WO2020013191A1 - High-purity chalcogenide material and method for producing same - Google Patents

High-purity chalcogenide material and method for producing same Download PDF

Info

Publication number
WO2020013191A1
WO2020013191A1 PCT/JP2019/027172 JP2019027172W WO2020013191A1 WO 2020013191 A1 WO2020013191 A1 WO 2020013191A1 JP 2019027172 W JP2019027172 W JP 2019027172W WO 2020013191 A1 WO2020013191 A1 WO 2020013191A1
Authority
WO
WIPO (PCT)
Prior art keywords
periodic table
group
phase
sns
chalcogenide
Prior art date
Application number
PCT/JP2019/027172
Other languages
French (fr)
Japanese (ja)
Inventor
嘉太郎 野瀬
友輝 武村
涼司 勝部
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to JP2020530205A priority Critical patent/JPWO2020013191A1/en
Publication of WO2020013191A1 publication Critical patent/WO2020013191A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G17/00Compounds of germanium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds

Definitions

  • M 1 represents a Group 14 element of the periodic table, and includes Sn, Si, Ge, Pb, and the like. From the viewpoint of easily obtaining a high-purity chalcogenide material, Sn, Ge, and the like are preferable, and Sn is preferably More preferred.
  • Method for producing a high-purity chalcogenide material comprises: (1) A raw material containing a periodic table group 14 molecule and a periodic table group 16 molecule is heated, and a two-phase coexisting material of the chalcogenide compound represented by the general formula (1) and the periodic table group 14 molecule is removed. The process of making, (2) a step of heating the two-phase coexisting material obtained in the step (1).
  • Step (1) Preparation of Two-Phase Coexisting Material
  • a raw material containing a molecule of Group 14 of the periodic table and a molecule of Group 16 of the periodic table is heated, and A biphasic coexisting material of the chalcogenide compound represented and the periodic table group 14 molecule is prepared.
  • composition ratio between the periodic table group 14 molecules and the periodic table group 16 molecules in the raw materials as long as the two-phase coexisting material of the chalcogenide compound represented by the general formula (1) and the periodic table group 14 molecules can be prepared.
  • the two-phase coexisting material of the chalcogenide compound represented by the general formula (1) and the periodic table group 14 molecules can be prepared.
  • S-Sn binary phase diagram shown in FIG. 1 when the Sn content is 100 mol% or in the immediate vicinity, it is a Sn stable region, and the Sn content is 50 mol%. In the case of or in the immediate vicinity of this, it is a stable region of SnS.
  • This example is an example of the S-Sn binary phase diagram, but the same tendency is observed in other binary phase diagrams of elements of Group 14 of the periodic table to elements of Group 16 of the periodic table.
  • Step (2) Chalcogenide Material Preparation
  • the two-phase coexisting material obtained in step (1) is heated.
  • molecules of the 14th group of the periodic table and the target chalcogenide compound are mixed.
  • these two components have significantly different equilibrium vapor pressures, use this vapor pressure difference.
  • only the target chalcogenide compound can be isolated.
  • Example 2 Soda-lime glass (SLG) was used for the substrate of the SnS single-phase thin film production thin film.
  • the SLG was cut into 10 mm ⁇ 10 mm ⁇ 0.5 mm using a diamond pen, washed with a neutral detergent, and then subjected to ultrasonic cleaning for 5 minutes for acetone, 2-propanol and ultrapure water in this order.
  • the washed SLG was dried using nitrogen gas. Note that the substrate temperature of SLG was room temperature or 300 ° C.
  • the Sn-SnS two-phase sample prepared in Production Example 1 was used as the evaporation source. The sample was cut to a width of about 3 mm using a diamond wheel saw.
  • FIG. 14 shows a stereogram and a surface SEM image of the obtained thin film (substrate temperature: room temperature).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

The present invention enables the provision of a high-purity chalcogenide material, which was difficult before. The high-purity chalcogenide material contains, as a high-purity chalcogenide compound containing an element belonging to Group 14 and an element belonging to Group 16 on the periodic table at a ratio of about 1:1, a chalcogenide compound represented by general formula (1): M1M2 x [wherein M1 represents an element belonging to Group 14 on the periodic table; M2 represents an element belonging to Group 16 on the periodic table; and x represents a numerical value of 0.9 to 1.1], wherein the content of the chalcogenide compound is 90 mol% or more as measured by an X-ray diffraction measurement.

Description

高純度カルコゲナイド材料及びその製造方法High purity chalcogenide material and method for producing the same
 本発明は、高純度カルコゲナイド材料及びその製造方法に関する。 The present invention relates to a high-purity chalcogenide material and a method for producing the same.
 安価で安全な元素で構成されるp型半導体である硫化スズSnSは、1.3eV程度のバンドギャップを有しており、光吸収係数が可視光領域で105cm-1程度であることから、高効率の太陽電池材料や電子デバイスの二次元材料等として期待されており、太陽電池材料として使用した場合は理論変換効率が30%以上であると想定される。SnS太陽電池は、現在のところ、4.36%の最高変換効率が報告されている。また、他の周期表第14族元素と第16族元素の1: 1のカルコゲナイド化合物についても同様に、高効率の太陽電池材料として期待される。 Tin sulfide SnS, which is a p-type semiconductor composed of inexpensive and safe elements, has a band gap of about 1.3 eV and has a light absorption coefficient of about 10 5 cm -1 in the visible light region. It is expected as a high-efficiency solar cell material or a two-dimensional material for an electronic device. When used as a solar cell material, the theoretical conversion efficiency is expected to be 30% or more. SnS solar cells are currently reported with a maximum conversion efficiency of 4.36%. Similarly, other 1: 1 chalcogenide compounds of Group 14 and Group 16 elements are also expected to be highly efficient solar cell materials.
 このようなデバイス化や基礎研究においては、単相結晶を用いることが肝要であるが、単相結晶を得ることは容易とは言えない。例えば、市販のSnS結晶を例に取ると、高純度グレード(純度99.9%)のSnSであっても、表記されている純度はSn及びS以外の不純物濃度が0.1%であることを示しているに過ぎず、Sn又はSを含む不純物は考慮に入れられていない。この市販のSnS試料中には、SnSのみならず、Sn2S3やSnO2等の不純物も混在していることから、純度99.9%であることは、SnS、Sn2S3、SnO2等を合計で99.9%含んでいることを意味しており、正味のSnSの純度は50%程度に過ぎない。また、SnS単相結晶を直接製造しようとしても、図1に示されるS-Sn二元系状態図からも理解できるように、SnS単相の安定領域は極めて狭く、SnS単相結晶を直接製造することは困難を極める。また、この場合、Sn-S2系化学ポテンシャル図からは、硫黄の蒸気圧を著しく低く制御して(具体的には、pS2< 10-8.8気圧)化学ポテンシャルを著しく低くする必要があり、この観点からも容易に作製することはできない。また、原料として使用される純硫黄を原料として使用する場合には、純硫黄の蒸気圧が著しく高く、熱処理中に反応容器を破壊する虞もある。上記のような課題は、SnSのみならず、他の周期表第14族元素と第16族元素の約1: 1のカルコゲナイド化合物についても同様である。 In such devices and basic research, it is important to use single-phase crystals, but it is not easy to obtain single-phase crystals. For example, taking a commercially available SnS crystal as an example, even if it is high purity grade (99.9% purity) SnS, the indicated purity indicates that the impurity concentration other than Sn and S is 0.1%. However, impurities containing Sn or S are not taken into account. In this commercially available SnS sample, not only SnS but also impurities such as Sn 2 S 3 and SnO 2 are mixed, so that purity of 99.9% means that SnS, Sn 2 S 3 , SnO 2 etc. And 99.9% in total, and the net SnS purity is only about 50%. In addition, even if it is attempted to directly produce a SnS single-phase crystal, as can be understood from the S-Sn binary phase diagram shown in FIG. 1, the stable region of the SnS single-phase crystal is extremely narrow, and the SnS single-phase crystal is directly produced. It is extremely difficult to do. In this case, from the Sn-S 2 chemical potential diagram, it is necessary to control the vapor pressure of sulfur to be extremely low (specifically, p S2 < 10-8.8 atm) to significantly lower the chemical potential. From this viewpoint, it cannot be easily manufactured. When pure sulfur used as a raw material is used as a raw material, the vapor pressure of pure sulfur is extremely high, and there is a possibility that the reaction vessel may be broken during the heat treatment. The above-mentioned problem is the same not only for SnS but also for other chalcogenide compounds of about 1: 1 of Group 14 elements and Group 16 elements.
 本発明は、上記のような課題を解決しようとするものであり、従来は困難であった、周期表第14族元素と第16族元素の約1: 1の高純度なカルコゲナイド化合物及びその製造方法を提供することを目的とする。 The present invention is intended to solve the above-described problems, and has been difficult in the past, a chalcogenide compound having a high purity of about 1: 1 of Group 14 and Group 16 elements of the periodic table and its production. The aim is to provide a method.
 本発明者等は、上記問題点を解決するために鋭意検討した結果、周期表第14族分子及び周期表第16族分子から、直接カルコゲナイド化合物を製造しようとするのではなく、目的のカルコゲナイド化合物と周期表第14族分子の二相共存材料を一旦作製した後に、蒸気圧差を利用して目的のカルコゲナイド化合物を単離することにより、周期表第14族元素と第16族元素の約1: 1の高純度なカルコゲナイド化合物を得ることができることを見出した。これらの知見に基づいて、本発明者等は、さらに研究を重ね、本発明を完成させた。即ち、本発明は下記態様を包含するものである。
項1.一般式(1):
M1M2 x   (1)
[式中、M1は周期表第14族元素を示す。M2は周期表第16族元素を示す。xは0.9~1.1を示す。]
で表されるカルコゲナイド化合物を含有し、
X線回折測定において、前記カルコゲナイド化合物の存在量が90モル%以上である、高純度カルコゲナイド材料。
項2.バルク状又は薄膜状である、項1に記載の高純度カルコゲナイド材料。
項3.項1又は2に記載の高純度カルコゲナイド材料の製造方法であって、
(1)周期表第14族分子と、周期表第16族分子とを含む原料を加熱し、前記一般式(1)で表されるカルコゲナイド化合物及び周期表第14族分子の二相共存材料を作製する工程、
(2)前記工程(1)で得られた二相共存材料を加熱する工程
を備える、製造方法。
項4.前記工程(2)における加熱温度が300~900℃である、項3に記載の製造方法。
項5.前記工程(2)において、加熱を行う際の圧力が10-6~10Paである、項3又は4に記載の製造方法。
The present inventors have conducted intensive studies to solve the above problems, and as a result, instead of directly producing chalcogenide compounds from Group 14 molecules of the periodic table and molecules of Group 16 of the periodic table, the objective chalcogenide compounds After once producing a two-phase coexisting material of the periodic table group 14 molecules, by isolating the target chalcogenide compound using the vapor pressure difference, about 1 of the periodic table group 14 element and the group 16 element: It has been found that a high-purity chalcogenide compound of 1 can be obtained. Based on these findings, the present inventors have further studied and completed the present invention. That is, the present invention includes the following embodiments.
Item 1. General formula (1):
M 1 M 2 x (1)
Wherein, M 1 is shows a periodic table group 14 element. M 2 represents a Group 16 element in the periodic table. x represents 0.9 to 1.1. ]
Containing a chalcogenide compound represented by
A high-purity chalcogenide material, wherein the amount of the chalcogenide compound is 90 mol% or more in X-ray diffraction measurement.
Item 2. Item 2. The high-purity chalcogenide material according to Item 1, which is in the form of a bulk or a thin film.
Item 3. A method for producing a high-purity chalcogenide material according to item 1 or 2,
(1) A raw material containing a periodic table group 14 molecule and a periodic table group 16 molecule is heated, and a two-phase coexisting material of the chalcogenide compound represented by the general formula (1) and the periodic table group 14 molecule is removed. The process of making,
(2) A production method comprising a step of heating the two-phase coexisting material obtained in the step (1).
Item 4. Item 4. The production method according to Item 3, wherein the heating temperature in the step (2) is 300 to 900 ° C.
Item 5. Item 5. The production method according to item 3 or 4, wherein the pressure at the time of heating in the step (2) is 10 −6 to 10 Pa.
 本発明によれば、周期表第14族元素と第16族元素の約1: 1の高純度なカルコゲナイド化合物を得ることができる。 According to the present invention, it is possible to obtain a high-purity chalcogenide compound having a ratio of about 1: 1 of Group 14 and Group 16 elements of the periodic table.
S-Sn二元系状態図を示す。The S-Sn binary phase diagram is shown. Sn、SnS及びS2の蒸気圧曲線を示す。Sn, shows a vapor pressure curve of SnS and S 2. 製造例1の熱処理プロファイルを示す。3 shows a heat treatment profile of Production Example 1. 製造例1で得られたSn-SnS二相試料の表面のSEM像を示す。3 shows an SEM image of the surface of the Sn—SnS two-phase sample obtained in Production Example 1. 製造例1で得られたSn-SnS二相試料のX線回折プロファイルを示す。下段には、参考のためSnSの文献値を示す。1 shows an X-ray diffraction profile of a Sn—SnS two-phase sample obtained in Production Example 1. The lower part shows the literature values of SnS for reference. 実施例1において、昇温完了後のブリッジマン炉内部の温度プロファイルを示す。In Example 1, a temperature profile inside the Bridgman furnace after completion of the temperature rise is shown. 実施例1で得られたSnS単相バルク結晶の粉末X線回折プロファイルを示す。下段には、参考のためSnSの文献値を示す。1 shows a powder X-ray diffraction profile of the SnS single-phase bulk crystal obtained in Example 1. The lower part shows the literature values of SnS for reference. 実施例1で得られたSnS単相バルク結晶の劈開後の写真を示す。2 shows a photograph of the SnS single-phase bulk crystal obtained in Example 1 after cleavage. 実施例1で得られたSnS単相バルク結晶の劈開面のSEM像を示す。3 shows an SEM image of a cleavage plane of the SnS single-phase bulk crystal obtained in Example 1. 実施例1で得られたSnS単相バルク結晶の劈開面のX線回折プロファイルを示す。上から1段目は表面、2段目は裏面の結果である。また、3段目はSnSの文献値である。2 shows an X-ray diffraction profile of a cleavage plane of the SnS single-phase bulk crystal obtained in Example 1. The first row from the top shows the results for the front side, and the second row shows the results for the back side. The third row shows SnS literature values. 実施例2で得られたSnS単相薄膜のX線回折プロファイルを示す。下段には、参考のためSnSの文献値を示す。4 shows an X-ray diffraction profile of the SnS single-phase thin film obtained in Example 2. The lower part shows the literature values of SnS for reference. 実施例2で得られたSnS単相薄膜(基板温度室温、上段)及びSnS単相薄膜(基板温度300℃、下段)の実体写真及び表面SEM像を示す。3 shows a stereograph and a surface SEM image of the SnS single-phase thin film (substrate temperature: room temperature, upper stage) and SnS single-phase thin film (substrate temperature: 300 ° C., lower stage) obtained in Example 2. 比較例1のX線回折プロファイルを示す。上から1段目は粉末試薬、2段目は粒状試薬の結果である。また、3段目はSnSの文献値、4段目はSn2S3の文献値、5段目はSnO2の文献値である。2 shows an X-ray diffraction profile of Comparative Example 1. The first row from the top shows the results for the powder reagent, and the second row shows the results for the granular reagent. The third row shows the literature value of SnS, the fourth row shows the literature value of Sn 2 S 3 , and the fifth row shows the literature value of SnO 2 . 比較例2で得られた薄膜(基板温度室温)の実体写真及び表面SEM像を示す。4 shows a stereoscopic photograph and a surface SEM image of the thin film (substrate temperature room temperature) obtained in Comparative Example 2. Ge-S二元系状態図を示す。1 shows a Ge-S binary phase diagram. Ge及びGeSの蒸気圧曲線を示す。3 shows vapor pressure curves of Ge and GeS. 実施例3で得られたGeS単相バルク結晶(上端)及びGe-GeS二相試料(下端)のX線回折プロファイルを示す。3段目にはGeSの文献値、4段目にはGeの文献値も示す。4 shows X-ray diffraction profiles of a GeS single-phase bulk crystal (top) and a Ge—GeS two-phase sample (bottom) obtained in Example 3. The third column also shows the literature values of GeS, and the fourth column also shows the literature values of Ge.
 本明細書において、数値範囲を「A~B」で表示する場合、A以上B以下を意味する。また、「含有」は、「含む(comprise)」、「実質的にのみからなる(consist essentially of)」及び「のみからなる(consist of)」のいずれも包含する。 に お い て In this specification, when the numerical range is indicated by “A to B”, it means A or more and B or less. In addition, “contain” includes any of “comprise”, “consist essentially” of “consist” and “consist of”.
 1.高純度カルコゲナイド材料
 本発明の高純度カルコゲナイド材料は、一般式(1):
M1M2 x   (1)
[式中、M1は周期表第14族元素を示す。M2は周期表第16族元素を示す。xは0.9~1.1を示す。]
で表されるカルコゲナイド化合物を含有し、
X線回折測定において、前記カルコゲナイド化合物の存在量が90モル%以上である。
1. High Purity Chalcogenide Material The high purity chalcogenide material of the present invention has a general formula (1):
M 1 M 2 x (1)
Wherein, M 1 is shows a periodic table group 14 element. M 2 represents a Group 16 element in the periodic table. x represents 0.9 to 1.1. ]
Containing a chalcogenide compound represented by
In the X-ray diffraction measurement, the amount of the chalcogenide compound is 90 mol% or more.
 一般式(1)において、M1は周期表第14族元素を示し、Sn、Si、Ge、Pb等が挙げられ、高純度カルコゲナイド材料が得やすい観点から、Sn、Ge等が好ましく、Snがより好ましい。 In the general formula (1), M 1 represents a Group 14 element of the periodic table, and includes Sn, Si, Ge, Pb, and the like. From the viewpoint of easily obtaining a high-purity chalcogenide material, Sn, Ge, and the like are preferable, and Sn is preferably More preferred.
 一般式(1)において、M2は周期表第16族元素を示し、S、Se、Te等が挙げられ、高純度カルコゲナイド材料が得やすい観点から、S、Se等が好ましく、Sがより好ましい。 In the general formula (1), M 2 represents a Group 16 element of the periodic table, and includes S, Se, Te, and the like. From the viewpoint of easily obtaining a high-purity chalcogenide material, S, Se, and the like are preferable, and S is more preferable. .
 一般式(1)において、xは0.9~1.1を示し、周期表第14族元素と第16族元素の約1: 1の高純度なカルコゲナイド材料を得やすい観点から、0.95~1.05が好ましく、0.98~1.02がより好ましい。 In the general formula (1), x represents 0.9 to 1.1, preferably 0.95 to 1.05, and more preferably 0.95 to 1.05, from the viewpoint of easily obtaining a high-purity chalcogenide material having a ratio of about 1: 1 of Group 14 and Group 16 elements. ~ 1.02 is more preferred.
 本発明の高純度カルコゲナイド材料においては、上記のような一般式(1)で表されるカルコゲナイド化合物の存在量が、X線回折測定において90モル%以上であり、より高純度なカルコゲナイド材料とする観点から、95モル%以上が好ましく、98モル%以上がより好ましい。なお、上記のような一般式(1)で表されるカルコゲナイド化合物の存在量は、100モル%であることが最も好ましい。より詳細には、X線回折測定を行った場合に、明確に観測されるX線回折ピークのうち、一般式(1)で表されるカルコゲナイド化合物相に由来すると判断されるピーク強度の割合から見積もられる前記カルコゲナイド化合物相の存在量が上記範囲内であることが好ましい。 In the high-purity chalcogenide material of the present invention, the abundance of the chalcogenide compound represented by the general formula (1) as described above is 90 mol% or more in X-ray diffraction measurement, and a higher-purity chalcogenide material is obtained. From the viewpoint, 95 mol% or more is preferable, and 98 mol% or more is more preferable. The amount of the chalcogenide compound represented by the general formula (1) is most preferably 100 mol%. More specifically, when the X-ray diffraction measurement is performed, the ratio of the peak intensity determined to be derived from the chalcogenide compound phase represented by the general formula (1) among the clearly observed X-ray diffraction peaks It is preferable that the estimated amount of the chalcogenide compound phase be within the above range.
 このような本発明の高純度カルコゲナイド材料は、バルク状として得ることもできるし、薄膜状として得ることもできる。バルク状として得る場合は、例えば、平均径が5~10mm程度の高純度カルコゲナイド材料を得ることができるし、薄膜状として得る場合は、例えば、平均厚みが1~10μm程度の高純度カルコゲナイド材料を得ることができる。なお、バルク状として得る場合のサイズは、使用する石英管等の大きさ等によって適宜調整することができ、薄膜として得る場合は、平均厚みは、例えば後述の製造方法により得る場合は温度や時間によって適宜調整することができる。 The high-purity chalcogenide material of the present invention can be obtained as a bulk or a thin film. When obtained as a bulk, for example, a high-purity chalcogenide material having an average diameter of about 5 to 10 mm can be obtained. When obtained as a thin film, for example, a high-purity chalcogenide material having an average thickness of about 1 to 10 μm can be obtained. Obtainable. The size in the case of obtaining a bulk shape can be appropriately adjusted depending on the size of a quartz tube or the like to be used, and the average thickness in the case of obtaining a thin film is, for example, temperature or time when obtaining by a manufacturing method described later. Can be adjusted appropriately.
 2.高純度カルコゲナイド材料の製造方法
 本発明の高純度カルコゲナイド材料の製造方法は、
(1)周期表第14族分子と、周期表第16族分子とを含む原料を加熱し、前記一般式(1)で表されるカルコゲナイド化合物及び周期表第14族分子の二相共存材料を作製する工程、
(2)前記工程(1)で得られた二相共存材料を加熱する工程
を備える。
2. Method for producing a high-purity chalcogenide materialA method for producing a high-purity chalcogenide material of the present invention comprises:
(1) A raw material containing a periodic table group 14 molecule and a periodic table group 16 molecule is heated, and a two-phase coexisting material of the chalcogenide compound represented by the general formula (1) and the periodic table group 14 molecule is removed. The process of making,
(2) a step of heating the two-phase coexisting material obtained in the step (1).
 (2-1)工程(1):二相共存材料作製
 工程(1)では、周期表第14族分子と、周期表第16族分子とを含む原料を加熱し、前記一般式(1)で表されるカルコゲナイド化合物及び周期表第14族分子の二相共存材料を作製する。
(2-1) Step (1): Preparation of Two-Phase Coexisting Material In the step (1), a raw material containing a molecule of Group 14 of the periodic table and a molecule of Group 16 of the periodic table is heated, and A biphasic coexisting material of the chalcogenide compound represented and the periodic table group 14 molecule is prepared.
 工程(1)において、原料としては、周期表第14族分子と、周期表第16族分子とを含む原料を使用する。具体的には、周期表第14族分子としてはスズ、シリコン、ゲルマニウム、鉛等が挙げられ、高純度カルコゲナイド材料が得やすい観点から、スズ、ゲルマニウム等が好ましく、スズがより好ましい。また、周期表第16族分子としては硫黄、セレン、テルル等が挙げられ、高純度カルコゲナイド材料が得やすい観点から、硫黄、セレン等が好ましく、硫黄がより好ましい。 In the step (1), a raw material containing a Group 14 molecule of the periodic table and a Group 16 molecule of the periodic table is used as a raw material. Specifically, the group 14 molecules of the periodic table include tin, silicon, germanium, lead, and the like. From the viewpoint of easily obtaining a high-purity chalcogenide material, tin, germanium, and the like are preferable, and tin is more preferable. Examples of the group 16 molecules of the periodic table include sulfur, selenium, and tellurium. From the viewpoint of easily obtaining a high-purity chalcogenide material, sulfur, selenium, and the like are preferable, and sulfur is more preferable.
 原料中の周期表第14族分子と周期表第16族分子との組成比については、一般式(1)で表されるカルコゲナイド化合物及び周期表第14族分子の二相共存材料を作製できる限り特に制限されない。図1に示されるS-Sn二元系状態図からも理解できるように、Snの含有量が100モル%の場合又はそのごく近傍ではSnの安定領域であり、Snの含有量が50モル%の場合又はそのごく近傍ではSnSの安定領域である。この例は、S-Sn二元系状態図の場合の一例であるが、他の周期表第14族元素-周期表第16族元素の二元系状態図においても同様の傾向が見られる。このような観点から、周期表第14族分子の含有量が51~99モル%程度の場合において、所定の温度において周期表第14族分子と目的のカルコゲナイド化合物との二相共存材料が作製し得る。ただし、目的とするカルコゲナイド化合物は、周期表第14族元素と周期表第16族元素とがモル比で1: 1の材料であることから、原料中の周期表第14族分子と周期表第16族分子との組成比も、モル比で極力1: 1に近づけることが好ましい。ただし、原料中の周期表第14族分子と周期表第16族分子との組成比をモル比で完全に1: 1とすると二相共存材料を作製することはできないため、原料中の周期表第14族分子の含有量は51~99モル%(特に52~90モル%、さらに53~80モル%)が好ましく、原料中の周期表第16族分子の含有量は1~49モル%(特に10~48モル%、さらに20~47モル%)が好ましい。 Regarding the composition ratio between the periodic table group 14 molecules and the periodic table group 16 molecules in the raw materials, as long as the two-phase coexisting material of the chalcogenide compound represented by the general formula (1) and the periodic table group 14 molecules can be prepared. There is no particular limitation. As can be understood from the S-Sn binary phase diagram shown in FIG. 1, when the Sn content is 100 mol% or in the immediate vicinity, it is a Sn stable region, and the Sn content is 50 mol%. In the case of or in the immediate vicinity of this, it is a stable region of SnS. This example is an example of the S-Sn binary phase diagram, but the same tendency is observed in other binary phase diagrams of elements of Group 14 of the periodic table to elements of Group 16 of the periodic table. From such a viewpoint, when the content of the group 14 molecules of the periodic table is about 51 to 99 mol%, a two-phase coexisting material of the group 14 molecules of the periodic table and the target chalcogenide compound is prepared at a predetermined temperature. obtain. However, since the target chalcogenide compound is a material having a molar ratio of the Group 14 element of the Periodic Table and the Group 16 element of the periodic table of 1: 1, the periodic table Group 14 molecules and the Periodic Table Group The composition ratio with the group 16 molecule is also preferably as close as possible to 1: 1 in molar ratio. However, if the composition ratio between the Group 14 molecules of the periodic table and the Group 16 molecules in the raw material is completely 1: 原料 1, a two-phase coexisting material cannot be produced, so the periodic table in the raw material cannot be produced. The content of Group 14 molecules is preferably 51 to 99 mol% (particularly 52 to 90 mol%, more preferably 53 to 80 mol%), and the content of Group 16 molecules of the periodic table in the raw material is 1 to 49 mol% ( In particular, 10 to 48 mol%, and more preferably 20 to 47 mol%).
 これら原料は、市販品(好ましくは高純度品)をそのまま使用することもできるが、市販品に酸化皮膜が形成されている場合は常法で酸化皮膜を除去することが好ましい。 市 販 As these raw materials, commercially available products (preferably high-purity products) can be used as they are, but when an oxide film is formed on a commercially available product, it is preferable to remove the oxide film by a conventional method.
 加熱する際の雰囲気は特に制限されるわけではないが、酸化物等の不純物を特に混入させにくい観点からは減圧下(例えば10-6~10Pa)又は不活性雰囲気下(例えば窒素雰囲気下、アルゴン雰囲気下等)が好ましい。 The heating atmosphere is not particularly limited. However, from the viewpoint of preventing impurities such as oxides from being particularly mixed, under reduced pressure (for example, 10 −6 to 10 Pa) or under inert atmosphere (for example, under nitrogen atmosphere, argon atmosphere). Under an atmosphere).
 加熱温度(加熱時の最高到達温度)は、二相共存材料を作製することができれば特に制限はなく、例えば、500~1000℃が好ましく、600~900℃がより好ましい。なお、加熱温度を高温とした場合(Sn-S系の例では860℃以上)にはその温度領域では液相となるが、その後冷却することで周期表第14族分子と目的のカルコゲナイド化合物との二相共存材料を作製することが可能である。また、一度に最高到達温度まで加熱することもできるが、原料の蒸気圧による容器の破壊を防ぐために段階的に昇温することも可能である。 The heating temperature (the maximum temperature during heating) is not particularly limited as long as a two-phase coexisting material can be produced, and is, for example, preferably 500 to 1000 ° C, more preferably 600 to 900 ° C. When the heating temperature is high (860 ° C or higher in the case of Sn-S system), it becomes a liquid phase in that temperature range, but after cooling, the group 14 molecules of the periodic table and the target chalcogenide compound Can be produced. In addition, it is possible to heat up to the maximum temperature at a time, but it is also possible to raise the temperature stepwise to prevent the container from being broken by the vapor pressure of the raw material.
 加熱時間は二相共存材料を作製することができれば特に制限はなく、例えば、最高到達温度での維持時間は1~48時間が好ましく、2~24時間がより好ましい。 The heating time is not particularly limited as long as a two-phase coexisting material can be produced. For example, the maintenance time at the highest temperature is preferably 1 to 48 hours, more preferably 2 to 24 hours.
 このようにして、周期表第14族分子と目的のカルコゲナイド化合物との二相共存材料を作製することができる。 二 Thus, a two-phase coexisting material of the periodic table group 14 molecule and the target chalcogenide compound can be produced.
 (2-2)工程(2):カルコゲナイド材料作製
 工程(2)では、工程(1)で得られた二相共存材料を加熱する。工程(1)で得られた二相共存材料は、周期表第14族分子と目的のカルコゲナイド化合物とが混在しているが、これら二成分は平衡蒸気圧が大きく異なるため、この蒸気圧差を利用して、目的のカルコゲナイド化合物のみを単離することができる。
(2-2) Step (2): Chalcogenide Material Preparation In step (2), the two-phase coexisting material obtained in step (1) is heated. In the two-phase coexisting material obtained in step (1), molecules of the 14th group of the periodic table and the target chalcogenide compound are mixed. However, since these two components have significantly different equilibrium vapor pressures, use this vapor pressure difference. Thus, only the target chalcogenide compound can be isolated.
 加熱する際の雰囲気は特に制限されるわけではないが、酸化物等の不純物を特に混入させにくい観点からは減圧下(例えば10-6~10Pa)又は不活性雰囲気下(例えば窒素雰囲気下、アルゴン雰囲気下等)が好ましい。 The heating atmosphere is not particularly limited. However, from the viewpoint of preventing impurities such as oxides from being particularly mixed, under reduced pressure (for example, 10 −6 to 10 Pa) or under inert atmosphere (for example, under nitrogen atmosphere, argon atmosphere). Under an atmosphere).
 加熱温度(加熱時の最高到達温度)は、目的のカルコゲナイド化合物を単離することができれば特に制限はなく、例えば、300~900℃が好ましく、550~850℃がより好ましい。 (4) The heating temperature (the highest temperature during heating) is not particularly limited as long as the desired chalcogenide compound can be isolated, and is, for example, preferably 300 to 900 ° C, more preferably 550 to 850 ° C.
 工程(2)において、加熱時の圧力と加熱温度とは密接な関連があり、周期表第14族分子及び目的のカルコゲナイド化合物の平衡蒸気圧の対数値は温度の逆数の変化にしたがってほぼ線形的に変化する(温度が増加すると平衡蒸気圧の対数値も増加する)。このことは、図2に示されるSn、SnS及びS2の蒸気圧曲線からも理解できる。なお、この蒸気圧曲線はSnSを得ようとする場合のものであるが、他のカルコゲナイド化合物を得ようとする場合も同様の挙動を示す。以上から、カルコゲナイド化合物が蒸発し、周期表第14族分子が蒸発しない範囲において、圧力及び温度を適宜調整することが好ましい。 In step (2), the pressure during heating and the heating temperature are closely related, and the logarithmic value of the equilibrium vapor pressure of Group 14 molecules and the target chalcogenide compound is almost linear with the reciprocal of temperature. (The logarithmic value of the equilibrium vapor pressure increases with increasing temperature). This can be understood from Sn, steam SnS and S 2 pressure curve shown in Figure 2. Note that this vapor pressure curve is for obtaining SnS, but the same behavior is shown for obtaining other chalcogenide compounds. From the above, it is preferable to appropriately adjust the pressure and the temperature within a range where the chalcogenide compound evaporates and the group 14 molecule of the periodic table does not evaporate.
 加熱時間は目的のカルコゲナイド化合物を単離することができれば特に制限はなく、例えば、最高到達温度での維持時間は1~48時間が好ましく、2~24時間がより好ましい。 The heating time is not particularly limited as long as the objective chalcogenide compound can be isolated. For example, the maintenance time at the highest temperature is preferably 1 to 48 hours, more preferably 2 to 24 hours.
 このようにして、目的のカルコゲナイド化合物のみを単離することができるが、この際、カルコゲナイド化合物は気体として得られるため、この後、例えば室温~800℃に冷却することで本発明のカルコゲナイド材料(特にカルコゲナイド化合物の単相結晶)を得ることができる。 In this way, only the target chalcogenide compound can be isolated. At this time, since the chalcogenide compound is obtained as a gas, the chalcogenide material of the present invention is cooled by, for example, room temperature to 800 ° C. In particular, a single-phase crystal of a chalcogenide compound can be obtained.
 なお、工程(2)における加熱と上記冷却を別容器にて行うこともできるが、ブリッジマン炉を用いた場合には、上部と下部で温度を変化させることが可能である。このため、上記二相共存材料をブリッジマン炉の下部に充填し、下部を加熱することでカルコゲナイド化合物のみを単離させるとともに、ブリッジマン炉の上部にてカルコゲナイド化合物を冷却して結晶化して本発明のカルコゲナイド材料(特にカルコゲナイド化合物の単相結晶)を得ることも可能であり、この場合、バルク状の本発明のカルコゲナイド材料(特にカルコゲナイド化合物の単相結晶)が得やすい。一方、ブリッジマン炉を採用せずに、加熱炉中で、加熱部の上部に基板としてソーダライムガラス(SLG)、シリコン等を配置し、必要に応じて基板を100~500℃に加熱しながら下部の二相共存材料を加熱する真空蒸着法により、上部の基板上に薄膜状の本発明のカルコゲナイド材料(特にカルコゲナイド化合物の単相結晶)を得ることも可能である。 Note that the heating and the cooling in the step (2) can be performed in separate vessels, but when a Bridgman furnace is used, the temperature can be changed between the upper part and the lower part. For this reason, the two-phase coexisting material is filled in the lower part of the Bridgman furnace, and only the chalcogenide compound is isolated by heating the lower part, and the chalcogenide compound is cooled and crystallized in the upper part of the Bridgman furnace to obtain the main product. It is also possible to obtain the chalcogenide material of the present invention (particularly, a single-phase crystal of a chalcogenide compound). In this case, it is easy to obtain a bulk chalcogenide material of the present invention (particularly, a single-phase crystal of a chalcogenide compound). On the other hand, without using a Bridgman furnace, soda lime glass (SLG), silicon, etc. are placed as substrates on the heating unit in a heating furnace, and the substrate is heated to 100 to 500 ° C as necessary. It is also possible to obtain a thin-film chalcogenide material of the present invention (particularly, a single-phase crystal of a chalcogenide compound) on the upper substrate by a vacuum evaporation method in which the lower two-phase coexisting material is heated.
 以下、実施例及び比較例を挙げ、本発明を具体的に説明するが、本発明は実施例のみに限定されるものではない。 Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples, but the present invention is not limited to Examples.
 製造例1: Sn-SnS二相試料作製
 原料試薬には純スズ((株)高純度化学研究所製、粒状、4N)及び純硫黄((株)高純度化学研究所製、粉末状、4N)を用いた。純スズはHCl(ナカライテスク(株)製、35質量%)を超純水で10倍に希釈したものに30秒間浸漬することにより表面の酸化皮膜をエッチングし、超純水中で5分間超音波洗浄後、2-プロパノール中で5分間超音波洗浄してから窒素ガスで乾燥させた。
Production Example 1: Pure tin (manufactured by Kojundo Chemical Laboratory , granular, 4N) and pure sulfur (manufactured by Kojundo Chemical Laboratory, powdered, 4N) ) Was used. Pure tin is etched for 30 seconds by immersing it for 30 seconds in a solution obtained by diluting HCl (manufactured by Nacalai Tesque, 35% by mass) with ultrapure water for 30 seconds. After ultrasonic cleaning, the substrate was subjected to ultrasonic cleaning in 2-propanol for 5 minutes and then dried with nitrogen gas.
 原料試薬はモル比Sn: S= 60: 40の組成で、全量約5.0gになるよう秤量を行った。試料は、外径φ9mm、内径φ7mmの石英管に真空封入した。真空引きは油拡散ポンプにより行い、10-2Pa程度の真空度に達したところで石英管をバーナーで熱し、溶接することで封入を行った。その後、横型管状電気炉を用いて、図3に示すプロファイルで熱処理を行った。未反応の硫黄蒸気圧によるアンプルの破裂を防ぐため、段階的に昇温を行った。 The raw material reagents were weighed so as to have a molar ratio of Sn: S = 60: 40 and a total amount of about 5.0 g. The sample was vacuum-sealed in a quartz tube having an outer diameter of 9 mm and an inner diameter of 7 mm. The evacuation was performed by an oil diffusion pump. When the degree of vacuum reached about 10 -2 Pa, the quartz tube was heated with a burner and sealed by welding. Thereafter, heat treatment was performed using a horizontal tubular electric furnace with a profile shown in FIG. The temperature was raised stepwise to prevent the ampoule from bursting due to unreacted sulfur vapor pressure.
 得られた試料の一部分をダイヤモンドホイールソーで切断して取り出した。取り出した試料について、試料走査型電子顕微鏡(SEM、日本電子(株)製、JCM-6000 Plus)を用いて観察し、エネルギー分散型X線分析装置(EDX、日本電子(株)製、JED-2300 Series)を用いた定量分析を行った。定量分析では、加速電圧を15kVとし、5箇所での点分析を行った。誤差は標準偏差の2倍とした。結果を図4に示す。この結果、SnSをマトリックスとして、Snが分布していることが理解できる。 一部分 A part of the obtained sample was cut out with a diamond wheel saw and taken out. The removed sample was observed using a sample scanning electron microscope (SEM, JCM-6000 電子 Plus, manufactured by JEOL Ltd.) and an energy dispersive X-ray analyzer (EDX, manufactured by JEOL Ltd., JED- 2300 Series). In the quantitative analysis, the acceleration voltage was set to 15 kV, and point analysis was performed at five points. The error was twice the standard deviation. FIG. 4 shows the results. As a result, it can be understood that Sn is distributed using SnS as a matrix.
 また、試料の一部を瑪瑙乳鉢、瑪瑙乳棒を用いて粉末化し、X線回析装置(PANalytical製、X’pert PRO Alpha-1)を用いて相同定を行った。入射X線には単色化したCu Kα1線(λ= 1.5406Å)を用い、管電圧45kV、管電流40mAに設定した。ゴニオメータの走査法はθ-2θ法を利用し、ステップ角は0.00836°step-1、積算時間は59.7s step-1とし走査角度は10°-70°の間で行った。結果を図5に示す。この結果、SnS及びSnのみが検出され、Sn2S3やSnO2は全く検出されていないことが理解できる。 In addition, a part of the sample was powdered using an agate mortar and an agate pestle, and phase identification was performed using an X-ray diffractometer (X'pert PRO Alpha-1 manufactured by PANalytical). Monochromatic Cu Kα 1 rays (λ = 1.5406 °) were used as incident X-rays, and the tube voltage was set to 45 kV and the tube current was set to 40 mA. The goniometer scanning method used the θ-2θ method, the step angle was 0.00836 ° step −1 , the integration time was 59.7 s step −1, and the scanning angle was between 10 ° and 70 °. FIG. 5 shows the results. As a result, it can be understood that only SnS and Sn were detected, and Sn 2 S 3 and SnO 2 were not detected at all.
 実施例1: SnS単相バルク結晶作製
 製造例1で作製したSn-SnS二相試料を原料とした。原料を約10gとなるよう秤量し、外径φ9mm、内径φ7mmの石英管に真空封入した。真空引きは油拡散ポンプにより行い、10-2Pa程度の真空度に達したところで石英管をバーナーで熱し、溶接することで封入を行った。上端部での結晶析出を促すため、アンプル先端を窄ませた。
Example 1: Preparation of SnS single-phase bulk crystal A Sn-SnS two-phase sample prepared in Production Example 1 was used as a raw material. The raw material was weighed to about 10 g and vacuum-sealed in a quartz tube having an outer diameter of 9 mm and an inner diameter of 7 mm. The evacuation was performed by an oil diffusion pump. When the degree of vacuum reached about 10 -2 Pa, the quartz tube was heated with a burner and sealed by welding. The tip of the ampoule was narrowed to promote crystal precipitation at the upper end.
 アンプルは、ブリッジマン炉の底部から上端が18cmの距離にあるように固定した。そして、ブリッジマン炉を構成する3つのヒーターの最終温度を上部725℃、中部870℃、下部870℃にそれぞれ設定し、室温から目標温度まで2時間かけて昇温を行った。昇温完了後のブリッジマン炉内部の温度プロファイルを図6に示す。昇温完了後、8時間等温保持したのち、モーターを用いてヒーターを7mm day-1の移動速度で約160mm下降させ、その後10時間かけて炉冷を行った。 The ampoule was fixed such that the top was 18 cm from the bottom of the Bridgman furnace. The final temperatures of the three heaters constituting the Bridgman furnace were set to 725 ° C in the upper part, 870 ° C in the middle part, and 870 ° C in the lower part, and the temperature was raised from room temperature to the target temperature over two hours. FIG. 6 shows the temperature profile inside the Bridgman furnace after the completion of the temperature rise. After completion of the temperature rise, the temperature was kept isothermal for 8 hours, and then the heater was lowered by about 160 mm at a moving speed of 7 mm day -1 using a motor, and then the furnace was cooled for 10 hours.
 アンプル上端部にできた試料の一部分を瑪瑙乳鉢及び瑪瑙乳棒を用いて粉末化し、X線回析装置(PANalytical製、X’pert PRO Alpha-1)を用いて相同定を行った。入射X線には単色化したCu Kα1線(λ= 1.5406Å)を用い、管電圧45kV、管電流40mAに設定した。ゴニオメータの走査法はθ-2θ法を利用し、ステップ角は0.00836°step-1、積算時間は59.7s step-1とし走査角度は10°-70°の間で行った。結果を図7に示す。この結果、SnSのみが検出されており、SnS100%の単相バルク結晶が得られたことが理解できる。 A part of the sample formed at the upper end of the ampoule was powdered using an agate mortar and an agate pestle, and phase identification was performed using an X-ray diffraction apparatus (X'pert PRO Alpha-1 manufactured by PANalytical). Monochromatic Cu Kα 1 rays (λ = 1.5406 °) were used as incident X-rays, and the tube voltage was set to 45 kV and the tube current was set to 40 mA. The goniometer scanning method used the θ-2θ method, the step angle was 0.00836 ° step −1 , the integration time was 59.7 s step −1, and the scanning angle was between 10 ° and 70 °. FIG. 7 shows the results. As a result, only SnS was detected, and it can be understood that a single-phase bulk crystal of 100% SnS was obtained.
 試料をカッターナイフの刃を当てて軽くたたくことで劈開させた。劈開後の試料写真を図8に示す。劈開面を走査型電子顕微鏡(SEM、日本電子(株)製、JCM-6000 Plus)を用いて観察し、エネルギー分散型X線分析装置(EDX、日本電子(株)製、JED-2300 Series)を用いた組成の定量分析を行った。定量分析では、加速電圧を15kVとし、10箇所での点分析を行った。誤差は標準偏差の2倍とした。得られた表面SEM像を図9に示す。また、劈開面をX線回析装置(PANalytical製、X’pert PRO Alpha-1)を用いて、X線回析測定を行った。入射X線には単色化したCu Kα1線(λ= 1.5406Å)を用い、管電圧45kV、管電流40mAに設定した。ゴニオメータの走査法はθ-2θ法を利用し、ステップ角は0.00836°step-1、積算時間は59.7s step-1とし走査角度は10°-90°の間で行った。結果を図10に示す。また、EDXによる組成の定量分析の結果、Snは50.2±0.5モル%、Sは49.8±0.5モル%であった。これより、単結晶のSnSが得られていることがわかる。 The sample was cleaved by lightly tapping it with the blade of a cutter knife. FIG. 8 shows a photograph of the sample after cleavage. The cleavage plane is observed using a scanning electron microscope (SEM, JCM-6000 Plus, manufactured by JEOL Ltd.) and an energy dispersive X-ray analyzer (EDX, JED-2300 Series, manufactured by JEOL Ltd.) Quantitative analysis of the composition was performed using In the quantitative analysis, the acceleration voltage was set to 15 kV, and point analysis was performed at 10 points. The error was twice the standard deviation. FIG. 9 shows the obtained surface SEM image. Further, the cleavage plane was subjected to X-ray diffraction measurement using an X-ray diffraction apparatus (X'pert PRO Alpha-1 manufactured by PANalytical). Monochromatic Cu Kα 1 rays (λ = 1.5406 °) were used as incident X-rays, and the tube voltage was set to 45 kV and the tube current was set to 40 mA. The goniometer was scanned using the θ-2θ method, with a step angle of 0.00836 ° step −1 , an integration time of 59.7 s step −1 and a scan angle between 10 ° and 90 °. The results are shown in FIG. As a result of quantitative analysis of the composition by EDX, Sn was 50.2 ± 0.5 mol% and S was 49.8 ± 0.5 mol%. This indicates that single crystal SnS was obtained.
 さらに、比抵抗/ホール測定システム((株)東陽テクニカ製、Resitest 8300)を用いて電気的特性の評価を行った。この結果、伝導型はp型、比抵抗は8.7×10-2Ωcm、キャリア密度は6.7×1017cm-3、キャリア移動度は107cm2 V-1s-1であった。 Further, the electrical characteristics were evaluated using a resistivity / Hall measurement system (Resitest 8300, manufactured by Toyo Technica Co., Ltd.). As a result, the conductivity type was p-type, the specific resistance was 8.7 × 10 −2 Ωcm, the carrier density was 6.7 × 10 17 cm −3 , and the carrier mobility was 107 cm 2 V −1 s −1 .
 実施例2: SnS単相薄膜作製
 薄膜の基板にはソーダライムガラス(SLG)を用いた。SLGはダイヤモンドペンを用いて10mm×10mm×0.5mmに切り出し、中性洗剤で洗浄した後、アセトン、2-プロパノール及び超純水の順にそれぞれ5分間超音波洗浄を行った。洗浄後のSLGは窒素ガスを用いて乾燥を行った。なお、SLGの基板温度は室温又は300℃とした。蒸発源には製造例1で作製したSn-SnS二相試料を用いた。試料はダイヤモンドホイールソーを用いて約3mm幅になるように切断した。切断した試料をタングステンボート上に設置してボートを抵抗加熱することで蒸発させた。蒸着時の真空度は4×10-2Paとし、電流値は約16Aとして2.5分間蒸着を行った。これにより、試料の加熱温度は900~1000℃程度であった。
Example 2: Soda-lime glass (SLG) was used for the substrate of the SnS single-phase thin film production thin film. The SLG was cut into 10 mm × 10 mm × 0.5 mm using a diamond pen, washed with a neutral detergent, and then subjected to ultrasonic cleaning for 5 minutes for acetone, 2-propanol and ultrapure water in this order. The washed SLG was dried using nitrogen gas. Note that the substrate temperature of SLG was room temperature or 300 ° C. The Sn-SnS two-phase sample prepared in Production Example 1 was used as the evaporation source. The sample was cut to a width of about 3 mm using a diamond wheel saw. The cut sample was placed on a tungsten boat and evaporated by resistance heating the boat. The degree of vacuum at the time of vapor deposition was 4 × 10 -2 Pa, and the current value was about 16 A, and vapor deposition was performed for 2.5 minutes. As a result, the heating temperature of the sample was about 900 to 1000 ° C.
 試料はX線回析装置(PANalytical製、X’pert PRO Alpha-1)を用いて相同定を行った。入射X線には単色化したCu Kα1線(λ= 1.5406Å)を用い、管電圧45kV、管電流40mAに設定した。ゴニオメータの走査法はθ-2θ法を利用し、ステップ角は0.00836°step-1、積算時間は59.7s step-1とし走査角度は10°-70°の間で行った。結果を図11に示す。この結果、SnSのみが検出されており、SnS100%の単相薄膜が得られたことが理解できる。 The sample was subjected to phase identification using an X-ray diffractometer (X'pert PRO Alpha-1 manufactured by PANalytical). Monochromatic Cu Kα 1 rays (λ = 1.5406 °) were used as incident X-rays, and the tube voltage was set to 45 kV and the tube current was set to 40 mA. The goniometer was scanned using the θ-2θ method, with a step angle of 0.00836 ° step −1 , an integration time of 59.7 s step −1 and a scan angle of 10 ° -70 °. The results are shown in FIG. As a result, only SnS was detected, and it can be understood that a single-phase thin film of 100% SnS was obtained.
 さらに、試料走査型電子顕微鏡(SEM、日本電子(株)製、JCM-6000 Plus)を用いてサンプル表面及び断面を観察し、エネルギー分散型X線分析装置(EDX、日本電子(株)製、JED-2300 Series)を用いた組成の定量分析を行った。組織観察では加速電圧を10kVとした。定量分析では加速電圧を15kVとし、5箇所での分析を行った。誤差は標準偏差の2倍とした。得られた薄膜(基板温度室温)の実体写真と表面SEM像を図12上段に、得られた薄膜(基板温度300℃)の実体写真と表面SEM像を図12下段に、それぞれ示す。また、EDXによる組成の定量分析の結果、Snは50.1±0.3モル%、Sは49.9±0.3モル%であった。これより、得られた薄膜の組成がSnSであることがわかる。 Further, the surface and cross section of the sample were observed using a sample scanning electron microscope (SEM, manufactured by JEOL Ltd., JCM-6000 Plus), and an energy dispersive X-ray analyzer (EDX, manufactured by JEOL Ltd.) The composition was quantitatively analyzed using JED-2300 Series. In the structure observation, the accelerating voltage was 10 kV. In the quantitative analysis, the acceleration voltage was set to 15 kV, and the analysis was performed at five locations. The error was twice the standard deviation. A stereogram and a surface SEM image of the obtained thin film (substrate temperature at room temperature) are shown in the upper part of FIG. 12, and a solid photograph and a surface SEM image of the obtained thin film (substrate temperature of 300 ° C.) are shown in the lower part of FIG. As a result of quantitative analysis of the composition by EDX, Sn was 50.1 ± 0.3 mol% and S was 49.9 ± 0.3 mol%. This indicates that the composition of the obtained thin film is SnS.
 また、分光光度計((株)島津製作所製、UV-2600)を用いた拡散反射率測定を行った。許容かつ直接遷移(n= 2)についてKubelka-Munk関数を用いた変換を行い、Tauc plotを作成してバンドギャップの評価を行った。 (4) Diffuse reflectance was measured using a spectrophotometer (UV-2600, manufactured by Shimadzu Corporation). Conversion using the Kubelka-Munk function was performed on the allowable and direct transition (n = 2), and a Tauc plot was created to evaluate the band gap.
 このようにして得られたSnS単相薄膜は、太陽電池や各種デバイス化等に応用することが可能である。 SThe SnS single-phase thin film obtained in this way can be applied to solar cells and various devices.
 比較例1: 市販のSnS試薬
 市販のSnS試薬(3Nグレード、粉末試料及び粒状試料)を比較例1のSnS試薬として採用した。実施例1及び2と同様に、X線回析装置(PANalytical製、X’pert PRO Alpha-1)を用いて相同定を行った。入射X線には単色化したCu Kα1線(λ= 1.5406Å)を用い、管電圧45kV、管電流40mAに設定した。ゴニオメータの走査法はθ-2θ法を利用し、ステップ角は0.00836°step-1、積算時間は59.7s step-1とし走査角度は20°-40°の間で行った。結果を図13に示す。この結果、実施例1及び2とは異なり、粉末試料及び粒状試料のいずれにおいても、SnS以外にもSn2S3及びSnO2が混在しており、SnSの存在量は50モル%程度に過ぎないことが理解できる。
Comparative Example 1: Commercially available SnS reagent A commercially available SnS reagent (3N grade, powder sample and granular sample) was employed as the SnS reagent of Comparative Example 1. As in Examples 1 and 2, phase identification was performed using an X-ray diffractometer (manufactured by PANalytical, X'pert PRO Alpha-1). Monochromatic Cu Kα 1 rays (λ = 1.5406 °) were used as incident X-rays, and the tube voltage was set to 45 kV and the tube current was set to 40 mA. The goniometer was scanned using the θ-2θ method, with a step angle of 0.00836 ° step −1 , an integration time of 59.7 s step −1 and a scan angle of 20 ° -40 °. FIG. 13 shows the results. As a result, unlike Examples 1 and 2, in both the powder sample and the granular sample, Sn 2 S 3 and SnO 2 were mixed in addition to SnS, and the abundance of SnS was only about 50 mol%. I understand that there is no.
 比較例2: 市販のSnS試薬による真空蒸着
 製造例1で作製したSn-SnS二相試料の代わりに市販のSnS試薬(3Nグレード、粉末試料及び粒状試料)を用いたこと以外は実施例2と同様に真空蒸着を行った。
Comparative Example 2: Vacuum evaporation using a commercially available SnS reagent Example 2 except that a commercially available SnS reagent (3N grade, powder sample and granular sample) was used instead of the Sn-SnS two-phase sample prepared in Production Example 1 Similarly, vacuum deposition was performed.
 実施例2と同様に、走査型電子顕微鏡(SEM、日本電子(株)製、JCM-6000 Plus)を用いてサンプル表面及び断面を観察した。組織観察では加速電圧を10kVとした。得られた薄膜(基板温度室温)の実体写真と表面SEM像を図14に示す。 サ ン プ ル Similar to Example 2, the surface and cross section of the sample were observed using a scanning electron microscope (SEM, manufactured by JEOL Ltd., JCM-6000 Plus). In the structure observation, the accelerating voltage was 10 kV. FIG. 14 shows a stereogram and a surface SEM image of the obtained thin film (substrate temperature: room temperature).
 実施例3: GeS単相バルク結晶作製
 図15に示されるGe-S系状態図からも理解できるように、Sn-SnS二相試料と同様にGe-GeS二相試料を作製することができ、また、図16に示される蒸気圧曲線からも理解できるようにこのGe-GeS二相試料を原料として使用した場合にはGeS単相結晶を作製することが可能である。
Example 3: GeS single-phase bulk crystal preparation As can be understood from the Ge-S system phase diagram shown in FIG. 15, a Ge-GeS two-phase sample can be prepared in the same manner as the Sn-SnS two-phase sample. Further, as can be understood from the vapor pressure curve shown in FIG. 16, when this Ge—GeS two-phase sample is used as a raw material, a GeS single-phase crystal can be produced.
 原料試薬には純ゲルマニウム(フルウチ化学(株)製、粒状、5Nグレード)及び純硫黄((株)高純度化学研究所製、粉末状、4N)を用いた。この他は製造例1と同様にしてGe-GeS二相試料を得た。さらに、このGe-GeS二相試料を原料として、ブリッジマン炉を構成する3つのヒーターの最終温度を上部600℃、中部700℃、下部700℃にそれぞれ設定したこと以外は実施例1と同様にして、GeS単相バルク結晶を得た。 (4) Pure germanium (granular, 5N grade, manufactured by Furuuchi Chemical Co., Ltd.) and pure sulfur (powder, 4N, manufactured by Kojundo Chemical Laboratory Co., Ltd.) were used as raw material reagents. Otherwise in the same manner as in Production Example 1, a Ge-GeS two-phase sample was obtained. Further, using the Ge-GeS two-phase sample as a raw material, the same procedure as in Example 1 was performed except that the final temperatures of the three heaters constituting the Bridgman furnace were set to upper 600 ° C, middle 700 ° C, and lower 700 ° C, respectively. Thus, a GeS single phase bulk crystal was obtained.
 アンプル上端部にできた試料の一部分を瑪瑙乳鉢及び瑪瑙乳棒を用いて粉末化し、X線回析装置(PANalytical製、X’pert PRO Alpha-1)を用いて相同定を行った。入射X線には単色化したCu Kα1線(λ= 1.5406Å)を用い、管電圧45kV、管電流40mAに設定した。ゴニオメータの走査法はθ-2θ法を利用し、ステップ角は0.00836°step-1、積算時間は59.7s step-1とし走査角度は10°-70°の間で行った。結果を図17に示す。この結果、アンプルの上端からはGeSのみが検出されており、GeS100%の単相バルク結晶が得られたことが理解できる。 A part of the sample formed at the upper end of the ampoule was powdered using an agate mortar and an agate pestle, and phase identification was performed using an X-ray diffraction apparatus (X'pert PRO Alpha-1 manufactured by PANalytical). Monochromatic Cu Kα 1 rays (λ = 1.5406 °) were used as incident X-rays, and the tube voltage was set to 45 kV and the tube current was set to 40 mA. The goniometer scanning method used the θ-2θ method, the step angle was 0.00836 ° step −1 , the integration time was 59.7 s step −1, and the scanning angle was between 10 ° and 70 °. The results are shown in FIG. As a result, only GeS was detected from the upper end of the ampoule, and it can be understood that a single-phase bulk crystal of 100% GeS was obtained.

Claims (5)

  1. 一般式(1):
    M1M2 x   (1)
    [式中、M1は周期表第14族元素を示す。M2は周期表第16族元素を示す。xは0.9~1.1を示す。]
    で表されるカルコゲナイド化合物を含有し、
    X線回折測定において、前記カルコゲナイド化合物の存在量が90モル%以上である、高純度カルコゲナイド材料。
    General formula (1):
    M 1 M 2 x (1)
    Wherein, M 1 is shows a periodic table group 14 element. M 2 represents a Group 16 element in the periodic table. x represents 0.9 to 1.1. ]
    Containing a chalcogenide compound represented by
    A high-purity chalcogenide material, wherein the amount of the chalcogenide compound is 90 mol% or more in X-ray diffraction measurement.
  2. バルク状又は薄膜状である、請求項1に記載の高純度カルコゲナイド材料。 The high-purity chalcogenide material according to claim 1, which is in the form of a bulk or a thin film.
  3. 請求項1又は2に記載の高純度カルコゲナイド材料の製造方法であって、
    (1)周期表第14族分子と、周期表第16族分子とを含む原料を加熱し、前記一般式(1)で表されるカルコゲナイド化合物及び周期表第14族分子の二相共存材料を作製する工程、
    (2)前記工程(1)で得られた二相共存材料を加熱する工程
    を備える、製造方法。
    A method for producing a high-purity chalcogenide material according to claim 1 or 2,
    (1) A raw material containing a periodic table group 14 molecule and a periodic table group 16 molecule is heated, and a two-phase coexisting material of the chalcogenide compound represented by the general formula (1) and the periodic table group 14 molecule is removed. The process of making,
    (2) A production method comprising a step of heating the two-phase coexisting material obtained in the step (1).
  4. 前記工程(2)における加熱温度が300~900℃である、請求項3に記載の製造方法。 The production method according to claim 3, wherein the heating temperature in the step (2) is 300 to 900 ° C.
  5. 前記工程(2)において、加熱を行う際の圧力が10-6~10Paである、請求項3又は4に記載の製造方法。 The production method according to claim 3, wherein in the step (2), the pressure at the time of heating is 10 -6 to 10 Pa.
PCT/JP2019/027172 2018-07-10 2019-07-09 High-purity chalcogenide material and method for producing same WO2020013191A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020530205A JPWO2020013191A1 (en) 2018-07-10 2019-07-09 High-purity chalcogenide material and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-130688 2018-07-10
JP2018130688 2018-07-10

Publications (1)

Publication Number Publication Date
WO2020013191A1 true WO2020013191A1 (en) 2020-01-16

Family

ID=69142444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027172 WO2020013191A1 (en) 2018-07-10 2019-07-09 High-purity chalcogenide material and method for producing same

Country Status (2)

Country Link
JP (1) JPWO2020013191A1 (en)
WO (1) WO2020013191A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114908412A (en) * 2022-05-09 2022-08-16 福州大学 Method for efficiently growing di-tin trisulfide single crystal thermoelectric material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0761818A (en) * 1993-08-26 1995-03-07 Nisshin Steel Co Ltd Production of sns semiconductor film
JP2007284309A (en) * 2006-04-19 2007-11-01 Nihon Seiko Co Ltd Method and apparatus for manufacturing metal sulfide powder
JP2015107903A (en) * 2013-10-22 2015-06-11 住友金属鉱山株式会社 Tin sulfide sintered body and manufacturing method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0761818A (en) * 1993-08-26 1995-03-07 Nisshin Steel Co Ltd Production of sns semiconductor film
JP2007284309A (en) * 2006-04-19 2007-11-01 Nihon Seiko Co Ltd Method and apparatus for manufacturing metal sulfide powder
JP2015107903A (en) * 2013-10-22 2015-06-11 住友金属鉱山株式会社 Tin sulfide sintered body and manufacturing method therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VOZNYI, A. ET AL.: "Formation of SnS phase obtained by thermal vacuum annealing of SnS2 thin films and its application in solar cells", MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, vol. 79, 20 February 2018 (2018-02-20), pages 32 - 39, XP085359417, DOI: 10.1016/j.mssp.2018.01.021 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114908412A (en) * 2022-05-09 2022-08-16 福州大学 Method for efficiently growing di-tin trisulfide single crystal thermoelectric material

Also Published As

Publication number Publication date
JPWO2020013191A1 (en) 2021-07-15

Similar Documents

Publication Publication Date Title
Brummer et al. Formation of CuInSe2 by the annealing of stacked elemental layers—analysis by in situ high-energy powder diffraction
US7534414B2 (en) Clathrate compounds and method of manufacturing
US10347473B2 (en) Synthesis of high-purity bulk copper indium gallium selenide materials
Johnson et al. Self-regulation of Cu/Sn ratio in the synthesis of Cu2ZnSnS4 films
Horie et al. Controlled thermal decomposition of NaSi to derive silicon clathrate compounds
CN109824098A (en) A kind of Transition-metal dichalcogenide film and its preparation method and application
Luo et al. Valence disproportionation of GeS in the PbS matrix forms Pb5Ge5S12 inclusions with conduction band alignment leading to high n-type thermoelectric performance
Chen et al. Low-temperature growth of Na doped CIGS films on flexible polymer substrates by pulsed laser ablation from a Na containing target
Buha Solar absorption and microstructure of C-doped and H-co-doped TiO2 thin films
WO2020013191A1 (en) High-purity chalcogenide material and method for producing same
Ishtiyak et al. Intrinsic extremely low thermal conductivity in BaIn2Te4: Synthesis, crystal structure, Raman spectroscopy, optical, and thermoelectric properties
Lan et al. Structure and optical properties of GeTe film controlled by amorphous to crystalline phase transition
US8211400B2 (en) Method of manufacturing a clathrate compound
Su et al. Growth of ZnTe by physical vapor transport and traveling heater method
Shi et al. Preparation of high Al content (AlxGa1− x) 2O3 films by low-pressure reactive vapor deposition on sapphire substrates
Razykov et al. Characteristics of thin Sb2Se3 films obtained by the chemical molecular beam deposition method for thin-film solar cells
Sarkar et al. The role of vast off-stoichiometry of SnSe thin film on structural, morphological, optical, and electrical properties for photovoltaic applications
JPH0611644B2 (en) Chain phosphorus material
Nyrow et al. Structural changes in amorphous GexSiOy on the way to nanocrystal formation
Piarristeguy et al. Neutron thermodiffraction study of the crystallization of Ag–Ge–Se glasses: evidence of a new phase
Gremenok et al. Investigation of CuInZnSe2 thin films for solar cell applications
Bodnar et al. Structural and optical properties of AgIn5S8 films prepared by pulsed laser deposition
Portillo-Moreno et al. CdSe band-splitting on thermal annealed films
Du et al. Growth of Bridgman ingots of CuGaxIn1− xSe2 for solar cells
Stoilova et al. Kinetics of Ge‐Se‐In Film Growth

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19835121

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020530205

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19835121

Country of ref document: EP

Kind code of ref document: A1