WO2020015494A1 - 一种数据传输方法、网络设备、通信设备及存储介质 - Google Patents

一种数据传输方法、网络设备、通信设备及存储介质 Download PDF

Info

Publication number
WO2020015494A1
WO2020015494A1 PCT/CN2019/091783 CN2019091783W WO2020015494A1 WO 2020015494 A1 WO2020015494 A1 WO 2020015494A1 CN 2019091783 W CN2019091783 W CN 2019091783W WO 2020015494 A1 WO2020015494 A1 WO 2020015494A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
pattern
time
time units
data
Prior art date
Application number
PCT/CN2019/091783
Other languages
English (en)
French (fr)
Inventor
张锦芳
苏宏家
向铮铮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19838576.7A priority Critical patent/EP3813457A4/en
Publication of WO2020015494A1 publication Critical patent/WO2020015494A1/zh
Priority to US17/152,584 priority patent/US20210144731A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/121Wireless traffic scheduling for groups of terminals or users
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • V2V Vehicle-to-Vehicle
  • V2P Vehicle-to-Pedestrian
  • V2I Vehicle-to-Infrastructure
  • V2N Vehicle-to-Network
  • V2N uses uplink and downlink for communication.
  • V2V, V2P and V2I use the side link for communication.
  • the side link communication is defined based on the direct communication between the communication device and the communication device, and no base station forwarding is required.
  • the communication device when a communication device has data to send, the communication device sends a scheduling request to the network device.
  • the network device receives the scheduling request sent by the communication device, and generates scheduling grant information according to the received scheduling request. After that, the network The device sends scheduling grant information to the communication device.
  • the communication device sends data to be transmitted according to the scheduling grant information, where the scheduling grant information includes time-frequency resources allocated to the communication device.
  • multiple communication devices may send data to one communication device on the same time domain resource, which may cause mutual interference between the data.
  • a communication device that is close to the receiving end interferes strongly with data sent by a communication device that is far away from the receiving end.
  • FIG. 1 Take FIG. 1 as an example.
  • communication device 101, communication device 102, communication device 103, and network device 110 are taken as examples. Among them, communication device 102 is closer to communication device 101, and communication device 103 is farther from communication device 101. .
  • the network device 110 allocates the same time domain resources for the communication device 102 and the communication device 103, and the communication device 102 and the communication device 103 send data on the same time domain resource, the data sent by the communication device 102 may be sent to the communication device 103 The data caused strong interference, which will further reduce the decoding rate of the data sent by the communication device 101 by the communication device 101.
  • an embodiment of the present application provides a data transmission method, including a time window for a network device to determine a target communication device group, wherein the target communication device group includes at least two communication devices, The distance between two communication devices is less than or equal to a threshold, and the time window is used to enable at least two communication devices of the target communication device group to send and receive data in the time window through a side link; the network The device sends first instruction information to at least two communication devices in the target communication device group, where the first instruction information is used to indicate the time window.
  • the network device sends the first pattern to the first communication device, and sends the second pattern to the second communication device.
  • the first communication device sends on the K first time units included in the first pattern.
  • the first data and the second communication device receive the first data on at least one second time unit among the L second time units included in the second pattern, so that the first communication device and the second communication device can communicate with each other.
  • the device achieves the effect of full duplex within a time window.
  • both the first communication device and the second communication device belong to the target communication device group. Therefore, according to the embodiment of the present application, a time window can be implemented, and data sent by any communication device in the target communication device group can be included in the group. Received by other communication devices, that is, in a time window, any communication device can receive data sent by other communication devices in the communication device group.
  • the network device may determine a time window of the target communication device group according to the number of communication devices included in the target communication device group.
  • an embodiment of the present application provides a data transmission method, including a first communication device receiving first instruction information sent by a network device, where the first instruction information is used to indicate a time window, and the time window is the network
  • the device is determined by a target communication device group, where the target communication device group includes at least two communication devices, and a distance between the two communication devices in the target communication device group is less than or equal to a threshold, and the first communication device is Any one of the target communication device groups; the first communication device sends and receives data in the time window.
  • the distance between at least two communication devices in the target communication device group as the communication devices on the receiving end is relatively close. Therefore, data sent by other communication devices in the target communication device group The interference on the data sent by the first communication device is small, and the decoding rate of the data sent by the first communication device can be improved by the communication device on the receiving end.
  • the first communication device receives data in the time window, since the distance between two communication devices in the target communication device group is less than or equal to the distance threshold, the distance of other communication devices in the target communication device group is taken as The distances of the first communication devices at the receiving end are relatively close. In this way, it helps to avoid large differences in the distance between the communication devices that send data in the same time window, which causes the problem of mutual interference between the data sent by the communication devices.
  • the decoding rate of a communication device is relatively close. Therefore, it helps to avoid large differences in the distance between the communication devices that send data in the same time window, which causes the problem of mutual interference between the data sent by the communication devices.
  • the time window includes N time units, and the N time units include K first time units and L second time units, where N is greater than or equal to 2 An integer, the K is an integer greater than or equal to 1, the L is an integer greater than or equal to 1 and less than or equal to (NK), the first indication information includes at least two patterns, and the Each pattern is respectively formed by combining the K first time units and the L second time units, and each of the at least two patterns has K first time units and L second times The unit combination form is different; after the first communication device receives the first pattern sent by the network device, the first communication device sends the first communication pattern on the K first time units included in the first pattern.
  • a piece of data receiving second data on at least one second time unit of the L second time units included in the first pattern, the second data being included in the second pattern by the second communication device Sent on K first time units, the first Both the pattern and the second pattern belong to the at least two patterns, and the second communication device is one of the target communication device group except the first communication device.
  • the first communication device sends the first data on K first time units included in the first pattern of the first communication device, and the second communication device includes in the second pattern of the second communication device.
  • the first data is received on at least one of the L second time units of the second time unit
  • the second communication device sends the second data on the K first time units included in the second pattern
  • the first communication device is on Receiving the second data on at least one second time unit of the L second time units included in the first pattern, so that the first data sent by the first communication device within a time window can be realized by the second
  • the communication device receives, and accordingly, the second data sent by the second communication device within a time window is also received by the first communication device. Further, within a time window, the first communication device and the second communication device can achieve full The effect of duplex.
  • the position of the current first time unit for sending the first data included in the first pattern among the K first time units included in the first pattern is the last position, it is regarded as the The communication device may end the transmission of data within the time window; when it is not the last position, the communication device acting as the receiving end may continue to wait to receive the first data subsequently sent by the first communication device.
  • the first communication device when the combination decoding of the first communication device fails, the first communication device is returned to receive the next first time included in the second pattern by the second communication device.
  • the first communication is based on the position of the current first time unit in the second pattern included in the second pattern indicated in the third instruction information, among the K first time units included in the second pattern.
  • the device can relatively quickly determine whether to wait to receive the second data subsequently sent by the second device or end the data transmission within the time window, thereby saving resources of the first communication device.
  • an embodiment of the present application provides a network device.
  • the network device includes a memory, a transceiver, and a processor.
  • the memory is used to store instructions; the processor is configured to execute the instructions stored in the memory and control the transceiver to receive signals. And a signal sending, when the processor executes the instruction stored in the memory, the network device is configured to execute the first aspect or any one of the methods in the first aspect.
  • an embodiment of the present application provides a communication device.
  • the communication device includes a memory, a transceiver, and a processor.
  • the memory is used to store instructions; the processor is configured to execute the instructions stored in the memory and control the transceiver to receive signals. And a signal sending, when the processor executes the instruction stored in the memory, the communication device is configured to execute the second aspect or any one of the methods in the second aspect.
  • an embodiment of the present application provides a network device for implementing the foregoing first aspect or any one of the methods in the first aspect, including corresponding function modules, which are respectively used to implement the steps in the foregoing methods.
  • the functions may be implemented by hardware, and may also be implemented by hardware executing corresponding software.
  • the hardware or the software includes one or more modules corresponding to the functions described above.
  • the structure of the network device includes a processing unit and a transceiver unit, and these units can perform corresponding functions in the foregoing method examples. For details, refer to the detailed description in the method examples, and details are not described herein.
  • an embodiment of the present application provides a communication device for implementing the second aspect or the method in any one of the second aspects, including corresponding function modules, which are respectively used to implement the steps in the above method.
  • the functions may be implemented by hardware, and may also be implemented by hardware executing corresponding software.
  • the hardware or the software includes one or more modules corresponding to the functions described above.
  • the structure of the communication device includes a processing unit and a transceiver unit, and these units can perform corresponding functions in the foregoing method examples. For details, refer to the detailed description in the method examples, and details are not described herein.
  • an embodiment of the present application provides a computer storage medium.
  • the computer storage medium stores instructions, and when the computer storage medium is run on a computer, the computer executes the method in the first aspect or any possible implementation manner of the first aspect. Or cause the computer to perform the method of the second aspect or any possible implementation of the second aspect.
  • an embodiment of the present application provides a computer program product containing instructions, which when executed on a computer, enables the computer to execute the first aspect or the method in any possible implementation manner of the first aspect, or causes the computer Perform the method of the second aspect or any possible implementation of the second aspect.
  • FIG. 1 is a schematic diagram of a communication system architecture in the prior art
  • FIG. 2 is a schematic diagram of a communication system architecture provided by the present application.
  • FIG. 3 is a schematic flowchart of a data transmission method provided by the present application.
  • FIG. 4 is a schematic structural diagram of a time window provided by the present application.
  • FIG. 5 (a) is a schematic structural diagram of a style provided by the present application.
  • FIG. 6 is a schematic flowchart of another data transmission method provided by the present application.
  • FIG. 8 is a schematic structural diagram of a network device provided by this application.
  • the communication device 201, the communication device 202, the communication device 203, the communication device 204, and the communication device 205 can communicate with each other wirelessly, and mainly use a side link (SL) air interface transmission.
  • SL side link
  • it can be direct communication between V2V, V2P, and V2I in a V2X communication system through a side link, or it can be communication between other devices-to-device (D2D), where the side link is
  • D2D devices-to-device
  • the communication system in the embodiment of the present application may be a universal mobile communication system (universal mobile telecommunications system, UMTS), a long-term evolution (LTE) wireless communication system, or a 5th generation (5G) mobile communication System, etc.
  • UMTS universal mobile telecommunications system
  • LTE long-term evolution
  • 5G 5th generation
  • a network device can be a macro evolved base station (eNB) in UMTS, a macro base station eNB in an LTE wireless communication system, and a base station gNB in a 5G mobile communication system.
  • GNB can be used as a macro station or as a macro station.
  • the networking mode of the network device may be a macro-micro heterogeneous network HetNet, a new type of radio access network (Radio Access Network, C-RAN), or a distributed scenario.
  • C-RAN is a green wireless access network architecture (clean system) based on centralized processing, collaborative radio, and real-time cloud infrastructure.
  • the communication device may be a mobile phone, a tablet computer, a vehicle with a communication function, and a roadside infrastructure with a communication function.
  • the distance between the communication device 201 and the communication device 202, the distance between the communication device 201 and the communication device 203, the distance between the communication device 202 and the communication device 203, and the distance between the communication device 204 and the communication device 205 is less than or equal to the threshold.
  • the distance between the communication device 201 and the communication device 204 and the communication device 205 are greater than the threshold, the distance between the communication device 202 and the communication device 204 and the communication device 205 are greater than the threshold, and the communication device 203 is respectively connected with the communication device 204 and the communication The distances between the devices 205 are also greater than a threshold.
  • the communication device 201, the communication device 202, and the communication device 203 may be in one area, the communication device 204 and the communication device 205 may be in another area, and the distance between the two areas is greater than a threshold.
  • FIG. 3 exemplarily illustrates a schematic flowchart of a data transmission method provided by an embodiment of the present application.
  • the network device may be the network device 210 in FIG. 2 described above, and the target communication device group may be any one of the first communication device group and the second communication device group in FIG. 2.
  • the target communication device group is When the first communication device group in FIG. 2 is described above, at least two communication devices in the target communication device group may be at least two of communication device 201, communication device 202, and communication device 203 in FIG. 2 described above; when the target communication device When the group is the second communication device group in FIG. 2 described above, at least two communication devices in the target communication device group may be the communication device 204 and the communication device 205 in FIG. 2 described above.
  • the method includes:
  • Step S301 The network device determines a time window of the target communication device group.
  • the target communication device group includes at least two communication devices, and the distance between any two communication devices of the at least two communication devices in the target communication device group is less than or equal to a threshold value, where the threshold value can be determined in advance according to Experience value is determined.
  • the time window is used to enable at least two communication devices in the target communication device group to send and receive data within the time window through the side link.
  • the time window may indicate a length of time used to identify a length of time that the network device allocates to the communication device to receive and send data.
  • the time window may also be referred to as a time length or a time domain resource.
  • the time window includes N time units, where N is an integer greater than or equal to 2, and the time unit includes, but is not limited to, a frame, a subframe, a time slot, a mini-slot, or an orthogonal frequency division.
  • Orthogonal frequency division multiplex (OFDM) symbols etc .; among them, there is an association relationship between frames, subframes, time slots, micro time slots, and symbols, for example, in the time slots defined by the 5G new radio interface (NR), If an extended cyclic prefix (ECP) is used, two symbols form a microslot.
  • Two adjacent microslots can include a gap GAP.
  • the size of a GAP can be the length of an OFDM symbol. It is used to convert the transmission and reception functions between two adjacent microslots. Therefore, one slot includes 4 microslots, that is, one slot includes 12 symbols.
  • the time window includes 8 microslots; among them, 4 microslots constitute a time slot, and the interval between two adjacent microslots is a GAP for receiving data and transmitting data conversion; when When GAP is a symbol in FIG. 4, a slot includes 12 symbols, and a time window includes 24 symbols.
  • the GAP duration may be less than one symbol, or it may be directly Save it.
  • Step S302 The network device sends the first instruction information to at least two communication devices in the target communication device group, where the first instruction information is used to indicate the time window. Accordingly, the first communication device receives the first instruction information sent by the network device.
  • the manner in which the network device sends the first indication information to at least two communication devices in the target communication device group may be implemented in the following two ways.
  • the network device when the network device sends scheduling grant information to at least two communication devices in a target communication device group, the first control information is carried in downlink control information (DCI), where the scheduling grant information Including frequency domain resources, modulation and coding modes, etc. allocated to at least two communication devices in the target communication device group.
  • DCI downlink control information
  • the network device may send DCI to the communication device through a new air interface-physical downlink control channel (NR-PDCCH).
  • NR-PDCCH new air interface-physical downlink control channel
  • the network device may carry the first instruction information in radio resource control information (RRC) and directly send to at least two of the target communication device group.
  • RRC radio resource control information
  • the communication device sends the first indication information, wherein the RRC includes control channel information, transmission channel information, protocol stack information, and the like configured for at least two communication devices in the target communication device group.
  • the first indication information may be a new field added to the DCI message or the RRC message, and the field is used to identify the first indication information.
  • the first communication device is a communication device in the target communication device group.
  • the first communication device when the target communication device group is the first communication device group, the first communication device may be one of the communication device 201, the communication device 202, and the communication device 203; when the target communication device group is the second communication device When grouping, the first communication device group is one of the communication device 204 and the communication device 205.
  • Step S303 The first communication device sends and receives data in a time window.
  • the network device sends the first instruction information to at least two communication devices in the target communication device group, and at least two communication devices in the target communication device group pass the side chain.
  • the data is sent and received in the time window indicated by the first instruction information. Because the distance between two communication devices in the target communication device group is less than or equal to the distance threshold, the target communication device group is At least two of the communication devices are relatively close to the communication device at the receiving end. In this way, the communication devices mentioned in the background art that send data in the same time window can be avoided because the distances from the communication devices at the receiving end are greatly different, which causes the data sent by at least two communication devices in the target communication device group to interfere with each other.
  • the problem is that the decoding rate of the data transmitted by at least two communication devices in the target communication device group by the communication device at the receiving end can be improved.
  • the distance between two communication devices in the target communication device group is less than or equal to the threshold, for the first communication device in the target communication device group, the distance between other communication devices in the target communication device group and the first communication device is compared. Therefore, the decoding rate of data transmitted by other communication devices by the first communication device can also be improved.
  • step S301 for the communication device on the receiving end, data sent by multiple communication devices may be received within a time window.
  • the communication device on the receiving end is improved.
  • Decoding rate the network device can group each communication device in advance. The implementation of the present application provides two implementation manners in which a network device determines a communication device group.
  • the network device acquires parameter information, such as location information, of at least two communication devices, and performs grouping based on the location information of the at least two communication devices.
  • the network device 210 obtains the position information of the communication device 201, the communication device 202, the communication device 203, the communication device 204, and the communication device 205, and according to the obtained position information of each communication device, the distance between each communication device is less than
  • the communication devices equal to or equal to the threshold are divided into a group, that is, the network device 210 can determine the communication device 201, the communication device 202, and the communication device 203 as the first communication device group (as shown in FIG.
  • the network device may group the groups according to the current location information of at least two communication devices.
  • the network device in order to make the service delay requirements of the communication devices in the determined communication device group relatively close, so that when the network devices are scheduled together, the business requirements of the communication devices can be met, and the network device can obtain at least two communications.
  • the network device is divided into groups according to the location information of at least two communication devices and the service delay requirements.
  • the network device determines the distance between the communication device 201 and the communication device 202, the distance between the communication device 201 and the communication device 203, and the distance between the communication device 202 and the communication device 203 are less than or equal to Threshold, and when it is determined that the service delay requirements of the communication device 201, the communication device 202, and the communication device 203 are all in the first preset range, the communication device 201, the communication device 202, and the communication device 203 are determined as the first communication device group ( as shown in picture 2).
  • the network device determines that the distance between the communication device 204 and the communication device 205 is less than or equal to a threshold, and the service delay requirements of the communication device 204 and the communication device 205 are in a second preset range, the communication device 204 and the communication device are 205 is determined as the second communication device group (as shown in FIG. 2).
  • the network device determines the distance between the communication device 201 and the communication device 202, the distance between the communication device 201 and the communication device 203, and the distance between the communication device 202 and the communication device 203 are all
  • the service delay requirements of the communication device 201 and the communication device 202 are both less than or equal to the threshold, and the service delay requirements of the communication device 203 are in the third preset range
  • the communication device 201 and the communication device 202 are It is determined as the first communication device group
  • the communication device 203 is determined as the third communication device group. That is, a communication device may belong to two or more different communication device groups.
  • each communication device may periodically report the location information to the network device, and the network device periodically receives the location information reported by each communication device.
  • the network device receives each communication After the location information reported by the device, each communication device can be grouped in advance.
  • the network device may trigger the communication device to send the location information to the network device in a measurement report message, and the network device groups each communication device according to the location information carried in the received measurement report message.
  • the method for the network device to obtain the location information and service delay requirements of at least two communication devices also differs according to different scenarios.
  • the communication equipment can report the location information to the network equipment periodically, and can send the service delay requirements to the network equipment when the service is triggered, for example, on a highway. Vehicles that move and / or make the same V2X service relatively fixed speed.
  • a communication device activates multiple V2X services at the same time, such as a short delay service of 3ms and a long delay service of 100ms, the delay requirements of each scheduled service may be different.
  • the communication device sends the scheduling request to the network device
  • the communication delay request is carried in the scheduling request and sent to the network device.
  • the communication device may send the location information to the network device after receiving the location information carried in the measurement report message sent by the network device. In this way, the accuracy with which the network device determines the communication device group can be improved, and each communication device in the determined communication device group can meet the service requirements as much as possible.
  • the network device may determine a time window of the target communication device group according to the number of communication devices in the target communication device group. Generally, the larger the number of communication devices in the target communication device group, the larger the time window that needs to be configured. In order to make the determined time window meet the service delay requirements of each communication device in the target communication device group as much as possible, the network device may determine the target communication according to the number of communication devices in the target communication device group and the business delay requirements of each communication device. The time window of the device group. In other words, when the number of communication devices in the target communication device group is the same, the time window of the target communication device group configured by each communication device in the communication device group with a small service delay requirement is small, and each communication device in the communication device group is small.
  • the target communication device group with a large service delay requirement has a large time window.
  • the communication device in the communication device group can meet the service requirements of the service.
  • the time window of the communication device that needs to process emergency services is small. It enables communication equipment to quickly send out emergency services.
  • the network device when the location information and / or service delay requirements of the communication devices in the target communication device group are changed, or when the channel state and the interference around the communication device are changed, the network device will be determined.
  • the time windows of at least two communication devices in the target communication device group have changed. Therefore, the time windows of the target communication device group need to be determined again.
  • the network device determines that the location information of the communication device 201 has moved from the first communication device group to the second communication device group, the network device determines the changed communication device 201 as the communication device in the second communication device group. It is also necessary to re-determine the time window of the changed second communication device group and the changed first communication device group.
  • the network device determines the changed communication device as the communication in the second communication device group. The device, and re-determine the time window of the changed second communication device group and the time window of the changed first communication device group.
  • the network device determines that the surrounding interference of the communication device or the channel state satisfies the change from the first communication device group to the second communication device group, the network device determines the changed communication device as the communication device in the second communication device group, and Re-determine the time window of the changed second communication device group and the changed first communication device group.
  • the time window includes N time units, and the N time units include K first time units and L second time units, where N is an integer greater than or equal to 2 and K is greater than Or an integer of 1 and L is an integer of 1 or more and (NK) or less.
  • the number of first time units and the number of second time units included in the N time units may be determined as follows: First time unit and Second time units, that is, K can be determined as L can be determined as Can also be included in N time units Second time unit and First time units, that is, L can be determined as K can be determined as
  • the K first time units and the L second time units may have different arrangements and combinations to form different patterns. That is, the pattern can indicate whether each time unit of the N time units in a time window is used to send or receive data.
  • the time window includes N time units, and the number of patterns that can be formed may be Optionally, when the time window of the target communication device group is determined, the number of patterns that must satisfy the determined time window can be greater than or equal to the number of communication devices in the target communication device group.
  • Any communication device sends the The data can be received by each communication device of the other communication devices in the target communication device group on at least one second time unit of the second time unit of the corresponding pattern.
  • Table 1 exemplarily shows the relationship between the number of time units of a time window and the number of patterns that can be formed according to an embodiment of the present application. As shown in Table 1, when the time window includes two time units, two patterns can be formed; when the time window includes three time units, three patterns can be formed; when the time window includes four time units, it can be formed 6 patterns; can be formed when the time window includes N time units Styles.
  • Table 1 The relationship between the number of time units of the time window and the number of patterns that can be formed
  • the number of patterns may be determined according to the number of time units included in the time window, and the number of time units included in the time window may also be determined according to the frequency domain resources configured by the network device for the communication devices in the target communication device group.
  • the first indication information further includes frequency domain resource information, such as a start position and length of a channel, a start position and length of a subchannel, or a start position of a resource block (RB). And the length, so that the first communication device sends and receives data through the side link according to the time window and the configured frequency domain resources.
  • the manner of indicating the frequency domain resources in the first instruction information to at least two communication devices in the target communication device group may be the same as the time window indication method, for example, by adding a field to the RRC information or the DCI information.
  • the frequency domain resource information indicated in the RRC information is semi-static frequency domain resource information
  • the frequency domain resource information indicated by the DCI information is dynamic frequency domain resource information. If the communication device does not receive the frequency in the DCI scheduling grant information, Domain resource information, you can use the frequency domain resource information indicated by RRC to send data over the side link; if you receive updated frequency domain resource information in the DCI scheduling grant information, you can use the frequency domain resource information indicated by DCI to pass the side chain Way to send data.
  • the corresponding frequency domain resource can also be determined; or in other words, the frequency domain resource configured by the network device for the communication device will affect the determination of the time window. That is, the time window for the network device to determine the target communication device group is also related to the frequency domain resources configured by the network device for the target communication device group.
  • a 20MHz system bandwidth is taken as an example.
  • the network device is configured with 4 RBs, each RB includes 12 subcarriers, and a 15KHz subcarrier interval is taken as an example. A total of 110 in the 20MHz system bandwidth can be used.
  • the network device can determine the target The time window of the communication device group includes 7 time units; if the data size of the communication device requires 2 subchannels to carry, 27 subchannels can carry 13 communication devices to transmit data. According to Table 1, the network device can determine the time of the target communication device group The window includes 6 time units.
  • the network can also determine the number of communication devices that can be scheduled at the same time according to the data size that each communication device needs to transmit, and then determine the number of time units included in the time window of the target communication device group . Further, the network device can also obtain transmission channel state information. The network device can determine the number of communication devices that can be scheduled simultaneously according to the data size and transmission channel information that the communication device needs to transmit, and then determine the time window of the target communication device group.
  • the time window includes three time units, and the number of patterns that can be formed is three.
  • the time window can be formed for 3 time units.
  • the first case That is, a time window including 3 time units includes 1 first time unit and 2 second time units.
  • the three patterns for the first case are satisfied, and the first time unit of any one pattern and the rest At least one second time unit of each of the 2 patterns corresponds.
  • the 3 patterns for the second case are satisfied, and at least one of the 2 first time units in any one pattern is satisfied.
  • One first time unit corresponds to one second time unit of each of the remaining two patterns.
  • the first time unit may be represented by 1
  • the second time unit may be represented by 0
  • the patterns formed by the first case may be represented as 100, 010, and 001.
  • the pattern for the second case can be expressed as 110, 101, and 011. That is, when the number of time units N included in the time window is odd, the patterns that can be formed include two cases.
  • the pattern allocated to at least two communication devices in the target communication device group is where The pattern formed in either case.
  • Table 2 exemplarily shows a pattern that can be formed when a time window includes eight time units provided in the embodiments of the present application.
  • a time window including 8 time units includes 4 first time units and 4 second time units.
  • the first time unit is represented by 1 and the second time unit is represented by 0.
  • the time window includes 8 time units, a total of 70 styles can be formed, and the 70 styles are satisfied. At least one of the 4 first time units of any one style and each of the remaining 69 styles At least one second time unit of each pattern corresponds.
  • one time window corresponds to one style sheet.
  • N style sheets can be formed.
  • the network device can add an index number to each style, and each index number can uniquely determine a style.
  • the index number may be increased before each style in each style sheet.
  • the form of the index number may be: Nm, where N represents the style sheet corresponding to the time unit included in the time window, and m represents the m-th style in the style sheet corresponding to the time window, for example, 8- 8 in 1 indicates that the time window includes a style sheet corresponding to 8 time units, and 1 indicates the first style in the style sheet corresponding to 8 time units; that is, the index number 8-1 indicates that the time window includes 8
  • an index number 8-1 can be added before 11110000 in Table 2, so as to indicate the style 11110000 with the index number 8-1.
  • FIG. 5 (a), FIG. 5 (b), and FIG. 5 (c) exemplarily show three schematic diagrams of three different styles provided by the embodiments of the present application.
  • the shaded represents the first time unit, and the first time unit is used to send data; the unshaded represents the second time unit, and the second time unit is For receiving data.
  • the pattern shown in Figure 5 (a) can be illustrated by 11110000.
  • the four first time units are before the two second time units, that is, the first four first time units are used to send data and the last four second time units. Units are used to receive data.
  • the pattern shown in Figure 5 (b) can be illustrated by 10101100.
  • the first position, the third position, the fifth position, and the sixth position are all the first time unit, and the second position, the fourth position, and the The seven positions and the eighth position are the second time unit, that is, the first time unit at the first, third, fifth, and sixth positions in the style shown in FIG. 5 (b) is used for Send data, and the second time unit at the second, fourth, seventh, and eighth positions is used to receive data.
  • the pattern shown in Figure 5 (c) can be illustrated by 01110010.
  • the first, fifth, sixth, and eighth positions are all second time units, and the second, third, fourth, and seventh positions are located. Are the first time unit; that is, the first time unit of the pattern shown in FIG. 5 (c) at the second, third, fourth, and seventh positions is used to send data.
  • the second time unit at the fifth, sixth and eighth positions is used to receive data.
  • An embodiment of the present application provides an implementation manner in which a network device determines a style of at least two communication devices in a target communication device group.
  • the network device may determine the positions of the K first time units of the at least two communication devices according to the service delay requirements of the at least two communication devices of the target communication device group;
  • the position of the first time unit included in the style corresponding to the small communication device in the style is higher than the position of the first time unit included in the style corresponding to the larger communication device delay.
  • the target communication device group takes the first communication device group in FIG. 2 as an example.
  • the network device determines the relationship between the service delay requirements of the communication device 201, the communication device 202, and the communication device 203 in the target communication device group: the service delay of the communication device 201 is less than the service delay of the communication device 202 and the service of the communication device 202 The delay is less than the service delay of the communication device 203, so in Fig. 5 (a), Fig. 5 (b) and Fig. 5 (c), the first one of the patterns shown in Fig. 5 (a) and Fig.
  • the first time unit is located at the first position, and the first first time unit of the pattern shown in FIG. 5 (c) is located at the second position. Therefore, the pattern of the pattern shown in FIGS. 5 (a) and 5 (b) The first first time unit is located before the first time unit in the pattern shown in FIG. 5 (c). Further, the second first time unit of the pattern shown in FIG. 5 (a) is in the second position, and the second second time unit shown in FIG. 5 (b) is in the third position, FIG. 5 (a) The second first time unit of the pattern shown is located before the second first time unit of the pattern shown in FIG. 5 (b). Therefore, the style shown in FIG. 5 (a) can be determined as the style of the communication device 201, the style shown in FIG.
  • FIG. 5 (b) can be determined as the style of the communication device 202, and the style shown in FIG. 5 (c) can be determined It is the style of the communication device 203. It can be determined from FIG. 5 (a), FIG. 5 (b), and FIG. 5 (c) that, in the first position of the time window, the communication device 201 and the communication device 202 are used to send data, and the communication device 203 is used to receive data At this time, the communication device 203 can receive the data sent by the communication device 201 and the communication device 202, but the communication device 201 and the communication device 202 work in a half-duplex mode (that is, they cannot receive data when sending data, You cannot send data when you are sending data), and you cannot receive data from each other.
  • a half-duplex mode that is, they cannot receive data when sending data, You cannot send data when you are sending data
  • the communication device 201 and the communication device 203 are used to send data, and the communication device 202 is used to receive data. At this time, the communication device 202 can receive the data sent by the communication device 201.
  • the communication device 201 and the communication device 203 are used to receive data, and the communication device 202 is used to send data. At this time, the communication device 201 can receive the data sent by the communication device 202. Therefore, within a time window, the communication device 202, the communication device 202, and the communication device 203 can each receive data sent from each other. In this way, within a time window, each communication device in the target communication device group achieves the effect of full duplex.
  • the communication devices in the target communication device group can receive data sent by other communication devices in the target communication device group multiple times, thereby improving the decoding rate of the communication devices in the target communication device group.
  • the communication device 201 may receive the data sent by the communication device 202 twice in the second time unit of the fifth position and the sixth position; the communication device 202 may be in the second position and the second position of the fourth position.
  • the data sent by the communication device 201 is received twice in the time unit; the communication device 203 can receive the data sent by the communication device 202 three times at the first position, the fifth position, and the sixth position. Therefore, the communication device 201 passes Receiving the data sent by the communication device 202 twice can improve the decoding rate of the data sent by the communication device 202.
  • the communication device 202 can improve the decoding rate of the data sent by the communication device 201 by receiving the data sent by the communication device 201 twice. By receiving the data sent by the communication device 202 three times by the communication device 203, the decoding rate of the data sent by the communication device 202 can be improved.
  • the network device after the network device determines a style of each communication device of at least two communication devices in the target communication device group, the network device sends first instruction information to at least two communication devices in the target communication device group.
  • the instruction information includes at least two styles, and each of the at least two styles is respectively formed by combining the K first time units and the L second time units, and the at least two styles The combination form of the K first time units and the L second time units of each pattern in the pattern is different.
  • the network device sends a first pattern to a first communication device and a second pattern to a second communication device, and the first pattern is used to indicate that the first communication device is in
  • the first data is sent on the K first time units included in the first pattern
  • the second pattern is used to instruct the second communication device in the L second time units included in the second pattern.
  • Receiving the first data at at least one second time unit, the first pattern and the second pattern both belong to the at least two patterns, and the first communication device and the second communication device both Belongs to the target communication device group.
  • the network device sends the first instruction information to at least two communication devices in the target communication device group, and the first instruction information includes a pattern of at least two communication devices in the target communication device group, and corresponds to the pattern. Identification of the communication device, so that each communication device in the target communication device group determines a corresponding corresponding style.
  • the network device may store a relationship table (as shown in Table 1) between the amount of time unit data and the number of patterns that can be formed in advance, and each time window in Table 1 may be formed.
  • Table 1 For a style sheet, one time window can correspond to one formable style sheet, and Table 2 is one of them.
  • the styles of the communication devices are carried in the DCI message or RRC message and sent to the communication device; or, the same as the network device may be stored in the communication device
  • the pre-stored table can be implemented through pre-configuration, or when the communication device accesses the network, the network device broadcasts two types of tables stored locally, and the communication device broadcasts the two types of tables broadcast by the network device. It can be implemented by storing locally, or it can be a rule that the network device broadcasts and generates two types of tables. The two types of tables generated by the communication device according to the two types of table generation rules are stored locally and implemented.
  • the present invention implements Examples are not limited here.
  • the network device may carry the index number corresponding to the style of the communication device to the DCI message or RRC message and send it to the communication device.
  • the network device sends
  • the index number carried in the DCI message or RRC message sent by the device is Nm
  • the communication device can determine, according to Nm, that it is the m-th style in the style sheet corresponding to the time window including N time units.
  • the communication device can determine that it is the first style in the style sheet corresponding to the time window including 8 time units according to 8-1. Therefore, the communication device can determine
  • the output is the pattern 11110000 in Table 2 above.
  • the communication device may uniquely determine a pattern according to the index number of the pattern.
  • two types of tables are stored in the communication device, and a corresponding time window and a style sheet that can be formed by the time window can be determined according to the index number.
  • the network device may indicate the patterns of the communication devices in the target communication device group to the corresponding communication device multiple times. That is, for the data to be sent by a communication device, including N time units within a time window, and the N time units include K first time units and L second time units, the network device can The communication device schedules K times, that is, instructs K times to send data using K time units. When the communication device does not receive an instruction to send data, the communication device is used to receive data in K time units.
  • the network device needs to carry an indication information in the DCI message to indicate that among the K first times, the first first time unit is a time unit for transmitting data, and the remaining (K-1) time units are duplicated. Time unit of the transmitted data on the first first time unit. This is because when the communication device receives the DCI message, it cannot determine the time unit for new or retransmitted data in the time window. Therefore, the DCI needs to indicate the time unit for new data transmission or retransmission data transmission. So that the communication device can clearly know which time units are used to transmit new data and which time units to retransmit data.
  • FIG. 6 illustrates a schematic flowchart of another data transmission method according to an embodiment of the present application.
  • the target communication device group is the first communication device group in FIG. 2 described above
  • the first communication device and the second communication device are two of the communication device 201, the communication device 202, and the communication device 203.
  • the first communication device and the second communication device are the communication device 204 and the communication device 205 of the second communication device group.
  • each communication device in the second communication device group is listening and receiving data sent by other communication device groups.
  • each communication device in the first communication device group is listening and receiving data sent by other communication device groups.
  • the method includes:
  • Step S601 The first communication device sends the first data and / or the second indication information on the K first time units included in the first pattern of the first communication device.
  • the second indication information is used to indicate that the current first time unit included in the first pattern that sends the first data is among the K first time units included in the first pattern. position.
  • the first communication device receives, on a physical downlink control channel (PDCCH), the network device's scheduling grant information for the first communication device to send and receive data on the side link. After that, the first communication device generates scheduling assignment (scheduling assignment) information according to the scheduling grant information.
  • the second indication information may be a new field in the SA, and the added field may indicate that the current first time unit for sending the first data is in the first pattern.
  • a possible implementation manner of the positions in the K first time units included is to indicate whether the current first time unit sending the first data is the first time unit in the last position of the K first time units. It can be indicated by 1 bit. For example, 1 indicates that it is the non-last first time unit in the pattern, and 0 indicates that it is the last first time unit in the pattern.
  • the first communication device may send the second instruction information together when sending the first data.
  • the first communication device repeatedly sends the same first in each of the K first time units included in the first pattern.
  • Data wherein the same first data may be the same encoded data, or may be different encoded versions of the same data independently decoded.
  • Step S602 The second communication device sends the second data and / or the third indication information on the K first time units included in the second pattern of the second communication device.
  • the third indication information is used to indicate a position of the current first time unit included in the second pattern that sends the second data among the K first time units included in the second pattern, and the third
  • the indication information may also be a newly added field in the SA, and the manner of adding may be the same as the manner of adding the second indication information, and details are not described herein again.
  • the second communication device on the side link, repeatedly sends the same second data in each of the K first time units included in the second pattern.
  • the same second data may be the same encoded data, or may be different encoded versions of the same data that are independently decoded.
  • step S601 and S602 are not sequential. Whether to perform step S601 or step S602 first is determined according to the styles of the first communication device and the second communication device.
  • the positions of the K first time units in the first pattern are determined according to the service delay requirements of the first communication device; the positions of the K first time units in the second pattern are according to the The service delay requirement of the second communication device is determined; wherein, for at least two communication devices in the target communication device group, the first time unit included in the pattern corresponding to the communication device with a small service delay is located in the service delay.
  • step S601 is performed before the position of the first time unit in the first pattern corresponding to the first communication device is before the position of the first time unit in the second pattern corresponding to the second communication device, step S601 is performed first. Otherwise, step S602 is performed first.
  • Step S603 The second communication device receives the first data and / or the second instruction sent by the first communication device on at least one second time unit of the L second time units included in the second pattern of the second communication device. .
  • Step S604 The first communication device receives the second data and / or the third sent by the second communication device on at least one second time unit of the L second time units included in the first pattern of the first communication device. Instructions.
  • the second communication device processes the received first data and / or the second indication information in the same manner as the first communication device processes the received second data and / or the third indication information.
  • the following steps S603 to S608 are exemplarily described by using the first communication device as an example.
  • step S603 and S604 are not sequential. Whether to execute step S603 or step S604 first is determined according to the style of the first communication device and the second communication device. After the positions of the K first time units included in the first pattern of the first communication device are determined, the positions of the L second time units included in the first pattern of the first communication device can be determined; After the positions of the K first time units included in the second pattern of the second communication device are determined, the positions of the L second time units included in the second pattern of the second communication device can be determined. When the position of the second time unit in the first pattern corresponding to the first communication device is before the position of the second time unit in the second pattern corresponding to the second communication device, step S604 is performed first. Otherwise, step S603 is executed first.
  • step S605 the first communication device decodes the received second data and determines whether the decoding is successful; when the decoding fails, step S606 is performed; when the decoding is successful, step S609 is performed.
  • the second data received on the second time unit after the current second time unit included in the first pattern is ignored;
  • the current second time unit is a second time unit included in the first pattern corresponding to the second data used for sending the decoding success.
  • Step S606 The first communication device determines, according to the second instruction information, whether the positions of the current first time units included in the second pattern indicated by the third instruction information are the K first elements included in the second pattern. The last one in the time unit; if not, step S607 is performed; if yes, step S610 is performed.
  • the first communication device may determine the position of the current first time unit included in the second pattern indicated by the third instruction information according to a newly added field in the SA sent by the second communication device. Whether it is the last one of the K first time units included in the second pattern, for example, if the newly added field is 1, it indicates the last first time unit that is not the first pattern; if it is 0, then Representation is the last first time unit in the first pattern.
  • Step S607 The first communication device receives the second data sent by the second communication device on a subsequent first time unit included in the second pattern.
  • the latter first time unit is the K first time units included in the second pattern that are located after the current first time unit included in the second pattern indicated by the third instruction information. A first time unit.
  • Step S608 the first communication device combines and decodes the second data received twice and determines whether the combined decoding is successful; when the combined decoding fails, steps S606 to S607 are repeatedly performed, or until the decoding is successful Or determining that the position of the current first time unit included in the second pattern for sending the second data is the last one of the K first time units included in the second pattern; When the code is successful, step S609 is performed.
  • the first communication device may improve the success rate of decoding the second data by combining and decoding the second data received twice.
  • Step S609 The first communication device transmits the decoded data to a layer two and above for processing.
  • step S610 the process ends.
  • FIG. 7 exemplarily illustrates a schematic structural diagram of a network device provided in the present application.
  • the network device 700 includes one or more remote radio units (English: remote unit, abbreviated as RRU) 701 and One or more baseband units (English: baseband unit, BBU for short) 702.
  • the RRU 701 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., and may include at least one antenna 7011 and a radio frequency unit 7012.
  • the RRU701 part is mainly used for transmitting and receiving radio frequency signals and converting radio frequency signals and baseband signals.
  • the part of the BBU702 may be called a processing unit, a processor, etc., and is mainly used for baseband processing, such as channel coding, multiplexing, modulation, spreading, etc., and is also used for controlling network equipment.
  • the RRU701 and the BBU702 may be physically located together or physically separated, that is, a distributed network device.
  • the network device 700 in this example may be the network device 210 in FIG. 2 described above, and may execute a solution corresponding to the network device in FIG. 3 described above.
  • the BBU702 is a control center of a network device, and may also be referred to as a processing unit, which is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, spread spectrum, and so on.
  • the BBU702 may be composed of one or more boards, and multiple boards may jointly support a single access system wireless access network (such as an LTE network), or may separately support wireless systems of different access systems. Access Network.
  • the BBU 702 further includes a memory 7021 and a processor 7022.
  • the memory 7021 is configured to store necessary instructions and data.
  • the processor 7022 is configured to control a network device to perform necessary actions, for example, to control the network device to execute a method performed by the network device in any of the foregoing embodiments.
  • the memory 7021 and the processor 7022 may serve one or more single boards. That is, the memory and processor can be set separately on each board. It may also be that multiple boards share the same memory and processor.
  • the necessary circuits are provided on each board.
  • the uplink signal (including data, etc.) sent by the communication device is received through the antenna 7011, and on the downlink, the downlink signal (including data and // Or control information), in the processor 7022, the service data and signaling messages are processed, and these units are based on radio access technologies (e.g., access technologies of LTE, NR, and other evolved systems) adopted by the radio access network ) For processing.
  • the processor 7022 is further configured to control and manage actions of the network device, and is configured to execute processing performed by the network device in the foregoing embodiment.
  • the processor 7022 is further configured to support the network device to execute the method performed by the network device in FIG. 3.
  • FIG. 7 only shows a simplified design of the network device.
  • the network device may include any number of antennas, memories, processors, radio frequency units, RRUs, BBUs, etc., and all network devices that can implement this application are within the protection scope of this application.
  • the processor 7022 in the network device 700 may be used to read computer instructions in the memory 7021 to execute determining a target communication device.
  • An indication information, the first indication information is used to indicate the time window.
  • the processor 7022 may also implement any detailed functions of the network device in the method embodiment shown in FIG. 3, which is not described in detail here, and may refer to the processing steps performed by the network device in the method embodiment shown in FIG. 3 above.
  • FIG. 8 exemplarily shows a schematic structural diagram of a network device provided in the present application.
  • the network device 800 includes a transceiver unit 801 and a determination unit 802.
  • the network device in this example may be the network device 210 in FIG. 2 described above, and may execute a solution corresponding to the network device in FIG. 3 described above.
  • each unit of the above network equipment is only a division of logical functions. In actual implementation, it may be fully or partially integrated into a physical entity, or it may be physically separated.
  • the determination unit 802 related to FIG. 8 may be implemented by the BBU 702 of FIG. 7 described above, and the transceiver unit 801 of FIG. 8 may be implemented by the RRU 701 of FIG. 7 described above. That is, in the embodiment of the present application, the determining unit 802 may execute the solution executed by the BBU 702 in FIG. 7 described above, and the transceiver unit 801 may execute the solution executed by the RRU 701 in FIG. 7 described above. To repeat.
  • FIG. 9 exemplarily shows a schematic structural diagram of a communication device provided in the present application.
  • the communication device 900 includes a processor, a memory, a control circuit, and an antenna.
  • the processor is mainly used to process the communication protocol and communication data, and control the entire communication device, execute a software program, and process the data of the software program, for example, to support the communication device 900 to execute the communication device 900 in any of the foregoing embodiments.
  • the memory is mainly used for storing software programs and data.
  • the control circuit is mainly used for conversion of baseband signals and radio frequency signals and processing of radio frequency signals.
  • the control circuit and the antenna together can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit. After the radio frequency circuit processes the baseband signal, the radio frequency signal is sent out as an electromagnetic wave through the antenna.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor.
  • the processor converts the baseband signal into data and processes the data. .
  • FIG. 9 shows only one memory and a processor. In an actual communication device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, which is not limited in this application.
  • the processor may include a baseband processor and a central processor.
  • the baseband processor is mainly used to process communication protocols and communication data
  • the central processor is mainly used to control the entire communication device 900. Execute the software program and process the data of the software program.
  • the processor in FIG. 9 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors, which are interconnected through technologies such as a bus.
  • the communication device may include multiple baseband processors to adapt to different network standards
  • the communication device 900 may include multiple central processors to enhance its processing capabilities
  • various components of the communication device 900 may pass various buses. connection.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit may also be expressed as a central processing circuit or a central processing chip.
  • the function of processing communication protocols and communication data may be built in the processor or stored in the storage unit in the form of a software program, and the processor executes the software program to implement the baseband processing function.
  • the antenna and the control circuit having a transmitting and receiving function may be regarded as the transmitting and receiving unit 901 of the communication device 900, and the processor having the processing function may be regarded as the processing unit 902 of the communication device 900.
  • the transmitting and receiving unit 901 may also be referred to as a transceiver, a transceiver, a transmitting and receiving device, and the like.
  • the device used to implement the receiving function in the transceiver unit 901 may be regarded as a receiving unit
  • the device used to implement the transmitting function in the transceiver unit 901 may be regarded as a transmitting unit, that is, the transceiver unit 901 includes an example of a receiving unit and a transmitting unit.
  • the receiving unit may also be called a receiver, a receiver, a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit.
  • the processor On the downlink, receive the downlink signal (including data and / or control information) sent by the network device through the antenna, and on the uplink, send the uplink signal (including data and / or control) to the network device through the antenna Information).
  • service data and signaling messages are processed. These units process according to the radio access technology (such as LTE, NR, and other evolved system access technologies) used by the radio access network.
  • the processor is further configured to control and manage the actions of the communication device, and is configured to execute the processing performed by the communication device in the foregoing embodiment.
  • the processor is further configured to support the communication device to execute the execution method related to the communication device in FIG. 9.
  • FIG. 9 only shows a simplified design of the communication device.
  • the communication device may include any number of antennas, memories, processors, and the like, and all communication devices that can implement this application are within the protection scope of this application.
  • the transceiver in the communication device 900 is configured to receive first instruction information sent by a network device, where the first instruction information is used to indicate A time window determined by the network device for a target communication device group, the target communication device group including at least two communication devices, and a distance between two communication devices in the target communication device group being less than Or equal to a threshold, the first communication device is any one of the target communication device groups; a processor is configured to analyze the first instruction information received by the transceiver to determine the time window; the transceiver, It is also used to send and receive data during the time window.
  • the processor may also implement any detailed functions of the communication device in the method embodiment shown in FIG. 6, which is not described in detail here, and may refer to the processing steps performed by the communication device in the method embodiment shown in FIG. 6.
  • FIG. 10 exemplarily illustrates a schematic structural diagram of a communication device provided in the present application.
  • the communication device 1000 includes a processing unit 1001 and a transceiver unit 1002.
  • the communication device in this example may be the first communication device or the second communication device in the foregoing content, and may execute the solution corresponding to the first communication device in FIG. 3 described above, or may execute the first communication device or the first communication device in FIG. 6 described above.
  • the two communication devices execute the corresponding solutions.
  • the communication device may be any one of the communication device 201, the communication device 202, the communication device 203, the communication device 204, and the communication device 205 in FIG. 2 described above.
  • each unit of the above communication device is only a division of logical functions. In actual implementation, it may be fully or partially integrated into a physical entity, or it may be physically separated.
  • the processing unit 1001 related to FIG. 10 may be implemented by the processing unit 902 of FIG. 9 described above, and the transceiver unit 1002 in FIG. 10 may be implemented by the transceiver unit 901 of FIG. 9 described above. That is, in the embodiment of the present application, the processing unit 1001 may execute the solution executed by the processing unit 902 of FIG. 9 described above, and the transceiver unit 1002 may execute the solution executed by the transmission and reception unit 901 of FIG. 9 described above. I will not repeat them here.
  • all or part may be implemented by software, hardware, or a combination thereof.
  • a software program When implemented using a software program, it may be all or partly implemented in the form of a computer program product.
  • a computer program product includes one or more instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the instructions may be stored on a computer storage medium or transmitted from one computer storage medium to another computer storage medium.
  • the instructions may be wired (e.g., coaxial cable, fiber optic, twisted pair, etc.) from a website site, computer, server, or data center.
  • the computer storage medium may be any medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes one or more media integrations.
  • the medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape, a magneto-optical disk (MO), etc.), an optical medium (for example, an optical disk), or a semiconductor medium (for example, ROM, EPROM, EEPROM, solid state disk (SSD)) )Wait.
  • Embodiments of the present application are described with reference to flowcharts and / or block diagrams of methods, devices (systems), and computer program products according to the embodiments of the present application. It should be understood that each process and / or block in the flowcharts and / or block diagrams, and combinations of processes and / or blocks in the flowcharts and / or block diagrams can be implemented by instructions. These instructions may be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine such that instructions executed by the processor of a computer or other programmable data processing device are generated for implementation Means of the function specified in one block or blocks of the flowchart or block and block diagrams.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing device to work in a particular manner such that the instructions stored in the computer-readable memory produce a manufactured article including an instruction device, the instructions
  • the device implements the functions specified in one or more flowcharts and / or one or more blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种数据传输方法、网络设备、通信设备及存储介质,其中方法包括网络设备确定目标通信设备组的时间窗,目标通信设备组中两个通信设备之间的距离小于或等于阈值,时间窗用于使目标通信设备组的至少两个通信设备通过侧行链路在时间窗发送和接收数据,网络设备向目标通信设备组的至少两个通信设备发送指示时间窗的第一指示信息。由于目标通信设备组中两个通信设备之间距离小于或等于距离阈值,对于作为接收端的通信设备,目标通信设备组中至少两个通信设备距离接收端的距离比较接近,可避免在相同时间窗发送数据的通信设备因距离接收端距离相差较大造成通信设备发送的数据之间相互干扰,可以提高接收端的通信设备的译码率。

Description

一种数据传输方法、网络设备、通信设备及存储介质
本申请要求在2018年07月18日提交中国专利局、申请号为201810792771.7、发明名称为“一种数据传输方法、网络设备、通信设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种数据传输方法、网络设备、通信设备及存储介质。
背景技术
随着通信技术的发展,在第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)中提出了基于蜂窝网络的车联网技术。车联网技术提供了车到车(Vehicle to Vehicle,V2V)、车到人(Vehicle to Pedestrian,V2P)、车到基础设施(Vehicle to Infrastructure,V2I)和车到网络(Vehicle to Network,V2N)的智能交通业务。其中,V2N使用的是上下行链路进行通信。V2V、V2P和V2I使用的是侧行链路进行通信,侧行链路通信是基于通信设备和通信设备之间直接通信定义的,不需要基站转发。
现有技术中,当通信设备有需要发送的数据时,通信设备会向网络设备发送调度请求,网络设备接收通信设备发送的调度请求,并根据接收到的调度请求生成调度授予信息,之后,网络设备向通信设备发送调度授予信息。通信设备根据调度授予信息发送需要发送的数据;其中,调度授予信息包括分配给通信设备的时频资源。
当网络设备给多个通信设备分配的时域资源相同时,会出现有多个通信设备在相同的时域资源上向一个通信设备发送数据,进而可能会造成数据之间的相互干扰。特别是,距离接收端近的通信设备对距离接收端远的通信设备发送的数据的干扰较强。以图1为例说明,图1中以通信设备101、通信设备102、通信设备103和网络设备110为例;其中,通信设备102距离通信设备101较近,通信设备103距离通信设备101较远。当网络设备110为通信设备102和通信设备103分配的时域资源相同、通信设备102和通信设备103在相同的时域资源上发送数据时,通信设备102发送的数据可能会对通信设备103发送的数据造成较强的干扰,进而会降低通信设备101对通信设备103发送的数据的译码率。
发明内容
本申请实施例提供一种数据传输方法、网络设备、通信设备及存储介质,用于在多个通信设备向一个通信设备发送数据时,减小多个通信设备发送的数据之间的相互干扰。
第一方面,本申请实施例提供一种数据传输方法,包括网络设备确定目标通信设备组的时间窗,其中,所述目标通信设备组包括至少两个通信设备,所述目标通信设备组中的两个通信设备之间的距离小于或等于阈值,所述时间窗用于使所述目标通信设备组的至少两个通信设备通过侧行链路在所述时间窗发送和接收数据;所述网络设备向所述目标通信设备组的至少两个通信设备发送第一指示信息,所述第一指示信息用于指示所述时间窗。
本申请实施例中,目标通信设备组中的两个通信设备之间的距离小于或等于距离阈值, 因此,对于接收端的通信设备来说,目标通信设备组中的至少两个通信设备距离接收端的通信设备的距离比较接近。如此,可以避免背景技术中提到的在相同时间窗发送数据的通信设备因距离作为接收端的通信设备的距离相差较大,造成目标通信设备组中至少两个通信设备发送的数据之间相互干扰的问题,可以提高作为接收端的通信设备对目标通信设备组中至少两个通信设备发送的数据的译码率。
一种可能地实现方式中,所述时间窗包括N个时间单元,所述N个时间单元包括K个第一时间单元和L个第二时间单元,其中,所述N为大于或等于2的整数,所述K为大于或等于1的整数,所述L为大于或等于1且小于等于(N-K)的整数,所述第一指示信息包括至少两个样式,所述至少两个样式中的每个样式分别由所述K个第一时间单元和所述L个第二时间单元组合形成、且所述至少两个样式中的每个样式的K个第一时间单元和L个第二时间单元组合形式不一样;所述网络设备向第一通信设备发送第一样式,向第二通信设备发送第二样式,所述第一样式用于指示所述第一通信设备在所述第一样式中包括的K个第一时间单元上发送第一数据,所述第二样式用于指示所述第二通信设备在所述第二样式中包括的L个第二时间单元中的至少一个第二时间单元上接收所述第一数据,所述第一样式和所述第二样式均属于所述至少两个样式,所述第一通信设备和所述第二通信设备均属于所述目标通信设备组。
本申请实施例中,网络设备通过向第一通信设备发送第一样式,向第二通信设备发送第二样式,第一通信设备在第一样式中包括的K个第一时间单元上发送第一数据,第二通信设备在所述第二样式中包括的L个第二时间单元中的至少一个第二时间单元上接收所述第一数据,进而可使得第一通信设备和第二通信设备在一个时间窗内实现全双工的效果。进一步,第一通信设备和第二通信设备均属于目标通信设备组,因此,通过本申请实施例可以实现在一个时间窗,目标通信设备组中的任一通信设备发送的数据均可被组内的其它通信设备接收到,即在一个时间窗,任一通信设备均能接收到通信设备组中其它通信设备发送的数据。
一种可能的实施方式中,所述网络设备可以根据所述至少两个通信设备的参数信息确定所述目标通信设备组,其中,所述参数信息可以但不限于包括所述至少两个通信设备的位置信息。
一种可能的实施方式中,所述网络设备可以根据所述目标通信设备组中包括的通信设备的数量确定所述目标通信设备组的时间窗。
一种可能的实施方式中,为了使得确定出的通信设备的样式可以满足通信设备的业务需求,所述第一样式中的K个第一时间单元的位置可以是根据所述第一通信设备的业务延时需求确定的;所述第二样式中的K个第一时间单元的位置可以是根据所述第二通信设备的业务延时需求确定的;其中,针对所述目标通信设备组中的至少两个通信设备,业务延时小的通信设备对应的样式中包括的第一时间单元位于业务延时大的通信设备对应的样式中包括的第一时间单元之前。如此,可以使得业务延时小的通信设备可以较快的将待发送的数据发送出去,以满足通信设备对不同的业务的处理需求。
第二方面,本申请实施例提供一种数据传输方法,包括第一通信设备接收网络设备发送的第一指示信息,所述第一指示信息用于指示时间窗,所述时间窗为所述网络设备为目标通信设备组确定的,所述目标通信设备组包括至少两个通信设备,所述目标通信设备组中的两个通信设备之间的距离小于或等于阈值,所述第一通信设备为所述目标通信设备组 中任一个;所述第一通信设备在所述时间窗发送和接收数据。
本申请实施例中,对于同一个接收端的通信设备,目标通信设备组中的至少两个通信设备距离作为接收端的通信设备的距离比较接近,因此,目标通信设备组中的其它通信设备发送的数据对第一通信设备发送的数据干扰较小,进而可以提高接收端的通信设备对第一通信设备发送的数据的译码率。而且,当第一通信设备在所述时间窗接收数据时,由于目标通信设备组中的两个通信设备之间的距离小于或等于距离阈值,因此,目标通信设备组中的其他通信设备距离作为接收端的第一通信设备的距离都比较接近,如此,有助于避免在相同时间窗发送数据的通信设备距离相差较大,造成通信设备发送的数据之间相互干扰的问题,进而,可提高第一通信设备的译码率。
一种可能地实现方式中,所述时间窗包括N个时间单元,所述N个时间单元包括K个第一时间单元和L个第二时间单元,其中,所述N为大于或等于2的整数,所述K为大于或等于1的整数,所述L为大于或等于1且小于等于(N-K)的整数,所述第一指示信息包括至少两个样式,所述至少两个样式中的每个样式分别由所述K个第一时间单元和所述L个第二时间单元组合形成、且所述至少两个样式中的每个样式的K个第一时间单元和L个第二时间单元组合形式不一样;所述第一通信设备接收所述网络设备发送的第一样式之后,所述第一通信设备在所述第一样式中包括的K个第一时间单元上发送第一数据、在所述第一样式中包括的L个第二时间单元中的至少一个第二时间单元上接收第二数据,所述第二数据为第二通信设备在第二样式中包括的K个第一时间单元上发送的,所述第一样式和所述第二样式均属于所述至少两个样式,所述第二通信设备为所述目标通信设备组中除所述第一通信设备外的一个。
本申请实施例中,第一通信设备在第一通信设备的第一样式中包括的K个第一时间单元上发送第一数据,第二通信设备在第二通信设备的第二样式中包括的L个第二时间单元中的至少一个第二时间单元上接收到第一数据,第二通信设备在第二样式中包括的K个第一时间单元上发送第二数据,第一通信设备在所述第一样式中包括的L个第二时间单元中的至少一个第二时间单元上接收第二数据,如此,可以实现在一个时间窗内第一通信设备发送的第一数据被第二通信设备接收到,相应地,在一个时间窗内第二通信设备发送的第二数据也被第一通信设备接收到,进而,在一个时间窗内第一通信设备和第二通信设备可实现全双工的效果。
一种可能的实施方式中,为了便于接收端的通信设备(比如第二通信设备)确定在一个时间窗内是要继续等待接收第一数据还是结束在该时间窗内的数据接收,所述第一通信设备可以在所述第一样式中包括的K个第一时间单元上发送第二指示信息,所述第二指示信息用于指示所述第一样式中包括的发送所述第一数据的当前第一时间单元在所述第一样式中包括的K个第一时间单元中的位置。可选地,当第一样式中包括的发送第一数据的当前第一时间单元在所述第一样式中包括的K个第一时间单元中的位置为最后一个位置,则作为接收端的通信设备可以结束该时间窗内数据的传输;当不是最后一个位置,则作为接收端的通信设备可以继续等待接收第一通信设备后续发送的第一数据。
一种可能的实施方式中,所述第一通信设备接收第三指示信息,所述第三指示信息用于指示所述第二样式中包括的发送所述第二数据的当前第一时间单元在所述第二样式中包括的K个第一时间单元中的位置;当所述第一通信设备对所述第二数据译码失败、且确定所述第三指示信息指示的所述第二样式中包括的当前第一时间单元的位置不是所述第 二样式中包括的K个第一时间单元中的最后一个时,所述第一通信设备接收所述第二通信设备在所述第二样式的后一个第一时间单元上发送的所述第二数据;所述后一个第一时间单元为所述第二样式中包括的K个第一时间单元中位于所述第三指示信息指示的所述第二样式中包括的当前第一时间单元之后的一个第一时间单元;所述第一通信设备对两次接收到的所述第二数据合并译码。在一种可能的实施方式中,当所述第一通信设备合并译码失败时,返回所述第一通信设备接收所述第二通信设备在所述第二样式中包括的后一个第一时间单元上发送的所述第二数据的步骤,直至译码成功或者确定用于发送所述第二数据的所述第二样式中包括的当前第一时间单元的位置是所述第二样式中包括的K个第一时间单元中的最后一个为止。
通过第三指示信息中指示的所述第二样式中包括的发送所述第二数据的当前第一时间单元在所述第二样式中包括的K个第一时间单元中的位置,第一通信设备可以较为快速的确定出要等待接收第二设备后续发送的第二数据还是结束在该时间窗内的数据传输,进而可以节省第一通信设备的资源。
第三方面,本申请实施例提供一种网络设备,网络设备包括存储器、收发器和处理器,其中:存储器用于存储指令;处理器用于根据执行存储器存储的指令,并控制收发器进行信号接收和信号发送,当处理器执行存储器存储的指令时,网络设备用于执行上述第一方面或第一方面中任一种方法。
第四方面,本申请实施例提供一种通信设备,通信设备包括存储器、收发器和处理器,其中:存储器用于存储指令;处理器用于根据执行存储器存储的指令,并控制收发器进行信号接收和信号发送,当处理器执行存储器存储的指令时,通信设备用于执行上述第二方面或第二方面中任一种方法。
第五方面,本申请实施例提供一种网络设备,用于实现上述第一方面或第一方面中的任意一种方法,包括相应的功能模块,分别用于实现以上方法中的步骤。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或所述软件包括一个或多个与上述功能相对应的模块。在一种可能的实施方式中,所述网络设备的结构中包括处理单元和收发单元,这些单元可以执行上述方法示例中相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第六方面,本申请实施例提供一种通信设备,用于实现上述第二方面或第二方面中的任意一种的方法,包括相应的功能模块,分别用于实现以上方法中的步骤。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或所述软件包括一个或多个与上述功能相对应的模块。在一个可能的实施方式中,所述通信设备的结构中包括处理单元和收发单元,这些单元可以执行上述方法示例中相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第七方面,本申请实施例提供一种计算机存储介质,计算机存储介质中存储有指令,当其在计算机上运行时,使得计算机执行第一方面或第一方面的任意可能的实现方式中的方法、或使得计算机执行第二方面或第二方面的任意可能的实现方式中的方法。
第八方面,本申请实施例提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行第一方面或第一方面的任意可能的实现方式中的方法、或使得计算机执行第二方面或第二方面的任意可能的实现方式中的方法。
附图说明
图1为现有技术中的一种通信系统架构示意图;
图2为本申请提供的一种通信系统架构示意图;
图3为本申请提供的一种数据传输方法流程示意图;
图4为本申请提供的一种时间窗的结构示意图;
图5(a)为本申请提供的一种样式的结构示意图;
图5(b)为本申请提供的另一种样式的结构示意图;
图5(c)为本申请提供的另一种样式的结构示意图;
图6为本申请提供的另一种数据传输方法流程示意图;
图7为本申请提供的一种网络设备的结构示意图;
图8为本申请提供的一种网络设备的结构示意图;
图9为本申请提供的一种通信设备的结构示意图;
图10为本申请提供的一种通信设备的结构示意图。
具体实施方式
图2示例性示出了本申请实施例提供的一种通信系统架构示意图,通信系统中可包括网络设备和通信设备。图2以通信系统包括一个网络设备和五个通信设备为例说明,如图2所示,该通信系统包括网络设备210、通信设备201、通信设备202、通信设备203、通信设备204和通信设备205。网络设备210通过无线的方式分别与通信设备201、通信设备202、通信设备203、通信设备204和通信设备205进行通信,主要是利用Uu空口传输。通信设备201、通信设备202、通信设备203、通信设备204和通信设备205之间可通过无线的方式进行通信,主要是利用侧行链路(Sidelink,SL)空口传输。例如可以是V2X通信系统中V2V、V2P和V2I之间通过侧行链路直接通信,也可以是其它设备到设备(device-to-device,D2D)之间的通信,其中,侧行链路是针对通信设备和通信设备之间直接通信定义的,也就是说通信设备和通信设备之间的通信不需要通过基站的转发。本申请实施例的通信系统可以是通用移动通信系统(universal mobile telecommunications system,UMTS),或者是长期演进(long term evolution,LTE)无线通信系统,或者是第五代(5th generation,5G)移动通信系统等。
网络设备在UMTS中可以是宏演进型基站(evolved node B,eNB),在LTE无线通信系统中可以是宏基站eNB,在5G移动通信系统中可以基站gNB,gNB可以作为宏站,也可以作为微站。网络设备的组网方式可以为宏微异构网络HetNet,或者是新型无线接入网(Radio Access Network,C-RAN),或者是分布式场景等。其中,C-RAN是基于集中化处理(centralized processing),协作式无线电(collaborative radio)和实时云计算构架(real-time cloud infrastructure)的绿色无线接入网构架(clean system)。在不同的网络组网方式中,如在HetNet组网中可以是微基站、微微基站或者家庭基站等,在C-RAN组网中可以是基带处理单元池(building base band unit pool,BBU pool)和射频单元RRU,在分布式基站场景中可以是基带处理单元(building base band unit,BBU)和射频单元(Radio Remote Unit,RRU)。
通信设备可以是手机、平板电脑、具有通信功能的车辆和具有通信功能的路边基础设 施等。在图2中,通信设备201和通信设备202之间的距离、通信设备201和通信设备203之间的距离、通信设备202和通信设备203之间的距离,以及通信设备204和通信设备205之间的距离均小于或等于阈值。通信设备201分别与通信设备204和通信设备205之间的距离均大于阈值,通信设备202分别与通信设备204和通信设备205之间的距离均大于阈值,通信设备203分别与通信设备204和通信设备205之间的距离也均大于阈值。一种可能的实施方式中,通信设备201、通信设备202和通信设备203可以在一个区域,通信设备204和通信设备205可以在另一个区域,且两个区域之间的距离大于阈值。
应理解,本申请实施例中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。
基于上述内容,图3示例性示出了本申请实施例提供的一种数据传输方法流程示意图。该实施例中网络设备可以是上述图2中的网络设备210,目标通信设备组可以是上述图2中的第一通信设备组和第二通信设备组中的任意一个,当目标通信设备组为上述图2中的第一通信设备组时,目标通信设备组中的至少两个通信设备可以是上述图2中通信设备201、通信设备202和通信设备203中的至少两个;当目标通信设备组为上述图2中的第二通信设备组时,目标通信设备组中的至少两个通信设备可以是上述图2中的通信设备204和通信设备205。如图3所示,该方法包括:
步骤S301,网络设备确定目标通信设备组的时间窗。
由上述介绍可知,目标通信设备组包括至少两个通信设备,目标通信设备组中的至少两个通信设备中的任何两个通信设备之间的距离均小于或等于阈值,其中,阈值可以预先根据经验值确定。时间窗用于使目标通信设备组中的至少两个通信设备通过侧行链路在时间窗内发送和接收数据。
可选地,时间窗可表示一段时间长度,用于标识网络设备分配给通信设备的接收和发送数据的时间长度。可选地,时间窗也可称为时间长度或者时域资源。一种可能的实施方式中,时间窗包括N个时间单元;其中,N为大于或等于2的整数,时间单元包括但不限于帧、子帧、时隙、微时隙、或正交频分复用(Orthogonal frequency division multiplex,OFDM)符号等;其中,帧、子帧、时隙、微时隙和符号之间存在关联关系,例如5G新空口(new radio,NR)定义的时隙中,如果采用扩展循环前缀(extended cyclic prefix,ECP)时,2个符号组成一个微时隙,相邻两个微时隙之间可包括一个间隔GAP,一个GAP的大小可以是一个OFDM符号的长度,用于对相邻两个微时隙之间的收发功能进行转换,因此,一个时隙包括4个微时隙,即一个时隙包括12个符号。图4示例性示出了本申请实施例提供的一种时间窗的结构示意图,该时间窗的时间单元以微时隙为例说明。如图4所示,该时间窗包括8个微时隙;其中,4个微时隙组成一个时隙,相邻2个微时隙之间隔一个用于接收数据和发送数据转换的GAP;当图4中GAP为一个符号时,一个时隙包括12个符号,一个时间窗包括24个符号。一种可能的实现方式中,如果网络设备的性能较高时,如收发转换时延较小,或者使用两个或两个以上无线传输通道时,则GAP的时长可以小于一个符号,或者可以直接省去。
步骤S302,网络设备向目标通信设备组的至少两个通信设备发送第一指示信息;其中,第一指示信息用于指示所述时间窗。相应地,第一通信设备接收网络设备发送的第一指示 信息。
网络设备向目标通信设备组中的至少两个通信设备发送第一指示信息的方式可有如下两种方式实现。
第一种实现方式,网络设备在向目标通信设备组中的至少两个通信设备发送调度授予信息时,在下行控制信息(downlink control information,DCI)中携带第一指示信息,其中,调度授予信息包括分配给目标通信设备组中至少两个通信设备的频域资源、调制编码方式等。可选地,网络设备可通过新空口-物理下行控制信道(new radio-physical downlink control channel,NR-PDCCH)向通信设备发送DCI。
第二种实现方式,网络设备在确定出目标通信设备组的时间窗后,可在无线资源控制信息(radio resource contro,RRC)中携带第一指示信息,直接向目标通信设备组的至少两个通信设备发送第一指示信息,其中,RRC包括给目标通信设备组中至少两个通信设备配置的控制信道信息、传输信道信息、协议栈信息等。
示例性的,第一指示信息可以是在DCI消息或者RRC消息中新增一个字段,用该字段来标识第一指示信息。
其中,第一通信设备为目标通信设备组中的一个通信设备。结合图2来说明,当目标通信设备组为第一通信设备组时,第一通信设备可以为通信设备201、通信设备202和通信设备203中的一个;当目标通信设备组为第二通信设备组时,第一通信设备组为通信设备204和通信设备205中的一个。
步骤S303,第一通信设备在时间窗发送和接收数据。
本申请实施例中,通过上述步骤S301至步骤S304可以看出,网络设备向目标通信设备组的至少两个通信设备发送第一指示信息,目标通信设备组的至少两个通信设备通过侧行链路在第一指示信息指示的时间窗发送和接收数据,由于目标通信设备组中的两个通信设备之间的距离小于或等于距离阈值,因此,对于接收端的通信设备来说,目标通信设备组中的至少两个通信设备距离接收端的通信设备的距离比较接近。如此,可以避免背景技术中提到的在相同时间窗发送数据的通信设备因距离接收端的通信设备的距离相差较大,造成目标通信设备组中至少两个通信设备发送的数据之间相互干扰的问题,可以提高接收端的通信设备对目标通信设备组中至少两个通信设备发送的数据的译码率。
进一步,由于目标通信设备组中的两个通信设备之间的距离小于或等于阈值,对于目标通信设备组中的第一通信设备,目标通信设备组中其它通信设备到第一通信设备的距离比较接近,因此,也可以提高第一通信设备对其它通信设备发送的数据的译码率。
在上述步骤S301之前,对于接收端的通信设备,在一个时间窗内可能会接收到多个通信设备发送的数据,为了尽可能避免多个通信设备发送的数据之间相互干扰,提高接收端的通信设备的译码率,网络设备可预先对各通信设备进行分组。本申请实施提供了两种网络设备确定通信设备组的实施方式。
实施方式一,网络设备获取至少两个通信设备的参数信息,比如位置信息,根据至少两个通信设备的位置信息进行分组。结合图2来说明,网络设备210获取通信设备201、通信设备202、通信设备203、通信设备204和通信设备205的位置信息,根据获取到各通信设备的位置信息,将各通信设备中距离小于或等于阈值的通信设备划分为一个组,即网络设备210可将通信设备201、通信设备202和通信设备203确定为第一通信设备组(如图2所示),将通信设备204和通信设备205确定为第二通信设备组(如图2所示)。可选 地,通信设备位置可能会随着时间发生变化,为了提高分组的精确度,网络设备可根据至少两个通信设备的当前位置信息进行分组。
实施方式二,为了使得确定出的通信设备组中的各通信设备的业务延时需求比较接近,以便于网络设备一起调度时,可以满足各通信设备的业务需求,网络设备可以获取至少两个通信设备当前的业务延时需求,网络设备根据至少两个通信设备的位置信息和业务延时需求划分组。结合图2说明,当网络设备确定出通信设备201和通信设备202之间的距离、通信设备201和通信设备203之间的距离、以及通信设备202和通信设备203之间的距离均小于或等于阈值,且确定出通信设备201、通信设备202和通信设备203的业务延时需求均在第一预设范围时,将通信设备201、通信设备202和通信设备203确定为第一通信设备组(如图2所示)。当网络设备确定出通信设备204和通信设备205之间的距离小于或等于阈值,且通信设备204和通信设备205的业务延时需求均在第二预设范围时,将通信设备204和通信设备205确定为第二通信设备组(如图2所示)。
一种可能的实施方式中,当网络设备确定出通信设备201和通信设备202之间的距离、通信设备201和通信设备203之间的距离、以及通信设备202和通信设备203之间的距离均小于或等于阈值,且通信设备201和通信设备202的业务延时需求均在第一预设范围,通信设备203的业务延时需求在第三预设范围时,将通信设备201和通信设备202确定为第一通信设备组,将通信设备203确定为第三通信设备组。也就是说,一个通信设备也可以属于两个或两个以上的不同通信设备组。
在上述实施方式一中,网络设备获取至少两个通信设备位置信息有不同的获取方法。在一种可能的应用场景中,各通信设备可周期性地向网络设备上报位置信息,网络设备周期性的接收各通信设备上报的位置信息,在该应用场景下,网络设备在接收到各通信设备上报的位置信息后,可以对各通信设备预先进行分组。在另一种可能的应用场景中,网络设备可以触发通信设备将位置信息携带在测量上报消息中发送至网络设备,网络设备根据接收到的测量上报消息中携带的位置信息对各通信设备分组。
在上述实施方式二中,网络设备获取至少两个通信设备位置信息和业务延时需求的方法也因场景的不同而不同。对于通信设备的位置信息相对固定和/或业务延时需求也相对固定的,通信设备可周期性向网络设备上报位置信息,可在触发业务时向网络设备发送业务延时需求,例如,公路上以相对固定速度移动和/或使相同的V2X业务的车辆。对于通信设备有多个业务延时需求的场景,例如通信设备同时激活了多个V2X业务,比如3ms的短时延业务,100ms的长时延业务,每次调度的业务延时需求可以不同,则通信设备可以在向网络设备发送调度请求的时候,将业务延时需求携带在调度请求中发送至网络设备。通信设备可在接收到网络设备发送的将位置信息携带在测量上报消息后,将位置信息发送至网络设备。如此,可提高网络设备确定通信设备组的精确度,且可以使得确定出的通信设备组中的各通信设备尽可能满足业务需求。
在上述步骤S301中,网络设备可根据目标通信设备组中通信设备的数量确定目标通信设备组的时间窗。通常,目标通信设备组中通信设备的数量越多,需要配置的时间窗越大。为了使得确定出的时间窗能尽量满足目标通信设备组中的各通信设备对业务延时需求,网络设备可根据目标通信设备组中通信设备的数量及各通信设备的业务延时需求确定目标通信设备组的时间窗。也就是说,在目标通信设备组中通信设备数量相同的情况下,通信设备组中各通信设备对业务延时需求小的目标通信设备组配置的时间窗较小,通信设备 组中各通信设备对业务延时需求大的目标通信设备组配置的时间窗较大,如此,可以满足通信设备组中各通信设备对业务的需求,例如,需要处理紧急业务的通信设备的时间窗较小,可以使得通信设备快速将紧急业务发送出去。
一种可能的实施方式中,当目标通信设备组中的通信设备的位置信息和/或业务延时需求发生变化后,或者当信道状态和通信设备周围干扰发生改变后,会造成网络设备确定出的目标通信设备组中至少两个通信设备的时间窗发生变化,因此,需要重新确定目标通信设备组的时间窗。结合上述图2,当网络设备确定通信设备201的位置信息从第一通信设备组移动到了第二通信设备组,则网络设备将变化后的通信设备201确定为第二通信设备组中通信设备,并需要重新确定变化后的第二通信设备组和变化后的第一通信设备组的时间窗。或者,网络设备确定通信设备的位置信息和业务延时需求均满足从第一通信设备组变化到了第二通信设备组,则网络设备将发生变化的通信设备确定为第二通信设备组中的通信设备,并重新确定变化后的第二通信设备组的时间窗和变化后的第一通信设备组的时间窗。或者,网络设备确定通信设备的周围干扰或者信道状态满足从第一通信设备组变化到第二通信设备组,则网络设备将发生变化的通信设备确定为第二通信设备组中的通信设备,并重新确定变化后的第二通信设备组和变化后的第一通信设备组的时间窗。
一种可能的实施方式中,时间窗包括N个时间单元,N个时间单元中包括K个第一时间单元和L个第二时间单元,其中,N为大于或等于2的整数,K为大于或等于1的整数,L为大于或等于1且小于等于(N-K)的整数。可选地,N个时间单元中包括的第一时间单元的数量和第二时间单元的数量的确定方式可为:N个时间单元中包括
Figure PCTCN2019091783-appb-000001
个第一时间单元和
Figure PCTCN2019091783-appb-000002
个第二时间单元,也就是说,K可确定为
Figure PCTCN2019091783-appb-000003
L可确定为
Figure PCTCN2019091783-appb-000004
也可以是N个时间单元中包括
Figure PCTCN2019091783-appb-000005
个第二时间单元和
Figure PCTCN2019091783-appb-000006
个第一时间单元,也就是说,L可确定为
Figure PCTCN2019091783-appb-000007
K可确定为
Figure PCTCN2019091783-appb-000008
本申请实施例中,K个第一时间单元和L个第二时间单元可以有不同的排列组合方式,以形成不同的样式。即,样式可以表示出一个时间窗中的N个时间单元中各时间单元是用于发送数据还是接收数据。一种可能的实施方式中,时间窗包括N个时间单元,可以形成的样式的数量可为
Figure PCTCN2019091783-appb-000009
可选地,在确定目标通信设备组的时间窗时,要满足确定出的时间窗可形成的样式的数量大于或等于目标通信设备组中通信设备的数量。如此,可以实现目标通信设备组中,一个通信设备对应一个样式,进而可以实现目标通信设备组中各通信设备的样式之间满足:任意一个通信设备在对应的样式的第一时间单元上发送的数据能被目标通信设备组中其它通信设备中的每个通信设备在对应的样式的第二时间单元中的至少一个第二时间单元上接收到。
表1示例性示出了本申请实施例提供的一种时间窗的时间单元数量与可形成的样式数量之间的关系。如表1所示,当时间窗包括2个时间单元时,可形成2个样式;当时间窗包括3个时间单元时,可形成3个样式;当时间窗包括4个时间单元时,可形成6个样式;当时间窗包括N个时间单元时,可形成
Figure PCTCN2019091783-appb-000010
个样式。
表1时间窗的时间单元的数量和可形成的样式的数量之间关系
Figure PCTCN2019091783-appb-000011
Figure PCTCN2019091783-appb-000012
一种可能的实施方式中,样式的数量可根据时间窗包括的时间单元数来确定,时间窗包括的时间单元数还可根据网络设备为目标通信设备组中通信设备配置的频域资源来确定。一种可能的实施方式中,第一指示信息还包括频域资源信息,例如信道的起始位置和长度、子信道的起始位置和长度、或资源块(resource block,RB)的起始位置和长度,以使第一通信设备根据时间窗和配置的频域资源通过所述侧行链路发送和接收数据。将第一指示信息中的频域资源指示至目标通信设备组中的至少两个通信设备的方式可与时间窗指示方式相同,比如通过在RRC信息或DCI信息中新增字段的方式,在此不再赘述。通过RRC信息中指示的频域资源信息为半静态的频域资源信息,通过DCI信息指示的频域资源信息为动态的频域资源信息,如果通信设备在DCI的调度授予信息中没有收到频域资源信息,可以使用RRC指示的频域资源信息通过侧行链路发送数据;如果在DCI调度授予信息中收到更新的频域资源信息,可以使用DCI指示的频域资源信息通过侧行链路发送数据。
对于目标通信设备组中的至少两个通信设备,当时间窗确定之后,对应的频域资源也可以确定;或者说,网络设备为通信设备配置的频域资源会对时间窗的确定有影响。也就是说,网络设备确定目标通信设备组的时间窗还与网络设备为目标通信设备组配置的频域资源相关。为了便于方案的说明,以20MHz系统带宽为例,网络设备配置子信道为4个RB,每个RB包括12个子载波,以15KHz的子载波间隔为例,则20MHz的系统带宽内一共可以有110个RB,共27个子信道,假设每个通信设备需要传输的数据大小可以承载在一个子信道中,27个子信道可以分别承载27个通信设备传输的数据,根据表1,则网络设备可确定目标通信设备组的时间窗包括7个时间单元;如果通信设备的数据大小需要2个子信道承载,27个子信道可以承载13个通信设备传输数据,根据表1,网络设备可确定目标通信设备组的时间窗包括6个时间单元。对于通信设备需要传输的数据大小差异比较大的场景,网络也可以根据每个通信设备需要传输的数据大小确定能同时调度的通信设备数量,进而确定目标通信设备组的时间窗包括的时间单元数。进一步,网络设备还可以获得传输信道状态信息,网络设备可根据通信设备需要传输的数据大小和传输信道信息确定能同时调度的通信设备数,进而确定出目标通信设备组的时间窗。
为了便于方案的理解,本申请实施例以时间窗包括3个时间单元(即N=3)可形成的样式为例说明。时间窗包括3个时间单元,可形成的样式的数量为3个。时间窗为3个时间单元可形成的样式包括两种情况,第一种情况:
Figure PCTCN2019091783-appb-000013
即包括3个时间单元的时间窗中包括1个第一时间单元和2个第二时间单元,针对第一种情况的3种样式之间满足,任意一个样式的1个第一时间单元与其余2个样式中的每个样式的至少一个第二时间单元相对应。第二种情况:
Figure PCTCN2019091783-appb-000014
包括3个时间单元的时间窗中包括2个第一时间单元和1个第二时间单元,针对第二种情况的3种样式之间满足,任意一个样式的2个第一时间单元中的至少一个第一时间单元与其余2个样式中的 每个样式的1个第二时间单元相对应。可选地,第一时间单元可用1表示,第二时间单元可用0表示,则第一种情况形成的样式可表示为100、010和001。第二种情况形成的样式可表示为110、101和011。也就是说,当时间窗包括的时间单元的数量N为奇数时,可以形成的样式包括两种情况,对于目标通信设备组,分配给目标通信设备组中的至少两个通信设备的样式是其中任一种情况中形成的样式。
一种可能的实施方式中,当时间窗包括的N个时间单元中,N是偶数时,第一时间单元的数量和第二时间单元的数量相同。表2示例性示出了本申请实施例提供的一种时间窗包括8个时间单元时可形成的样式。如表2所示,包括8个时间单元的时间窗中包括4个第一时间单元和4个第二时间单元,第一时间单元用1表示,第二时间单元用0表示。当时间窗包括8个时间单元时,共可形成70种样式,70种样式之间满足,任意一个样式的4个第一时间单元中的至少一个第一时间单元与其余69个样式中的每个样式的至少一个第二时间单元相对应。
表2时间窗包括8个时间单元时可形成的样式
Figure PCTCN2019091783-appb-000015
一种可能的实施方式中,一个时间窗对应一个样式表。基于表1中的N个时间窗,可形成N个样式表。为了使网络设备快速确定出样式,以及减小网络设备向通信设备发送的数据量,网络设备可以对每个样式增加索引号,每个索引号可以唯一的确定出一个样式。一种可能的实施方式中,在各样式表中的各样式前可增加索引号。可选地,索引号的形式可为:N-m,其中N表示的是时间窗包括的时间单元对应的样式表,m表示的是该时间窗对应的样式表中的第m个样式,例如8-1中的8表示的是时间窗包括8个时间单元对应的样式表,1表示8个时间单元对应的样式表中的第一个样式;即索引号8-1表示的是时间窗包括8个时间单元对应的样式表中的第1个样式,可选地,可在表2中11110000前增加索引号8-1,以实现用索引号8-1指示出样式11110000。
基于表2所示的样式,图5(a)、图5(b)和图5(c)示例性示出了本申请实施例提供的三种不同样式的示意图。图5(a)、图5(b)和图5(c)中有阴影的表示第一时间单 元,第一时间单元用于发送数据;没有阴影的表示第二时间单元,第二时间单元用于接收数据。图5(a)所表示的样式可用11110000示意,四个第一时间单元均在四个第二时间单元的之前,即前四个第一时间单元均用于发送数据,后四个第二时间单元均用于接收数据。图5(b)所表示的样式可用10101100示意,第一个位置、第三个位置、第五个位置和第六个位置均为第一时间单元,第二个位置、第四个位置、第七个位置和第八个位置均为第二时间单元,也就是说,图5(b)所示的样式中位于第一、第三、第五和第六个位置的第一时间单元用于发送数据,位于第二、第四、第七和第八个位置的第二时间单元用于接收数据。如图5(c)所表示的样式可用01110010示意,位于第一、第五、第六和第八个位置的均为第二时间单元,位于第二、第三、第四和第七个位置的均为第一时间单元;也就是说,图5(c)所示的样式在第二、第三、第四和第七个位置的第一时间单元用于发送数据,在第一、第五、第六和第八个位置的第二时间单元用于接收数据。
本申请实施例提供了一种网络设备确定目标通信设备组中至少两个通信设备的样式的实施方式。所述网络设备可以根据所述目标通信设备组的至少两个通信设备的业务延时需求,确定所述至少两个通信设备的所述K个第一时间单元的位置;其中,业务延时越小的通信设备对应的样式中包括的第一时间单元在样式中的位置,相对于业务延时越大的通信设备对应的样式中包括的第一时间单元的位置越靠前。
结合图2、图5(a)、图5(b)和图5(c),目标通信设备组以图2中的第一通信设备组为例。假设网络设备确定目标通信设备组中通信设备201、通信设备202和通信设备203的业务延时需求的关系为:通信设备201的业务延时小于通信设备202的业务延时、通信设备202的业务延时小于通信设备203的业务延时,则在图5(a)、图5(b)和图5(c)中,图5(a)和图5(b)所示样式的第一个第一时间单元位于第一个位置,图5(c)所示样式的第一个第一时间单元位于第二个位置,因此,图5(a)和图5(b)所示的样式的第一个第一时间单元位于图5(c)所示样式的第一时间单元之前。进一步,图5(a)所示样式的第二个第一时间单元在第二个位置,图5(b)所示的第二个第二时间单元在第三个位置,图5(a)所示样式的第二个第一时间单元位于图5(b)所示样式的第二个第一时间单元之前。因此,可将图5(a)所示的样式确定为通信设备201的样式,将图5(b)所示的样式确定为通信设备202的样式,将图5(c)所示的样式确定为通信设备203的样式。从图5(a)、图5(b)和图5(c)可以确定,在时间窗的第一个位置上,通信设备201和通信设备202用于发送数据,通信设备203用于接收数据,此时,通信设备203可以接收到通信设备201和通信设备202发送的数据,但是通信设备201和通信设备202工作在半双工模式(即在发送数据的时候不能接收数据,在接收数据的时候不能发送数据),相互之间不能接收到对方发送的数据。在该时间窗的第二个位置上,通信设备201和通设备203用于发送数据,通信设备202是用于接收数据,此时,通信设备202可以接收到通信设备201发送的数据。在该时间窗的第五个位置上,通信设备201和通信设备203用于接收数据,通信设备202用于发送数据,此时,通信设备201可以接收到通信设备202发送的数据。因此,在一个时间窗内,通信设备202、通信设备202和通设备203相互之间均可以接收到彼此发送的数据。如此,在一个时间窗内,目标通信设备组中的各通信设备实现了全双工的效果。
进一步,目标通信设备组中的通信设备可以多次收到目标通信设备组中其它通信设备发送的数据,进而可提高目标通信设备组中通信设备的译码率。例如,通信设备201可以 在第五个位置和第六个位置的第二时间单元上两次接收到通信设备202发送的数据;通信设备202可以在第二个位置和第四个位置的第二时间单元上两次接收到通信设备201发送的数据;通信设备203可以在第一个位置、第五个位置和第六个位置上三次接收到通信设备202发送的数据,因此,通信设备201通过两次接收通信设备202发送的数据可提高对通信设备202发送的数据的译码率,通信设备202通过两次接收到通信设备201发送的数据可提高对通信设备201发送的数据的译码率,通信设备203通过三次接收通信设备202发送的数据可提高对通信设备202发送的数据的译码率。
本申请实施例中,网络设备确定出目标通信设备组中至少两个通信设备的各通信设备的样式后,网络设备向目标通信设备组中的至少两个通信设备发送第一指示信息,第一指示信息中包括至少两个的样式,所述至少两个样式中的每个样式分别由所述K个第一时间单元和所述L个第二时间单元组合形成、且所述至少两个样式中的每个样式的K个第一时间单元和L个第二时间单元组合形式不一样。一种可能的实施方式中,所述网络设备向第一通信设备发送第一样式,向第二通信设备发送第二样式,所述第一样式用于指示所述第一通信设备在所述第一样式中包括的K个第一时间单元上发送第一数据,所述第二样式用于指示所述第二通信设备在所述第二样式中包括的L个第二时间单元中的至少一个第二时间单元上接收所述第一数据,所述第一样式和所述第二样式均属于所述至少两个样式,所述第一通信设备和所述第二通信设备均属于所述目标通信设备组。
另一种可能的实施方式中,网络设备向目标通信设备组至少两个通信设备发送第一指示信息,第一指示信息中包括目标通信设备组中至少两个通信设备的样式,及与样式对应的通信设备的标识,以使目标通信设备组中的各通信设备确定各自对应样式。
一种可能的实施方式中,网络设备可预先存储有时间窗的时间单元数据量和可形成的样式的数量之间的关系表(如表1所示)、以及表1中各时间窗可形成的样式表,一个时间窗可对应一个可形成样式表,表2为其中一张表。网络设备确定出目标通信设备组中至少两个通信设备的样式后,将通信设备的样式携带在DCI消息或者RRC消息中发送至通信设备;或者,在通信设备中也可存储有和网络设备相同的表,预先存储可以通过预先配置来实现,也可以是通信设备在接入网络的时候,网络设备将本地存储的两种类型的表进行广播,通信设备将网络设备广播的两种类型的表存储在本地来实现,也可以是网络设备广播生成两种类型的表的规则,通信设备根据两种类型的表的生成规则生成的两种类型的表、并存储在本地来实现,本发明实施例这里并不做限定。
网络设备在确定出目标通信设备组中至少两个通信设备的样式时,网络设备可以将通信设备的样式对应的索引号携带在DCI消息或者RRC消息中发送至通信设备,例如,网络设备向通信设备发送的DCI消息或者RRC消息中携带的索引号为N-m,则通信设备可以根据N-m确定出是时间窗包括N个时间单元对应的样式表中的第m个样式。例如,通信设备接收到的索引号为8-1时,则通信设备可以根据8-1确定出是时间窗包括8个时间单元对应的样式表中的第1个样式,因此,通信设备可以确定出是上述表2中的样式11110000。通过发送样式的索引号可以减小网络设备向通信设备传输数据量,进而可节约空口资源。可选地,通信设备可根据样式的索引号可以唯一的确定出一个样式。可选地,通信设备中存储两种类型的表,则根据索引号可以确定出对应的时间窗以及该时间窗可形成的样式表。
本申请实施例中,网络设备确定出目标通信设备组中至少两个通信设备的样式后,网 络设备可以将目标通信设备组中通信设备的样式分多次指示给对应的通信设备。也就是说,针对一个通信设备要发送的数据,在一个时间窗内包括N个时间单元,N个时间单元中包括K个第一时间单元和L个第二时间单元,则网络设备可对该通信设备调度K次,即指示出K次使用K个时间单元发送数据,该通信设备在收不到指示发送数据的指示时,在K个时间单元中均用于接收数据。而且网络设备需要在DCI消息中携带一个指示信息,以指示出K个第一时间中,第一个第一时间单元是用于发送数据的时间单元,其余(K-1)个时间单元是重传第一个第一时间单元上已传输的数据的时间单元。这是因为通信设备在接收DCI消息时,不能确定出时间窗中用于新传或重传数据的时间单元,因此,DCI中需要指示用于新数据传输或用于重传数据传输的时间单元的标识,这样通信设备就可以清楚使用哪些时间单元传输新数据,哪些时间单元重传数据。
本申请实施例中,网络设备向通信设备组中的第一通信设备发送第一样式,向第二通信设备发送第二样式之后,第一通信设备接收第一样式,并在第一样式的第一时间单元上发送数据、在第一样式的第二时间单元上接收数据。第二通信设备接收第二样式,并在第二样式的第一时间单元上发送数据,在第二样式的第二时间单元上接收数据。图6示例性示出了本申请实施例提供的另一种数据传输方法流程示意图。该实施例中,当目标通信设备组为上述图2中的第一通信设备组时,则第一通信设备和第二通信设备为通信设备201、通信设备202和通信设备203中的两个。当目标通信设备组为上述图2中的第二通信设备组时,第一通信设备和第二通信设备为第二通信设备组的通信设备204和通信设备205。可选地,当网络设备仅调度第一通信设备组中的通信设备时,第二通信设备组中的各通信设备在监听并接收其它通信设备组发送的数据。当网络设备仅调度第二通信设备组中的通信设备时,第一通信设备组中的各通信设备在监听并接收其它通信设备组发送的数据。如图6所示,该方法包括:
步骤S601,第一通信设备在第一通信设备的所述第一样式中包括的K个第一时间单元上发送第一数据和/或第二指示信息。其中,所述第二指示信息用于指示所述第一样式中包括的发送所述第一数据的当前第一时间单元在所述第一样式中包括的K个第一时间单元中的位置。
一种可能的实施方式中,第一通信设备在物理下行控制信道(physical downlink control channel,PDCCH)上接收网路设备对该第一通信设备在侧行链路上发送和接收数据的调度授予信息之后,第一通信设备根据调度授予信息生成调度分配(scheduling assignment,调度分配SA)信息。为了减小第一通信设备发送的数据量,第二指示信息可以在SA中新增的一个字段,该新增的字段可以指示出发送第一数据的当前第一时间单元在第一样式中包括的K个第一时间单元中的位置,一种可能的实施方式为指示出发送第一数据的当前第一时间单元是否为K个第一时间单元中的最后一个位置的第一时间单元。可以用1个比特位指示,例如用1表示是该样式中非最后一个第一时间单元,用0表示是该样式中最后一个第一时间单元。另一种可能的实施方式中,第一通信设备可以在发送第一数据的时候一起发送第二指示信息。
一种可能的实施方式中,第一通信设备在侧行链路上,在所述第一样式中包括的K个第一时间单元中的每个第一时间单元中重复发送相同的第一数据;其中,相同的第一数据可以是编码后的相同数据,也可以是独立译码的同一数据的不同编码版本。
步骤S602,第二通信设备在所述第二通信设备的第二样式中包括的K个第一时间单 元上发送第二数据和/或第三指示信息。其中,所述第三指示信息用于指示所述第二样式中包括的发送所述第二数据的当前第一时间单元在第二样式中包括的K个第一时间单元中的位置,第三指示信息也可以是在SA中新增的一个字段,添加的方式可以与第二指示信息的添加方式相同,在此不再赘述。
一种可能的实施方式中,第二通信设备在侧行链路上,在所述第二样式中包括的K个第一时间单元中的每个第一时间单元中重复发送相同的第二数据;其中,相同的第二数据可以是编码后的相同数据,也可以是独立译码的同一数据的不同编码版本。
上述步骤S601和步骤S602没有先后顺序,先执行步骤S601还是步骤S602根据第一通信设备和第二通信设备的样式确定。所述第一样式中的K个第一时间单元的位置是根据所述第一通信设备的业务延时需求确定的;所述第二样式中的K个第一时间单元的位置是根据所述第二通信设备的业务延时需求确定的;其中,针对所述目标通信设备组中的至少两个通信设备,业务延时小的通信设备对应的样式中包括的第一时间单元位于业务延时大的通信设备对应的样式中包括的第一时间单元之前。当第一通信设备对应的第一样式中的第一时间单元的位置在所述第二通信设备对应的第二样式中的第一时间单元的位置之前时,先执行步骤S601。否则,先执行步骤S602。
步骤S603,第二通信设备在第二通信设备的第二样式中包括的L个第二时间单元中的至少一个第二时间单元上接收第一通信设备发送的第一数据和/或第二指示。
步骤S604,第一通信设备在第一通信设备的第一样式中包括的L个第二时间单元中的至少一个第二时间单元上接收第二通信设备发送的第二数据和/或第三指示信息。
可选地,第二通信设备对接收到的第一数据和/或第二指示信息的处理方式与第一通信设备对接收到的第二数据和/或第三指示信息的处理方式相同,为了便于说明,下述步骤S603至步骤S608以第一通信设备示例性地例说明。
上述步骤S603和步骤S604没有先后顺序,先执行步骤S603还是步骤S604根据第一通信设备和第二通信设备的样式确定。确定了第一通信设备的第一样式中包括的K个第一时间单元的位置之后,即可确定出第一通信设备的第一样式中包括的L个第二时间单元的位置;确定了第二通信设备的第二样式中包括的K个第一时间单元的位置之后,即可确定出第二通信设备的第二样式中包括的L个第二时间单元的位置。当第一通信设备对应的第一样式中的第二时间单元的位置在所述第二通信设备对应的第二样式中的第二时间单元的位置之前时,先执行步骤S604。否则先执行步骤S603。
步骤S605,第一通信设备对接收到的第二数据进行译码,并确定是否译码成功;当译码失败时,执行步骤S606;当译码成功时,执行步骤S609。
一种可能的实施方式中,当译码成功时,忽略第一样式中包括的当前第二时间单元之后的第二时间单元上接收到的第二数据;其中,第一样式中包括的当前第二时间单元为用于发送译码成功的第二数据对应的第一样式中包括的一个第二时间单元。
步骤S606,第一通信设备根据第二指示信息确定所述第三指示信息指示的所述第二样式中包括的当前第一时间单元的位置是否为所述第二样式中包括的K个第一时间单元中的最后一个;若否,则执行步骤S607;若是,则执行步骤S610。
一种可能的实施方式中,第一通信设备可根据第二通信设备发送的SA中新增的字段确定所述第三指示信息指示的所述第二样式中包括的当前第一时间单元的位置是否为所述第二样式中包括的K个第一时间单元中的最后一个,比如确定新增的字段为1,则表示 非第一样式的最后一个第一时间单元;确定为0,则表示是第一样式中最后一个第一时间单元。
步骤S607,第一通信设备接收所述第二通信设备在所述第二样式中包括的后一个第一时间单元上发送的所述第二数据。其中,所述后一个第一时间单元为所述第二样式中包括的K个第一时间单元中位于所述第三指示信息指示的所述第二样式中包括的当前第一时间单元之后的一个第一时间单元。
步骤S608,第一通信设备对两次接收到的所述第二数据合并译码,并确定合并译码是否成功;当合并译码失败时,重复执行步骤S606至S607,或者,直至译码成功或者确定用于发送所述第二数据的所述第二样式中包括的当前第一时间单元的位置是所述第二样式中包括的K个第一时间单元中的最后一个为止;当合并译码成功时,执行步骤S609。
可选地,第一通信设备通过对两次接收到的第二数据合并译码,可提高对第二数据译码的成功率。
步骤S609,第一通信设备将译码成功的数据传输至层二及以上层进行处理。
步骤S610,流程结束。
本申请实施例中上述可选地实施方式的相关内容可以参见上述实施例,在此不再赘述。
基于上述内容和相同构思,本申请实施例提供了一种网络设备,用于执行上述方法中网络设备侧的任一个方案。图7示例性示出了本申请提供的一种网络设备的结构示意图,如图7所示,网络设备700包括一个或多个远端射频单元(英文:remote radio unit,简称:RRU)701和一个或多个基带单元(英文:baseband unit,简称:BBU)702。所述RRU701可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线7011和射频单元7012。所述RRU701部分主要用于射频信号的收发以及射频信号与基带信号的转换。所述BBU702部分可以称为处理单元,处理器等,主要用于进行基带处理,如信道编码,复用,调制,扩频等等,也用于对网络设备进行控制等。所述RRU701与BBU702可以是物理上设置在一起,也可以物理上分离设置的,即分布式网络设备。该示例中网络设备700可以是上述图2中的网络设备210,可执行上述图3中网络设备对应执行的方案。
所述BBU702为网络设备的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。
在一个示例中,所述BBU702可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网。所述BBU702还包括存储器7021和处理器7022。所述存储器7021用以存储必要的指令和数据。所述处理器7022用于控制网络设备进行必要的动作,例如用于控制网络设备执行上述任一实施例中网络设备执行的方法。所述存储器7021和处理器7022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板公用相同的存储器和处理器。此外每个单板上还设置有必要的电路。
在上行链路上,通过所述天线7011接收通信设备发送的上行链路信号(包括数据等),在下行链路上,通过所述天线7011向通信设备发送下行链路信号(包括数据和/或控制信息),在所述处理器7022中,对业务数据和信令消息进行处理,这些单元根据无线接入网采用的无线接入技术(例如,LTE、NR及其他演进系统的接入技术)来进行处理。所述处理器7022还用于对网络设备的动作进行控制管理,用于执行上述实施例中由网络设备进行的处理。处理器7022还用于支持网络设备执行图3网络设备执行的方法。
可以理解的是,图7仅仅示出了所述网络设备的简化设计。在实际应用中,所述网络设备可以包含任意数量的天线,存储器,处理器,射频单元,RRU,BBU等,而所有可以实现本申请的网络设备都在本申请的保护范围之内。
本申请实施例中,以RRU701称为收发器为例,BBU702称为处理器为例,则网络设备700中的处理器7022,可用于读取存储器7021中的计算机指令,以执行确定目标通信设备组的时间窗,其中,所述目标通信设备组包括至少两个通信设备,所述目标通信设备组中的两个通信设备之间的距离小于或等于阈值,所述时间窗用于使所述目标通信设备组的至少两个通信设备通过侧行链路在所述时间窗发送和接收数据,并控制所述射频单元7012通过天线7011向所述目标通信设备组的至少两个通信设备发送第一指示信息,所述第一指示信息用于指示所述时间窗。
处理器7022还可以实现上述图3所示的方法实施例中网络设备的任意详细功能,在此不再详尽赘述,可以参照上述图3所示的方法实施例中网络设备执行的处理步骤。
基于相同构思,本申请实施例提供了一种网络设备,用于执行上述方法中网络设备侧的任一个方案。图8示例性示出了本申请提供的一种网络设备的结构示意图,如图8所示,网络设备800包括收发单元801和确定单元802。该示例中网络设备可以是上述图2中的网络设备210,可执行上述图3中网络设备对应执行的方案。
应理解,以上网络设备的各单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。本申请实施例中,图8涉及到的确定单元802可以由上述图7的BBU702实现,图8中的收发单元801可以由上述图7的RRU701实现。也就是说,本申请实施例中确定单元802可以执行上述图7的BBU702所执行的方案,收发单元801可以执行上述图7的RRU701所执行的方案,其余内容可以参见上述内容,在此不再赘述。
基于相同构思,本申请实施例提供了一种通信设备,用于执行上述方法中第一通信设备侧或第二通信设备侧的任一个方案。图9示例性示出了本申请提供的一种通信设备的结构示意图,如图9所示,通信设备900包括处理器、存储器、控制电路以及天线。处理器主要用于对通信协议以及通信数据进行处理,以及对整个通信设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持通信设备900执行上述任一实施例中由通信设备900执行的方法。存储器主要用于存储软件程序和数据。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。
当通信设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到通信设备900时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图9仅示出了一个存储器和处理器。在实际的通信设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主 要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个通信设备900进行控制,执行软件程序,处理软件程序的数据。图9中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,通信设备可以包括多个基带处理器以适应不同的网络制式,通信设备900可以包括多个中央处理器以增强其处理能力,通信设备900的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在申请实施例中,可以将具有收发功能的天线和控制电路视为通信设备900的收发单元901,将具有处理功能的处理器视为通信设备900的处理单元902。收发单元901也可以称为收发器、收发机、收发装置等。可选地,可以将收发单元901中用于实现接收功能的器件视为接收单元,将收发单元901中用于实现发送功能的器件视为发送单元,即收发单元901包括接收单元和发送单元示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
在下行链路上,通过天线接收网络设备发送的下行链路信号(包括数据和/或控制信息),在上行链路上,通过天线向网络设备发送上行链路信号(包括数据和/或控制信息),在处理器中,对业务数据和信令消息进行处理,这些单元根据无线接入网采用的无线接入技术(例如,LTE、NR及其他演进系统的接入技术)来进行处理。所述处理器还用于对通信设备的动作进行控制管理,用于执行上述实施例中由通信设备进行的处理。处理器还用于支持通信设备执行图9中涉及通信设备的执行方法。
可以理解的是,图9仅仅示出了所述通信设备的简化设计。在实际应用中,所述通信设备可以包含任意数量的天线,存储器,处理器等,而所有可以实现本申请的通信设备都在本申请的保护范围之内。
本申请中,以收发单元称为收发器,处理单元称为处理器为例,则通信设备900中收发器,用于接收网络设备发送的第一指示信息,所述第一指示信息用于指示时间窗,所述时间窗为所述网络设备为目标通信设备组确定的,所述目标通信设备组包括至少两个通信设备,所述目标通信设备组中的两个通信设备之间的距离小于或等于阈值,所述第一通信设备为所述目标通信设备组中任一个;处理器,用于解析所述收发器接收到的所述第一指示信息,确定所述时间窗;收发器,还用于在所述时间窗发送和接收数据。
处理器还可以实现上述图6所示的方法实施例中通信设备的任意详细功能,在此不再详尽赘述,可以参照上述图6所示的方法实施例中通信设备执行的处理步骤。
基于相同构思,本申请实施例提供了一种通信设备,用于执行上述方法中第一通信设备侧或第二通信设备侧的任一个方案。图10示例性示出了本申请提供的一种通信设备的结构示意图,如图10所示,通信设备1000包括处理单元1001和收发单元1002。该示例中的通信设备可以是上述内容中的第一通信设备或者第二通信设备,可执行上述图3中第一通信设备对应执行的方案,也可以执行上述图6中第一通信设备或第二通信设备对应执行的方案。该通信设备也可以是上述图2中通信设备201、通信设备202、通信设备203、通信设备204和通信设备205中的任一个。
应理解,以上通信设备的各单元的划分仅仅是一种逻辑功能的划分,实际实现时可以 全部或部分集成到一个物理实体上,也可以物理上分开。本申请实施例中,图10涉及到的处理单元1001可以由上述图9的处理单元902实现,图10中的收发单元1002可以由上述图9的收发单元901实现。也就是说,本申请实施例中处理单元1001可以执行上述图9的处理单元902所执行的方案,收发单元1002可以执行上述图9的收发单元901所执行的方案,其余内容可以参见上述内容,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件或者其组合来实现、当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。指令可以存储在计算机存储介质中,或者从一个计算机存储介质向另一个计算机存储介质传输,例如,指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、双绞线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机存储介质可以是计算机能够存取的任何介质或者是包含一个或多个介质集成的服务器、数据中心等数据存储设备。介质可以是磁性介质,(例如,软盘、硬盘、磁带、磁光盘(MO)等)、光介质(例如光盘)、或者半导体介质(例如ROM、EPROM、EEPROM、固态硬盘(solid state disk,SSD))等。
本申请实施例是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (19)

  1. 一种数据传输方法,其特征在于,包括:
    网络设备确定目标通信设备组的时间窗,其中,所述目标通信设备组包括至少两个通信设备,所述目标通信设备组中的两个通信设备之间的距离小于或等于阈值,所述时间窗用于使所述目标通信设备组的至少两个通信设备通过侧行链路在所述时间窗发送和接收数据;
    所述网络设备向所述目标通信设备组的至少两个通信设备发送第一指示信息,所述第一指示信息用于指示所述时间窗。
  2. 如权利要求1所述的方法,其特征在于,所述时间窗包括N个时间单元,所述N个时间单元包括K个第一时间单元和L个第二时间单元,其中,所述N为大于或等于2的整数,所述K为大于或等于1的整数,所述L为大于或等于1且小于等于(N-K)的整数,所述第一指示信息包括至少两个样式,所述至少两个样式中的每个样式分别由所述K个第一时间单元和所述L个第二时间单元组合形成、且所述至少两个样式中的每个样式的K个第一时间单元和L个第二时间单元组合形式不一样;
    所述网络设备向所述目标通信设备组的至少两个通信设备发送第一指示信息,包括:
    所述网络设备向第一通信设备发送第一样式,向第二通信设备发送第二样式,所述第一样式用于指示所述第一通信设备在所述第一样式中包括的K个第一时间单元上发送第一数据,所述第二样式用于指示所述第二通信设备在所述第二样式中包括的L个第二时间单元中的至少一个第二时间单元上接收所述第一数据,所述第一样式和所述第二样式均属于所述至少两个样式,所述第一通信设备和所述第二通信设备均属于所述目标通信设备组。
  3. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据所述至少两个通信设备的参数信息确定所述目标通信设备组,其中,所述参数信息包括所述至少两个通信设备的位置信息。
  4. 如权利要求1或2所述的方法,其特征在于,所述网络设备确定目标通信设备组的时间窗,包括:
    所述网络设备根据所述目标通信设备组中通信设备的数量确定所述目标通信设备组的时间窗。
  5. 如权利要求2所述的方法,其特征在于,所述第一样式中的K个第一时间单元的位置是根据所述第一通信设备的业务延时需求确定的;所述第二样式中的K个第一时间单元的位置是根据所述第二通信设备的业务延时需求确定的;
    其中,针对所述目标通信设备组中的至少两个通信设备,业务延时小的通信设备对应的样式中包括的第一时间单元位于业务延时大的通信设备对应的样式中包括的第一时间单元之前。
  6. 一种数据传输方法,其特征在于,包括:
    第一通信设备接收网络设备发送的第一指示信息,所述第一指示信息用于指示时间窗,所述时间窗为所述网络设备为目标通信设备组确定的,所述目标通信设备组包括至少两个通信设备,所述目标通信设备组中的两个通信设备之间的距离小于或等于阈值,所述第一通信设备为所述目标通信设备组中任一个;
    所述第一通信设备在所述时间窗发送和接收数据。
  7. 如权利要求6所述的方法,其特征在于,所述时间窗包括N个时间单元,所述N个时间单元包括K个第一时间单元和L个第二时间单元,其中,所述N为大于或等于2的整数,所述K为大于或等于1的整数,所述L为大于或等于1且小于等于(N-K)的整数,所述第一指示信息包括至少两个样式,所述至少两个样式中的每个样式分别由所述K个第一时间单元和所述L个第二时间单元组合形成、且所述至少两个样式中的每个样式的K个第一时间单元和L个第二时间单元组合形式不一样;
    所述第一通信设备接收网络设备发送的第一指示信息,包括:
    所述第一通信设备接收所述网络设备发送的第一样式,所述第一样式属于所述至少两个样式;
    所述第一通信设备在所述时间窗发送和接收数据,包括:
    所述第一通信设备在所述第一样式中包括的K个第一时间单元上发送第一数据、在所述第一样式中包括的L个第二时间单元中的至少一个第二时间单元上接收第二数据,所述第二数据为第二通信设备在第二样式中包括的K个第一时间单元上发送的,所述第二样式属于所述至少两个样式,所述第二通信设备为所述目标通信设备组中除所述第一通信设备外的一个。
  8. 如权利要求7所述的方法,其特征在于,所述方法还包括:
    所述第一通信设备在所述第一样式中包括的K个第一时间单元上发送第二指示信息,所述第二指示信息用于指示所述第一样式中包括的发送所述第一数据的当前第一时间单元在所述第一样式中包括的K个第一时间单元中的位置。
  9. 如权利要求7所述的方法,其特征在于,所述方法还包括:
    所述第一通信设备接收第三指示信息,所述第三指示信息用于指示所述第二样式中包括的发送所述第二数据的当前第一时间单元在所述第二样式中包括的K个第一时间单元中的位置;
    当所述第一通信设备对所述第二数据译码失败、且确定所述第三指示信息指示的所述第二样式中包括的当前第一时间单元的位置不是所述第二样式中包括的K个第一时间单元中的最后一个时,则:
    所述第一通信设备接收所述第二通信设备在所述第二样式中包括的后一个第一时间单元上发送的所述第二数据;所述后一个第一时间单元为所述第二样式中包括的K个第一时间单元中位于所述第三指示信息指示的所述第二样式中包括的当前第一时间单元之后的一个第一时间单元;
    所述第一通信设备对两次接收到的所述第二数据合并译码。
  10. 一种网络设备,其特征在于,包括:
    处理器,用于确定目标通信设备组的时间窗,其中,所述目标通信设备组包括至少两个通信设备,所述目标通信设备组中的两个通信设备之间的距离小于或等于阈值,所述时间窗用于使所述目标通信设备组的至少两个通信设备通过侧行链路在所述时间窗发送和接收数据;
    收发器,用于向所述目标通信设备组的至少两个通信设备发送第一指示信息,所述第一指示信息用于指示所述时间窗。
  11. 如权利要求10所述的网络设备,其特征在于,所述时间窗包括N个时间单元,所述N个时间单元包括K个第一时间单元和L个第二时间单元,其中,所述N为大于或 等于2的整数,所述K为大于或等于1的整数,所述L为大于或等于1且小于等于(N-K)的整数,所述第一指示信息包括至少两个样式,所述至少两个样式中的每个样式分别由所述K个第一时间单元和所述L个第二时间单元组合形成、且所述至少两个样式中的每个样式的K个第一时间单元和L个第二时间单元组合形式不一样;
    所述收发器,用于:
    向第一通信设备发送第一样式,向第二通信设备发送第二样式,所述第一样式用于指示所述第一通信设备在所述第一样式中包括的K个第一时间单元上发送第一数据,所述第二样式用于指示所述第二通信设备在所述第二样式中包括的L个第二时间单元中的至少一个第二时间单元上接收所述第一数据,所述第一样式和所述第二样式均属于所述至少两个样式,所述第一通信设备和所述第二通信设备均属于所述目标通信设备组。
  12. 如权利要求10所述的网络设备,其特征在于,所述处理器,还用于:
    根据所述至少两个通信设备的参数信息确定所述目标通信设备组,其中,所述参数信息包括所述至少两个通信设备的位置信息。
  13. 如权利要求10或11所述的网络设备,其特征在于,所述处理器,用于:
    根据所述目标通信设备组中通信设备的数量确定所述目标通信设备组的时间窗。
  14. 如权利要求11所述的网络设备,其特征在于,所述第一样式中的K个第一时间单元的位置是根据所述第一通信设备的业务延时需求确定的;所述第二样式中的K个第一时间单元的位置是根据所述第二通信设备的业务延时需求确定的;
    其中,在所述第一通信设备和第二通信设备中,针对所述目标通信设备组中的至少两个通信设备,业务延时小的通信设备对应的样式中包括的第一时间单元位于业务延时大的通信设备对应的样式中包括的第一时间单元之前。
  15. 一种通信设备,其特征在于,包括:
    收发器,用于接收网络设备发送的第一指示信息,所述第一指示信息用于指示时间窗,所述时间窗为所述网络设备为目标通信设备组确定的,所述目标通信设备组包括至少两个通信设备,所述目标通信设备组中的两个通信设备之间的距离小于或等于阈值,所述第一通信设备为所述目标通信设备组中任一个;
    处理器,用于解析所述收发器接收到的所述第一指示信息,确定所述时间窗;
    所述收发器,还用于在所述时间窗发送和接收数据。
  16. 如权利要求15所述的通信设备,其特征在于,所述时间窗包括N个时间单元,所述N个时间单元包括K个第一时间单元和L个第二时间单元,其中,所述N为大于或等于2的整数,所述K为大于或等于1的整数,所述L为大于或等于1且小于等于(N-K)的整数,所述第一指示信息包括至少两个样式,所述至少两个样式中的每个样式分别由所述K个第一时间单元和所述L个第二时间单元组合形成、且所述至少两个样式中的每个样式的K个第一时间单元和L个第二时间单元组合形式不一样;
    所述收发器,用于:
    接收所述网络设备发送的第一样式,所述第一样式属于所述至少两个样式;在所述第一样式中包括的K个第一时间单元上发送第一数据、在所述第一样式中包括的L个第二时间单元中的至少一个第二时间单元上接收第二数据,所述第二数据为第二通信设备在第二样式中包括的K个第一时间单元上发送的,所述第二样式属于所述至少两个样式,所述第二通信设备为所述目标通信设备组中除所述第一通信设备外的一个。
  17. 如权利要求16所述的通信设备,其特征在于,所述收发器,还用于:
    在所述第一样式中包括的K个第一时间单元上发送第二指示信息,所述第二指示信息用于指示所述第一样式中包括的发送所述第一数据的当前第一时间单元在所述第一样式中包括的K个第一时间单元中的位置。
  18. 如权利要求16所述的通信设备,其特征在于,所述收发器,还用于:
    接收第三指示信息,所述第三指示信息用于指示所述第二样式中包括的发送所述第二数据的当前第一时间单元在所述第二样式中包括的K个第一时间单元中的位置;
    所述处理器,还用于:
    当对所述第二数据译码失败、且确定所述第三指示信息指示的所述第二样式中包括的当前第一时间单元的位置不是所述第二样式中包括的K个第一时间单元中的最后一个时,控制所述收发器接收所述第二通信设备在所述第二样式中包括的后一个第一时间单元上发送的所述第二数据;所述后一个第一时间单元为所述第二样式中包括的K个第一时间单元中位于所述第三指示信息指示的所述第二样式中包括的当前第一时间单元之后的一个第一时间单元;
    对所述收发器两次接收到的所述第二数据合并译码。
  19. 一种计算机存储介质,其特征在于,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令在被计算机调用时,使所述计算机执行如权利要求1至9任一权利要求所述的方法。
PCT/CN2019/091783 2018-07-18 2019-06-18 一种数据传输方法、网络设备、通信设备及存储介质 WO2020015494A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19838576.7A EP3813457A4 (en) 2018-07-18 2019-06-18 DATA TRANSFER METHOD, NETWORK DEVICE, COMMUNICATION DEVICE AND STORAGE MEDIUM
US17/152,584 US20210144731A1 (en) 2018-07-18 2021-01-19 Data transmission method, network device, communications device, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810792771.7A CN110740509A (zh) 2018-07-18 2018-07-18 一种数据传输方法、网络设备、通信设备及存储介质
CN201810792771.7 2018-07-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/152,584 Continuation US20210144731A1 (en) 2018-07-18 2021-01-19 Data transmission method, network device, communications device, and storage medium

Publications (1)

Publication Number Publication Date
WO2020015494A1 true WO2020015494A1 (zh) 2020-01-23

Family

ID=69164973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091783 WO2020015494A1 (zh) 2018-07-18 2019-06-18 一种数据传输方法、网络设备、通信设备及存储介质

Country Status (4)

Country Link
US (1) US20210144731A1 (zh)
EP (1) EP3813457A4 (zh)
CN (1) CN110740509A (zh)
WO (1) WO2020015494A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111258582B (zh) * 2020-02-10 2023-09-05 北京字节跳动网络技术有限公司 一种窗口渲染方法、装置、计算机设备及存储介质
CN111314881B (zh) * 2020-02-11 2023-03-21 展讯通信(上海)有限公司 一种直连链路建立方法及相关设备
CN115412888A (zh) * 2021-05-27 2022-11-29 华为技术有限公司 发送、接收数据的方法、资源指示方法、装置及系统
US11856534B2 (en) * 2021-06-25 2023-12-26 Qualcomm Incorporated Transmitting sidelink reference signals for joint channel estimation and automatic gain control

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018064179A1 (en) * 2016-09-30 2018-04-05 Intel Corporation V2x services in next generation cellular networks
CN108029101A (zh) * 2015-09-23 2018-05-11 高通股份有限公司 用于交通工具到交通工具通信的基于位置和先听后调度的资源分配

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112013022758A2 (pt) * 2011-03-07 2016-12-06 Intel Corp método implementado por computador, dispositivo de máquina para máquina, sistema de computador e sistema de máquina para máquina
CN104184540B (zh) * 2013-05-23 2017-12-01 电信科学技术研究院 D2d通信中的数据传输方法和设备
JP6258613B2 (ja) * 2013-07-02 2018-01-10 株式会社Nttドコモ 基地局、ユーザ装置、リソース割り当て方法、及びリソース決定方法
EP3051911B1 (en) * 2013-09-27 2019-08-28 Kyocera Corporation Communication control method
KR102313625B1 (ko) * 2014-01-10 2021-10-19 삼성전자 주식회사 이동통신 시스템에서 단말 대 단말 통신을 위한 무선 자원 할당 방법 및 장치
CN112135359A (zh) * 2014-08-06 2020-12-25 交互数字专利控股公司 用于确定设备到设备传输模式的方法和装置
US9999066B2 (en) * 2014-09-26 2018-06-12 Telefonaktiebolaget Lm Ericsson (Publ) Method and device of resource allocations for scheduling assignments in device to device communications
WO2016194279A1 (ja) * 2015-06-02 2016-12-08 日本電気株式会社 基地局及びスケジューリング方法
WO2017052458A1 (en) * 2015-09-23 2017-03-30 Telefonaktiebolaget Lm Ericsson (Publ) Scheduling and transmitting control information and data for direct communication
EP3434050B1 (en) * 2016-03-25 2019-10-30 Panasonic Intellectual Property Corporation of America Improved allocation of radio resources for vehicular communication
EP3425975B1 (en) * 2016-03-30 2021-12-01 Huawei Technologies Co., Ltd. V2x communication method and device
CN106507494B (zh) * 2016-12-23 2019-07-16 北京交通大学 基于分组的m2m通信上行半静态调度方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108029101A (zh) * 2015-09-23 2018-05-11 高通股份有限公司 用于交通工具到交通工具通信的基于位置和先听后调度的资源分配
WO2018064179A1 (en) * 2016-09-30 2018-04-05 Intel Corporation V2x services in next generation cellular networks

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "V2V System Level Performance", 3GPP TSG-RAN WGL#82BIS R1-155755, 9 October 2015 (2015-10-09), XP051002578 *
See also references of EP3813457A4

Also Published As

Publication number Publication date
US20210144731A1 (en) 2021-05-13
EP3813457A1 (en) 2021-04-28
CN110740509A (zh) 2020-01-31
EP3813457A4 (en) 2021-08-04

Similar Documents

Publication Publication Date Title
US11985016B2 (en) Apparatuses and methods of switching between different numerologies
WO2020015494A1 (zh) 一种数据传输方法、网络设备、通信设备及存储介质
US20210168849A1 (en) Method, apparatus, and system for allocating resources in wireless communication system
US20200280981A1 (en) Method and apparatus for managing resource pool in wireless communication system
JP2022552296A (ja) 複数のpdsch送信機会における開始シンボルをシグナリングするためのシステム及び方法
JP7273964B2 (ja) サイドリンク通信方法、端末及びネットワーク機器
CN108292983A (zh) 业务传输的方法和装置
CN114026923A (zh) 用于在无线通信系统中发送和接收数据信道的方法和装置
KR20220050157A (ko) 리소스 다중화 방법 및 장치
WO2021056564A1 (zh) 直连通信操作处理方法、装置及存储介质
CN112997433B (zh) 用于harq传输的方法以及通信设备
WO2020160566A1 (en) Method for v2x communication
JP2023529711A (ja) 1つ以上のcoresetに対する2つ以上のtci状態のアクティブ化
WO2021027806A1 (zh) 信息传输的方法和装置
WO2020063596A1 (zh) 一种通信方法及装置
WO2021063375A1 (zh) 反馈信息处理方法及通信装置
WO2020164392A1 (zh) 一种通信方法及装置
WO2021031855A1 (zh) 一种通信方法及装置
CN117837182A (zh) 终端以及无线通信方法
CN107535008A (zh) 一种数据传输的方法及装置
US11937276B1 (en) Method and device for sidelink communication
WO2022151230A1 (zh) 一种波束指示方法及装置
WO2021229777A1 (ja) 端末
WO2020156339A1 (zh) 一种通信方法及装置
WO2022079861A1 (ja) 端末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19838576

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019838576

Country of ref document: EP

Effective date: 20210120