素阵列的输出生成清晰的黑白图像。
更具体地,补光灯所补波段的光可以透过双通滤波片,并可以透过本申请实施例的像素单元中的普通的绿色像素、红色像素和蓝色像素,而绿色-红外像素对所补波段的光不敏感,或者,可以透过本申请实施例的像素单元中的普通的青色像素、黄色像素和洋红色像素,而青色-红外像素对所补波段的光不敏感。也就是说,像素阵列中3/4的像素都可以用于采集所补波段的光,进而可以根据采集到的光生成清晰的黑白图像。
本申请实施例的图像传感器的成像方法,读取像素阵列的输出,并根据第一彩色像素的输出和与第一彩色像素对应的彩色-红外像素的输出计算出该像素单元感应到的红外光强度,进而可以在光照充足的条件下去除红外光对图像的影响以获得色彩艳丽的图像,而无需在图像传感器前增加可切换的红外滤光片,既节约了成本,又避免了红外滤光片切换时带来的噪声。
为了实现上述实施例,本申请还提出了一种成像装置。
图19是根据本申请一个实施例的成像装置的方框示意图。如图19所示,本申请实施例的成像装置,包括:图像传感器1000和图像处理模块2000。
其中,图像传感器1000在前面的实施例中已经进行了详细说明,在此不再赘述。
图像处理模块2000与图像传感器1000相连,图像处理模块2000用于读取图像传感器1000中像素阵列的输出,并根据每个像素单元中第一彩色像素的输出和与第一彩色像素对应的彩色-红外像素的输出获取每个像素单元感应到的红外光强度值,以及获取当前拍摄场景的亮度,并在当前场景的亮度大于第一预设值时,根据每个像素单元感应到的红外光强度值对像素阵列的输出进行处理,以根据处理后的像素阵列的输出生成彩色图像。
在本申请的一个实施例中,图像处理模块2000具体用于根据每个像素单元中第一彩色像素的输出和与第一彩色像素对应的彩色-红外像素的输出之间的差值获取每个像素单元感应到的红外光强度值。
在本申请的一个实施例中,图像处理模块2000具体用于:将每个像素单元中的第一至第N个彩色像素的输出值分别减去对应的红外光强度值,以获得处理后的像素阵列的输出,并根据处理后的像素阵列的输出生成彩色图像。
在本申请的一个实施例中,还包括:红外补光灯3000。
其中,红外补光灯3000用于在当前拍摄场景的亮度小于或等于第一预设值时对图像传感器1000补充第一波长范围的红外光;图像处理模块2000还用于在当前拍摄场景的亮度小于或等于第一预设值时根据像素阵列的输出生成黑白图像。
需要说明的是,本申请实施例的成像装置中未展开的部分,可以参照前面实施例的成像方法的对应部分,在此不再详细展开。
本申请实施例的成像装置,图像处理模块读取像素阵列的输出,并根据第一彩色像素的输出和与第一彩色像素对应的彩色-红外像素的输出计算出该像素单元感应到的红外光强度,进而可以在光照充足的条件下去除红外光对图像的影响以获得色彩艳丽的图像,而无需在图像传感器前增加可切换的红外滤光片,既节约了成本,又避免了红外滤光片切换时带来的噪声。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进 行结合和组合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (20)

  1. 一种图像传感器,其特征在于,包括:
    双通滤波片,其中,所述双通滤波片只允许第一波长范围的红外光和第二波长范围的可见光通过;
    设置在所述双通滤波片下方的像素阵列,所述像素阵列中包括多个像素单元,每个所述像素单元包括第一至第N个彩色像素和一个与所述第一彩色像素对应的彩色-红外像素,其中,所述第一至第N个彩色像素中至少包括一个第一颜色像素、一个第二颜色像素和一个第三颜色像素,所述彩色-红外像素感应所述可见光中的特定彩色光,所述N个彩色像素感应所述可见光中的特定彩色光和所述红外光,N为大于或等于3的整数。
  2. 根据权利要求1所述的图像传感器,其特征在于,所述第一颜色像素为红色像素,所述第二颜色像素为绿色像素,所述第三颜色像素为蓝色像素。
  3. 根据权利要求1所述的图像传感器,其特征在于,所述第一颜色像素为黄色像素,所述第二颜色像素为青色像素,所述第三颜色像素为洋红色像素。
  4. 根据权利要求1或2所述的图像传感器,其特征在于,所述N=3,每个所述像素单元包括绿色像素、红色像素、蓝色像素和绿色-红外像素,其中,所述绿色-红外像素感应所述可见光中的绿色光,所述绿色像素感应所述可见光中的绿色光和所述红外光,所述红色像素感应所述可见光中的红色光和所述红外光,所述蓝色像素感应所述可见光中的蓝色光和所述红外光。
  5. 根据权利要求1或3所述的图像传感器,其特征在于,所述N=3,每个所述像素单元包括青色像素、黄色像素、洋红色像素和青色-红外像素,其中,所述青色-红外像素感应所述可见光中的青色光,所述青色像素感应所述可见光中的青色光和所述红外光,所述黄色像素感应所述可见光中的黄色光和所述红外光,所述洋红色像素感应所述可见光中的洋红色光和所述红外光。
  6. 根据权利要求1或2所述的图像传感器,其特征在于,所述N=4*n-1,所述n为大于1的整数,所述第一至第N个彩色像素中至少包括一个红色像素、一个绿色像素和一个蓝色像素,其中,所述第一彩色像素为绿色像素,与所述第一彩色像素对应的彩色-红外像素为绿色-红外像素。
  7. 根据权利要求1或3所述的图像传感器,其特征在于,所述N=4*n-1,n为大于1的整数,所述第一至第N个彩色像素中至少包括一个黄色像素、一个青色像素和一个洋红色像素,其中,所述第一彩色像素为青色像素,与所述第一彩色像素对应的彩色-红外像素为青色-红外像素。
  8. 根据权利要求1或2所述的图像传感器,其特征在于,所述N=4*n-1,所述n为大于1的整数,所述第一至第N个彩色像素中至少包括一个红色像素、一个绿色像素和一个蓝色像素,其中,所述第一彩色像素为红色像素,与所述第一彩色像素对应的彩色-红外像素为红色-红外像素。
  9. 根据权利要求1或3所述的图像传感器,其特征在于,所述N=4*n-1,n为大于1的整数,所述第一至第N个彩色像素中至少包括一个黄色像素、一个青色像素和一个洋红色像素,其中,所述第一彩色像素为黄色像素,与所述第一彩色像素对应的彩色-红外像素为黄色-红外像素。
  10. 根据权利要求1或2所述的图像传感器,其特征在于,所述N=4*n-1,所述n为大于1的整数,所述第一至第N个彩色像素中至少包括一个红色像素、一个绿色像素和一个蓝色像素,其中,所述第一彩色像素为蓝色像素,与所述第一彩色像素对应的彩色-红外像素为蓝色-红外像素。
  11. 根据权利要求1或3所述的图像传感器,其特征在于,所述N=4*n-1,n为大于1的整数,所述第一至第N个彩色像素中至少包括一个黄色像素、一个青色像素和一个洋红色像素,其中,所述第一彩色像素为洋红色像素,与所述第一彩色像素对应的彩色-红外像素为洋红色-红外像素。
  12. 根据权利要求1-11中任一项所述的图像传感器,其特征在于,所述第一波长范围为810nm~870nm,所述第二波长范围为400nm~650nm。
  13. 一种根据权利要求1-12中任一项所述的图像传感器的成像方法,其特征在于,包括:
    读取所述像素阵列的输出;
    根据每个所述像素单元中所述第一彩色像素的输出和与所述第一彩色像素对应的彩色-红外像素的输出获取所述每个像素单元感应到的红外光强度值;
    获取当前拍摄场景的亮度;
    当所述当前场景的亮度大于第一预设值时,根据所述每个像素单元感应到的红外光强度值对所述像素阵列的输出进行处理,以根据处理后的所述像素阵列的输出生成彩色图像。
  14. 根据权利要求13所述的成像方法,其特征在于,所述根据每个像素单元中所述第一彩色像素的输出和与所述第一彩色像素对应的彩色-红外像素的输出获取所述每个像素单元感应到的红外光强度值,包括:
    根据所述每个像素单元中所述第一彩色像素的输出和与所述第一彩色像素对应的彩色-红外像素的输出之间的差值获取所述每个像素单元感应到的红外光强度值。
  15. 根据权利要求13或14所述的成像方法,其特征在于,所述当所述当前拍摄场景 的亮度大于第一预设值时,根据所述每个像素单元感应到的红外光强度值对所述像素阵列的输出进行处理,以根据处理后的所述像素阵列的输出生成彩色图像,包括:
    将所述每个像素单元中的第一至第N个彩色像素的输出值分别减去对应的红外光强度值,以获得处理后的所述像素阵列的输出,并根据所述处理后的所述像素阵列的输出生成彩色图像。
  16. 根据权利要求13-15中任一项所述的成像方法,其特征在于,还包括:
    当所述当前拍摄场景的亮度小于或等于所述第一预设值时,对所述图像传感器补充第一波长范围的红外光;
    根据所述像素阵列的输出生成黑白图像。
  17. 一种成像装置,其特征在于,包括:
    根据权利要求1-12中任一项所述的图像传感器;以及
    与所述图像传感器相连的图像处理模块,所述图像处理模块用于读取所述像素阵列的输出,并根据所述每个像素单元中所述第一彩色像素的输出和与所述第一彩色像素对应的彩色-红外像素的输出获取所述每个像素单元感应到的红外光强度值,以及获取当前拍摄场景的亮度,并在所述当前场景的亮度大于第一预设值时,根据所述每个像素单元感应到的红外光强度值对所述像素阵列的输出进行处理,以根据处理后的所述像素阵列的输出生成彩色图像。
  18. 根据权利要求17所述的成像装置,其特征在于,所述图像处理模块,具体用于:
    根据所述每个像素单元中所述第一彩色像素的输出和与所述第一彩色像素对应的彩色-红外像素的输出之间的差值获取所述每个像素单元感应到的红外光强度值。
  19. 根据权利要求17或18所述的成像装置,其特征在于,所述图像处理模块,具体用于:
    将所述每个像素单元中的第一至第N个彩色像素的输出值分别减去对应的红外光强度值,以获得处理后的所述像素阵列的输出,并根据所述处理后的所述像素阵列的输出生成彩色图像。
  20. 根据权利要求17-19中任一项所述的成像装置,其特征在于,还包括:红外补光灯,
    所述红外补光灯用于在所述当前拍摄场景的亮度小于或等于所述第一预设值时对所述图像传感器补充第一波长范围的红外光;
    所述图像处理模块还用于在所述当前拍摄场景的亮度小于或等于所述第一预设值时根据所述像素阵列的输出生成黑白图像。
PCT/CN2017/079635 2016-05-09 2017-04-06 图像传感器、成像方法和成像装置 WO2017193738A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610300570 2016-05-09
CN201610300570.1 2016-05-09

Publications (1)

Publication Number Publication Date
WO2017193738A1 true WO2017193738A1 (zh) 2017-11-16

Family

ID=60266928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/079635 WO2017193738A1 (zh) 2016-05-09 2017-04-06 图像传感器、成像方法和成像装置

Country Status (2)

Country Link
CN (1) CN107360405A (zh)
WO (1) WO2017193738A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110248119A (zh) * 2018-03-08 2019-09-17 中国科学院上海微系统与信息技术研究所 图像传感器及图像检测方法
CN112788313A (zh) * 2020-12-25 2021-05-11 RealMe重庆移动通信有限公司 图像传感器、成像系统和终端
CN113973197A (zh) * 2021-11-29 2022-01-25 维沃移动通信有限公司 像素结构、像素阵列、图像传感器及电子设备
CN114697584A (zh) * 2020-12-31 2022-07-01 杭州海康威视数字技术股份有限公司 一种图像处理系统及图像处理方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110248050B (zh) * 2018-03-07 2021-03-02 维沃移动通信有限公司 一种摄像头模组及移动终端
CN108377340A (zh) * 2018-05-10 2018-08-07 杭州雄迈集成电路技术有限公司 一种基于rgb-ir传感器日夜模式自动切换方法及装置
CN108696684B (zh) * 2018-05-28 2021-08-27 威海联合影像有限公司 一种可集成于智能手机平台的摄像头模块
CN108965704B (zh) * 2018-07-19 2020-01-31 维沃移动通信有限公司 一种图像传感器、移动终端及图像拍摄方法
JP7083912B2 (ja) * 2018-09-19 2022-06-13 オリンパス株式会社 撮像素子、撮像装置、撮像方法およびプログラム
CN111163244B (zh) * 2018-11-08 2022-02-22 宁波舜宇光电信息有限公司 摄像模组及其应用
WO2021016900A1 (zh) * 2019-07-31 2021-02-04 华为技术有限公司 一种图像传感器和图像感光的方法
CN113452968B (zh) * 2020-03-25 2022-04-26 杭州海康威视数字技术股份有限公司 图像处理方法
CN111918005B (zh) * 2020-09-16 2023-05-16 Oppo广东移动通信有限公司 图像传感器、终端、数据处理方法、装置及存储介质
CN113537188A (zh) * 2021-05-31 2021-10-22 浙江大华技术股份有限公司 人脸抓拍方法、人脸抓拍系统以及计算机可读存储介质
CN114143515A (zh) * 2021-11-30 2022-03-04 维沃移动通信有限公司 图像传感器、摄像模组和电子设备
CN114785929A (zh) * 2022-04-20 2022-07-22 Oppo广东移动通信有限公司 摄像头和电子装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080099682A1 (en) * 2006-11-01 2008-05-01 Demian Gordon Quantum nanodot camera
CN102447826A (zh) * 2010-10-12 2012-05-09 全视科技有限公司 可见及红外双重模式成像系统
CN104735427A (zh) * 2013-12-24 2015-06-24 浙江大华技术股份有限公司 一种图像传感器
CN105190374A (zh) * 2013-03-14 2015-12-23 富士胶片株式会社 固体摄像元件及其制造方法、红外光截止滤波器形成用硬化性组合物、照相机模块
CN105430363A (zh) * 2015-12-18 2016-03-23 广东欧珀移动通信有限公司 成像方法、成像装置及电子装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080099682A1 (en) * 2006-11-01 2008-05-01 Demian Gordon Quantum nanodot camera
CN102447826A (zh) * 2010-10-12 2012-05-09 全视科技有限公司 可见及红外双重模式成像系统
CN105190374A (zh) * 2013-03-14 2015-12-23 富士胶片株式会社 固体摄像元件及其制造方法、红外光截止滤波器形成用硬化性组合物、照相机模块
CN104735427A (zh) * 2013-12-24 2015-06-24 浙江大华技术股份有限公司 一种图像传感器
CN105430363A (zh) * 2015-12-18 2016-03-23 广东欧珀移动通信有限公司 成像方法、成像装置及电子装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110248119A (zh) * 2018-03-08 2019-09-17 中国科学院上海微系统与信息技术研究所 图像传感器及图像检测方法
CN112788313A (zh) * 2020-12-25 2021-05-11 RealMe重庆移动通信有限公司 图像传感器、成像系统和终端
CN112788313B (zh) * 2020-12-25 2023-04-07 RealMe重庆移动通信有限公司 图像传感器、成像系统和终端
CN114697584A (zh) * 2020-12-31 2022-07-01 杭州海康威视数字技术股份有限公司 一种图像处理系统及图像处理方法
CN114697584B (zh) * 2020-12-31 2023-12-26 杭州海康威视数字技术股份有限公司 一种图像处理系统及图像处理方法
CN113973197A (zh) * 2021-11-29 2022-01-25 维沃移动通信有限公司 像素结构、像素阵列、图像传感器及电子设备
CN113973197B (zh) * 2021-11-29 2023-09-12 维沃移动通信有限公司 像素结构、像素阵列、图像传感器及电子设备

Also Published As

Publication number Publication date
CN107360405A (zh) 2017-11-17

Similar Documents

Publication Publication Date Title
WO2017193738A1 (zh) 图像传感器、成像方法和成像装置
CN105210369B (zh) 用于获取双模态图像的设备
US20180270462A1 (en) Imaging processing device and imaging processing method
US8035710B2 (en) Solid-state imaging device and signal processing method
CN103201602B (zh) 具有至少两个独立数字照相机的数字多光谱照相机系统
US8576313B2 (en) Color filters and demosaicing techniques for digital imaging
EP2752008B1 (en) Pixel array, camera using the same and color processing method based on the pixel array
CN106612420B (zh) 彩色滤光器阵列及图像传感器
JP2004228662A (ja) 撮像装置
CN101188775A (zh) 彩色摄像元件和彩色信号处理电路
KR20100103504A (ko) 칼라-모자이크 이미저로부터 전정색 응답을 성취하는 방법 및 장치
JP2002521975A (ja) 赤外線補正システム
CN106878690A (zh) 图像传感器的成像方法、成像装置和电子设备
JP2008289000A (ja) 画像入力処理装置、および、その方法
JP2017118284A (ja) 撮像装置
JP4874752B2 (ja) デジタルカメラ
CN108370422A (zh) 利用单个矩阵传感器采集可见和近红外图像的系统和方法
TWI554109B (zh) 圖像傳感器、監控系統和圖像傳感器的設計方法
US20170134669A1 (en) Image sensor and monitoring system
US20170019614A1 (en) Image capturing device, signal separation device, and image capturing method
KR20100119712A (ko) 광 검출 소자 및 촬상 장치
TW202205847A (zh) 攝像元件及電子機器
CN101150731A (zh) 用于数字成像的彩色滤波阵列及其成像方法
CN104952890A (zh) 具有用以检测红外光的金属网格的彩色图像传感器
JP2006033483A (ja) カラー撮像装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17795356

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17795356

Country of ref document: EP

Kind code of ref document: A1