WO2020013191A1 - Matériau de chalcogénure de haute pureté et sa méthode de production - Google Patents

Matériau de chalcogénure de haute pureté et sa méthode de production Download PDF

Info

Publication number
WO2020013191A1
WO2020013191A1 PCT/JP2019/027172 JP2019027172W WO2020013191A1 WO 2020013191 A1 WO2020013191 A1 WO 2020013191A1 JP 2019027172 W JP2019027172 W JP 2019027172W WO 2020013191 A1 WO2020013191 A1 WO 2020013191A1
Authority
WO
WIPO (PCT)
Prior art keywords
periodic table
group
phase
sns
chalcogenide
Prior art date
Application number
PCT/JP2019/027172
Other languages
English (en)
Japanese (ja)
Inventor
嘉太郎 野瀬
友輝 武村
涼司 勝部
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to JP2020530205A priority Critical patent/JPWO2020013191A1/ja
Publication of WO2020013191A1 publication Critical patent/WO2020013191A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G17/00Compounds of germanium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds

Definitions

  • M 1 represents a Group 14 element of the periodic table, and includes Sn, Si, Ge, Pb, and the like. From the viewpoint of easily obtaining a high-purity chalcogenide material, Sn, Ge, and the like are preferable, and Sn is preferably More preferred.
  • Method for producing a high-purity chalcogenide material comprises: (1) A raw material containing a periodic table group 14 molecule and a periodic table group 16 molecule is heated, and a two-phase coexisting material of the chalcogenide compound represented by the general formula (1) and the periodic table group 14 molecule is removed. The process of making, (2) a step of heating the two-phase coexisting material obtained in the step (1).
  • Step (1) Preparation of Two-Phase Coexisting Material
  • a raw material containing a molecule of Group 14 of the periodic table and a molecule of Group 16 of the periodic table is heated, and A biphasic coexisting material of the chalcogenide compound represented and the periodic table group 14 molecule is prepared.
  • composition ratio between the periodic table group 14 molecules and the periodic table group 16 molecules in the raw materials as long as the two-phase coexisting material of the chalcogenide compound represented by the general formula (1) and the periodic table group 14 molecules can be prepared.
  • the two-phase coexisting material of the chalcogenide compound represented by the general formula (1) and the periodic table group 14 molecules can be prepared.
  • S-Sn binary phase diagram shown in FIG. 1 when the Sn content is 100 mol% or in the immediate vicinity, it is a Sn stable region, and the Sn content is 50 mol%. In the case of or in the immediate vicinity of this, it is a stable region of SnS.
  • This example is an example of the S-Sn binary phase diagram, but the same tendency is observed in other binary phase diagrams of elements of Group 14 of the periodic table to elements of Group 16 of the periodic table.
  • Step (2) Chalcogenide Material Preparation
  • the two-phase coexisting material obtained in step (1) is heated.
  • molecules of the 14th group of the periodic table and the target chalcogenide compound are mixed.
  • these two components have significantly different equilibrium vapor pressures, use this vapor pressure difference.
  • only the target chalcogenide compound can be isolated.
  • Example 2 Soda-lime glass (SLG) was used for the substrate of the SnS single-phase thin film production thin film.
  • the SLG was cut into 10 mm ⁇ 10 mm ⁇ 0.5 mm using a diamond pen, washed with a neutral detergent, and then subjected to ultrasonic cleaning for 5 minutes for acetone, 2-propanol and ultrapure water in this order.
  • the washed SLG was dried using nitrogen gas. Note that the substrate temperature of SLG was room temperature or 300 ° C.
  • the Sn-SnS two-phase sample prepared in Production Example 1 was used as the evaporation source. The sample was cut to a width of about 3 mm using a diamond wheel saw.
  • FIG. 14 shows a stereogram and a surface SEM image of the obtained thin film (substrate temperature: room temperature).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

La présente invention permet la fourniture d'un matériau de chalcogénure de haute pureté, qui était difficile avant. Le matériau de chalcogénure de haute pureté contient, en tant que composé de chalcogénure de haute pureté contenant un élément appartenant au Groupe 14 et un élément appartenant au Groupe 16 sur la table périodique à un rapport d'environ 1 : 1, un composé de chalcogénure représenté par la formule générale (1) : M1M2 x [dans laquelle M1 représente un élément appartenant au Groupe 14 sur la table périodique; M2 représente un élément appartenant au Groupe 16 sur la table périodique; et x représente une valeur numérique de 0,9 à 1,1], la teneur du composé de chalcogénure étant de 90 % en moles ou plus telle que mesurée par une mesure de diffraction des rayons X.
PCT/JP2019/027172 2018-07-10 2019-07-09 Matériau de chalcogénure de haute pureté et sa méthode de production WO2020013191A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020530205A JPWO2020013191A1 (ja) 2018-07-10 2019-07-09 高純度カルコゲナイド材料及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-130688 2018-07-10
JP2018130688 2018-07-10

Publications (1)

Publication Number Publication Date
WO2020013191A1 true WO2020013191A1 (fr) 2020-01-16

Family

ID=69142444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027172 WO2020013191A1 (fr) 2018-07-10 2019-07-09 Matériau de chalcogénure de haute pureté et sa méthode de production

Country Status (2)

Country Link
JP (1) JPWO2020013191A1 (fr)
WO (1) WO2020013191A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114908412A (zh) * 2022-05-09 2022-08-16 福州大学 一种高效生长三硫化二锡单晶热电材料的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0761818A (ja) * 1993-08-26 1995-03-07 Nisshin Steel Co Ltd SnS半導体膜の製造方法
JP2007284309A (ja) * 2006-04-19 2007-11-01 Nihon Seiko Co Ltd 金属硫化物粉末の製造方法および装置
JP2015107903A (ja) * 2013-10-22 2015-06-11 住友金属鉱山株式会社 硫化スズ焼結体およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0761818A (ja) * 1993-08-26 1995-03-07 Nisshin Steel Co Ltd SnS半導体膜の製造方法
JP2007284309A (ja) * 2006-04-19 2007-11-01 Nihon Seiko Co Ltd 金属硫化物粉末の製造方法および装置
JP2015107903A (ja) * 2013-10-22 2015-06-11 住友金属鉱山株式会社 硫化スズ焼結体およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VOZNYI, A. ET AL.: "Formation of SnS phase obtained by thermal vacuum annealing of SnS2 thin films and its application in solar cells", MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, vol. 79, 20 February 2018 (2018-02-20), pages 32 - 39, XP085359417, DOI: 10.1016/j.mssp.2018.01.021 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114908412A (zh) * 2022-05-09 2022-08-16 福州大学 一种高效生长三硫化二锡单晶热电材料的方法

Also Published As

Publication number Publication date
JPWO2020013191A1 (ja) 2021-07-15

Similar Documents

Publication Publication Date Title
Brummer et al. Formation of CuInSe2 by the annealing of stacked elemental layers—analysis by in situ high-energy powder diffraction
US7534414B2 (en) Clathrate compounds and method of manufacturing
US10347473B2 (en) Synthesis of high-purity bulk copper indium gallium selenide materials
Kumar et al. Tetrahedrite (Cu12Sb4S13) thin films for photovoltaic and thermoelectric applications
CN109824098A (zh) 一种过渡金属硫族化合物薄膜及其制备方法和用途
Horie et al. Controlled thermal decomposition of NaSi to derive silicon clathrate compounds
JPH0769782A (ja) 遷移金属カルコゲニドの配向多結晶質薄膜
WO2020013191A1 (fr) Matériau de chalcogénure de haute pureté et sa méthode de production
Ishtiyak et al. Intrinsic extremely low thermal conductivity in BaIn2Te4: Synthesis, crystal structure, Raman spectroscopy, optical, and thermoelectric properties
WO2011092993A1 (fr) Film d'oxyde, son procédé de production, cible et procédé de production d'un oxyde fritté
Lan et al. Structure and optical properties of GeTe film controlled by amorphous to crystalline phase transition
US8211400B2 (en) Method of manufacturing a clathrate compound
Sarkar et al. The role of vast off-stoichiometry of SnSe thin film on structural, morphological, optical, and electrical properties for photovoltaic applications
Su et al. Growth of ZnTe by physical vapor transport and traveling heater method
Razykov et al. Characteristics of thin Sb2Se3 films obtained by the chemical molecular beam deposition method for thin-film solar cells
JPH05201712A (ja) 鎖状リン材料
Piarristeguy et al. Neutron thermodiffraction study of the crystallization of Ag–Ge–Se glasses: evidence of a new phase
Bodnar et al. Structural and optical properties of AgIn5S8 films prepared by pulsed laser deposition
Gremenok et al. Investigation of CuInZnSe2 thin films for solar cell applications
Safavi et al. Impacts of Cu-Doping and Mg-Deficiency on Mg 2 Sn Thin Films Thermoelectric Properties
Du et al. Growth of Bridgman ingots of CuGaxIn1− xSe2 for solar cells
Stoilova et al. Kinetics of Ge‐Se‐In Film Growth
Jain et al. Study of thermally evaporated Sb2Se3-based substrate-configured solar cell
Isaeva et al. New metal-rich mixed chalcogenides with intergrowth structures: Ni8. 21Ge2S2 and Ni8. 45Ge2Se2
Ariswan et al. Physicochemical properties of Sn (S1-xTex) solid solutions of both massive materials and thin films

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19835121

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020530205

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19835121

Country of ref document: EP

Kind code of ref document: A1