WO2016194279A1 - 基地局及びスケジューリング方法 - Google Patents

基地局及びスケジューリング方法 Download PDF

Info

Publication number
WO2016194279A1
WO2016194279A1 PCT/JP2016/001863 JP2016001863W WO2016194279A1 WO 2016194279 A1 WO2016194279 A1 WO 2016194279A1 JP 2016001863 W JP2016001863 W JP 2016001863W WO 2016194279 A1 WO2016194279 A1 WO 2016194279A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
transmission
radio
base station
radio resource
Prior art date
Application number
PCT/JP2016/001863
Other languages
English (en)
French (fr)
Inventor
一志 村岡
弘人 菅原
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US15/578,271 priority Critical patent/US10531504B2/en
Priority to JP2017521664A priority patent/JP6756332B2/ja
Publication of WO2016194279A1 publication Critical patent/WO2016194279A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • Proximity-based services defined in 3GPP Release 12 is an example of D2D communication (see, for example, Non-Patent Document 1).
  • ProSe direct discovery is a wireless terminal that can execute ProSe (ProSe-enabled User Equipment (UE)) and other ProSe-enabled UEs, and the wireless communication technology that these two UEs have (for example, Evolved Universal Universal Terrestrial Radio Access -UTRA) It is performed by the procedure to discover using only the ability of (technology).
  • ProSe direct discovery may be performed by more than two ProSe-enabled UEs.
  • ProSe direct communication enables establishment of a communication path between two or more ProSe-enabled UEs existing in the direct communication range after the procedure of ProSe direct discovery.
  • ProSe direct communication enables ProSe-enabled UEs to communicate directly with other ProSe-enabled UEs without going through the public land mobile communication network (Public Land Mobile Mobile Network (PLMN)) including the base station (eNodeB). Allows to communicate.
  • ProSe direct communication may be performed using the same wireless communication technology (E-UTRA technology) as that used to access the base station (eNodeB), or wireless local wireless network (WLAN) wireless technology (ie IEEE 802.11 (radio technology) may be used.
  • E-UTRA technology wireless communication technology
  • WLAN wireless local wireless network
  • Scheduled ⁇ resource allocation of ProSe direct communication when a UE desires side link transmission, the UE requests radio resource allocation for side link transmission from the eNodeB, and the eNodeB allocates resources for side link control and data. Assign to the UE. Specifically, the UE sends a scheduling request to the eNodeB to request an uplink (UL) data transmission resource (Uplink Shared Channel (UL-SCH) resource), and is allocated with an uplink grant (UL grant). Send Sidelink Buffer Status Report (Sidelink BSR) to the eNodeB using the received UL data transmission resource. The eNodeB determines a side link transmission resource to be allocated to the UE based on the Sidelink BSR, and transmits a side link grant (SL grant) to the UE.
  • UL uplink
  • UL-SCH Uplink Shared Channel
  • UL grant Uplink grant
  • a resource block means LTE and LTE-Advanced time-frequency resources, and a plurality of OFDM (or SC-FDMA) symbols continuous in the time domain and a plurality of consecutive OFDM symbols in the frequency domain.
  • one resource block includes 12 OFDM (or SC-FDMA) symbols continuous in the time domain and 12 subcarriers in the frequency domain. That is, Resource block assignment and hopping allocation and Time resource pattern index specify a resource block for transmitting PSSCH.
  • the UE that is, the side link transmission terminal determines the PSCCH resource and the PSSCH resource according to SL grant.
  • the UE autonomously selects a resource for side link control (PSCCH) and data (PSSCH) from the resource pool set by eNodeB.
  • the eNodeB may allocate a resource pool to be used for autonomous resource selection in the System Information Block (SIB) 18 to the UE.
  • SIB System Information Block
  • the eNodeB may allocate a resource pool to be used for autonomous resource selection by dedicated RRC signaling to a radio resource control (RRC) _CONNECTED UE. This resource pool may also be available when the UE is RRC_IDLE.
  • ProSe direct discovery two resource allocation modes are specified: scheduled resource allocation and autonomous resource selection.
  • autonomous-resource-selection of ProSe direct discovery UEs that wish to transmit (announce) discovery signals (discovery information) autonomously select radio resources from the announcement resource pool.
  • the resource pool is set in the UE by broadcast (SIB 19) or dedicated signaling (RRC signaling).
  • UE requests resource allocation for announcement from eNodeB by RRC signaling.
  • the eNodeB allocates an announcement resource to the UE from the resource pool set in the UEs for monitoring. If scheduled resource allocation is used, eNodeB supports providing resources for ProSe direct discovery monitoring in SIB 19, but not announcement resources.
  • the transmitting UE When performing direct transmission on the side link, the transmitting UE (D2D transmitting UE) (hereinafter referred to as the transmitting terminal) uses the radio resource area (Resource pool) for the side link control channel (ie, PSCCH). Then, scheduling assignment information (Scheduling Assignment) is transmitted.
  • the scheduling allocation information is also called Sidelink, Control, Information, (SCI), format, 0.
  • the scheduling assignment information includes contents such as resource, block, assignment, and hopping, allocation, time, resource, pattern, index, and modulation, and coding, Scheme (MCS).
  • SCI format 0 scheduling resource assignment
  • DCI resource format 5 resource resource grant
  • the transmitting terminal transmits data on PSSCH using radio resources according to the schedule allocation information.
  • a receiving UE receives schedule allocation information from the transmitting terminal on the PSCCH, and receives data on the PSSCH according to the schedule allocation information.
  • transmission terminal is an expression that focuses on the transmission operation of the wireless terminal, and does not mean a wireless terminal dedicated to transmission.
  • the term “receiving terminal” is an expression that focuses on the receiving operation of the wireless terminal, and does not mean a terminal dedicated to reception. That is, the transmitting terminal can also perform a receiving operation, and the receiving terminal can also perform a transmitting operation.
  • the radio resource is, for example, a time resource, a frequency resource, a time-frequency resource, an orthogonal code resource, a transmission power resource, or any combination thereof.
  • the radio resource is a time-frequency resource, and its minimum unit is the resource block described above.
  • interference may occur between the plurality of D2D transmissions.
  • D2D communication pair in this specification means a pair of a D2D transmitting terminal and a D2D receiving terminal that perform D2D transmission.
  • Non-Patent Document 4 describes that a base station selects a mode of D2D communication performed in a cellular network. Specifically, the base station considers interference (signal-to-interference plus noise ratio (SINR)) between the cellular user (UE) that performs cellular communication and the D2D communication pair, and the D2D communication pair Should be reused (ie, reuse mode) or part of cellular communication resources should be used as dedicated resources (resources used for communication between wireless terminals and base stations) (Ie, dedicated mode) or whether to communicate via the base station (ie, cellular mode).
  • SINR signal-to-interference plus noise ratio
  • Patent Document 1 discloses that a base station allocates dedicated radio resources for direct discovery to two radio terminals.
  • the base station disclosed in Patent Literature 1 detects the occurrence of interference between a D2D communication pair and a cellular user (UE)
  • the base station directly discovers the wireless terminal and the cellular user in the D2D communication pair.
  • wireless terminal and cellular user in a D2D communication pair can perform the direct discovery procedure using an individual radio
  • Non-Patent Document 3 and Patent Document 1 only show that interference between the D2D communication pair and the cellular user (UE) is considered. That is, Non-Patent Document 3 and Patent Document 1 do not disclose radio resource allocation to a plurality of D2D transmissions performed by a plurality of D2D communication pairs, and interference between a plurality of D2D transmissions and a plurality of D2D transmissions are not disclosed. It does not disclose the spatial reuse of radio resources.
  • One of the objectives that the embodiments disclosed herein seek to achieve contributes to enabling efficient spatial reuse of radio resources in multiple D2D transmissions performed by multiple D2D communication pairs.
  • a base station includes a wireless transceiver and at least one processor.
  • the wireless transceiver is configured to communicate with a plurality of wireless terminals in a first cell.
  • the at least one processor is configured to schedule radio resources for a plurality of D2D transmissions performed by a plurality of device-to-device (D2D) communication pairs included in the plurality of wireless terminals.
  • Each D2D transmission includes one wireless terminal belonging to each D2D communication pair directly wirelessly transmitting to the other wireless terminal without passing through the base station.
  • the at least one processor further allows the use of the same radio resource by two D2D communication pairs not located near each other but uses the same radio resource by two D2D communication pairs located near each other.
  • the radio resource is configured to be scheduled for the plurality of D2D transmissions according to the allocation rule to be limited.
  • the scheduling method in the base station allows the use of the same radio resource by two device-to-device (D2D) communication pairs that are not located near each other, but two that are located near each other.
  • D2D device-to-device
  • Each D2D transmission includes one wireless terminal belonging to each D2D communication pair directly wirelessly transmitting to the other wireless terminal without passing through the base station.
  • the program includes a group of instructions (software code) for causing the computer to perform the method according to the second aspect described above when read by the computer.
  • FIG. 1 shows a configuration example of a wireless communication system according to the present embodiment.
  • the wireless terminal 1 can perform D2D communication (eg, ProSe) and can perform D2D communication on the inter-terminal direct interface (ie, side link) 101.
  • D2D communication includes at least one of direct discovery and direct communication.
  • D2D communication can also be called side link communication or ProSe communication.
  • six wireless terminals 1A to 1F and three side link communication pairs 3A to 3C are shown.
  • the D2D communication pair 3A includes wireless terminals 1A and 1B, and performs D2D communication on the side link 101A.
  • the D2D communication pair 3B includes wireless terminals 1C and 1D, and performs D2D communication in the side link 101B.
  • the D2D communication pair 3C includes wireless terminals 1E and 1F, and performs D2D communication in the side link 101C.
  • the base station 2 manages the cell 21 and can communicate with each of the plurality of wireless terminals 1 using cellular communication technology (e.g., “Evolved” Universal “Terrestrial” Radio “Access” (E-UTRA) technology).
  • E-UTRA Universal “Terrestrial” Radio “Access”
  • scheduled resource allocation is used for radio resource allocation for D2D transmission. That is, the base station 2 communicates with the radio terminal 1 (transmission terminal) in the D2D communication pair 3 that performs D2D transmission within the coverage of the cell 21, and schedules (allocates) radio resources for D2D transmission to the radio terminal. It is configured as follows.
  • the base station 2 controls the proximity relationship (proximity relation or neighbor relation) of the plurality of D2D communication pairs 3 in order to suppress interference between the plurality of D2D transmissions by the plurality of D2D communication pairs 3 located in the vicinity of each other. Is configured to allocate radio resources to a plurality of D2D transmissions (or transmission terminals) by a plurality of D2D communication pairs 3 in consideration of the above.
  • FIG. 2 is a flowchart showing an example of the scheduling method in the base station 2 (processing 200).
  • the base station 2 schedules radio resources for a plurality of D2D transmissions performed by a plurality of D2D communication pairs 3 according to a predetermined allocation rule.
  • the predetermined allocation rule allows the use of the same radio resource by two D2D communication pairs 3 not located near each other, but the same radio resource by two D2D communication pairs located near each other. Limit use.
  • side link transmission permission (scheduling permission or side link permission) using the radio resource determined in block 201 is transmitted to each D2D communication pair 3 (that is, a transmission terminal in each D2D communication pair 3).
  • the proximity relationship between two D2D communication pairs may be evaluated based on whether one pair of transmission terminals and the other pair of transmission terminals are located in the vicinity of each other.
  • the proximity relationship between two D2D communication pairs may be evaluated based on whether one pair of transmitting terminals and the other pair of receiving terminals are located in the vicinity of each other.
  • the base station 2 may be configured to determine whether the two D2D communication pairs 3 are close to each other. In some implementations, the base station 2 reports from at least one wireless terminal 1 belonging to at least one of the two D2D communication pairs 3 to determine whether the two D2D communication pairs 3 are close to each other. The detected result of the nearby wireless terminal may be used.
  • the detection result of the nearby wireless terminal may indicate one or more transmission source terminals of a discovery signal for direct discovery that the wireless terminal 1 could receive.
  • the detection result of the neighboring wireless terminal includes, for example, at least one of (a) one or more neighboring wireless terminal identifiers and (b) one or more D2D communication pair identifiers to which one or more neighboring wireless terminals belong. One may be included.
  • the detection result of the nearby wireless terminal further includes (c) an identifier of the base station or cell to which each of the 1 or more nearby wireless terminals is associated, and (d) a signal (1) from the 1 or more nearby wireless terminals ( eg, reception signal power of (discovery signal) and (e) the number of times of detection of one or more neighboring wireless terminals may be included.
  • the discovery signal transmitted by the nearby wireless terminal includes, as its message, (a) an identifier of the own terminal and (b) the own terminal.
  • An identifier of one or a plurality of D2D communication pairs to which the terminal belongs, and (c) an identifier of a base station or a cell with which the terminal is associated may be included.
  • the wireless terminal 1 may report the detection result of the nearby wireless terminal to the base station 2 periodically or aperiodically. For example, when there is a change in the list of nearby wireless terminals, the wireless terminal 1 may transmit the detection result of the nearby wireless terminals to the base station 2.
  • the period (time window) for generating a list of neighboring wireless terminals is a scheduling period that is a reciprocal multiple of the discovery transmission probability (100%, 75%, 50%, or) 25%) broadcast from the base station 2 in the system information. There may be.
  • the base station 2 determines that the D2D communication pair to which the wireless terminal 1 belongs and the D2D communication pair to which the neighboring wireless terminal detected by the wireless terminal 1 belongs are close to each other (neighboring relations). Also good.
  • the base station 2 may evaluate the proximity (proximity level) between two D2D communication pairs in multiple stages of three or more stages. In this case, the base station 2 may determine the proximity (proximity level) of the two D2D communication pairs on the basis of the received signal power of the signal (eg, discovery signal) from the neighboring wireless terminal in the wireless terminal 1. .
  • the base station 2 determines at least one wireless terminal 1 belonging to each D2D communication pair 3 to determine whether the two D2D communication pairs 3 are close to each other.
  • Location information may be used.
  • the position information of the wireless terminal 1 explicitly or implicitly indicates the geographical position of the wireless terminal 1.
  • the location information of the wireless terminal 1 may include GNSS location information obtained by a Global Navigation Satellite System (GNSS) receiver.
  • GNSS position information indicates latitude and longitude.
  • the location information of the wireless terminal 1 may include a Radio Frequency (RF) fingerprint.
  • the RF fingerprint includes peripheral cell measurement information (e.g., cell ID and reference signal received power (RSRP)) measured by the wireless terminal 1.
  • RSRP reference signal received power
  • the base station 2 may receive the position information of the wireless terminal 1 directly from the wireless terminal 1 or may receive it via a server. For example, the base station 2 may use the location information of the wireless terminal 1 acquired using the network level discovery procedure.
  • the network level discovery procedure is, for example, EPC-level ProSe Discovery.
  • EPC-level ProSe Discovery UEs intermittently transmit the location information that can estimate their current location to the network, and the network (ie, ProSe function entity) is based on the location information received from UEs To determine their proximity.
  • the base station 2 may use position information included in the Logged MDT measurement data obtained by the Minimization of Drive Tests (MDT) function of the wireless terminal 1.
  • MDT Minimization of Drive Tests
  • the base station 2 when the geographical distance between the two wireless terminals 1 derived from the location information is smaller than a predetermined threshold, the base station 2 is close to the two D2D communication pairs 3 to which each of the two wireless terminals 1 belongs. It may be determined that it is in a close relationship. In another example, the base station 2 may evaluate the proximity (proximity level) between two D2D communication pairs in multiple stages of three or more stages. In this case, the base station 2 may determine the proximity (proximity level) of the two D2D communication pairs based on the geographical distance between the two wireless terminals 1 derived from the position information.
  • the base station 2 when the base station 2 according to the present embodiment schedules radio resources for a plurality of D2D transmissions by a plurality of D2D communication pairs 3, two D2Ds that are not located near each other.
  • the use of the same radio resource by the communication pair 3 is allowed, but the use of the same radio resource by two D2D communication pairs located in the vicinity of each other is restricted. That is, the base station 2 determines whether or not to perform spatial reuse of radio resources for D2D transmission in consideration of the positions of a plurality of D2D communication pairs (or proximity relations between the plurality of D2D communication pairs). To do.
  • the base station 2 allows the spatial reuse of radio resources by a plurality of D2D communication pairs, and when the plurality of D2D communication pairs are located in the vicinity of each other, Use can be suppressed. Therefore, the base station 2 enables efficient space reuse of radio resources in a plurality of D2D transmissions performed by a plurality of D2D communication pairs.
  • the base station 2 follows a plurality of D2D communication pairs (or these) according to a proportional fairness (PF) normative algorithm that imposes restrictions on the neighborhood relationship between the plurality of D2D communication pairs (that is, the allocation rules described above).
  • Radio resources are allocated to a plurality of D2D transmissions by a plurality of transmitting terminals in a plurality of pairs.
  • the scheduling metric (PF metric) of D2D transmission (D2D communication pair 3) in each radio resource may be a ratio of instantaneous throughput to average throughput (ie, instantaneous throughput / average throughput).
  • the base station 2 adaptively determines the modulation scheme and coding rate (MCS) according to the reception level of the discovery signal (or other channel quality measurement signal), and determines the determined modulation scheme and coding rate.
  • MCS modulation scheme and coding rate
  • the instantaneous throughput of D2D transmission (D2D communication pair 3 or transmission terminal) may be calculated. Instead, the base station 2 may use a fixed instantaneous throughput without considering the adaptive MCS.
  • the PF metric is the reciprocal of the average throughput, and therefore the base station 2 performs radio resource allocation in ascending order from D2D transmission (D2D communication pair 3 or transmitting terminal) having a small average throughput.
  • the base station 2 operates as follows in order to impose restrictions on the neighborhood relationship between a plurality of D2D communication pairs (that is, the above allocation rule). That is, the base station 2 selects the D2D communication pair 3 (D2D transmission or transmission terminal) based on the PF metric in the radio resource of interest, but other D2D transmissions that are in a proximity relationship with the D2D communication pair 3 When a pair (D2D transmission or transmission terminal) is already scheduled for the radio resource, the radio resource is not allocated to D2D transmission by the selected D2D communication pair (or transmission terminal).
  • the base station 2 selects the first D2D communication pair (D2D transmission or transmission terminal) according to the descending order of the scheduling metric in the first radio resource of interest, and from the first D2D communication pair If the first radio resource is not allocated to a second D2D communication pair (D2D transmission or transmission terminal) that has a large scheduling metric and is in a proximity relationship with the first D2D communication pair.
  • the first radio resource is allocated to D2D transmission by one D2D communication pair (or transmitting terminal).
  • FIG. 3 is a flowchart showing an example of PF normative scheduling (processing 300) in which restrictions on the neighborhood relationship between a plurality of D2D communication pairs are imposed.
  • the base station 2 selects a target radio resource (target radio resource).
  • the base station 2 selects a D2D communication pair according to the descending order of the scheduling metric (PF metric) in the target radio resource.
  • the base station 2 determines that the target radio resource is selected by the selected D2D communication pair when none of the D2D communication pairs in the proximity relationship with the selected D2D communication pair is scheduled in the target radio resource. Assign to D2D transmission.
  • the base station 2 repeats the processing of blocks 302 and 303 until all the D2D communication pairs (transmission terminals) requesting radio resource allocation are considered with respect to the target radio resource (block 304). Further, the base station 2 repeats the processing from blocks 301 to 303 for all radio resources to be considered in one scheduling cycle (block 305).
  • the scheduling period is a period in which the base station 2 transmits a scheduling grant (SL grant) for the side link.
  • SL grant scheduling grant
  • the scheduling period for the side link is called Sidelink Control period or PSCCH period.
  • FIG. 4 shows an example of radio resources used for D2D communication in 3GPP Release 12.
  • the scheduling period ie, Side Link Control Period or PSCCH period
  • PSSCH resource allocation for D2D data transmission is time resource resource pattern index Is specified in units of 6, 7 or 8 subframes (6, 7, 7, or 8 ms). Therefore, during one Sidelink Control period, the same PSSCH resource allocation is used in 6, 7 or 8 subframe periods.
  • the PSSCH resource allocation cycle (i.e., time resource pattern) is 8 subframes.
  • the PSSCH resource allocation cycle (i.e., time resource pattern) is set to 6, 7 or 8 subframes according to TDD UL / DL configuration.
  • FIG. 4 shows a case where the PSSCH resource allocation cycle (i.e., time resource pattern) for D2D data transmission is 8 subframes. Note that FIG. 4 is an example, and frequency domain resources may be allocated instead of time domain resources (e.g., subframe) or together with time resource domains.
  • FIG. 5 is a schematic diagram showing a specific example of the proximity relationship between a plurality of D2D communication pairs 3 in the cell 21 operated by the base station 2.
  • the proximity relationship of five D2D communication pairs is shown.
  • D2D communication pair # 1 has a proximity relationship with D2D communication pair # 2.
  • the D2D communication pair # 2 has a proximity relationship with all of the other four D2D communication pairs # 1, # 3, # 4, and # 5.
  • the D2D communication pair # 3 has a proximity relationship with the two D2D communication pairs # 2 and # 4.
  • the D2D communication pair # 4 has a proximity relationship with the three D2D communication pairs # 2, # 3, and # 5.
  • the D2D communication pair # 5 has a proximity relationship with the two D2D communication pairs # 2 and # 4.
  • FIG. 6 shows an example in which the D2D data transmission resource having the 8-subframe period shown in FIG. 4 is allocated to the five D2D communication pairs 3 shown in FIG. 5 according to the scheduling algorithm shown in FIG. .
  • a check mark written in each cell (cell) indicates that the corresponding time domain resource (subframe) is assigned to the corresponding D2D communication pair. Further, the number attached to the check mark indicates the descending order of the scheduling metric (PF metric) in each time domain resource.
  • subframe # 1 since the PF metric of D2D communication pair # 1 is the maximum, D2D transmission by D2D communication pair # 1 is first scheduled in subframe # 1.
  • the PF metric of the D2D communication pair # 3 is the second largest and the D2D communication pair # 3 is not in a proximity relationship with the D2D communication pair # 1, therefore, the D2D transmission by the D2D communication pair # 3 is subframe # 1. Scheduled second.
  • the PF metrics of the D2D communication pair # 2 and # 4 are the third and fourth, but since the D2D transmission by the D2D communication pair # 3 that is in close proximity to these is already scheduled in the subframe # 1, the subframe # 1 is not assigned to D2D transmission by D2D communication pairs # 2 and # 4. Finally, since the PF metric of D2D communication pair # 5 is the fifth (minimum), and D2D communication pair # 5 is not in a close relationship with D2D communication pairs # 1 and # 3, D2D transmission by D2D communication pair # 5 is performed. Scheduled to subframe # 1.
  • scheduling metric may be updated for each subframe by updating the average throughput for each subframe allocation, or may be updated for each scheduling period.
  • a procedure for searching for an assignable terminal for each subframe and shifting to assignment of the next subframe when there is no assignable terminal is shown.
  • Other than procedures are possible. For example, select D2D communication pairs in descending order of PF metric, select an arbitrary subframe from the subframes in which the selected D2D communication pair satisfies the constraints on the neighborhood relationship, and select the selected subframe as the selected D2D communication It may be assigned to a pair.
  • the subframe selection method includes (1) selecting a subframe with the smallest number of assigned D2D communication pairs, and (2) a maximum value of proximity (proximity level) of assigned D2D communication pairs ( That is, it is possible to select the subframe with the smallest (the closest terminal), (3) select the subframe with the smallest total amount of interference expected to be generated by the assigned D2D communication pair, and so on. is there.
  • the base station 2 uses a plurality of D2D communication pairs (or a plurality of these pairs) according to a round-robin algorithm in which a restriction on a neighborhood relationship between a plurality of D2D communication pairs (that is, the above-described allocation rule) is imposed.
  • Radio resources are allocated to a plurality of D2D transmissions by a plurality of transmission terminals.
  • the base station 2 sequentially allocates radio resources to a plurality of D2D communication pairs (or transmitting terminals) that request resource allocation for D2D transmission.
  • the base station 2 does not schedule two D2D communication pairs that are close to each other in the same radio resource in order to impose restrictions on the close relationship between a plurality of D2D communication pairs (that is, the above-described allocation rule). .
  • FIG. 7 is a flowchart showing an example (processing 700) of round-robin scheduling in which restrictions on the neighborhood relationship between a plurality of D2D communication pairs are imposed.
  • the base station 2 selects one D2D communication pair (or transmitting terminal) in order from among a plurality of D2D communication pairs (or transmitting terminals) requesting resource allocation for D2D transmission.
  • the base station 2 determines that one or more radio resources for which no D2D communication pair in proximity with the selected D2D communication pair is scheduled are considered in one scheduling period. If present in the resource, one of these radio resources is assigned to the selected D2D communication pair (or transmitting terminal).
  • the base station 2 repeats the processing of blocks 701 and 702 until all the D2D communication pairs (sending terminals) requesting radio resource allocation are considered (block 703). Further, the base station 2 repeats the processing from blocks 701 to 703 until resource allocation to any D2D communication pair becomes impossible (block 704).
  • FIG. 8 shows an example in which the D2D data transmission resources having the 8-subframe period shown in FIG. 4 are allocated to the five D2D communication pairs 3 shown in FIG. 5 according to the algorithm shown in FIG.
  • the subframe number entered in each cell (cell) indicates the radio resource allocated in the corresponding allocation round for the corresponding D2D communication pair.
  • a dash mark written in each cell (cell) indicates that radio resources cannot be allocated to D2D transmission by the corresponding D2D communication pair in the corresponding allocation round due to the restriction of the proximity relationship.
  • radio resource allocation is performed as follows. First, D2D transmission by D2D communication pair # 1 is scheduled in subframe # 1. Next, in the radio resource allocation to the D2D communication pair # 2, since the D2D communication pair # 2 is in a proximity relationship with the D2D communication pair # 1, the seven subframes # 2 to # 8 except for the subframe # 1 are used. Either one is assigned to the D2D communication pair # 2. In the example of FIG. 8, D2D transmission by the D2D communication pair # 2 is scheduled in the subframe # 2.
  • the seven subframes # 1 except for the subframe # 2 and Any of # 3 to # 8 is assigned to the D2D communication pair # 3.
  • the D2D transmission by the D2D communication pair # 3 is scheduled in the subframe # 1 similarly to the D2D transmission of the D2D communication pair # 1.
  • the subframe # 1 One of the six subframes # 3 to # 8 except for # 2 and # 2 is assigned to the D2D communication pair # 4.
  • D2D transmission by D2D communication pair # 4 is scheduled in subframe # 3.
  • the subframes # 2 and # 3 Any one of the six subframes # 1 and # 4 to # 8 except for is assigned to the D2D communication pair # 5.
  • the D2D transmission by the D2D communication pair # 5 is scheduled in the subframe # 1 similarly to the D2D transmission of the D2D communication pairs # 1 and # 3.
  • Radio resources can be allocated to each D2D transmission while suppressing interference, and other D2D communication pairs (or transmitting terminals) that do not have other D2D communication pairs in the vicinity have many radio resources due to the effect of space reuse. Can be used.
  • FIG. 9 shows a configuration example of the wireless communication system according to the present embodiment.
  • the base station 2 allocates radio resources to D2D transmission by the D2D communication pair 3 (or transmission terminal) located within the coverage of the cell 21, the D2D communication pair 3 (or transmission terminal) is adjacent to the base station 2 It is configured to consider whether or not there is a proximity relationship with a wireless terminal belonging to the cell.
  • the D2D communication pair 3A located within the coverage of its own cell 21A is adjacent to the adjacent cell radio terminal 1E or 1F or the adjacent cell D2D communication pair 3C belonging to the adjacent cell 21B.
  • the priority radio resource of the cell 21A is preferentially allocated over the other radio resources for the D2D transmission performed by the D2D communication pair 3A.
  • the priority radio resource of the cell 21A is a radio resource in which the base station 2B operating the adjacent cell 21B restricts use by the radio terminal 1 (e.g., 1E and 1F) in the adjacent cell 21B.
  • the base station 2A detects that the D2D communication pair 3B located within the coverage of its own cell 21A is not located in the vicinity of the adjacent cell radio terminal or the adjacent cell D2D communication pair, and the priority radio resource of the cell 21A
  • the other radio resources except for are preferentially assigned to the D2D transmission performed by the D2D communication pair 3B.
  • Such a radio resource allocation operation by the base station 2A can contribute to suppressing interference of radio resources between adjacent cells.
  • the other radio resources excluding the priority radio resource of the cell 21A include the priority radio resource set in the adjacent cell 21B and the non-priority radio resource not set in any of the priority radio resources of the cells 21A and 21B. But you can.
  • the base station 2A assigns the priority radio resource of the cell 21B to the priority radio of the cell 21A for D2D transmission performed by the adjacent cell radio terminal or the D2D communication pair 3B not located in the vicinity of the adjacent cell D2D communication pair. Allocation may be prioritized over resources and non-priority radio resources.
  • the D2D communication pair 3B that is not in the proximity relationship with the adjacent cell radio terminal uses the priority radio resource of the adjacent cell, it does not cause inter-cell interference, and the adjacent cell radio terminal (or It is possible to increase the chance that the D2D communication pair 3A in the proximity relationship with the adjacent cell D2D communication pair) uses the non-priority radio resource.
  • FIG. 9 shows a case where the cell 21A has one adjacent cell 21B for ease of explanation.
  • two or more adjacent cells may exist around the cell 21A.
  • the priority radio resource of each adjacent cell may be set.
  • the base station 2A determines that the wireless terminal 1 (eg, 1A) belonging to its own cell 21A is in the vicinity of one or more wireless terminals belonging to one or more neighboring cells.
  • the radio terminal 1 (for example, 1A) of the priority radio resources of the one or more adjacent cells The priority of assignment to may be lowered.
  • the base station 2A communicates with the base station 2B via an interface between base stations (eg, LTE X2 interface) or via an upper network (eg, core network), and the cells 21A and 21B.
  • a priority radio resource may be set for each of the above.
  • the base station 2A can determine whether two D2D communication pairs belonging to different cells (associated with different base stations) are in close proximity to each other.
  • the detection result of the nearby wireless terminal reported from at least one wireless terminal 1 belonging to at least one of the three may be used.
  • the detection result of the nearby wireless terminal includes (a) the identifier of one or more nearby wireless terminals, and (c) the base station or cell to which each of the 1 or more nearby wireless terminals is associated. May be included.
  • the discovery signal may include an identifier of the nearby wireless terminal and a base station (or cell) identifier associated with the nearby wireless terminal.
  • FIG. 10 is a flowchart showing an example (processing 1000) of the scheduling method in the base station 2 according to the present embodiment.
  • the base station 2 obtains a proximity relationship between a plurality of D2D pairs in its own cell operated by itself, and detects a D2D pair that is in a proximity relationship with an adjacent cell radio terminal.
  • the proximity relationship between two D2D communication pairs depends on whether one pair of transmission terminals and the other pair of transmission terminals are located in the vicinity of each other. It may be evaluated. Alternatively, the proximity relationship between two D2D communication pairs may be evaluated based on whether one pair of transmitting terminals and the other pair of receiving terminals are located in the vicinity of each other.
  • the base station 2 assigns priority radio resources for its own cell to other D2D communication pairs (or transmission terminals) in the vicinity of neighboring cell radio terminals in preference to other radio resources.
  • the base station 2 preferentially allocates other radio resources excluding the priority radio resources for the own cell to the D2D communication pair that is not in the proximity relationship with the adjacent cell radio terminal.
  • FIG. 11 is a schematic diagram showing a specific example of the proximity relationship between a plurality of D2D communication pairs 3 in cells 21A and 21B adjacent to each other.
  • the proximity relationship of five D2D communication pairs is shown.
  • three D2D communication pairs # 1 to # 3 exist in the coverage of the cell 21A, and two D2D communication pairs # 4 and # 5 exist in the coverage of the cell 21B.
  • the D2D communication pair # 1 has a proximity relationship with the D2D communication pair # 2 in the cell 21A and also has a proximity relationship with the D2D communication pair # 4 in the adjacent cell 21B.
  • the D2D communication pair # 2 has a neighborhood relationship only with the D2D communication pair # 1.
  • D2D communication pair # 3 is not in a close relationship with any other D2D communication pair.
  • FIG. 12 shows a case where the allocation period (i.e., “time resource” pattern) of PSSCH resources for D2D data transmission is 8 subframes, as shown in FIG. Further, FIG. 12 illustrates an example of priority radio resource settings for eight subframes.
  • three subframes # 2, # 5, and # 8 are set as priority radio resources for the cell 21A (cell #A). Further, three subframes # 1, # 4, and # 7 are set as priority radio resources for the cell 21B (cell #B).
  • the remaining two subframes # 3 and # 6 are non-priority radio resources that are not set as priority radio resources for either of the cells 21A and 21B.
  • FIG. 13 shows the D2D data transmission resources of the 8-subframe period shown in FIG. 12 according to the scheduling algorithm imposed by the restrictions on the proximity relationship between the D2D communication pairs and the restrictions on the priority radio resources between adjacent cells.
  • a round-robin algorithm is used, and radio resources are repeatedly assigned to these three D2D communication pairs in the order of pairs # 1, # 2, and # 3.
  • a check mark written in each square (cell) in FIG. 13 indicates that a corresponding time domain resource (subframe) is assigned to the corresponding D2D communication pair.
  • the numbers 1 to 16 attached to the check marks indicate the determination order of radio resource allocation.
  • the D2D communication pair # 1 that has a neighbor relationship with the adjacent cell radio terminal is assigned radio resources according to the priority order of the priority radio resource, the non-priority radio resource of the cell 21A, and the priority radio resource of the adjacent cell 21B.
  • the D2D communication pairs # 2 and # 3 that do not have a neighbor relationship with the adjacent cell radio terminal are assigned radio resources according to the priority order of the priority radio resource, the non-priority radio resource of the adjacent cell 21B, and the priority radio resource of the cell 21A. .
  • the subframes # 2, # 5, and # set in the priority radio resources for the cell 21A 8 is assigned to D2D transmission by D2D communication pair # 1.
  • the subframes # 1, # 4, and # 7 set as the priority radio resources for the adjacent cell 21B To subframe # 1 is assigned to D2D transmission by D2D communication pair # 2.
  • the D2D communication pair # 3 does not have a proximity relationship with the adjacent cell D2D communication pair # 4 and does not have a proximity relationship with the other D2D communication pairs # 1 and 2 in the cell 21A. Therefore, the same subframe # 1 assigned to D2D communication pair # 2 is assigned to D2D transmission by D2D communication pair # 3.
  • subframe # 5 is assigned to D2D transmission by D2D communication pair # 1 from the remaining subframes # 5 and # 8 set as the priority radio resources for cell 21A. It is done.
  • D2D communication pairs # 2 and # 3 are assigned the remaining non-priority radio resources, that is, subframe # 4.
  • the D2D communication pair # 1 having a neighbor relationship with the adjacent cell radio terminal allocates priority radio resources (ie, subframes # 2, # 5, and # 8) for the own cell 21.
  • the priority radio resources for these own cells 21 can be allocated exclusively to the nearby D2D communication pair # 2.
  • the D2D communication pair # 3 has no proximity relationship with any of the D2D communication pairs in the own cell 21A and the adjacent cell 21B, all subframes # 1 to # 8 can be allocated due to the effect of space reuse. Can do.
  • the base station 2 is configured to evaluate the proximity (proximity level) between two D2D communication pairs in three or more stages. Furthermore, the base station 2 determines whether or not D2D transmission in the same time domain resource is permitted to these two D2D communication pairs according to the magnitude of the proximity.
  • FIG. 14 is a flowchart showing an example of the scheduling method (processing 1400) in the base station 2.
  • the base station 2 determines the proximity of the two D2D communication pairs 3.
  • the base station 2 determines that the two D2Ds are in the case where the degree of proximity is a relatively small first level, that is, the geographical distance between the two D2D communication pairs 3 is relatively long. Both communication pairs 3 are allowed to perform D2D transmission on the same time-frequency resource.
  • the base station 2 prohibits the two D2D communication pairs 3 from performing D2D transmission on the same time-frequency resource when the proximity is at the intermediate second level.
  • the two D2D communication pairs 3 are permitted to perform D2D transmission in a plurality of time-frequency resources having the same domain position and different frequency domain positions.
  • the base station 2 determines that the two D2Ds are in the case where the proximity is a relatively large third level, that is, the geographical distance between the two D2D communication pairs 3 is relatively close.
  • the communication pair 3 is prohibited from performing D2D transmission in the same time domain resource, and the two D2D communication pairs 3 are permitted to perform D2D transmission in a plurality of time-frequency resources having different time domain positions.
  • processing of blocks 1402, 1403, and 1404 may be executed in an order different from that shown in FIG. 14, or may be executed in parallel in time.
  • An example of a time-frequency resource is a resource block in LTE and LTE-Advanced.
  • one resource block includes 12 OFDM (or SC-FDMA) symbols continuous in the time domain and 12 subcarriers in the frequency domain.
  • an example of the time domain resource is a subframe (1 ms) corresponding to 2 resource block times or a slot (0.5 ms) corresponding to 1 resource block time.
  • a specific example of the frequency domain resource is a set of 12 subcarriers corresponding to one resource block.
  • the base station 2 performs two D2D communications based on the received signal power of a signal (eg, discovery signal) from a nearby wireless terminal in the wireless terminal 1.
  • the proximity of the pair may be determined.
  • the detection result of the nearby wireless terminal reported from the wireless terminal 1 to the base station 2 may include received signal power of a signal (e.g., discovery signal) from one or more nearby wireless terminals.
  • the base station 2 determines the proximity of the two D2D communication pairs based on the geographical distance between the two wireless terminals 1 derived from the position information (eg, GNSS position information) of the two wireless terminals 1. (Proximity level) may be determined.
  • FIG. 15 is a block diagram illustrating a configuration example of the wireless terminal 1.
  • the Radio Frequency (RF) transceiver 1501 performs analog RF signal processing to communicate with the base station 2.
  • Analog RF signal processing performed by the RF transceiver 1501 includes frequency up-conversion, frequency down-conversion, and amplification.
  • RF transceiver 1501 is coupled with antenna 1502 and baseband processor 1503. That is, the RF transceiver 1501 receives modulation symbol data (or OFDM symbol data) from the baseband processor 1503, generates a transmission RF signal, and supplies the transmission RF signal to the antenna 1502.
  • the RF transceiver 1501 generates a baseband reception signal based on the received RF signal received by the antenna 1502 and supplies this to the baseband processor 1503.
  • the baseband processor 1503 performs digital baseband signal processing (data plane processing) and control plane processing for wireless communication.
  • Digital baseband signal processing consists of (a) data compression / decompression, (b) data segmentation / concatenation, (c) ⁇ transmission format (transmission frame) generation / decomposition, and (d) transmission path encoding / decoding.
  • E modulation (symbol mapping) / demodulation
  • IFFT Inverse Fast Fourier Transform
  • control plane processing includes layer 1 (eg, transmission power control), layer 2 (eg, radio resource management, hybrid automatic repeat request (HARQ) processing), and layer 3 (eg, attach, mobility, and call management). Communication management).
  • the digital baseband signal processing by the baseband processor 1503 includes signal processing of the Packet Data Convergence Protocol (PDCP) layer, Radio Link Control (RLC) layer, MAC layer, and PHY layer. But you can.
  • the control plane processing by the baseband processor 1503 may include Non-Access-Stratum (NAS) protocol, RRC protocol, and MAC CE processing.
  • NAS Non-Access-Stratum
  • the baseband processor 1503 includes a modem processor (eg, Digital Signal Processor (DSP)) that performs digital baseband signal processing and a protocol stack processor (eg, Central Processing Unit (CPU), or Micro Processing Unit (CPU) that performs control plane processing. (MPU)).
  • DSP Digital Signal Processor
  • protocol stack processor eg, Central Processing Unit (CPU), or Micro Processing Unit (CPU) that performs control plane processing. (MPU)
  • a protocol stack processor that performs control plane processing may be shared with an application processor 1504 described later.
  • Application processor 1504 is also called a CPU, MPU, microprocessor, or processor core.
  • the application processor 1504 may include a plurality of processors (a plurality of processor cores).
  • the application processor 1504 is a system software program (Operating System (OS)) read from the memory 1506 or a memory (not shown) and various application programs (for example, call application, web browser, mailer, camera operation application, music playback)
  • OS Operating System
  • application programs for example, call application, web browser, mailer, camera operation application, music playback
  • the baseband processor 1503 and application processor 1504 may be integrated on a single chip, as indicated by the dashed line (1505) in FIG.
  • the baseband processor 1503 and the application processor 1504 may be implemented as one System on Chip (SoC) device 1505.
  • SoC System on Chip
  • An SoC device is sometimes called a system Large Scale Integration (LSI) or chipset.
  • the memory 1506 is a volatile memory, a nonvolatile memory, or a combination thereof.
  • the memory 1506 may include a plurality of physically independent memory devices.
  • the volatile memory is, for example, Static Random Access Memory (SRAM), Dynamic RAM (DRAM), or a combination thereof.
  • the non-volatile memory is a mask Read Only Memory (MROM), Electrically Erasable Programmable ROM (EEPROM), flash memory, hard disk drive, or any combination thereof.
  • the memory 1506 may include an external memory device accessible from the baseband processor 1503, the application processor 1504, and the SoC 1505.
  • the memory 1506 may include an embedded memory device integrated within the baseband processor 1503, the application processor 1504, or the SoC 1505.
  • the memory 1506 may include a memory in a Universal Integrated Circuit Card (UICC).
  • UICC Universal Integrated Circuit Card
  • the memory 1506 may store a software module (computer program) including an instruction group and data for performing processing by the wireless terminal 1 described in the above-described embodiments.
  • the baseband processor 1503 or the application processor 1504 may be configured to perform the processing of the wireless terminal 1 described in the above-described embodiment by reading the software module from the memory 1506 and executing the software module. Good.
  • FIG. 16 is a block diagram illustrating a configuration example of the base station 2 according to the above-described embodiment.
  • the base station 2 includes an RF transceiver 1601, a network interface 1603, a processor 1604, and a memory 1605.
  • the RF transceiver 1601 performs analog RF signal processing to communicate with the wireless terminal 1.
  • RF transceiver 1601 may include multiple transceivers.
  • RF transceiver 1601 is coupled to antenna 1602 and processor 1604.
  • the RF transceiver 1601 receives modulation symbol data (or OFDM symbol data) from the processor 1604, generates a transmission RF signal, and supplies the transmission RF signal to the antenna 1602. Further, the RF transceiver 1601 generates a baseband received signal based on the received RF signal received by the antenna 1602 and supplies this to the processor 1604.
  • the network interface 1603 is used to communicate with network nodes (e.g., Mobility Management Entity (MME) and Serving Gateway (S-GW)).
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • the network interface 1603 may include, for example, a network interface card (NIC) compliant with IEEE 802.3 series.
  • NIC network interface card
  • the processor 1604 performs digital baseband signal processing (data plane processing) and control plane processing for wireless communication.
  • the digital baseband signal processing by the processor 1604 may include PDCP layer, RLC layer, MAC layer, and PHY layer signal processing.
  • the control plane processing by the processor 1604 may include S1 protocol, RRC protocol, and MAC-CE processing.
  • the processor 1604 may include a plurality of processors.
  • the processor 1604 may include a modem processor (e.g., DSP) that performs digital baseband signal processing and a protocol stack processor (e.g., CPU or MPU) that performs control plane processing.
  • DSP digital baseband signal processing
  • protocol stack processor e.g., CPU or MPU
  • the memory 1605 is configured by a combination of a volatile memory and a nonvolatile memory.
  • the volatile memory is, for example, SRAM or DRAM or a combination thereof.
  • the non-volatile memory is, for example, an MROM, PROM, flash memory, hard disk drive, or a combination thereof.
  • Memory 1605 may include storage located remotely from processor 1604. In this case, the processor 1604 may access the memory 1605 via the network interface 1603 or an I / O interface not shown.
  • the memory 1605 may store a software module (computer program) including an instruction group and data for performing processing by the base station 2 described in the above-described embodiments.
  • the processor 1604 may be configured to perform the processing of the base station 2 described in the above-described embodiment by reading the software module from the memory 1605 and executing the software module.
  • each of the processors included in the wireless terminal 1 and the base station 2 includes a group of instructions for causing a computer to execute the algorithm described with reference to the drawings.
  • the program can be stored and supplied to a computer using various types of non-transitory computer readable media.
  • Non-transitory computer readable media include various types of tangible storage media (tangible storage medium).
  • non-transitory computer-readable media are magnetic recording media (eg flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg magneto-optical discs), Compact Disc Read Only Memory (CD-ROM), CD-ROM R, CD-R / W, semiconductor memory (for example, mask ROM, Programmable ROM (PROM), Erasable PROM (EPROM), flash ROM, Random Access Memory (RAM)).
  • the program may also be supplied to the computer by various types of temporary computer-readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves.
  • the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
  • the D2D communication pair 3 may be a D2D communication group including two or three or more wireless terminals.
  • D2D transmission in the D2D communication group may be performed when two or more receiving terminals receive a signal from one transmitting terminal (that is, multicast or broadcast). Therefore, the term “D2D communication pair” used in the present disclosure can be rephrased as a D2D communication group.
  • LTE D2D communication has been mainly described.
  • the technical ideas described in these embodiments may be applied to other D2D communications.
  • LTE D2D communication may be D2D communication by Wi-Fi Direct.
  • the wireless terminal 1 has an inter-terminal communication function based on Wi-Fi Direct
  • the wireless resource corresponds to, for example, a Wi-Fi frequency channel
  • the base station 2 is used for the Wi-Fi Direct terminal (wireless terminal 1). This corresponds to a control device that sets a frequency channel.
  • Radio terminal 2 Base station 3 D2D communication pair 1501 Radio Frequency (RF) transceiver 1503
  • Baseband processor 1601 RF transceiver 1604 processor

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Databases & Information Systems (AREA)

Abstract

基地局(2)は、互いに近傍に位置していない2つのdevice-to-device(D2D)通信ペア(3A及び3C)による同一の無線リソースの使用を許容するが互いに近傍に位置する2つのD2D通信ペア(3A及び3B)による同一の無線リソースの使用を制限する割り当てルールに従って、複数のD2D通信ペア(3A、3B及び3C)によって行われる複数のD2D送信(101A、101B及び101C)に無線リソースをスケジューリングするよう構成されている。各D2D送信(101)は、各D2D通信ペア(3)に属する一方の無線端末(1)が他方の無線端末(1)に基地局(2)を介さずに直接的に無線送信することを含む。これにより、例えば、複数のD2D通信ペアにより行われる複数のD2D送信での無線リソースの効率的な空間再利用を可能にできる。

Description

基地局及びスケジューリング方法
 本開示は、端末間直接通信(device-to-device(D2D)通信)に関し、特にD2D通信のための無線リソースのスケジューリングに関する。
 無線端末が、基地局等のインフラストラクチャ・ネットワークを介さずに、他の無線端末と直接的に通信する形態は、device-to-device(D2D)通信と呼ばれる。D2D通信は、直接通信(Direct Communication)および直接発見(Direct Discovery)の少なくとも一方を含む。いくつかの実装において、D2D通信をサポートする複数の無線端末は、自律的に又はネットワークの指示に従ってD2D通信グループを形成し、当該D2D通信グループ内の他の無線端末と通信を行う。
 3GPP Release 12に規定されたProximity-based services(ProSe)は、D2D通信の一例である(例えば、非特許文献1を参照)。ProSe直接発見は、ProSeを実行可能な無線端末(ProSe-enabled User Equipment(UE))が他のProSe-enabled UEを、これら2つのUEが有する無線通信技術(例えば、Evolved Universal Terrestrial Radio Access (E-UTRA) technology)の能力だけを用いて発見する手順により行われる。ProSe直接発見は、3つ以上のProSe-enabled UEsにより行われてもよい。
 ProSe直接通信は、ProSe直接発見の手順の後に、直接通信レンジ内に存在する2以上のProSe-enabled UEsの間の通信パスの確立を可能にする。言い換えると、ProSe直接通信は、ProSe-enabled UEが、基地局(eNodeB)を含む公衆地上移動通信ネットワーク(Public Land Mobile Network (PLMN))を経由せずに、他のProSe-enabled UEと直接的に通信することを可能にする。ProSe直接通信は、基地局(eNodeB)にアクセスする場合と同様の無線通信技術(E-UTRA technology)を用いて行われてもよいし、Wireless Local Area Network (WLAN)の無線技術(つまり、IEEE 802.11 radio technology)を用いて行われてもよい。
 3GPP Release 12では、直接通信または直接発見に用いられる無線端末間の無線リンクは、サイドリンク(Sidelink)と呼ばれる(例えば、非特許文献2のセクション14を参照)。サイドリンク送信は、アップリンク及びダウンリンクのために定義されたLong Term Evolution(LTE)フレーム構造と同じフレーム構造を使用し、周波数および時間ドメインにおいてアップリンク・リソースのサブセットを使用する。無線端末(UE)は、アップリンクと同様のシングルキャリア周波数分割多重(Single Carrier FDMA(Frequency Division Multiple Access)、SC-FDMA)を使用してサイドリンク送信を行う。
 3GPP Release 12 ProSeでは、サイドリンク送信のための無線リソースのUEへの割り当ては、無線アクセスネットワーク(e.g., Evolved Universal Terrestrial Radio Access Network(E-UTRAN))によって行われる(例えば、非特許文献3のセクション23.10及び23.11を参照)。ProSe functionによってサイドリンク通信を許可されたUEは、無線アクセスネットワークノード(e.g., eNodeB)によって割り当てられた無線リソースを使用してProSe直接発見又はProSe直接通信を行う。非特許文献3のセクション23.10及び23.11は、サイドリンク通信のための無線リソースのUEへの割り当ての詳細を記載している。
 ProSe直接通信に関しては、2つのリソース割り当てモード、つまりscheduled resource allocation 及び autonomous resource selectionが規定されている。ProSe直接通信のscheduled resource allocationでは、UEがサイドリンク送信を希望する場合、当該UEがサイドリンク送信のための無線リソース割り当てをeNodeBに要求し、eNodeBがサイドリンク・コントロール及びデータのためのリソースを当該UEに割り当てる。具体的には、UEは、アップリンク(UL)データ送信リソース(Uplink Shared Channel(UL-SCH)リソース)を要求するためにスケジューリング・リクエストをeNodeB に送信し、アップリンクグラント(UL grant)で割り当てられたULデータ送信リソースにおいてSidelink Buffer Status Report(Sidelink BSR)をeNodeBに送信する。eNodeBは、Sidelink BSRに基づいてUEに割り当てるサイドリンク送信リソースを決定し、サイドリンク・グラント(SL grant)をUEに送信する。
 SL grantは、Downlink Control Information(DCI) format 5として定義されている。SL grant(DCI format 5)は、Resource for PSCCH、Resource block assignment and hopping allocation、及びtime resource pattern indexなどのコンテンツを含む。Resource for PSCCHは、サイドリンク制御チャネル(i.e., Physical Sidelink Control Channel(PSCCH))用の無線リソースを示す。Resource block assignment and hopping allocationは、サイドリンクでのデータ送信用のサイドリンク・データチャネル(i.e., Physical Sidelink Shared Channel(PSSCH))を送信するための周波数リソース、つまりサブキャリア(リソースブロック)のセット、を決定するために使用される。Time resource pattern indexは、PSSCHを送信するための時間リソース、つまりサブフレームのセット、を決定するために使用される。なお、厳密に述べると、リソースブロックは、LTE及びLTE-Advancedの時間-周波数リソースを意味し、時間ドメインにおいて連続する複数個のOFDM(又はSC-FDMA)シンボルと周波数ドメインにおいて連続する複数個のサブキャリアによって規定されるリソース単位である。Normal cyclic prefixの場合、1リソースブロックは、時間ドメインにおいて連続する12OFDM(又はSC-FDMA)シンボルを含み、周波数ドメインにおいて12サブキャリアを含む。すなわち、Resource block assignment and hopping allocationおよびTime resource pattern indexは、PSSCHを送信するためのリソースブロックを指定する。UE(つまり、サイドリンク送信端末)は、SL grantに従ってPSCCHリソースおよびPSSCHリソースを決める。
 一方、ProSe直接通信のautonomous resource selectionでは、UEは、eNodeBによって設定されたリソースプールの中から、サイドリンク・コントロール(PSCCH)及びデータ(PSSCH)のためのリソースを自律的に選択する。eNodeBは、System Information Block(SIB)18において、autonomous resource selectionに使用するためのリソースプールをUEに割り当ててもよい。なお、eNodeBは、Radio Resource Control (RRC)_CONNECTEDのUEに対して、個別(dedicated)RRCシグナリングで、autonomous resource selectionに使用するためのリソースプールを割り当ててもよい。このリソースプールは、UEがRRC_IDLEであるときにも利用可能であってもよい。
 ProSe直接発見に関しても、2つのリソース割り当てモード、つまりscheduled resource allocation 及び autonomous resource selectionが規定されている。ProSe直接発見のautonomous resource selectionでは、発見信号(ディスカバリ情報)の送信(アナウンス)を希望するUEがアナウンス用のリソースプールの中から自律的に無線リソースを選択する。リソースプールは、ブロードキャスト(SIB 19)又は個別シグナリング(RRCシグナリング)でUEに設定される。
 一方、ProSe直接発見のscheduled resource allocationでは、UEがアナウンス用のリソース割り当てをRRCシグナリングでeNodeBに要求する。eNodeBは、モニター用にUEsに設定されたリソースプールの中からアナウンス用のリソースをUEに割り当てる。scheduled resource allocationが使用される場合、eNodeBは、SIB 19においてProSe直接発見のモニター用のリソースの提供をサポートするが、アナウンスメント用のリソースは提供しないことを示す。
 サイドリンクでの直接送信を行う場合、送信側のUE(D2D transmitting UE)(以下、送信端末とする)は、サイドリンク制御チャネル(i.e., PSCCH)用の無線リソース領域(Resource pool)を使って、スケジューリング割当情報(Scheduling Assignment)の送信を行う。スケジューリング割当情報は、Sidelink Control Information (SCI) format 0とも呼ばれる。スケジューリング割当情報は、resource block assignment and hopping allocation、time resource pattern index、及び Modulation and Coding Scheme(MCS)などのコンテンツを含む。上述したscheduled resource allocation の場合、Scheduling Assignment(SCI format 0)が示す Resource block assignment and hopping allocation及びtime resource pattern indexは、eNodeBから受信したSL grant(DCI format 5)が示すResource block assignment and hopping allocation及びtime resource pattern indexに従う。
 送信端末は、スケジュール割当情報に従った無線リソースを使って、PSSCHにおいてデータを送信する。受信側のUE(D2D receiving UE)(以下、受信端末とする)は、送信端末からのスケジュール割当情報をPSCCHにおいて受信し、そのスケジュール割当情報に従ってPSSCHにおいてデータを受信する。なお、ここで送信端末との用語は、無線端末の送信動作に着目した表現であって、送信専用の無線端末を意味するものではない。同様に、受信端末との用語は、無線端末の受信動作に着目した表現であり、受信専用の端末を意味するものではない。すなわち、送信端末は受信動作を行うことも可能であり、受信端末は送信動作を行うことも可能である。
特開2015-019179号公報
 複数のD2D送信が同一の無線リソースを同時に使用することで、無線リソースの利用効率が向上する。無線リソースは、例えば、時間リソース、周波数リソース、時間-周波数リソース、直交符号リソース、若しくは送信電力リソース、又はこれらの任意の組合せである。3GPP Release 12のProSeの場合、無線リソースは、時間-周波数リソースであり、その最小単位は上述のリソースブロックである。しかしながら、互いに近傍に位置する複数のD2D通信ペアが同一の無線リソースを同時に使用すると、複数のD2D送信の間で干渉が発生するおそれがある。なお、本明細書における「D2D通信ペア」との用語は、D2D送信を行うD2D送信端末とD2D受信端末のペアを意味する。
 なお、非特許文献4は、基地局が、セルラーネットワーク内で行われるD2D通信のモード選択を行うことを記載している。具体的には、基地局は、セルラー通信を行うセルラーユーザ(UE)とD2D通信ペアとの干渉(signal-to-interference plus noise ratio(SINR))を考慮し、D2D通信ペアがセルラー通信(他の無線端末と基地局の間の通信に使用されるリソース)のリソースの全体を再利用するべきか(i.e., reuseモード)、セルラー通信のリソースの一部を専用(dedicated)リソースとして使用するべきか(i.e., dedicatedモード)、又は基地局を介して通信するべきか(i.e., セルラーモード)を決定する。
 また、特許文献1は、基地局が、2つの無線端末に対して直接発見のための個別(dedicated)無線リソースを割り当てることを開示している。一例において、特許文献1に開示された基地局は、D2D通信ペアとセルラーユーザ(UE)との間の干渉の発生を検出した場合に、D2D通信ペア内の無線端末とセルラーユーザに直接発見のための個別無線リソースを割り当てる。これにより、D2D通信ペア内の無線端末とセルラーユーザは、個別無線リソースを用いた直接発見手順を行うことができ、直接発見を完了してD2D通信開始できる。
 しかしながら、非特許文献3および特許文献1は、D2D通信ペアとセルラーユーザ(UE)との間の干渉が考慮されることを示すのみである。すなわち、非特許文献3および特許文献1は、複数のD2D通信ペアにより行われる複数のD2D送信への無線リソース割り当てについて開示しておらず、複数のD2D送信の間の干渉および複数のD2D送信での無線リソースの空間再利用について開示していない。
 本明細書に開示される実施形態が達成しようとする目的の1つは、複数のD2D通信ペアにより行われる複数のD2D送信での無線リソースの効率的な空間再利用を可能とすることに寄与する装置、方法、及びプログラムを提供することである。
 第1の態様では、基地局は、無線トランシーバ及び少なくとも1つのプロセッサを含む。前記無線トランシーバは、第1のセル内の複数の無線端末と通信するよう構成されている。前記少なくとも1つのプロセッサは、前記複数の無線端末に含まれる複数のdevice-to-device(D2D)通信ペアによって行われる複数のD2D送信に無線リソースをスケジューリングするよう構成されている。各D2D送信は、各D2D通信ペアに属する一方の無線端末が他方の無線端末に前記基地局を介さずに直接的に無線送信することを含む。前記少なくとも1つのプロセッサは、さらに、互いに近傍に位置していない2つのD2D通信ペアによる同一の無線リソースの使用を許容するが互いに近傍に位置する2つのD2D通信ペアによる同一の無線リソースの使用を制限する割り当てルールに従って、前記複数のD2D送信に無線リソースをスケジューリングするよう構成されている。
 第2の態様では、基地局におけるスケジューリング方法は、互いに近傍に位置していない2つのdevice-to-device(D2D)通信ペアによる同一の無線リソースの使用を許容するが互いに近傍に位置する2つのD2D通信ペアによる同一の無線リソースの使用を制限する割り当てルールに従って、複数のD2D通信ペアによって行われる複数のD2D送信に無線リソースをスケジューリングすることを含む。各D2D送信は、各D2D通信ペアに属する一方の無線端末が他方の無線端末に前記基地局を介さずに直接的に無線送信することを含む。
 第3の態様では、プログラムは、コンピュータに読み込まれた場合に、上述の第2の態様に係る方法をコンピュータに行わせるための命令群(ソフトウェアコード)を含む。
 上述の態様によれば、複数のD2D通信ペアにより行われる複数のD2D送信での無線リソースの効率的な空間再利用を可能とすることに寄与する装置、方法、及びプログラムを提供できる。
第1の実施形態に係る無線通信システムの構成例を示す図である。 第1の実施形態に係る基地局の動作の一例を示すフローチャートである。 第1の実施形態に係る基地局の動作の一例を示すフローチャートである。 無線リソースの具体例を示す図である。 複数のD2D通信ペアの近傍関係の具体例を示す図である。 複数のD2D通信ペアへの無線リソースの割り当ての例を示す図である。 第1の実施形態に係る基地局の動作の一例を示すフローチャートである。 複数のD2D通信ペアへの無線リソースの割り当ての例を示す図である。 第2の実施形態に係る無線通信システムの構成例を示す図である。 第2の実施形態に係る基地局の動作の一例を示すフローチャートである。 複数のD2D通信ペアの近傍関係の具体例を示す図である。 無線リソースの具体例を示す図である。 複数のD2D通信ペアへの無線リソースの割り当ての例を示す図である。 第3の実施形態に係る基地局の動作の一例を示すフローチャートである。 いくつかの実施形態に係る無線端末の構成例を示すブロック図である。 いくつかの実施形態に係る基地局の構成例を示すブロック図である。
 以下では、具体的な実施形態について、図面を参照しながら詳細に説明する。各図面において、同一又は対応する要素には同一の符号が付されており、説明の明確化のため、必要に応じて重複説明は省略される。
<第1の実施形態>
 図1は、本実施形態に係る無線通信システムの構成例を示している。無線端末1は、D2D通信(e.g., ProSe)が可能であり、端末間直接インタフェース(i.e.,サイドリンク)101上でD2D通信を行うことができる。既に説明したように、D2D通信は、直接発見及び直接通信の少なくとも一方を含む。D2D通信は、サイドリンク通信又はProSe通信と呼ぶこともできる。図1の例では、6個の無線端末1A~1F、及び3つのサイドリンク通信ペア3A~3Cが示されている。D2D通信ペア3Aは、無線端末1A及び1Bを含み、サイドリンク101AにおいてD2D通信を行う。D2D通信ペア3Bは、無線端末1C及び1Dを含み、サイドリンク101BにおいてD2D通信を行う。D2D通信ペア3Cは、無線端末1E及び1Fを含み、サイドリンク101CにおいてD2D通信を行う。
 基地局2は、セル21を管理し、セルラー通信技術(e.g., Evolved Universal Terrestrial Radio Access (E-UTRA) technology)を用いて複数の無線端末1の各々と通信することができる。本実施形態では、D2D送信への無線リソース割り当てのためにscheduled resource allocationが採用される。すなわち、基地局2は、セル21のカバレッジ内でD2D送信を行うD2D通信ペア3内の無線端末1(送信端末)と通信し、D2D送信ための無線リソースを当該無線端末にスケジューリングする(割り当てる)よう構成されている。さらに、基地局2は、互いに近傍に位置する複数のD2D通信ペア3による複数のD2D送信が互いに干渉することを抑制するために、複数のD2D通信ペア3の近傍関係(proximity relation又はneighbor relation)を考慮して複数のD2D通信ペア3による複数のD2D送信(又は送信端末)に無線リソースを割り当てるよう構成されている。
 図2は、基地局2におけるスケジューリング方法の一例(処理200)を示すフローチャートである。ブロック201では、基地局2は、所定の割り当てルールに従って、複数のD2D通信ペア3によって行われる複数のD2D送信に無線リソースをスケジューリングする。ここで、所定の割り当てルールは、互いに近傍に位置していない2つのD2D通信ペア3による同一の無線リソースの使用を許容するが、互いに近傍に位置する2つのD2D通信ペアによる同一の無線リソースの使用を制限する。ブロック201では、ブロック201で決定された無線リソースを用いたサイドリンク送信許可(スケジューリング許可又はサイドリンク許可)を各D2D通信ペア3(つまり、各D2D通信ペア3内の送信端末)に送信する。
 一例において、2つのD2D通信ペアの間の近傍関係は、一方のペアの送信端末と他方のペアの送信端末とが互いに近傍に位置するか否かによって評価されてもよい。これに代えて、2つのD2D通信ペアの間の近傍関係は、一方のペアの送信端末と他方のペアの受信端末とが互いに近傍に位置するか否かによって評価されてもよい。
 基地局2は、2つのD2D通信ペア3が互いに近接しているか否かを判定するよう構成されてもよい。いくつかの実装において、基地局2は、2つのD2D通信ペア3が互いに近接しているか否かを判定するために、2つのD2D通信ペア3の少なくとも一方に属する少なくとも1つの無線端末1から報告された近傍無線端末の検出結果を使用してもよい。
 近傍無線端末の検出結果は、無線端末1が受信することができた直接発見のための発見信号の1又はそれ以上の送信元端末を示してもよい。近傍無線端末の検出結果は、例えば、(a)1又はそれ以上の近傍無線端末の識別子、及び(b)1又は複数の近傍無線端末が属する1又は複数のD2D通信ペアの識別子、のうち少なくとも1つを含んでもよい。近傍無線端末の検出結果は、さらに、(c)1又はそれ以上の近傍無線端末の各々が関連付けられている基地局又はセルの識別子、(d)1又はそれ以上の近傍無線端末からの信号(e.g., 発見信号)の受信信号電力、及び(e)1又はそれ以上の近傍無線端末の検出回数、のうち少なくとも1つを含んでもよい。なお、無線端末1が上記検出結果を基地局2に対して報告するために、近傍無線端末の送信する発見信号は、そのメッセージとして、(a)自端末の識別子、及び(b)自端末が属する1又は複数のD2D通信ペアの識別子、さらには、(c)自端末が関連付けられている基地局又はセルの識別子を含んでもよい。
 無線端末1は、近傍無線端末の検出結果を周期的に基地局2に報告してもよいし、非周期的に報告してもよい。無線端末1は、例えば、近傍無線端末のリストに変更があった場合に、近傍無線端末の検出結果を基地局2に送信してもよい。近傍無線端末のリストを生成する周期(時間窓)は、基地局2からシステム情報において報知されるdiscovery送信確率(100%, 75%, 50%, or 25%)の逆数倍のスケジューリング周期であってもよい。
 一例において、基地局2は、無線端末1が属するD2D通信ペアと当該無線端末1によって検出された近傍無線端末が属するD2D通信ペアとが互いに近接している(近傍関係にある)と判定してもよい。他の例において、基地局2は、2つのD2D通信ペアの間の近傍度(proximityレベル)を3段階以上の多段階で評価してもよい。この場合、基地局2は、無線端末1における近傍無線端末からの信号(e.g., 発見信号)の受信信号電力に基づいて、2つのD2D通信ペアの近傍度(proximityレベル)を判定してもよい。
 これに代えて、いくつかの実装において、基地局2は、2つのD2D通信ペア3が互いに近接しているか否かを判定するために、各D2D通信ペア3に属する少なくとも1つの無線端末1の位置情報を使用してもよい。無線端末1の位置情報は、当該無線端末1の地理的な位置を明示的又は暗示的に示す。無線端末1の位置情報は、Global Navigation Satellite System(GNSS)レシーバによって得られるGNSS位置情報を含んでもよい。GNSS位置情報は、緯度及び経度を示す。さらに又はこれに代えて、無線端末1の位置情報は、Radio Frequency(RF)フィンガープリントを含んでもよい。RFフィンガープリントは、無線端末1によって測定された周辺セル測定情報(e.g., セルID及びReference Signal Received Power(RSRP))を含む。
 基地局2は、無線端末1の位置情報を当該無線端末1から直接的に受信してもよいし、サーバを介して受信してもよい。例えば、基地局2は、ネットワークレベル・ディスカバリ手順を使用して取得された無線端末1の位置情報を利用してもよい。ネットワークレベル・ディスカバリ手順は、例えば、EPC-level ProSe Discoveryである。EPC-level ProSe Discoveryでは、UEsは自身の現在位置を推定することができる位置情報を間欠的(intermittently)にネットワークに送信し、ネットワーク(i.e., ProSe function エンティティ)はUEsから受信した位置情報に基づいてこれらの近接を判定する。これに代えて、基地局2は、無線端末1のMinimization of Drive Tests(MDT)機能によって得られたLogged MDT測定データに含まれる位置情報を使用してもよい。
 一例において、基地局2は、位置情報から導出される2つの無線端末1の地理的距離が所定の閾値より小さい場合に、これら2つの無線端末1のそれぞれが属する2つのD2D通信ペア3が近接している(近傍関係にある)と判定してもよい。他の例において、基地局2は、2つのD2D通信ペアの間の近傍度(proximityレベル)を3段階以上の多段階で評価してもよい。この場合、基地局2は、位置情報から導出される2つの無線端末1の地理的距離に基づいて、2つのD2D通信ペアの近傍度(proximityレベル)を判定してもよい。
 以上の説明から理解されるように、本実施形態に係る基地局2は、複数のD2D通信ペア3による複数のD2D送信に無線リソースをスケジューリングする際に、互いに近傍に位置していない2つのD2D通信ペア3による同一の無線リソースの使用を許容するが、互いに近傍に位置する2つのD2D通信ペアによる同一の無線リソースの使用を制限する。すなわち、基地局2は、複数のD2D通信ペアの位置(又は複数のD2D通信ペアの間の近傍関係)を考慮して、D2D送信のための無線リソースの空間再利用を行うか否かを決定する。これにより、基地局2は、複数のD2D通信ペアによる無線リソースの空間再利用を許容しながら、複数のD2D通信ペアが互いに近傍に位置する場合にこれら複数のD2D通信ペアによる同一の無線リソースの使用を抑制することができる。したがって、基地局2は、複数のD2D通信ペアにより行われる複数のD2D送信での無線リソースの効率的な空間再利用を可能する。
 続いて以下では、複数のD2D通信ペア間の近傍関係に関する制約(constraint)を持つよう修正されたスケジューリング・アルゴリズムのいくつかの例を示す。第1の例では、基地局2は、複数のD2D通信ペア間の近傍関係に関する制約(つまり上述の割り当てルール)が課されたproportional fairness(PF)規範アルゴリズムに従って、複数のD2D通信ペア(又はこれら複数のペア内の複数の送信端末)による複数のD2D送信に無線リソースを割り当てる。
 PF規範スケジューリングの場合、各無線リソースでのD2D送信(D2D通信ペア3)のスケジューリング・メトリック(PFメトリック)は、瞬時スループットの平均スループットに対する比率(i.e., 瞬時スループット/平均スループット)であってもよい。基地局2は、発見信号(又は他のチャネル品質測定用の信号)の受信レベルに応じた変調方式および符号化率(MCS)を適応的に決定し、決定された変調方式および符号化率を用いてD2D送信(D2D通信ペア3又は送信端末)の瞬時スループットを計算してもよい。これに代えて、基地局2は、適応MCSを考慮せずに固定値の瞬時スループットを使用してもよい。固定値の瞬時スループットの場合、PFメトリックは平均スループットの逆数となり、したがって基地局2は平均スループットが小さいD2D送信(D2D通信ペア3又は送信端末)から昇順で無線リソース割当を行う。
 ただし、複数のD2D通信ペア間の近傍関係に関する制約(つまり上述の割り当てルール)を課されるために、基地局2は以下のように動作する。すなわち、基地局2は、注目している無線リソースでのPFメトリックに基づいてD2D通信ペア3(D2D送信又は送信端末)を選択するが、当該D2D通信ペア3と近傍関係にある他のD2D送信ペア(D2D送信又は送信端末)が当該無線リソースに既にスケジュールされている場合に、当該選択されたD2D通信ペア(又は送信端末)によるD2D送信に当該無線リソースを割り当てない。言い換えると、基地局2は、注目している第1の無線リソースでのスケジューリング・メトリックの降順に従って第1のD2D通信ペア(D2D送信又は送信端末)を選択し、当該第1のD2D通信ペアよりも大きなスケジューリング・メトリックを持ち且つ当該第1のD2D通信ペアと近傍関係にある第2のD2D通信ペア(D2D送信又は送信端末)に当該第1の無線リソースが割り当てられていない場合に、当該第1のD2D通信ペア(又は送信端末)によるD2D送信に当該第1の無線リソースを割り当てる。
 図3は、複数のD2D通信ペア間の近傍関係に関する制約を課されたPF規範スケジューリングの一例(処理300)を示すフローチャートである。ブロック301では、基地局2は、注目する無線リソース(対象無線リソース)を選択する。ブロック302では、基地局2は、対象無線リソースでのスケジューリング・メトリック(PFメトリック)の降順に従ってD2D通信ペアを選択する。ブロック303では、基地局2は、選択されたD2D通信ペアと近傍関係にあるいずれのD2D通信ペアも当該対象無線リソースにスケジュールされていない場合に、当該対象無線リソースを選択されたD2D通信ペアによるD2D送信に割り当てる。基地局2は、無線リソースの割り当てを要求している全てのD2D通信ペア(送信端末)を当該対象無線リソースに関して考慮するまでブロック302及び303の処理を繰り返す(ブロック304)。さらに、基地局2は、1回のスケジューリング周期において考慮されるべき全ての無線リソースついてブロック301から303までの処理を繰り返す(ブロック305)。ここで、スケジューリング周期は、基地局2がサイドリンクのためのスケジューリンググラント(SL grant)を送信する周期である。3GPP Release 12では、サイドリンクのためのスケジューリング周期は、Sidelink Control period又はPSCCH periodと呼ばれる。
 複数のD2D通信ペア間の近傍関係に関する制約を課されたPF規範スケジューリングによる無線リソース割り当ての具体例を図4~図6を参照して説明する。図4は、3GPP Release 12においてD2D通信のために使用される無線リソースの一例を示している。3GPP Release 12では、サイドリンクのためのスケジューリング周期(i.e., Sidelink Control period又はPSCCH period)は、例えば40 ms又はそれ以上とされるが、D2Dデータ送信のためのPSSCHリソースの割り当てはtime resource pattern indexを用いて6、7又は8サブフレーム(6, 7, or 8 ms)単位で指定される。したがって、1つのSidelink Control periodの間は、6、7又は8サブフレーム周期で同じPSSCHリソースの割り当てが使用される。Frequency division duplex(FDD)の場合、PSSCHリソースの割り当て周期(i.e., time resource pattern)は、8サブフレームである。一方、TDDの場合、PSSCHリソースの割り当て周期(i.e., time resource pattern)は、TDD UL/DL configurationに応じて6、7又は8サブフレームとされる。図4は、D2Dデータ送信のためのPSSCHリソースの割り当て周期(i.e., time resource pattern)が8サブフレームであるケースを示している。なお、図4は一例であり、時間ドメインリソース(e.g., サブフレーム)に代えて又は時間リソースドメインとともに、周波数ドメインリソースの割り当てが行われてもよい。
 図5は、基地局2によって運用されるセル21内での複数のD2D通信ペア3間の近傍関係の具体例を示す模式図である。図5の例では、5つのD2D通信ペアの近傍関係が示されている。具体的には、D2D通信ペア#1は、D2D通信ペア#2と近傍関係を持つ。D2D通信ペア#2は、他の4つのD2D通信ペア#1、#3、#4、及び#5の全てと近傍関係を持つ。D2D通信ペア#3は、2つのD2D通信ペア#2及び#4と近傍関係を持つ。D2D通信ペア#4は、3つのD2D通信ペア#2、#3、及び#5と近傍関係を持つ。D2D通信ペア#5は、2つのD2D通信ペア#2及び#4と近傍関係を持つ。
 図6は、図3に示されたスケジューリング・アルゴリズムに従って、図4に示された8サブフレーム周期のD2Dデータ送信リソースを図5に示された5つのD2D通信ペア3に割り当てる例を示している。図6のテーブルにおいて各マス目(セル)に記入されたチェックマークは、対応するD2D通信ペアに対して対応する時間ドメインリソース(サブフレーム)が割り当てられたことを示す。さらにチェックマークに添えられた数字は、各時間ドメインリソースにおけるスケジューリング・メトリック(PFメトリック)の降順を示している。
 例えば、サブフレーム#1では、D2D通信ペア#1のPFメトリックが最大であるため、D2D通信ペア#1によるD2D送信がサブフレーム#1に最初にスケジュールされる。次に、D2D通信ペア#3のPFメトリックが2番目に大きく、且つD2D通信ペア#3はD2D通信ペア#1と近傍関係にないため、したがってD2D通信ペア#3によるD2D送信がサブフレーム#1に2番目にスケジュールされる。D2D通信ペア#2及び#4のPFメトリックは3番目および4番目であるが、これらと近傍関係にあるD2D通信ペア#3によるD2D送信が既にサブフレーム#1にスケジュールされているため、サブフレーム#1はD2D通信ペア#2及び#4によるD2D送信に割り当てられない。最後に、D2D通信ペア#5のPFメトリックが5番目(最小)であり、D2D通信ペア#5はD2D通信ペア#1及び#3と近傍関係にないため、D2D通信ペア#5によるD2D送信がサブフレーム#1にスケジュールされる。
 なお、スケジューリング・メトリック(PFメトリック)は、サブフレームの割り当て毎に平均スループットを更新することによってサブフレーム毎に更新されてもよいし、スケジューリング周期毎に更新されてもよい。
 また、上述したスケジューリング・アルゴリズムの第1の例では、サブフレーム毎に割当可能な端末を探索し、割当可能な端末がいない場合に次のサブフレームの割当に移行する手順を示したが、この手順以外も可能である。例えば、PFメトリックが大きいD2D通信ペア順に選択し、選択されたD2D通信ペアが近傍関係に関する制約を満たすサブフレームの中から任意のサブフレームを選択、選択されたサブフレームを当該選択されたD2D通信ペアに割り当ててもよい。さらに、サブフレームの選択方法としては、(1)割り当て済みのD2D通信ペア数が最も少ないサブフレームを選択すること、(2)割り当て済みのD2D通信ペアの近傍度(proximityレベル)の最大値(すなわち、最も近い端末)が最小となるサブフレームを選択すること、(3)割り当て済みのD2D通信ペアによって発生が予想される合計の干渉量が最も小さいサブフレームを選択すること、等が可能である。
 次に、複数のD2D通信ペア間の近傍関係に関する制約(constraint)を持つよう修正されたスケジューリング・アルゴリズムの第2の例を説明する。第2の例では、基地局2は、複数のD2D通信ペア間の近傍関係に関する制約(つまり上述の割り当てルール)が課されたラウンドロビン・アルゴリズムに従って、複数のD2D通信ペア(又はこれら複数のペア内の複数の送信端末)による複数のD2D送信に無線リソースを割り当てる。
 ラウンドロビン・スケジューリングの場合、基地局2は、D2D送信のためのリソース割り当てを要求している複数のD2D通信ペア(又は送信端末)に順番に無線リソースを割り当てる。ただし、複数のD2D通信ペア間の近傍関係に関する制約(つまり上述の割り当てルール)を課されるために、基地局2は、互いに近傍関係にある2つのD2D通信ペアを同一の無線リソースにスケジュールしない。
 図7は、複数のD2D通信ペア間の近傍関係に関する制約を課されたラウンドロビン・スケジューリングの一例(処理700)を示すフローチャートである。ブロック701では、基地局2は、D2D送信のためのリソース割り当てを要求している複数のD2D通信ペア(又は送信端末)の中から順番に1つのD2D通信ペア(又は送信端末)を選択する。ブロック702では、基地局2は、選択されたD2D通信ペアと近傍関係にあるいずれのD2D通信ペアもスケジュールされていない1又は複数の無線リソースが1回のスケジューリング周期において考慮されるべき全ての無線リソース内に存在する場合、これらの無線リソースのうちの1つを選択されたD2D通信ペア(又は送信端末)に割り当てる。基地局2は、無線リソースの割り当てを要求している全てのD2D通信ペア(送信端末)を考慮するまでブロック701及び702の処理を繰り返す(ブロック703)。さらに、基地局2は、いずれのD2D通信ペアにもリソース割り当てが不可能になるまで、ブロック701から703までの処理を繰り返す(ブロック704)。
 図8は、図7に示されたアルゴリズムに従って、図4に示された8サブフレーム周期のD2Dデータ送信リソースを図5に示された5つのD2D通信ペア3に割り当てる例を示している。図8のテーブルにおいて各マス目(セル)に記入されたサブフレーム番号は、対応するD2D通信ペアに対して対応する割り当てラウンドにおいて割り当てられた無線リソースを示す。各マス目(セル)に記入されたダッシュマークは、近傍関係の制約のために、対応する割り当てラウンドにおいて対応するD2D通信ペアによるD2D送信に無線リソースの割り当てができないことを示す。
 例えば、最初の割り当てラウンド#1では、以下のように無線リソース割り当てが行われる。初めにD2D通信ペア#1によるD2D送信がサブフレーム#1にスケジュールされる。次に、D2D通信ペア#2への無線リソース割り当てでは、D2D通信ペア#2がD2D通信ペア#1と近傍関係にあるために、サブフレーム#1を除く7つのサブフレーム#2~#8のいずれかががD2D通信ペア#2に割り当てられる。図8の例では、D2D通信ペア#2よるD2D送信がサブフレーム#2にスケジュールされる。続いて、D2D通信ペア#3への無線リソース割り当てでは、D2D通信ペア#3がD2D通信ペア#2及び#4と近傍関係にあるために、サブフレーム#2を除く7つのサブフレーム#1及び#3~#8のいずれかががD2D通信ペア#3に割り当てられる。図8の例では、D2D通信ペア#3よるD2D送信は、D2D通信ペア#1のD2D送信と同じくサブフレーム#1にスケジュールされる。
 さらに、割り当てラウンド#1でのD2D通信ペア#4への無線リソース割り当てでは、D2D通信ペア#4がD2D通信ペア#2、#3、及び#5と近傍関係にあるために、サブフレーム#1及び#2を除く6つのサブフレーム#3~#8のいずれかががD2D通信ペア#4に割り当てられる。図8の例では、D2D通信ペア#4よるD2D送信はサブフレーム#3にスケジュールされる。最後に、割り当てラウンド#1でのD2D通信ペア#5への無線リソース割り当てでは、D2D通信ペア#5がD2D通信ペア#2及び#4と近傍関係にあるために、サブフレーム#2及び#3を除く6つのサブフレーム#1及び#4~#8のいずれかががD2D通信ペア#5に割り当てられる。図8の例では、D2D通信ペア#5よるD2D送信は、D2D通信ペア#1及び#3のD2D送信と同じくサブフレーム#1にスケジュールされる。
 図6及び図8に示された具体例から理解されるように、複数のD2D通信ペア間の近傍関係に関する制約(constraint)を持つよう修正されたスケジューリング・アルゴリズムを利用することで、D2D送信間の干渉を抑えつつ各D2D送信に無線リソースを割り当てることができ、かつ他のD2D通信ペアが近傍に存在しない好条件のD2D通信ペア(又は送信端末)は空間再利用の効果によって多くの無線リソースを利用できる。
<第2の実施形態>
 本実施形態では、第1の実施形態で説明されたD2D送信への無線リソース割り当て手順の変形例が説明される。図9は、本実施形態に係る無線通信システムの構成例を示している。本実施形態では、基地局2は、セル21のカバレッジ内に位置するD2D通信ペア3(又は送信端末)によるD2D送信に無線リソースを割り当てる際に、当該D2D通信ペア3(又は送信端末)が隣接セルに属する無線端末と近傍関係にあるか否かを考慮するよう構成されている。
 例えば、図9に示された基地局2Aは、自身のセル21Aのカバレッジ内に位置するD2D通信ペア3Aが隣接セル21Bに属する隣接セル無線端末1E若しくは1F又は隣接セルD2D通信ペア3Cと近傍関係にあることを検出し、D2D通信ペア3Aによって行われるD2D送信に対してセル21Aの優先無線リソースを他の無線リソースよりも優先的に割り当てる。ここで、セル21Aの優先無線リソースは、隣接セル21Bを運用する基地局2Bが隣接セル21B内の無線端末1(e.g., 1E及び1F)による使用を制限する無線リソースである。一方、基地局2Aは、自身のセル21Aのカバレッジ内に位置するD2D通信ペア3Bが隣接セル無線端末又は隣接セルD2D通信ペアの近傍に位置していないことを検出し、セル21Aの優先無線リソースを除く他の無線リソースをD2D通信ペア3Bによって行われるD2D送信に対して優先的に割り当てる。基地局2Aによるこのような無線リソース割り当て動作は、隣接セル間での無線リソースの干渉を抑制することに寄与できる。
 なお、セル21Aの優先無線リソースを除く他の無線リソースは、隣接セル21Bに設定された優先無線リソースと、セル21A及び21Bのいずれの優先無線リソースにも設定されていない非優先無線リソースを含んでもよい。この場合、基地局2Aは、隣接セル無線端末又は隣接セルD2D通信ペアの近傍に位置していないD2D通信ペア3Bによって行われるD2D送信に対して、セル21Bの優先無線リソースをセル21Aの優先無線リソース及び非優先無線リソースよりも優先的に割り当ててもよい。隣接セル無線端末(又は隣接セルD2D通信ペア)と近傍関係にないD2D通信ペア3Bが隣接セルの優先無線リソースを使用することは、セル間干渉をもたらすことがなく、さらに隣接セル無線端末(又は隣接セルD2D通信ペア)と近傍関係にあるD2D通信ペア3Aが非優先無線リソースを利用する機会を増加させることができる。
 図9の例は、説明の容易化のために、セル21Aが1つの隣接セル21Bを持つケースを示している。しかしながら、セル21Aの周囲には、2又はそれ以上の隣接セルが存在してもよい。そのような場合には、各隣接セルの優先無線リソースが設定されてもよい。いくつかの実装において、基地局2Aは、自身のセル21Aに属する無線端末1(例えば、1A)が1又は複数の隣接セルに属する1又は複数の無線端末と近傍関係にある場合に、当該1又は複数の隣接セルの優先無線リソースを当該無線端末1(例えば、1A)に極力割り当てないようにするために、当該1又は複数の隣接セルの優先無線リソースの当該無線端末1(例えば、1A)に対する割り当ての優先度を下げてもよい。
 いくつかの実装において、基地局2Aは、基地局間のインタフェース(e.g., LTEのX2インタフェース)を介して又は上位ネットワーク(e.g., コアネットワーク)を介して基地局2Bと通信し、セル21A及び21Bの各々に優先無線リソースを設定してもよい。
 いくつかの実装において、基地局2Aは、互いに異なるセルに属する(異なる基地局に関連付けられている)2つのD2D通信ペアが互いに近接しているか否かを判定するために、2つのD2D通信ペア3の少なくとも一方に属する少なくとも1つの無線端末1から報告された近傍無線端末の検出結果を使用してもよい。この場合、近傍無線端末の検出結果は、上述した(a)1又はそれ以上の近傍無線端末の識別子、及び(c)1又はそれ以上の近傍無線端末の各々が関連付けられている基地局又はセルの識別子、を含んでもよい。さらに、発見信号は、近傍無線端末の識別子、および当該近傍無線端末が関連付けられている基地局(又はセル)識別子を含んでもよい。
 図10は、本実施形態に係る基地局2におけるスケジューリング方法の一例(処理1000)を示すフローチャートである。ブロック1001では、基地局2は、自身が運用する自セル内の複数のD2Dペア間の近傍関係を求めるとともに、隣接セル無線端末と近傍関係にあるD2Dペアを検出する。第1の実施形態で説明したように、一例において、2つのD2D通信ペアの間の近傍関係は、一方のペアの送信端末と他方のペアの送信端末とが互いに近傍に位置するか否かによって評価されてもよい。これに代えて、2つのD2D通信ペアの間の近傍関係は、一方のペアの送信端末と他方のペアの受信端末とが互いに近傍に位置するか否かによって評価されてもよい。
 ブロック1002では、基地局2は、隣接セル無線端末と近傍関係にあるD2D通信ペア(又は送信端末)に対して自セルのための優先無線リソースを他の無線リソースよりも優先的に割り当てる。ブロック1003では、基地局2は、隣接セル無線端末と近傍関係にないD2D通信ペアに対して、自セルのための優先無線リソースを除く他の無線リソースを優先的に割り当てる。
 本実施形態での無線リソース割り当ての具体例を図11~図13を参照して説明する。図11は、互いに隣接するセル21A及び21B内での複数のD2D通信ペア3間の近傍関係の具体例を示す模式図である。図11の例では、5つのD2D通信ペアの近傍関係が示されている。具体的には、セル21Aのカバレッジ内に3つのD2D通信ペア#1~#3が存在し、セル21Bのカバレッジ内に2つのD2D通信ペア#4及び#5が存在する。セル21Aに着目すると、D2D通信ペア#1は、セル21A内のD2D通信ペア#2と近傍関係を持つとともに、隣接セル21B内のD2D通信ペア#4と近傍関係を持つ。D2D通信ペア#2は、D2D通信ペア#1とのみ近傍関係を持つ。一方、D2D通信ペア#3は、いずれの他のD2D通信ペアとも近傍関係にない。
 図12は、図4に示されたのと同様に、D2Dデータ送信のためのPSSCHリソースの割り当て周期(i.e., time resource pattern)が8サブフレームであるケースを示している。さらに、図12は、8つのサブフレームに関する優先無線リソース設定の一例を示している。図12の例では、3つのサブフレーム#2、#5、及び#8がセル21A(セル#A)のための優先無線リソースに設定されている。さらに、3つのサブフレーム#1、#4、及び#7がセル21B(セル#B)のための優先無線リソースに設定されている。一方、残りの2つのサブフレーム#3及び#6は、セル21A及び21Bのいずれのための優先無線リソースにも設定されていない非優先無線リソースである。
 図13は、D2D通信ペア間の近傍関係に関する制約と隣接セル間の優先無線リソースに関する制約を課されたスケジューリング・アルゴリズムに従って、図12に示された8サブフレーム周期のD2Dデータ送信リソースを図11に示されたセル21内の3つのD2D通信ペア#1~#3に割り当てる例を示している。なお、図13の例では、ラウンドロビン・アルゴリズムが使用され、これら3つのD2D通信ペアに対してペア#1、#2、#3の順序で繰り返し無線リソースが割り当てられる。図13の各マス目(セル)に記入されたチェックマークは、対応するD2D通信ペアに対して対応する時間ドメインリソース(サブフレーム)が割り当てられたことを示す。さらにチェックマークに添えられた1~16までの数字は、無線リソース割り当ての決定順序を示している。
 図13の例では、隣接セル無線端末と近傍関係を持つD2D通信ペア#1は、セル21Aの優先無線リソース、非優先無線リソース、隣接セル21Bの優先無線リソースの優先順序に従って無線リソースを割り当てられる。一方、隣接セル無線端末と近傍関係を持たないD2D通信ペア#2及び#3は、隣接セル21Bの優先無線リソース、非優先無線リソース、セル21Aの優先無線リソースの優先順序に従って無線リソースを割り当てられる。
 具体的には、初めに、D2D通信ペア#1は隣接セルD2D通信ペア#4と近傍関係を持つため、セル21Aのための優先無線リソースに設定されたサブフレーム#2、#5、及び#8の中からサブフレーム#2がD2D通信ペア#1によるD2D送信に割り当てられる。次に、D2D通信ペア#2は隣接セルD2D通信ペア#4と近傍関係を持たないため、隣接セル21Bのための優先無線リソースに設定されたサブフレーム#1、#4、及び#7の中からサブフレーム#1がD2D通信ペア#2によるD2D送信に割り当てられる。続いて、D2D通信ペア#3は隣接セルD2D通信ペア#4と近傍関係を持たず且つセル21A内の他のD2D通信ペア#1及び2とも近傍関係にない。したがって、D2D通信ペア#2に割り当てられたのと同じサブフレーム#1がD2D通信ペア#3によるD2D送信に割り当てられる。
 さらに、次の第2ラウンドでは、まず、セル21Aのための優先無線リソースに設定された残りのサブフレーム#5及び#8の中からサブフレーム#5がD2D通信ペア#1によるD2D送信に割り当てられる。一方、D2D通信ペア#2及び#3は、残りの非優先無線リソース、つまりサブフレーム#4を割り当てられる。このようにして無線リソース割り当てを割り当て不能になるまで繰り返していくことで、最終的に図13に示された割り当て結果が得られる。図13から理解されるように、隣接セル無線端末と近傍関係を持つD2D通信ペア#1は、自セル21のための優先無線リソース(i.e., サブフレーム#2、#5、及び#8)を割り当てられることができ、これらの自セル21のための優先無線リソースを近傍のD2D通信ペア#2に対して排他的に利用できる。一方、D2D通信ペア#3は、自セル21A及び隣接セル21B内のいずれのD2D通信ペアとも近傍関係を持たないため、空間再利用の効果によって全てのサブフレーム#1~#8を割り当てられることができる。
<第3の実施形態>
 本実施形態では、第1の実施形態で説明されたD2D送信への無線リソース割り当て手順の変形例が説明される。本実施形態に係る無線通信システムの構成例は図1と同様である。本実施形態では、基地局2は、2つのD2D通信ペアの間の近傍度(proximityレベル)を3段階以上の多段階で評価するよう構成されている。さらに、基地局2は、これら2つのD2D通信ペアに同一の時間ドメインリソースにおけるD2D送信を許可するか否かを当該近傍度の大きさに応じて決定する。
 図14は、基地局2におけるスケジューリング方法の一例(処理1400)を示すフローチャートである。ブロック1401では、基地局2は、2つのD2D通信ペア3の近傍度を判定する。ブロック1402では、基地局2は、当該近傍度が相対的に小さい第1のレベルである場合、つまり2つのD2D通信ペア3の間の地理的距離が相対的に遠い場合に、これら2つのD2D通信ペア3の両方が同一の時間-周波数リソースにおいてD2D送信を行うことを許可する。
 ブロック1403では、基地局2は、当該近傍度が中間的な第2のレベルであるとき、これら2つのD2D通信ペア3が同一の時間-周波数リソースにおいてD2D送信を行うことを禁止するが、時間ドメイン位置が同一であり且つ周波数ドメイン位置が異なる複数の時間-周波数リソースにおいてこれら2つのD2D通信ペア3がD2D送信を行うことを許可する。
 ブロック1404では、基地局2は、当該近傍度が相対的に大きい第3のレベルである場合、つまり2つのD2D通信ペア3の間の地理的距離が相対的に近い場合に、これら2つのD2D通信ペア3が同一の時間ドメインリソースにおいてD2D送信を行うことを禁止し、時間ドメイン位置が異なる複数の時間-周波数リソースにおいてこれら2つのD2D通信ペア3がD2D送信を行うことを許可する。
 なお、ブロック1402、1403、及び1404の処理は、図14とは異なる順序で実行されてもよいし、時間的に並行して実行されてもよい。
 時間-周波数リソースの一例は、LTE及びLTE-Advancedにおけるリソースブロックである。既に説明したように、normal cyclic prefixの場合、1リソースブロックは、時間ドメインにおいて連続する12OFDM(又はSC-FDMA)シンボルを含み、周波数ドメインにおいて12サブキャリアを含む。一方、時間ドメインリソースの一例は、2リソースブロック時間に相当するサブフレーム(1 ms)、又は1リソースブロック時間に相当するスロット(0.5 ms)である。周波数ドメインリソースの具体例は、1リソースブロックに相当数する12サブキャリアのセットである。
 第1の実施形態で説明したように、いくつかの実装において、基地局2は、無線端末1における近傍無線端末からの信号(e.g., 発見信号)の受信信号電力に基づいて、2つのD2D通信ペアの近傍度(proximityレベル)を判定してもよい。この場合、無線端末1から基地局2に報告される近傍無線端末の検出結果は、1又はそれ以上の近傍無線端末からの信号(e.g., 発見信号)の受信信号電力を含んでもよい。これに代えて、基地局2は、2つの無線端末1の位置情報(e.g., GNSS位置情報)から導出される2つの無線端末1の地理的距離に基づいて、2つのD2D通信ペアの近傍度(proximityレベル)を判定してもよい。
 一般に、ULシステム帯域内での無線端末による送信は、非割り当てリソースブロック(サブキャリア)に対してIn-Band Emissions(IBE)による周波数ドメインでの干渉を及ぼすことが知られている。したがって、複数のD2D送信が非常に近くで同時に行われると、IBEに起因する干渉が発生するおそれがある。図14のブロック1403に示されているように、本実施形態では、2つのD2D通信ペア3の近傍度が相対的に大きい第3のレベルである場合、これら2つのD2D通信ペア3による同一の時間-周波数リソース(e.g., リソースブロック)でのD2D送信を禁止するだけでなく、これら2つのD2D通信ペア3による同一の時間ドメインリソース(e.g., サブフレーム)でのD2D送信を禁止する。したがって、複数のD2D送信が非常に近くで行われる場合に、IBEに起因する干渉の発生を抑制できる。
 最後に、上述の複数の実施形態に係る無線端末1及び基地局2の構成例について説明する。図15は、無線端末1の構成例を示すブロック図である。Radio Frequency(RF)トランシーバ1501は、基地局2と通信するためにアナログRF信号処理を行う。RFトランシーバ1501により行われるアナログRF信号処理は、周波数アップコンバージョン、周波数ダウンコンバージョン、及び増幅を含む。RFトランシーバ1501は、アンテナ1502及びベースバンドプロセッサ1503と結合される。すなわち、RFトランシーバ1501は、変調シンボルデータ(又はOFDMシンボルデータ)をベースバンドプロセッサ1503から受信し、送信RF信号を生成し、送信RF信号をアンテナ1502に供給する。また、RFトランシーバ1501は、アンテナ1502によって受信された受信RF信号に基づいてベースバンド受信信号を生成し、これをベースバンドプロセッサ1503に供給する。
 ベースバンドプロセッサ1503は、無線通信のためのデジタルベースバンド信号処理(データプレーン処理)とコントロールプレーン処理を行う。デジタルベースバンド信号処理は、(a) データ圧縮/復元、(b) データのセグメンテーション/コンカテネーション、(c) 伝送フォーマット(伝送フレーム)の生成/分解、(d) 伝送路符号化/復号化、(e) 変調(シンボルマッピング)/復調、及び(f) Inverse Fast Fourier Transform(IFFT)によるOFDMシンボルデータ(ベースバンドOFDM信号)の生成などを含む。一方、コントロールプレーン処理は、レイヤ1(e.g., 送信電力制御)、レイヤ2(e.g., 無線リソース管理、及びhybrid automatic repeat request(HARQ)処理)、及びレイヤ3(e.g., アタッチ、モビリティ、及び通話管理に関するシグナリング)の通信管理を含む。
 例えば、LTEおよびLTE-Advancedの場合、ベースバンドプロセッサ1503によるデジタルベースバンド信号処理は、Packet Data Convergence Protocol(PDCP)レイヤ、Radio Link Control(RLC)レイヤ、MACレイヤ、およびPHYレイヤの信号処理を含んでもよい。また、ベースバンドプロセッサ1503によるコントロールプレーン処理は、Non-Access Stratum(NAS)プロトコル、RRCプロトコル、及びMAC CEの処理を含んでもよい。
 ベースバンドプロセッサ1503は、デジタルベースバンド信号処理を行うモデム・プロセッサ(e.g., Digital Signal Processor(DSP))とコントロールプレーン処理を行うプロトコルスタック・プロセッサ(e.g., Central Processing Unit(CPU)、又はMicro Processing Unit(MPU))を含んでもよい。この場合、コントロールプレーン処理を行うプロトコルスタック・プロセッサは、後述するアプリケーションプロセッサ1504と共通化されてもよい。
 アプリケーションプロセッサ1504は、CPU、MPU、マイクロプロセッサ、又はプロセッサコアとも呼ばれる。アプリケーションプロセッサ1504は、複数のプロセッサ(複数のプロセッサコア)を含んでもよい。アプリケーションプロセッサ1504は、メモリ1506又は図示されていないメモリから読み出されたシステムソフトウェアプログラム(Operating System(OS))及び様々なアプリケーションプログラム(例えば、通話アプリケーション、WEBブラウザ、メーラ、カメラ操作アプリケーション、音楽再生アプリケーション)を実行することによって、無線端末1の各種機能を実現する。
 いくつかの実装において、図15に破線(1505)で示されているように、ベースバンドプロセッサ1503及びアプリケーションプロセッサ1504は、1つのチップ上に集積されてもよい。言い換えると、ベースバンドプロセッサ1503及びアプリケーションプロセッサ1504は、1つのSystem on Chip(SoC)デバイス1505として実装されてもよい。SoCデバイスは、システムLarge Scale Integration(LSI)またはチップセットと呼ばれることもある。
 メモリ1506は、揮発性メモリ若しくは不揮発性メモリ又はこれらの組合せである。メモリ1506は、物理的に独立した複数のメモリデバイスを含んでもよい。揮発性メモリは、例えば、Static Random Access Memory(SRAM)若しくはDynamic RAM(DRAM)又はこれらの組み合わせである。不揮発性メモリは、マスクRead Only Memory(MROM)、Electrically Erasable Programmable ROM(EEPROM)、フラッシュメモリ、若しくはハードディスクドライブ、又はこれらの任意の組合せである。例えば、メモリ1506は、ベースバンドプロセッサ1503、アプリケーションプロセッサ1504、及びSoC1505からアクセス可能な外部メモリデバイスを含んでもよい。メモリ1506は、ベースバンドプロセッサ1503内、アプリケーションプロセッサ1504内、又はSoC1505内に集積された内蔵メモリデバイスを含んでもよい。さらに、メモリ1506は、Universal Integrated Circuit Card(UICC)内のメモリを含んでもよい。
 メモリ1506は、上述の複数の実施形態で説明された無線端末1による処理を行うための命令群およびデータを含むソフトウェアモジュール(コンピュータプログラム)を格納してもよい。いくつかの実装において、ベースバンドプロセッサ1503又はアプリケーションプロセッサ1504は、当該ソフトウェアモジュールをメモリ1506から読み出して実行することで、上述の実施形態で説明された無線端末1の処理を行うよう構成されてもよい。
 図16は、上述の実施形態に係る基地局2の構成例を示すブロック図である。図16を参照すると、基地局2は、RFトランシーバ1601、ネットワークインターフェース1603、プロセッサ1604、及びメモリ1605を含む。RFトランシーバ1601は、無線端末1と通信するためにアナログRF信号処理を行う。RFトランシーバ1601は、複数のトランシーバを含んでもよい。RFトランシーバ1601は、アンテナ1602及びプロセッサ1604と結合される。RFトランシーバ1601は、変調シンボルデータ(又はOFDMシンボルデータ)をプロセッサ1604から受信し、送信RF信号を生成し、送信RF信号をアンテナ1602に供給する。また、RFトランシーバ1601は、アンテナ1602によって受信された受信RF信号に基づいてベースバンド受信信号を生成し、これをプロセッサ1604に供給する。
 ネットワークインターフェース1603は、ネットワークノード(e.g., Mobility Management Entity (MME)およびServing Gateway (S-GW))と通信するために使用される。ネットワークインターフェース1603は、例えば、IEEE 802.3 seriesに準拠したネットワークインターフェースカード(NIC)を含んでもよい。
 プロセッサ1604は、無線通信のためのデジタルベースバンド信号処理(データプレーン処理)とコントロールプレーン処理を行う。例えば、LTEおよびLTE-Advancedの場合、プロセッサ1604によるデジタルベースバンド信号処理は、PDCPレイヤ、RLCレイヤ、MACレイヤ、およびPHYレイヤの信号処理を含んでもよい。また、プロセッサ1604によるコントロールプレーン処理は、S1プロトコル、RRCプロトコル、及びMAC CEの処理を含んでもよい。
 プロセッサ1604は、複数のプロセッサを含んでもよい。例えば、プロセッサ1604は、デジタルベースバンド信号処理を行うモデム・プロセッサ(e.g., DSP)とコントロールプレーン処理を行うプロトコルスタック・プロセッサ(e.g., CPU又はMPU)を含んでもよい。
 メモリ1605は、揮発性メモリ及び不揮発性メモリの組み合わせによって構成される。揮発性メモリは、例えば、SRAM若しくはDRAM又はこれらの組み合わせである。不揮発性メモリは、例えば、MROM、PROM、フラッシュメモリ、若しくはハードディスクドライブ、又はこれらの組合せである。メモリ1605は、プロセッサ1604から離れて配置されたストレージを含んでもよい。この場合、プロセッサ1604は、ネットワークインターフェース1603又は図示されていないI/Oインタフェースを介してメモリ1605にアクセスしてもよい。
 メモリ1605は、上述の複数の実施形態で説明された基地局2による処理を行うための命令群およびデータを含むソフトウェアモジュール(コンピュータプログラム)を格納してもよい。いくつかの実装において、プロセッサ1604は、当該ソフトウェアモジュールをメモリ1605から読み出して実行することで、上述の実施形態で説明された基地局2の処理を行うよう構成されてもよい。
 図15及び図16を用いて説明したように、上述の実施形態に係る無線端末1及び基地局2が有するプロセッサの各々は、図面を用いて説明されたアルゴリズムをコンピュータに行わせるための命令群を含む1又は複数のプログラムを実行する。このプログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、Compact Disc Read Only Memory(CD-ROM)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、Programmable ROM(PROM)、Erasable PROM(EPROM)、フラッシュROM、Random Access Memory(RAM))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
<その他の実施形態>
 上述の実施形態は、各々独立に実施されてもよいし、適宜組み合わせて実施されてもよい。
 上述の実施形態では、D2D通信ペア3は、2又は3以上の無線端末からなるD2D通信グループであってもよい。例えば、D2D通信グループでのD2D送信は、1つの送信端末からの信号を2つ以上の受信端末が受信することにより行われてもよい(つまり、マルチキャスト又はブロードキャスト)。したがって、本開示で使用されるD2D通信ペアとの用語は、D2D通信グループと言い換えることができる。
 上述の実施形態では、主に3GPPのLTEのD2D通信に関して説明した。しかしながら、これらの実施形態で説明された技術思想は、他のD2D通信に適用されてもよい。例えば、上述の実施形態において、LTEのD2D通信はWi-Fi DirectによるD2D通信とされてもよい。この場合、無線端末1はWi-Fi Directによる端末間通信機能を備え、無線リソースは例えばWi-Fiの周波数チャネルに相当し、基地局2はWi-Fi Direct端末(無線端末1)に使用される周波数チャネルを設定する制御装置に相当する。
 すなわち、制御装置は、複数の無線端末に含まれる複数のdevice-to-device(D2D)通信ペアによって行われる複数のD2D送信に対して周波数チャネルを割当てるよう構成されてもよく、互いに近傍に位置していない2つのD2D通信ペアによる同一の周波数チャネルの使用を許容するが互いに近傍に位置する2つのD2D通信ペアによる同一の周波数チャネルの使用を制限する割り当てルールに従って、これら複数のD2D送信に周波数チャネルを割当てるよう構成されてもよい。このような周波数チャネルの割り当てを行うために、制御装置は、周波数チャネルの割り当てを行うための1又は複数のプログラムを実行する少なくとも1つのプロセッサを備えてもよい。
 さらに、上述した実施形態は本件発明者により得られた技術思想の適用に関する例に過ぎない。すなわち、当該技術思想は、上述した実施形態のみに限定されるものではなく、種々の変更が可能であることは勿論である。
 この出願は、2015年6月2日に出願された日本出願特願2015-112698を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1 無線端末
2 基地局
3 D2D通信ペア
1501 Radio Frequency(RF)トランシーバ
1503 ベースバンドプロセッサ
1601 RFトランシーバ
1604 プロセッサ

Claims (25)

  1.  基地局であって、
     第1のセル内の複数の無線端末と通信するよう構成された無線トランシーバと;
     前記複数の無線端末に含まれる複数のdevice-to-device(D2D)通信ペアによって行われる複数のD2D送信に無線リソースをスケジューリングするよう構成された少なくとも1つのプロセッサと、ここで各D2D送信は、各D2D通信ペアに属する一方の無線端末が他方の無線端末に前記基地局を介さずに直接的に無線送信することを含む;
    を備え、
     前記少なくとも1つのプロセッサは、互いに近傍に位置していない2つのD2D通信ペアによる同一の無線リソースの使用を許容するが互いに近傍に位置する2つのD2D通信ペアによる同一の無線リソースの使用を制限する割り当てルールに従って、前記複数のD2D送信に無線リソースをスケジューリングするよう構成されている、
    基地局。
  2.  前記少なくとも1つのプロセッサは、前記割り当てルールが課されたproportional fairnessアルゴリズムに従って、前記複数のD2D送信に無線リソースを割り当てるよう構成されている、
    請求項1に記載の基地局。
  3.  前記少なくとも1つのプロセッサは、第1の無線リソースでのスケジューリング・メトリックの降順に従って第1のD2D通信ペアを選択し、前記第1のD2D通信ペアよりも大きなスケジューリング・メトリックを持ち且つ前記第1のD2D通信ペアと近傍関係にある第2のD2D通信ペアによるD2D送信に前記第1の無線リソースが割り当てられていない場合に、前記第1のD2D通信ペアによるD2D送信に前記第1の無線リソースを割り当てるよう構成されている、
    請求項1又は2に記載の基地局。
  4.  前記少なくとも1つのプロセッサは、
     前記第1のセルの隣接セルに属する隣接セル無線端末の近傍に位置するD2D通信ペアによって行われるD2D送信に対して前記第1のセルに設定された第1の優先無線リソースを他の無線リソースよりも優先的に割り当てるよう構成され、
     前記隣接セル無線端末の近傍に位置していないD2D通信ペアによって行われるD2D送信に対して前記他の無線リソースを前記第1の優先無線リソースよりも優先的に割り当てるよう構成されている、
    請求項1~3のいずれか1項に記載の基地局。
  5.  前記第1の優先無線リソースは、前記隣接セルの基地局が前記隣接セル無線端末による使用を制限する無線リソースである、
    請求項4に記載の基地局。
  6.  前記他の無線リソースは、前記隣接セルに設定された第2の優先無線リソースと前記第1及び第2の優先無線リソースのいずれにも設定されていない非優先無線リソースを含み、
     前記少なくとも1つのプロセッサは、前記隣接セル無線端末の近傍に位置していないD2D通信ペアによって行われるD2D送信に対して前記第2の優先無線リソースを前記第1の優先無線リソース及び前記非優先無線リソースよりも優先的に割り当てるよう構成されている、
    請求項4又は5に記載の基地局。
  7.  前記複数のD2D通信ペアは、第3及び第4のD2D通信ペアを含み、
     前記少なくとも1つのプロセッサは、
     前記第3のD2D通信ペアと前記第4のD2D通信ペアの間の地理的な近さを表す近傍度が第1のレベルである場合に、前記第3及び第4のD2D通信ペアが同一の時間-周波数リソースにおいてD2D送信を行うことを許可するよう構成され、
     前記近傍度が前記第1のレベルより大きい第2のレベルである場合に、前記第3及び第4のD2D通信ペアが同一の時間-周波数リソースにおいてD2D送信を行うことを禁止するが、時間ドメイン位置が同一であり且つ周波数ドメイン位置が異なる複数の時間-周波数リソースにおいて前記第3及び第4のD2D通信ペアがD2D送信を行うことを許可するよう構成され、
     前記近傍度が前記第2のレベルより大きい第3のレベルである場合に、前記第3及び第4のD2D通信ペアが同一の時間ドメインリソースにおいてD2D送信を行うことを禁止し、時間ドメイン位置が異なる複数の時間-周波数リソースにおいて前記第3及び第4のD2D通信ペアがD2D送信を行うことを許可するよう構成されている、
    請求項1~6のいずれか1項に記載の基地局。
  8.  前記少なくとも1つのプロセッサは、前記複数のD2D通信ペアに含まれる第5及び第6のD2D通信ペアが互いに近傍に位置しているか否かを判定するよう構成されている、
    請求項1~7のいずれか1項に記載の基地局。
  9.  前記少なくとも1つのプロセッサは、(a)前記第5のD2D通信ペアに属するいずれかの無線端末から報告された近傍無線端末の検出結果、及び(b)前記第5のD2D通信ペアに属する少なくとも1つの無線端末の位置情報と前記第6のD2D通信ペアに属する少なくとも1つの無線端末の位置情報、のうち少なくとも1つに基づいて、前記第5及び第6のD2D通信ペアが互いに近傍に位置しているか否かを判定するよう構成されている、
    請求項8に記載の基地局。
  10.  前記少なくとも1つのプロセッサは、前記近傍無線端末の検出結果を受信するよう構成され、
     前記検出結果は、(a)1又はそれ以上の近傍無線端末の識別子、及び(b)前記1又はそれ以上の近傍無線端末が属する1又はそれ以上のD2D通信ペアの識別子、のうち少なくとも1つを含む、
    請求項9に記載の基地局。
  11.  前記検出結果は、(c)前記1又はそれ以上の近傍無線端末の各々が関連付けられている基地局又はセルの識別子、(d)前記1又はそれ以上の近傍無線端末からの信号の受信信号電力、及び(e)前記1又はそれ以上の近傍無線端末の検出回数、のうち少なくとも1つをさらに含む、
    請求項10に記載の基地局。
  12.  基地局におけるスケジューリング方法であって、
     互いに近傍に位置していない2つのdevice-to-device(D2D)通信ペアによる同一の無線リソースの使用を許容するが互いに近傍に位置する2つのD2D通信ペアによる同一の無線リソースの使用を制限する割り当てルールに従って、複数のD2D通信ペアによって行われる複数のD2D送信に無線リソースをスケジューリングすること、ここで各D2D送信は、各D2D通信ペアに属する一方の無線端末が他方の無線端末に前記基地局を介さずに直接的に無線送信することを含む、
    を備えるスケジューリング方法。
  13.  前記スケジューリングすることは、前記割り当てルールが課されたproportional fairnessアルゴリズムに従って、前記複数のD2D送信に無線リソースを割り当てることを含む、
    請求項12に記載の方法。
  14.  前記スケジューリングすることは、第1の無線リソースでのスケジューリング・メトリックの降順に従って第1のD2D通信ペアを選択し、前記第1のD2D通信ペアよりも大きなスケジューリング・メトリックを持ち且つ前記第1のD2D通信ペアと近傍関係にある第2のD2D通信ペアによるD2D送信に前記第1の無線リソースが割り当てられていない場合に、前記第1のD2D通信ペアによるD2D送信に前記第1の無線リソースを割り当てることを含む、
    請求項12又は13に記載の方法。
  15.  前記スケジューリングすることは、
     前記基地局によって運用される第1のセルの隣接セルに属する隣接セル無線端末の近傍に位置するD2D通信ペアによって行われるD2D送信に対して前記第1のセルに設定された第1の優先無線リソースを他の無線リソースよりも優先的に割り当てること、及び
     前記隣接セル無線端末の近傍に位置していないD2D通信ペアによって行われるD2D送信に対して前記他の無線リソースを前記第1の優先無線リソースよりも優先的に割り当てること、
    を含む、
    請求項12~14のいずれか1項に記載の方法。
  16.  前記第1の優先無線リソースは、前記隣接セルの基地局が前記隣接セル無線端末による使用を制限する無線リソースである、
    請求項15に記載の方法。
  17.  前記他の無線リソースは、前記隣接セルに設定された第2の優先無線リソースと前記第1及び第2の優先無線リソースのいずれにも設定されていない非優先無線リソースを含み、
     前記スケジューリングすることは、前記隣接セル無線端末の近傍に位置していないD2D通信ペアによって行われるD2D送信に対して前記第2の優先無線リソースを前記第1の優先無線リソース及び前記非優先無線リソースよりも優先的に割り当てることを含む、
    請求項15又は16に記載の方法。
  18.  前記複数のD2D通信ペアは、第3及び第4のD2D通信ペアを含み、
     前記スケジューリングすることは、
     前記第3のD2D通信ペアと前記第4のD2D通信ペアの間の地理的な近さを表す近傍度が第1のレベルである場合に、前記第3及び第4のD2D通信ペアが同一の時間-周波数リソースにおいてD2D送信を行うことを許可すること、
     前記近傍度が前記第1のレベルより大きい第2のレベルである場合に、前記第3及び第4のD2D通信ペアが同一の時間-周波数リソースにおいてD2D送信を行うことを禁止するが、時間ドメイン位置が同一であり且つ周波数ドメイン位置が異なる複数の時間-周波数リソースにおいて前記第3及び第4のD2D通信ペアがD2D送信を行うことを許可すること、及び
     前記近傍度が前記第2のレベルより大きい第3のレベルである場合に、前記第3及び第4のD2D通信ペアが同一の時間ドメインリソースにおいてD2D送信を行うことを禁止し、時間ドメイン位置が異なる複数の時間-周波数リソースにおいて前記第3及び第4のD2D通信ペアがD2D送信を行うことを許可すること、
    を含む、
    請求項12~17のいずれか1項に記載の方法。
  19.  基地局におけるスケジューリング方法をコンピュータに行わせるためのプログラムを格納した非一時的なコンピュータ可読媒体であって、
     前記スケジューリング方法は、互いに近傍に位置していない2つのdevice-to-device(D2D)通信ペアによる同一の無線リソースの使用を許容するが互いに近傍に位置する2つのD2D通信ペアによる同一の無線リソースの使用を制限する割り当てルールに従って、複数のD2D通信ペアによって行われる複数のD2D送信に無線リソースをスケジューリングすることを含む、
    非一時的なコンピュータ可読媒体。
  20.  前記スケジューリングすることは、前記割り当てルールが課されたproportional fairnessアルゴリズムに従って、前記複数のD2D送信に無線リソースを割り当てることを含む、
    請求項19に記載の非一時的なコンピュータ可読媒体。
  21.  前記スケジューリングすることは、第1の無線リソースでのスケジューリング・メトリックの降順に従って第1のD2D通信ペアを選択し、前記第1のD2D通信ペアよりも大きなスケジューリング・メトリックを持ち且つ前記第1のD2D通信ペアと近傍関係にある第2のD2D通信ペアによるD2D送信に前記第1の無線リソースが割り当てられていない場合に、前記第1のD2D通信ペアによるD2D送信に前記第1の無線リソースを割り当てることを含む、
    請求項19又は20に記載の非一時的なコンピュータ可読媒体。
  22.  前記スケジューリングすることは、
     前記基地局によって運用される第1のセルの隣接セルに属する隣接セル無線端末の近傍に位置するD2D通信ペアによって行われるD2D送信に対して前記第1のセルに設定された第1の優先無線リソースを他の無線リソースよりも優先的に割り当てること、及び
     前記隣接セル無線端末の近傍に位置していないD2D通信ペアによって行われるD2D送信に対して前記他の無線リソースを前記第1の優先無線リソースよりも優先的に割り当てること、
    を含む、
    請求項19~21のいずれか1項に記載の非一時的なコンピュータ可読媒体。
  23.  前記第1の優先無線リソースは、前記隣接セルの基地局が前記隣接セル無線端末による使用を制限する無線リソースである、
    請求項22に記載の非一時的なコンピュータ可読媒体。
  24.  前記他の無線リソースは、前記隣接セルに設定された第2の優先無線リソースと前記第1及び第2の優先無線リソースのいずれにも設定されていない非優先無線リソースを含み、
     前記スケジューリングすることは、前記隣接セル無線端末の近傍に位置していないD2D通信ペアによって行われるD2D送信に対して前記第2の優先無線リソースを前記第1の優先無線リソース及び前記非優先無線リソースよりも優先的に割り当てることを含む、
    請求項22又は23に記載の非一時的なコンピュータ可読媒体。
  25.  前記複数のD2D通信ペアは、第3及び第4のD2D通信ペアを含み、
     前記スケジューリングすることは、
     前記第3のD2D通信ペアと前記第4のD2D通信ペアの間の地理的な近さを表す近傍度が第1のレベルである場合に、前記第3及び第4のD2D通信ペアが同一の時間-周波数リソースにおいてD2D送信を行うことを許可すること、
     前記近傍度が前記第1のレベルより大きい第2のレベルである場合に、前記第3及び第4のD2D通信ペアが同一の時間-周波数リソースにおいてD2D送信を行うことを禁止するが、時間ドメイン位置が同一であり且つ周波数ドメイン位置が異なる複数の時間-周波数リソースにおいて前記第3及び第4のD2D通信ペアがD2D送信を行うことを許可すること、及び
     前記近傍度が前記第2のレベルより大きい第3のレベルである場合に、前記第3及び第4のD2D通信ペアが同一の時間ドメインリソースにおいてD2D送信を行うことを禁止し、時間ドメイン位置が異なる複数の時間-周波数リソースにおいて前記第3及び第4のD2D通信ペアがD2D送信を行うことを許可すること、
    を含む、
    請求項19~24のいずれか1項に記載の非一時的なコンピュータ可読媒体。
PCT/JP2016/001863 2015-06-02 2016-03-31 基地局及びスケジューリング方法 WO2016194279A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/578,271 US10531504B2 (en) 2015-06-02 2016-03-31 Base station and scheduling method
JP2017521664A JP6756332B2 (ja) 2015-06-02 2016-03-31 基地局及びスケジューリング方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-112698 2015-06-02
JP2015112698 2015-06-02

Publications (1)

Publication Number Publication Date
WO2016194279A1 true WO2016194279A1 (ja) 2016-12-08

Family

ID=57440766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001863 WO2016194279A1 (ja) 2015-06-02 2016-03-31 基地局及びスケジューリング方法

Country Status (3)

Country Link
US (1) US10531504B2 (ja)
JP (1) JP6756332B2 (ja)
WO (1) WO2016194279A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108235279A (zh) * 2016-12-22 2018-06-29 大众汽车有限公司 组织通信的方法、移动无线电网络用户站和管理单元
WO2018193676A1 (ja) * 2017-04-19 2018-10-25 日本電気株式会社 無線通信のための装置および方法
JP2019176242A (ja) * 2018-03-27 2019-10-10 株式会社Kddi総合研究所 移動通信ネットワーク、基地局及びユーザ装置。
KR20210133923A (ko) * 2018-09-25 2021-11-08 아서스테크 컴퓨터 인코포레이션 무선 통신 시스템에서 사이드 링크 전송을 위한 피드백 리소스를 유도하는 방법 및 장치
WO2022168646A1 (ja) * 2021-02-08 2022-08-11 ソニーグループ株式会社 通信制御装置、通信装置及び通信制御方法
JP7456146B2 (ja) 2019-12-20 2024-03-27 株式会社Jvcケンウッド 管理装置、管理方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2524298A (en) * 2014-03-19 2015-09-23 Nec Corp Device-to-device radio resource management
US20170164252A1 (en) * 2015-12-04 2017-06-08 Wipro Limited Methods and Systems for Coordination Multi Point Set Determination for a Wireless Network
EP3442283B1 (en) * 2016-05-12 2023-10-04 Huawei Technologies Co., Ltd. Information transmission method and user equipment
DE112016007007T5 (de) * 2016-06-22 2019-03-07 Intel Corporation Kommunikationsvorrichtung und verfahren für vollduplex-disposition
WO2018030788A1 (ko) * 2016-08-09 2018-02-15 엘지전자 주식회사 무선 통신 시스템에서 단말의 사이드링크 신호 송수신 방법
EP3340704B1 (en) * 2016-12-22 2020-06-10 Volkswagen Aktiengesellschaft Method for resource allocation in a mobile communication system and base station, and participant communication module for the use in the method
US11044129B2 (en) * 2017-12-21 2021-06-22 Qualcomm Incorporated Hierarchical communication for device-to-device communications
CN110740509A (zh) * 2018-07-18 2020-01-31 华为技术有限公司 一种数据传输方法、网络设备、通信设备及存储介质
WO2020145780A1 (ko) * 2019-01-11 2020-07-16 엘지전자 주식회사 Nr v2x에서 기지국에 의해 할당된 자원을 기반으로 사이드링크 통신을 수행하는 방법 및 장치
US20220201731A1 (en) * 2019-05-02 2022-06-23 Lg Electronics Inc. Trigger and cancellation of sidelink scheduling request based on status of different direct links
US11889541B2 (en) * 2020-01-24 2024-01-30 Qualcomm Incorporated Superposition transmission of sidelink and uplink

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013170908A1 (en) * 2012-05-15 2013-11-21 Telefonaktiebolaget L M Ericsson (Publ) Interference management for network assisted device-to-device communication
WO2014073538A1 (ja) * 2012-11-06 2014-05-15 京セラ株式会社 移動通信システム、ユーザ端末及びプロセッサ
JP2014230131A (ja) * 2013-05-23 2014-12-08 日本電気株式会社 基地局とその制御方法、無線通信システム、および、プログラム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011098128A1 (en) * 2010-02-11 2011-08-18 Nokia Siemens Networks Oy Controlling communication devices
US10419960B2 (en) * 2012-04-09 2019-09-17 Telefonaktiabolaget LM Ericsson Managing uncertain measurement occasions
US10264437B2 (en) * 2013-01-16 2019-04-16 Interdigital Patent Holdings, Inc. Discovery signal generation and reception
JP6140014B2 (ja) 2013-07-09 2017-05-31 京セラ株式会社 ユーザ端末、基地局、及びプロセッサ
WO2015112065A1 (en) * 2014-01-23 2015-07-30 Telefonaktiebolaget L M Ericsson (Publ) Management of d2d-related interference
KR20160110959A (ko) * 2014-03-10 2016-09-23 엘지전자 주식회사 단말 간 통신을 지원하는 무선 통신 시스템에서 자원 할당 방법 및 이를 위한 장치
US20150264588A1 (en) * 2014-03-14 2015-09-17 Samsung Electronics Co., Ltd. Methods and apparatus for synchronization in device-to-device communication networks
WO2015160158A1 (ko) * 2014-04-13 2015-10-22 엘지전자(주) 무선 통신 시스템에서 d2d 단말 그룹 관리 방법 및 이를 위한 장치
US10264592B2 (en) * 2014-04-30 2019-04-16 Telefonaktiebolaget Lm Ericsson (Publ) Method and radio network node for scheduling of wireless devices in a cellular network
TWI572089B (zh) * 2015-07-16 2017-02-21 和碩聯合科技股份有限公司 無線通訊裝置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013170908A1 (en) * 2012-05-15 2013-11-21 Telefonaktiebolaget L M Ericsson (Publ) Interference management for network assisted device-to-device communication
WO2014073538A1 (ja) * 2012-11-06 2014-05-15 京セラ株式会社 移動通信システム、ユーザ端末及びプロセッサ
JP2014230131A (ja) * 2013-05-23 2014-12-08 日本電気株式会社 基地局とその制御方法、無線通信システム、および、プログラム

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108235279A (zh) * 2016-12-22 2018-06-29 大众汽车有限公司 组织通信的方法、移动无线电网络用户站和管理单元
JP2018107802A (ja) * 2016-12-22 2018-07-05 フォルクスヴァーゲン アクチエンゲゼルシャフトVolkswagen Aktiengesellschaft 移動無線セル内における移動無線ネットワーク加入者局間の通信を整理するための方法、並びに、本発明に係る方法を使用する場合における移動無線ネットワーク加入者局及び移動無線ネットワーク管理ユニット
US10652712B2 (en) 2016-12-22 2020-05-12 Volkswagen Ag Method for organizing the communication between mobile radio network subscriber stations in a mobile radio cell, mobile radio network subscriber station, and mobile radio network management unit
WO2018193676A1 (ja) * 2017-04-19 2018-10-25 日本電気株式会社 無線通信のための装置および方法
US10993238B2 (en) 2017-04-19 2021-04-27 Nec Corporation Apparatus and method for radio communication
JP2019176242A (ja) * 2018-03-27 2019-10-10 株式会社Kddi総合研究所 移動通信ネットワーク、基地局及びユーザ装置。
KR20210133923A (ko) * 2018-09-25 2021-11-08 아서스테크 컴퓨터 인코포레이션 무선 통신 시스템에서 사이드 링크 전송을 위한 피드백 리소스를 유도하는 방법 및 장치
KR102486157B1 (ko) 2018-09-25 2023-01-09 아서스테크 컴퓨터 인코포레이션 무선 통신 시스템에서 사이드 링크 전송을 위한 피드백 리소스를 유도하는 방법 및 장치
US11723046B2 (en) 2018-09-25 2023-08-08 Asustek Computer Inc. Method and apparatus of deriving feedback resource for sidelink transmission in a wireless communication system
JP7456146B2 (ja) 2019-12-20 2024-03-27 株式会社Jvcケンウッド 管理装置、管理方法
WO2022168646A1 (ja) * 2021-02-08 2022-08-11 ソニーグループ株式会社 通信制御装置、通信装置及び通信制御方法

Also Published As

Publication number Publication date
US10531504B2 (en) 2020-01-07
US20180146500A1 (en) 2018-05-24
JP6756332B2 (ja) 2020-09-16
JPWO2016194279A1 (ja) 2018-04-05

Similar Documents

Publication Publication Date Title
JP6756332B2 (ja) 基地局及びスケジューリング方法
JP7414650B2 (ja) User Equipment(UE)及びその方法
JP6450488B2 (ja) 装置間通信リソースの管理
US20200296745A1 (en) Apparatus and method for resource scheduling related to device-to-device communication
JPWO2017163545A1 (ja) デバイス・ツー・デバイス通信を制御するための装置および方法
WO2017163544A1 (ja) デバイス・ツー・デバイス通信を制御するための装置、基地局、無線端末、及びこれらの方法
WO2018123127A1 (ja) 無線通信のための装置、方法、及びプログラムを格納した非一時的なコンピュータ可読媒体
JP6631351B2 (ja) デバイス・ツー・デバイス通信に関するリソーススケジューリングのための装置及び方法
US10993238B2 (en) Apparatus and method for radio communication
JP6747441B2 (ja) 無線通信のための方法及び装置
WO2017187713A1 (ja) 無線通信のための装置および方法
US9577777B2 (en) Method and apparatus for controlling inter-cellular interference in HetNet system
WO2017002285A1 (ja) 無線通信のための方法及び装置
US20240015730A1 (en) Systems and methods for time division duplex slot pattern determination
WO2015194016A1 (ja) 無線通信システム、無線通信方法、無線基地局、及び、無線機器
WO2023219536A1 (en) Methods, network node and ues for handling transmission power in a communications network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16802727

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017521664

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15578271

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16802727

Country of ref document: EP

Kind code of ref document: A1