JP2011149071A - Composite plating solution having diamonds particle dispersed therein, and method for producing the same - Google Patents

Composite plating solution having diamonds particle dispersed therein, and method for producing the same Download PDF

Info

Publication number
JP2011149071A
JP2011149071A JP2010012598A JP2010012598A JP2011149071A JP 2011149071 A JP2011149071 A JP 2011149071A JP 2010012598 A JP2010012598 A JP 2010012598A JP 2010012598 A JP2010012598 A JP 2010012598A JP 2011149071 A JP2011149071 A JP 2011149071A
Authority
JP
Japan
Prior art keywords
plating solution
composite plating
fine particles
diamond fine
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010012598A
Other languages
Japanese (ja)
Other versions
JP5435477B2 (en
Inventor
Masaharu Koizumi
将治 小泉
Hajime Sasaki
肇 佐々木
Hiroshi Suzuki
鈴木  寛
Norio Tsubokawa
紀夫 坪川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata University NUC
Eyetec Co Ltd
Original Assignee
Niigata University NUC
Eyetec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata University NUC, Eyetec Co Ltd filed Critical Niigata University NUC
Priority to JP2010012598A priority Critical patent/JP5435477B2/en
Priority to CN201180006904.XA priority patent/CN102753734B/en
Priority to PCT/JP2011/050156 priority patent/WO2011089933A1/en
Publication of JP2011149071A publication Critical patent/JP2011149071A/en
Application granted granted Critical
Publication of JP5435477B2 publication Critical patent/JP5435477B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • C25D15/02Combined electrolytic and electrophoretic processes with charged materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/25Diamond
    • C01B32/28After-treatment, e.g. purification, irradiation, separation or recovery

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemically Coating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a composite plating solution which makes diamonds particles having the average particle size of 1-1,000 nm uniformly dispersed and codeposited in a plated metal film, and can impart a function of abrasion resistance, self-lubricating properties and the like to the plated metal film. <P>SOLUTION: The method for producing the composite plating solution having the diamonds particles stably dispersed therein includes: preparing a dispersion liquid in which diamond particles having the average particle size of 1-1,000 nm, onto which a hydrophilic polymer or an ionic functional group has been introduced, are dispersed together with an ionic or nonionic surface active agent; and adding the dispersion liquid to a metal-plating solution. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ダイヤモンド微粒子を均一に分散させた複合めっき液及びその製造方法に関する。さらに詳しくは、金属めっき液中に、親水性ポリマー又はイオン性官能基が導入されたダイヤモンド微粒子を界面活性剤とともに分散させた複合めっき液及びその製造方法に関する。   The present invention relates to a composite plating solution in which diamond fine particles are uniformly dispersed and a method for producing the same. More specifically, the present invention relates to a composite plating solution in which diamond fine particles introduced with a hydrophilic polymer or an ionic functional group are dispersed together with a surfactant in a metal plating solution, and a method for producing the same.

ダイヤモンド微粒子であるナノダイヤモンドは、人工的には衝撃圧縮法や静圧法により製造され、その製造方法により得られる形態が異なり、多結晶、単結晶、クラスター等の異なるタイプのナノダイヤモンドが知られている。多結晶タイプのナノダイヤモンドは、球状の構造を有しているため、固体間の摺動面に適した材料と考えられる。   Nanodiamond, which is a fine diamond particle, is artificially produced by the impact compression method or the static pressure method, and the form obtained by the production method is different. Different types of nanodiamond such as polycrystal, single crystal, and cluster are known. Yes. Polycrystalline nanodiamond has a spherical structure and is therefore considered a material suitable for a sliding surface between solids.

多結晶タイプのナノダイヤモンドは、一次粒子の粒径が5〜20nmの焼結体であるが、一次粒子のままで安定に存在することは困難で、50〜7,500nm程度の大きな凝集体となって存在している。そのため、こうしたナノダイヤモンドは、工業的に利用する際に液体中で分散させて使用されてきた。   The polycrystalline nanodiamond is a sintered body having a primary particle size of 5 to 20 nm, but it is difficult to stably exist as a primary particle, and a large aggregate of about 50 to 7,500 nm It exists. Therefore, such nanodiamond has been used by being dispersed in a liquid when used industrially.

めっき処理に微粒子を用いる場合には、水溶媒に微粒子を分散させて使用する方法が一般的である。例えば、金属めっき浴に、フッ素樹脂、ナイロン、ポリエチレン、黒鉛、フッ化黒鉛、二硫化モリブデン、窒化ホウ素等の微粒子を分散した複合めっき浴が知られている。こうした複合めっき浴に被めっき体を浸漬させて複合めっきを行うことにより、被めっき体の表面に化学的に金属膜を析出させるとともに金属膜中に微粒子を共析させ、金属マトリックス中に微粒子を分散させた複合めっき膜を形成することができる。形成された複合めっき膜は、めっき金属の諸物性と共に、分散した微粒子の特性を併せ持つことになり、分散共析させる微粒子の種類により、低摩擦性、耐摩耗性、硬度等の様々な優れた特性をめっき膜に付与することができる。   When using fine particles for the plating treatment, a method of using fine particles dispersed in an aqueous solvent is generally used. For example, a composite plating bath in which fine particles such as fluororesin, nylon, polyethylene, graphite, fluorinated graphite, molybdenum disulfide, and boron nitride are dispersed in a metal plating bath is known. By immersing the object to be plated in such a composite plating bath and performing composite plating, a metal film is chemically deposited on the surface of the object to be plated, and fine particles are co-deposited in the metal film, and the fine particles are deposited in the metal matrix. A dispersed composite plating film can be formed. The formed composite plating film will have the properties of dispersed fine particles as well as various physical properties of the plated metal. Depending on the type of fine particles to be dispersed and co-deposited, various excellent properties such as low friction, wear resistance, hardness, etc. Properties can be imparted to the plating film.

しかしながら、分散させる微粒子として、ナノダイヤモンド等の炭素系材料、フッ素系樹脂、セラミック等の微粒子をめっき処理に用いる場合、撥水性及び疎水性が強く、そのままでは、金属めっき浴中に分散させることができないため、微粒子をめっき膜中に均一に分散共析させることは非常に困難である。   However, as fine particles to be dispersed, carbon-based materials such as nanodiamonds, fine particles such as fluorine-based resins, ceramics, etc. are used for plating treatment, which is strong in water repellency and hydrophobicity and can be dispersed in a metal plating bath as it is. Therefore, it is very difficult to disperse and eutect the fine particles uniformly in the plating film.

従来より、界面活性剤を分散助剤として用いて微粒子をめっき浴に分散させる方法が用いられている。分散助剤として用いられる界面活性剤としては、カチオン性界面活性剤、めっき浴のpHに対応してカチオン性を示す両性界面活性剤及び非イオン性界面活性剤等が知られている。特許文献1では、ダイヤモンド粉末を混入しためっき液に、ノニオン系分散剤を添加してダイヤモンド粉末をめっき液中に分散させて複合めっきを行う点が記載されている。   Conventionally, a method of dispersing fine particles in a plating bath using a surfactant as a dispersion aid has been used. As surfactants used as dispersion aids, there are known cationic surfactants, amphoteric surfactants and nonionic surfactants that exhibit a cationic property corresponding to the pH of the plating bath. Patent Document 1 describes that composite plating is performed by adding a nonionic dispersant to a plating solution mixed with diamond powder and dispersing the diamond powder in the plating solution.

界面活性剤を用いない方法としては、例えば、特許文献2では、ダイヤモンド微粒子を懸濁しためっき浴に酸素を含有する気体で撹拌しながら基材を浸漬して、ダイヤモンド微粒子を分散させためっき膜を形成する方法が記載されている。また、特許文献3では、ナノダイヤモンドに、導入剤としてポリエチレングリコールユニット含有高分子アゾ重合剤(AZOPEG)を用いてカチオン性官能基を導入して分散させた分散液で複合めっきを行う方法が記載されている。   As a method that does not use a surfactant, for example, in Patent Document 2, a plating film in which diamond fine particles are dispersed by immersing a substrate while stirring with a gas containing oxygen in a plating bath in which diamond fine particles are suspended is used. A method of forming is described. Patent Document 3 describes a method of performing composite plating with a dispersion liquid in which a cationic functional group is introduced and dispersed in nanodiamond using a polyethylene glycol unit-containing polymer azo polymerizer (AZOPEG) as an introduction agent. Has been.

特開平8−337883号公報JP-A-8-337883 特開2006−225730号公報JP 2006-225730 A 特開2008−150250号公報JP 2008-150250 A

衝撃圧縮法により得られた多結晶タイプのナノダイヤモンドは、一次粒子が5〜20nmと極めて小さいが、ナノダイヤモンド表面には、非黒鉛質、黒鉛質皮膜などが融着し、粒径が50〜7,500nmの二次又は三次凝集体として製造販売されている。   The polycrystalline nanodiamond obtained by the impact compression method has primary particles as small as 5 to 20 nm, but the surface of the nanodiamond is fused with non-graphitic, graphite film, etc. It is manufactured and sold as a secondary or tertiary aggregate of 7,500 nm.

市販のナノダイヤモンドをめっき液中に分散させる場合、界面活性剤を添加しても粒子同士の凝集が起こりやすく、凝集した粒子が沈殿するため安定した分散液を得ることは非常に難しい。ナノダイヤモンドが安定して分散していない状態でめっき処理を行っためっき膜の表面には、ナノダイヤモンドの凝集析出(偏析)が生じるという問題があった。   When commercially available nanodiamonds are dispersed in the plating solution, even if a surfactant is added, the particles are likely to aggregate, and the aggregated particles are precipitated, so that it is very difficult to obtain a stable dispersion. There was a problem that nanodiamonds aggregated (segregated) on the surface of the plating film that was plated in a state where nanodiamonds were not stably dispersed.

こうした問題に対処するために、超音波分散法やビーズミル分散法等によりナノダイヤモンドの凝集体を解砕することが提案されている。こうした分散方法を用いるとナノダイヤモンドの平均粒径が十数nm〜数百nmの分散液を得ることができるが、めっき液中においては金属イオンの影響を受けるため、ナノダイヤモンドは再凝集・沈殿を生じてしまう。   In order to deal with such problems, it has been proposed to crush nanodiamond aggregates by an ultrasonic dispersion method, a bead mill dispersion method, or the like. By using such a dispersion method, a dispersion liquid having an average particle diameter of nano-diamonds of 10 nm to several hundred nm can be obtained. However, since nano-diamonds are affected by metal ions in the plating solution, nano-diamonds are re-aggregated and precipitated. Will occur.

また、従来行われてきたナノダイヤモンドを用いた複合めっき処理では、平均粒径が数nm〜数百nm程度のサイズのナノダイヤモンドをめっき液中に分散させて複合めっき膜を得ていたが、分散させるナノダイヤモンドの濃度が希薄であったため、複合めっき膜中に共析するナノダイヤモンドの含有量が数%程度のものであった。そのため、ナノダイヤモンドの特性を十分に発揮する複合めっき膜が得られなかった。   Moreover, in the conventional composite plating process using nanodiamonds, nanodiamonds having an average particle size of several nanometers to several hundred nanometers were dispersed in a plating solution to obtain a composite plating film. Since the concentration of dispersed nanodiamond was dilute, the content of nanodiamond co-deposited in the composite plating film was about several percent. Therefore, a composite plating film that sufficiently exhibits the characteristics of nanodiamonds cannot be obtained.

そこで、本発明は、ダイヤモンド微粒子を安定して分散させた複合めっき液及びその製造方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a composite plating solution in which diamond fine particles are stably dispersed and a method for producing the same.

本発明に係る複合めっき液の製造方法は、親水性ポリマー又はイオン性官能基が導入されたダイヤモンド微粒子をイオン性又は非イオン性の界面活性剤とともに分散させた分散液を金属めっき液に添加して、ダイヤモンド微粒子を安定して分散させた複合めっき液を製造することを特徴とする。さらに、前記ダイヤモンド微粒子の平均粒径が1nm〜1000nmであることを特徴とする。さらに、前記界面活性剤は、分子量が30,000〜200,000である単独重合体又は共重合体の界面活性剤であることを特徴とする。さらに、前記金属めっき液は、ニッケルイオン、コバルトイオン、銅イオン、金イオン、鉄イオン、パラジウムイオン、白金イオン、スズイオン及びロジウムイオンよりなる群から選ばれた1種又は2種以上の金属イオンを含むことを特徴とする。   In the method for producing a composite plating solution according to the present invention, a dispersion in which diamond fine particles into which a hydrophilic polymer or an ionic functional group has been introduced is dispersed together with an ionic or nonionic surfactant is added to the metal plating solution. Thus, a composite plating solution in which diamond fine particles are stably dispersed is manufactured. Further, the diamond fine particles have an average particle diameter of 1 nm to 1000 nm. Further, the surfactant is a homopolymer or copolymer surfactant having a molecular weight of 30,000 to 200,000. Furthermore, the metal plating solution contains one or more metal ions selected from the group consisting of nickel ions, cobalt ions, copper ions, gold ions, iron ions, palladium ions, platinum ions, tin ions and rhodium ions. It is characterized by including.

本発明に係る複合めっき液は、金属めっき液中に、親水性ポリマー又はイオン性官能基が導入された平均粒径1nm〜1000nmのダイヤモンド微粒子及びイオン性又は非イオン性の界面活性剤が均一に分散していることを特徴とする。さらに、前記ダイヤモンド微粒子の濃度が0.1g/リットル〜20g/リットルであることを特徴とする。さらに、前記界面活性剤は、分子量が30,000〜200,000である単独重合体又は共重合体の界面活性剤であることを特徴とする。   In the composite plating solution according to the present invention, diamond fine particles having an average particle diameter of 1 nm to 1000 nm and an ionic or nonionic surfactant in which a hydrophilic polymer or an ionic functional group is introduced are uniformly contained in the metal plating solution. It is distributed. Further, the diamond fine particles have a concentration of 0.1 g / liter to 20 g / liter. Further, the surfactant is a homopolymer or copolymer surfactant having a molecular weight of 30,000 to 200,000.

本発明に係る複合めっき方法は、上記の複合めっき液を用いて基材表面にめっき処理を行うことにより、前記ダイヤモンド微粒子を金属マトリックス中に均一に分散させた複合めっき膜を形成することを特徴とする。   The composite plating method according to the present invention is characterized by forming a composite plating film in which the diamond fine particles are uniformly dispersed in a metal matrix by performing a plating treatment on the substrate surface using the composite plating solution. And

本発明は、上記のような構成を有することで、金属めっき液中に、親水性ポリマー又はイオン性官能基が導入されたダイヤモンド微粒子をイオン性又は非イオン性の界面活性剤とともに分散させ、ダイヤモンド微粒子が安定した状態で均一に分散した複合めっき液を得ることができる。   The present invention has the above-described configuration, whereby diamond fine particles into which a hydrophilic polymer or an ionic functional group is introduced are dispersed in a metal plating solution together with an ionic or nonionic surfactant, and diamond A composite plating solution in which fine particles are uniformly dispersed in a stable state can be obtained.

複合めっき液に関するゼータ電位の測定結果を示すグラフである。It is a graph which shows the measurement result of the zeta potential regarding a composite plating solution. 複合めっき液に関する粒度分布の測定結果を示すグラフである。It is a graph which shows the measurement result of the particle size distribution regarding a composite plating solution. 実施例1の複合めっき膜の断面を撮影したSEMの拡大写真である。2 is an enlarged SEM photograph of a cross section of the composite plating film of Example 1. FIG. 実施例2の複合めっき膜の断面を撮影したSEMの拡大写真である。4 is an enlarged SEM photograph of a cross section of the composite plating film of Example 2. FIG.

本発明において使用される金属めっき液としては特に制限はないが、ニッケルイオン、コバルトイオン、銅イオン、金イオン、鉄イオン、パラジウムイオン、白金イオン、スズイオン及びロジウムイオンよりなる群から選ばれた1種又は2種以上の金属イオンを含むものが使用でき、特に好ましいものとしてはニッケルイオンを含む金属めっき液が挙げられる。   The metal plating solution used in the present invention is not particularly limited, but is selected from the group consisting of nickel ions, cobalt ions, copper ions, gold ions, iron ions, palladium ions, platinum ions, tin ions and rhodium ions. The thing containing a seed | species or 2 or more types of metal ions can be used, The metal plating solution containing a nickel ion is mentioned as an especially preferable thing.

本発明に使用するダイヤモンド微粒子としては、平均粒径が1nm〜1000nm、好ましくは10nm〜1000nm、特に好ましくは10nm〜200nmのものを使用するとよい。こうしたダイヤモンド微粒子は、通常入手可能な多結晶タイプ、単結晶タイプ、クラスタータイプのものを用いることができる。摺動特性の優れた複合めっき膜を得るには、粒径の小さいものを用いるとよい。   As the diamond fine particles used in the present invention, those having an average particle diameter of 1 nm to 1000 nm, preferably 10 nm to 1000 nm, particularly preferably 10 nm to 200 nm may be used. As such diamond fine particles, those of a polycrystalline type, a single crystal type, and a cluster type that are usually available can be used. In order to obtain a composite plating film having excellent sliding characteristics, a film having a small particle size may be used.

金属めっき液中にてダイヤモンド微粒子を均一に分散させるために、ダイヤモンド粒子の表面に親水性ポリマー又はイオン性官能基を導入するが、例えば、カチオン性官能基の場合、酸性領域下で容易にプロトンと結合してオニウムを形成するアミノ基、チオール基、水酸基、ホスフィン基等が挙げられる。この中でも、最もオニウムを形成しやすいアミノ基が好ましく、二つのアミノ基を有するアミジン骨格がさらに好ましい。   In order to uniformly disperse the diamond fine particles in the metal plating solution, a hydrophilic polymer or an ionic functional group is introduced on the surface of the diamond particle. For example, in the case of a cationic functional group, protons are easily generated in an acidic region. An amino group, a thiol group, a hydroxyl group, a phosphine group and the like which are bonded to each other to form onium. Among these, an amino group that is most likely to form onium is preferable, and an amidine skeleton having two amino groups is more preferable.

そのため、ダイヤモンド微粒子と反応させるアゾ系ラジカル開始剤は、アミジン骨格を有するものが好ましい。アミジンは塩酸塩になっていても環状体でもよい。具体的に列挙すると、2,2’−アゾビス(2−メチル−N−フェニルプロピオンアミジン)二塩酸塩、2,2’−アゾビス[N−(4−クロロフェニル)−2−メチルプロピオンアミジン]二塩酸塩、2,2’−アゾビス[N−(4−ヒドロキシフェニル)−2−メチルプロピオンアミジン]二塩酸塩、2,2’−アゾビス[2−メチル−N−(フェニルメチル)プロピオンアミジン]二塩酸塩、2,2’−アゾビス[2−メチル−N−(2−プロペニル)プロピオンアミジン]二塩酸塩、2,2’−アゾビス(2−メチルプロピオンアミジン)二塩酸塩、2,2’−アゾビス[N−(2−ヒドロキシエチル)−2−メチルプロピオンアミジン]二塩酸塩、2,2’−アゾビス[2−(5−メチル−2−イミダゾリン−2−イル)プロパン]二塩酸塩、2,2’−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]二塩酸塩、2,2’−アゾビス[2−(4,5,6,7−テトラヒドロ−1H−1,3−ジアゼピン−2−イル)プロパン]二塩酸塩、2,2’−アゾビス[2−(3,4,5,6−テトラヒドロピリミジン−2−イル)プロパン]二塩酸塩、2,2’−アゾビス[2−(5−ヒドロキシ−3,4,5,6−テトラヒドロピリミジン−2−イル)プロパン]二塩酸塩、2,2’−アゾビス{2−[1−(2−ヒドロキシエチル)−2−イミダゾリン−2−イル]プロパン}二塩酸塩、2,2’−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]等が挙げられる。これらは市販されており容易に入手できる。   Therefore, the azo radical initiator to be reacted with the diamond fine particles preferably has an amidine skeleton. Amidine may be hydrochloride or cyclic. Specifically, 2,2′-azobis (2-methyl-N-phenylpropionamidine) dihydrochloride, 2,2′-azobis [N- (4-chlorophenyl) -2-methylpropionamidine] dihydrochloride Salt, 2,2′-azobis [N- (4-hydroxyphenyl) -2-methylpropionamidine] dihydrochloride, 2,2′-azobis [2-methyl-N- (phenylmethyl) propionamidine] dihydrochloride Salt, 2,2′-azobis [2-methyl-N- (2-propenyl) propionamidine] dihydrochloride, 2,2′-azobis (2-methylpropionamidine) dihydrochloride, 2,2′-azobis [N- (2-hydroxyethyl) -2-methylpropionamidine] dihydrochloride, 2,2′-azobis [2- (5-methyl-2-imidazolin-2-yl) propane Dihydrochloride, 2,2'-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride, 2,2'-azobis [2- (4,5,6,7-tetrahydro-1H- 1,3-diazepin-2-yl) propane] dihydrochloride, 2,2′-azobis [2- (3,4,5,6-tetrahydropyrimidin-2-yl) propane] dihydrochloride, 2,2 '-Azobis [2- (5-hydroxy-3,4,5,6-tetrahydropyrimidin-2-yl) propane] dihydrochloride, 2,2'-azobis {2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] propane} dihydrochloride, 2,2′-azobis [2- (2-imidazolin-2-yl) propane] and the like. These are commercially available and can be easily obtained.

イオン性官能基を導入したダイヤモンド微粒子を分散させた水性分散液を製造するには、ダイヤモンド微粒子をアゾ系ラジカル開始剤と水系溶媒中で反応させて行う。水系溶媒中にダイヤモンド微粒子及びアゾ系ラジカル開始剤を混合して、加熱又は光照射によりラジカル反応を開始させればよい。加熱する場合は50℃以上、好ましくは65〜75℃に加熱すれば十分であり、数十時間で反応は完了する。反応の速度は、アゾ系ラジカル開始剤の量に依存し、ダイヤモンド微粒子の重量の0.1〜5倍量のアゾ系開始剤を用いることが好ましい。アゾ系開始剤の量が5倍量を越えるとダイヤモンド微粒子に導入される有機物の量は増加しなくなり、0.1倍量未満ではダイヤモンド微粒子に導入される有機物が少なく分散性が不十分になる。   In order to produce an aqueous dispersion in which diamond fine particles having ionic functional groups introduced therein are dispersed, the diamond fine particles are reacted with an azo radical initiator in an aqueous solvent. What is necessary is just to mix a diamond fine particle and an azo radical initiator in an aqueous solvent, and to start radical reaction by heating or light irradiation. In the case of heating, it is sufficient to heat to 50 ° C. or more, preferably 65 to 75 ° C., and the reaction is completed in several tens of hours. The rate of reaction depends on the amount of the azo radical initiator, and it is preferable to use an azo initiator in an amount of 0.1 to 5 times the weight of the diamond fine particles. If the amount of the azo initiator exceeds 5 times, the amount of organic matter introduced into the diamond fine particles will not increase, and if it is less than 0.1 times the amount of organic matter introduced into the diamond fine particles is small and the dispersibility becomes insufficient. .

水系溶媒は、水、又は水と水溶性溶媒との混合物であり、通常は水を用いればよい。使用するアゾ系ラジカル開始剤が水に溶解しない場合には、水溶性溶媒を適宜混合して用いることができる。水溶性溶媒としては、例えば、メタノール、エタノール等のアルコール類、エチレングリコール、グリセリン、低分子量ポリエチレングリコール等の脂肪族ポリオール、アセトニトリル等のニトリル類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等のアミド類、N−メチル−2−ピロリドン等のラクタム類、ジメチルスルホキシド、ジメチルスルホン、スルホラン等の含硫黄溶媒、ヘキサメチルホスホリックトリアミド等の含燐溶媒等が挙げられる。   The aqueous solvent is water or a mixture of water and a water-soluble solvent, and usually water may be used. When the azo radical initiator to be used does not dissolve in water, a water-soluble solvent can be appropriately mixed and used. Examples of the water-soluble solvent include alcohols such as methanol and ethanol, aliphatic polyols such as ethylene glycol, glycerin and low molecular weight polyethylene glycol, nitriles such as acetonitrile, N, N-dimethylformamide, N, N-dimethylacetamide. Amides such as N-methyl-2-pyrrolidone, sulfur-containing solvents such as dimethyl sulfoxide, dimethyl sulfone and sulfolane, and phosphorus-containing solvents such as hexamethylphosphoric triamide.

反応時のダイヤモンド微粒子の濃度は、1〜20重量%であることが好ましく、さらに5〜10重量%が好ましい。濃度が20重量%よりも高くなるとダイヤモンド微粒子が凝集してしまい、凝集したダイヤモンド微粒子とアゾ系ラジカル開始剤との間の反応が不十分となってをイオン性官能基を導入するのが難しくなり、1重量%未満では複合めっき液中のダイヤモンド微粒子の濃度が低下して複合めっき膜中のダイヤモンド微粒子の共析量が低下する。   The concentration of the diamond fine particles during the reaction is preferably 1 to 20% by weight, more preferably 5 to 10% by weight. When the concentration is higher than 20% by weight, the diamond fine particles aggregate, and the reaction between the aggregated diamond fine particles and the azo radical initiator becomes insufficient, making it difficult to introduce an ionic functional group. If it is less than 1% by weight, the concentration of diamond fine particles in the composite plating solution is lowered and the amount of diamond fine particles in the composite plating film is reduced.

上述の方法で得られたダイヤモンド微粒子の水性分散液は、そのまま金属めっき液中に添加することもできるが、未反応のアゾ系ラジカル開始剤や過剰な塩類を除くために分離・洗浄といった処理を行うことが好ましい。分離方法としては、濾過、遠心分離等の方法が用いられる。濾材としては0.1μm程度のメンブランフィルターが分離ロスが少なく好ましい。洗浄する場合には通常脱塩水を用いるが、残存するアゾ系ラジカル開始剤等の有機物を除去しやすいように水溶性の有機溶媒を適宜混合してもよい。また、pHを調整するために、各種塩類を溶解して用いることもできる。   The aqueous dispersion of diamond fine particles obtained by the above method can be added to the metal plating solution as it is, but a treatment such as separation and washing is performed to remove unreacted azo radical initiators and excess salts. Preferably it is done. As the separation method, methods such as filtration and centrifugation are used. As the filter medium, a membrane filter of about 0.1 μm is preferable because of little separation loss. In the case of washing, demineralized water is usually used, but a water-soluble organic solvent may be appropriately mixed so that the remaining organic substances such as the azo radical initiator can be easily removed. Moreover, in order to adjust pH, various salts can also be dissolved and used.

水性分散液中でのダイヤモンド微粒子の再凝集を抑制するためには、水性分散液をpH3〜8の範囲に調整することが好ましい。強酸又は塩基の液性の場合には、ダイヤモンド微粒子の表面の電荷が対イオンによって中和され、電荷反発による分散安定性が阻害される。pH調整剤としては、燐酸1水素塩、燐酸2水素塩、炭酸水素塩、炭酸塩、水酸化物等が挙げられるが、これらのアルカリ金属塩やアルカリ土類金属塩、アンモニウム塩等を用いることもできる。   In order to suppress reaggregation of diamond fine particles in the aqueous dispersion, it is preferable to adjust the aqueous dispersion to a pH in the range of 3 to 8. In the case of a strong acid or base liquid, the charge on the surface of the diamond fine particles is neutralized by a counter ion, and dispersion stability due to charge repulsion is inhibited. Examples of the pH adjuster include monohydrogen phosphate, dihydrogen phosphate, hydrogen carbonate, carbonate, hydroxide, and the like, and alkali metal salts, alkaline earth metal salts, ammonium salts, and the like are used. You can also.

また、ダイヤモンド微粒子の表面に導入する官能基を親水性ポリマーにすることで、微粒子表面における高分子鎖による立体反発力を高めて、ダイヤモンド微粒子を安定して分散させることもできる。   In addition, by using a hydrophilic polymer as a functional group to be introduced on the surface of the diamond fine particles, the steric repulsion force due to the polymer chain on the surface of the fine particles can be increased, and the diamond fine particles can be stably dispersed.

この場合、アゾ系ラジカル開始剤の両末端を水酸基からCl(塩素)末端に変換し、次いで得られる化合物に高分子鎖を付与することができる。例えば、ポリエチレングリコール(PEG)残基、ポリジメチルシロキサン(PDMS)残基等が挙げられる。水酸基からCl末端への変換は、公知の酸クロライド化反応の反応条件を広く適用できる。引き続き行われる高分子との反応は、一般的な脱塩化水素反応であり、通常、塩基性化合物の存在下で行うのが有利である。ここで、PEG残基としては、具体的には、
−(CH2CH2O)−(nは約4以上、好ましくは約10以上の整数)
が挙げられる。また、PDMS残基としては、
−[Si(CH32−O]−(mは約3以上、好ましくは40以上の整数)
が挙げられる(特開2006−219591号公報参照)。
In this case, both ends of the azo radical initiator can be converted from a hydroxyl group to a Cl (chlorine) end, and then a polymer chain can be imparted to the resulting compound. For example, a polyethylene glycol (PEG) residue, a polydimethylsiloxane (PDMS) residue, etc. are mentioned. The conversion from a hydroxyl group to a Cl terminal can be widely applied to known reaction conditions for acid chloride reaction. The subsequent reaction with the polymer is a general dehydrochlorination reaction, and it is usually advantageous to carry out the reaction in the presence of a basic compound. Here, as the PEG residue, specifically,
- (CH 2 CH 2 O) n - (n is about 4 or more, preferably about 10 or more integer)
Is mentioned. PDMS residues include
- [Si (CH 3) 2 -O] m - (m is about 3 or more, preferably 40 or more integer)
(See JP 2006-219591 A).

また、ダイヤモンド微粒子に対して、アミノ基含有シランカップリング剤又はアミノ基含有シリコーンオイルにより乾式下で表面処理してその表面にアミノ基を導入し、導入されたアミノ基についてアクリル酸メチルのマイケル付加反応及びジアミンによる末端アミノ化を乾式下で繰り返すことによりグラフト反応させて、ポリアミンデンドリマーをダイヤモンド微粒子の表面に形成することも可能である(特開2001−106940号公報参照)。   In addition, diamond fine particles are surface treated under dry conditions with an amino group-containing silane coupling agent or amino group-containing silicone oil to introduce amino groups on the surface, and Michael addition of methyl acrylate is added to the introduced amino groups. It is also possible to form a polyamine dendrimer on the surface of the diamond fine particles by repeating the reaction and terminal amination with diamine by repeating under dry conditions (see JP 2001-106940 A).

以上説明した親水性ポリマー又はイオン性官能基を導入したダイヤモンド微粒子をそのまま金属めっき液中に添加しても、金属めっき液中ではニッケルイオン等の電解質イオンの強いイオン強度の影響を受けるため、ダイヤモンド微粒子間に働く静電的反発力が打ち消され、凝集・沈殿を生じてしまう。   Even if the diamond fine particles introduced with the hydrophilic polymer or ionic functional group described above are added to the metal plating solution as they are, they are affected by the strong ionic strength of electrolyte ions such as nickel ions in the metal plating solution. The electrostatic repulsive force acting between the fine particles is canceled out, causing aggregation and precipitation.

そのため、こうしたダイヤモンド微粒子の凝集・沈殿を抑制し、金属めっき液中でダイヤモンド微粒子を安定して分散させるために、分散剤として界面活性剤を添加することが好ましい。添加する界面活性剤としては、アニオン性、カチオン性等のイオン性界面活性剤、又は非イオン性界面活性剤が挙げられる。例えば、イオン性界面活性剤の場合、アルキルベンゼンスルホン酸塩、ジアルキルジメチルアンモニウム塩等であり、これらはダイヤモンド微粒子の表面に導入したイオン性官能基により適宜選択すればよい。ここで用いるアルキル基としては、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル等の炭素数1〜6の整数である。   Therefore, it is preferable to add a surfactant as a dispersant in order to suppress such aggregation and precipitation of the diamond fine particles and stably disperse the diamond fine particles in the metal plating solution. Examples of the surfactant to be added include anionic surfactants such as anionic and cationic surfactants, and nonionic surfactants. For example, in the case of an ionic surfactant, there are alkylbenzene sulfonate, dialkyldimethylammonium salt, etc., and these may be appropriately selected depending on the ionic functional group introduced on the surface of the diamond fine particles. As an alkyl group used here, it is a C1-C6 integer, such as methyl, ethyl, propyl, butyl, pentyl, hexyl.

また、親水性ポリマーを導入したダイヤモンド微粒子の場合、非イオン系界面活性剤を用いることが好ましく、例えばPEGの場合ポリエチレングリコールモノ−4−オクチルフェニルエーテルやアルキルフェノール系の界面活性剤が挙げられる。   In the case of diamond fine particles into which a hydrophilic polymer has been introduced, it is preferable to use a nonionic surfactant. For example, in the case of PEG, polyethylene glycol mono-4-octylphenyl ether and alkylphenol surfactants can be used.

分散剤として用いる界面活性剤は、分子量30,000〜200,000の単独重合体又は共重合体の界面活性剤が好ましい。分子量が200,000よりも大きいと、ダイヤモンド微粒子間架橋を引き起こし、分散剤よりもむしろ凝集剤として作用するようになる。また、分子量が30,000よりも小さいと、吸着速度は速くてもダイヤモンド微粒子からの脱着が起こりやすくなって分散剤としての効果は小さくなる。   The surfactant used as the dispersant is preferably a homopolymer or copolymer surfactant having a molecular weight of 30,000 to 200,000. When the molecular weight is larger than 200,000, it causes cross-linking between diamond fine particles, and acts as an aggregating agent rather than a dispersing agent. On the other hand, if the molecular weight is smaller than 30,000, desorption from the diamond fine particles is likely to occur even if the adsorption rate is high, and the effect as a dispersing agent becomes small.

上述のように作製された分散液を金属めっき液に添加して複合めっき液を製造する場合、ダイヤモンド微粒子の添加量は、複合めっき液中の組成において0.5〜10g/リットルであることが好ましい。ダイヤモンド微粒子の添加量をこの範囲に調整した複合めっき液を用いてめっき処理すれば、めっき膜中にダイヤモンド微粒子を均一に分散させることができ、さらにダイヤモンド微粒子の含有率を0.1〜30容量%の範囲で調整することもできる。   In the case of producing a composite plating solution by adding the dispersion prepared as described above to the metal plating solution, the amount of diamond fine particles added may be 0.5 to 10 g / liter in the composition of the composite plating solution. preferable. If a plating treatment is performed using a composite plating solution in which the amount of added diamond fine particles is adjusted within this range, the diamond fine particles can be uniformly dispersed in the plating film, and the content of the diamond fine particles is 0.1 to 30 volumes. % Can also be adjusted.

また、複合めっき液に使用する還元剤としては、次亜リン酸ナトリウム、ジメチルアミンボラン、ヒドラジン等の次亜リン酸塩やアミンボラン類、またはヒドラジン塩等が挙げられる。複合めっき液中の還元剤の濃度は、使用する還元剤の種類や析出させる金属により相違するが、複合めっき液中の組成において20〜50g/リットルであることが好ましい。   Examples of the reducing agent used in the composite plating solution include hypophosphites such as sodium hypophosphite, dimethylamine borane, and hydrazine, amine boranes, and hydrazine salts. The concentration of the reducing agent in the composite plating solution varies depending on the type of reducing agent used and the metal to be deposited, but is preferably 20 to 50 g / liter in the composition in the composite plating solution.

また、複合めっき液の調整にあたっては、ダイヤモンド微粒子の分散状態を妨げない範囲で錯化剤を添加することが好ましい。複合めっき液に使用できる錯化剤としては、クエン酸、乳酸、コハク酸、マロン酸、プロピオン酸、アジピン酸、リンゴ酸、グリコール酸等の有機酸やこれらの水溶性塩が挙げられ、これらのうち一種又は二種類以上を組み合わせて用いることができる。添加する錯化剤の濃度は、複合めっき液中の組成において10〜40g/リットルであることが好ましい。   In preparing the composite plating solution, it is preferable to add a complexing agent within a range that does not interfere with the dispersion state of the diamond fine particles. Examples of complexing agents that can be used in the composite plating solution include organic acids such as citric acid, lactic acid, succinic acid, malonic acid, propionic acid, adipic acid, malic acid, glycolic acid, and water-soluble salts thereof. Of these, one or a combination of two or more can be used. The concentration of the complexing agent to be added is preferably 10 to 40 g / liter in the composition in the composite plating solution.

上述にように製造された複合めっき液を用いて公知の無電解めっき処理を実施する場合、ダイヤモンド微粒子が安定して分散された複合めっき液に対して、基材である被めっき体を浸漬させることにより、被めっき体の表面において、金属マトリックス中にダイヤモンド微粒子がナノオーダーで均一に分散された複合めっき膜を形成させることができる。   When a known electroless plating process is performed using the composite plating solution manufactured as described above, the substrate to be plated is immersed in the composite plating solution in which diamond fine particles are stably dispersed. Thus, a composite plating film in which diamond fine particles are uniformly dispersed in the nano order in the metal matrix can be formed on the surface of the object to be plated.

また、めっき処理を実施する場合には、金属イオンの還元反応を促進させ、複合めっき膜の析出速度を一定に保つために、複合めっき液の酸性度をpH3〜5にすることが好ましい。複合めっき液のpHを調整するためには、塩酸、硫酸、スルファミン酸等の酸性溶液や、水酸化ナトリウム、水酸化アンモニウム等のアルカリ性溶液を調整剤として適宜添加することができる。   Moreover, when implementing a plating process, in order to promote the reduction reaction of a metal ion and to keep the precipitation rate of a composite plating film constant, it is preferable that the acidity of a composite plating solution shall be pH 3-5. In order to adjust the pH of the composite plating solution, an acidic solution such as hydrochloric acid, sulfuric acid or sulfamic acid, or an alkaline solution such as sodium hydroxide or ammonium hydroxide can be appropriately added as a regulator.

さらに、析出速度を保つためには、めっき処理中の浴温を85〜90℃に調整して実施することが好ましい。また、必要に応じて、めっき処理中に複合めっき液を撹拌したり、被めっき体を揺動させることで、めっき効率を向上させたり、複合めっき膜の外観及び膜厚を一定に保つことができる。   Furthermore, in order to maintain the deposition rate, it is preferable to adjust the bath temperature during the plating process to 85 to 90 ° C. In addition, if necessary, the plating efficiency can be improved by stirring the composite plating solution during the plating process or by shaking the object to be plated, and the appearance and thickness of the composite plating film can be kept constant. it can.

以上に説明した複合めっき液の製造方法及びそれを用いた複合めっき方法について、好ましい形態の一つとしては、例えば、上述したような親水性ポリマー又はイオン性官能基を導入したダイヤモンド微粒子(平均粒径;1nm〜1000nm)及び界面活性剤を複合めっき液中に均一に分散させたNi−P無電解複合めっき液(下記組成参照)及びそれを使用した複合めっき方法が挙げられる。
<無電解複合めっき液の組成>
・硫酸ニッケル六水和物 25〜30g/リットル
・界面活性剤 0.5〜10g/リットル
・ダイヤモンド微粒子 0.5〜10g/リットル
・リンゴ酸(錯化剤) 10〜50g/リットル
・コハク酸(錯化剤) 10〜50g/リットル
・次亜リン酸ナトリウム(還元剤) 20〜50g/リットル
One preferred embodiment of the method for producing the composite plating solution described above and the composite plating method using the same is, for example, diamond fine particles (average grain size) in which a hydrophilic polymer or an ionic functional group as described above is introduced. Diameter; 1 nm to 1000 nm) and a Ni-P electroless composite plating solution (see the composition below) in which a surfactant is uniformly dispersed in the composite plating solution, and a composite plating method using the same.
<Composition of electroless composite plating solution>
-Nickel sulfate hexahydrate 25-30 g / liter-Surfactant 0.5-10 g / liter-Diamond fine particles 0.5-10 g / liter-Malic acid (complexing agent) 10-50 g / liter-Succinic acid ( Complexing agent) 10-50 g / liter. Sodium hypophosphite (reducing agent) 20-50 g / liter.

この複合めっき方法では、液温85〜90℃、pH4〜5に調整した上記の無電解複合めっき浴に、被めっき体を30〜60分程度浸漬させて無電解複合めっきを行い、被めっき体の表面にNi−Pマトリックス中にダイヤモンド微粒子が均一に分散した複合めっき膜が形成される。   In this composite plating method, the object to be plated is immersed in the above electroless composite plating bath adjusted to a liquid temperature of 85 to 90 ° C. and pH 4 to 5 for about 30 to 60 minutes to perform electroless composite plating. A composite plating film in which diamond fine particles are uniformly dispersed in the Ni-P matrix is formed on the surface of the substrate.

この複合めっき方法によれば、5〜15μmの複合めっき膜を被めっき体の表面に形成でき、膜の内部に平均粒径が1nm〜1000nmに調整されたダイヤモンド微粒子を均一に分散することが可能となる。そして、ダイヤモンド微粒子の析出量を0.1〜30容量%にすることができ、ダイヤモンド微粒子の特性を発揮させるのに十分な量を析出させることが可能となる。   According to this composite plating method, a composite plating film of 5 to 15 μm can be formed on the surface of the object to be plated, and diamond fine particles whose average particle diameter is adjusted to 1 nm to 1000 nm can be uniformly dispersed inside the film. It becomes. And the precipitation amount of a diamond fine particle can be 0.1-30 volume%, and it becomes possible to precipitate the quantity sufficient to exhibit the characteristic of a diamond fine particle.

上記の無電解複合めっき液を用いて無電解複合めっき処理を行う上で、めっき処理の進行により金属イオンが還元剤によって金属に還元され、また、ダイヤモンド微粒子が共析するにことにより、複合めっき液中の金属イオン濃度、還元剤濃度及びダイヤモンド微粒子濃度が低下し、またpHも低下することになる。   When performing the electroless composite plating process using the above electroless composite plating solution, the metal ions are reduced to the metal by the reducing agent by the progress of the plating process, and the diamond fine particles are co-deposited. The metal ion concentration, the reducing agent concentration and the diamond fine particle concentration in the liquid are lowered, and the pH is also lowered.

したがって、連続的に又は一定時間毎に複合めっき液中に金属塩、還元剤、ダイヤモンド微粒子及びpH調整剤を補給して、それらの濃度を建浴状態に維持することが好ましい。この場合、金属イオン、還元剤、ダイヤモンド微粒子の濃度の低下量及びpHの変化量と、複合めっき膜の析出量は互いに比例関係にあると考えられる。また、複合めっき膜の析出速度は、複合めっき液の濃度が初期濃度と同じであれば、同一めっき条件においてほぼ一定であると考えられるため、一定時間毎に一定量の金属塩、還元剤、ダイヤモンド微粒子及びpH調整剤を適量補給することにより、複合めっき液中の濃度をほぼ初期濃度に維持することができる。   Accordingly, it is preferable to replenish the metal plating solution, reducing agent, diamond fine particles and pH adjuster into the composite plating solution continuously or at regular intervals, and maintain their concentrations in the bathing condition. In this case, it is considered that the amount of decrease in the concentration of metal ions, the reducing agent and the fine diamond particles, the amount of change in pH, and the amount of precipitation of the composite plating film are proportional to each other. In addition, since the deposition rate of the composite plating film is considered to be substantially constant under the same plating conditions if the concentration of the composite plating solution is the same as the initial concentration, a certain amount of metal salt, reducing agent, By supplying appropriate amounts of the diamond fine particles and the pH adjusting agent, the concentration in the composite plating solution can be maintained at an almost initial concentration.

無電解複合めっき液は、めっき処理で消費される金属塩等の補給を行うことにより、少なくても2ターン、一般的には、3〜4ターン程度まで良好に複合めっき処理を続けることができ、連続的にめっき処理を行っても、表面が平滑で均一性に優れた複合めっき膜を安定して形成でき、また、析出速度やダイヤモンド微粒子の共析量の低下も少ない。ここで、1ターンとは、無電解複合めっき液中の初期金属イオン濃度に相当する量の金属が析出した時点での複合めっき液の状態を表しており、複合めっき液の消耗度を示す。   By replenishing the metal salt consumed in the plating process, the electroless composite plating solution can continue the composite plating process satisfactorily for at least 2 turns, generally 3-4 turns. Even if the plating process is continuously performed, a composite plating film having a smooth surface and excellent uniformity can be stably formed, and the precipitation rate and the amount of eutectoid of the diamond fine particles are hardly decreased. Here, one turn represents the state of the composite plating solution when an amount of metal corresponding to the initial metal ion concentration in the electroless composite plating solution is deposited, and indicates the degree of wear of the composite plating solution.

以下に実施例を挙げ、本発明をさらに詳しく説明するが、本発明はこれらの実施例に何ら制約されるものではない。   The present invention will be described in more detail with reference to examples below, but the present invention is not limited to these examples.

(実施例1)
<アニオン性官能基導入ダイヤモンド微粒子の作製>
ダイヤモンド微粒子は、住石マテリアルズ株式会社製のSCMファインダイヤ(平均粒径;20nm)を用いた。また、ダイヤモンド微粒子の表面にアニオン性官能基を導入するマクロアゾ開始剤として、和光純薬工業株式会社製の「V−501(4,4’−azobis(4−cyanoantanoic acid))」(以下「V−501」という)を使用した。
Example 1
<Preparation of anionic functional group-introduced diamond fine particles>
SCM fine diamond (average particle diameter; 20 nm) manufactured by Sumiishi Materials Co., Ltd. was used as the diamond fine particles. In addition, as a macroazo initiator for introducing an anionic functional group on the surface of diamond fine particles, “V-501 (4,4′-azobis (4-cyanoantanoic acid))” (hereinafter “V”) manufactured by Wako Pure Chemical Industries, Ltd. -501 ").

撹拌子と冷却管、熱電対を備えた100ミリリットル丸底フラスコ中にダイヤモンド微粒子(1.0g)及びV−501(1.0g)を加え、次いでメタノール溶媒100ミリリットルを加えて撹拌しながら、窒素雰囲気下で50℃に加熱して24時間反応させた。24時間反応させた後、ダイヤモンド微粒子の表面に対するアニオン性官能基の導入量を増やすために、V−501(1g)をメタノール10ミリリットルに溶解させ、24時間反応させた溶液に添加し、さらに窒素雰囲気下で50℃に加熱して24時間反応させた。   Diamond fine particles (1.0 g) and V-501 (1.0 g) were added to a 100 ml round bottom flask equipped with a stirrer, a cooling tube, and a thermocouple, and then 100 ml of methanol solvent was added and stirred. The reaction was carried out for 24 hours by heating to 50 ° C. in an atmosphere. After reacting for 24 hours, in order to increase the amount of anionic functional group introduced to the surface of the diamond fine particles, V-501 (1 g) was dissolved in 10 ml of methanol, added to the solution reacted for 24 hours, and then nitrogen. The reaction was carried out for 24 hours by heating to 50 ° C. in an atmosphere.

反応終了後、反応溶媒を除去して未反応のモノマーを除去した。ダイヤモンド微粒子の表面において物理的に吸着しているモノマーを完全に除去するために、再度メタノールを100ミリリットル加え、超音波処理によりダイヤモンド微粒子を分散させ、1.5×104rpmで約60分間遠心分離を行った。遠心分離後、メタノールを除去して得られたダイヤモンド微粒子を吸引乾燥により乾燥した。   After completion of the reaction, the reaction solvent was removed to remove unreacted monomers. In order to completely remove the monomer physically adsorbed on the surface of the diamond fine particles, 100 ml of methanol is added again, and the diamond fine particles are dispersed by ultrasonic treatment, and centrifuged at 1.5 × 104 rpm for about 60 minutes. went. After centrifugation, the diamond fine particles obtained by removing methanol were dried by suction drying.

乾燥させたダイヤモンド微粒子(1.0g)に、0.1M−NaOH水溶液100ミリリットルを加えて超音波処理により分散させ、マグネティックスターラーで撹拌しながら、60℃に加熱して6時間以上洗浄を行った。洗浄した後、反応生成物と溶媒を分離するために、1.5×104rpmで約60分間遠心分離を行った。遠心分離後、上澄のNaOH水溶液を除去して純水30ミリリットルを加え、超音波処理によりダイヤモンド微粒子を分散させる中和処理を行った。この中和処理は、ダイヤモンド微粒子を含む溶液が中性になるまで数回繰り返し行った。   To the dried diamond fine particles (1.0 g), 100 ml of 0.1 M NaOH aqueous solution was added and dispersed by ultrasonic treatment, and the mixture was heated to 60 ° C. while being stirred with a magnetic stirrer and washed for 6 hours or more. . After washing, in order to separate the reaction product and the solvent, centrifugation was performed at 1.5 × 104 rpm for about 60 minutes. After centrifugation, the supernatant NaOH aqueous solution was removed, 30 ml of pure water was added, and neutralization treatment was performed to disperse the diamond fine particles by ultrasonic treatment. This neutralization treatment was repeated several times until the solution containing diamond fine particles became neutral.

こうして作製されたアニオン性官能基導入ダイヤモンド微粒子を純水100ミリリットルに分散させて、1重量%のダイヤモンド微粒子分散液を得た。得られた分散液のpHは6.8、平均粒径は約12nm、最大粒径は約30nmであった。分散液を顕微鏡で観察した結果、ダイヤモンド微粒子の凝集塊は観察されなかった。   The anionic functional group-introduced diamond particles thus prepared were dispersed in 100 ml of pure water to obtain a 1% by weight diamond particle dispersion. The pH of the obtained dispersion was 6.8, the average particle size was about 12 nm, and the maximum particle size was about 30 nm. As a result of observing the dispersion with a microscope, aggregates of diamond fine particles were not observed.

作製されたアニオン性官能基導入ダイヤモンド微粒子についてFT−IRスペクトル測定を行った。その測定結果をみると、1750cm-1、1630cm-1及び1390cm-1 付近に原料のダイヤモンド微粒子にはない新しい吸収が認められ、ダイヤモンド微粒子の表面に対するCOOH基の導入が確認できた。 FT-IR spectrum measurement was performed on the produced anionic functional group-introduced diamond fine particles. As a result of the measurement, new absorption not found in the raw diamond fine particles was observed in the vicinity of 1750 cm −1 , 1630 cm −1 and 1390 cm −1 , and the introduction of COOH groups to the surface of the diamond fine particles was confirmed.

作製されたアニオン性官能基導入ダイヤモンド微粒子を純水中に1g/リットルの濃度で分散させ、超音波処理により十分に分散させた後、カチオン性界面活性剤(ポリ(ジアリルジメチルアンモニウムクロリド)を1.0g/リットルの濃度となるように添加し、さらに超音波処理により十分に分散させた。   The produced anionic functional group-introduced diamond fine particles are dispersed in pure water at a concentration of 1 g / liter and sufficiently dispersed by ultrasonic treatment, and then a cationic surfactant (poly (diallyldimethylammonium chloride) 1 It was added to a concentration of 0.0 g / liter, and further sufficiently dispersed by ultrasonic treatment.

得られたダイヤモンド微粒子及び界面活性剤が均一に分散した分散液を金属めっき液に添加し、下記の組成の複合めっき液を調製した。
<複合めっき液の組成>
・硫酸ニッケル六水和物 25g/リットル
・次亜リン酸ナトリウム一水和物 30g/リットル
・リンゴ酸 25g/リットル
・乳酸 20g/リットル
・コハク酸 5g/リットル
・ホウ砂 5g/リットル
・ダイヤモンド微粒子分散液 2g/リットル
The resulting dispersion in which the diamond fine particles and the surfactant were uniformly dispersed was added to the metal plating solution to prepare a composite plating solution having the following composition.
<Composition of composite plating solution>
-Nickel sulfate hexahydrate 25 g / liter-Sodium hypophosphite monohydrate 30 g / liter-Malic acid 25 g / liter-Lactic acid 20 g / liter-Succinic acid 5 g / liter-Borax 5 g / liter-Diamond fine particle dispersion Liquid 2g / liter

調製した複合めっき液は、硫酸又は水酸化アンモニウム溶液を適宜添加してpH5.0に調整した。次に、複合めっき液の温度を90℃(複合めっき液の使用温度)に昇温させた。このとき、複合めっき液中のダイヤモンド微粒子は、良好な分散状態を維持しており、製造された複合めっき液は、使用温度に昇温しても安定した分散状態を保持することが確認できた。分散状態は、沈殿の有無及び複合めっき液の色等を目視でチェックして良好な分散状態であることを確認した。   The prepared composite plating solution was adjusted to pH 5.0 by appropriately adding sulfuric acid or ammonium hydroxide solution. Next, the temperature of the composite plating solution was raised to 90 ° C. (use temperature of the composite plating solution). At this time, the fine diamond particles in the composite plating solution maintained a good dispersion state, and it was confirmed that the manufactured composite plating solution maintained a stable dispersion state even when the temperature was raised to the use temperature. . The dispersion state was confirmed to be a good dispersion state by visually checking the presence or absence of precipitation and the color of the composite plating solution.

こうした分散状態の評価は、ゼータ電位や粒度分布を測定することで定量的に評価することもできる。また、分散状態の安定度は、複合めっき液を昇温後室温に冷却した状態でゼータ電位や粒度分布を測定し、分散状態の変化を分析して定量的に評価することができる。その場合、調製した複合めっき液をゼータ電位粒度分布測定装置(例えば、べックマン・コールター株式会社製;製品名DelsaNano)により測定することで定量的な評価が可能となる。図1及び図2は、それぞれ複合めっき液のゼータ電位及び粒度分布の測定結果の一例を示すグラフである。処理前(昇温した状態で測定)及び処理後(室温に冷却した状態で測定)の測定結果の間に大きな変化はみられず、安定した分散状態が実現していることがわかる。   Such evaluation of the dispersion state can also be quantitatively evaluated by measuring the zeta potential and the particle size distribution. In addition, the stability of the dispersed state can be quantitatively evaluated by measuring the zeta potential and the particle size distribution in a state where the composite plating solution is heated to room temperature and then analyzing the change in the dispersed state. In that case, quantitative evaluation becomes possible by measuring the prepared composite plating solution with a zeta potential particle size distribution measuring device (for example, manufactured by Beckman Coulter, Inc .; product name Delsa Nano). 1 and 2 are graphs showing examples of measurement results of zeta potential and particle size distribution of the composite plating solution, respectively. No significant change is observed between the measurement results before the treatment (measured in a heated state) and after the treatment (measured in a cooled state at room temperature), indicating that a stable dispersion state is realized.

複合めっき液を用いて試験片(材料;ステンレス鋼(SUS304))に複合めっき処理を行った。複合めっき処理した試験片に対して、複合めっき膜の外観及びダイヤモンド微粒子の共析量について評価を行った。試験片の外観は均一なニッケル光沢色が表出しており、ダイヤモンド微粒子の共析量は約10重量%であった。   A composite plating treatment was performed on a test piece (material; stainless steel (SUS304)) using the composite plating solution. The test pieces subjected to the composite plating treatment were evaluated for the appearance of the composite plating film and the amount of eutectoid of the diamond fine particles. The appearance of the test piece showed a uniform nickel gloss color, and the amount of eutectoid of diamond fine particles was about 10% by weight.

図3は、形成された複合めっき膜の断面を撮影したSEMの拡大写真である。図3に示す拡大写真を観察した結果、複合めっき膜中のダイヤモンド微粒子は平均粒径が約20nmのサイズで均一に分散共析していることが確認できた。   FIG. 3 is an enlarged photograph of an SEM obtained by photographing a cross section of the formed composite plating film. As a result of observing the enlarged photograph shown in FIG. 3, it was confirmed that the diamond fine particles in the composite plating film were uniformly dispersed and eutectoid with an average particle size of about 20 nm.

(実施例2)
<PEG導入ダイヤモンド微粒子の作製>
試験管に、実施例1と同様のダイヤモンド微粒子を0.05g、PEGマクロアゾ開始剤として和光純薬工業株式会社製の「VPE−0201」を2.0g加えた。さらに、反応触媒として、o−ジクロロベンゼンを15ミリリットル加え、マグネティックスターラーで撹拌しながら、窒素雰囲気下で70℃に加熱して反応させた。
(Example 2)
<Preparation of PEG-introduced diamond fine particles>
0.05 g of the same diamond fine particles as in Example 1 and 2.0 g of “VPE-0201” manufactured by Wako Pure Chemical Industries, Ltd. as a PEG macroazo initiator were added to the test tube. Further, 15 ml of o-dichlorobenzene was added as a reaction catalyst, and the reaction was carried out by heating to 70 ° C. in a nitrogen atmosphere while stirring with a magnetic stirrer.

反応後、試験管にメタノールを加えて反応を停止させ、洗浄溶媒としてメタノールを用いて、生成物の洗浄を行った。また、非グラフトPEGを取り除くため、生成物をメタノール中へ分散させ、約5分間超音波洗浄を行い、その後1.5×104rpmで約30分遠心分離を行って、非グラフトPEGが溶解している上澄み液を除去した。この操作を3回繰り返して、非グラフトPEGを除去した。その後、沈殿物を減圧下で50℃に加熱して十分乾燥させた。   After the reaction, methanol was added to the test tube to stop the reaction, and the product was washed using methanol as a washing solvent. In order to remove the non-grafted PEG, the product is dispersed in methanol, subjected to ultrasonic washing for about 5 minutes, and then centrifuged at 1.5 × 104 rpm for about 30 minutes to dissolve the non-grafted PEG. The supernatant was removed. This operation was repeated 3 times to remove non-grafted PEG. Thereafter, the precipitate was sufficiently dried by heating to 50 ° C. under reduced pressure.

生成物に対してFI−IRスペクトル測定を行った。その結果、1110cm-1、1700cm-1及び2950cm-1付近にPEG鎖に由来するエーテル結合の特性を示す吸収が認められ、ダイヤモンド微粒子の表面にPEG鎖がグラフト重合により導入されたことが確認できた。また、エステル結合に由来する吸収も認められた。これらの測定結果をみると、ダイヤモンド微粒子の表面に導入されたCOOH基とPEGの末端の水酸基との縮合反応が進行し、PEGはエステル結合を介してダイヤモンド微粒子の表面にグラフト重合して導入されたことを示唆している。 FI-IR spectrum measurement was performed on the product. As a result, 1110 cm -1, absorption showing the characteristics of the ether bond derived from PEG chains was observed around 1700 cm -1 and 2950 cm -1, confirming that the surface of the diamond particles PEG chains introduced by graft polymerization It was. Absorption derived from ester bonds was also observed. From these measurement results, the condensation reaction between the COOH group introduced on the surface of the diamond fine particle and the hydroxyl group at the end of PEG proceeds, and PEG is introduced by graft polymerization onto the surface of the diamond fine particle via an ester bond. It suggests that.

作製したPEG導入ダイヤモンド微粒子を純水中で1g/リットルの濃度で分散させ、超音波処理により十分に分散させた後、非イオン性界面活性剤(ポリエチレングリコールモノ−4−オクチルフェニルエーテル)を1.0g/リットルの濃度となるように添加し、さらに超音波処理により十分に分散させた。   The produced PEG-introduced diamond fine particles are dispersed at a concentration of 1 g / liter in pure water and sufficiently dispersed by ultrasonic treatment, and then a nonionic surfactant (polyethylene glycol mono-4-octylphenyl ether) is added to 1 It was added to a concentration of 0.0 g / liter, and further sufficiently dispersed by ultrasonic treatment.

得られたダイヤモンド微粒子及び界面活性剤が均一に分散した分散液を金属めっき液に添加し、下記の組成の複合めっき液を調製した。
<複合めっき液の組成>
・硫酸ニッケル六水和物 25g/リットル
・次亜リン酸ナトリウム一水和物 30g/リットル
・リンゴ酸 25g/リットル
・乳酸 20g/リットル
・コハク酸 5g/リットル
・ホウ砂 5g/リットル
・ダイヤモンド微粒子分散液 0.1g/リットル
The resulting dispersion in which the diamond fine particles and the surfactant were uniformly dispersed was added to the metal plating solution to prepare a composite plating solution having the following composition.
<Composition of composite plating solution>
-Nickel sulfate hexahydrate 25 g / liter-Sodium hypophosphite monohydrate 30 g / liter-Malic acid 25 g / liter-Lactic acid 20 g / liter-Succinic acid 5 g / liter-Borax 5 g / liter-Diamond fine particle dispersion Liquid 0.1g / liter

調製した複合めっき液は、硫酸又は水酸化アンモニウム溶液を適宜添加してpHを5.0に調整した。次に、複合めっき液の温度を90℃(複合めっき液の使用温度)に昇温させた。このとき、複合めっき液中のダイヤモンド微粒子は、良好な分散状態を維持しており、製造された複合めっき液は、使用温度に昇温しても安定した分散状態を保持することが確認できた。なお、分散状態については、実施例1と同様に目視により確認した。   The prepared composite plating solution was adjusted to pH 5.0 by appropriately adding sulfuric acid or ammonium hydroxide solution. Next, the temperature of the composite plating solution was raised to 90 ° C. (use temperature of the composite plating solution). At this time, the fine diamond particles in the composite plating solution maintained a good dispersion state, and it was confirmed that the manufactured composite plating solution maintained a stable dispersion state even when the temperature was raised to the use temperature. . The dispersion state was confirmed by visual observation as in Example 1.

複合めっき液を用いて試験片(材料;ステンレス鋼(SUS304))に複合めっき処理を行った。複合めっき処理した試験片に対して、複合めっき膜の外観及びダイヤモンド微粒子の共析量について評価を行った。試験片の外観は均一なニッケル光沢色が表出しており、ダイヤモンド微粒子の共析量は約1重量%であった。   A composite plating treatment was performed on a test piece (material; stainless steel (SUS304)) using the composite plating solution. The test pieces subjected to the composite plating treatment were evaluated for the appearance of the composite plating film and the amount of eutectoid of the diamond fine particles. The appearance of the test piece showed a uniform nickel luster color, and the amount of eutectoid of the diamond fine particles was about 1% by weight.

図4は、形成された複合めっき膜の断面を撮影したSEMの拡大写真である。図4に示す拡大写真を観察した結果、複合めっき膜中のダイヤモンド微粒子は平均粒径が約100nmのサイズで均一に分散共析していることが確認できた。   FIG. 4 is an enlarged photograph of an SEM obtained by photographing a cross section of the formed composite plating film. As a result of observing the enlarged photograph shown in FIG. 4, it was confirmed that the diamond fine particles in the composite plating film were uniformly dispersed and eutectoid with an average particle diameter of about 100 nm.

Claims (9)

親水性ポリマー又はイオン性官能基が導入されたダイヤモンド微粒子をイオン性又は非イオン性の界面活性剤とともに分散させた分散液を金属めっき液に添加して、ダイヤモンド微粒子を安定して分散させた複合めっき液を製造することを特徴とする複合めっき液の製造方法。   A composite in which diamond fine particles with a hydrophilic polymer or ionic functional group introduced are dispersed together with an ionic or nonionic surfactant and added to the metal plating solution to stably disperse the diamond fine particles. A method for producing a composite plating solution, comprising producing a plating solution. 前記ダイヤモンド微粒子の平均粒径が1nm〜1000nmであることを特徴とする請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein an average particle diameter of the diamond fine particles is 1 nm to 1000 nm. 前記界面活性剤は、分子量が30,000〜200,000である単独重合体又は共重合体の界面活性剤であることを特徴とする請求項1又は2に記載の製造方法。   The method according to claim 1 or 2, wherein the surfactant is a homopolymer or copolymer surfactant having a molecular weight of 30,000 to 200,000. 前記金属めっき液は、ニッケルイオン、コバルトイオン、銅イオン、金イオン、鉄イオン、パラジウムイオン、白金イオン、スズイオン及びロジウムイオンよりなる群から選ばれた1種又は2種以上の金属イオンを含むことを特徴とする請求項1から3のいずれかに記載の製造方法。   The metal plating solution contains one or more metal ions selected from the group consisting of nickel ions, cobalt ions, copper ions, gold ions, iron ions, palladium ions, platinum ions, tin ions and rhodium ions. The manufacturing method according to any one of claims 1 to 3. 金属めっき液中に、親水性ポリマー又はイオン性官能基が導入された平均粒径1nm〜1000nmのダイヤモンド微粒子及びイオン性又は非イオン性の界面活性剤が均一に分散していることを特徴とする複合めっき液。   In the metal plating solution, diamond fine particles having an average particle diameter of 1 nm to 1000 nm and a ionic or nonionic surfactant having a hydrophilic polymer or ionic functional group introduced therein are uniformly dispersed. Composite plating solution. 前記ダイヤモンド微粒子の濃度が0.1g/リットル〜20g/リットルであることを特徴とする請求項5に記載の複合めっき液。   6. The composite plating solution according to claim 5, wherein the concentration of the diamond fine particles is 0.1 g / liter to 20 g / liter. 前記界面活性剤は、分子量が30,000〜200,000である単独重合体又は共重合体の界面活性剤であることを特徴とする請求項5又は6に記載の複合めっき液。   The composite plating solution according to claim 5 or 6, wherein the surfactant is a homopolymer or copolymer surfactant having a molecular weight of 30,000 to 200,000. 請求項5から7のいずれかに記載の複合めっき液を用いて基材表面にめっき処理を行うことにより、前記ダイヤモンド微粒子を金属マトリックス中に均一に分散させた複合めっき膜を形成することを特徴とする複合めっき方法。   A composite plating film in which the diamond fine particles are uniformly dispersed in a metal matrix is formed by performing a plating treatment on a substrate surface using the composite plating solution according to claim 5. A composite plating method. 請求項8に記載の複合めっき方法により形成された複合めっき膜。   A composite plating film formed by the composite plating method according to claim 8.
JP2010012598A 2010-01-22 2010-01-22 Composite plating solution in which fine diamond particles are dispersed and method for producing the same Active JP5435477B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010012598A JP5435477B2 (en) 2010-01-22 2010-01-22 Composite plating solution in which fine diamond particles are dispersed and method for producing the same
CN201180006904.XA CN102753734B (en) 2010-01-22 2011-01-07 Composite plating solution having diamond microparticles dispersed therein, and process for production thereof
PCT/JP2011/050156 WO2011089933A1 (en) 2010-01-22 2011-01-07 Composite plating solution having diamond microparticles dispersed therein, and process for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010012598A JP5435477B2 (en) 2010-01-22 2010-01-22 Composite plating solution in which fine diamond particles are dispersed and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011149071A true JP2011149071A (en) 2011-08-04
JP5435477B2 JP5435477B2 (en) 2014-03-05

Family

ID=44306737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010012598A Active JP5435477B2 (en) 2010-01-22 2010-01-22 Composite plating solution in which fine diamond particles are dispersed and method for producing the same

Country Status (3)

Country Link
JP (1) JP5435477B2 (en)
CN (1) CN102753734B (en)
WO (1) WO2011089933A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012092416A (en) * 2010-09-30 2012-05-17 Eyetec Co Ltd Method for forming composite plating film
JP2013082956A (en) * 2011-10-06 2013-05-09 Toyota Motor Corp Sliding member and method for producing the same
JP2013189546A (en) * 2012-03-14 2013-09-26 Toyo Ink Sc Holdings Co Ltd Dispersion including diamond fine particle
JP2014152908A (en) * 2013-02-13 2014-08-25 Oriental Chain Mfg Co Ltd Roller chain
JP2014201779A (en) * 2013-04-02 2014-10-27 古河電気工業株式会社 Composite plated material with dispersed particles, method for manufacturing the same, and plating solution for manufacturing the same
JP2017066437A (en) * 2015-09-28 2017-04-06 株式会社ダイセル Nano diamond containing plating film and nano diamond containing plating article
JP2017155275A (en) * 2016-03-01 2017-09-07 株式会社荏原製作所 Electroless plating apparatus and electroless plating method
JP2018083960A (en) * 2016-11-22 2018-05-31 株式会社ダイセル Nanodiamond-containing plating solution production method and nanodiamond-containing plating solution
KR20190036572A (en) * 2017-09-27 2019-04-05 현대제철 주식회사 Electroplating solution for steel sheet and methods of electroplating steel sheet using the same
WO2020013188A1 (en) * 2018-07-12 2020-01-16 株式会社ダイセル Base metal plating film
JP6945761B1 (en) * 2021-06-16 2021-10-06 株式会社Jcu Additives for composite plating solutions
EP3751021A4 (en) * 2018-02-08 2021-11-10 Daicel Corporation Plating film

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180025959A (en) 2015-07-06 2018-03-09 카르보데온 엘티디 오와이 Metal coating and method of making the same
US9702045B2 (en) 2015-07-06 2017-07-11 Carbodeon Ltd Oy Metallic coating and a method for producing the same
JPWO2017061246A1 (en) * 2015-10-08 2018-07-26 株式会社ダイセル Recovery method of nano diamond from plating solution
JP2017201053A (en) * 2016-05-06 2017-11-09 豊橋鍍金工業株式会社 Composite plating method and hydrophilic particle
CN106937491A (en) * 2017-04-05 2017-07-07 广东浪潮大数据研究有限公司 One kind is based on pcb board card gold finger galvanizing nickel and plating gold process and its application
JP2021042397A (en) * 2017-12-15 2021-03-18 幹晴 高木 Method of micronizing crystal grains in plating film
CN111809216B (en) * 2020-06-03 2022-04-19 北京航空航天大学 Method for dispersing nanoscale inorganic particles suitable for composite electrodeposition
CN113549990A (en) * 2021-06-11 2021-10-26 洛阳吉瓦新材料科技有限公司 Method for treating sand plating solution on electroplated diamond wire saw
CN113502518B (en) * 2021-07-27 2022-05-06 临沂利信铝业有限公司 Wear-resistant aluminum alloy composite material
CN113668025A (en) * 2021-08-31 2021-11-19 株洲岱勒新材料有限责任公司 Electroplating diamond treatment method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04116198A (en) * 1990-08-31 1992-04-16 Tokyo Daiyamondo Kogu Seisakusho:Kk Diamond eutectic plating film and plating method thereof
JPH08337883A (en) * 1995-06-12 1996-12-24 Sankyo Seiki Mfg Co Ltd Diamond-containing composite plating
JP2007238411A (en) * 2006-03-10 2007-09-20 Naoki Komatsu Nanodiamond
JP2008150250A (en) * 2006-12-19 2008-07-03 Eyetec Co Ltd Dispersion method for nano-diamond
JP2009282003A (en) * 2008-05-22 2009-12-03 Vision Development Co Ltd Contact member

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1203915C (en) * 2002-11-18 2005-06-01 长沙矿冶研究院 Nano-diamond deagglomeration and grading method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04116198A (en) * 1990-08-31 1992-04-16 Tokyo Daiyamondo Kogu Seisakusho:Kk Diamond eutectic plating film and plating method thereof
JPH08337883A (en) * 1995-06-12 1996-12-24 Sankyo Seiki Mfg Co Ltd Diamond-containing composite plating
JP2007238411A (en) * 2006-03-10 2007-09-20 Naoki Komatsu Nanodiamond
JP2008150250A (en) * 2006-12-19 2008-07-03 Eyetec Co Ltd Dispersion method for nano-diamond
JP2009282003A (en) * 2008-05-22 2009-12-03 Vision Development Co Ltd Contact member

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012092416A (en) * 2010-09-30 2012-05-17 Eyetec Co Ltd Method for forming composite plating film
JP2013082956A (en) * 2011-10-06 2013-05-09 Toyota Motor Corp Sliding member and method for producing the same
JP2013189546A (en) * 2012-03-14 2013-09-26 Toyo Ink Sc Holdings Co Ltd Dispersion including diamond fine particle
JP2014152908A (en) * 2013-02-13 2014-08-25 Oriental Chain Mfg Co Ltd Roller chain
JP2014201779A (en) * 2013-04-02 2014-10-27 古河電気工業株式会社 Composite plated material with dispersed particles, method for manufacturing the same, and plating solution for manufacturing the same
JP2017066437A (en) * 2015-09-28 2017-04-06 株式会社ダイセル Nano diamond containing plating film and nano diamond containing plating article
JP2017155275A (en) * 2016-03-01 2017-09-07 株式会社荏原製作所 Electroless plating apparatus and electroless plating method
JP2018083960A (en) * 2016-11-22 2018-05-31 株式会社ダイセル Nanodiamond-containing plating solution production method and nanodiamond-containing plating solution
KR20190036572A (en) * 2017-09-27 2019-04-05 현대제철 주식회사 Electroplating solution for steel sheet and methods of electroplating steel sheet using the same
KR102043505B1 (en) * 2017-09-27 2019-11-12 현대제철 주식회사 Electroplating solution for steel sheet and methods of electroplating steel sheet using the same
EP3751021A4 (en) * 2018-02-08 2021-11-10 Daicel Corporation Plating film
WO2020013188A1 (en) * 2018-07-12 2020-01-16 株式会社ダイセル Base metal plating film
JPWO2020013188A1 (en) * 2018-07-12 2021-07-15 株式会社ダイセル Base metal plating film
JP6945761B1 (en) * 2021-06-16 2021-10-06 株式会社Jcu Additives for composite plating solutions
WO2022264739A1 (en) * 2021-06-16 2022-12-22 株式会社Jcu Additive for composite plating solutions
JP2022191792A (en) * 2021-06-16 2022-12-28 株式会社Jcu Additive for composite plating solution

Also Published As

Publication number Publication date
WO2011089933A1 (en) 2011-07-28
CN102753734B (en) 2015-02-11
JP5435477B2 (en) 2014-03-05
CN102753734A (en) 2012-10-24

Similar Documents

Publication Publication Date Title
JP5435477B2 (en) Composite plating solution in which fine diamond particles are dispersed and method for producing the same
JP5614538B2 (en) Method for forming composite plating film
TWI271444B (en) Polytetrafluoroethylene dispersion for electroless nickel plating applications
CN111472171B (en) Super-hydrophobic fabric and preparation method thereof
Afroukhteh et al. Corrosion behavior of Ni–P/nano-TiC composite coating prepared in electroless baths containing different types of surfactant
JP4577755B2 (en) Process for producing modified colloidal silica
KR100540102B1 (en) Electroless composite plating solution and electroless composite plating method
CN109890918B (en) Hydrophilic coating composition
CN107923042A (en) Coat of metal and preparation method thereof
CN114106676B (en) Super-hydrophobic coating, preparation method and application thereof, super-hydrophobic coating, preparation method and application thereof
TW201319307A (en) Pretreatment solution for electroless copper plating and electroless copper plating method
TWI665295B (en) Hydrophic treatment agent for a metallic material containing aluminum
JP3159606U (en) Knife
JP6332986B2 (en) Method for producing nanocarbon fiber coated diamond particles
TW201817914A (en) Electroless nickel plating method
JP2007254793A (en) Electroless nickel plating liquid
CN114162811A (en) Carboxylated graphene oxide and preparation and application methods thereof
JP2013189546A (en) Dispersion including diamond fine particle
JP5877003B2 (en) Dispersant for electroless composite plating solution
JP6659449B2 (en) Abrasive composition for electroless nickel-phosphorus plated aluminum magnetic disk substrate
JP2019090063A (en) Plating solution for composite plating, composite plated article, and aqueous dispersion of polyolefin resin for composite plating
JP7338093B2 (en) Molybdic acid solution and method for producing the same, molybdenum oxide powder and method for producing the same
JP2020117797A (en) Eutectoid plating solution
WO2020217738A1 (en) Eutectoid plating solution
WO2023013287A1 (en) Tungstic acid solution and method for producing same, and tungsten oxide powder and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131203

R150 Certificate of patent or registration of utility model

Ref document number: 5435477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250