WO2020013188A1 - Base metal plating film - Google Patents

Base metal plating film Download PDF

Info

Publication number
WO2020013188A1
WO2020013188A1 PCT/JP2019/027165 JP2019027165W WO2020013188A1 WO 2020013188 A1 WO2020013188 A1 WO 2020013188A1 JP 2019027165 W JP2019027165 W JP 2019027165W WO 2020013188 A1 WO2020013188 A1 WO 2020013188A1
Authority
WO
WIPO (PCT)
Prior art keywords
base metal
particles
plating film
hydrophilic
metal plating
Prior art date
Application number
PCT/JP2019/027165
Other languages
French (fr)
Japanese (ja)
Inventor
智明 間彦
浩一 梅本
晃人 吉田
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to JP2020530202A priority Critical patent/JPWO2020013188A1/en
Publication of WO2020013188A1 publication Critical patent/WO2020013188A1/en
Priority to JP2024029476A priority patent/JP2024051133A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/52Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating using reducing agents for coating with metallic material not provided for in a single one of groups C23C18/32 - C23C18/50
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • C25D15/02Combined electrolytic and electrophoretic processes with charged materials

Definitions

  • the present invention relates to a base metal plating film, a base metal plating bath, a method for producing the base metal plating film, an electronic component having the base metal plating film, a brightening agent for the base metal plating film, and an antioxidant for the base metal plating film.
  • nano diamond may be described as “ND”.
  • connecting parts such as low-current (signal-related) switches and connectors used in electric and electronic equipment
  • connecting parts that are repeatedly used with low contact load require high connection reliability.
  • the plating film is required to have appropriate gloss in addition to conductivity.
  • Patent Document 1 discloses that a carbon-based fine particle such as a carbon nanotube is dispersed in a water-insoluble solvent and then a copper ion or the like is obtained in order to obtain a high-quality and highly reliable plating film composited with the carbon-based fine particle.
  • a method for producing a plating bath in which a water-insoluble solvent is added to a metal salt aqueous solution containing a base metal ion and stirred to disperse the carbon-based fine particles in the base metal salt aqueous solution. It is said that by using a plating bath produced by this method, an electronic component in which contamination of impurities is suppressed can be obtained. However, this method cannot impart high gloss to the plating film. Base metals are also susceptible to air oxidation.
  • a brightener having an action of refining crystals by adsorbing on crystal nuclei and inhibiting crystal growth is added to the plating bath, so that the surface of the deposited noble metal is removed.
  • Non-Patent Document 1 proposes adding nanodiamond particles to a plating bath to incorporate the nanodiamond particles into a plating film. However, since the nanodiamond particles are not sufficiently dispersed in a plating solution, the nanodiamond particles are not sufficiently dispersed in a plating solution. It is described that the nano diamond particles are aggregated to the order of ⁇ m.
  • Patent Literature 3 describes a configuration in which diamond fine particles having a hydrophilic polymer or an ionic functional group introduced therein are added to a metal plating solution together with a surfactant.
  • Example 1 1 g / L of anionic functional group-introduced diamond fine particles was added.
  • Example 2 describes a configuration in which a dispersion containing 2 g / L is added and a dispersion containing 1 g / L of PEG-introduced diamond microparticles is added at a rate of 0.1 g / L in Example 2. With the amount, improvement in the glossiness and oxidation resistance of the plating film cannot be expected.
  • Patent Document 4 discloses a configuration in which a hydrophilic polymer or an ionic functional group is introduced, diamond fine particles having an average particle diameter of 10 nm to 300 nm, fluorine resin fine particles having an average particle diameter of 100 nm to 300 nm, and a surfactant are added to the metal plating solution.
  • the electroless composite plating solution containing 2.0 g / L of the grafted diamond particles is described in Examples 1 and 2.
  • the plating solution containing such a high concentration of the diamond particles has a gloss of the plating film. No improvement in oxidation resistance can be expected.
  • An object of the present invention is to provide a base metal plating film having high glossiness and oxidation resistance and a method for producing the same.
  • Another object of the present invention is to provide a base metal plating bath useful for producing a base metal plating film having high gloss and oxidation resistance.
  • Another object of the present invention is to provide an electronic component provided with a base metal plating film having high gloss, surface hardness, conductivity and oxidation resistance.
  • Another object of the present invention is to provide a novel brightening agent that imparts high gloss to a base metal plating film.
  • Another object of the present invention is to provide a novel antioxidant that imparts oxidation resistance to a base metal plating film.
  • the present inventors have conducted intensive studies to solve the above-described problems. As a result, when the base metal plating is performed using a plating bath containing a base metal ion and to which hydrophilic nanodiamond particles are added, a high glossiness and oxidation resistance are obtained. It has been found that a base metal plating film having excellent properties can be obtained.
  • the present invention provides a base metal plating film, a base metal plating bath, a method for producing the base metal plating film, an electronic component having the base metal plating film, a brightener for the base metal plating film, and an antioxidant for the base metal plating film. It is.
  • a base metal plating film including a base metal matrix and hydrophilic nanodiamond particles dispersed in the base metal matrix.
  • the base metal oxide film has an increase of less than 1%, preferably less than 0.5%, more preferably less than 0.5% after storage for 7 days at 25 ° C. and 50% humidity in a room not exposed to direct sunlight. Is less than 0.3%, most preferably less than 0.1%, the base metal plating film according to [1] or [2].
  • hydrophilic nanodiamond particles are the following (i) or (ii) nanodiamond particles: (i) nano-diamond particles coated with a hydrophilic polymer; (ii) Nanodiamond particles modified with a hydrophilic polymer.
  • Base metals are iron, nickel, zinc, copper, tin, aluminum, tungsten, molybdenum, tantalum, magnesium, cobalt, bismuth, cadmium, titanium, zirconium, antimony, manganese, beryllium, chromium, germanium, vanadium, gallium, hafnium, indium,
  • the hydrophilic polymer is polyglycerin, polyvinylpyrrolidone, polyethylene glycol, polyvinyl alcohol, poly (meth) acrylic acid, polyacrylamide, polyethyleneimine, vinyl ether polymer, cellulose derivative, water-soluble polyester, water-soluble phenol resin
  • the base metal plating film according to [5] which is selected from the group consisting of molecular polysaccharides.
  • the base metal is copper, the crystallite size (A) of the 111 face is 100 nm or less, the crystallite size (B) of the 220 face is 80 nm or less, and the crystallite size ratio (A / B) of the 111 face and the 220 face. ) Is 1.3 or more, the base metal plating film according to any one of [1] to [8].
  • the base metal is copper, and the peak intensity ratio (111/220) of the 111 and 220 planes of the X-ray diffraction pattern is 3.0 or less, according to any one of [1] to [8]. Base metal plating film.
  • the base metal is nickel, the crystallite size (A) of the 111 face is 25 nm or less, the crystallite size (C) of the 200 face is 23 nm or less, and the crystallite size ratio (A / C) of the 111 face and the 200 face. ) Is 1.1 or more, the base metal plating film according to any one of [1] to [8].
  • the base metal plating film of the present invention has a configuration in which nanodiamond particles are highly dispersed in a matrix of the base metal, and the growth of the base metal crystal is inhibited by the nanodiamond particles to make the crystal grains fine, It is smooth and has high gloss and excellent oxidation resistance. Further, the base metal plating film of the present invention has excellent heat resistance, surface hardness, and electrical conductivity. Therefore, the base metal plating film of the present invention is suitably used for connecting parts for electronic equipment, decorative articles and the like.
  • the base metal plating film of the present invention since the base metal plating film of the present invention has a smooth surface, the coefficient of friction decreases and the contact resistance value decreases. Therefore, it is suitably used as a connecting part repeatedly used with a low contact load among connecting parts (or electric contacts) such as low current (signal) switches and connectors used for electric / electronic devices.
  • the plating bath of the present invention is useful for producing a base metal plating film having high gloss and excellent oxidation resistance.
  • a base metal plating film having high glossiness and excellent oxidation resistance can be efficiently produced by a simple operation.
  • the electronic component of the present invention has a base metal plating film having high gloss and excellent oxidation resistance.
  • the brightener of the present invention is useful for forming a base metal plating film having high glossiness.
  • the antioxidant of the present invention is useful for forming a base metal plating film having excellent oxidation resistance.
  • FIG. 2 is an enlarged schematic view illustrating an example of hydrophilic ND particles according to the present invention.
  • 7 shows an X-ray diffraction result of a plating film formed on a brass plate in Comparative Example 1.
  • 13 shows an X-ray diffraction result of a plating film formed on a brass plate in Example 4. The X-ray diffraction results immediately after and 5 days after the production of the plating film formed on the brass plate in Comparative Example 2 are shown.
  • 9 shows an XRD pattern of a copper plating film measured in Test Example 7.
  • 13 shows an SEM photograph of a plating film of Test Example 8.
  • the ND particles used in the present invention are hydrophilic ND particles.
  • (ii) ND particles modified with a hydrophilic polymer are included.
  • Preferred hydrophilic ND particles are the ND particles of (ii).
  • ND particles into which a hydrophilic functional group (OH, COOH, NH 2 ) has been introduced are known (for example, JP-A-2018-30741).
  • ND generated by a detonation method can be preferably used.
  • the detonation method includes an air-cooled detonation method and a water-cooled detonation method.
  • the air-cooled detonation method is preferable because it is possible to obtain an ND having smaller primary particles than the water-cooled detonation method.
  • hydrophilic ND particles having a plurality of hydrophilic functional groups (OH, COOH, NH 2 ) formed on the surface can be obtained.
  • the coating or modification of the hydrophilic polymer is performed via a hydrophilic functional group.
  • hydrophilic polymers include polyglycerin (PG), polyvinylpyrrolidone, polyethylene glycol, polyvinyl alcohol, poly (meth) acrylic acid, polyacrylamide, polyethyleneimine, vinyl ether polymers, cellulose derivatives, water-soluble polyesters, and natural polymers And polysaccharides.
  • vinyl ether-based polymer include homopolymers or copolymers of alkyl vinyl ethers such as vinyl methyl ether, vinyl ethyl ether, vinyl isopropyl ether, vinyl butyl ether and vinyl isobutyl ether (for example, polyvinyl methyl ether, polyvinyl ethyl ether, Vinyl ether-maleic anhydride copolymer).
  • Examples of the cellulose derivative include methyl cellulose, ethyl cellulose, propyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose, carboxymethyl cellulose, carboxyethyl cellulose, and the like.
  • Examples of the water-soluble polyester include polydimethylol propionate.
  • Examples of the natural high molecular polysaccharide include alginic acid or a salt thereof, pectin, starch, agar, acacia, dextrin, carrageenan, and the like.
  • Preferred hydrophilic polymers are polyglycerin, polyvinylpyrrolidone, polyethylene glycol, polyvinyl alcohol and poly (meth) acrylic acid, with polyglycerin being particularly preferred.
  • the ND particles modified with a surface modifying group containing a polyglycerin chain have, for example, a configuration in which polyglycerin represented by the following formula (1) is bonded to a surface functional group of the ND particles.
  • n represents the number of glycerin units constituting the polyglycerin chain, and is an integer of 1 or more.
  • C 3 H 6 O 2 in parentheses in the formula (1) has a structure represented by the following formulas (2) and / or (3).
  • the polyglycerin chains include linear, branched, and cyclic polyglycerin chains.
  • the amount of the hydrophilic polymer introduced by modification or coating is, for example, about 0.05 to 1.0 part by mass, preferably about 0.4 to 1.0 part by mass, per part by mass of the ND particles. It is preferably from 0.5 to 0.9 part by mass, particularly preferably from 0.6 to 0.8 part by mass. When the amount of the hydrophilic polymer introduced is within the above range, ND particle aggregation can be prevented.
  • the mass ratio between the hydrophilic polymer portion and the ND particle portion can be determined by measuring the change in mass during heat treatment or the composition ratio by elemental analysis using a differential thermal balance analyzer (TG-DTA).
  • the coating of ND particles with a hydrophilic polymer involves contacting nanodiamond particles in a hydrophilic polymer solution and centrifuging to separate hydrophilic polymers that are not involved in the coating.
  • the coated nanodiamond particles can be collected.
  • Modification of ND particles with a hydrophilic polymer uses the ND particles having a hydrophilic functional group (OH, COOH, NH 2, etc.) introduced on the surface as a raw material, and adds a hydrophilic polymer group to the hydrophilic functional group. It can be carried out by bonding via a linker group such as an ester bond, an amide bond, an imide bond, an ether bond, a urethane bond, and a urea bond.
  • a linker group such as an ester bond, an amide bond, an imide bond, an ether bond, a urethane bond, and a urea bond.
  • ND particles into which a hydrophilic functional group (OH, COOH, NH 2 ) used as a raw material for coating with a hydrophilic polymer or modifying with a hydrophilic polymer have an average primary particle diameter of 10 nm or less, for example, Fine particles of 1 to 10 nm are preferred.
  • the average particle size of the ND particles having a hydrophilic functional group and the primary particles of the ND particles coated or modified with a hydrophilic polymer is measured using an X-ray diffractometer (trade name: "Smart Lab”, manufactured by Rigaku Corporation). Small-angle X-ray scattering measurement (SAXS method), and using a particle size distribution analysis software (trade name “NANO-Solver”, manufactured by Rigaku Corporation), the nanodiamond primary particles are spherical and the particle density is 3 It can be determined by estimating the primary particle size of the nanodiamond in the range of the scattering angle of 1 ° to 3 ° on the assumption that it is .51 g / cm 3 .
  • the hydrophilic ND particles are preferably fine particles having an average primary particle diameter of 10 nm or less, for example, 1 to 10 nm.
  • the ND particles are prevented from agglomerating by making the surface hydrophilic, and can simultaneously improve glossiness and oxidation resistance.
  • ND particles having no hydrophilic functional group or hydrophilic polymer as described in Non-Patent Document 1 have improved glossiness and oxidation resistance even when introduced into a base metal plating film. Does not occur.
  • the average particle size of ND primary particles obtained by the detonation method is 10 nm or less, but the particle size of ND primary particles obtained by the impact compression method. Since ND greatly exceeds 10 nm, it is preferable that the ND particles are produced by the detonation method.
  • the base metal plating film is preferably free of a surfactant.
  • the base metal plating film of the present invention is a base metal plating film including a base metal matrix and hydrophilic ND particles dispersed in the base metal matrix.
  • the hydrophilic ND particles may be uniformly dispersed in the base metal matrix, or may be densely dispersed near the surface of the base metal matrix.
  • Base metals include iron, nickel, zinc, copper, tin, aluminum, tungsten, molybdenum, tantalum, magnesium, cobalt, bismuth, cadmium, titanium, zirconium, antimony, manganese, beryllium, chromium, germanium, vanadium, gallium, hafnium, Indium, niobium, at least one selected from the group consisting of rhenium and thallium is mentioned, preferably copper, nickel, zinc, tin, chromium, at least one selected from the group consisting of permalloy, more preferably copper, It is at least one selected from the group consisting of nickel, zinc, and tin.
  • the base metal plating film of one preferred embodiment of the present invention is a base metal plating film including a base metal matrix and hydrophilic ND particles dispersed in the base metal matrix, and has a glossiness of 770 or more at an incident angle of 60 °. It is characterized by the following. In the case of 100% reflection, the glossiness is 1,000.
  • the glossiness of the base metal plating film of the present invention at an incident angle of 60 ° is 770 or more, preferably 780 or more, more preferably 800 or more, and further preferably 850 or more when the base metal is copper.
  • the glossiness of the base metal plating film of the present invention at an incident angle of 60 ° is 560 or more when the base metal is nickel, 785 or more when the base metal is tin, 575 or more when the base metal is permalloy, and 410 or more when the base metal is zinc.
  • the base metal plating film of the present invention has a glossiness at an incident angle of 60 ° of, for example, 10 or more (for example, 10 to 200). ) High, preferably 15 or higher, more preferably 35 or higher, particularly preferably 55 or higher, most preferably 85 or higher.
  • the base metal plating film of the present invention preferably has an increased base metal oxide after storage for 7 days at room temperature (around 25 ° C., humidity of about 50%) in a room not exposed to direct sunlight with respect to the base metal plating film immediately after production. It is less than 1%, more preferably less than 0.5%, even more preferably less than 0.3%, and most preferably less than 0.1%.
  • the surface roughness (Ra) of the base metal plating film of the present invention is, for example, 0.5 ⁇ m or less, preferably 0.4 ⁇ m or less, more preferably 0.3 ⁇ m or less, particularly preferably 0.15 ⁇ m or less, and most preferably 0.1 ⁇ m or less. It is as follows.
  • the particle size of the hydrophilic ND particles dispersed in the base metal matrix by SEM is, for example, in the range of 4 to 95 nm, preferably 10 to 80 nm, particularly preferably 20 to 60 nm, and most preferably. Is 30 to 50 nm.
  • the crystallite size (A) on the 111 plane is 100 nm or less, preferably 80 nm or less, more preferably 70 nm or less, still more preferably 60 nm or less, particularly preferably 50 nm or less. Or less, most preferably 45 nm or less, and the crystallite size (B) of the 220 plane is 80 nm or less, preferably 60 nm or less, more preferably 50 nm or less, still more preferably 40 nm or less, particularly preferably 35 nm or less, and most preferably 30 nm or less. It is as follows.
  • the crystallite size ratio (A / B) between the 111 plane and the 220 plane is preferably 1.3 or more, and more preferably 1.3 to 1.6.
  • the crystallite size (A) of the 111 plane is 25 nm or less, preferably 24 nm or less, more preferably 23 nm or less, even more preferably 22 nm or less, and 200 planes.
  • the crystallite size ratio (A / C) of the 111 plane and the 200 plane is preferably 1.1 or more, more preferably 1.1 to 1.6.
  • the peak intensity ratio between the 111 plane and the 220 plane in the X-ray diffraction (XRD) pattern is preferably 3.0 or less, and more preferably 3.0 or less. Preferably it is 1.4 to 3.0.
  • the electrical conductivity is obtained by calculating the volume resistivity from the value of the surface resistivity by the four-point terminal method and the thickness of the plating film by the micrometer, and converting it to IACS% and converting it into conductivity.
  • the volume resistivity can be obtained as an average value of a plurality of points (for example, five points in the upper, lower, left, and right directions) of the plating film sample.
  • IACS (international annealed copper standard)% is defined as a standard of electric resistance, in which conductivity of annealed standard copper (volume resistivity: 1.7241 ⁇ 10 ⁇ 2 ⁇ m) is defined as 100% IACS.
  • the hydrophilic ND particle content is 0.5 to 25 area%, preferably 2 to 20 area%, particularly preferably 5 to 15 area% of the area of the base metal plating film. is there.
  • the content (area%) of the hydrophilic ND particles can be measured by SEM observation on the cross section of the plating phase.
  • the base metal plating film containing the non-hydrophilic ND did not show any increase in gloss and no antioxidant effect. The inventors have found that "hydrophilicity" is important.
  • the hydrophilic ND particles used in the present invention preferably have a plurality or a large number of hydrophilic functional groups, or more preferably are coated or modified with at least one hydrophilic polymer, so that aggregation can be prevented. Thus, a plating film having high gloss and excellent oxidation resistance can be obtained.
  • FIG. 1 is an enlarged schematic view showing an example of ND particles having a surface modifying group in the present invention. 1 is an ND particle having a surface modifying group, 2 is an ND particle (part), and 3 is a surface modifying group.
  • the base metal plating film of the present invention can be produced by using a known electrolytic plating method (preferably, electrolytic composite plating method) or an electroless plating method. More specifically, a base member for forming a plating film (for example, a conductive substrate such as a brass substrate) is immersed in a plating bath containing base metal ions and hydrophilic ND particles, and electrolytic plating or electroless plating is performed. Can be precipitated on the surface of the member together with the hydrophilic ND particles, and the hydrophilic ND particles can be incorporated into the base metal film. By continuing this until the desired thickness is reached, the hydrophilic ND particles can be contained in the base metal matrix.
  • a base metal plating film (or a plating film composed of a base metal-hydrophilic ND particle composite material) having a structure in which is dispersed can be produced.
  • the thickness of the base metal plating film can be appropriately set according to the use, for example, about 0.1 to 1000 ⁇ m. In the case of coating the surface of a conductive metal member as a connection component such as a switch or a connector, the base metal plating film is used. The thickness of the film is, for example, about 0.1 to 50 ⁇ m.
  • the base metal plating bath in the present invention contains a plating solution and hydrophilic ND particles.
  • the content of the hydrophilic ND particles in the base metal plating bath is, for example, 0.001 to 1.0 g / L (the lower limit is preferably 0.003 g / L, more preferably 0.006 g / L, and further preferably 0. 0.01 g / L, particularly preferably 0.03 g / L.
  • the upper limit is preferably 0.8 g / L, more preferably 0.6 g / L, and particularly preferably 0.5 g / L. And preferably 0.01 to 0.5 g / L.
  • the base metal plating bath is excellent in transparency because it contains hydrophilic ND particles in a highly dispersed (or colloidally dispersed) state, and the haze is preferably about 0 to 5, more preferably about 0 to 2, It is more preferably about 0 to 1, particularly preferably about 0 to 0.5, and most preferably 0 to 0.4. Haze can be measured in accordance with JIS K7136.
  • the particle diameter (D10) of the hydrophilic ND particles in the base metal plating bath is, for example, 95 nm or less, preferably 60 nm or less, particularly preferably 50 nm or less, and most preferably 40 nm or less.
  • the lower limit of the particle diameter (D10) of the hydrophilic ND particles is, for example, 10 nm.
  • the particle diameter (D50) of the hydrophilic ND particles in the base metal plating bath is, for example, 95 nm or less, preferably 70 nm or less, particularly preferably 60 nm or less, and most preferably 50 nm or less.
  • the lower limit of the particle size (D50) of the hydrophilic ND particles is, for example, 20 nm.
  • the particle diameter (D90) of the hydrophilic ND particles in the base metal plating bath is, for example, 95 nm or less, preferably 90 nm or less, and particularly preferably 80 nm or less.
  • the lower limit of the particle size (D90) of the hydrophilic ND particles is, for example, 50 nm.
  • the particle size of the hydrophilic ND particles in the base metal plating bath can be measured by a dynamic light scattering method.
  • the base metal plating bath can be prepared, for example, by adding a hydrophilic ND particle dispersion to a plating solution described below.
  • the electroless base metal plating bath may contain a water-soluble base metal salt, hydrophilic ND particles, a phosphorus source (in the case of electroless nickel-phosphorus alloy plating), a reducing agent, a complexing agent, and the like.
  • an electroless nickel-phosphorus alloy base metal plating bath is preferable.
  • the concentration of the water-soluble base metal salt in the electrolytic and electroless base metal plating bath is, for example, 0.01 to 0.5 mol / L, preferably 0.05 to 0.5 mol / L, in terms of the concentration of the base metal ion supplied to the base metal plating bath. 2 mol / L.
  • Examples of the reducing agent and the phosphorus supply source contained in the electroless base metal plating bath include phosphinates such as sodium phosphinate.
  • phosphinates such as sodium phosphinate.
  • the concentration of the phosphinate in the base metal plating bath is, for example, 0.02 to 0.5 mol / L, and preferably 0.1 to 0.2 mol / L.
  • Examples of the complexing agent contained in the electrolytic and electroless base metal plating baths include citric acid, lactic acid, malic acid, glycolic acid, and salts thereof.
  • Examples of citric acid include sodium citrate and potassium citrate.
  • the concentration of citric acid and / or its salt in the electrolytic and electroless base metal plating bath is, for example, 0.02 to 1.0 mol / L, preferably 0.1 to 1.0 mol / L. 0.5 mol / L.
  • the electrolytic and electroless base metal plating baths may contain other components in addition to the above components.
  • examples of such components include a pH buffer and a stabilizer for suppressing self-decomposition of the base metal plating bath.
  • the pH of the base metal plating bath is, for example, 5 to 11.
  • the plating solution in the present invention contains components essential for preparing a plating film and does not contain the above-mentioned hydrophilic ND particles.
  • the plating solution contains at least base metal ions.
  • the plating solution can be prepared by, for example, compounding a water-soluble base metal salt, a conductive salt, a complexing agent, an additive for adjusting the appearance and physical properties of the film, and the like.
  • the water-soluble base metal salt exists as a base metal ion in the base metal plating bath. In addition, it may be present as a base metal oxyacid ion or a base metal complex ion combined with a complexing agent.
  • Examples of the plating solution for base metal plating include: a base metal sulfate solution comprising base metal sulfate, sulfuric acid, and chloride ions; a base metal cyanide plating solution comprising base metal cyanide, sodium cyanide, alkali carbonate, Rochelle salt; Examples include a pyrophosphate base metal plating solution composed of pyrophosphate, potassium pyrophosphate, aqueous ammonia, potassium nitrate, and the like.
  • the hydrophilic ND particle dispersion liquid is obtained by dispersing hydrophilic ND particles in a dispersion medium (preferably water).
  • the hydrophilic ND particle concentration in the hydrophilic ND particle dispersion is, for example, about 1 to 100 g / L.
  • hydrophilic ND particles in terms of excellent dispersibility, hydrophilic ND particles in which the hydrophilic functional group of the ND particles is coated or modified with a hydrophilic polymer are preferable, and particularly preferably a water-soluble ND particle containing a polyglycerin chain. It is a hydrophilic ND particle having a polymer.
  • the particle diameter (D50) of the hydrophilic ND particles in the hydrophilic ND particle dispersion is, for example, 95 nm or less, preferably 70 nm or less, particularly preferably 60 nm or less, and most preferably 50 nm or less.
  • the lower limit of the particle diameter (D50) of the hydrophilic ND particles is, for example, 10 nm.
  • the particle diameter of the hydrophilic ND particles in the hydrophilic ND particle dispersion can be measured by a dynamic light scattering method (DLS).
  • DLS dynamic light scattering method
  • Hydrophilic ND particles other than polyglycerin can be easily prepared by those skilled in the art with reference to the above general production method and the method for producing a hydrophilic ND particle dispersion modified with a polyglycerin chain described below. .
  • an explosive equipped with an electric detonator is installed inside a pressure-resistant container for detonation, and the container is hermetically sealed in a state in which a normal-pressure gas having an atmospheric composition and an explosive to be used coexist in the container.
  • the container is made of, for example, iron, and the volume of the container is, for example, 0.5 to 40 m 3 .
  • a mixture of trinitrotoluene (TNT) and cyclotrimethylenetrinitroamine or hexogen (RDX) can be used as explosive.
  • TNT / RDX The mass ratio between TNT and RDX (TNT / RDX) is, for example, in the range of 40/60 to 60/40.
  • the electric detonator is then detonated, and the explosive is detonated in the container.
  • ND particles are generated by the action of the pressure and energy of the shock wave generated by the explosion, using carbon released as a result of partial incomplete combustion of the explosive used as a raw material.
  • adjacent primary particles or crystallites are aggregated very strongly due to the Coulomb interaction between crystal planes in addition to the action of van der Waals force, thereby forming an aggregate.
  • the container and the inside thereof are allowed to cool by being left at room temperature for about 24 hours to lower the temperature.
  • the ND particles are adhered to the inner wall of the container by using a spatula to scrape the crude product of ND particles (including the ND particle aggregate and soot generated as described above) with a spatula. A crude product is obtained.
  • the acid treatment step is a step of treating a crude ND particle product as a raw material with a strong acid in, for example, an aqueous solvent to remove a metal oxide.
  • the crude product of ND particles obtained by the detonation method easily contains a metal oxide, and this metal oxide is an oxide of Fe, Co, Ni or the like derived from a container or the like used in the detonation method.
  • a metal oxide can be dissolved and removed from a crude product of ND particles by applying a predetermined strong acid in an aqueous solvent.
  • a mineral acid is preferable, and examples thereof include hydrochloric acid, hydrofluoric acid, sulfuric acid, nitric acid, and a mixture thereof.
  • the concentration of the strong acid used in the acid treatment is, for example, 1 to 50% by mass.
  • the acid treatment temperature is, for example, 70 to 150 ° C.
  • the acid treatment time is, for example, 0.1 to 24 hours. Further, the acid treatment can be performed under reduced pressure, normal pressure, or increased pressure. After such an acid treatment, it is preferable to wash the solid content (including ND aggregates) with water, for example, by decantation until the pH of the precipitation liquid reaches, for example, 2 to 3. When the content of the metal oxide in the crude ND particle product obtained by the detonation method is small, the above acid treatment may be omitted.
  • the oxidation treatment step is a step of removing graphite from the crude ND particle product using an oxidizing agent.
  • the crude product of ND particles obtained by the detonation method contains graphite (graphite), but this graphite did not form ND crystals among the released carbon due to partial incomplete combustion of the explosive used. Derived from carbon.
  • graphite can be removed from the crude ND particle product by allowing a predetermined oxidizing agent to act in a water solvent after the above-mentioned acid treatment.
  • Examples of the oxidizing agent used in the oxidation treatment include chromic acid, chromic anhydride, dichromic acid, permanganic acid, perchloric acid, nitric acid, and mixtures thereof, and at least one acid selected from these. And other acids (for example, sulfuric acid and the like), and salts thereof.
  • chromic acid particularly, a mixed acid of sulfuric acid and nitric acid
  • dichromic acid permanganic acid
  • perchloric acid perchloric acid
  • nitric acid and mixtures thereof
  • other acids for example, sulfuric acid and the like
  • the mixing ratio of sulfuric acid and nitric acid in the mixed acid may be, for example, 60/40 to 95/5 even under a pressure near normal pressure (for example, 0.5 to 2 atm).
  • a pressure near normal pressure for example, 0.5 to 2 atm.
  • the lower limit is preferably 65/35, particularly preferably 70/30.
  • the upper limit is preferably 90/10, particularly preferably 85/15, and most preferably 80/20.
  • the ratio of nitric acid in the mixed acid exceeds the above range, the content of sulfuric acid having a high boiling point is reduced. Therefore, under a pressure near normal pressure, the reaction temperature becomes, for example, 120 ° C. or lower, and the efficiency of removing graphite tends to decrease. There is. On the other hand, if the ratio of nitric acid in the mixed acid falls below the above range, the content of nitric acid that greatly contributes to the oxidation of graphite decreases, and the efficiency of graphite removal tends to decrease.
  • the amount of the oxidizing agent (particularly, the mixed acid) is, for example, 10 to 50 parts by mass, preferably 15 to 40 parts by mass, and particularly preferably 20 to 40 parts by mass with respect to 1 part by mass of the crude ND particle product.
  • the amount of sulfuric acid used in the mixed acid is, for example, 5 to 48 parts by mass, preferably 10 to 35 parts by mass, particularly preferably 15 to 30 parts by mass with respect to 1 part by mass of the crude product of ND particles.
  • the amount of nitric acid used in the mixed acid is, for example, 2 to 20 parts by mass, preferably 4 to 10 parts by mass, and particularly preferably 5 to 8 parts by mass with respect to 1 part by mass of the crude ND particle product.
  • a catalyst may be used together with the mixed acid.
  • the efficiency of removing graphite can be further improved.
  • the catalyst include copper (II) carbonate.
  • the amount of the catalyst to be used is, for example, about 0.01 to 10 parts by mass based on 100 parts by mass of the crude ND particle product.
  • the oxidation treatment temperature is, for example, 100 to 200 ° C.
  • the oxidation treatment time is, for example, 1 to 24 hours.
  • the oxidation treatment can be performed under reduced pressure, normal pressure, or increased pressure.
  • drying process it is preferable to provide a drying step, for example, using a spray drying device or an evaporator, etc., from the solution containing hydrophilic ND particles having a hydrophilic functional group obtained through the above steps, After evaporation, the resulting residual solids are dried by heating in a drying oven.
  • the heating and drying temperature is, for example, 40 to 150 ° C.
  • ND powder is obtained.
  • the ND powder is heated in a gas atmosphere having a predetermined composition containing oxygen using a gas atmosphere furnace. Specifically, ND powder is placed in a gas atmosphere furnace, an oxygen-containing gas is supplied to or passed through the furnace, and the inside of the furnace is heated to a temperature condition set as a heating temperature, and oxygen is supplied. An oxidation treatment is performed.
  • the temperature condition of the oxygen oxidation treatment is, for example, 250 to 500 ° C.
  • the temperature condition of the oxygen oxidation treatment is preferably relatively high, for example, 400 to 450 ° C.
  • the oxygen-containing gas is a mixed gas containing an inert gas in addition to oxygen.
  • Inert gases include, for example, nitrogen, argon, carbon dioxide, and helium.
  • the oxygen concentration of the mixed gas is, for example, 1 to 35% by volume.
  • a hydrogenation step is performed after the above-described oxygen oxidation step.
  • the ND powder that has undergone the oxygen oxidation step is heated using a gas atmosphere furnace under a gas atmosphere having a predetermined composition containing hydrogen.
  • a hydrogen-containing gas is supplied to or passed through a gas atmosphere furnace in which the ND powder is disposed, and the inside of the furnace is heated to a temperature condition set as a heating temperature to cause hydrogenation. Processing is performed.
  • Temperature conditions for this hydrogenation treatment are, for example, 400 to 800 ° C.
  • the hydrogen-containing gas used in the present embodiment is a mixed gas containing an inert gas in addition to hydrogen.
  • Inert gases include, for example, nitrogen, argon, carbon dioxide, and helium.
  • the hydrogen concentration of the mixed gas is, for example, 1 to 50% by volume.
  • the hydrophilic ND particles are in the form of aggregates (secondary particles) in which primary particles have very strong interaction and are aggregated. Often taken. Therefore, it is preferable to perform a crushing step to separate the primary particles from the adherend. Specifically, first, ND powder having undergone the oxygen oxidation step or the subsequent hydrogenation step is suspended in pure water, and a slurry containing ND particles having a hydrophilic functional group (OH, COOH, NH 2, etc.) is prepared. Prepare.
  • centrifugation may be performed to remove relatively large aggregates from the hydrophilic ND particle suspension, or ultrasonic treatment may be performed on the ND particle suspension having a hydrophilic functional group. May be applied. Then, the slurry is subjected to a wet crushing treatment.
  • the crushing treatment can be performed using, for example, a high shear mixer, a high shear mixer, a homomixer, a ball mill, a bead mill, a high-pressure homogenizer, an ultrasonic homogenizer, or a colloid mill.
  • the disintegration treatment may be performed by combining these. It is preferable to use a bead mill from the viewpoint of efficiency.
  • an ND particle aqueous dispersion containing ND primary particles having a hydrophilic functional group can be obtained.
  • the dispersion obtained through the pulverizing step may be subjected to a classification operation in order to remove coarse particles.
  • coarse particles can be removed from the dispersion by a classification operation using centrifugation using a classification device.
  • drying process it is preferable to provide a drying step, for example, evaporating the liquid component from the aqueous dispersion of ND particles having a hydrophilic functional group obtained through the above step using a spray dryer or an evaporator. After drying, the resulting residual solids are dried by heating and drying in a drying oven. The heating and drying temperature is, for example, 40 to 150 ° C. Through such a drying step, ND particles containing a hydrophilic functional group are obtained as a powder.
  • the hydrophilic ND particles modified with a polyglycerin chain can be obtained, for example, by directly performing ring-opening polymerization of glycidol on ND particles having a hydrophilic functional group obtained through the above steps.
  • the ND particles have a carboxyl group or a hydroxyl group generated during the manufacturing process on the surface thereof, and the surface of the ND can be modified with a hydrophilic polymer by reacting these functional groups with glycidol.
  • the reaction (ring-opening polymerization) between ND particles having a hydrophilic functional group and glycidol is performed, for example, by adding glycidol and a catalyst to ND particles having a hydrophilic functional group under an inert gas atmosphere and heating to 50 to 100 ° C.
  • a catalyst an acidic catalyst or a basic catalyst can be used.
  • the acidic catalyst include trifluoroboron etherate, acetic acid, and phosphoric acid
  • examples of the basic catalyst include triethylamine, pyridine, dimethylaminopyridine, and triphenylphosphine.
  • the amount of glycidol used for ring-opening polymerization is, for example, 20 parts by mass or more, and preferably 20 to 150 parts by mass, per 1 part by mass of ND particles having a hydrophilic functional group. If the amount of glycidol is less than the above range, sufficient dispersibility tends to be hardly obtained.
  • the obtained reaction product is preferably subjected to a purification treatment by, for example, filtration, centrifugation, extraction, washing with water, neutralization, or a combination thereof.
  • a hydrophilic ND particle dispersion liquid preferably, a hydrophilic ND particle aqueous dispersion liquid
  • Glycidol is used for the production of ND particles modified with polyglycerin.
  • ND particles modified with a hydrophilic polymer other than polyglycerin, or ND particles modified with a hydrophilic polymer are described in the above description and in the known art. Can be easily manufactured by those skilled in the art by referring to.
  • An electronic component according to the present invention includes the base metal plating film.
  • the electronic component of the present invention may have another plating film other than the base metal plating film.
  • the electronic component may have one or more base plating films.
  • the electronic component of the present invention includes, for example, a connection component (for example, a connector or the like) for an electronic device such as a personal digital assistant (PDA) or a mobile phone.
  • PDA personal digital assistant
  • the brightener of the base metal plating film according to the present invention is characterized by containing the hydrophilic ND particles.
  • the brightener may contain other components in addition to the hydrophilic ND particles, but the proportion of the content of the hydrophilic ND particles in the total amount of the brightener is, for example, 50% by mass or more, preferably It is at least 60% by mass, particularly preferably at least 70% by mass, most preferably at least 80% by mass, particularly preferably at least 90% by mass.
  • the antioxidant for the base metal plating film of the present invention is characterized by containing the hydrophilic ND particles.
  • the antioxidant may contain other components in addition to the hydrophilic ND particles, but the proportion of the content of the hydrophilic ND particles in the total amount of the antioxidant is, for example, 50% by mass or more, It is preferably at least 60% by mass, particularly preferably at least 70% by mass, most preferably at least 80% by mass, particularly preferably at least 90% by mass.
  • ND particle concentration, particle size, and zeta potential were measured by the following methods.
  • ND particle concentration of the aqueous ND particle dispersion is determined by a precision balance with respect to the weighed values of 3 to 5 g of the weighed dispersion and the dried matter (powder) remaining after the water is evaporated from the weighed dispersion by heating. Calculated based on the calculated values.
  • the particle size (median diameter, D10, D50, and D90) of the ND particles contained in the ND particle aqueous dispersion or the base metal plating bath is determined by using an apparatus manufactured by Malvern (trade name “Zetasizer Nano ZS”). Was measured by a dynamic light scattering method (non-contact back scattering method).
  • the zeta potential of the ND particles contained in the ND particle aqueous dispersion was measured by a laser Doppler electrophoresis using an apparatus manufactured by Malvern (trade name “Zetasizer Nano ZS”).
  • the aqueous dispersion of ND particles subjected to the measurement was diluted with ultrapure water so that the ND particle concentration became 0.2% by mass, and then subjected to ultrasonic irradiation by an ultrasonic cleaner, and the zeta potential measurement was performed.
  • the temperature is 25 ° C.
  • the heating rate was 10 ° C./min up to 380 ° C., which is 20 ° C. lower than the set heating temperature, and 1 ° C./min from 380 ° C. to 400 ° C. thereafter. Then, while maintaining the temperature condition in the furnace at 400 ° C., the ND powder in the furnace was subjected to oxygen oxidation treatment. The processing time was 3 hours.
  • FT-IR analysis conditions Fourier transform infrared spectroscopy (FT-IR) was performed using an FT-IR apparatus (trade name “Spectrum400 type FT-IR”, manufactured by Perkin Elmer Japan Co., Ltd.). In this measurement, the infrared absorption spectrum was measured while heating the sample to 150 ° C. in a vacuum atmosphere. For heating in a vacuum atmosphere, Model-HC900 Heat Chamber and TC-100WA Thermo Controller manufactured by ST Japan Co., Ltd. were used in combination.
  • FT-IR Fourier transform infrared spectroscopy
  • the input amount of zirconia beads is about 33% based on the volume of the mill container, the rotation speed of the mill container is 2570 rpm, and the milling time is 2 hours.
  • the slurry that had undergone the crushing step was subjected to centrifugation using a centrifugal separator (classification operation).
  • the centrifugal force in this centrifugation treatment was 20,000 ⁇ g, and the centrifugation time was 10 minutes.
  • ND particle aqueous dispersion 25 mL of the supernatant of the ND particle-containing solution that had undergone the centrifugation treatment was collected to obtain an ND particle aqueous dispersion (ND-COOH).
  • the ND particle concentration in the ND particle aqueous dispersion was 11.8 g / L.
  • the pH was measured using pH test paper (trade name “Three Band pH Test Paper”, manufactured by AS ONE Corporation) and found to be 9.33.
  • the particle size D50 was 3.97 nm
  • the particle size D90 was 7.20 nm
  • the zeta potential was -42 mV.
  • PG-ND gray powder and water were added, and the concentration was adjusted to 10 g / L based on the mass of the ND particles to obtain an aqueous dispersion of PG-ND particles.
  • Example 1 The aqueous dispersion of PG-ND particles obtained in Preparation Example 1 was added to a copper plating solution (trade name "electrolytic plating solution", manufactured by Kiyokawa Plating Industry Co., Ltd.), and plating bath (1) (in the plating bath) PG-ND particle concentration: was obtained 1 g / L, the CuSO 4 ⁇ 5H 2 O concentration of 5 wt%).
  • the particle diameter (D10) was 30 nm
  • the particle diameter (D50) was 44 nm
  • the particle diameter (D90) was 76 nm.
  • Plating bath (1) was transparent and free from turbidity.
  • This brass plate was plated in a plating bath (1) under the conditions of pH 0.1, a liquid temperature of 28 ° C. and a current density of 2 A / dm 2 for 20 minutes with stirring, and copper-ND was placed on the brass plate.
  • a plating film (copper plating film) made of a particle composite material was formed (cathode: brass plate, anode: copper plate).
  • ND particles were uniformly and highly dispersed, and the surface was smooth.
  • Example 2 Plating bath (2) (concentration of PG-ND particles in plating bath: 0.5 g / L) in the same manner as in Example 1 except that the amount of the aqueous dispersion of PG-ND particles obtained in Preparation Example 1 was changed. ), And a brass plate having a copper plating film was obtained in the same manner as in Example 1 except that the obtained plating bath (2) was used.
  • Example 3 Plating bath (3) (concentration of PG-ND particles in plating bath: 0.2 g / L) in the same manner as in Example 1 except that the amount of the aqueous dispersion of PG-ND particles obtained in Preparation Example 1 was changed. ), And a brass plate having a copper plating film was obtained in the same manner as in Example 1 except that the obtained plating bath (3) was used.
  • Example 4 Plating bath (4) (concentration of PG-ND particles in plating bath: 0.1 g / L) in the same manner as in Example 1 except that the amount of the aqueous dispersion of PG-ND particles obtained in Preparation Example 1 was changed. ), And a brass plate having a copper plating film was obtained in the same manner as in Example 1 except that the obtained plating bath (4) was used.
  • Example 5 Plating bath (5) (concentration of PG-ND particles in plating bath: 0.05 g / L) in the same manner as in Example 1 except that the amount of the aqueous dispersion of PG-ND particles obtained in Preparation Example 1 was changed. ), And a brass plate having a copper plating film was obtained in the same manner as in Example 1 except that the obtained plating bath (5) was used.
  • Example 6 Plating bath (6) (concentration of PG-ND particles in plating bath: 0.01 g / L) in the same manner as in Example 1 except that the amount of the aqueous dispersion of PG-ND particles obtained in Preparation Example 1 was changed. ) And a brass plate having a copper plating film was obtained in the same manner as in Example 1 except that the obtained plating bath (6) was used.
  • Example 7 Plating bath (7) (the concentration of PG-ND particles in the plating bath: 0.001 g / L) in the same manner as in Example 1 except that the amount of the aqueous dispersion of PG-ND particles obtained in Preparation Example 1 was changed. ), And a brass plate having a copper plating film was obtained in the same manner as in Example 1 except that the obtained plating bath (7) was used.
  • Example 1 Example except that the plating bath (1) was replaced with a copper plating solution (trade name "electrolytic plating solution", manufactured by Kiyokawa Plating Industry Co., Ltd.) plating bath (6) (excluding the ND particle dispersion).
  • a copper plating solution trade name "electrolytic plating solution", manufactured by Kiyokawa Plating Industry Co., Ltd.
  • plating bath (6) excluding the ND particle dispersion.
  • a brass plate having a copper plating film was obtained in the same manner as in Example 1.
  • the plating film formed on the brass plate had irregularities on the surface and lacked smoothness.
  • Example 4 the X-ray diffraction results immediately after and 7 days after the production of the plating films formed on the brass plate in Example 4 and Comparative Example 1 are shown in FIG. 2 (Comparative Example 1) and FIG. 3 (Example 4).
  • the copper plating film of Comparative Example 1 had a peak of copper oxide (CuO) after one week and was colored reddish brown, whereas the copper plating film of Example 4 had a peak of copper oxide (CuO) even after one week. Was not observed, and no difference was observed by visual observation immediately after the production and after 7 days.
  • Comparative Example 2 200 ppm of non-hydrophilic PG unmodified ND was added to a copper plating bath (manufactured by Kiyokawa Plating). The addition concentration of ND (manufactured by Daicel, before PG modification) was the same as that with PG. While stirring, plating was performed under the same conditions as in Example 1 using PG-modified ND. The same sample was used for confirming the gloss and the antioxidant effect. Table 2 shows the results of measuring the glossiness of the obtained plating films (Comparative Example 2, Examples 3 and 4) immediately after production.
  • Example 1 was the same as Example 1 except that the concentration of the PG-ND particles in the copper plating bath was 0 ppm, 200 ppm (0.02%), 400 ppm (0.04%), 600 ppm (0.06%), and 1000 ppm (0.1%). Similarly, a copper plating bath was prepared, and the haze was measured. Table 3 shows the results.
  • the PG unmodified ND particles and PG-ND particles obtained in Preparation Example 1 and the ND particles (PG unmodified and PG modified) obtained by the impact compression method were subjected to an X-ray diffraction apparatus (product).
  • SAXS method Small-angle X-ray scattering measurement (SAXS method) using the name “Smart Lab” (Rigaku) and scattering using particle size distribution analysis software (trade name “NANO-Solver”, Rigaku)
  • SAXS method Small-angle X-ray scattering measurement
  • the primary particle size of the nanodiamond was estimated for the range of 1 ° to 3 °. In this estimate, nanodiamond primary particles and particle density is spherical put the assumption that it is 3.51 g / cm 3.
  • the ND particles obtained by the impact compression method were manufactured by SCM Nano Diamond, manufactured by Sumiishi Material Co., Ltd.
  • the PG-modified ND particles obtained by the impact compression method were obtained by preparing the ND particles in the same manner as in Preparation Example 1. PG modification. Table 4 shows the measurement results of the particle size by the SAXS method.
  • Example 3 For the plating films obtained in Example 1 (a copper plating solution containing 200 ppm of PG-ND), Comparative Example 1 (a plating solution containing no ND), and Comparative Example 2 (a plating solution containing PG unmodified ND), a fine angle By the incident X-ray diffraction method, diffraction peaks of the 111 plane of the copper oxide immediately after plating, 5 days after plating, and 7 days after plating were measured as follows.
  • Grazing incidence X-ray diffraction method Grazing incidence X-ray diffraction (GIXD) method was used to analyze the structure of the surface of the copper plating table. This method makes use of the fact that when X-rays are incident on a very flat surface of a substance, it causes total reflection, and measures reflection, refraction, and diffraction before and after the angle at which total reflection occurs, while slightly changing the angle. Is the way. This time, the measurement was performed using SmartLab (manufactured by Rigaku Corporation) with an incident angle of about 0.7 ° and a measurement angle of 30 ° to 100 °.
  • SmartLab manufactured by Rigaku Corporation
  • the peak intensity of the 111 plane of copper oxide was 2.5% of the peak intensity of the 111 plane of copper without ND (Comparative Example 1), whereas the peak of copper oxide was lower in the PG-modified ND (Example 3). 0.1%.
  • Example 8 and Comparative Example 3 Using the following tin (Sn) plating solution, Sn plating of the brass plate was performed in the same manner as in Example 1 (PG-ND particle concentration in the Sn plating bath: 0.2 g / L (Example 8) or 0 g / L). L (Comparative Example 3)), a brass plate having a Sn plating film was obtained. Table 6 shows the results of measuring the glossiness and the surface roughness (Ra) of the brass plate having the obtained Sn plating film.
  • Sn plating solution composition stannous sulfate 30g / L, sulfuric acid 130g / L Plating temperature: 10 °C Current density: 2A / dm 2 Plating time: 10 minutes
  • Example 9 and Comparative Example 4 Using the following nickel (Ni) plating solution and plating conditions, Ni plating of the brass plate was performed in the same manner as in Example 1 (PG-ND particle concentration in the Ni plating bath: 0.2 g / L (Example 9)). Alternatively, a brass plate having a Ni plating film of 0 g / L (Comparative Example 4) was obtained. Table 6 shows the results of measuring the glossiness and the surface roughness (Ra) of the brass plate having the obtained Ni plating film.
  • Nickel plating solution composition nickel sulfate 250g / L, nickel chloride 40g / L, boric acid 30g / L Plating temperature: 50 ° C Current density: 2A / dm 2 Plating time: 25 minutes
  • Example 10 and Comparative Example 5 Using the following zinc (Zn) plating solution and plating conditions, Zn plating of the brass plate was performed in the same manner as in Example 1 (PG-ND particle concentration in the Zn plating bath: 0.2 g / L (Example 10)). Alternatively, a brass plate having a Zn plating film of 0 g / L (Comparative Example 5) was obtained. Table 6 shows the results of measuring the glossiness and the surface roughness (Ra) of the obtained brass plate having a Zn plating film.
  • Zinc plating solution composition zinc oxide 10g / L, sodium hydroxide 100g / L Plating temperature: Room temperature Current density: 2A / dm 2 Plating time: 18 minutes
  • Example 11 and Comparative Example 6 Using the following permalloy (alloy of Ni and Fe) plating solution and plating conditions, permalloy plating of a brass plate was performed in the same manner as in Example 1 and Comparative Example 1 (the concentration of PG-ND particles in the permalloy plating bath: 0.1%). 2 g / L (Example 11) or 0 g / L (Comparative Example 6), a brass plate having a permalloy plating film was obtained. Table 6 shows the results of measuring the glossiness and the surface roughness (Ra) of the obtained brass plate having a permalloy plating film.
  • Permalloy plating solution composition nickel sulfate 250g / L, nickel chloride 40g / L, boric acid 30g / L, ferrous sulfate 24g / L, malonic acid 5g / L, Plating temperature: 50 ° C Current density: 2A / dm 2 Plating time: 25 minutes
  • Example 12 Plating bath (12) (concentration of PG-ND particles in plating bath: 0.02 g / L) in the same manner as in Example 1 except that the amount of the aqueous dispersion of PG-ND particles obtained in Preparation Example 1 was changed. ) was obtained, and a stainless steel plate having a copper plating film was obtained in the same manner as in Example 1 except that the obtained plating bath (12) was used and the brass plate was changed to a stainless steel plate.
  • Comparative Example 7 A stainless steel plate having a copper plating film was obtained in the same manner as in Comparative Example 1 except that the plating bath (6) of Comparative Example 1 was used and the brass plate was changed to a stainless steel plate.
  • Example 5 The copper plating film of the stainless steel plate obtained in Example 12 (using a copper plating solution containing 20 ppm of PG-ND) and Comparative Example 7 (a plating solution containing no ND) was peeled off, and a plating film was placed on a glass plate. Then, the thickness of the plating film was measured with a micrometer, and the conductivity was measured under the following conditions.
  • Conductivity measuring device Loresta GX, manufactured by Mitsubishi Chemical Analytech Sample size: 1 cm 2 Measuring point : In the middle of top, bottom, left and right (5 points) Measurement method: The plating film was peeled from the stainless steel plate and measured on a separately prepared glass plate.
  • the thickness of the plating film measured by a micrometer was input to Loresta GX, and the volume resistivity was measured (four-point terminal method).
  • the volume resistivity was converted into conductivity by setting the conductivity of annealed standard annealed copper (volume resistivity: 1.7241 ⁇ 10 -2 ⁇ m) as 100% IACS. Table 8 shows the results.
  • the base metal plating film of the present invention to which the hydrophilic nanodiamond (PG-ND) is added has an unexpected effect of preventing the increase in the crystallite size, maintaining the hardness, and improving the conductivity.
  • Example 6 With respect to the copper plating films obtained in Example 3 (a copper plating solution containing 200 ppm of PG-ND) and Comparative Example 1 (a copper plating solution containing no ND), crystallite sizes on the 111 plane and the 220 plane were measured.
  • the crystallite size was measured by the X-ray diffraction method (XRD) using CuK ⁇ radiation as an X-ray source, using the Scherrer equation from the half width of the diffraction peak and the diffraction angle.
  • the measuring device used was Rigaku's [SmartLab], and the optical system used a centralized method. Table 9 shows the results.
  • FIG. 5 shows an XRD pattern of the copper plating film
  • Table 10 shows a peak intensity ratio between the 111 plane and the 220 plane.
  • Example 3 It was revealed that the copper plating film containing PG-ND obtained in Example 3 had small crystallite sizes on both the 111 plane and the 220 plane, and was excellent in indentation hardness (surface hardness).
  • Example 7 Regarding the plating films obtained in Example 9 (nickel plating solution containing 200 ppm of PG-ND) and Comparative Example 4 (nickel plating solution containing no ND), the crystals of the 111 and 200 planes of the nickel plating 3 months after plating The child size was measured.
  • the crystallite size was measured by the X-ray diffraction method (XRD) using CuK ⁇ radiation as an X-ray source, using the Scherrer equation from the half width of the diffraction peak and the diffraction angle.
  • the measuring device used was Rigaku's [SmartLab], and the optical system used a centralized method. Table 11 shows the results.
  • the nickel plating film containing PG-ND obtained in Example 9 had small crystallite sizes on both the 111 plane and the 200 plane, and was excellent in indentation hardness (surface hardness).
  • Example 8 For the plating films obtained in Example 9 (nickel plating solution containing 200 ppm of PG-ND) and Comparative Example 4 (nickel plating solution not containing ND), cross sections were prepared using a focused ion beam processing apparatus, and reflected electron images were obtained. Observations were made. Apparatus name: FIB-SEM apparatus (Versa3D DualBeam manufactured by FEI).
  • FIG. 6A shows a plating film containing no ND particles of Comparative Example 1 and has a large surface roughness (Ra).
  • FIG. 6B shows a plating film including ND particles of Example 1, and small black dots indicated by arrows are ND particles.
  • Example 9 Regarding the plating film obtained in Example 1 (copper plating solution containing 200 ppm of PG-ND), the apparatus used in the Cu plating film by X-ray photoelectric spectroscopy (XPS) using ULVAC-PHI (PHI5800 ESCA system). Was measured for carbon content (C1s).
  • FIG. 7 shows the results. Carbon content was detected in the Cu film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Chemically Coating (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

The present invention provides a base metal plating film which comprises a base metal matrix and hydrophilic diamond nanoparticles that are dispersed in the base metal matrix.

Description

卑金属めっき膜Base metal plating film
 本発明は、卑金属めっき膜、卑金属めっき浴、前記卑金属めっき膜の製造方法、前記卑金属めっき膜を備えた電子部品、卑金属めっき膜の光沢剤及び卑金属めっき膜の酸化防止剤に関する。 The present invention relates to a base metal plating film, a base metal plating bath, a method for producing the base metal plating film, an electronic component having the base metal plating film, a brightening agent for the base metal plating film, and an antioxidant for the base metal plating film.
 本明細書において、「ナノダイヤモンド」を「ND」と記載することがある。 に お い て In this specification, “nano diamond” may be described as “ND”.
 電気・電子機器に用いられる低電流(信号系)スイッチやコネクタなどの接続部品のうち低い接触荷重で繰り返し使用される接続部品は、高い接続信頼性が要求されるため、このような接続部品として導電性金属部材の表面を貴金属等の金属でめっきした接続部品が使用されている。そして、めっき膜は導電性に加えて適度な光沢を有することを要求される場合がある。 Among the connecting parts such as low-current (signal-related) switches and connectors used in electric and electronic equipment, connecting parts that are repeatedly used with low contact load require high connection reliability. A connection component in which the surface of a conductive metal member is plated with a metal such as a noble metal is used. In some cases, the plating film is required to have appropriate gloss in addition to conductivity.
 特許文献1には、炭素系微粒子と複合させた高品質の信頼性の高いめっき膜を得ることを目的として、カーボンナノチューブ等の炭素系微粒子を非水溶性溶媒に分散させた後、銅イオン等の卑金属イオンを含有した金属塩水溶液に非水溶性溶媒を添加して撹拌し、前記炭素系微粒子を卑金属塩水溶液中に分散させるめっき浴の作製方法が開示されている。この方法で作製されためっき浴を用いることにより、不純物の混入が抑制された電子部品が得られるとされている。しかし、この方法ではめっき膜に高い光沢を付与することはできない。また、卑金属は空気酸化を受け易い。 Patent Document 1 discloses that a carbon-based fine particle such as a carbon nanotube is dispersed in a water-insoluble solvent and then a copper ion or the like is obtained in order to obtain a high-quality and highly reliable plating film composited with the carbon-based fine particle. There is disclosed a method for producing a plating bath in which a water-insoluble solvent is added to a metal salt aqueous solution containing a base metal ion and stirred to disperse the carbon-based fine particles in the base metal salt aqueous solution. It is said that by using a plating bath produced by this method, an electronic component in which contamination of impurities is suppressed can be obtained. However, this method cannot impart high gloss to the plating film. Base metals are also susceptible to air oxidation.
 めっき膜に光沢を付与する方法としては、結晶核に吸着して結晶の成長を阻害することによって結晶を微細化する作用を有する光沢剤をめっき浴に添加することにより、析出した貴金属の表面を平滑化して光沢を出すことが行われている(例えば、特許文献2参照)。 As a method of imparting gloss to the plating film, a brightener having an action of refining crystals by adsorbing on crystal nuclei and inhibiting crystal growth is added to the plating bath, so that the surface of the deposited noble metal is removed. 2. Description of the Related Art Smoothing to give gloss is performed (for example, see Patent Document 2).
 非特許文献1は、ナノダイヤモンド粒子をめっき浴に加えてめっき膜にナノダイヤモンド粒子を取り込ませることを提案しているが、ナノダイヤモンド粒子はめっき液中に十分分散できていないので、めっき浴中のナノダイヤモンド粒子はμmオーダーまで凝集していることが記載されている。 Non-Patent Document 1 proposes adding nanodiamond particles to a plating bath to incorporate the nanodiamond particles into a plating film. However, since the nanodiamond particles are not sufficiently dispersed in a plating solution, the nanodiamond particles are not sufficiently dispersed in a plating solution. It is described that the nano diamond particles are aggregated to the order of μm.
 特許文献3は、親水性ポリマー又はイオン性官能基が導入されたダイヤモンド微粒子を界面活性剤とともに金属めっき液に添加する構成が記載され、実施例1でアニオン性官能基導入ダイヤモンド微粒子1g/Lを含む分散液を2g/Lの割合で添加し、実施例2でPEG導入ダイヤモンド微粒子1g/Lを含む分散液を0.1g/Lの割合で添加する構成が記載されているが、これらの添加量ではめっき膜の光沢度、耐酸化性の向上は見込めない。 Patent Literature 3 describes a configuration in which diamond fine particles having a hydrophilic polymer or an ionic functional group introduced therein are added to a metal plating solution together with a surfactant. In Example 1, 1 g / L of anionic functional group-introduced diamond fine particles was added. Example 2 describes a configuration in which a dispersion containing 2 g / L is added and a dispersion containing 1 g / L of PEG-introduced diamond microparticles is added at a rate of 0.1 g / L in Example 2. With the amount, improvement in the glossiness and oxidation resistance of the plating film cannot be expected.
 特許文献4は、親水性ポリマー又はイオン性官能基が導入された平均粒径10nm~300nmのダイヤモンド微粒子、平均粒径100nm~300nmのフッ素樹脂微粒子及び界面活性剤を金属めっき液に添加する構成が記載され、実施例1,2でグラフト化ダイヤモンド微粒子を2.0g/L含む無電解複合めっき液が記載されているが、このような高濃度のダイヤモンド微粒子を含むめっき液では、めっき膜の光沢度、耐酸化性の向上は見込めない。 Patent Document 4 discloses a configuration in which a hydrophilic polymer or an ionic functional group is introduced, diamond fine particles having an average particle diameter of 10 nm to 300 nm, fluorine resin fine particles having an average particle diameter of 100 nm to 300 nm, and a surfactant are added to the metal plating solution. The electroless composite plating solution containing 2.0 g / L of the grafted diamond particles is described in Examples 1 and 2. However, the plating solution containing such a high concentration of the diamond particles has a gloss of the plating film. No improvement in oxidation resistance can be expected.
WO2011/048984WO2011 / 048984 特開2015-117424号公報JP 2015-117424 A 特開2011-149071号公報JP 2011-149071 A 特開2012-092416号公報JP 2012-092416 A
 本発明の目的は、高い光沢度及び耐酸化性を有する卑金属めっき膜及びその製造方法を提供することにある。 An object of the present invention is to provide a base metal plating film having high glossiness and oxidation resistance and a method for producing the same.
 本発明の他の目的は、高い光沢度及び耐酸化性を有する卑金属めっき膜を製造する上で有用な卑金属めっき浴を提供することにある。 Another object of the present invention is to provide a base metal plating bath useful for producing a base metal plating film having high gloss and oxidation resistance.
 本発明の他の目的は、高い光沢度、表面硬度、導電率及び耐酸化性を有する卑金属めっき膜を備えた電子部品を提供することにある。 Another object of the present invention is to provide an electronic component provided with a base metal plating film having high gloss, surface hardness, conductivity and oxidation resistance.
 本発明の他の目的は、卑金属めっき膜に高い光沢を付与する新規の光沢剤を提供することにある。 Another object of the present invention is to provide a novel brightening agent that imparts high gloss to a base metal plating film.
 本発明の他の目的は、卑金属めっき膜に耐酸化性を付与する新規の酸化防止剤を提供することにある。 Another object of the present invention is to provide a novel antioxidant that imparts oxidation resistance to a base metal plating film.
 本発明者は上記課題を解決するため鋭意検討した結果、卑金属イオンを含有し且つ親水性ナノダイヤモンド粒子が添加されためっき浴を用いて卑金属めっきを行うと、高い光沢度を有し、耐酸化性に優れた卑金属めっき膜が得られることを見出した。 The present inventors have conducted intensive studies to solve the above-described problems. As a result, when the base metal plating is performed using a plating bath containing a base metal ion and to which hydrophilic nanodiamond particles are added, a high glossiness and oxidation resistance are obtained. It has been found that a base metal plating film having excellent properties can be obtained.
 本発明は、以下の卑金属めっき膜、卑金属めっき浴、前記卑金属めっき膜の製造方法、前記卑金属めっき膜を備えた電子部品、卑金属めっき膜の光沢剤及び卑金属めっき膜の酸化防止剤を提供するものである。
[1]
 卑金属マトリックスと、前記卑金属マトリックス中に分散する親水性ナノダイヤモンド粒子を含む卑金属めっき膜。
[2]
 前記親水性ナノダイヤモンド粒子を含まない以外は前記と同じ卑金属めっき膜と比較して入射角60°における光沢度が10以上高い、[1]に記載の卑金属めっき膜。
[3]
 製造直後の前記卑金属めっき膜に対し、直射日光の当たらない室内、25℃、湿度50%で7日間保存後の卑金属酸化物の増加が、1%未満、好ましくは0.5%未満、より好ましくは0.3%未満、最も好ましくは0.1%未満である、[1]又は[2]に記載の卑金属めっき膜。
[4]
 界面活性剤フリーである、[1]~[3]の何れか1項に記載の卑金属めっき膜。
[5]
 前記親水性ナノダイヤモンド粒子が、以下の(i)又は(ii)のナノダイヤモンド粒子である、[1]~[4]の何れか1項に記載の卑金属めっき膜:
(i)親水性高分子でコーティングされたナノダイヤモンド粒子;
(ii)親水性高分子で修飾されたナノダイヤモンド粒子。
[6]
 卑金属が鉄、ニッケル、亜鉛、銅、スズ、アルミニウム、タングステン、モリブデン、タンタル、マグネシウム、コバルト、ビスマス、カドミウム、チタニウム、ジルコニウム、アンチモン、マンガン、ベリリウム、クロム、ゲルマニウム、バナジウム、ガリウム、ハフニウム、インジウム、ニオブ、パーマロイ、レニウム及びタリウムからなる群から選ばれる少なくとも1種である、[1]~[5]の何れか1項に記載のめっき膜。
[7]
 前記卑金属マトリックス中に分散する前記親水性ナノダイヤモンド粒子のSEM法による平均粒子径(D50)が4~95nmの範囲である、[1]~[6]の何れか1項に記載の卑金属めっき膜。
[8]
 親水性高分子が、ポリグリセリン、ポリビニルピロリドン、ポリエチレングリコール、ポリビニルアルコール、ポリ(メタ)アクリル酸、ポリアクリルアミド、ポリエチレンイミン、ビニルエーテル系重合体、セルロース誘導体、水溶性ポリエステル、水溶性フェノール樹脂、天然高分子多糖類からなる群から選ばれる、[5]に記載の卑金属めっき膜。
[9]
 卑金属が銅であり、111面の結晶子サイズ(A)が100nm以下であり、220面の結晶子サイズ(B)が80nm以下であり、111面と220面の結晶子サイズ比(A/B)が1.3以上である、[1]~[8]の何れか1項に記載の卑金属めっき膜。
[10]
 卑金属が銅であり、X線回折パターンの111面と220面のピーク強度比(111面/220面)が3.0以下である、[1]~[8]の何れか1項に記載の卑金属めっき膜。
[11]
 卑金属がニッケルであり、111面の結晶子サイズ(A)が25nm以下であり、200面の結晶子サイズ(C)が23nm以下であり、111面と200面の結晶子サイズ比(A/C)が1.1以上である、[1]~[8]の何れか1項に記載の卑金属めっき膜。
[12]
 卑金属イオンと親水性ナノダイヤモンド粒子を含み、親水性ナノダイヤモンド粒子の濃度が0.001~1g/Lである、卑金属めっき浴。
[13]
 ヘーズが0~0.5である、[12]に記載の卑金属めっき浴。
[14]
 卑金属めっき浴中の親水性ナノダイヤモンド粒子の粒径(D10)が10~60nmである、[12]又は[13]に記載の卑金属めっき浴。
[15]
 卑金属めっき浴中の親水性ナノダイヤモンド粒子の粒径(D50)が10~70nmである、[12]又は[13]に記載の卑金属めっき浴。
[16]
 卑金属めっき浴中の親水性ナノダイヤモンド粒子の粒径(D90)が10~90nmである、[12]又は[13]に記載の卑金属めっき浴。
[17]
 卑金属イオンと親水性ナノダイヤモンド粒子を含み、ナノダイヤモンド粒子の濃度が0.001~1g/Lである卑金属めっき浴に被検体を浸漬し、電解めっきを行うことを特徴とする、[1]~[11]の何れか1項に記載のめっき膜を製造する方法。
[18]
 卑金属めっき浴のヘーズが0~0.5である、[17]に記載のめっき膜を製造する方法。
[19]
 [1]~[11]の何れか1項に記載のめっき膜を備えた電子部品。
[20]
 親水性ナノダイヤモンド粒子を含む卑金属めっき膜の光沢剤。
[21]
 親水性ナノダイヤモンド粒子を含む卑金属めっき膜の酸化防止剤。
The present invention provides a base metal plating film, a base metal plating bath, a method for producing the base metal plating film, an electronic component having the base metal plating film, a brightener for the base metal plating film, and an antioxidant for the base metal plating film. It is.
[1]
A base metal plating film including a base metal matrix and hydrophilic nanodiamond particles dispersed in the base metal matrix.
[2]
The base metal plating film according to [1], wherein glossiness at an incident angle of 60 ° is 10 or more higher than that of the same base metal plating film as above except that the hydrophilic nano diamond particles are not included.
[3]
Immediately after the production, the base metal oxide film has an increase of less than 1%, preferably less than 0.5%, more preferably less than 0.5% after storage for 7 days at 25 ° C. and 50% humidity in a room not exposed to direct sunlight. Is less than 0.3%, most preferably less than 0.1%, the base metal plating film according to [1] or [2].
[4]
The base metal plating film according to any one of [1] to [3], which is free of a surfactant.
[5]
The base metal plating film according to any one of [1] to [4], wherein the hydrophilic nanodiamond particles are the following (i) or (ii) nanodiamond particles:
(i) nano-diamond particles coated with a hydrophilic polymer;
(ii) Nanodiamond particles modified with a hydrophilic polymer.
[6]
Base metals are iron, nickel, zinc, copper, tin, aluminum, tungsten, molybdenum, tantalum, magnesium, cobalt, bismuth, cadmium, titanium, zirconium, antimony, manganese, beryllium, chromium, germanium, vanadium, gallium, hafnium, indium, The plating film according to any one of [1] to [5], which is at least one selected from the group consisting of niobium, permalloy, rhenium, and thallium.
[7]
The base metal plating film according to any one of [1] to [6], wherein the hydrophilic nanodiamond particles dispersed in the base metal matrix have an average particle diameter (D50) by SEM of 4 to 95 nm. .
[8]
When the hydrophilic polymer is polyglycerin, polyvinylpyrrolidone, polyethylene glycol, polyvinyl alcohol, poly (meth) acrylic acid, polyacrylamide, polyethyleneimine, vinyl ether polymer, cellulose derivative, water-soluble polyester, water-soluble phenol resin, The base metal plating film according to [5], which is selected from the group consisting of molecular polysaccharides.
[9]
The base metal is copper, the crystallite size (A) of the 111 face is 100 nm or less, the crystallite size (B) of the 220 face is 80 nm or less, and the crystallite size ratio (A / B) of the 111 face and the 220 face. ) Is 1.3 or more, the base metal plating film according to any one of [1] to [8].
[10]
The base metal is copper, and the peak intensity ratio (111/220) of the 111 and 220 planes of the X-ray diffraction pattern is 3.0 or less, according to any one of [1] to [8]. Base metal plating film.
[11]
The base metal is nickel, the crystallite size (A) of the 111 face is 25 nm or less, the crystallite size (C) of the 200 face is 23 nm or less, and the crystallite size ratio (A / C) of the 111 face and the 200 face. ) Is 1.1 or more, the base metal plating film according to any one of [1] to [8].
[12]
A base metal plating bath containing a base metal ion and hydrophilic nanodiamond particles, wherein the concentration of the hydrophilic nanodiamond particles is 0.001 to 1 g / L.
[13]
The base metal plating bath according to [12], wherein the haze is 0 to 0.5.
[14]
The base metal plating bath according to [12] or [13], wherein the particle diameter (D10) of the hydrophilic nanodiamond particles in the base metal plating bath is 10 to 60 nm.
[15]
The base metal plating bath according to [12] or [13], wherein the particle diameter (D50) of the hydrophilic nanodiamond particles in the base metal plating bath is 10 to 70 nm.
[16]
The base metal plating bath according to [12] or [13], wherein the particle diameter (D90) of the hydrophilic nanodiamond particles in the base metal plating bath is 10 to 90 nm.
[17]
The method according to [1], wherein the subject is immersed in a base metal plating bath containing base metal ions and hydrophilic nanodiamond particles, and the concentration of the nanodiamond particles is 0.001 to 1 g / L, and electrolytic plating is performed. [11] A method for producing the plating film according to any one of [11].
[18]
The method according to [17], wherein the base metal plating bath has a haze of 0 to 0.5.
[19]
An electronic component comprising the plating film according to any one of [1] to [11].
[20]
Brightener for base metal plating film containing hydrophilic nano diamond particles.
[21]
Antioxidant for base metal plating film containing hydrophilic nano diamond particles.
 本発明の卑金属めっき膜は、ナノダイヤモンド粒子が卑金属のマトリックス中に高分散した構成を有し、前記ナノダイヤモンド粒子によって卑金属の結晶の成長が阻害されて結晶粒が微細化するためか、表面が平滑化され、高い光沢度と優れた耐酸化性を有する。また、本発明の卑金属めっき膜は優れた耐熱性、表面硬度、導電率を有する。そのため、本発明の卑金属めっき膜は電子機器用接続部品や装飾品等に好適に用いられる。 The base metal plating film of the present invention has a configuration in which nanodiamond particles are highly dispersed in a matrix of the base metal, and the growth of the base metal crystal is inhibited by the nanodiamond particles to make the crystal grains fine, It is smooth and has high gloss and excellent oxidation resistance. Further, the base metal plating film of the present invention has excellent heat resistance, surface hardness, and electrical conductivity. Therefore, the base metal plating film of the present invention is suitably used for connecting parts for electronic equipment, decorative articles and the like.
 その他、本発明の卑金属めっき膜は表面が平滑であるため摩擦係数が低下し、接触抵抗値が低下する。そのため、電気・電子機器に用いられる低電流(信号系)スイッチやコネクタなどの接続部品(若しくは、電気接点)のうち低い接触荷重で繰り返し使用される接続部品に好適に用いられる。 In addition, since the base metal plating film of the present invention has a smooth surface, the coefficient of friction decreases and the contact resistance value decreases. Therefore, it is suitably used as a connecting part repeatedly used with a low contact load among connecting parts (or electric contacts) such as low current (signal) switches and connectors used for electric / electronic devices.
 本発明のめっき浴は、高い光沢度と優れた耐酸化性を有する卑金属めっき膜を製造する上で有用である。 The plating bath of the present invention is useful for producing a base metal plating film having high gloss and excellent oxidation resistance.
 本発明の卑金属めっき膜の製造方法によれば、高い光沢度と優れた耐酸化性を有する卑金属めっき膜を簡易な操作で効率よく製造できる。 According to the method for producing a base metal plating film of the present invention, a base metal plating film having high glossiness and excellent oxidation resistance can be efficiently produced by a simple operation.
 本発明の電子部品は、高い光沢度と優れた耐酸化性を備えた卑金属めっき膜を有する。 電子 The electronic component of the present invention has a base metal plating film having high gloss and excellent oxidation resistance.
 本発明の光沢剤は、高い光沢度を有する卑金属めっき膜の形成に有用である。 光 沢 The brightener of the present invention is useful for forming a base metal plating film having high glossiness.
 本発明の酸化防止剤は、優れた耐酸化性を有する卑金属めっき膜の形成に有用である。 The antioxidant of the present invention is useful for forming a base metal plating film having excellent oxidation resistance.
本発明における親水性ND粒子の一例を示す拡大模式図である。FIG. 2 is an enlarged schematic view illustrating an example of hydrophilic ND particles according to the present invention. 比較例1で真鍮板に形成されためっき膜のX線回折結果を示す。7 shows an X-ray diffraction result of a plating film formed on a brass plate in Comparative Example 1. 実施例4で真鍮板に形成されためっき膜のX線回折結果を示す。13 shows an X-ray diffraction result of a plating film formed on a brass plate in Example 4. 比較例2で真鍮板に形成されためっき膜の製造直後と5日後のX線回折結果を示す。The X-ray diffraction results immediately after and 5 days after the production of the plating film formed on the brass plate in Comparative Example 2 are shown. 試験例7で測定された銅めっき膜のXRDパターンを示す。9 shows an XRD pattern of a copper plating film measured in Test Example 7. 試験例8のめっき膜のSEM写真を示す。(a)NDなし、(b)NDあり。13 shows an SEM photograph of a plating film of Test Example 8. (a) Without ND, (b) With ND. 実施例1で得られた銅めっき膜中のC1s(XPS)。C1s (XPS) in the copper plating film obtained in Example 1.
[親水性ND粒子]
 本発明で使用するND粒子は親水性ND粒子であり、この粒子は、
(i)親水性高分子でコーティングされたND粒子、及び
(ii)親水性高分子で修飾されたND粒子
を包含する。好ましい親水性ND粒子は、(ii)のND粒子である。
[Hydrophilic ND particles]
The ND particles used in the present invention are hydrophilic ND particles.
(i) ND particles coated with a hydrophilic polymer, and
(ii) ND particles modified with a hydrophilic polymer are included. Preferred hydrophilic ND particles are the ND particles of (ii).
 親水性官能基(OH、COOH、NH)が導入されたND粒子は公知(例えば特開2018-30741)であり、例えば、爆轟法によって生成したNDが好ましく使用できる。爆轟法には、空冷式爆轟法と水冷式爆轟法が含まれる。本発明においては、なかでも、空冷式爆轟法が水冷式爆轟法よりも一次粒子が小さいNDを得ることができるうえで好ましい。爆轟を大気雰囲気下又は窒素雰囲気下で行うことで、親水性官能基(OH、COOH、NH)が表面に複数形成された親水性ND粒子が得られる。親水性高分子のコーティング又は修飾は、親水性官能基を介して行われる。 ND particles into which a hydrophilic functional group (OH, COOH, NH 2 ) has been introduced are known (for example, JP-A-2018-30741). For example, ND generated by a detonation method can be preferably used. The detonation method includes an air-cooled detonation method and a water-cooled detonation method. In the present invention, among others, the air-cooled detonation method is preferable because it is possible to obtain an ND having smaller primary particles than the water-cooled detonation method. By performing the detonation in an air atmosphere or a nitrogen atmosphere, hydrophilic ND particles having a plurality of hydrophilic functional groups (OH, COOH, NH 2 ) formed on the surface can be obtained. The coating or modification of the hydrophilic polymer is performed via a hydrophilic functional group.
 親水性高分子としては、ポリグリセリン(PG)、ポリビニルピロリドン、ポリエチレングリコール、ポリビニルアルコール、ポリ(メタ)アクリル酸、ポリアクリルアミド、ポリエチレンイミン、ビニルエーテル系重合体、セルロース誘導体、水溶性ポリエステル、天然高分子多糖類などが挙げられる。ビニルエーテル系重合体としては、ビニルメチルエーテル、ビニルエチルエーテル、ビニルイソプロピルエーテル、ビニルブチルエーテル、ビニルイソブチルエーテルなどのアルキルビニルエーテル類などの単独重合体又は共重合体(例えば、ポリビニルメチルエーテル、ポリビニルエチルエーテル、ビニルエーテル-無水マレイン酸共重合体など)が挙げられる。セルロース誘導体としては、メチルセルロース、エチルセルロース、プロピルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロース、カルボキシエチルセルロースなどが挙げられる。水溶性ポリエステルとしては、ポリジメチロールプロピオン酸エステルなどが挙げられる。天然高分子多糖類としては、アルギン酸又はその塩、ペクチン、デンプン、寒天、アラビアゴム、デキストリン、カラギーナンなどが挙げられる。好ましい親水性高分子は、ポリグリセリン、ポリビニルピロリドン、ポリエチレングリコール、ポリビニルアルコール、ポリ(メタ)アクリル酸であり、ポリグリセリンが特に好ましい。 Examples of hydrophilic polymers include polyglycerin (PG), polyvinylpyrrolidone, polyethylene glycol, polyvinyl alcohol, poly (meth) acrylic acid, polyacrylamide, polyethyleneimine, vinyl ether polymers, cellulose derivatives, water-soluble polyesters, and natural polymers And polysaccharides. Examples of the vinyl ether-based polymer include homopolymers or copolymers of alkyl vinyl ethers such as vinyl methyl ether, vinyl ethyl ether, vinyl isopropyl ether, vinyl butyl ether and vinyl isobutyl ether (for example, polyvinyl methyl ether, polyvinyl ethyl ether, Vinyl ether-maleic anhydride copolymer). Examples of the cellulose derivative include methyl cellulose, ethyl cellulose, propyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose, carboxymethyl cellulose, carboxyethyl cellulose, and the like. Examples of the water-soluble polyester include polydimethylol propionate. Examples of the natural high molecular polysaccharide include alginic acid or a salt thereof, pectin, starch, agar, acacia, dextrin, carrageenan, and the like. Preferred hydrophilic polymers are polyglycerin, polyvinylpyrrolidone, polyethylene glycol, polyvinyl alcohol and poly (meth) acrylic acid, with polyglycerin being particularly preferred.
 ポリグリセリン鎖を含む表面修飾基によって修飾されたND粒子は、例えば、下記式(1)で表されるポリグリセリンがND粒子の表面官能基に結合した構成を有する。下記式中、nはポリグリセリン鎖を構成するグリセリン単位の数を示し、1以上の整数である。 N The ND particles modified with a surface modifying group containing a polyglycerin chain have, for example, a configuration in which polyglycerin represented by the following formula (1) is bonded to a surface functional group of the ND particles. In the following formula, n represents the number of glycerin units constituting the polyglycerin chain, and is an integer of 1 or more.
   HO-(C-H    (1)
 式(1)の括弧内のCは、下記式(2)及び/又は(3)で示される構造を有する。
HO- (C 3 H 6 O 2 ) n -H (1)
C 3 H 6 O 2 in parentheses in the formula (1) has a structure represented by the following formulas (2) and / or (3).
  -CH-CHOH-CHO-    (2)
  -CH(CHOH)CHO-    (3)
 前記ポリグリセリン鎖には直鎖状構造、分岐鎖状構造、及び環状構造のポリグリセリン鎖が含まれる。
—CH 2 —CHOH—CH 2 O— (2)
—CH (CH 2 OH) CH 2 O— (3)
The polyglycerin chains include linear, branched, and cyclic polyglycerin chains.
 前記親水性高分子の修飾もしくはコーティングによる導入量は、ND粒子部分1質量部当たり、例えば0.05~1.0質量部程度、好ましくは0.4~1.0質量部程度であり、より好ましくは0.5~0.9質量部、特に好ましくは0.6~0.8質量部である。親水性高分子の導入量が上記範囲内にあれば、ND粒子の凝集を防ぐことができる。親水性高分子部分とND粒子部分の質量比は示差熱天秤分析装置(TG-DTA)を用いて熱処理時の質量変化、又は元素分析による組成比を測定することにより求めることができる。 The amount of the hydrophilic polymer introduced by modification or coating is, for example, about 0.05 to 1.0 part by mass, preferably about 0.4 to 1.0 part by mass, per part by mass of the ND particles. It is preferably from 0.5 to 0.9 part by mass, particularly preferably from 0.6 to 0.8 part by mass. When the amount of the hydrophilic polymer introduced is within the above range, ND particle aggregation can be prevented. The mass ratio between the hydrophilic polymer portion and the ND particle portion can be determined by measuring the change in mass during heat treatment or the composition ratio by elemental analysis using a differential thermal balance analyzer (TG-DTA).
 親水性高分子によるND粒子のコーティングは、親水性高分子溶液中でナノダイヤモンド粒子を接触させ、遠心分離を行うことにより、コーティングに関与しない親水性高分子を分離して、親水性高分子でコーティングされたナノダイヤモンド粒子を集めることができる。 The coating of ND particles with a hydrophilic polymer involves contacting nanodiamond particles in a hydrophilic polymer solution and centrifuging to separate hydrophilic polymers that are not involved in the coating. The coated nanodiamond particles can be collected.
 親水性高分子によるND粒子の修飾は、表面に親水性官能基(OH、COOH、NHなど)が導入された前記ND粒子を原料として用い、前記親水性官能基に親水性高分子基をエステル結合、アミド結合、イミド結合、エーテル結合、ウレタン結合、ウレア結合などのリンカー基を介して結合させることにより行うことができる。前記リンカー基の形成は、ジシクロヘキシルカルボジイイミド、水溶性カルボジイミド、カルボニルジイミダゾールなどの縮合剤を使用してエステル又はアミド結合を形成する方法、イソシアナート基(N=C=O)を有する親水性高分子を用いてウレタン結合又はウレア結合を形成する方法、親水性高分子がCOOH基を有する場合には、前記COOH基を酸ハロゲン化物(特に酸塩化物)又は酸無水物に変換し、OH又はNH基を有するND粒子と反応させてエステル結合またはアミド結合を形成する方法などにより行うことができる。 Modification of ND particles with a hydrophilic polymer uses the ND particles having a hydrophilic functional group (OH, COOH, NH 2, etc.) introduced on the surface as a raw material, and adds a hydrophilic polymer group to the hydrophilic functional group. It can be carried out by bonding via a linker group such as an ester bond, an amide bond, an imide bond, an ether bond, a urethane bond, and a urea bond. The linker group is formed by a method of forming an ester or amide bond using a condensing agent such as dicyclohexylcarbodiimide, water-soluble carbodiimide, carbonyldiimidazole, or a hydrophilic compound having an isocyanate group (N = C = O). A method for forming a urethane bond or a urea bond using a polymer, when the hydrophilic polymer has a COOH group, converting the COOH group into an acid halide (particularly an acid chloride) or an acid anhydride, Alternatively, it can be performed by a method of reacting with ND particles having an NH 2 group to form an ester bond or an amide bond.
 親水性高分子によるコーティングあるいは親水性高分子での修飾に原料として用いられる親水性官能基(OH、COOH、NH)が導入されたND粒子は、一次粒子の平均粒子径が10nm以下、例えば1~10nmの微粒子が好ましい。 ND particles into which a hydrophilic functional group (OH, COOH, NH 2 ) used as a raw material for coating with a hydrophilic polymer or modifying with a hydrophilic polymer have an average primary particle diameter of 10 nm or less, for example, Fine particles of 1 to 10 nm are preferred.
 本発明の親水性ND粒子の一次粒子の平均粒子径が12nm以下、例えば1~12nm、好ましくは3~12nmの微粒子が好ましい。 微粒子 Fine particles having an average particle diameter of primary particles of the hydrophilic ND particles of the present invention of 12 nm or less, for example, 1 to 12 nm, preferably 3 to 12 nm are preferable.
 親水性官能基を有するND粒子及び親水性高分子でコーティングもしくは修飾されたND粒子の一次粒子の平均粒子径は、X線回析装置(商品名「S mart Lab 」,リガク社製)を使用して小角X線散乱測定(SAXS法)を行い、粒子径分布解析ソフト(商品名「NANO-Solver」,リガク社製)を使用して、ナノダイヤモンド一次粒子が球形であり且つ粒子密度が3.51g/cmであるとの仮定のもとに、散乱角度1° ~3°の領域についてナノダイヤモンドの一次粒子径を見積もることで決定できる。 The average particle size of the ND particles having a hydrophilic functional group and the primary particles of the ND particles coated or modified with a hydrophilic polymer is measured using an X-ray diffractometer (trade name: "Smart Lab", manufactured by Rigaku Corporation). Small-angle X-ray scattering measurement (SAXS method), and using a particle size distribution analysis software (trade name “NANO-Solver”, manufactured by Rigaku Corporation), the nanodiamond primary particles are spherical and the particle density is 3 It can be determined by estimating the primary particle size of the nanodiamond in the range of the scattering angle of 1 ° to 3 ° on the assumption that it is .51 g / cm 3 .
 前記親水性ND粒子は、一次粒子の平均粒子径が10nm以下、例えば1~10nmの微粒子が好ましい。 The hydrophilic ND particles are preferably fine particles having an average primary particle diameter of 10 nm or less, for example, 1 to 10 nm.
 ND粒子は表面を親水性にすることで凝集が防止され、光沢度と耐酸化性を同時に向上させることができる。一方、親水性官能基もしくは親水性高分子が導入されていない非特許文献1に記載されるようなND粒子は、卑金属めっき膜に導入した場合であっても、光沢度と耐酸化性の向上は生じない。本明細書の試験例2に記載されるように、爆ごう法で得られたNDの一次粒子の平均粒子径は10nm以下であるが、衝撃圧縮法で得られたNDの一次粒子の粒径は10nmを大きく越えるので、ND粒子は爆ごう法で製造されたものが好ましい。本発明において、卑金属めっき浴には界面活性剤は添加する必要がない。めっき浴に界面活性剤が含まれると卑金属めっき膜にわずかな量でも取り込まれる可能性があるので、界面活性剤は使用しないことが好ましい。また、卑金属めっき膜は界面活性剤フリーであることが好ましい。 The ND particles are prevented from agglomerating by making the surface hydrophilic, and can simultaneously improve glossiness and oxidation resistance. On the other hand, ND particles having no hydrophilic functional group or hydrophilic polymer as described in Non-Patent Document 1 have improved glossiness and oxidation resistance even when introduced into a base metal plating film. Does not occur. As described in Test Example 2 of the present specification, the average particle size of ND primary particles obtained by the detonation method is 10 nm or less, but the particle size of ND primary particles obtained by the impact compression method. Since ND greatly exceeds 10 nm, it is preferable that the ND particles are produced by the detonation method. In the present invention, it is not necessary to add a surfactant to the base metal plating bath. If a surfactant is contained in the plating bath, even a small amount may be taken into the base metal plating film, so it is preferable not to use a surfactant. Further, the base metal plating film is preferably free of a surfactant.
 [卑金属めっき膜]
 本発明の卑金属めっき膜は、卑金属マトリックスと、前記卑金属マトリックス中に分散する親水性ND粒子を含む卑金属めっき膜である。本発明の好ましい実施形態において、親水性ND粒子は卑金属マトリックス中に均一に分散していてもよく、卑金属マトリックスの表面近くに密に分散していてもよい。
[Base metal plating film]
The base metal plating film of the present invention is a base metal plating film including a base metal matrix and hydrophilic ND particles dispersed in the base metal matrix. In a preferred embodiment of the present invention, the hydrophilic ND particles may be uniformly dispersed in the base metal matrix, or may be densely dispersed near the surface of the base metal matrix.
 卑金属としては、鉄、ニッケル、亜鉛、銅、スズ、アルミニウム、タングステン、モリブデン、タンタル、マグネシウム、コバルト、ビスマス、カドミウム、チタニウム、ジルコニウム、アンチモン、マンガン、ベリリウム、クロム、ゲルマニウム、バナジウム、ガリウム、ハフニウム、インジウム、ニオブ、レニウム及びタリウムからなる群から選ばれる少なくとも1種が挙げられ、好ましくは銅、ニッケル、亜鉛、スズ、クロム、パーマロイからなる群から選ばれる少なくとも1種であり、より好ましくは銅、ニッケル、亜鉛、スズからなる群から選ばれる少なくとも1種である。 Base metals include iron, nickel, zinc, copper, tin, aluminum, tungsten, molybdenum, tantalum, magnesium, cobalt, bismuth, cadmium, titanium, zirconium, antimony, manganese, beryllium, chromium, germanium, vanadium, gallium, hafnium, Indium, niobium, at least one selected from the group consisting of rhenium and thallium is mentioned, preferably copper, nickel, zinc, tin, chromium, at least one selected from the group consisting of permalloy, more preferably copper, It is at least one selected from the group consisting of nickel, zinc, and tin.
 本発明の好ましい1つの実施形態の卑金属めっき膜は、卑金属マトリックスと、前記卑金属マトリックス中に分散する親水性ND粒子を含む卑金属めっき膜であって、入射角60°における光沢度が770以上であることを特徴とする。なお、100%反射の場合、光沢度は1000である。 The base metal plating film of one preferred embodiment of the present invention is a base metal plating film including a base metal matrix and hydrophilic ND particles dispersed in the base metal matrix, and has a glossiness of 770 or more at an incident angle of 60 °. It is characterized by the following. In the case of 100% reflection, the glossiness is 1,000.
 本発明の卑金属めっき膜の入射角60°における光沢度は、卑金属が銅の場合、770以上であり、好ましくは780以上、より好ましくは800以上、さらに好ましくは850以上である。 光 沢 The glossiness of the base metal plating film of the present invention at an incident angle of 60 ° is 770 or more, preferably 780 or more, more preferably 800 or more, and further preferably 850 or more when the base metal is copper.
 本発明の卑金属めっき膜の入射角60°における光沢度は、卑金属がニッケルの場合560以上、卑金属がスズの場合785以上、卑金属がパーマロイの場合575以上、卑金属が亜鉛の場合410以上である。 The glossiness of the base metal plating film of the present invention at an incident angle of 60 ° is 560 or more when the base metal is nickel, 785 or more when the base metal is tin, 575 or more when the base metal is permalloy, and 410 or more when the base metal is zinc.
 また、親水性ND粒子を含まない以外は本発明と同じ組成の卑金属めっき膜と比較して、本発明の卑金属めっき膜は、入射角60°における光沢度が、例えば10以上(例えば10~200)高く、好ましくは15以上高く、より好ましくは35以上高く、特に好ましくは55以上高く、最も好ましくは85以上高い。 Also, compared to a base metal plating film having the same composition as the present invention except that it does not contain hydrophilic ND particles, the base metal plating film of the present invention has a glossiness at an incident angle of 60 ° of, for example, 10 or more (for example, 10 to 200). ) High, preferably 15 or higher, more preferably 35 or higher, particularly preferably 55 or higher, most preferably 85 or higher.
 本発明の卑金属めっき膜は、製造直後の卑金属めっき膜に対し、直射日光の当たらない室内、常温(25℃前後、湿度50%程度)で7日間保存後の卑金属酸化物の増加が、好ましくは1%未満、より好ましくは0.5%未満、さらに好ましくは0.3%未満、最も好ましくは0.1%未満である。 The base metal plating film of the present invention preferably has an increased base metal oxide after storage for 7 days at room temperature (around 25 ° C., humidity of about 50%) in a room not exposed to direct sunlight with respect to the base metal plating film immediately after production. It is less than 1%, more preferably less than 0.5%, even more preferably less than 0.3%, and most preferably less than 0.1%.
 本発明の卑金属めっき膜の表面粗さ(Ra)は、例えば0.5μm以下、好ましくは0.4μm以下、さらに好ましくは0.3μm以下、特に好ましくは0.15μm以下、最も好ましくは0.1μm以下である。 The surface roughness (Ra) of the base metal plating film of the present invention is, for example, 0.5 μm or less, preferably 0.4 μm or less, more preferably 0.3 μm or less, particularly preferably 0.15 μm or less, and most preferably 0.1 μm or less. It is as follows.
 本発明の卑金属めっき膜において、卑金属マトリックス中に分散する親水性ND粒子のSEM法による粒子径は、例えば4~95nmの範囲であり、好ましくは10~80nm、特に好ましくは20~60nm、最も好ましくは30~50nmである。 In the base metal plating film of the present invention, the particle size of the hydrophilic ND particles dispersed in the base metal matrix by SEM is, for example, in the range of 4 to 95 nm, preferably 10 to 80 nm, particularly preferably 20 to 60 nm, and most preferably. Is 30 to 50 nm.
 本発明の1つの好ましい実施形態において、卑金属が銅の場合、111面の結晶子サイズ(A)は100nm以下、好ましくは80nm以下、より好ましくは70nm以下、さらに好ましくは60nm以下、特に好ましくは50nm以下、最も好ましくは45nm以下であり、220面の結晶子サイズ(B)は80nm以下、好ましくは60nm以下、より好ましくは50nm以下、さらに好ましくは40nm以下、特に好ましくは35nm以下、最も好ましくは30nm以下である。111面と220面の結晶子サイズ比(A/B)は、好ましくは1.3以上、より好ましくは1.3~1.6である。 In one preferred embodiment of the present invention, when the base metal is copper, the crystallite size (A) on the 111 plane is 100 nm or less, preferably 80 nm or less, more preferably 70 nm or less, still more preferably 60 nm or less, particularly preferably 50 nm or less. Or less, most preferably 45 nm or less, and the crystallite size (B) of the 220 plane is 80 nm or less, preferably 60 nm or less, more preferably 50 nm or less, still more preferably 40 nm or less, particularly preferably 35 nm or less, and most preferably 30 nm or less. It is as follows. The crystallite size ratio (A / B) between the 111 plane and the 220 plane is preferably 1.3 or more, and more preferably 1.3 to 1.6.
 本発明の1つの好ましい実施形態において、卑金属がニッケルの場合、111面の結晶子サイズ(A)は25nm以下、好ましくは24nm以下、より好ましくは23nm以下、さらに好ましくは22nm以下であり、200面の結晶子サイズ(C)は23nm以下、好ましくは20nm以下、より好ましくは18nm以下、さらに好ましくは16nm以下、特に好ましくは14nm以下である。111面と200面の結晶子サイズ比(A/C)は、好ましくは1.1以上、より好ましくは1.1~1.6である。 In one preferred embodiment of the present invention, when the base metal is nickel, the crystallite size (A) of the 111 plane is 25 nm or less, preferably 24 nm or less, more preferably 23 nm or less, even more preferably 22 nm or less, and 200 planes. Has a crystallite size (C) of 23 nm or less, preferably 20 nm or less, more preferably 18 nm or less, still more preferably 16 nm or less, and particularly preferably 14 nm or less. The crystallite size ratio (A / C) of the 111 plane and the 200 plane is preferably 1.1 or more, more preferably 1.1 to 1.6.
 本発明の1つの好ましい実施形態において、卑金属が銅の場合、X線回折(XRD)パターンの111面と220面のピーク強度比(111面/220面)は、好ましくは3.0以下、より好ましくは1.4~3.0である。 In one preferred embodiment of the present invention, when the base metal is copper, the peak intensity ratio between the 111 plane and the 220 plane in the X-ray diffraction (XRD) pattern (111 plane / 220 plane) is preferably 3.0 or less, and more preferably 3.0 or less. Preferably it is 1.4 to 3.0.
 本発明の銅めっき膜の焼鈍標準軟銅の導電率を100%IACSとしたときの導電率は、好ましくは80%IACS以上、より好ましくは85%IACS以上、さらに好ましくは90%IACS以上、特に好ましくは92%IACS以上、最も好ましくは94%IACS以上である。導電率は、4点端子法による表面抵抗率の値とマイクロメーターによるメッキ膜の厚みから体積抵抗率を求め、それをIACS%として導電性に換算することにより求められる。また、体積抵抗率は、めっき膜サンプルの複数点(例えば上下左右中の5点)の平均値として求めることができる。なお、IACS(international annealed copper standard)%は、電気抵抗の基準として、焼鈍標準軟銅(体積抵抗率: 1.7241×10-2 μΩm)の導電率を、100%IACSとして規定したものである。 The conductivity when the conductivity of the annealed standard soft copper of the copper plating film of the present invention is 100% IACS, is preferably 80% IACS or more, more preferably 85% IACS or more, still more preferably 90% IACS or more, and particularly preferably. Is at least 92% IACS, most preferably at least 94% IACS. The electrical conductivity is obtained by calculating the volume resistivity from the value of the surface resistivity by the four-point terminal method and the thickness of the plating film by the micrometer, and converting it to IACS% and converting it into conductivity. The volume resistivity can be obtained as an average value of a plurality of points (for example, five points in the upper, lower, left, and right directions) of the plating film sample. In addition, IACS (international annealed copper standard)% is defined as a standard of electric resistance, in which conductivity of annealed standard copper (volume resistivity: 1.7241 × 10 −2 μΩm) is defined as 100% IACS.
 また、本発明の卑金属めっき膜において、親水性ND粒子含有量は卑金属めっき膜の面積の、例えば0.5~25面積%、好ましくは2~20面積%、特に好ましくは5~15面積%である。なお、親水性ND粒子含有量(面積%)は、めっき相断面におけるSEM観察により測定可能である。本願明細書の比較例2及び図4において、非親水性NDを含む卑金属めっき膜には光沢度の上昇と酸化防止効果がいずれも見られなかったことから、これらの効果にはND粒子の「親水性」が重要であることが本発明者らにより明らかにされた。 In the base metal plating film of the present invention, the hydrophilic ND particle content is 0.5 to 25 area%, preferably 2 to 20 area%, particularly preferably 5 to 15 area% of the area of the base metal plating film. is there. The content (area%) of the hydrophilic ND particles can be measured by SEM observation on the cross section of the plating phase. In Comparative Example 2 and FIG. 4 of the specification of the present application, the base metal plating film containing the non-hydrophilic ND did not show any increase in gloss and no antioxidant effect. The inventors have found that "hydrophilicity" is important.
 本発明に使用する親水性ND粒子は、好ましくは複数もしくは多数の親水性官能基を有するか、より好ましくは少なくとも1つの親水性高分子でコーティングもしくは修飾されているので、凝集を防止することができ、高い光沢度、優れた耐酸化性を有するめっき膜を得ることができる。図1は本発明における表面修飾基を有するND粒子の一例を示す拡大模式図である。1は表面修飾基を有するND粒子、2はND粒子(部分)、3は表面修飾基を示す。 The hydrophilic ND particles used in the present invention preferably have a plurality or a large number of hydrophilic functional groups, or more preferably are coated or modified with at least one hydrophilic polymer, so that aggregation can be prevented. Thus, a plating film having high gloss and excellent oxidation resistance can be obtained. FIG. 1 is an enlarged schematic view showing an example of ND particles having a surface modifying group in the present invention. 1 is an ND particle having a surface modifying group, 2 is an ND particle (part), and 3 is a surface modifying group.
 [卑金属めっき膜の製造方法]
 本発明の卑金属めっき膜は、それ自体公知の電解めっき法(好ましくは、電解複合めっき法)又は無電解めっき法を利用することにより製造することができる。より詳細には、卑金属イオンと親水性ND粒子を含むめっき浴に、めっき膜形成対象部材(例えば、真鍮基板等の導電性基板)を浸漬して電解めっきもしくは無電解めっきを行なうことにより卑金属イオンを親水性ND粒子と共に前記部材表面に析出させ、卑金属の皮膜中に親水性ND粒子を取り込ませることができ、これを所望の厚みとなるまで継続することによって、卑金属マトリックス中に親水性ND粒子が分散する構成を有する卑金属めっき膜(若しくは、卑金属-親水性ND粒子複合材料から構成されるめっき膜)を製造することができる。
[Production method of base metal plating film]
The base metal plating film of the present invention can be produced by using a known electrolytic plating method (preferably, electrolytic composite plating method) or an electroless plating method. More specifically, a base member for forming a plating film (for example, a conductive substrate such as a brass substrate) is immersed in a plating bath containing base metal ions and hydrophilic ND particles, and electrolytic plating or electroless plating is performed. Can be precipitated on the surface of the member together with the hydrophilic ND particles, and the hydrophilic ND particles can be incorporated into the base metal film. By continuing this until the desired thickness is reached, the hydrophilic ND particles can be contained in the base metal matrix. A base metal plating film (or a plating film composed of a base metal-hydrophilic ND particle composite material) having a structure in which is dispersed can be produced.
 卑金属めっき膜の厚みは用途に応じて適宜設定することができ、例えば0.1~1000μm程度であり、スイッチやコネクタなどの接続部品として導電性金属部材の表面を被覆する用途の場合、卑金属めっき膜の厚みは、例えば0.1~50μm程度である。 The thickness of the base metal plating film can be appropriately set according to the use, for example, about 0.1 to 1000 μm. In the case of coating the surface of a conductive metal member as a connection component such as a switch or a connector, the base metal plating film is used. The thickness of the film is, for example, about 0.1 to 50 μm.
 (卑金属めっき浴)
 本発明における卑金属めっき浴はめっき液と親水性ND粒子とを含む。前記卑金属めっき浴中における親水性ND粒子の含有量は、例えば0.001~1.0g/L(下限は、好ましくは0.003g/L、より好ましくは0.006g/L、さらに好ましくは0.01g/L、特に好ましくは0.03g/Lである。上限は、好ましくは0.8g/L、さらに好ましくは0.6g/L、特に好ましくは0.5g/Lである)の範囲であり、好ましくは0.01~0.5g/Lである。親水性ND粒子含有量が上記範囲内にあれば、卑金属めっき膜の高い光沢度と耐酸化性、良好な基板との密着性が得られる。
(Base metal plating bath)
The base metal plating bath in the present invention contains a plating solution and hydrophilic ND particles. The content of the hydrophilic ND particles in the base metal plating bath is, for example, 0.001 to 1.0 g / L (the lower limit is preferably 0.003 g / L, more preferably 0.006 g / L, and further preferably 0. 0.01 g / L, particularly preferably 0.03 g / L. The upper limit is preferably 0.8 g / L, more preferably 0.6 g / L, and particularly preferably 0.5 g / L. And preferably 0.01 to 0.5 g / L. When the content of the hydrophilic ND particles is within the above range, high glossiness and oxidation resistance of the base metal plating film and good adhesion to the substrate can be obtained.
 前記卑金属めっき浴は、親水性ND粒子を高分散(若しくは、コロイド分散)した状態で含有するため透明性に優れ、ヘーズは、好ましくは0~5程度であり、より好ましくは0~2程度、さらに好ましくは0~1程度、特に好ましくは0~0.5程度、最も好ましくは0~0.4である。ヘーズは、JIS  K7136法に準拠して測定することができる。 The base metal plating bath is excellent in transparency because it contains hydrophilic ND particles in a highly dispersed (or colloidally dispersed) state, and the haze is preferably about 0 to 5, more preferably about 0 to 2, It is more preferably about 0 to 1, particularly preferably about 0 to 0.5, and most preferably 0 to 0.4. Haze can be measured in accordance with JIS K7136.
 前記卑金属めっき浴中の親水性ND粒子の粒径(D10)は、例えば95nm以下、好ましくは60nm以下、特に好ましくは50nm以下、最も好ましくは40nm以下である。親水性ND粒子の粒径(D10)の下限は、例えば10nmである。 The particle diameter (D10) of the hydrophilic ND particles in the base metal plating bath is, for example, 95 nm or less, preferably 60 nm or less, particularly preferably 50 nm or less, and most preferably 40 nm or less. The lower limit of the particle diameter (D10) of the hydrophilic ND particles is, for example, 10 nm.
 前記卑金属めっき浴中の親水性ND粒子の粒径(D50)は、例えば95nm以下、好ましくは70nm以下、特に好ましくは60nm以下、最も好ましくは50nm以下である。親水性ND粒子の粒径(D50)の下限は、例えば20nmである。 粒径 The particle diameter (D50) of the hydrophilic ND particles in the base metal plating bath is, for example, 95 nm or less, preferably 70 nm or less, particularly preferably 60 nm or less, and most preferably 50 nm or less. The lower limit of the particle size (D50) of the hydrophilic ND particles is, for example, 20 nm.
 前記卑金属めっき浴中の親水性ND粒子の粒径(D90)は、例えば95nm以下、好ましくは90nm以下、特に好ましくは80nm以下である。親水性ND粒子の粒径(D90)の下限は、例えば50nmである。尚、卑金属めっき浴中における親水性ND粒子の粒径は、動的光散乱法によって測定することができる。 粒径 The particle diameter (D90) of the hydrophilic ND particles in the base metal plating bath is, for example, 95 nm or less, preferably 90 nm or less, and particularly preferably 80 nm or less. The lower limit of the particle size (D90) of the hydrophilic ND particles is, for example, 50 nm. In addition, the particle size of the hydrophilic ND particles in the base metal plating bath can be measured by a dynamic light scattering method.
 前記卑金属めっき浴は、例えば、後述のめっき液に親水性ND粒子分散液を添加することにより調製することができる。無電解卑金属めっき浴は、水溶性卑金属塩、親水性ND粒子、リン供給源(無電解ニッケル-リン合金めっきの場合)、還元剤、錯化剤などを含有し得る。無電解卑金属めっき浴としては、無電解ニッケル-リン合金卑金属めっき浴が好ましい。 The base metal plating bath can be prepared, for example, by adding a hydrophilic ND particle dispersion to a plating solution described below. The electroless base metal plating bath may contain a water-soluble base metal salt, hydrophilic ND particles, a phosphorus source (in the case of electroless nickel-phosphorus alloy plating), a reducing agent, a complexing agent, and the like. As the electroless base metal plating bath, an electroless nickel-phosphorus alloy base metal plating bath is preferable.
  電解及び無電解卑金属めっき浴における水溶性卑金属塩の濃度は、卑金属めっき浴に供給される卑金属イオン濃度換算で、例えば0.01~0.5mol/Lであり、好ましくは0.05~0.2mol/Lである。 The concentration of the water-soluble base metal salt in the electrolytic and electroless base metal plating bath is, for example, 0.01 to 0.5 mol / L, preferably 0.05 to 0.5 mol / L, in terms of the concentration of the base metal ion supplied to the base metal plating bath. 2 mol / L.
  無電解卑金属めっき浴に含有される還元剤かつリン供給源としては、例えば、ホスフィン酸ナトリウムなどのホスフィン酸塩が挙げられる。ホスフィン酸塩を採用する場合、卑金属めっき浴におけるホスフィン酸塩の濃度は、例えば0.02~0.5mol/Lであり、好ましくは0.1~0.2mol/Lである。 還 元 Examples of the reducing agent and the phosphorus supply source contained in the electroless base metal plating bath include phosphinates such as sodium phosphinate. When a phosphinate is employed, the concentration of the phosphinate in the base metal plating bath is, for example, 0.02 to 0.5 mol / L, and preferably 0.1 to 0.2 mol / L.
  電解及び無電解卑金属めっき浴に含有される錯化剤としては、例えば、クエン酸、乳酸、リンゴ酸、グリコール酸、およびこれらの塩が挙げられる。クエン酸としては、クエン酸ナトリウムやクエン酸カリウムが挙げられる。クエン酸および/またはその塩を採用する場合、電解及び無電解卑金属めっき浴におけるクエン酸および/またはその塩の濃度は、例えば0.02~1.0mol/Lであり、好ましくは0.1~0.5mol/Lである。 錯 Examples of the complexing agent contained in the electrolytic and electroless base metal plating baths include citric acid, lactic acid, malic acid, glycolic acid, and salts thereof. Examples of citric acid include sodium citrate and potassium citrate. When citric acid and / or its salt is employed, the concentration of citric acid and / or its salt in the electrolytic and electroless base metal plating bath is, for example, 0.02 to 1.0 mol / L, preferably 0.1 to 1.0 mol / L. 0.5 mol / L.
  電解及び無電解卑金属めっき浴は、以上の成分に加えて他の成分を含有してもよい。そのような成分としては、例えば、pH緩衝剤や、卑金属めっき浴の自己分解抑制のための安定剤が、挙げられる。 The electrolytic and electroless base metal plating baths may contain other components in addition to the above components. Examples of such components include a pH buffer and a stabilizer for suppressing self-decomposition of the base metal plating bath.
 卑金属めっき浴のpHは、例えば5~11である。 PH The pH of the base metal plating bath is, for example, 5 to 11.
 (めっき液)
 本発明におけるめっき液はめっき膜の調製に必須の成分を含み、且つ上述の親水性ND粒子は含まないものである。前記めっき液は、卑金属イオンを少なくとも含む。
(Plating solution)
The plating solution in the present invention contains components essential for preparing a plating film and does not contain the above-mentioned hydrophilic ND particles. The plating solution contains at least base metal ions.
 めっき液は、例えば、水溶性卑金属塩、電導度塩、錯化剤、皮膜の外観と物性を調整する添加剤等を配合することにより調製できる。前記水溶性卑金属塩は、卑金属めっき浴中においては卑金属イオンとして存在する。その他、卑金属の酸素酸イオンや、錯化剤と結合した卑金属錯イオンとして存在する場合もある。 The plating solution can be prepared by, for example, compounding a water-soluble base metal salt, a conductive salt, a complexing agent, an additive for adjusting the appearance and physical properties of the film, and the like. The water-soluble base metal salt exists as a base metal ion in the base metal plating bath. In addition, it may be present as a base metal oxyacid ion or a base metal complex ion combined with a complexing agent.
 卑金属めっき用のめっき液としては、卑金属の硫酸塩、硫酸、塩化物イオンなどからなる硫酸卑金属めっき液;卑金属シアン化物、シアン化ナトリウム、炭酸アルカリ、ロッシェル塩などからなるシアン化卑金属めっき液;卑金属ピロリン酸塩、ピロリン酸カリウム、アンモニア水、硝酸カリウムなどからなるピロリン酸卑金属めっき液などが挙げられる。 Examples of the plating solution for base metal plating include: a base metal sulfate solution comprising base metal sulfate, sulfuric acid, and chloride ions; a base metal cyanide plating solution comprising base metal cyanide, sodium cyanide, alkali carbonate, Rochelle salt; Examples include a pyrophosphate base metal plating solution composed of pyrophosphate, potassium pyrophosphate, aqueous ammonia, potassium nitrate, and the like.
 (親水性ND粒子分散液、及びその調製方法)
 前記親水性ND粒子分散液は、親水性ND粒子が分散媒(好ましくは、水)中に分散されてなるものである。親水性ND粒子分散液中の親水性ND粒子濃度は、例えば1~100g/L程度である。
(Hydrophilic ND particle dispersion liquid and its preparation method)
The hydrophilic ND particle dispersion liquid is obtained by dispersing hydrophilic ND particles in a dispersion medium (preferably water). The hydrophilic ND particle concentration in the hydrophilic ND particle dispersion is, for example, about 1 to 100 g / L.
 前記親水性ND粒子としては、分散性に優れる点において、ND粒子の親水性官能基が親水性高分子でコーティングもしくは修飾された親水性ND粒子が好ましく、特に好ましくはポリグリセリン鎖を含む水溶性高分子を有する親水性ND粒子である。 As the hydrophilic ND particles, in terms of excellent dispersibility, hydrophilic ND particles in which the hydrophilic functional group of the ND particles is coated or modified with a hydrophilic polymer are preferable, and particularly preferably a water-soluble ND particle containing a polyglycerin chain. It is a hydrophilic ND particle having a polymer.
 親水性ND粒子分散液中の親水性ND粒子の粒径(D50)は、例えば95nm以下、好ましくは70nm以下、特に好ましくは60nm以下、最も好ましくは50nm以下である。親水性ND粒子の粒径(D50)の下限は、例えば10nmである。尚、親水性ND粒子分散液中における親水性ND粒子の粒径は、動的光散乱法(DLS)によって測定することができる。 粒径 The particle diameter (D50) of the hydrophilic ND particles in the hydrophilic ND particle dispersion is, for example, 95 nm or less, preferably 70 nm or less, particularly preferably 60 nm or less, and most preferably 50 nm or less. The lower limit of the particle diameter (D50) of the hydrophilic ND particles is, for example, 10 nm. In addition, the particle diameter of the hydrophilic ND particles in the hydrophilic ND particle dispersion can be measured by a dynamic light scattering method (DLS).
 前記親水性ND粒子分散液は、卑金属めっき浴に添加することにより、得られる卑金属めっき膜に光沢を付与することができる。そのため、例えば、卑金属めっき膜の光沢剤として使用することができる。 光 沢 By adding the hydrophilic ND particle dispersion to the base metal plating bath, it is possible to impart gloss to the obtained base metal plating film. Therefore, for example, it can be used as a brightener for base metal plating films.
 (親水性ND粒子分散液の調製方法)
 以下に、ポリグリセリン鎖で修飾された親水性ND粒子の分散液の製造方法の一例を説明する。ポリグリセリン以外の親水性ND粒子は、上記の一般的な製造法及び下記のポリグリセリン鎖で修飾された親水性ND粒子分散液の製造方法を参照して、当業者であれば容易に作製できる。
(Method of preparing hydrophilic ND particle dispersion)
Hereinafter, an example of a method for producing a dispersion of hydrophilic ND particles modified with a polyglycerin chain will be described. Hydrophilic ND particles other than polyglycerin can be easily prepared by those skilled in the art with reference to the above general production method and the method for producing a hydrophilic ND particle dispersion modified with a polyglycerin chain described below. .
 (生成工程)
 まず、爆薬に電気雷管が装着されたものを爆轟用の耐圧性容器の内部に設置し、容器内において大気組成の常圧の気体と使用爆薬とが共存する状態で、容器を密閉する。容器は例えば鉄製で、容器の容積は例えば0.5~40mである。爆薬としては、トリニトロトルエン(TNT)とシクロトリメチレントリニトロアミンすなわちヘキソーゲン(RDX)との混合物を使用することができる。TNTとRDXの質量比(TNT/RDX)は、例えば40/60~60/40の範囲である。
(Generation process)
First, an explosive equipped with an electric detonator is installed inside a pressure-resistant container for detonation, and the container is hermetically sealed in a state in which a normal-pressure gas having an atmospheric composition and an explosive to be used coexist in the container. The container is made of, for example, iron, and the volume of the container is, for example, 0.5 to 40 m 3 . A mixture of trinitrotoluene (TNT) and cyclotrimethylenetrinitroamine or hexogen (RDX) can be used as explosive. The mass ratio between TNT and RDX (TNT / RDX) is, for example, in the range of 40/60 to 60/40.
 生成工程では、次に、電気雷管を起爆させ、容器内で爆薬を爆轟させる。爆轟の際、使用爆薬が部分的に不完全燃焼を起こして遊離した炭素を原料として、爆発で生じた衝撃波の圧力とエネルギーの作用によってND粒子が生成する。生成したND粒子は、隣接する一次粒子ないし結晶子の間がファンデルワールス力の作用に加えて結晶面間クーロン相互作用が寄与して非常に強固に集成し、凝着体を成す。 In the generation process, the electric detonator is then detonated, and the explosive is detonated in the container. At the time of detonation, ND particles are generated by the action of the pressure and energy of the shock wave generated by the explosion, using carbon released as a result of partial incomplete combustion of the explosive used as a raw material. In the generated ND particles, adjacent primary particles or crystallites are aggregated very strongly due to the Coulomb interaction between crystal planes in addition to the action of van der Waals force, thereby forming an aggregate.
 生成工程では、次に、室温において24時間程度放置することにより放冷し、容器およびその内部を降温させる。この放冷の後、容器の内壁に付着しているND粒子粗生成物(上述のようにして生成したND粒子の凝着体および煤を含む)をヘラで掻き取る作業を行うことによってND粒子粗生成物が得られる。 (4) In the production step, the container and the inside thereof are allowed to cool by being left at room temperature for about 24 hours to lower the temperature. After the cooling, the ND particles are adhered to the inner wall of the container by using a spatula to scrape the crude product of ND particles (including the ND particle aggregate and soot generated as described above) with a spatula. A crude product is obtained.
 (酸処理工程)
 酸処理工程は、原料であるND粒子粗生成物に例えば水溶媒中で強酸を作用させて金属酸化物を除去する工程である。爆轟法で得られるND粒子粗生成物には金属酸化物が含まれやすく、この金属酸化物は爆轟法に使用される容器等に由来するFe、Co、Ni等の酸化物である。例えば水溶媒中で所定の強酸を作用させることにより、ND粒子粗生成物から金属酸化物を溶解・除去することができる。この酸処理に用いる強酸としては鉱酸が好ましく、例えば、塩酸、フッ化水素酸、硫酸、硝酸、及びこれらの混合物等が挙げられる。酸処理で使用する強酸の濃度は例えば1~50質量%である。酸処理温度は例えば70~150℃である。酸処理時間は例えば0.1~24時間である。また、酸処理は、減圧下、常圧下、または加圧下で行うことが可能である。このような酸処理の後は、例えばデカンテーションにより、沈殿液のpHが例えば2~3に至るまで、固形分(ND凝着体を含む)の水洗を行うことが好ましい。爆轟法で得られるND粒子粗生成物における金属酸化物の含有量が少ない場合には、以上のような酸処理は省略してもよい。
(Acid treatment step)
The acid treatment step is a step of treating a crude ND particle product as a raw material with a strong acid in, for example, an aqueous solvent to remove a metal oxide. The crude product of ND particles obtained by the detonation method easily contains a metal oxide, and this metal oxide is an oxide of Fe, Co, Ni or the like derived from a container or the like used in the detonation method. For example, a metal oxide can be dissolved and removed from a crude product of ND particles by applying a predetermined strong acid in an aqueous solvent. As the strong acid used in the acid treatment, a mineral acid is preferable, and examples thereof include hydrochloric acid, hydrofluoric acid, sulfuric acid, nitric acid, and a mixture thereof. The concentration of the strong acid used in the acid treatment is, for example, 1 to 50% by mass. The acid treatment temperature is, for example, 70 to 150 ° C. The acid treatment time is, for example, 0.1 to 24 hours. Further, the acid treatment can be performed under reduced pressure, normal pressure, or increased pressure. After such an acid treatment, it is preferable to wash the solid content (including ND aggregates) with water, for example, by decantation until the pH of the precipitation liquid reaches, for example, 2 to 3. When the content of the metal oxide in the crude ND particle product obtained by the detonation method is small, the above acid treatment may be omitted.
 (酸化処理工程)
 酸化処理工程は、酸化剤を用いてND粒子粗生成物からグラファイトを除去する工程である。爆轟法で得られるND粒子粗生成物にはグラファイト(黒鉛)が含まれるが、このグラファイトは、使用爆薬が部分的に不完全燃焼を起こして遊離した炭素のうちND結晶を形成しなかった炭素に由来する。例えば上記の酸処理を経た後に、水溶媒中で所定の酸化剤を作用させることにより、ND粒子粗生成物からグラファイトを除去することができる。
(Oxidation treatment step)
The oxidation treatment step is a step of removing graphite from the crude ND particle product using an oxidizing agent. The crude product of ND particles obtained by the detonation method contains graphite (graphite), but this graphite did not form ND crystals among the released carbon due to partial incomplete combustion of the explosive used. Derived from carbon. For example, graphite can be removed from the crude ND particle product by allowing a predetermined oxidizing agent to act in a water solvent after the above-mentioned acid treatment.
 この酸化処理に用いられる酸化剤としては、例えば、クロム酸、無水クロム酸、二クロム酸、過マンガン酸、過塩素酸、硝酸、及びこれらの混合物や、これらから選択される少なくとも1種の酸と他の酸(例えば硫酸等)との混酸、及びこれらの塩が挙げられる。本発明においては、なかでも、混酸(特に、硫酸と硝酸との混酸)を使用することが、環境に優しく、且つグラファイトを酸化・除去する作用に優れる点で好ましい。 Examples of the oxidizing agent used in the oxidation treatment include chromic acid, chromic anhydride, dichromic acid, permanganic acid, perchloric acid, nitric acid, and mixtures thereof, and at least one acid selected from these. And other acids (for example, sulfuric acid and the like), and salts thereof. In the present invention, among them, it is preferable to use a mixed acid (particularly, a mixed acid of sulfuric acid and nitric acid) because it is environmentally friendly and has excellent action of oxidizing and removing graphite.
 前記混酸における硫酸と硝酸との混合割合(前者/後者;質量比)は、例えば60/40~95/5であることが、常圧付近の圧力(例えば、0.5~2atm)の下でも、例えば130℃以上(特に好ましくは150℃以上。尚、上限は、例えば200℃)の温度で、効率よくグラファイトを酸化して除去することができる点で好ましい。下限は、好ましくは65/35、特に好ましくは70/30である。また、上限は、好ましくは90/10、特に好ましくは85/15、最も好ましくは80/20である。 The mixing ratio of sulfuric acid and nitric acid in the mixed acid (former / latter; mass ratio) may be, for example, 60/40 to 95/5 even under a pressure near normal pressure (for example, 0.5 to 2 atm). For example, at a temperature of 130 ° C. or higher (especially preferably 150 ° C. or higher; the upper limit is, for example, 200 ° C.), it is preferable because graphite can be efficiently oxidized and removed. The lower limit is preferably 65/35, particularly preferably 70/30. The upper limit is preferably 90/10, particularly preferably 85/15, and most preferably 80/20.
 混酸における硝酸の割合が上記範囲を上回ると、高沸点を有する硫酸の含有量が少なくなるため、常圧付近の圧力下では、反応温度が例えば120℃以下となり、グラファイトの除去効率が低下する傾向がある。一方、混酸における硝酸の割合が上記範囲を下回ると、グラファイトの酸化に大きく貢献する硝酸の含有量が少なくなるため、グラファイトの除去効率が低下する傾向がある。 When the ratio of nitric acid in the mixed acid exceeds the above range, the content of sulfuric acid having a high boiling point is reduced. Therefore, under a pressure near normal pressure, the reaction temperature becomes, for example, 120 ° C. or lower, and the efficiency of removing graphite tends to decrease. There is. On the other hand, if the ratio of nitric acid in the mixed acid falls below the above range, the content of nitric acid that greatly contributes to the oxidation of graphite decreases, and the efficiency of graphite removal tends to decrease.
 酸化剤(特に、前記混酸)の使用量は、ND粒子粗生成物1質量部に対して例えば10~50質量部、好ましくは15~40質量部、特に好ましくは20~40質量部である。また、前記混酸中の硫酸の使用量は、ND粒子粗生成物1質量部に対して例えば5~48質量部、好ましくは10~35質量部、特に好ましくは15~30質量部であり、前記混酸中の硝酸の使用量は、ND粒子粗生成物1質量部に対して例えば2~20質量部、好ましくは4~10質量部、特に好ましくは5~8質量部である。 The amount of the oxidizing agent (particularly, the mixed acid) is, for example, 10 to 50 parts by mass, preferably 15 to 40 parts by mass, and particularly preferably 20 to 40 parts by mass with respect to 1 part by mass of the crude ND particle product. The amount of sulfuric acid used in the mixed acid is, for example, 5 to 48 parts by mass, preferably 10 to 35 parts by mass, particularly preferably 15 to 30 parts by mass with respect to 1 part by mass of the crude product of ND particles. The amount of nitric acid used in the mixed acid is, for example, 2 to 20 parts by mass, preferably 4 to 10 parts by mass, and particularly preferably 5 to 8 parts by mass with respect to 1 part by mass of the crude ND particle product.
 また、酸化剤として前記混酸を使用する場合、混酸と共に触媒を使用しても良い。触媒を使用することにより、グラファイトの除去効率を一層向上することができる。前記触媒としては、例えば、炭酸銅(II)等が挙げられる。触媒の使用量は、ND粒子粗生成物100質量部に対して例えば0.01~10質量部程度である。 場合 When the mixed acid is used as the oxidizing agent, a catalyst may be used together with the mixed acid. By using a catalyst, the efficiency of removing graphite can be further improved. Examples of the catalyst include copper (II) carbonate. The amount of the catalyst to be used is, for example, about 0.01 to 10 parts by mass based on 100 parts by mass of the crude ND particle product.
 酸化処理温度は例えば100~200℃である。酸化処理時間は例えば1~24時間である。酸化処理は、減圧下、常圧下、または加圧下で行うことが可能である。 The oxidation treatment temperature is, for example, 100 to 200 ° C. The oxidation treatment time is, for example, 1 to 24 hours. The oxidation treatment can be performed under reduced pressure, normal pressure, or increased pressure.
 (乾燥工程)
 本方法では、次に、乾燥工程を設けることが好ましく、例えば、上記工程を経て得られた親水性官能基を有する親水性ND粒子含有溶液から噴霧乾燥装置やエバポレーター等を使用して液分を蒸発させた後、これによって生じる残留固形分を乾燥用オーブン内での加熱乾燥によって乾燥させる。加熱乾燥温度は、例えば40~150℃である。このような乾燥工程を経ることにより、ND粉体が得られる。
(Drying process)
In the present method, it is preferable to provide a drying step, for example, using a spray drying device or an evaporator, etc., from the solution containing hydrophilic ND particles having a hydrophilic functional group obtained through the above steps, After evaporation, the resulting residual solids are dried by heating in a drying oven. The heating and drying temperature is, for example, 40 to 150 ° C. Through such a drying step, ND powder is obtained.
 (酸素酸化工程)
 酸素酸化工程では、ガス雰囲気炉を使用してND粉体を酸素を含有する所定組成のガス雰囲気下にて加熱する。具体的には、ガス雰囲気炉内にND粉体が配され、当該炉に対して酸素含有ガスが供給ないし通流され、加熱温度として設定された温度条件まで当該炉内が昇温されて酸素酸化処理が実施される。
(Oxygen oxidation step)
In the oxygen oxidation step, the ND powder is heated in a gas atmosphere having a predetermined composition containing oxygen using a gas atmosphere furnace. Specifically, ND powder is placed in a gas atmosphere furnace, an oxygen-containing gas is supplied to or passed through the furnace, and the inside of the furnace is heated to a temperature condition set as a heating temperature, and oxygen is supplied. An oxidation treatment is performed.
 酸素酸化処理の温度条件は、例えば250~500℃である。ネガティブのゼータ電位を有する親水性ND粒子を得るためには、この酸素酸化処理の温度条件は、比較的に高温であることが好ましく、例えば400~450℃である。また、前記酸素含有ガスは、酸素に加えて不活性ガスを含有する混合ガスである。不活性ガスとしては、例えば、窒素、アルゴン、二酸化炭素、およびヘリウムが挙げられる。当該混合ガスの酸素濃度は、例えば1~35体積%である。 温度 The temperature condition of the oxygen oxidation treatment is, for example, 250 to 500 ° C. In order to obtain hydrophilic ND particles having a negative zeta potential, the temperature condition of the oxygen oxidation treatment is preferably relatively high, for example, 400 to 450 ° C. The oxygen-containing gas is a mixed gas containing an inert gas in addition to oxygen. Inert gases include, for example, nitrogen, argon, carbon dioxide, and helium. The oxygen concentration of the mixed gas is, for example, 1 to 35% by volume.
 (水素化工程)
 また、ポジティブのゼータ電位を有する親水性ND粒子を所望する場合には、上述の酸素酸化工程の後に水素化工程を行う。水素化工程では、酸素酸化工程を経たND粉体について、ガス雰囲気炉を使用して、水素を含有する所定組成のガス雰囲気下にて加熱する。具体的には、ND粉体が内部に配されているガス雰囲気炉に対して水素含有ガスが供給ないし通流され、加熱温度として設定された温度条件まで当該炉内が昇温されて水素化処理が実施される。この水素化処理の温度条件は、例えば400~800℃である。また、本実施形態で用いられる水素含有ガスは、水素に加えて不活性ガスを含有する混合ガスである。不活性ガスとしては、例えば、窒素、アルゴン、二酸化炭素、およびヘリウムが挙げられる。当該混合ガスの水素濃度は、例えば1~50体積%である。
(Hydrogenation process)
When hydrophilic ND particles having a positive zeta potential are desired, a hydrogenation step is performed after the above-described oxygen oxidation step. In the hydrogenation step, the ND powder that has undergone the oxygen oxidation step is heated using a gas atmosphere furnace under a gas atmosphere having a predetermined composition containing hydrogen. Specifically, a hydrogen-containing gas is supplied to or passed through a gas atmosphere furnace in which the ND powder is disposed, and the inside of the furnace is heated to a temperature condition set as a heating temperature to cause hydrogenation. Processing is performed. Temperature conditions for this hydrogenation treatment are, for example, 400 to 800 ° C. The hydrogen-containing gas used in the present embodiment is a mixed gas containing an inert gas in addition to hydrogen. Inert gases include, for example, nitrogen, argon, carbon dioxide, and helium. The hydrogen concentration of the mixed gas is, for example, 1 to 50% by volume.
 (解砕工程)
 以上のような一連の過程を経て精製された後であっても、親水性ND粒子は、一次粒子間が非常に強く相互作用して集成している凝着体(二次粒子)の形態をとる場合が多い。そのため、解砕工程を行い凝着体から一次粒子を分離させることが好ましい。具体的には、まず、酸素酸化工程またはその後の水素化工程を経たND粉体を純水に懸濁し、親水性官能基(OH、COOH、NHなど)を有するND粒子を含有するスラリーを調製する。スラリーの調製にあたっては、比較的に大きな集成体を親水性ND粒子懸濁液から除去するために遠心分離処理を行ってもよいし、親水性官能基を有するND粒子懸濁液に超音波処理を施してもよい。そして、当該スラリーを湿式の解砕処理に付す。解砕処理は、例えば、高剪断ミキサー、ハイシアーミキサー、ホモミキサー、ボールミル、ビーズミル、高圧ホモジナイザー、超音波ホモジナイザー、またはコロイドミルを使用して行うことができる。これらを組み合わせて解砕処理を実施してもよい。効率性の観点からはビーズミルを使用するのが好ましい。
(Crushing process)
Even after purification through a series of processes as described above, the hydrophilic ND particles are in the form of aggregates (secondary particles) in which primary particles have very strong interaction and are aggregated. Often taken. Therefore, it is preferable to perform a crushing step to separate the primary particles from the adherend. Specifically, first, ND powder having undergone the oxygen oxidation step or the subsequent hydrogenation step is suspended in pure water, and a slurry containing ND particles having a hydrophilic functional group (OH, COOH, NH 2, etc.) is prepared. Prepare. In preparing the slurry, centrifugation may be performed to remove relatively large aggregates from the hydrophilic ND particle suspension, or ultrasonic treatment may be performed on the ND particle suspension having a hydrophilic functional group. May be applied. Then, the slurry is subjected to a wet crushing treatment. The crushing treatment can be performed using, for example, a high shear mixer, a high shear mixer, a homomixer, a ball mill, a bead mill, a high-pressure homogenizer, an ultrasonic homogenizer, or a colloid mill. The disintegration treatment may be performed by combining these. It is preferable to use a bead mill from the viewpoint of efficiency.
 このような解砕工程を経ることによって、親水性官能基を有するND一次粒子を含有するND粒子水分散液を得ることができる。解砕工程を経て得られる分散液については、粗大粒子を除去するために分級操作を行ってもよい。例えば分級装置を使用して、遠心分離を利用した分級操作によって分散液から粗大粒子を除去することができる。 に よ っ て Through such a disintegration step, an ND particle aqueous dispersion containing ND primary particles having a hydrophilic functional group can be obtained. The dispersion obtained through the pulverizing step may be subjected to a classification operation in order to remove coarse particles. For example, coarse particles can be removed from the dispersion by a classification operation using centrifugation using a classification device.
 (乾燥工程)
 本方法では、次に、乾燥工程を設けることが好ましく、例えば、上記工程を経て得られた親水性官能基を有するND粒子水分散液から噴霧乾燥装置やエバポレーター等を使用して液分を蒸発させた後、これによって生じる残留固形分を乾燥用オーブン内での加熱乾燥によって乾燥させる。加熱乾燥温度は、例えば40~150℃である。このような乾燥工程を経ることにより、粉体として親水性官能基を含むND粒子が得られる。
(Drying process)
In the present method, it is preferable to provide a drying step, for example, evaporating the liquid component from the aqueous dispersion of ND particles having a hydrophilic functional group obtained through the above step using a spray dryer or an evaporator. After drying, the resulting residual solids are dried by heating and drying in a drying oven. The heating and drying temperature is, for example, 40 to 150 ° C. Through such a drying step, ND particles containing a hydrophilic functional group are obtained as a powder.
 (修飾工程)
 ポリグリセリン鎖で修飾された親水性ND粒子は、例えば、上記工程を経て得られた親水性官能基を有するND粒子に直接グリシドールを開環重合させることにより得ることができる。ND粒子はその表面に製造過程で生じるカルボキシル基や水酸基を有しており、これらの官能基とグリシドールを反応させることにより、NDの表面を親水性高分子によって修飾できる。
(Modification process)
The hydrophilic ND particles modified with a polyglycerin chain can be obtained, for example, by directly performing ring-opening polymerization of glycidol on ND particles having a hydrophilic functional group obtained through the above steps. The ND particles have a carboxyl group or a hydroxyl group generated during the manufacturing process on the surface thereof, and the surface of the ND can be modified with a hydrophilic polymer by reacting these functional groups with glycidol.
 親水性官能基を有するND粒子とグリシドールとの反応(開環重合)は、例えば、不活性ガス雰囲気下で親水性官能基を有するND粒子にグリシドール及び触媒を添加し、50~100℃に加熱することによって行うことができる。前記触媒としては、酸性触媒や塩基性触媒を用いることができる。前記酸性触媒としては、例えば、トリフルオロホウ素エーテラート、酢酸、リン酸等が挙げられ、塩基性触媒としては、例えば、トリエチルアミン、ピリジン、ジメチルアミノピリジン、トリフェニルホスフィン等が挙げられる。 The reaction (ring-opening polymerization) between ND particles having a hydrophilic functional group and glycidol is performed, for example, by adding glycidol and a catalyst to ND particles having a hydrophilic functional group under an inert gas atmosphere and heating to 50 to 100 ° C. Can be done by doing As the catalyst, an acidic catalyst or a basic catalyst can be used. Examples of the acidic catalyst include trifluoroboron etherate, acetic acid, and phosphoric acid, and examples of the basic catalyst include triethylamine, pyridine, dimethylaminopyridine, and triphenylphosphine.
 開環重合に付すグリシドールの使用量は、親水性官能基を有するND粒子1質量部に対して、例えば20質量部以上であり、好ましくは20~150質量部である。グリシドールの使用量が上記範囲を下回ると十分な分散性が得られにくくなる傾向がある。 グ リ The amount of glycidol used for ring-opening polymerization is, for example, 20 parts by mass or more, and preferably 20 to 150 parts by mass, per 1 part by mass of ND particles having a hydrophilic functional group. If the amount of glycidol is less than the above range, sufficient dispersibility tends to be hardly obtained.
 反応終了後、得られた反応生成物は、例えば、濾過、遠心分離、抽出、水洗、中和等や、これらを組み合わせた手段により精製処理を施すことが好ましい。これにより、本発明における親水性ND粒子分散液(好ましくは、親水性ND粒子水分散液)が得られる。グリシドールはポリグリセリンで修飾したND粒子の製造に用いられるが、ポリグリセリン以外の親水性高分子で修飾したND粒子、或いは、親水性高分子で修飾されたND粒子は、上記の記載及び公知技術を参照することで当業者であれば容易に製造できる。 後 After completion of the reaction, the obtained reaction product is preferably subjected to a purification treatment by, for example, filtration, centrifugation, extraction, washing with water, neutralization, or a combination thereof. Thereby, a hydrophilic ND particle dispersion liquid (preferably, a hydrophilic ND particle aqueous dispersion liquid) in the present invention is obtained. Glycidol is used for the production of ND particles modified with polyglycerin. However, ND particles modified with a hydrophilic polymer other than polyglycerin, or ND particles modified with a hydrophilic polymer are described in the above description and in the known art. Can be easily manufactured by those skilled in the art by referring to.
 [電子部品]
 本発明の電子部品は、上記卑金属めっき膜を備えることを特徴とする。本発明の電子部品は、上記卑金属めっき膜以外にも他のめっき膜を有していてもよく、例えば、下地めっき膜を1層又は2層以上有していてもよい。本発明の電子部品には例えば、携帯情報端末(PDA)や携帯電話等の電子機器用接続部品(例えば、コネクタ等)が含まれる。
[Electronic components]
An electronic component according to the present invention includes the base metal plating film. The electronic component of the present invention may have another plating film other than the base metal plating film. For example, the electronic component may have one or more base plating films. The electronic component of the present invention includes, for example, a connection component (for example, a connector or the like) for an electronic device such as a personal digital assistant (PDA) or a mobile phone.
 [光沢剤]
 本発明の卑金属めっき膜の光沢剤は、上記親水性ND粒子を含むことを特徴とする。
[Brightener]
The brightener of the base metal plating film according to the present invention is characterized by containing the hydrophilic ND particles.
 前記光沢剤は、上記親水性ND粒子以外にも他の成分を含有していても良いが、光沢剤全量における上記親水性ND粒子の含有量の占める割合は、例えば50質量%以上、好ましくは60質量%以上、特に好ましくは70質量%以上、最も好ましくは80質量%以上、とりわけ好ましくは90質量%以上である。 The brightener may contain other components in addition to the hydrophilic ND particles, but the proportion of the content of the hydrophilic ND particles in the total amount of the brightener is, for example, 50% by mass or more, preferably It is at least 60% by mass, particularly preferably at least 70% by mass, most preferably at least 80% by mass, particularly preferably at least 90% by mass.
 [酸化防止剤]
 本発明の卑金属めっき膜の酸化防止剤は、上記親水性ND粒子を含むことを特徴とする。
[Antioxidant]
The antioxidant for the base metal plating film of the present invention is characterized by containing the hydrophilic ND particles.
 前記酸化防止剤は、上記親水性ND粒子以外にも他の成分を含有していても良いが、酸化防止剤全量における上記親水性ND粒子の含有量の占める割合は、例えば50質量%以上、好ましくは60質量%以上、特に好ましくは70質量%以上、最も好ましくは80質量%以上、とりわけ好ましくは90質量%以上である。 The antioxidant may contain other components in addition to the hydrophilic ND particles, but the proportion of the content of the hydrophilic ND particles in the total amount of the antioxidant is, for example, 50% by mass or more, It is preferably at least 60% by mass, particularly preferably at least 70% by mass, most preferably at least 80% by mass, particularly preferably at least 90% by mass.
 以下、実施例により本発明をより具体的に説明するが、本発明はこれらの実施例により限定されるものではない。尚、ND粒子濃度、粒径、及びゼータ電位は以下の方法で測定した。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. The ND particle concentration, particle size, and zeta potential were measured by the following methods.
 〈ND粒子濃度〉
 ND粒子水分散液のND粒子濃度は、秤量した分散液3~5gの当該秤量値と、当該秤量分散液から加熱によって水分を蒸発させた後に残留する乾燥物(粉体)について精密天秤によって秤量した値とに基づき、算出した。
<ND particle concentration>
The ND particle concentration of the aqueous ND particle dispersion is determined by a precision balance with respect to the weighed values of 3 to 5 g of the weighed dispersion and the dried matter (powder) remaining after the water is evaporated from the weighed dispersion by heating. Calculated based on the calculated values.
 〈粒径〉
 ND粒子水分散液や卑金属めっき浴中に含まれるND粒子の粒径(メディアン径、D10、D50、及びD90)は、Malvern社製の装置(商品名「ゼータサイザー ナノZS」)を使用して、動的光散乱法(非接触後方散乱法)によって測定した。
<Particle size>
The particle size (median diameter, D10, D50, and D90) of the ND particles contained in the ND particle aqueous dispersion or the base metal plating bath is determined by using an apparatus manufactured by Malvern (trade name “Zetasizer Nano ZS”). Was measured by a dynamic light scattering method (non-contact back scattering method).
 〈ゼータ電位〉
 ND粒子水分散液に含まれるND粒子のゼータ電位は、Malvern社製の装置(商品名「ゼータサイザー ナノZS」)を使用して、レーザードップラー式電気泳動法によって測定した。測定に付されたND粒子水分散液は、ND粒子濃度が0.2質量%となるように超純水で希釈された後に超音波洗浄機による超音波照射を経たものであり、ゼータ電位測定温度は25℃である。
<Zeta potential>
The zeta potential of the ND particles contained in the ND particle aqueous dispersion was measured by a laser Doppler electrophoresis using an apparatus manufactured by Malvern (trade name “Zetasizer Nano ZS”). The aqueous dispersion of ND particles subjected to the measurement was diluted with ultrapure water so that the ND particle concentration became 0.2% by mass, and then subjected to ultrasonic irradiation by an ultrasonic cleaner, and the zeta potential measurement was performed. The temperature is 25 ° C.
 調製例1
 以下の工程を経て、親水性ND粒子水分散液を作製した。
Preparation Example 1
Through the following steps, an aqueous dispersion of hydrophilic ND particles was prepared.
 (生成工程)
 まず、成形された爆薬に電気雷管が装着されたものを爆轟用の耐圧性容器(鉄製、容積:15m)の内部に設置して容器を密閉した。爆薬としては、TNTとRDXとの混合物(TNT/RDX(質量比)=50/50)0.50kgを使用した。次に、電気雷管を起爆させ、容器内で爆薬を爆轟させた。次に、室温で24時間放置して、容器およびその内部を降温させた。この放冷の後、容器の内壁に付着しているND粒子粗生成物(上記爆轟法で生成したND粒子の凝着体と煤を含む)を回収してND粒子粗生成物を得た。
(Generation process)
First, a molded explosive equipped with an electric detonator was placed inside a pressure-resistant container for detonation (iron, volume: 15 m 3 ), and the container was sealed. As an explosive, 0.50 kg of a mixture of TNT and RDX (TNT / RDX (mass ratio) = 50/50) was used. Next, the electric detonator was detonated, and the explosive was detonated in the container. Next, it was left at room temperature for 24 hours to lower the temperature of the container and the inside thereof. After the cooling, the crude ND particle product (including the ND particle aggregate and soot generated by the detonation method) attached to the inner wall of the container was recovered to obtain a crude ND particle product. .
 (酸処理工程)
 次に、上記工程で得たND粒子粗生成物に対して酸処理を行った。具体的には、当該ND粒子粗生成物200gに6Lの10質量%塩酸を加えて得られたスラリーに対し、常圧条件での還流下で1時間の加熱処理(加熱温度:85~100℃)を行った。次に、冷却後、デカンテーションにより、固形分(ND凝着体と煤を含む)の水洗を行った。沈殿液のpHが低pH側から2に至るまで、デカンテーションによる当該固形分の水洗を反復して行った。
(Acid treatment step)
Next, an acid treatment was performed on the crude ND particle product obtained in the above step. Specifically, a slurry obtained by adding 6 L of 10% by mass hydrochloric acid to 200 g of the crude ND particle product is subjected to a heat treatment under reflux under normal pressure conditions for 1 hour (heating temperature: 85 to 100 ° C.). ) Was done. Next, after cooling, the solid content (including the ND cohesion and soot) was washed with water by decantation. The washing of the solid by decantation was repeatedly performed until the pH of the precipitation solution reached 2 from the low pH side.
 (酸化処理工程)
 次に、混酸処理を行った。具体的には、酸処理後のデカンテーションを経て得た沈殿液(ND凝着体を含む)に、6Lの98質量%硫酸水溶液と1Lの69質量%硝酸水溶液とを加えてスラリーとした後、このスラリーに対し、常圧条件及び還流下において48時間の加熱処理(加熱温度:140~160℃)を行った。次に、冷却後、デカンテーションにより、固形分(ND凝着体を含む)の水洗を行った。水洗当初の上澄み液は着色していたが、上澄み液が目視で透明になるまで、デカンテーションによる当該固形分の水洗を反復して行った。
(Oxidation treatment step)
Next, a mixed acid treatment was performed. Specifically, 6 L of a 98% by mass aqueous sulfuric acid solution and 1 L of a 69% by mass aqueous solution of nitric acid are added to a precipitation liquid (including ND cohesive bodies) obtained through decantation after acid treatment to form a slurry. The slurry was subjected to a heat treatment (heating temperature: 140 to 160 ° C.) for 48 hours under normal pressure and under reflux. Next, after cooling, the solid content (including the ND cohesion) was washed with water by decantation. Although the supernatant at the beginning of the washing was colored, the washing of the solid by decantation was repeated until the supernatant became visually transparent.
 (乾燥工程)
 次に、上述の水洗処理を経て得られた親水性官能基を有するND粒子含有液1000mLを、噴霧乾燥装置(商品名「スプレードライヤー B-290」、日本ビュッヒ(株)製)を使用して噴霧乾燥に付した。これにより、50gのND粉体を得た。
(Drying process)
Next, 1000 mL of the ND particle-containing liquid having a hydrophilic functional group obtained through the above-mentioned water washing treatment was applied using a spray drying apparatus (trade name “Spray Dryer B-290”, manufactured by Nippon Buch Co., Ltd.). Spray dried. Thereby, 50 g of ND powder was obtained.
 (酸素酸化工程)
 次に、上述のようにして得られたND粉体4.5gをガス雰囲気炉(商品名「ガス雰囲気チューブ炉 KTF045N1」、光洋サーモシステム(株)製)の炉心管内に静置し、炉心管に窒素ガスを流速1L/分で30分間通流させ続けた後、通流ガスを窒素から酸素と窒素との混合ガスへと切り替えて当該混合ガスを流速1L/分で炉心管に通流させ続けた。混合ガス中の酸素濃度は4体積%である。混合ガスへの切り替えの後、炉内を加熱設定温度たる400℃まで昇温させた。昇温速度については、加熱設定温度より20℃低い380℃までは10℃/分とし、その後の380℃から400℃までは1℃/分とした。そして、炉内の温度条件を400℃に維持しつつ、炉内のND粉体について酸素酸化処理を行った。処理時間は3時間とした。
(Oxygen oxidation step)
Next, 4.5 g of the ND powder obtained as described above was allowed to stand still in a furnace tube of a gas atmosphere furnace (trade name: “Gas atmosphere tube furnace KTF045N1”, manufactured by Koyo Thermo System Co., Ltd.). After flowing nitrogen gas at a flow rate of 1 L / min for 30 minutes, the flowing gas is switched from nitrogen to a mixed gas of oxygen and nitrogen, and the mixed gas is passed through the reactor core tube at a flow rate of 1 L / min. Continued. The oxygen concentration in the mixed gas is 4% by volume. After switching to the mixed gas, the inside of the furnace was heated up to a heating set temperature of 400 ° C. The heating rate was 10 ° C./min up to 380 ° C., which is 20 ° C. lower than the set heating temperature, and 1 ° C./min from 380 ° C. to 400 ° C. thereafter. Then, while maintaining the temperature condition in the furnace at 400 ° C., the ND powder in the furnace was subjected to oxygen oxidation treatment. The processing time was 3 hours.
 酸素酸化処理後、下記FT-IR分析により、ND粒子におけるカルボキシ基等の含酸素官能基の評価を行った。この分析で得られたスペクトルより、C=O伸縮振動に帰属する1780cm-1付近の吸収がメインピークとして検出された。このことから、前記ND粉体には、表面官能基として複数のカルボキシル基を有するND粒子(ND-COOH)が主に含まれることが確認できた。 After the oxygen oxidation treatment, oxygen-containing functional groups such as carboxy groups in the ND particles were evaluated by FT-IR analysis described below. From the spectrum obtained by this analysis, an absorption near 1780 cm −1 attributed to C = O stretching vibration was detected as a main peak. From this, it was confirmed that the ND powder mainly contained ND particles (ND-COOH) having a plurality of carboxyl groups as surface functional groups.
 <FT-IR分析条件>
 FT-IR装置(商品名「Spectrum400型FT-IR」、(株)パーキンエルマージャパン製)を使用して、フーリエ変換赤外分光分析(FT-IR)を行った。本測定においては、試料を真空雰囲気下で150℃に加熱しつつ赤外吸収スペクトルを測定した。真空雰囲気下の加熱には、エス・ティ・ジャパン社製のModel-HC900型Heat ChamberとTC-100WA型Thermo Controllerとを併用した。
<FT-IR analysis conditions>
Fourier transform infrared spectroscopy (FT-IR) was performed using an FT-IR apparatus (trade name “Spectrum400 type FT-IR”, manufactured by Perkin Elmer Japan Co., Ltd.). In this measurement, the infrared absorption spectrum was measured while heating the sample to 150 ° C. in a vacuum atmosphere. For heating in a vacuum atmosphere, Model-HC900 Heat Chamber and TC-100WA Thermo Controller manufactured by ST Japan Co., Ltd. were used in combination.
 (解砕工程)
 まず、酸素酸化工程を経たND粉体0.3gと純水29.7mLとを50mLのサンプル瓶内で混合し、スラリー約30mLを得た。次に、当該スラリーについて、1Nの水酸化ナトリウム水溶液の添加によりpHを調整した後、超音波照射器(商品名「超音波洗浄機 AS-3」、アズワン(AS ONE)社製)を使用して2時間の超音波照射を行った。この後、ビーズミリング装置(商品名「並列四筒式サンドグラインダー LSG-4U-2L型」、アイメックス(株)製)を使用してビーズミリングを行った。具体的には、100mLのミル容器であるベッセル(アイメックス(株)製)に超音波照射後のスラリー30mLと直径30μmのジルコニアビーズとを封入し、装置を駆動させてビーズミリングを実行した。このビーズミリングにおいて、ジルコニアビーズの投入量は、ミル容器の容積に対して約33%であり、ミル容器の回転速度は2570rpmであり、ミリング時間は2時間である。
(Crushing process)
First, 0.3 g of the ND powder having undergone the oxygen oxidation step and 29.7 mL of pure water were mixed in a 50 mL sample bottle to obtain about 30 mL of a slurry. Next, after adjusting the pH of the slurry by adding a 1N aqueous solution of sodium hydroxide, an ultrasonic irradiator (trade name “Ultrasonic cleaner AS-3”, manufactured by AS ONE) is used. For 2 hours. Thereafter, bead milling was performed using a bead milling device (trade name: "parallel four-cylinder sand grinder LSG-4U-2L", manufactured by Imex Co., Ltd.). Specifically, 30 mL of the slurry after the ultrasonic irradiation and zirconia beads having a diameter of 30 μm were sealed in a vessel (manufactured by Imex Co., Ltd.), which is a 100 mL mill container, and the apparatus was driven to perform bead milling. In this bead milling, the input amount of zirconia beads is about 33% based on the volume of the mill container, the rotation speed of the mill container is 2570 rpm, and the milling time is 2 hours.
 次に、解砕工程を経たスラリーについて、遠心分離装置を使用して遠心分離処理を行った(分級操作)。この遠心分離処理における遠心力は20000×gとし、遠心時間は10分間とした。 Next, the slurry that had undergone the crushing step was subjected to centrifugation using a centrifugal separator (classification operation). The centrifugal force in this centrifugation treatment was 20,000 × g, and the centrifugation time was 10 minutes.
 次に、当該遠心分離処理を経たND粒子含有溶液の上清25mLを回収し、ND粒子水分散液(ND-COOH)を得た。ND粒子水分散液中のND粒子濃度は11.8g/Lであった。また、pH試験紙(商品名「スリーバンドpH試験紙」、アズワン(株)製)を使用して測定したところ、pHは9.33であった。粒径D50は3.97nm、粒径D90は7.20nm、ゼータ電位は-42mVであった。 Next, 25 mL of the supernatant of the ND particle-containing solution that had undergone the centrifugation treatment was collected to obtain an ND particle aqueous dispersion (ND-COOH). The ND particle concentration in the ND particle aqueous dispersion was 11.8 g / L. Further, the pH was measured using pH test paper (trade name “Three Band pH Test Paper”, manufactured by AS ONE Corporation) and found to be 9.33. The particle size D50 was 3.97 nm, the particle size D90 was 7.20 nm, and the zeta potential was -42 mV.
 (修飾工程)
 上記で得られたND粒子水分散液を、エバポレーターを使用して乾燥させ、黒色の乾燥粉体を得た。得られた乾燥粉体(100mg)を、ガラス製反応器に入れた12mLのグリシドール中に添加し、超音波洗浄器(商品名「BRANSON2510」、マーシャルサイエンティフィック社製)にて、室温で2時間、超音波処理して溶解させた。これを窒素雰囲気下で撹拌しつつ、140℃で20時間反応させた。反応混合液を冷却後、120mLのメタノールを加え、超音波処理した後、50400Gで2時間遠心分離し、沈殿物を得た。この沈殿物に対して、120mLのメタノールを加え、同様に洗浄-遠心分離工程を5回繰り返し、最後に沈殿物に対して透析膜(Spectra/Prodialysis membrane, MWCO: 12-14 kDa)を用いて純水透析を行い、残留メタノールを水に置換して凍結乾燥し、ポリグリセリンで修飾された親水性ND粒子(PG-ND粒子)の灰色粉体を得た。
(Modification process)
The aqueous dispersion of ND particles obtained above was dried using an evaporator to obtain a black dry powder. The obtained dry powder (100 mg) was added to 12 mL of glycidol in a glass reactor, and was added at room temperature with an ultrasonic cleaner (trade name “BRANSON2510”, manufactured by Marshall Scientific). Dissolved by sonication for hours. This was reacted at 140 ° C. for 20 hours while stirring under a nitrogen atmosphere. After cooling the reaction mixture, 120 mL of methanol was added thereto, followed by sonication, followed by centrifugation at 50,400 G for 2 hours to obtain a precipitate. 120 mL of methanol was added to the precipitate, and the washing-centrifugation step was repeated 5 times in the same manner. Finally, the precipitate was subjected to a dialysis membrane (Spectra / Prodialysis membrane, MWCO: 12-14 kDa). Pure water dialysis was performed, the residual methanol was replaced with water, and the resultant was freeze-dried to obtain a gray powder of hydrophilic ND particles (PG-ND particles) modified with polyglycerin.
 TG-DTA熱分析により、ND粒子と表面修飾基の比率を測定した結果、ND粒子:表面修飾基=1:0.7であった。 比率 The ratio of ND particles to surface modifying groups was measured by TG-DTA thermal analysis. As a result, ND particles: surface modifying groups = 1: 0.7.
 PG-ND灰色粉体と水を加え、ND粒子の質量を基準として、10g/Lになるように濃度調整してPG-ND粒子水分散液を得た。 PG-ND gray powder and water were added, and the concentration was adjusted to 10 g / L based on the mass of the ND particles to obtain an aqueous dispersion of PG-ND particles.
 〔実施例1〕
 調製例1で得られたPG-ND粒子水分散液を、銅めっき液(商品名「電解めっき液」、清川めっき工業(株)製)に添加してめっき浴(1)(めっき浴中のPG-ND粒子濃度:1g/L、CuSO・5HO濃度5質量%)を得た。
[Example 1]
The aqueous dispersion of PG-ND particles obtained in Preparation Example 1 was added to a copper plating solution (trade name "electrolytic plating solution", manufactured by Kiyokawa Plating Industry Co., Ltd.), and plating bath (1) (in the plating bath) PG-ND particle concentration: was obtained 1 g / L, the CuSO 4 · 5H 2 O concentration of 5 wt%).
 めっき浴(1)中のPG-ND粒子の粒径を測定したところ、粒径(D10)は30nm、粒径(D50)は44nm、粒径(D90)は76nmであった。 When the particle diameter of the PG-ND particles in the plating bath (1) was measured, the particle diameter (D10) was 30 nm, the particle diameter (D50) was 44 nm, and the particle diameter (D90) was 76 nm.
 めっき浴(1)は透明であり、濁りは全くなかった。 Plating bath (1) was transparent and free from turbidity.
 めっき膜形成対象部材としての真鍮板(縦20mm×横20mm×厚さ1mm)[清川めっき工業(株)製]について、脱脂洗浄を行った。 真 A brass plate (20 mm long × 20 mm wide × 1 mm thick) [manufactured by Kiyokawa Plating Industry Co., Ltd.] as a plating film forming target member was degreased and washed.
 この真鍮板を、めっき浴(1)を用いて、pH0.1、液温28℃、電流密度2A/dmの条件下で、撹拌しながら20分間めっきして、真鍮板上に銅-ND粒子複合材料からなるめっき膜(銅めっき膜)を形成させた(陰極:真鍮板、陽極:銅板)。得られた銅めっき膜を有する真鍮板は、ND粒子が均一に高分散しており、表面が平滑であった。 This brass plate was plated in a plating bath (1) under the conditions of pH 0.1, a liquid temperature of 28 ° C. and a current density of 2 A / dm 2 for 20 minutes with stirring, and copper-ND was placed on the brass plate. A plating film (copper plating film) made of a particle composite material was formed (cathode: brass plate, anode: copper plate). In the brass plate having the obtained copper plating film, ND particles were uniformly and highly dispersed, and the surface was smooth.
 〔実施例2〕
 調製例1で得られたPG-ND粒子水分散液の添加量を変更した以外は実施例1と同様にしてめっき浴(2)(めっき浴中のPG-ND粒子濃度:0.5g/L)を得、得られためっき浴(2)を使用した以外は実施例1と同様にして銅めっき膜を有する真鍮板を得た。
[Example 2]
Plating bath (2) (concentration of PG-ND particles in plating bath: 0.5 g / L) in the same manner as in Example 1 except that the amount of the aqueous dispersion of PG-ND particles obtained in Preparation Example 1 was changed. ), And a brass plate having a copper plating film was obtained in the same manner as in Example 1 except that the obtained plating bath (2) was used.
 〔実施例3〕
 調製例1で得られたPG-ND粒子水分散液の添加量を変更した以外は実施例1と同様にしてめっき浴(3)(めっき浴中のPG-ND粒子濃度:0.2g/L)を得、得られためっき浴(3)を使用した以外は実施例1と同様にして銅めっき膜を有する真鍮板を得た。
[Example 3]
Plating bath (3) (concentration of PG-ND particles in plating bath: 0.2 g / L) in the same manner as in Example 1 except that the amount of the aqueous dispersion of PG-ND particles obtained in Preparation Example 1 was changed. ), And a brass plate having a copper plating film was obtained in the same manner as in Example 1 except that the obtained plating bath (3) was used.
 〔実施例4〕
 調製例1で得られたPG-ND粒子水分散液の添加量を変更した以外は実施例1と同様にしてめっき浴(4)(めっき浴中のPG-ND粒子濃度:0.1g/L)を得、得られためっき浴(4)を使用した以外は実施例1と同様にして銅めっき膜を有する真鍮板を得た。
[Example 4]
Plating bath (4) (concentration of PG-ND particles in plating bath: 0.1 g / L) in the same manner as in Example 1 except that the amount of the aqueous dispersion of PG-ND particles obtained in Preparation Example 1 was changed. ), And a brass plate having a copper plating film was obtained in the same manner as in Example 1 except that the obtained plating bath (4) was used.
 〔実施例5〕
 調製例1で得られたPG-ND粒子水分散液の添加量を変更した以外は実施例1と同様にしてめっき浴(5)(めっき浴中のPG-ND粒子濃度:0.05g/L)を得、得られためっき浴(5)を使用した以外は実施例1と同様にして銅めっき膜を有する真鍮板を得た。
[Example 5]
Plating bath (5) (concentration of PG-ND particles in plating bath: 0.05 g / L) in the same manner as in Example 1 except that the amount of the aqueous dispersion of PG-ND particles obtained in Preparation Example 1 was changed. ), And a brass plate having a copper plating film was obtained in the same manner as in Example 1 except that the obtained plating bath (5) was used.
 〔実施例6〕
 調製例1で得られたPG-ND粒子水分散液の添加量を変更した以外は実施例1と同様にしてめっき浴(6)(めっき浴中のPG-ND粒子濃度:0.01g/L)を得、得られためっき浴(6)を使用した以外は実施例1と同様にして銅めっき膜を有する真鍮板を得た。
[Example 6]
Plating bath (6) (concentration of PG-ND particles in plating bath: 0.01 g / L) in the same manner as in Example 1 except that the amount of the aqueous dispersion of PG-ND particles obtained in Preparation Example 1 was changed. ) And a brass plate having a copper plating film was obtained in the same manner as in Example 1 except that the obtained plating bath (6) was used.
 〔実施例7〕
 調製例1で得られたPG-ND粒子水分散液の添加量を変更した以外は実施例1と同様にしてめっき浴(7)(めっき浴中のPG-ND粒子濃度:0.001g/L)を得、得られためっき浴(7)を使用した以外は実施例1と同様にして銅めっき膜を有する真鍮板を得た。
[Example 7]
Plating bath (7) (the concentration of PG-ND particles in the plating bath: 0.001 g / L) in the same manner as in Example 1 except that the amount of the aqueous dispersion of PG-ND particles obtained in Preparation Example 1 was changed. ), And a brass plate having a copper plating film was obtained in the same manner as in Example 1 except that the obtained plating bath (7) was used.
 〔比較例1〕
 めっき浴(1)に代えて、銅めっき液(商品名「電解めっき液」、清川めっき工業(株)製)めっき浴(6)(ND粒子分散液を含まない)を使用した以外は実施例1と同様にして銅めっき膜を有する真鍮板を得た。真鍮板に形成されためっき膜は、表面に凸凹があり平滑性に欠いていた。
[Comparative Example 1]
Example except that the plating bath (1) was replaced with a copper plating solution (trade name "electrolytic plating solution", manufactured by Kiyokawa Plating Industry Co., Ltd.) plating bath (6) (excluding the ND particle dispersion). A brass plate having a copper plating film was obtained in the same manner as in Example 1. The plating film formed on the brass plate had irregularities on the surface and lacked smoothness.
 〈光沢度測定〉
 実施例1~7及び比較例1で得られためっき膜の光沢度については、光沢計「高光沢グロスチェッカIG-410」(堀場製作所社製)を用い、下記の条件で光沢度m0(鏡面反射率100%)を測定した。
<Gloss measurement>
The glossiness of the plating films obtained in Examples 1 to 7 and Comparative Example 1 was measured using a gloss meter “High Gloss Gloss Checker IG-410” (manufactured by Horiba, Ltd.) under the following conditions under the following conditions: (Reflectance 100%) was measured.
 光源:LED(波長:890nm)
 入射角:60°(100%反射の場合、光沢度は1000(単位なし))
 結果を下記表1にまとめて示す。
Light source: LED (wavelength: 890 nm)
Incident angle: 60 ° (in case of 100% reflection, the gloss is 1000 (no unit))
The results are summarized in Table 1 below.
 下記表1より、ND粒子の添加により銅などの銅めっき膜表面の光沢度が上昇することがわかった。 よ り From Table 1 below, it was found that the glossiness of the surface of the copper plating film such as copper was increased by the addition of ND particles.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 また、実施例4と比較例1で真鍮板に形成されためっき膜の製造直後と7日後のX線回折結果を図2(比較例1)、図3(実施例4)に示す。比較例1の銅めっき膜は1週間後に酸化銅(CuO)のピークが見られ、赤茶色に着色していたが、実施例4の銅めっき膜は1週間後にも酸化銅(CuO)のピークは観察されず、肉眼による観察でも製造直後と7日後に差異は見られなかった。 X Moreover, the X-ray diffraction results immediately after and 7 days after the production of the plating films formed on the brass plate in Example 4 and Comparative Example 1 are shown in FIG. 2 (Comparative Example 1) and FIG. 3 (Example 4). The copper plating film of Comparative Example 1 had a peak of copper oxide (CuO) after one week and was colored reddish brown, whereas the copper plating film of Example 4 had a peak of copper oxide (CuO) even after one week. Was not observed, and no difference was observed by visual observation immediately after the production and after 7 days.
 これらの結果から、親水性ND粒子が卑金属めっき膜の酸化を抑制できることが明らかになった。 (4) From these results, it became clear that the hydrophilic ND particles can suppress the oxidation of the base metal plating film.
比較例2
 非親水性のPG未修飾NDを銅めっき浴(清川メッキ製)中に200ppm添加した。ND(ダイセル製、PG修飾前のもの)の添加濃度は、PGありの場合と合わせた。攪拌しながら、PG修飾NDを用いた実施例1と同条件でめっきを実施した。光沢度および、酸化防止効果を確認するためのサンプルは同一のものを使用した。得られためっき膜(比較例2、実施例3,4)の製造直後の光沢度を測定した結果を表2に示す。PG未修飾NDでの銅めっきの結果、光沢度はNDなしの場合の光沢度と同程度であり、PG修飾NDを添加した場合の光沢度とは明確に差が見られた。さらに、めっき直後と5日後において、比較例2の銅めっき膜のXRD測定を実施した。結果を図4に示す。めっき膜作製の5日後に酸化銅が確認され、PG-ND粒子で確認されたような酸化防止の効果は認められなかった。
Comparative Example 2
200 ppm of non-hydrophilic PG unmodified ND was added to a copper plating bath (manufactured by Kiyokawa Plating). The addition concentration of ND (manufactured by Daicel, before PG modification) was the same as that with PG. While stirring, plating was performed under the same conditions as in Example 1 using PG-modified ND. The same sample was used for confirming the gloss and the antioxidant effect. Table 2 shows the results of measuring the glossiness of the obtained plating films (Comparative Example 2, Examples 3 and 4) immediately after production. As a result of the copper plating with PG-unmodified ND, the gloss was almost the same as the gloss without ND, and clearly different from the gloss with PG-modified ND added. Further, XRD measurement was performed on the copper plating film of Comparative Example 2 immediately after plating and 5 days after plating. FIG. 4 shows the results. Five days after the preparation of the plating film, copper oxide was confirmed, and the antioxidant effect as confirmed by the PG-ND particles was not recognized.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 〔試験例1〕
 実施例1において、PG-ND粒子の銅めっき浴中の濃度を0ppm、200ppm(0.02%)、400ppm(0.04%)、600ppm(0.06%)、1000ppm(0.1%)とした以外は実施例1と同様にして銅めっき浴を作製し、ヘーズを測定した。結果を表3に示す。
[Test Example 1]
Example 1 was the same as Example 1 except that the concentration of the PG-ND particles in the copper plating bath was 0 ppm, 200 ppm (0.02%), 400 ppm (0.04%), 600 ppm (0.06%), and 1000 ppm (0.1%). Similarly, a copper plating bath was prepared, and the haze was measured. Table 3 shows the results.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 〔試験例2〕
 調製例1において、爆ごう法で得られたPG未修飾のND粒子について、X線回析装置(商品名「Smart Lab」,リガク社製)を使用して結晶構造解析を行った。その結果、ダイヤモンドの回析ピーク位置、即ち、ダイヤモンド結晶の(111)面からの回析ピーク位置に、強い回析ピークが認められ、PG未修飾のND粒子がダイヤモンドであることを確認した。
[Test Example 2]
In Preparation Example 1, the crystal structure analysis of the PG unmodified ND particles obtained by the detonation method was performed using an X-ray diffractometer (trade name “Smart Lab”, manufactured by Rigaku Corporation). As a result, a strong diffraction peak was observed at the diffraction peak position of diamond, that is, at the diffraction peak position from the (111) plane of the diamond crystal, and it was confirmed that ND particles without PG modification were diamond.
 次に、調製例1で得られたPG未修飾のND粒子とPG-ND粒子、さらに、衝撃圧縮法で得られたND粒子(PG未修飾とPG修飾)について、X線回析装置(商品名「Smart Lab」,リガク社製)を使用して小角X線散乱測定(SAXS法)を行い、粒子径分布解析ソフト(商品名「NANO-Solver」,リガク社製)を使用して、散乱角度1° ~3°の領域についてナノダイヤモンドの一次粒子径を見積もった。この見積もりにおいては、ナノダイヤモンド一次粒子が球形であり且つ粒子密度が3.51g/cmであるとの仮定をおいた。衝撃圧縮法で得られたND粒子は商品名:SCMナノダイヤ、住石マテリアル社製を使用し、衝撃圧縮法で得られたPG修飾されたND粒子は、上記ND粒子を調製例1と同様にしてPG修飾を行ったものである。SAXS法による粒子径の測定結果を表4に示す。 Next, the PG unmodified ND particles and PG-ND particles obtained in Preparation Example 1 and the ND particles (PG unmodified and PG modified) obtained by the impact compression method were subjected to an X-ray diffraction apparatus (product). Small-angle X-ray scattering measurement (SAXS method) using the name “Smart Lab” (Rigaku) and scattering using particle size distribution analysis software (trade name “NANO-Solver”, Rigaku) The primary particle size of the nanodiamond was estimated for the range of 1 ° to 3 °. In this estimate, nanodiamond primary particles and particle density is spherical put the assumption that it is 3.51 g / cm 3. The ND particles obtained by the impact compression method were manufactured by SCM Nano Diamond, manufactured by Sumiishi Material Co., Ltd. The PG-modified ND particles obtained by the impact compression method were obtained by preparing the ND particles in the same manner as in Preparation Example 1. PG modification. Table 4 shows the measurement results of the particle size by the SAXS method.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 〔試験例3〕
 実施例1(PG-ND 200ppmを含む銅めっき液)、比較例1(NDを含まないめっき液)、比較例2(PG未修飾NDを含むめっき液)で得られためっき膜について、微小角入射X線回折法により、めっき直後、めっき5日後、めっき7日後の酸化銅の111面の回折ピークを下記のように測定した。
[Test Example 3]
For the plating films obtained in Example 1 (a copper plating solution containing 200 ppm of PG-ND), Comparative Example 1 (a plating solution containing no ND), and Comparative Example 2 (a plating solution containing PG unmodified ND), a fine angle By the incident X-ray diffraction method, diffraction peaks of the 111 plane of the copper oxide immediately after plating, 5 days after plating, and 7 days after plating were measured as follows.
(1)微小角入射X線回折法
 銅めっき表の表面の構造を分析するために、微小角入射X 線回折(GIXD)法を用いた。
 本法は物質の平坦な表面すれすれにX線を入射すると全反射を起こすことを利用し、全反射を起こす角度の前後で、微妙に角度を変化させながら、反射と屈折、そして回折を測定する方法である。今回、SmartLab(リガク社製)を用い、入射角はおよそ0.7°、測定角は30°~100°として計測を行った。
(1) Grazing incidence X-ray diffraction method Grazing incidence X-ray diffraction (GIXD) method was used to analyze the structure of the surface of the copper plating table.
This method makes use of the fact that when X-rays are incident on a very flat surface of a substance, it causes total reflection, and measures reflection, refraction, and diffraction before and after the angle at which total reflection occurs, while slightly changing the angle. Is the way. This time, the measurement was performed using SmartLab (manufactured by Rigaku Corporation) with an incident angle of about 0.7 ° and a measurement angle of 30 ° to 100 °.
(2)めっき膜の保管条件
 実施例1、比較例1、2で得られた銅めっき膜を有する真鍮板は、直射日光の当たらない室内に5日間又は1週間保管(常温25℃程度、湿度50%程度)した。
(2) Storage condition of plating film The brass plate having the copper plating film obtained in Example 1 and Comparative Examples 1 and 2 was stored in a room protected from direct sunlight for 5 days or 1 week (normal temperature: about 25 ° C, humidity: 50%).
(3)測定結果
 結果を表5に示す。
(3) Measurement results Table 5 shows the results.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 7日後、NDなし(比較例1)は銅の111面のピーク強度に対する酸化銅の111面のピーク強度が2.5%であるのに対し、PG修飾ND(実施例3)では酸化銅のピークが0.1%であった。 After 7 days, the peak intensity of the 111 plane of copper oxide was 2.5% of the peak intensity of the 111 plane of copper without ND (Comparative Example 1), whereas the peak of copper oxide was lower in the PG-modified ND (Example 3). 0.1%.
 〔実施例8及び比較例3〕
 以下のスズ(Sn)めっき液を用い、実施例1と同様にして真鍮板のSnめっきを行い(Snめっき浴中のPG-ND粒子濃度:0.2g/L(実施例8)又は0g/L(比較例3))、Snめっき膜を有する真鍮板を得た。得られたSnめっき膜を有する真鍮板について光沢度と表面粗さ(Ra)を測定した結果を表6に示す。
・Snめっき
液組成:硫酸第一スズ 30g/L、硫酸130g/L
めっき温度:10℃
電流密度:2A/dm2
めっき時間:10分
[Example 8 and Comparative Example 3]
Using the following tin (Sn) plating solution, Sn plating of the brass plate was performed in the same manner as in Example 1 (PG-ND particle concentration in the Sn plating bath: 0.2 g / L (Example 8) or 0 g / L). L (Comparative Example 3)), a brass plate having a Sn plating film was obtained. Table 6 shows the results of measuring the glossiness and the surface roughness (Ra) of the brass plate having the obtained Sn plating film.
・ Sn plating solution composition: stannous sulfate 30g / L, sulfuric acid 130g / L
Plating temperature: 10 ℃
Current density: 2A / dm 2
Plating time: 10 minutes
 〔実施例9及び比較例4〕
 以下のニッケル(Ni)めっき液及びめっき条件を用い、実施例1と同様にして真鍮板のNiめっきを行い(Niめっき浴中のPG-ND粒子濃度:0.2g/L(実施例9)又は0g/L(比較例4))、Niめっき膜を有する真鍮板を得た。得られたNiめっき膜を有する真鍮板について光沢度、表面粗さ(Ra)を測定した結果を表6に示す。
・ニッケルめっき
液組成:硫酸ニッケル250g/L、塩化ニッケル40g/L、ホウ酸30g/L
めっき温度:50℃
電流密度:2A/dm2
めっき時間:25分
[Example 9 and Comparative Example 4]
Using the following nickel (Ni) plating solution and plating conditions, Ni plating of the brass plate was performed in the same manner as in Example 1 (PG-ND particle concentration in the Ni plating bath: 0.2 g / L (Example 9)). Alternatively, a brass plate having a Ni plating film of 0 g / L (Comparative Example 4) was obtained. Table 6 shows the results of measuring the glossiness and the surface roughness (Ra) of the brass plate having the obtained Ni plating film.
・ Nickel plating solution composition: nickel sulfate 250g / L, nickel chloride 40g / L, boric acid 30g / L
Plating temperature: 50 ° C
Current density: 2A / dm 2
Plating time: 25 minutes
 〔実施例10及び比較例5〕
 以下の亜鉛(Zn)めっき液及びめっき条件を用い、実施例1と同様にして真鍮板のZnめっきを行い(Znめっき浴中のPG-ND粒子濃度:0.2g/L(実施例10)又は0g/L(比較例5))、Znめっき膜を有する真鍮板を得た。得られたZnめっき膜を有する真鍮板について光沢度、表面粗さ(Ra)を測定した結果を表6に示す。
・亜鉛めっき
液組成:酸化亜鉛10g/L、水酸化ナトリウム100g/L
めっき温度:室温
電流密度:2A/dm2
めっき時間:18分
[Example 10 and Comparative Example 5]
Using the following zinc (Zn) plating solution and plating conditions, Zn plating of the brass plate was performed in the same manner as in Example 1 (PG-ND particle concentration in the Zn plating bath: 0.2 g / L (Example 10)). Alternatively, a brass plate having a Zn plating film of 0 g / L (Comparative Example 5) was obtained. Table 6 shows the results of measuring the glossiness and the surface roughness (Ra) of the obtained brass plate having a Zn plating film.
・ Zinc plating solution composition: zinc oxide 10g / L, sodium hydroxide 100g / L
Plating temperature: Room temperature Current density: 2A / dm 2
Plating time: 18 minutes
 〔実施例11及び比較例6〕
 以下のパーマロイ(NiとFeの合金)めっき液及びめっき条件を用い、実施例1及び比較例1と同様にして真鍮板のパーマロイめっきを行い(パーマロイめっき浴中のPG-ND粒子濃度:0.2g/L(実施例11)又は0g/L(比較例6))、パーマロイめっき膜を有する真鍮板を得た。得られたパーマロイめっき膜を有する真鍮板について光沢度、表面粗さ(Ra)を測定した結果を表6に示す。
・パーマロイめっき
液組成:硫酸ニッケル250g/L、塩化ニッケル40g/L、ホウ酸30g/L、硫酸第一鉄24g/L、マロン酸5g/L、
めっき温度:50℃
電流密度:2A/dm2
めっき時間:25分
[Example 11 and Comparative Example 6]
Using the following permalloy (alloy of Ni and Fe) plating solution and plating conditions, permalloy plating of a brass plate was performed in the same manner as in Example 1 and Comparative Example 1 (the concentration of PG-ND particles in the permalloy plating bath: 0.1%). 2 g / L (Example 11) or 0 g / L (Comparative Example 6), a brass plate having a permalloy plating film was obtained. Table 6 shows the results of measuring the glossiness and the surface roughness (Ra) of the obtained brass plate having a permalloy plating film.
・ Permalloy plating solution composition: nickel sulfate 250g / L, nickel chloride 40g / L, boric acid 30g / L, ferrous sulfate 24g / L, malonic acid 5g / L,
Plating temperature: 50 ° C
Current density: 2A / dm 2
Plating time: 25 minutes
 〈表面粗さ(Ra)測定〉
 実施例8~11及び比較例3~6で得られためっき膜の表面粗さ(Ra)については、高精度形状測定システムKS-1100(KEYENCE社製)を用いて測定した。
<Surface roughness (Ra) measurement>
The surface roughness (Ra) of the plating films obtained in Examples 8 to 11 and Comparative Examples 3 to 6 was measured using a high-precision shape measuring system KS-1100 (manufactured by KEYENCE).
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 各種めっき液にPG-ND粒子を添加することで、めっき膜の光沢度、表面平滑性及び押し込み硬さ(表面硬度)を向上できることが明らかになった。表面粗さ(Ra)が低いことは光沢度の向上に関係すると考えられる。 (4) It became clear that the glossiness, surface smoothness and indentation hardness (surface hardness) of the plating film can be improved by adding PG-ND particles to various plating solutions. It is considered that the low surface roughness (Ra) is related to the improvement in glossiness.
 〔試験例4〕
 実施例3、9及び11、並びに、比較例1、4及び6で得られためっき膜について、微小押し込み硬さ試験機(商品名「ENT-2100」、(株)エリオニクス製)を用い、以下の条件で押し込み硬さ (表面硬度)を測定した。
圧子  :バーコビッチ圧子
荷重条件: (i)開始荷重_0mN→荷重_20mN、10s
      (ii)開始荷重_20mN→荷重_20mN、10s
      (iii)開始荷重_20mN→終了荷重_0mN、10s微小硬度計
結果を表7に示す。
[Test Example 4]
Using the plating films obtained in Examples 3, 9 and 11, and Comparative Examples 1, 4 and 6, using a micro indentation hardness tester (trade name “ENT-2100”, manufactured by Elionix Inc.), The indentation hardness (surface hardness) was measured under the following conditions.
Indenter: Birkovich indenter Load condition: (i) Starting load_0mN → Load_20mN, 10s
(ii) Starting load_20mN → Load_20mN, 10s
(iii) Start load_20mN → End load_0mN, 10s The results of a 10s microhardness tester are shown in Table 7.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
〔実施例12〕
 調製例1で得られたPG-ND粒子水分散液の添加量を変更した以外は実施例1と同様にしてめっき浴(12)(めっき浴中のPG-ND粒子濃度:0.02g/L)を得、得られためっき浴(12)を使用し、真鍮板をステンレス板に変更した以外は実施例1と同様にして銅めっき膜を有するステンレス板を得た。
[Example 12]
Plating bath (12) (concentration of PG-ND particles in plating bath: 0.02 g / L) in the same manner as in Example 1 except that the amount of the aqueous dispersion of PG-ND particles obtained in Preparation Example 1 was changed. ) Was obtained, and a stainless steel plate having a copper plating film was obtained in the same manner as in Example 1 except that the obtained plating bath (12) was used and the brass plate was changed to a stainless steel plate.
〔比較例7〕
 比較例1のめっき浴(6)を使用し、真鍮板をステンレス板に変更した以外は比較例1と同様にして銅めっき膜を有するステンレス板を得た。
[Comparative Example 7]
A stainless steel plate having a copper plating film was obtained in the same manner as in Comparative Example 1 except that the plating bath (6) of Comparative Example 1 was used and the brass plate was changed to a stainless steel plate.
〔試験例5〕
 実施例12(PG-ND 20ppmを含む銅めっき液を使用)、比較例7(NDを含まないめっき液)で得られたステンレス板の銅めっき膜を剥離し、ガラス板上にめっき膜を配置してめっき膜の厚みをマイクロメーターで測定し、導電率を以下の条件で測定した。
導電率計測装置:ロレスタGX、三菱化学アナリテック製
サンプルサイズ:1cm
測定箇所   :上下左右中(5点)
計測方法   :めっき膜をステンレス板から剥離し、別途準備したガラス板上で計測。
[Test Example 5]
The copper plating film of the stainless steel plate obtained in Example 12 (using a copper plating solution containing 20 ppm of PG-ND) and Comparative Example 7 (a plating solution containing no ND) was peeled off, and a plating film was placed on a glass plate. Then, the thickness of the plating film was measured with a micrometer, and the conductivity was measured under the following conditions.
Conductivity measuring device: Loresta GX, manufactured by Mitsubishi Chemical Analytech Sample size: 1 cm 2
Measuring point : In the middle of top, bottom, left and right (5 points)
Measurement method: The plating film was peeled from the stainless steel plate and measured on a separately prepared glass plate.
 具体的には、マイクロメーターで測定しためっき膜の厚みをロレスタGXに入力し、体積抵抗率を測定した(4点端子法)。体積抵抗率は焼鈍標準軟銅(体積抵抗率: 1.7241×10-2μΩm)の導電率を100%IACSとして導電性に換算した。結果を表8に示す。 Specifically, the thickness of the plating film measured by a micrometer was input to Loresta GX, and the volume resistivity was measured (four-point terminal method). The volume resistivity was converted into conductivity by setting the conductivity of annealed standard annealed copper (volume resistivity: 1.7241 × 10 -2 μΩm) as 100% IACS. Table 8 shows the results.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 本発明の親水性ナノダイヤモンド(PG-ND)を添加しためっき浴から作製した銅めっきの導電性は、添加しなかった銅めっきと比較して向上したことが明らかになった。
親水性ナノダイヤモンド(PG-ND)を添加した本発明の卑金属めっき膜は、結晶子サイズの増大を防いで硬度を維持し、かつ、導電性を向上させるという予想外の効果を奏する。
It was revealed that the conductivity of the copper plating prepared from the plating bath to which the hydrophilic nanodiamond (PG-ND) of the present invention was added was improved as compared with the copper plating without the addition.
The base metal plating film of the present invention to which the hydrophilic nanodiamond (PG-ND) is added has an unexpected effect of preventing the increase in the crystallite size, maintaining the hardness, and improving the conductivity.
〔試験例6〕
 実施例3(PG-ND 200ppmを含む銅めっき液)、比較例1(NDを含まない銅めっき液)で得られた銅めっき膜について、111面と220面の結晶子サイズを測定した。結晶子サイズの測定は、CuKα線をX線源とするX線回折法(XRD)により、回折ピークの半値幅と回折角からシェラーの式を用いて算出した。測定装置はリガク製[SmartLab]、光学系は集中法を使用した。結果を表9に示す。また、銅めっき膜のXRDパターンを図5に示し、111面と220面のピーク強度比を表10に示す。
[Test Example 6]
With respect to the copper plating films obtained in Example 3 (a copper plating solution containing 200 ppm of PG-ND) and Comparative Example 1 (a copper plating solution containing no ND), crystallite sizes on the 111 plane and the 220 plane were measured. The crystallite size was measured by the X-ray diffraction method (XRD) using CuKα radiation as an X-ray source, using the Scherrer equation from the half width of the diffraction peak and the diffraction angle. The measuring device used was Rigaku's [SmartLab], and the optical system used a centralized method. Table 9 shows the results. FIG. 5 shows an XRD pattern of the copper plating film, and Table 10 shows a peak intensity ratio between the 111 plane and the 220 plane.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 実施例3で得られたPG-NDを含む銅めっき膜は、111面と220面の結晶子サイズがいずれも小さく、押し込み硬さ(表面硬度)に優れていることが明らかになった。 (4) It was revealed that the copper plating film containing PG-ND obtained in Example 3 had small crystallite sizes on both the 111 plane and the 220 plane, and was excellent in indentation hardness (surface hardness).
〔試験例7〕
 実施例9(PG-ND 200ppmを含むニッケルめっき液)、比較例4(NDを含まないニッケルめっき液)で得られためっき膜について、めっき3カ月後のニッケルめっきの111面と200面の結晶子サイズを測定した。結晶子サイズの測定は、CuKα線をX線源とするX線回折法(XRD)により、回折ピークの半値幅と回折角からシェラーの式を用いて算出した。測定装置はリガク製[SmartLab]、光学系は集中法を使用した。結果を表11に示す。
[Test Example 7]
Regarding the plating films obtained in Example 9 (nickel plating solution containing 200 ppm of PG-ND) and Comparative Example 4 (nickel plating solution containing no ND), the crystals of the 111 and 200 planes of the nickel plating 3 months after plating The child size was measured. The crystallite size was measured by the X-ray diffraction method (XRD) using CuKα radiation as an X-ray source, using the Scherrer equation from the half width of the diffraction peak and the diffraction angle. The measuring device used was Rigaku's [SmartLab], and the optical system used a centralized method. Table 11 shows the results.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 実施例9で得られたPG-NDを含むニッケルめっき膜は、111面と200面の結晶子サイズがいずれも小さく、押し込み硬さ(表面硬度)に優れていることが明らかになった。 ニ ッ ケ ル It was revealed that the nickel plating film containing PG-ND obtained in Example 9 had small crystallite sizes on both the 111 plane and the 200 plane, and was excellent in indentation hardness (surface hardness).
〔試験例8〕
 実施例9(PG-ND 200ppmを含むニッケルめっき液)、比較例4(NDを含まないニッケルめっき液)で得られためっき膜について、収束イオンビーム加工装置で断面を作製し、反射電子像で観察を実施した。
装置名:FIB-SEM装置(FEI社製Versa3D DualBeam)。図6(a)は比較例1のND粒子を含まないめっき膜であり、表面粗さ(Ra)が大きいことがわかる。図6(b)は実施例1のND粒子を含むめっき膜であり、矢印で示される小さい黒点がND粒子である。
[Test Example 8]
For the plating films obtained in Example 9 (nickel plating solution containing 200 ppm of PG-ND) and Comparative Example 4 (nickel plating solution not containing ND), cross sections were prepared using a focused ion beam processing apparatus, and reflected electron images were obtained. Observations were made.
Apparatus name: FIB-SEM apparatus (Versa3D DualBeam manufactured by FEI). FIG. 6A shows a plating film containing no ND particles of Comparative Example 1 and has a large surface roughness (Ra). FIG. 6B shows a plating film including ND particles of Example 1, and small black dots indicated by arrows are ND particles.
〔試験例9〕
 実施例1(PG-ND 200ppmを含む銅めっき液)で得られためっき膜について、装置は、アルバックファイ社(PHI5800 ESCA system)を使用してX線光電分光法(XPS)によるCuめっき膜中の炭素量(C1s)を計測した。結果を図7に示す。Cu膜中において炭素分が検出された。
[Test Example 9]
Regarding the plating film obtained in Example 1 (copper plating solution containing 200 ppm of PG-ND), the apparatus used in the Cu plating film by X-ray photoelectric spectroscopy (XPS) using ULVAC-PHI (PHI5800 ESCA system). Was measured for carbon content (C1s). FIG. 7 shows the results. Carbon content was detected in the Cu film.
1  表面修飾基を有するND粒子
2  ND粒子(部分)
3  表面修飾基
1 ND particle having surface modification group 2 ND particle (part)
3 Surface modifying groups

Claims (21)

  1.  卑金属マトリックスと、前記卑金属マトリックス中に分散する親水性ナノダイヤモンド粒子を含む卑金属めっき膜。 (4) A base metal plating film including a base metal matrix and hydrophilic nanodiamond particles dispersed in the base metal matrix.
  2.  前記親水性ナノダイヤモンド粒子を含まない以外は前記と同じ卑金属めっき膜と比較して入射角60°における光沢度が10以上高い、請求項1に記載の卑金属めっき膜。 The base metal plating film according to claim 1, wherein the glossiness at an incident angle of 60 ° is higher by 10 or more than that of the same base metal plating film except that the hydrophilic nano diamond particles are not included.
  3.  製造直後の前記卑金属めっき膜に対し、直射日光の当たらない室内、25℃、湿度50%で7日間保存後の卑金属酸化物の増加が、1%未満、好ましくは0.5%未満、より好ましくは0.3%未満、最も好ましくは0.1%未満である、請求項1又は2に記載の卑金属めっき膜。 Immediately after the production, the base metal oxide film has an increase of less than 1%, preferably less than 0.5%, more preferably less than 0.5% after storage for 7 days at 25 ° C. and 50% humidity in a room not exposed to direct sunlight. The base metal plating film according to claim 1 or 2, wherein is less than 0.3%, most preferably less than 0.1%.
  4.  界面活性剤フリーである、請求項1~3の何れか1項に記載の卑金属めっき膜。 (4) The base metal plating film according to any one of (1) to (3), which is free of a surfactant.
  5.  前記親水性ナノダイヤモンド粒子が、以下の(i)又は(ii)のナノダイヤモンド粒子である、請求項1~4の何れか1項に記載の卑金属めっき膜:
    (i)親水性高分子でコーティングされたナノダイヤモンド粒子;
    (ii)親水性高分子で修飾されたナノダイヤモンド粒子。
    The base metal plating film according to any one of claims 1 to 4, wherein the hydrophilic nanodiamond particles are the following (i) or (ii) nanodiamond particles:
    (i) nano-diamond particles coated with a hydrophilic polymer;
    (ii) Nanodiamond particles modified with a hydrophilic polymer.
  6.  卑金属が鉄、ニッケル、亜鉛、銅、スズ、アルミニウム、タングステン、モリブデン、タンタル、マグネシウム、コバルト、ビスマス、カドミウム、チタニウム、ジルコニウム、アンチモン、マンガン、ベリリウム、クロム、ゲルマニウム、バナジウム、ガリウム、ハフニウム、インジウム、ニオブ、パーマロイ、レニウム及びタリウムからなる群から選ばれる少なくとも1種である、請求項1~5の何れか1項に記載のめっき膜。 Base metals are iron, nickel, zinc, copper, tin, aluminum, tungsten, molybdenum, tantalum, magnesium, cobalt, bismuth, cadmium, titanium, zirconium, antimony, manganese, beryllium, chromium, germanium, vanadium, gallium, hafnium, indium, The plating film according to any one of claims 1 to 5, wherein the plating film is at least one selected from the group consisting of niobium, permalloy, rhenium, and thallium.
  7.  前記卑金属マトリックス中に分散する前記親水性ナノダイヤモンド粒子のSEM法による平均粒子径(D50)が4~95nmの範囲である、請求項1~6の何れか1項に記載の卑金属めっき膜。 The base metal plating film according to any one of claims 1 to 6, wherein the hydrophilic nanodiamond particles dispersed in the base metal matrix have an average particle diameter (D50) by SEM of 4 to 95 nm.
  8.  親水性高分子が、ポリグリセリン、ポリビニルピロリドン、ポリエチレングリコール、ポリビニルアルコール、ポリ(メタ)アクリル酸、ポリアクリルアミド、ポリエチレンイミン、ビニルエーテル系重合体、セルロース誘導体、水溶性ポリエステル、水溶性フェノール樹脂、天然高分子多糖類からなる群から選ばれる、請求項5に記載の卑金属めっき膜。 When the hydrophilic polymer is polyglycerin, polyvinylpyrrolidone, polyethylene glycol, polyvinyl alcohol, poly (meth) acrylic acid, polyacrylamide, polyethyleneimine, vinyl ether polymer, cellulose derivative, water-soluble polyester, water-soluble phenol resin, The base metal plating film according to claim 5, which is selected from the group consisting of molecular polysaccharides.
  9.  卑金属が銅であり、111面の結晶子サイズ(A)が100nm以下であり、220面の結晶子サイズ(B)が80nm以下であり、111面と220面の結晶子サイズ比(A/B)が1.3以上である、請求項1~8の何れか1項に記載の卑金属めっき膜。 The base metal is copper, the crystallite size (A) of the 111 face is 100 nm or less, the crystallite size (B) of the 220 face is 80 nm or less, and the crystallite size ratio (A / B) of the 111 face and the 220 face. The base metal plating film according to any one of claims 1 to 8, wherein (1) is not less than 1.3.
  10.  卑金属が銅であり、X線回折パターンの111面と220面のピーク強度比(111面/220面)が3.0以下である、請求項1~8の何れか1項に記載の卑金属めっき膜。 The base metal plating according to any one of claims 1 to 8, wherein the base metal is copper, and the peak intensity ratio (111/220) of the X-ray diffraction pattern between the 111 and 220 planes is 3.0 or less. film.
  11.  卑金属がニッケルであり、111面の結晶子サイズ(A)が25nm以下であり、200面の結晶子サイズ(C)が23nm以下であり、111面と200面の結晶子サイズ比(A/C)が1.1以上である、請求項1~8の何れか1項に記載の卑金属めっき膜。 The base metal is nickel, the crystallite size (A) of the 111 face is 25 nm or less, the crystallite size (C) of the 200 face is 23 nm or less, and the crystallite size ratio (A / C) of the 111 face and the 200 face. The base metal plating film according to any one of claims 1 to 8, wherein (1) is 1.1 or more.
  12.  卑金属イオンと親水性ナノダイヤモンド粒子を含み、親水性ナノダイヤモンド粒子の濃度が0.001~1g/Lである、卑金属めっき浴。 (4) A base metal plating bath containing base metal ions and hydrophilic nanodiamond particles, wherein the concentration of the hydrophilic nanodiamond particles is 0.001 to 1 g / L.
  13.  ヘーズが0~0.5である、請求項12に記載の卑金属めっき浴。 The base metal plating bath according to claim 12, wherein the haze is from 0 to 0.5.
  14.  卑金属めっき浴中の親水性ナノダイヤモンド粒子の粒径(D10)が10~60nmである、請求項12又は13に記載の卑金属めっき浴。 The base metal plating bath according to claim 12, wherein the hydrophilic nano diamond particles in the base metal plating bath have a particle size (D10) of 10 to 60 nm.
  15.  卑金属めっき浴中の親水性ナノダイヤモンド粒子の粒径(D50)が10~70nmである、請求項12又は13に記載の卑金属めっき浴。 14. The base metal plating bath according to claim 12, wherein the particle diameter (D50) of the hydrophilic nanodiamond particles in the base metal plating bath is 10 to 70 nm.
  16.  卑金属めっき浴中の親水性ナノダイヤモンド粒子の粒径(D90)が10~90nmである、請求項12又は13に記載の卑金属めっき浴。 The base metal plating bath according to claim 12, wherein the particle diameter (D90) of the hydrophilic nanodiamond particles in the base metal plating bath is 10 to 90 nm.
  17.  卑金属イオンと親水性ナノダイヤモンド粒子を含み、ナノダイヤモンド粒子の濃度が0.001~1g/Lである卑金属めっき浴に被検体を浸漬し、電解めっきを行うことを特徴とする、請求項1~11の何れか1項に記載のめっき膜を製造する方法 The method according to claim 1, wherein the subject is immersed in a base metal plating bath containing a base metal ion and hydrophilic nanodiamond particles, and the concentration of the nanodiamond particles is 0.001 to 1 g / L, and electrolytic plating is performed. 12. A method for producing the plating film according to any one of items 11 to 11.
  18.  卑金属めっき浴のヘーズが0~0.5である、請求項17に記載のめっき膜を製造する方法。 18. The method for producing a plating film according to claim 17, wherein the haze of the base metal plating bath is 0 to 0.5.
  19.  請求項1~11の何れか1項に記載のめっき膜を備えた電子部品。 An electronic component comprising the plating film according to any one of claims 1 to 11.
  20.  親水性ナノダイヤモンド粒子を含む卑金属めっき膜の光沢剤。 光 沢 Brightener for base metal plating film containing hydrophilic nano diamond particles.
  21.  親水性ナノダイヤモンド粒子を含む卑金属めっき膜の酸化防止剤。 酸化 Antioxidant for base metal plating film containing hydrophilic nano diamond particles.
PCT/JP2019/027165 2018-07-12 2019-07-09 Base metal plating film WO2020013188A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020530202A JPWO2020013188A1 (en) 2018-07-12 2019-07-09 Base metal plating film
JP2024029476A JP2024051133A (en) 2018-07-12 2024-02-29 Base metal plating

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2018-132690 2018-07-12
JP2018132690 2018-07-12
JP2018169208 2018-09-10
JP2018-169208 2018-09-10
JP2019-007864 2019-01-21
JP2019007864 2019-01-21
JP2019-072795 2019-04-05
JP2019072795 2019-04-05
JP2019080835 2019-04-22
JP2019-080835 2019-04-22

Publications (1)

Publication Number Publication Date
WO2020013188A1 true WO2020013188A1 (en) 2020-01-16

Family

ID=69142464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027165 WO2020013188A1 (en) 2018-07-12 2019-07-09 Base metal plating film

Country Status (2)

Country Link
JP (2) JPWO2020013188A1 (en)
WO (1) WO2020013188A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023176469A1 (en) * 2022-03-16 2023-09-21 株式会社ダイセル Al-nd composite material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011149071A (en) * 2010-01-22 2011-08-04 Eyetec Co Ltd Composite plating solution having diamonds particle dispersed therein, and method for producing the same
JP2012082103A (en) * 2010-10-12 2012-04-26 Shiga Univ Of Medical Science Surface-modified nanodiamond with controlled size
JP2012092416A (en) * 2010-09-30 2012-05-17 Eyetec Co Ltd Method for forming composite plating film
JP2014157826A (en) * 2014-04-08 2014-08-28 Yasunori Murayama Electric contact member
JP2017088978A (en) * 2015-11-13 2017-05-25 日産自動車株式会社 Sliding mechanism, refrigerant compressor and air conditioner using sliding mechanism, and production method of sliding mechanism

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018145503A (en) * 2017-03-08 2018-09-20 吉野電化工業株式会社 Gel plating method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011149071A (en) * 2010-01-22 2011-08-04 Eyetec Co Ltd Composite plating solution having diamonds particle dispersed therein, and method for producing the same
JP2012092416A (en) * 2010-09-30 2012-05-17 Eyetec Co Ltd Method for forming composite plating film
JP2012082103A (en) * 2010-10-12 2012-04-26 Shiga Univ Of Medical Science Surface-modified nanodiamond with controlled size
JP2014157826A (en) * 2014-04-08 2014-08-28 Yasunori Murayama Electric contact member
JP2017088978A (en) * 2015-11-13 2017-05-25 日産自動車株式会社 Sliding mechanism, refrigerant compressor and air conditioner using sliding mechanism, and production method of sliding mechanism

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023176469A1 (en) * 2022-03-16 2023-09-21 株式会社ダイセル Al-nd composite material

Also Published As

Publication number Publication date
JP2024051133A (en) 2024-04-10
JPWO2020013188A1 (en) 2021-07-15

Similar Documents

Publication Publication Date Title
TWI711584B (en) MXene particle material, slurry, secondary battery, transparent electrode, manufacturing method of MXene particle material
Roy et al. Physical and electrochemical characterization of reduced graphene oxide/silver nanocomposites synthesized by adopting a green approach
JP2024051133A (en) Base metal plating
Mirmohseni et al. Facile synthesis of copper/reduced single layer graphene oxide as a multifunctional nanohybrid for simultaneous enhancement of antibacterial and antistatic properties of waterborne polyurethane coating
JP5155393B2 (en) Spherical cuprous oxide aggregate particle composition and method for producing the same
JP4756163B2 (en) Dispersion and paste of composite particle powder and method for producing silver particle powder used therefor
JP6964362B2 (en) Anticorrosion treatment method for copper-containing materials
CN108889959B (en) rGO/Cu composite material and preparation method thereof
EP3141323A1 (en) Complex, method for producing complex, dispersion, method for producing dispersion, and optical material
JP2013541640A (en) Silver particles and method for producing the same
KR102465599B1 (en) Nanodiamonds having acid functional group and method for producing same
WO2006069513A1 (en) Spherical ultrafine nickel powder with high tap density and its wet processes preparing mothod
JP2016193813A (en) Silver-coated tellurium powder and production method thereof, and electrically conductive paste
Pozdnyakov et al. Metal-polymer Ag nanocomposites based on hydrophilic nitrogen-and sulfur-containing copolymers: Control of nanoparticle size
JP7229779B2 (en) METHOD FOR MANUFACTURING PLATING FILM HAVING LOW CONTACT RESISTANCE VALUE
JP7232053B2 (en) Method for manufacturing glossy plating film
CN111699283B (en) Coating film
Guo et al. Synthesis and characterization of poly (methyl methacrylate–butyl acrylate)/nano-titanium oxide composite particles
JP2011089156A (en) Metal fine particle, and method for producing the same
WO2019156007A1 (en) Plating film
WO1989004736A1 (en) Process for producing particulate metal powder
JP2020029611A (en) Production method of copper nanoparticle
CN113881266A (en) Application of graphene oxide and titanium dioxide composite material and anticorrosive paint
JP4575656B2 (en) Conductive powder
WO2019135306A1 (en) Copper nano ink production method and copper nano ink

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19834413

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020530202

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19834413

Country of ref document: EP

Kind code of ref document: A1