JP2015107903A - Tin sulfide sintered body and manufacturing method therefor - Google Patents

Tin sulfide sintered body and manufacturing method therefor Download PDF

Info

Publication number
JP2015107903A
JP2015107903A JP2014037028A JP2014037028A JP2015107903A JP 2015107903 A JP2015107903 A JP 2015107903A JP 2014037028 A JP2014037028 A JP 2014037028A JP 2014037028 A JP2014037028 A JP 2014037028A JP 2015107903 A JP2015107903 A JP 2015107903A
Authority
JP
Japan
Prior art keywords
sintered body
tin sulfide
sns
ratio
sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014037028A
Other languages
Japanese (ja)
Other versions
JP6354205B2 (en
Inventor
高塚 裕二
Yuji Takatsuka
裕二 高塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2014037028A priority Critical patent/JP6354205B2/en
Publication of JP2015107903A publication Critical patent/JP2015107903A/en
Application granted granted Critical
Publication of JP6354205B2 publication Critical patent/JP6354205B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a tin sulfide sintered body having uniform specific resistance by reducing the specific resistance.SOLUTION: The tin sulfide sintered body preferably contains each of Bi, Fe, Sb, As, P of 100 ppm or less by mass ratio and has a specific resistance of 0.001 Ω cm to 10 Ω cm, and 0≤x≤0.01 and y/z ratio in a range of 0.90 to 1.01 in a composition formula (SnS)(CuS). It preferably contains Cu or Ag at 100 ppm or more and less than 10000 ppm. The tin sulfide sintered body can be suitably used as a sputtering target during manufacturing CZTS series thin film solar cells.

Description

本発明は、太陽電池のバッファ膜や光学膜を直流(DC)スパッタリング法で成膜するスパッタリングターゲットに好適な硫化スズ焼結体とその製造方法に関する。   The present invention relates to a tin sulfide sintered body suitable for a sputtering target for forming a buffer film or an optical film of a solar cell by a direct current (DC) sputtering method and a method for producing the same.

近年、光吸収層に化合物系半導体を用いた薄膜太陽電池として、CZTS系薄膜太陽電池とよばれる、光吸収層に銅(Cu)、亜鉛(Zn)、スズ(Sn)、及び、硫黄(S)又はセレン(Se)のいずれかのカルコゲン元素からなる化合物系半導体を用いた薄膜太陽電池が注目されている(非特許文献1、非特許文献2参照)。   In recent years, as a thin film solar cell using a compound semiconductor for a light absorption layer, it is called a CZTS thin film solar cell. Copper (Cu), zinc (Zn), tin (Sn), and sulfur (S ) Or selenium (Se), a thin film solar cell using a compound semiconductor composed of a chalcogen element has attracted attention (see Non-Patent Document 1 and Non-Patent Document 2).

このCZTS系薄膜太陽電池は、CISやCIGS系薄膜太陽電池とは異なり、インジウム(In)等の希少元素を用いないことから将来的な実用が期待されている。またSeを用いない硫化物でも変換効率が期待できることから毒性の強いSeを含まない太陽電池としても期待されている。   Unlike the CIS and CIGS thin film solar cells, this CZTS thin film solar cell is expected to be used in the future because it does not use rare elements such as indium (In). Further, since a conversion efficiency can be expected even with sulfides not using Se, it is also expected as a solar cell that does not contain highly toxic Se.

またCuZnSnSは太陽光で水を分解して水素を生成する光触媒としても注目されている(非特許文献3参照)。 Cu 2 ZnSnS 4 is also attracting attention as a photocatalyst that decomposes water with sunlight to generate hydrogen (see Non-Patent Document 3).

しかしながら、現在のところ、CISやCIGS系薄膜太陽電池のような高い変換効率は得られておらず、さらなる研究開発が必要とされている。   However, at present, high conversion efficiency like CIS and CIGS thin film solar cells has not been obtained, and further research and development is required.

一般的なCZTS膜の製造方法としては、スパッタリング法や蒸着などの物理蒸着法やゾルゲル法、スプレー熱分解法、電着・硫化法などの様々な方法が提案されている(非特許文献2参照)。   As a general method for producing a CZTS film, various methods such as a physical vapor deposition method such as a sputtering method and vapor deposition, a sol-gel method, a spray pyrolysis method, and an electrodeposition / sulfurization method have been proposed (see Non-Patent Document 2). ).

例えば、特許文献1では、従来のCZTS系薄膜太陽電池を構成するCZTS系光吸収層作製方法として、Cu、Zn、及びSnの積層膜となるプリカーサ膜を、スパッタ法等により電極層上に形成し、これを硫化水素(HS)雰囲気中で熱処理する方法が開示されている。 For example, in Patent Document 1, as a method for producing a CZTS-based light absorption layer constituting a conventional CZTS-based thin film solar cell, a precursor film that is a stacked film of Cu, Zn, and Sn is formed on an electrode layer by a sputtering method or the like. A method of heat-treating this in a hydrogen sulfide (H 2 S) atmosphere is disclosed.

また、ZnS、CuSやSnSなどの硫化物ターゲットを用いてCuZnSnSの化合物層を合成する開発が進んでいる(非特許文献4、特許文献5参照)。 In addition, development of synthesizing a compound layer of CuZnSnS 3 using a sulfide target such as ZnS, Cu 2 S, or SnS 2 is in progress (see Non-Patent Document 4 and Patent Document 5).

金属ターゲットを用いて硫化する方法は、Znの蒸気圧が高いためZnが揮発してZnが少なくなる可能性や硫化時に大きな体積変化を起こして基板から膜が剥離する恐れがある。   In the method of sulfiding using a metal target, since the vapor pressure of Zn is high, there is a possibility that Zn volatilizes and Zn is reduced, or a large volume change occurs during sulfidation, and the film may be peeled off from the substrate.

また、特許文献6にはCuS(第二硫化銅)粉末、ZnS粉末と硫化錫粉末を混合し、ホットプレス法でCZTSの単相ターゲットを作製し、p型伝導体で表面抵抗が45.3Ω/□〜680Ω/□の焼結体を得たとの記載がある。   In Patent Document 6, CuS (copper sulfide) powder, ZnS powder and tin sulfide powder are mixed, a single phase target of CZTS is prepared by hot pressing, and the surface resistance is 45.3Ω with a p-type conductor. There is a description that a sintered body of / □ to 680Ω / □ was obtained.

またZnが多くCuが少ない組成で太陽電池の変換効率が高くなるとの指摘がある(非特許文献5参照)。そのためCZTSの化学量論組成の化合物ターゲットではなく、硫化スズ、硫化亜鉛や硫化銅のターゲットを用いて組成比を制御できる成膜法が検討されている。   Moreover, it is pointed out that the conversion efficiency of the solar cell is increased with a composition with a large amount of Zn and a small amount of Cu (see Non-Patent Document 5). Therefore, a film forming method that can control the composition ratio using a target of tin sulfide, zinc sulfide, or copper sulfide instead of a compound target having a stoichiometric composition of CZTS has been studied.

スパッタリング法は、図5に示すようにArイオンをターゲットに照射してターゲットから放出される物質をターゲットに対向する基板に積層させる成膜方法である。ターゲット面を負電位にすることでArイオンがターゲットに照射され、イオン照射よりターゲットから電子とターゲットが放出される。照射イオンと放出電子の電荷を電極から供給することでArイオン照射(放電)が持続する。   As shown in FIG. 5, the sputtering method is a film forming method in which a target is irradiated with Ar ions and a substance released from the target is stacked on a substrate facing the target. Ar ions are irradiated onto the target by setting the target surface to a negative potential, and electrons and targets are emitted from the target by ion irradiation. Ar ion irradiation (discharge) is sustained by supplying irradiation ions and charges of emitted electrons from the electrodes.

スパッタ法には電荷供給法として直流(DC)電源を用いる方法と高周波(RF)を用いる方法がある。一般にターゲット材の抵抗が低い場合はDC電源を用い、抵抗が高い場合にはRF電源を用いる。RFスパッタ法は抵抗が高いターゲットでもスパッタできるが、電源がDC電源よりも高いことやターゲット面を負電位にするため高周波回路での電気抵抗と電気容量のマッチング調整を行う必要があり、DCスパッタよりもコストが増える。   The sputtering method includes a method using a direct current (DC) power source and a method using a high frequency (RF) as a charge supply method. Generally, a DC power source is used when the resistance of the target material is low, and an RF power source is used when the resistance is high. The RF sputtering method can sputter even on a target with high resistance. However, the power source is higher than the DC power source, and it is necessary to adjust the matching between the electric resistance and the electric capacity in the high frequency circuit in order to make the target surface have a negative potential. Cost more than.

SnSターゲットなどの硫化物ターゲットは抵抗が高く直流放電ができないため、DCスパッタリング法で成膜することが難しく、硫化スズターゲットの抵抗を下げることが求められている。   Since sulfide targets such as SnS targets have high resistance and cannot perform direct current discharge, it is difficult to form a film by a DC sputtering method, and it is required to reduce the resistance of a tin sulfide target.

低抵抗の硫化スズターゲットを得るには、硫化スズ粒子そのものの抵抗を下げることで達成でき、この硫化スズ粒子を焼結して得る方法と、硫化スズ粒子に導電性粒子を混合して焼結して得る方法がある。   A low resistance tin sulfide target can be obtained by lowering the resistance of the tin sulfide particles themselves. The tin sulfide particles are sintered and mixed with conductive particles and sintered. There is a way to get it.

光ディスク用保護膜に使われるZnS−SiO混合ターゲットでは、ZnSとSiOとIn、酸化亜鉛、酸化スズや酸化アンチモン等の導電性酸化物を混合し、ホットプレス又は熱間静水圧プレス法で焼結することでターゲットの抵抗を下げ、DCスパッタを可能にしたターゲットが提案されている(特許文献2、3参照)。また、ZnSにAl、Ag、Cu、In及びZnClの粉体を混合、焼成し、Al、Ag、Cu、In、Clを、ZnSに添加することで低抵抗化する方法も提案されている(特許文献4参照)。 In a ZnS-SiO 2 mixed target used for a protective film for an optical disk, ZnS, SiO 2 and In 2 O 3 , zinc oxide, tin oxide, antimony oxide and other conductive oxides are mixed, and hot pressing or hot isostatic pressure is performed. A target has been proposed in which the resistance of the target is lowered by sintering by a pressing method and DC sputtering is possible (see Patent Documents 2 and 3). Also proposed is a method of reducing the resistance by adding Al, Ag, Cu, In 2 S 3 and ZnCl 2 powders to ZnS, baking, and adding Al, Ag, Cu, In, Cl to ZnS. (See Patent Document 4).

導電性粒子と混合して焼結する方法では、図2(a)に示すように導電性粒子が連結することで、低抵抗の導電パスが形成されることで電荷が導電パスを流れてターゲット表面の電位が負になる。しかし導電粒子が少ない場合や均一に混合できないと、図2(b)のように、導電粒子が連結せず導電パスが形成されないため抵抗は小さくならない。このように、導電性酸化物を含む場合は導電性粒子を連結させて導電パスを生成しないとターゲットの抵抗が低くならないという問題がある。   In the method of mixing and sintering with conductive particles, as shown in FIG. 2 (a), the conductive particles are connected to form a low-resistance conductive path, whereby charges flow through the conductive path and the target. The surface potential becomes negative. However, when the number of conductive particles is small or when they cannot be mixed uniformly, the conductive particles are not connected and a conductive path is not formed as shown in FIG. As described above, when the conductive oxide is included, there is a problem that the resistance of the target is not lowered unless the conductive path is formed by connecting the conductive particles.

金属粉末を混合する場合は、Al、Ag、Cu、Inなどの金属粒子が柔らかいので、硫化物粉末を均一に混合することが難しく、得られたターゲットの組成バラツキや抵抗分布が大きいという問題がある。また、Alは活性なため微細な粉末にすると発火しやすくなり取り扱いが難しいという問題もある。また、Cu、In、AlやGaを金属として添加してもこれらの金属はSnSより硫化しやすいため、焼結時にCuS、In、AlやGaの硫化物を形成し、金属Snを生成する。金属Snは融点が低いため焼結時に焼結体から染み出して型の間に析出して型が固着したり、焼結体の下部に偏析したりする。 When mixing metal powders, metal particles such as Al, Ag, Cu, and In are soft, so it is difficult to uniformly mix sulfide powders, and there is a problem that compositional variation and resistance distribution of the obtained target are large. is there. Further, since Al is active, there is a problem that if it is made into a fine powder, it tends to ignite and is difficult to handle. Even if Cu, In, Al, or Ga is added as a metal, these metals are more easily sulfided than SnS. Therefore, during sintering, sulfurization of Cu 2 S, In 2 S 3 , Al 2 S 3, and Ga 2 S 3 is performed. Forming a metal Sn. Since the metal Sn has a low melting point, it oozes out from the sintered body during sintering and precipitates between the molds to fix the mold, or segregates at the lower part of the sintered body.

ところで、硫化スズは半導体であり、スズの原子位置を他の元素、例えば1価のAgで置換することでp型の半導体に、5価のSbで置換するとn型の半導体になることが知られている(非特許文献6参照)。従って硫化スズに1価または5価の金属元素を添加すると低抵抗化するが、1価と5価の元素を同時に添加すると自由電子がアクセプターに、正孔がドナー電子でトラップされる(補償)ため抵抗は下がり難くなる。そのため1価または5価の元素が他の元素より過剰になるように添加するか、他の元素が無い高純度の硫化スズ(SnS)に添加することが必要である。そのようにして作製した硫化スズ粉末を焼結すれば低抵抗焼結体が得られる。   By the way, it is known that tin sulfide is a semiconductor, and by replacing the atomic position of tin with another element, for example, monovalent Ag, it becomes a p-type semiconductor, and when it is substituted with pentavalent Sb, it becomes an n-type semiconductor. (See Non-Patent Document 6). Therefore, adding monovalent or pentavalent metal elements to tin sulfide reduces the resistance, but adding monovalent and pentavalent elements simultaneously traps free electrons in acceptors and holes in donor electrons (compensation). Therefore, the resistance is difficult to decrease. Therefore, it is necessary to add monovalent or pentavalent elements in excess of other elements, or to high-purity tin sulfide (SnS) free from other elements. If the tin sulfide powder thus produced is sintered, a low resistance sintered body can be obtained.

さらに、化合物半導体では構成元素の欠陥(自己欠陥)がバンド中に電子のレベルを形成する。硫化スズ(SnS)ではSnの空孔やSの空孔があり、その濃度は1014cm−3から1018cm−3以下と計算されている(非特許文献7参照)。これらの欠陥は電気的に活性な不純物が数10ppmより多い場合には電気的な特性に影響を与えないが、高純度の硫化スズ(SnS)では影響が出る。高純度の硫化スズ(SnS)ではこれらの自己欠陥濃度よりも多い添加元素を加えると導電性の制御が必要になる。 Further, in the compound semiconductor, the defect of the constituent element (self-defect) forms an electron level in the band. Tin sulfide (SnS) has Sn vacancies and S vacancies, and the concentration is calculated to be 10 14 cm −3 to 10 18 cm −3 or less (see Non-Patent Document 7). These defects do not affect the electrical characteristics when the amount of electrically active impurities is more than several tens of ppm, but are affected by high-purity tin sulfide (SnS). In high-purity tin sulfide (SnS), if an additive element higher than these self-defect concentrations is added, the conductivity must be controlled.

このように硫化スズ(SnS)を低抵抗にする一般的な原理は知られていたが、そのために有効な低抵抗のSnS粉末は容易に入手することは困難であり、また市販の硫化スズ粉末を低抵抗化する手法も知られていなかった。さらに、硫化スズ(SnS)焼結体を簡便に低抵抗化し、かつ、均一な比抵抗を有する焼結体とする具体的な方法も知られていなかった。さらに硫化スズ(SnS)はスパッタされやすいため、Cu等の金属がターゲット中に析出すると、スパッタ速度の遅いCuが析出した箇所の下部が掘れ残り、その結果図7に示すようにターゲット表面に突起状の凸部が形成され、異常放電が発生するなどの問題もあった。   Thus, although the general principle of making tin sulfide (SnS) have a low resistance has been known, an effective low resistance SnS powder is difficult to obtain, and a commercially available tin sulfide powder is also available. There is no known method for reducing the resistance. Furthermore, a specific method for easily reducing the resistance of a tin sulfide (SnS) sintered body and having a uniform specific resistance has not been known. Further, since tin sulfide (SnS) is easily sputtered, when a metal such as Cu is deposited in the target, the lower part of the portion where Cu is deposited at a low sputtering rate remains unexcavated. As a result, as shown in FIG. There are also problems such as the formation of a convex portion and the occurrence of abnormal discharge.

特開2009−026891号公報JP 2009-026891 A 特開2001−192820号公報JP 2001-192820 A 特開2007−310994号公報JP 2007-310994 A 特開2002−373459号公報Japanese Patent Laid-Open No. 2002-373459 特表2012−507631号公報Special table 2012-507631 gazette 特開2010−245238号公報JP 2010-245238 A

K.ITO T.NAKAZAWA JJAP 27(1988)2094K. ITO T. NAKAZAWA JJAP 27 (1988) 2094 片桐裕則 電子材料 2009年11月号 45Hironori Katagiri Electronic Materials November 2009 45 D.YOKOYAMA et al. Appl. Phys Express 3 (2010) 101202D. YOKOYAMA et al. Appl. Phys Express 3 (2010) 101202 五十嵐重雄、関拓郎、百瀬成空、橋本佳男、伊東謙太郎:第57回応用物理学関係連合講演会 講演予稿集 20p−TE−7 (2010)14−254Shigeo Igarashi, Takuro Seki, Narushiro Momose, Yoshio Hashimoto, Kentaro Ito: Proceedings of the 57th Joint Conference on Applied Physics 20p-TE-7 (2010) 14-254 H.Katagiri et al. Thin Solid Films 517(2009)2455H. Katagiri et al. Thin Solid Films 517 (2009) 2455 W.Albers、C.Hass、H.J.Vink and J.D.Wasscher J.Appl.Phys. 32(1961)2220W. Alberts, C.I. Hass, H.H. J. et al. Vink and J.M. D. Wascher J. et al. Appl. Phys. 32 (1961) 2220 J.Vial et.al. Appl.Phys.Lett.,100 (2012) 032104J. et al. Vial et. al. Appl. Phys. Lett. , 100 (2012) 032104 J.Vial et.al. Appl.Phys.Lett.,100 (2012) 032104J. et al. Vial et. al. Appl. Phys. Lett. , 100 (2012) 032104 小池一男 資源と素材 109(1993) 23−28Kazuo Koike Resources and Materials 109 (1993) 23-28

本発明が解決しようとする目的は、CZTS系薄膜太陽電池の製造時にスパッタリングターゲットとして使用できる硫化スズ焼結体で、直流スパッタリングが安定して可能になるように硫化スズ焼結体の比抵抗を低減し、かつ、均一な比抵抗を有する硫化スズ焼結体を提供することにある。   The object to be solved by the present invention is a tin sulfide sintered body that can be used as a sputtering target during the production of a CZTS-based thin film solar cell. The specific resistance of the tin sulfide sintered body is made stable so that direct current sputtering is possible. An object of the present invention is to provide a tin sulfide sintered body that has a reduced specific resistance.

本発明者は、係る種々の技術的課題を解決するために鋭意研究を重ねた結果、硫化スズ焼結体中に含まれる不純物元素として、Bi、Fe、Sb、As、P、をそれぞれ100ppm以下にすること、組成式(Sn1−x(CuS)において、0≦x≦0.01であり、y/z比は0.90以上1.01以下の範囲内とすること、更にCuを100ppm以上10000ppm未満含有することで硫化スズターゲットの比抵抗が0.001Ω・cm〜10Ω・cmまで低抵抗化することができ、ノジュールによる異常放電を抑制し安定した成膜ができることを見出し、本発明を完成するに至った。具体的には、本発明は以下のものを提供する。 As a result of intensive studies in order to solve the various technical problems, the present inventor has found that each of the impurity elements contained in the tin sulfide sintered body contains 100 ppm or less of Bi, Fe, Sb, As, and P. that, in the formula (Sn y S z) 1- x (Cu 2 S) x, is 0 ≦ x ≦ 0.01, y / z ratio and the range of 0.90 or more 1.01 or less Furthermore, the specific resistance of the tin sulfide target can be reduced to 0.001 Ω · cm to 10 Ω · cm by containing Cu at 100 ppm or more and less than 10,000 ppm, and stable film formation is suppressed by suppressing abnormal discharge due to nodules. As a result, the present invention has been completed. Specifically, the present invention provides the following.

(1) Bi、Fe、Sb、As、P、がそれぞれ質量比で100ppm以下であり、組成式(Sn1−x(CuS)において、0≦x≦0.01であり、y/z比は0.90以上1.01以下であり、
比抵抗が0.001Ω・cm〜10Ω・cmであることを特徴とする硫化スズ焼結体。
(1) Bi, Fe, Sb , As, P, but is at 100ppm or less at each mass ratio, in the composition formula (Sn y S z) 1- x (Cu 2 S) x, in 0 ≦ x ≦ 0.01 And the y / z ratio is 0.90 or more and 1.01 or less,
A tin sulfide sintered body having a specific resistance of 0.001 Ω · cm to 10 Ω · cm.

(2) Cu又はAgを100ppm以上10000ppm未満含有する(1)に記載の硫化スズ焼結体。   (2) The tin sulfide sintered body according to (1), which contains 100 ppm or more and less than 10,000 ppm of Cu or Ag.

(3) DCスパッタリング用のターゲットとして用いられる(1)又は(2)に記載の硫化スズ焼結体。   (3) The tin sulfide sintered body according to (1) or (2), which is used as a target for DC sputtering.

(4) 組成式(Sn1−x(CuS)において、0≦x≦0.01であり、y/z比は0.90以上1.01以下であるDCスパッタリングターゲット用の硫化スズ焼結体の製造方法であって、
Cuを0〜0.01質量%含有し、Bi、Fe、Sb、As、P、がそれぞれ質量比で100ppm以下であって、平均粒径が100μm以下の硫化スズ粉末を作製し、
前記硫化スズ粉末を下記A)またはB)により焼結して焼結体を得ることを特徴とする硫化スズ焼結体の製造方法。
A)600〜800℃の温度で、常圧下、不活性ガス雰囲気中で、加熱して保持する常圧焼結法。
B)500〜800℃の温度で、15kg重/cm以上400kg重/cm以下の加圧圧力で、不活性ガス雰囲気中で、加熱して保持するホットプレス法。
(4) In the formula (Sn y S z) 1- x (Cu 2 S) x, 0 ≦ x ≦ a 0.01, DC sputtering target ratio y / z is 0.90 or more 1.01 or less A method for producing a tin sulfide sintered body for
A tin sulfide powder containing 0 to 0.01% by mass of Cu, Bi, Fe, Sb, As, P is 100 ppm or less by mass ratio, and an average particle size is 100 μm or less,
A method for producing a tin sulfide sintered body, wherein the tin sulfide powder is sintered by the following A) or B) to obtain a sintered body.
A) A normal pressure sintering method in which the temperature is maintained at 600 to 800 ° C. in an inert gas atmosphere under normal pressure.
B) A hot press method in which the material is heated and held in an inert gas atmosphere at a pressure of 15 kg weight / cm 2 or more and 400 kg weight / cm 2 or less at a temperature of 500 to 800 ° C.

本発明の硫化スズ焼結体によれば、比抵抗を0.001Ω・cm〜10Ω・cmにすることができ、この焼結体をスパッタリングターゲットとして使用すれば異常放電やノジュールの発生が無く安定した直流スパッタリングが可能となる。   According to the tin sulfide sintered body of the present invention, the specific resistance can be 0.001 Ω · cm to 10 Ω · cm, and if this sintered body is used as a sputtering target, there is no occurrence of abnormal discharge or nodules and it is stable. DC sputtering is possible.

また、本発明の硫化スズ焼結体の製造方法によれば、低比抵抗で、品質の安定し、安全性も向上した硫化スズ焼結体を製造できる。   Further, according to the method for producing a tin sulfide sintered body of the present invention, a tin sulfide sintered body having low specific resistance, stable quality, and improved safety can be produced.

更に、本発明のCZTS膜の製造方法によれば、硫化スズ焼結体をターゲットにして使用した場合であっても、直流スパッタリングが使用可能となるので低コストで製造可能となる。   Furthermore, according to the method for producing a CZTS film of the present invention, even when a tin sulfide sintered body is used as a target, direct current sputtering can be used, so that it can be produced at low cost.

硫化スズ(SnS)中のキャリア発生機構と高抵抗化の機構を説明する図である。It is a figure explaining the carrier generation | occurrence | production mechanism in tin sulfide (SnS), and the mechanism of high resistance. 導電性粒子と硫化スズ(SnS)粒子の混合焼結体における導電パスを示す模式図である。It is a schematic diagram which shows the electroconductive path in the mixed sintered compact of electroconductive particle and a tin sulfide (SnS) particle | grain. 焼結前の単なる混合状態a)と、硫化スズ(SnS)粒子表面で反応し共晶液体が粒子を覆った状態b)を示す模式図である。FIG. 3 is a schematic diagram showing a simple mixed state a) before sintering and a state b) in which the eutectic liquid covers the particles by reacting on the surface of tin sulfide (SnS) particles. スパッタリング用のターゲットの構造を示す図である。It is a figure which shows the structure of the target for sputtering. 一般的なスパッタリング工程を示す模式図である。It is a schematic diagram which shows a general sputtering process. Arイオン照射によるSnSターゲットの帯電と電子による中和を示す模式図である。It is a schematic diagram which shows the charge of the SnS target by Ar ion irradiation, and the neutralization by an electron. 比較例5のスパッタ表面を示したSEM写真である。10 is a SEM photograph showing a sputtering surface of Comparative Example 5. 実施例1と比較例5のスパッタ電圧の変化量である。This is the amount of change in sputtering voltage between Example 1 and Comparative Example 5. 実施例1と比較例6の硫化スズのXRDパターンである。It is an XRD pattern of tin sulfide of Example 1 and Comparative Example 6. SnとCuSの反応によるギプスの自由エネルギー変化量である。It is the amount of change in the free energy of the cast due to the reaction between Sn and Cu 2 S.

以下に本発明を詳細に説明する。
<硫化スズ焼結体に含まれる不純物による電気特性の比抵抗への効果>
本発明の硫化スズ焼結体は、Bi、Fe、Sb、As、P、がそれぞれ100ppm以下であり、好ましくは50ppm以下である。Bi、Fe、Sb、As、Pのいずれかが100ppmを超えると、下記詳述するように、硫化スズ焼結体の比抵抗として0.001Ω・cm〜10Ω・cmという低抵抗が得られない。
The present invention is described in detail below.
<Effects of electrical properties on specific resistance due to impurities contained in tin sulfide sintered body>
In the tin sulfide sintered body of the present invention, Bi, Fe, Sb, As, and P are each 100 ppm or less, preferably 50 ppm or less. If any of Bi, Fe, Sb, As, and P exceeds 100 ppm, a low resistance of 0.001 Ω · cm to 10 Ω · cm cannot be obtained as the specific resistance of the tin sulfide sintered body as described in detail below. .

硫化スズは、半導体としての特性を有する化合物である。一般に半導体の抵抗ρは半導体のキャリアの電荷q、キャリア密度nと移動度vから次式(1)で表される。
ρ=1/(qnv)・・・(1)
従って半導体のキャリア密度または移動度が大きくなれば抵抗は下がる。一般に移動度を大きくすることは難しいが、キャリア密度は不純物を添加することで制御できる。そこで半導体ではキャリア濃度を増やして抵抗を下げることが行われている。
Tin sulfide is a compound having characteristics as a semiconductor. In general, the resistance ρ of a semiconductor is expressed by the following equation (1) from the charge q, carrier density n, and mobility v of a semiconductor carrier.
ρ = 1 / (qnv) (1)
Therefore, the resistance decreases as the carrier density or mobility of the semiconductor increases. In general, it is difficult to increase the mobility, but the carrier density can be controlled by adding impurities. Therefore, in semiconductors, the carrier concentration is increased to lower the resistance.

半導体中のキャリアは図1に示すように、p型半導体では正孔、n型半導体では自由電子であり、正孔は半導体に添加された元素がバンド中に作る不純物準位(アクセプターレベル)へ伝導帯の電子が励起することで生成する。自由電子は添加された元素がバンド中に作る不純物準位(ドナーレベル)の電子が伝導帯へ励起されることで生成する。これらの不純物準位はバンド端から数meVから数10meVと小さく室温で励起させることができる。   As shown in FIG. 1, carriers in a semiconductor are holes in a p-type semiconductor and free electrons in an n-type semiconductor, and holes are impurity levels (acceptor level) created in the band by an element added to the semiconductor. It is generated when electrons in the conduction band are excited. Free electrons are generated by exciting the impurity level (donor level) electrons created in the band by the added element to the conduction band. These impurity levels are as small as several meV to several tens meV from the band edge and can be excited at room temperature.

それに対してバンド端から100meV以上に電子準位を形成する不純物元素もある。これらの電子準位は、室温では励起できないため深い準位(deep level)と呼ばれている。これらの準位の濃度をそれぞれNa(アクセプターの濃度)、Ne(深い順位の濃度)、Nd(ドナーの濃度)とすると、Na>Nd+Neの場合はp型半導体、Ne>Nd+Naの場合はn型半導体となり抵抗は低くなる。   On the other hand, there is an impurity element that forms an electron level at 100 meV or more from the band edge. These electron levels are called deep levels because they cannot be excited at room temperature. When the concentration of these levels is Na (acceptor concentration), Ne (deep concentration), and Nd (donor concentration), respectively, a p-type semiconductor in the case of Na> Nd + Ne, and an n-type in the case of Ne> Nd + Na. It becomes a semiconductor and its resistance is low.

しかし、Nd≧Na、かつ、Nd≧Neの場合は、アクセプターレベルは深い準位の電子で占有され、ドナーレベルの電子は深い準位に遷移するためキャリア濃度が小さくなって抵抗が大きくなる。NaやNeがNdより大きければキャリアは生成するが、NdがNeの電子をトラップしてイオン化する、又はNaへ電子が遷移してイオン化すると、キャリアを散乱するため移動度が下がる。従ってNdは少ないことが好ましい。   However, in the case of Nd ≧ Na and Nd ≧ Ne, the acceptor level is occupied by deep level electrons, and the donor level electrons transition to the deep level, so the carrier concentration decreases and the resistance increases. . If Na or Ne is larger than Nd, carriers are generated. However, when Nd traps an electron of Ne and ionizes it, or when an electron transitions to Na and ionizes, the mobility is lowered because the carrier is scattered. Therefore, it is preferable that Nd is small.

以上の半導体の電気的特性に関する一般的理論から、本発明らは、硫化スズ焼結体(SnS)の比抵抗を下げるには、深い準位を形成する、Bi、Fe、Sb、As、Pなどの不純物元素を減らし、キャリアを生成するCuなどの元素を添加することが重要であることを見出した。   From the above general theory regarding the electrical characteristics of the semiconductor, the present inventors have proposed that in order to reduce the specific resistance of the tin sulfide sintered body (SnS), Bi, Fe, Sb, As, P, which form deep levels, are formed. It has been found that it is important to add an element such as Cu that reduces impurity elements such as Cu and generates carriers.

例えば、SiやGaAs等の半導体の実用化に伴って深いレベルの形成機構の研究が進み、Fe、Co、Ni等の遷移金属、Auや化合物半導体の空孔や自己欠陥が深いレベルを形成するといわれている。SnSでは深い準位を形成する元素は不明であるが、Fe、Co、Ni等の遷移金属は深い準位を形成すると考えられる。   For example, when research on deep level formation mechanisms advances with the practical application of semiconductors such as Si and GaAs, transition metal such as Fe, Co and Ni, Au and compound semiconductor vacancies and self-defects form deep levels. It is said. In SnS, the elements that form deep levels are unknown, but transition metals such as Fe, Co, and Ni are considered to form deep levels.

化合物半導体では構成元素の欠陥、すなわちSnの空孔やSの空孔が深い準位を形成する。その濃度は1018cm−3以下(10ppm程度)といわれている。したがって、不純物濃度が100ppm以下ではこの欠陥から生成するキャリアがSnSの主たるキャリアになる。ここで、Bi、Sb、As、Pはドナーレベルを形成すると考えられる。これらはCuやS空孔のアクセプターレベルを補償するためキャリア濃度が高くならない。またイオン化した不純物が多いとキャリアが散乱されて移動度が低くなるためこれらの不純物を含むと抵抗が高くなる。 In compound semiconductors, defects of constituent elements, that is, Sn vacancies and S vacancies form deep levels. The concentration is said to be 10 18 cm −3 or less (about 10 ppm). Therefore, when the impurity concentration is 100 ppm or less, carriers generated from this defect become the main carriers of SnS. Here, Bi, Sb, As, and P are considered to form a donor level. Since these compensate for the acceptor level of Cu and S vacancies, the carrier concentration does not increase. Further, when there are many ionized impurities, carriers are scattered and the mobility is lowered. Therefore, when these impurities are contained, the resistance is increased.

また、一般にCZTS太陽電池では、p型又は高抵抗CZTS層の上にn型のCdSやZnSを形成してpn接合やpin接合を形成する。従ってCZTSの原料にはn型になる不純物は少ない方がよい。そのため硫化スズ焼結体(SnS)を低抵抗化させるために添加する元素はp型になるといわれているCuやAg等が好ましい。   In general, in a CZTS solar cell, n-type CdS or ZnS is formed on a p-type or high-resistance CZTS layer to form a pn junction or a pin junction. Therefore, it is better for the raw material of CZTS to have less n-type impurities. Therefore, the element added to reduce the resistance of the tin sulfide sintered body (SnS) is preferably Cu or Ag, which is said to be p-type.

硫化スズ焼結体がp型になるように添加する濃度は、上述したNa>Nd+Neになるように、CuやAgを少なくとも10ppm以上添加する必要があり、本発明の効果を確実に発現させるためには100ppm以上添加することが好ましい。CuやAgのSnSに対する固溶限は定かではないが一般に大量に加えると移動度が低下するため10000ppm未満とするのが好ましく、より好ましくは5000ppm以下である。   The concentration added so that the tin sulfide sintered body becomes p-type needs to add at least 10 ppm of Cu and Ag so that Na> Nd + Ne described above, so that the effect of the present invention is surely exhibited. It is preferable to add 100 ppm or more. The solid solubility limit of Cu or Ag with respect to SnS is not clear, but generally it is preferably less than 10000 ppm, more preferably 5000 ppm or less because mobility decreases when added in large amounts.

<高純度の硫化スズ粉末の製造方法>
上記のように、本発明の硫化スズ焼結体を得るためには、原料として硫化スズ粉末には不純物を制御した高純度の硫化スズ粉末が必要である。
<Method for producing high-purity tin sulfide powder>
As described above, in order to obtain the tin sulfide sintered body of the present invention, the tin sulfide powder as a raw material requires high-purity tin sulfide powder with controlled impurities.

高純度硫化スズ(SnS)粉末の製法としては、電解法などで作製された高純度Snと高純度Sを原料としてアンプル封入してSnSの融点(885℃)以上のたとえば900℃に加熱することでインゴットを作製しそれを粉砕する方法、高純度Snをアトマイズ法で100μm以下の高純度Sn粒子を作製し、それをHSやS蒸気と反応させる乾式法、塩化第一錫や硫酸スズなどの2価の塩の水溶液に硫化水素ガスや水硫化ソーダ(NaSH)水溶液や硫化アンモニウム、多硫化アンモニウム、チオ尿素およびチオアセトアミドから選択される硫化物の水溶液を加える湿式方法が知られている。 As a method for producing high-purity tin sulfide (SnS) powder, ampules are encapsulated using high-purity Sn and high-purity S produced by electrolysis, etc., and heated to, for example, 900 ° C. above the melting point of SnS (885 ° C.). A method for producing an ingot by pulverization and a high-purity Sn atomizing method to produce high-purity Sn particles of 100 μm or less and reacting it with H 2 S or S vapor, stannous chloride or tin sulfate There is known a wet method of adding an aqueous solution of a hydrogen sulfide gas, a sodium hydrosulfide (NaSH) solution or an aqueous solution of a sulfide selected from ammonium sulfide, ammonium polysulfide, thiourea and thioacetamide to an aqueous solution of a divalent salt such as .

しかしながらインゴットを粉砕する方法は粉砕により不純物濃度と粒径の制御が難しい。また湿式法では高純度の原料が市販されておらず入手困難なため、高純度化が難しい。一方、高純度Sn粒子と高純度Sを用いて硫化する方法は比較的簡単に高純度SnS粉末を得ることができる、このため、本発明においては、上記の乾式法により製造するのが好ましい。   However, in the method of pulverizing the ingot, it is difficult to control the impurity concentration and the particle size by pulverization. Moreover, since the high purity raw material is not commercially available and difficult to obtain in the wet method, it is difficult to achieve high purity. On the other hand, a method of sulfiding using high-purity Sn particles and high-purity S can relatively easily obtain a high-purity SnS powder. For this reason, in the present invention, it is preferable to produce by the dry method described above.

<Cuの添加方法>
硫化スズ焼結体をp型にするためのCuの添加方法としては、高純度SnとCuを同時に熔解し、それをアトマイズしてCu添加Sn粒子を作製する方法があるが、比較的少量の特定量のCuを均一にSn中に分散させることは難しい。
<Cu addition method>
As a method for adding Cu to make the tin sulfide sintered body p-type, there is a method in which high-purity Sn and Cu are simultaneously melted and atomized to produce Cu-added Sn particles. It is difficult to uniformly disperse a specific amount of Cu in Sn.

一般に、硫化銅(CuS)は低抵抗化しやすいことが知られている。CuSとSnSを混合し、焼結することで低抵抗な焼結体が得られる可能性がある。非特許文献8のSnS−CuSの相図に示すように、CuSとSnSは共晶反応を起こして490℃以上で液相が発生する。そのため490℃以上で液相線温度以下では共晶組成(CuS:55mol%、SnS:45mol%)よりSnS過剰の組成領域ではSnSとSnS−CuS共晶の液相が共存する。 In general, it is known that copper sulfide (Cu 2 S) is easily reduced in resistance. There is a possibility that a sintered body having a low resistance can be obtained by mixing and sintering Cu 2 S and SnS. As shown in the phase diagram of SnS—Cu 2 S in Non-Patent Document 8, Cu 2 S and SnS undergo a eutectic reaction and a liquid phase is generated at 490 ° C. or higher. Therefore 490 ° C. or higher in the eutectic composition in the following liquidus temperature (Cu 2 S: 55mol%, SnS: 45mol%) in than SnS excess composition region coexist SnS and SnS-Cu 2 S eutectic liquid phases.

本発明らは、SnSに添加するCuSの量を振り、各種温度で焼結することを詳細に検討した結果、特定量のCuSを添加したSnS焼結体において、抵抗が低くなる焼結体が得られることを見出した。これは図3に示したようにSnSにCuSを混合した混合状態a)が、その後加熱し焼結する処理を施す過程で、SnS粒子表面で反応して共晶液相を生じ、SnS粒子表面をこの共晶液体が覆い、SnS粒子表面に低抵抗の層が生成し、それが焼結により連結することにより導電パスが繋がって抵抗が低くなる状態b)が形成されると推定される。また液相からCuがSnS粒子に拡散するためSnS粒子表面はp型の低抵抗層になっていると推定される。 The present invention found that swinging the amount of Cu 2 S is added to SnS, result of studying in detail the sintering at various temperatures, in SnS sintered body obtained by adding a specific amount of Cu 2 S, resistance is low It has been found that a sintered body can be obtained. This is because, as shown in FIG. 3, the mixed state a) in which Cu 2 S is mixed with SnS reacts on the surface of the SnS particles during the process of heating and sintering, thereby producing a eutectic liquid phase. It is estimated that this eutectic liquid covers the particle surface, and a low-resistance layer is formed on the SnS particle surface, which is connected by sintering to form a state b) in which conductive paths are connected and resistance is reduced. The Further, since Cu diffuses from the liquid phase into the SnS particles, it is presumed that the surface of the SnS particles is a p-type low resistance layer.

さらにSnSとCuSの生成エネルギーの熱力学的考察から、図10に示すように450℃より低い温度では金属Snが存在すると、下記の化学反応のギプスの自由エネルギー変化が負になり、反応が右に進行して金属Cuが析出する。そのためSnS−CuSの共晶反応が起きない。
CuS+Sn=SnS+2Cu
Furthermore, from the thermodynamic consideration of the formation energy of SnS and Cu 2 S, if metal Sn is present at a temperature lower than 450 ° C. as shown in FIG. 10, the cast free energy change of the following chemical reaction becomes negative, and the reaction Advances to the right and metal Cu is deposited. Therefore, the eutectic reaction of SnS—Cu 2 S does not occur.
Cu 2 S + Sn = SnS + 2Cu

従って、組成式(Sn1−x(CuS)において、CuSの組成比率は0≦x≦0.01であり、SnSのSn/S比であるy/z比は0.90以上1.01以下の範囲内とすることが重要である。Sn/S比(y/z比)が1.01を超える組成範囲では焼結体中にCuが析出して異常放電を引き起こす。また、0.90より少ない、すなわちSが大きく過剰の組成範囲ではSnS、Snなどの多硫化相が混入して焼結密度が高くならない。 Thus, in the formula (Sn y S z) 1- x (Cu 2 S) x, the composition ratio of Cu 2 S is 0 ≦ x ≦ 0.01, y / z ratio is Sn / S ratio of SnS Is important to be within the range of 0.90 to 1.01. In the composition range where the Sn / S ratio (y / z ratio) exceeds 1.01, Cu precipitates in the sintered body and causes abnormal discharge. In addition, when the composition range is less than 0.90, that is, when S is large and excessive, polysulfide phases such as SnS 2 and Sn 2 S 3 are mixed and the sintered density does not increase.

<硫化スズ焼結体の製造方法>
原料粉末として、上記の方法により作製した高純度硫化スズ(SnS)粉末を秤量する。または、上記の方法により作製した高純度硫化スズ(SnS)粉末と高純度硫化銅(CuS)粉末を所定量秤量し、混合する。混合は乳鉢、Vブレンダーや湿式ボールミルなど公知の方法で行うことができる。
<Method for producing tin sulfide sintered body>
The high-purity tin sulfide (SnS) powder produced by the above method is weighed as the raw material powder. Alternatively, a predetermined amount of high-purity tin sulfide (SnS) powder and high-purity copper sulfide (Cu 2 S) powder prepared by the above method are weighed and mixed. Mixing can be performed by a known method such as a mortar, V blender or wet ball mill.

次に、上記で得られた原料粉末の混合物を焼結させるが、焼結方法としてはA)常圧焼結法や、B)ホットプレス(HP)法を用いることができる。   Next, the mixture of the raw material powders obtained above is sintered. As a sintering method, A) normal pressure sintering method or B) hot press (HP) method can be used.

A)常圧焼結法では、まず得られた混合粉末を金型に入れてプレス成型する。または冷間等方プレス(CIP)で成型して成型体を作製する。その成型体を600℃以上、さらに好ましくは640℃以上、上限は800℃以下、さらに好ましくは750℃以下に加熱・保持して焼結させる。600℃より低い温度では焼結しにくく相対密度が低くなるため好ましくなく、800℃を超えると硫黄の解離が激しく起きるため好ましくない。焼結はSnSが硫化物であり高温では硫黄が解離するため、Arや窒素ガスなどの不活性ガス雰囲気中で行うことが望ましい。   A) In the atmospheric pressure sintering method, first, the obtained mixed powder is put into a mold and press-molded. Or it shape | molds with a cold isostatic press (CIP), and produces a molded object. The molded body is sintered by heating and holding at 600 ° C. or higher, more preferably 640 ° C. or higher, and the upper limit is 800 ° C. or lower, more preferably 750 ° C. or lower. If the temperature is lower than 600 ° C., it is difficult to sinter and the relative density becomes low, which is not preferable, and if it exceeds 800 ° C., the dissociation of sulfur occurs vigorously. Sintering is preferably performed in an inert gas atmosphere such as Ar or nitrogen gas because SnS is a sulfide and sulfur dissociates at a high temperature.

B)加圧焼結法であるホットプレス(HP)法では、得られた混合粉末をグラファイト製の型に詰めてホットプレス装置に入れて加圧しながら焼結させる。焼結温度は500℃以上、より好ましくは600℃以上、上限は800℃以下、より好ましくは730℃以下である。500℃以下では焼結しにくく相対密度が低くなるため好ましくなく、800℃を超えると焼結体中の溶融物が多くなり、溶融物が型から押し出されるため好ましくない。   B) In the hot press (HP) method, which is a pressure sintering method, the obtained mixed powder is packed in a graphite mold, placed in a hot press apparatus, and sintered under pressure. The sintering temperature is 500 ° C. or higher, more preferably 600 ° C. or higher, and the upper limit is 800 ° C. or lower, more preferably 730 ° C. or lower. If it is 500 ° C. or lower, sintering is difficult and the relative density is low, which is not preferable. If it exceeds 800 ° C., the melt in the sintered body increases and the melt is pushed out of the mold.

硫化銅(CuS)を混合しない場合は、加圧する圧力が高いほど密度が高くすることができる。加圧する圧力は15kg重/cm以上より好ましくは50kg重/cm以上、上限は400kg重/cm以下好ましくは300kg重/cm以下である。15kg重/cm未満では焼結が進行しない。また400kg重/cmを超えると液相が押し出されて硫化スズ(SnS)粒子上に低抵抗層が形成されないので好ましくない。 When copper sulfide (Cu 2 S) is not mixed, the higher the pressure applied, the higher the density. The pressurizing pressure is 15 kg weight / cm 2 or more, more preferably 50 kg weight / cm 2 or more, and the upper limit is 400 kg weight / cm 2 or less, preferably 300 kg weight / cm 2 or less. If it is less than 15 kg weight / cm 2 , sintering does not proceed. On the other hand , if it exceeds 400 kg weight / cm 2 , the liquid phase is pushed out and a low resistance layer is not formed on the tin sulfide (SnS) particles, which is not preferable.

硫化銅(CuS)を混合する場合は、15kg重/cm以上より好ましくは50kg重/cm以上、200kg重/cm以下より好ましくは175kg重/cm以下がよい。15kg重/cm未満では焼結が進行しない。また175kg重/cmを超えると液相が押し出されて硫化スズ(SnS)粒子上に低抵抗層が形成されないので好ましくない。 When mixing copper sulfide (Cu 2 S), 15 kgf / cm 2 or more, more preferably 50 kgf / cm 2 or more, 200 kgf / cm 2 or less, more preferably 175 kgf / cm 2 or less is good. If it is less than 15 kg weight / cm 2 , sintering does not proceed. On the other hand , if it exceeds 175 kgf / cm 2 , the liquid phase is pushed out and a low resistance layer is not formed on the tin sulfide (SnS) particles, which is not preferable.

加圧パターンは型に原料を詰めた後に加圧して型の混合粉末を圧縮し、そのあと圧力を抜いて500℃程度まで加熱して、硫化スズ(SnS)と硫化銅(CuS)を反応させて液相が生じた後に加圧して焼結を進行させてもよい。グラファイト製の型には焼結体の貼り付きを防止するため離型材を塗布しても良い。離型材としてはBNやAlなどが用いられる。 The pressurization pattern is that after the raw materials are packed in the mold, pressurization is performed to compress the mixed powder of the mold, and then the pressure is released and heated to about 500 ° C. to stir tin sulfide (SnS) and copper sulfide (Cu 2 S). Sintering may be advanced by pressurizing after the liquid phase is produced by the reaction. A release material may be applied to the graphite mold in order to prevent the sintered body from sticking. The release material such as BN, Al 2 O 3, or the may be used.

焼結はSnSが硫化物であり高温では硫黄が解離するため、Arや窒素ガスなどの不活性ガス雰囲気中で行うことが望ましい。また、室温から550℃程度まで真空中で加熱し水分などの吸着物質を除去し、そのあと不活性ガスで充填しても良い。   Sintering is preferably performed in an inert gas atmosphere such as Ar or nitrogen gas because SnS is a sulfide and sulfur dissociates at a high temperature. Further, it may be heated in a vacuum from room temperature to about 550 ° C. to remove adsorbed substances such as moisture, and then filled with an inert gas.

Cuを均一に添加するための共晶組成物は以下の手順で作製することができる。硫化スズ(SnS)と硫化銅(CuS)を所定量混合し、加熱溶融し、粉砕して作製する。SnSとCuSとは非特許文献8に示すように全域で共晶反応を示す。硫化スズ(SnS)と硫化銅(CuS)の割合は、SnS過剰組成、700℃以下で溶融する、SnS49mol%以上75mol%以下が好ましい。SnSに固溶するCu以外は、CuSとSnSの共晶組織として析出する。ホットプレス法で作製するときは、CuSとSnSの液相は、大部分が押し出されて、焼結体には焼結温度で平衡するCuが固溶する。 A eutectic composition for uniformly adding Cu can be prepared by the following procedure. A predetermined amount of tin sulfide (SnS) and copper sulfide (Cu 2 S) are mixed, heated and melted, and pulverized. SnS and Cu 2 S show a eutectic reaction throughout the region as shown in Non-Patent Document 8. The ratio of tin sulfide (SnS) and copper sulfide (Cu 2 S) is preferably SnS 49 mol% or more and 75 mol% or less, which melts at an SnS excess composition, 700 ° C. or less. Except Cu, which is solid-solved in SnS, it is precipitated as a eutectic structure of Cu 2 S and SnS. When producing by the hot press method, most of the liquid phase of Cu 2 S and SnS is extruded, and Cu which is balanced at the sintering temperature is dissolved in the sintered body.

以下、実施例を用いて本発明を説明する。   Hereinafter, the present invention will be described using examples.

<実施例1>
(高純度硫化スズ(SnS)粒子の作製)
まず、出発原料として粒径38μm以下で純度3NのSn粉末(高純度化学研究所製、SNE04PB)と純度4Nの硫黄粉末(高純度化学研究所製、SSE02PB)をモル比1:2になるように秤量し、乳鉢で混合しアルミナ坩堝に入れた。原料粉末を入れたアルミナ坩堝をグラファイト容器に入れて蓋をして、電気炉を用いて真空中で200℃まで加熱し、その後窒素雰囲気にして550℃まで加熱し、1時間保持したのちに、加熱を止めて冷却した。
<Example 1>
(Preparation of high-purity tin sulfide (SnS) particles)
First, Sn powder having a particle size of 38 μm or less and a purity of 3N (manufactured by Kojundo Chemical Laboratory, SNE04PB) and sulfur powder of 4N purity (manufactured by Kosei Chemical Laboratory, SSE02PB) are used in a molar ratio of 1: 2. Were mixed in a mortar and placed in an alumina crucible. Alumina crucible containing raw material powder is put in a graphite container, covered, heated to 200 ° C. in a vacuum using an electric furnace, then heated to 550 ° C. in a nitrogen atmosphere, held for 1 hour, The heating was stopped and the system was cooled.

作製した硫化物のXRDパターンを図9に示す。本発明の硫化スズ(SnS)粒子のXRD測定結果、そして比較のためにγ−Sn(161℃以上で生成)相、SnS低温相のXRDパターンを示した。実施例1の測定結果はSnS低温相のパターンとよく一致している。44°、46°付近の微小ピークはγ−Sn相と思われる。   The XRD pattern of the produced sulfide is shown in FIG. The XRD measurement results of the tin sulfide (SnS) particles of the present invention and the XRD patterns of the γ-Sn (generated at 161 ° C. or higher) phase and the SnS low temperature phase are shown for comparison. The measurement result of Example 1 is in good agreement with the SnS low-temperature phase pattern. The minute peaks around 44 ° and 46 ° are considered to be γ-Sn phases.

原料粉末と作製した高純度硫化スズ(SnS)粒子をICP法により分析した結果を表1に示す(単位は質量比ppm)。表1の結果から、Bi、Fe、Sb、As、Pが100ppm以下であることが分かる。また、蛍光X線分析によりSn/S比(y/z比)は0.99であった。   The results of analyzing the raw powder and the produced high-purity tin sulfide (SnS) particles by the ICP method are shown in Table 1 (unit is ppm by mass). From the results in Table 1, it can be seen that Bi, Fe, Sb, As, and P are 100 ppm or less. Moreover, Sn / S ratio (y / z ratio) was 0.99 by fluorescent X-ray analysis.

<銅添加硫化スズ焼結体(Sn0.96Cu0.04S)の作製>
上記条件により作製した高純度硫化スズ(SnS)粉末を12.25gに対して硫化銅(CuS)(高純度化学製)を0.25g加えて乳鉢で混合し、同様の操作を4回行って混合粉末50gを作製した。混合粉末中のCuの濃度は、金属元素(Sn+Cu)の比率で3.7mol%(Cu濃度=Cu/Sn+Cuで2wt%)とした。
<Preparation of copper-added tin sulfide sintered body (Sn 0.96 Cu 0.04 S)>
0.25 g of copper sulfide (Cu 2 S) (manufactured by High Purity Chemical) is added to 12.25 g of the high purity tin sulfide (SnS) powder produced under the above conditions and mixed in a mortar, and the same operation is repeated four times. A mixed powder of 50 g was produced. The concentration of Cu in the mixed powder was 3.7 mol% (Cu concentration = 2 wt% for Cu / Sn + Cu) in terms of the ratio of metal element (Sn + Cu).

得られた混合粉末をホットプレス(HP)法にて焼結させた。内径50mmφのグラファイト製の型に入れてホットプレス(大亜真空製)に入れて、面圧75kg重/cmで加圧した。グラファイト製の型にはBNスプレー(ルービBN、昭和電工製)でBNを塗布し、乾燥させた。その後面圧を0にして炉内を2×10−3Paまで真空に引いて10℃/分の昇温速度で680℃まで加熱した。昇温中の550℃で、面圧を75kg重/cmで加圧を開始し、600℃になった時点でNガスを流し、その後約20分で大気圧になった。その後3L/minの流量でNガスを流した。保持温度の680℃に達したのち、1時間保持し、保持終了と同時に面圧を0にして冷却した。冷却後に、焼結体を取り出した。その際に型の外部に押し出された溶融物が一部付着していた。 The obtained mixed powder was sintered by a hot press (HP) method. It was placed in a graphite mold having an inner diameter of 50 mmφ, placed in a hot press (manufactured by Daia Vacuum), and pressurized at a surface pressure of 75 kg weight / cm 2 . BN was applied to the graphite mold with BN spray (Rubi BN, manufactured by Showa Denko) and dried. Thereafter, the surface pressure was set to 0, the inside of the furnace was evacuated to 2 × 10 −3 Pa, and heated to 680 ° C. at a temperature rising rate of 10 ° C./min. At a temperature of 550 ° C. during the temperature increase, pressurization was started at a surface pressure of 75 kgf / cm 2. When the temperature reached 600 ° C., N 2 gas was allowed to flow, and then atmospheric pressure was reached in about 20 minutes. Thereafter, N 2 gas was allowed to flow at a flow rate of 3 L / min. After reaching the holding temperature of 680 ° C., it was held for 1 hour, and at the same time as the holding was completed, the surface pressure was reduced to 0 and cooled. After cooling, the sintered body was taken out. At that time, a part of the melt extruded to the outside of the mold adhered.

焼結体の表面に付着しているBN粉末をサンドペーパーで削り落とした。焼結体の重量と外形寸法を測定し密度を測定した。また表面の電気抵抗(表面抵抗率Ω/□)を4端針表面抵抗率計(三菱化学製Loresta IP MCP−T250)で測定し、試料の厚みをかけて体積抵抗率(Ω・cm)に換算し、比抵抗を求めた。得られた密度と比抵抗を表2に示す。また焼結体を蛍光X線装置で分析して焼結体中のCuの濃度を測定した。その結果0.5wt%であった。また、得られた焼結体の蛍光X線分析によりSn/S比(y/z比)は0.99であった。   The BN powder adhering to the surface of the sintered body was scraped off with sandpaper. The weight and outer dimensions of the sintered body were measured, and the density was measured. Also, the surface electrical resistance (surface resistivity Ω / □) was measured with a four-end needle surface resistivity meter (Loresta IP MCP-T250, manufactured by Mitsubishi Chemical Corporation), and the volume resistivity (Ω · cm) was obtained by multiplying the thickness of the sample. The specific resistance was obtained by conversion. The obtained density and specific resistance are shown in Table 2. Moreover, the sintered compact was analyzed with the fluorescent X-ray apparatus and the density | concentration of Cu in a sintered compact was measured. As a result, it was 0.5 wt%. Moreover, Sn / S ratio (y / z ratio) was 0.99 by the fluorescent X ray analysis of the obtained sintered compact.

<実施例2>
ホットプレス(HP)の圧力を面圧150kg重/cmとした以外は実施例1と同様の方法で銅添加硫化スズ焼結体を作製し、密度と比抵抗を測定した。結果を表2に示す。また、得られた焼結体の蛍光X線分析によりSn/S比(y/z比)は0.99であった。
<Example 2>
A copper-added tin sulfide sintered body was produced in the same manner as in Example 1 except that the pressure of the hot press (HP) was changed to a surface pressure of 150 kg weight / cm 2, and the density and specific resistance were measured. The results are shown in Table 2. Moreover, Sn / S ratio (y / z ratio) was 0.99 by the fluorescent X ray analysis of the obtained sintered compact.

<実施例3>
硫化スズ(SnS)粉末と硫化銅(CuS)の混合濃度を7.3mol%とした以外は実施例1と同様の方法で銅添加硫化スズ焼結体を作製し、密度と比抵抗を測定した。結果を表2に示す。また、得られた焼結体の蛍光X線分析によりSn/S比(y/z比)は0.99であった。
<Example 3>
A copper-added tin sulfide sintered body was prepared in the same manner as in Example 1 except that the mixed concentration of tin sulfide (SnS) powder and copper sulfide (Cu 2 S) was 7.3 mol%, and the density and specific resistance were adjusted. It was measured. The results are shown in Table 2. Moreover, Sn / S ratio (y / z ratio) was 0.99 by the fluorescent X ray analysis of the obtained sintered compact.

<実施例4>
硫化スズ(SnS)粉末と硫化銅(CuS)の混合濃度を1.9mol%とした以外は実施例1と同様の方法で銅添加硫化スズ焼結体を作製し、密度と比電気抵抗を測定した。結果を表2に示す。また、得られた焼結体の蛍光X線分析によりSn/S比(y/z比)は0.99であった。
<Example 4>
A copper-added tin sulfide sintered body was prepared in the same manner as in Example 1 except that the mixed concentration of tin sulfide (SnS) powder and copper sulfide (Cu 2 S) was 1.9 mol%. Was measured. The results are shown in Table 2. Moreover, Sn / S ratio (y / z ratio) was 0.99 by the fluorescent X ray analysis of the obtained sintered compact.

<実施例5>
ホットプレス(HP)の保持温度を720℃とした以外は実施例1と同様の方法で銅添加硫化スズ焼結体を作製し、密度と比抵抗を測定した。結果を表2に示す。また、得られた焼結体の蛍光X線分析によりSn/S比(y/z比)は0.99であった。
<Example 5>
A copper-added tin sulfide sintered body was produced in the same manner as in Example 1 except that the holding temperature of the hot press (HP) was 720 ° C., and the density and specific resistance were measured. The results are shown in Table 2. Moreover, Sn / S ratio (y / z ratio) was 0.99 by the fluorescent X ray analysis of the obtained sintered compact.

<実施例6>
硫化銅(CuS)を添加しないで、硫化スズ(SnS)粉末原料のみで焼結体を作製した以外は実施例1と同様の方法で硫化スズ焼結体を作製し、密度と比抵抗を測定した。結果を表2に示す。また、得られた焼結体の蛍光X線分析によりSn/S比(y/z比)は0.99であった。
<Example 6>
A tin sulfide sintered body was produced in the same manner as in Example 1 except that a sintered body was produced only from a tin sulfide (SnS) powder raw material without adding copper sulfide (Cu 2 S), and the density and specific resistance. Was measured. The results are shown in Table 2. Moreover, Sn / S ratio (y / z ratio) was 0.99 by the fluorescent X ray analysis of the obtained sintered compact.

<実施例7>
ホットプレス(HP)の保持温度を720℃とした以外は実施例6と同様の方法で硫化スズ焼結体を作製し、密度と比抵抗を測定した。結果を表2に示す。また、得られた焼結体の蛍光X線分析によりSn/S比(y/z比)は0.99であった。
<Example 7>
A tin sulfide sintered body was produced in the same manner as in Example 6 except that the holding temperature of the hot press (HP) was 720 ° C., and the density and specific resistance were measured. The results are shown in Table 2. Moreover, Sn / S ratio (y / z ratio) was 0.99 by the fluorescent X ray analysis of the obtained sintered compact.

<実施例8>
ホットプレス(HP)の保持温度を720℃とし、圧力を面圧300kg重/cmとした以外は実施例6と同様の方法で硫化スズ焼結体を作製し、密度と比抵抗を測定した。結果を表2に示す。また、得られた焼結体の蛍光X線分析によりSn/S比(y/z比)は0.99であった。
<Example 8>
A tin sulfide sintered body was produced in the same manner as in Example 6 except that the holding temperature of the hot press (HP) was 720 ° C., and the pressure was 300 kgf / cm 2, and the density and specific resistance were measured. . The results are shown in Table 2. Moreover, Sn / S ratio (y / z ratio) was 0.99 by the fluorescent X ray analysis of the obtained sintered compact.

<実施例9>
ホットプレス(HP)の保持温度を550℃とした以外は実施例1と同様の方法で銅添加硫化スズ焼結体を作製し、密度と比抵抗を測定した。結果を表2に示す。また、得られた焼結体の蛍光X線分析によりSn/S比(y/z比)は0.99であった。
<Example 9>
A copper-added tin sulfide sintered body was produced in the same manner as in Example 1 except that the holding temperature of the hot press (HP) was 550 ° C., and the density and specific resistance were measured. The results are shown in Table 2. Moreover, Sn / S ratio (y / z ratio) was 0.99 by the fluorescent X ray analysis of the obtained sintered compact.

<実施例10>
混合粉末中のCuの濃度を、金属元素(Sn+Cu)の比率で3.7mol%とし、混合粉末をシリコーンゴム製の型に入れて冷間静水圧プレスで2000kg重/cmの圧力でφ50mmの成型体を作製した。成型体をホットプレス装置に入れ、保持温度680℃、保持時間4時間で焼結を行った。昇温速度や雰囲気は実施例1と同じ条件とした。密度と比抵抗を測定した。結果を表2に示す。また、得られた焼結体の蛍光X線分析によりSn/S比(y/z比)は0.99であった。
<Example 10>
The concentration of Cu in the mixed powder was set to 3.7 mol% in terms of the ratio of metal element (Sn + Cu), and the mixed powder was put into a silicone rubber mold, and the pressure was 2000 kgf / cm 2 at a pressure of 2000 kgf / cm 2. A molded body was produced. The molded body was put into a hot press apparatus and sintered at a holding temperature of 680 ° C. and a holding time of 4 hours. The heating rate and atmosphere were the same as in Example 1. Density and specific resistance were measured. The results are shown in Table 2. Moreover, Sn / S ratio (y / z ratio) was 0.99 by the fluorescent X ray analysis of the obtained sintered compact.

<実施例11>
原料の硫化スズ粉末をSnとSの比を2:5として高純度のSnS粉末を作製した。蛍光X線でSnS粉末のSn/S比はモル比で0.92であった。XRD測定からSnS相に少量Sn相が混在していた。このSnS粉末を用いた以外は実施例1と同様の方法で焼結体を作製し、密度と比抵抗を測定した。結果を表2に示す。また、得られた焼結体の蛍光X線分析によりSn/S比(y/z比)は0.92であった。
<Example 11>
A high-purity SnS powder was produced by setting the ratio of Sn and S to 2: 5 as the raw material tin sulfide powder. The Sn / S ratio of the SnS powder by fluorescent X-ray was 0.92 in terms of molar ratio. From the XRD measurement, a small amount of Sn 2 S 3 phase was mixed in the SnS phase. A sintered body was produced in the same manner as in Example 1 except that this SnS powder was used, and the density and specific resistance were measured. The results are shown in Table 2. Moreover, Sn / S ratio (y / z ratio) was 0.92 by the fluorescent X ray analysis of the obtained sintered compact.

<比較例1>
原料の硫化スズ粉末として純度99.5%の日本化学製のSnS粉末のみを用いて、硫化銅を添加せずに、ホットプレス(HP)の保持温度を680℃で保持時間を4時間とした以外は実施例1と同様の方法で焼結体を作製し、密度と比抵抗を測定した。結果を表2に示す。SnSの分析結果を表1に示す。Feの濃度が125ppmと高かった。
<Comparative Example 1>
Only SnS powder made by Nihon Chemical Co., Ltd. with a purity of 99.5% was used as the raw material tin sulfide powder, without adding copper sulfide, the holding temperature of the hot press (HP) was 680 ° C., and the holding time was 4 hours. Except for the above, a sintered body was produced in the same manner as in Example 1, and the density and specific resistance were measured. The results are shown in Table 2. The analysis results of SnS are shown in Table 1. The concentration of Fe was as high as 125 ppm.

<比較例2>
原料の硫化スズ粉末として純度99.5%の日本化学製のSnS粉末を用いた以外は実施例1と同様の方法で焼結体を作製し、密度と比抵抗を測定した。結果を表2に示す。
<Comparative Example 2>
A sintered body was prepared in the same manner as in Example 1 except that SnS powder made by Nihon Chemical Co., Ltd. having a purity of 99.5% was used as the raw material tin sulfide powder, and the density and specific resistance were measured. The results are shown in Table 2.

<比較例3>
ホットプレス(HP)の保持温度を480℃とした以外は実施例1と同様の方法で焼結体を作製し、密度と比抵抗を測定した。結果を表2に示す。
<Comparative Example 3>
A sintered body was produced in the same manner as in Example 1 except that the holding temperature of the hot press (HP) was 480 ° C., and the density and specific resistance were measured. The results are shown in Table 2.

<比較例4>
硫化スズ(SnS)粉末と硫化銅(CuS)の混合濃度を33.3mol%にした以外は実施例1と同様の方法で銅添加硫化スズ焼結体作製を行った。大部分が型の外へ流出して固化し、型に薄い板状の焼結体が残った。焼結体を型から取り外すことができず、この添加量ではHP法での銅添加硫化スズ焼結体の作製は難しいことが分かった。
<Comparative Example 4>
A copper-added tin sulfide sintered body was produced in the same manner as in Example 1 except that the mixed concentration of tin sulfide (SnS) powder and copper sulfide (Cu 2 S) was changed to 33.3 mol%. Most of it flowed out of the mold and solidified, and a thin plate-like sintered body remained in the mold. It was found that the sintered body could not be removed from the mold, and with this addition amount, it was difficult to produce a copper-added tin sulfide sintered body by the HP method.

<比較例5>
原料の硫化スズ粉末として純度99.5%の日本化学製のSnS粉末を用いて、ホットプレス(HP)の保持温度を680℃で保持時間を4時間とした以外は実施例1と同様の方法で焼結体を作製し、密度と比抵抗を測定した。結果を表2に示す。SnSの分析結果を表1に示す。Feの濃度が125ppmと高かった。
<Comparative Example 5>
The same method as in Example 1 except that SnS powder made by Nihon Chemical Co., Ltd. having a purity of 99.5% was used as the raw material tin sulfide powder, the holding temperature of the hot press (HP) was 680 ° C., and the holding time was 4 hours. A sintered body was prepared and the density and specific resistance were measured. The results are shown in Table 2. The analysis results of SnS are shown in Table 1. The concentration of Fe was as high as 125 ppm.

<比較例6>
原料の硫化スズ粉末をSnとSの比を1:4として高純度のSnS粉末を作製した。蛍光X線でSnS粉末のSn/S比はモル比で0.8であった。XRD測定からSnS相とSnS相が混在していた。このSnS粉末を用いた以外は実施例1と同様の方法で焼結体を作製し、密度と比抵抗を測定した。結果を表2に示す。また、得られた焼結体の蛍光X線分析によりSn/S比(y/z比)は0.8であった。
<Comparative Example 6>
A high-purity SnS powder was prepared by using a tin sulfide powder as a raw material at a Sn: S ratio of 1: 4. The Sn / S ratio of the SnS powder by fluorescent X-ray was 0.8 in molar ratio. From the XRD measurement, the SnS phase and the SnS 2 phase were mixed. A sintered body was produced in the same manner as in Example 1 except that this SnS powder was used, and the density and specific resistance were measured. The results are shown in Table 2. Moreover, Sn / S ratio (y / z ratio) was 0.8 by the fluorescent X ray analysis of the obtained sintered compact.

[性能の評価]
DCスパッタリング可能な低抵抗の組成系について、実際にスパッタリング装置にて放電試験を行った。
[Evaluation of performance]
For a low resistance composition system capable of DC sputtering, a discharge test was actually performed with a sputtering apparatus.

[スパッタリング方法]
図4に示すようにCuのバッキングプレートに焼結体を貼りつけてターゲットを作製した。ターゲットをマグネトロンRFスパッタリング装置(アネルバ製SPF210H)に取り付けて成膜を行った。ロータリーポンプで2Paまで引いた後、さらにクライオポンプで8×10−4Paまで真空に引いた。その後、Arガスを入れてスパッタリング圧力0.2〜1.5Pa、DC電源はアドバンスエナジー社製のMDXを使用して100Wで放電させた。
[Sputtering method]
As shown in FIG. 4, a sintered body was stuck on a Cu backing plate to prepare a target. The target was attached to a magnetron RF sputtering apparatus (SPF210H manufactured by Anelva) to form a film. After pulling to 2 Pa with a rotary pump, the vacuum was further pulled to 8 × 10 −4 Pa with a cryopump. Thereafter, Ar gas was put in, and the sputtering pressure was 0.2 to 1.5 Pa, and the DC power source was discharged at 100 W using MDX manufactured by Advance Energy.

実施例1から11のターゲットは、Arガス圧、ターゲットと基板間の距離(T/S間距離)を変化させると、安定に放電した領域があり、現実にDCスパッタリング可能であった。   The targets of Examples 1 to 11 had areas that were stably discharged when the Ar gas pressure and the distance between the target and the substrate (distance between T / S) were changed, and were actually capable of DC sputtering.

これに対して比較例1〜3と5は、Arガス圧、ターゲットと基板間の距離を変えるとDC放電するが、放電が部分的で不安定で短い時間で放電が消えてしまった。これはターゲット内の比抵抗にばらつきがあり抵抗の高い部分が帯電して火花放電のような異常放電現象が発生して放電が不安定になり、さらにターゲットの表面電位が高くなるとArイオンがターゲットに当たらなくなるため放電がストップした。   In contrast, Comparative Examples 1 to 3 and 5 caused DC discharge when the Ar gas pressure and the distance between the target and the substrate were changed, but the discharge was partially unstable and the discharge disappeared in a short time. This is because the specific resistance within the target varies, the high resistance portion is charged, an abnormal discharge phenomenon such as spark discharge occurs, the discharge becomes unstable, and when the surface potential of the target becomes higher, the Ar ions become the target. Discharge stopped because it was not hit.

比較例6の焼結体もDC放電可能であったが、異常放電(部分的に高抵抗部分で帯電しアーク放電が瞬間的に起きる)が多くみられた。これは、比較例6では高純度の硫化スズ粉末は、SnSとSnSの混合物であるため、スパッタ時にSnSが分解してSnSとSが生成するため、ターゲット中のSnSの多い箇所が部分的に深く掘られ、そこが異常放電の原因となったと考えられる。一方、実施例1から11では異常放電の発生回数は減少した。 The sintered body of Comparative Example 6 was also capable of DC discharge, but abnormal discharge (partially charged at a high resistance portion and arc discharge instantaneously occurred) was observed. This high purity tin sulfide powder of Comparative Example 6 is a mixture of SnS and SnS 2, since in sputtering SnS 2 is generated SnS and S is decomposed, often places of SnS 2 in the target is It is thought that part of it was dug deeply, which caused abnormal discharge. On the other hand, in Examples 1 to 11, the number of occurrences of abnormal discharge decreased.

実施例1と比較例5のスパッタ時の電圧変化を図8に示す。実施例1の電圧は安定しているが、比較例5では電圧が変化している。電圧変化時に異常放電が発生していた。なお、スパッタ時間40分で実施例1の電圧が変化しているが、これはカソード上部のシャッターを閉じたことに伴うものであるため、異常放電の発生に起因して電圧が変化しているわけではない。   FIG. 8 shows voltage changes during sputtering in Example 1 and Comparative Example 5. Although the voltage of Example 1 is stable, the voltage is changed in Comparative Example 5. Abnormal discharge occurred when the voltage changed. In addition, the voltage of Example 1 changed in 40 minutes of sputtering time, but this is due to the closing of the shutter above the cathode, and thus the voltage has changed due to the occurrence of abnormal discharge. Do not mean.

また図7に比較例5のスパッタ後の表面のSEM写真を示す。表面に突起物が存在し、凸部の頂点をEDXで分析するとCuが多い層が形成されていることが分かった。ターゲット内にスパッタ速度が異なる層が析出し、掘れ残りが起こってノジュールが形成されたと思われる。   FIG. 7 shows an SEM photograph of the surface of Comparative Example 5 after sputtering. Protrusions existed on the surface, and it was found that a layer containing a large amount of Cu was formed when the apex of the convex portion was analyzed by EDX. It seems that layers with different sputter speeds were deposited in the target, resulting in digging and nodules.

Claims (4)

Bi、Fe、Sb、As、P、がそれぞれ質量比で100ppm以下であり、
比抵抗が0.001Ω・cm〜10Ω・cmであり、組成式(Sn1−x(CuS)において、0≦x≦0.01であり、y/z比は0.90以上1.01以下であることを特徴とする硫化スズ焼結体。
Bi, Fe, Sb, As, P are each 100 ppm or less by mass ratio,
Specific resistance is 0.001Ω · cm~10Ω · cm, in the composition formula (Sn y S z) 1- x (Cu 2 S) x, is 0 ≦ x ≦ 0.01, y / z ratio 0 A tin sulfide sintered body characterized by being in the range of 90 to 1.01.
Cu又はAgを100ppm以上10000ppm未満含有する請求項1に記載の硫化スズ焼結体。   The tin sulfide sintered body according to claim 1, containing 100 ppm or more and less than 10,000 ppm of Cu or Ag. DCスパッタリング用のターゲットとして用いられる請求項1又は2に記載の硫化スズ焼結体。   The tin sulfide sintered body according to claim 1 or 2, which is used as a target for DC sputtering. 組成式(Sn1−x(CuS)において、0≦x≦0.01であり、y/z比は0.90以上1.01以下であるDCスパッタリングターゲット用の硫化スズ焼結体の製造方法であって、
Cuを0〜0.01質量%含有し、Bi、Fe、Sb、As、P、がそれぞれ質量比で100ppm以下であって、平均粒径が100μm以下の硫化スズ粉末を作製し、
前記硫化スズ粉末を下記A)またはB)により焼結して焼結体を得ることを特徴とする硫化スズ焼結体の製造方法。
A)600〜800℃の温度で、常圧下、不活性ガス雰囲気中で、加熱して保持する常圧焼結法。
B)500〜800℃の温度で、15kg重/cm以上400kg重/cm以下の加圧圧力で、不活性ガス雰囲気中で、加熱して保持するホットプレス法。
In the composition formula (Sn y S z) 1- x (Cu 2 S) x, is 0 ≦ x ≦ 0.01, sulfide for DC sputtering target ratio y / z is 0.90 or more 1.01 or less A method for producing a tin sintered body,
A tin sulfide powder containing 0 to 0.01% by mass of Cu, Bi, Fe, Sb, As, P is 100 ppm or less by mass ratio, and an average particle size is 100 μm or less,
A method for producing a tin sulfide sintered body, wherein the tin sulfide powder is sintered by the following A) or B) to obtain a sintered body.
A) A normal pressure sintering method in which the temperature is maintained at 600 to 800 ° C. in an inert gas atmosphere under normal pressure.
B) A hot press method in which the material is heated and held in an inert gas atmosphere at a pressure of 15 kg weight / cm 2 or more and 400 kg weight / cm 2 or less at a temperature of 500 to 800 ° C.
JP2014037028A 2013-10-22 2014-02-27 Tin sulfide sintered body and method for producing the same Expired - Fee Related JP6354205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014037028A JP6354205B2 (en) 2013-10-22 2014-02-27 Tin sulfide sintered body and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013219259 2013-10-22
JP2013219259 2013-10-22
JP2014037028A JP6354205B2 (en) 2013-10-22 2014-02-27 Tin sulfide sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015107903A true JP2015107903A (en) 2015-06-11
JP6354205B2 JP6354205B2 (en) 2018-07-11

Family

ID=53438598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014037028A Expired - Fee Related JP6354205B2 (en) 2013-10-22 2014-02-27 Tin sulfide sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP6354205B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108658600A (en) * 2018-06-26 2018-10-16 昌吉学院 A kind of Cu2-xThe sintered at ultra low temperature method of S thermoelectric materials
CN108767065A (en) * 2018-06-04 2018-11-06 中建材蚌埠玻璃工业设计研究院有限公司 A method of directly preparing each film layer of Thinfilm solar cell component
WO2020013191A1 (en) * 2018-07-10 2020-01-16 国立大学法人京都大学 High-purity chalcogenide material and method for producing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011513595A (en) * 2008-03-14 2011-04-28 ラム・リサーチ・アーゲー Method for depositing a film on a substrate
CN103172378A (en) * 2011-12-21 2013-06-26 北京有色金属研究总院 Copper/zinc/tin/sulfur ceramic target material and vacuum hot pressing preparation method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011513595A (en) * 2008-03-14 2011-04-28 ラム・リサーチ・アーゲー Method for depositing a film on a substrate
CN103172378A (en) * 2011-12-21 2013-06-26 北京有色金属研究总院 Copper/zinc/tin/sulfur ceramic target material and vacuum hot pressing preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108767065A (en) * 2018-06-04 2018-11-06 中建材蚌埠玻璃工业设计研究院有限公司 A method of directly preparing each film layer of Thinfilm solar cell component
CN108658600A (en) * 2018-06-26 2018-10-16 昌吉学院 A kind of Cu2-xThe sintered at ultra low temperature method of S thermoelectric materials
CN108658600B (en) * 2018-06-26 2021-02-26 昌吉学院 Cu2-xUltralow temperature sintering method of S thermoelectric material
WO2020013191A1 (en) * 2018-07-10 2020-01-16 国立大学法人京都大学 High-purity chalcogenide material and method for producing same
JPWO2020013191A1 (en) * 2018-07-10 2021-07-15 国立大学法人京都大学 High-purity chalcogenide material and its manufacturing method

Also Published As

Publication number Publication date
JP6354205B2 (en) 2018-07-11

Similar Documents

Publication Publication Date Title
TWI496907B (en) A sputtering target, a compound semiconductor thin film, a solar cell having a compound semiconductor thin film, and a method for producing a compound semiconductor thin film
TWI583811B (en) A Cu-Ga sputtering target, a method for manufacturing the target, a light absorbing layer, and a solar cell using the light absorbing layer
Vanalakar et al. A review on pulsed laser deposited CZTS thin films for solar cell applications
US20130126346A1 (en) Chalcogenide alloy sputter targets for photovoltaic applications and methods of manufacturing the same
US8871143B2 (en) Amalgam method for forming a sputter target useful in the manufacture of thin-film solar photovoltaic cells
TWI498433B (en) Method for manufacturing cu-ga alloy sputtering target and cu-ga alloy sputtering target
US10017850B2 (en) Cu—Ga alloy sputtering target, and method for producing same
JP6354205B2 (en) Tin sulfide sintered body and method for producing the same
JP2010245238A (en) Photoelectric conversion device and method of manufacturing the same, as well as method of manufacturing sulfide sintered compact target
Wei et al. An investigation on phase transition for as-sputtered Cu2ZnSnSe4 absorbers during selenization
JP5348394B2 (en) (Zn, Al) O-based transparent electrode layer for solar cell and ZnO-Al2O3-based sputtering target used for forming the same
JP5945790B2 (en) Method for producing alloy for CZTS solar cell
TWI439578B (en) Method for making cu2-xse nanoparticle and method for making deposited cu2-xse thin film by electrophoresis
JP5949661B2 (en) Tin sulfide sintered body and method for producing the same
TW201034969A (en) Method for manufacturing a powder for the production of p-type transparent conductive films
JP5348399B2 (en) (Zn, Ga, Al) O-based transparent electrode layer for solar cell and ZnO-Ga2O3-Al-based sputtering target used for forming the same
Monsefi et al. A p→ n transition for Sn-doped Cu (In, Ga) Se2 bulk materials
Xu et al. Tailoring the Back Contact Properties of Cu2ZnSn (S, Se) 4 Thin Film with Mo-Foil by Introducing a Transparent CuCrO2 Buffer Layer
JP2010238894A (en) SOLAR CELL WHOSE STRUCTURE LAYER IS (Zn, In, Al)O BASED TRANSPARENT ELECTRODE LAYER, AND ZnO-In2O3-Al BASED SPUTTERING TARGET USED FOR FORMING THE (Zn, In, Al)O BASED TRANSPARENT ELECTRODE LAYER
Hong et al. Synthesis and Low-temperature Sintering of CuInSe2-CuGaSe2 Powders
Fu et al. The effect of step cooling treatment on the microstructure of Cu2ZnSnS4 film and its electric property
Nie et al. Effects of europium substitution for In on structure and photoelectric properties of CuIn1− xEuxTe2
Puzer et al. Copper-tin-sulphide (CTS) thin films, obtained by a two-electrode electrochemical deposition of metal precursors, followed by soft annealing and sulfurization.
CN114975759A (en) Rapid preparation of YbAl 3 Method for thermoelectric thin film
CN111900077A (en) Antimony sulfide film preferentially growing along one-dimensional chain belt direction and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180528

R150 Certificate of patent or registration of utility model

Ref document number: 6354205

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees