JP6945761B1 - Additives for composite plating solutions - Google Patents

Additives for composite plating solutions Download PDF

Info

Publication number
JP6945761B1
JP6945761B1 JP2021100239A JP2021100239A JP6945761B1 JP 6945761 B1 JP6945761 B1 JP 6945761B1 JP 2021100239 A JP2021100239 A JP 2021100239A JP 2021100239 A JP2021100239 A JP 2021100239A JP 6945761 B1 JP6945761 B1 JP 6945761B1
Authority
JP
Japan
Prior art keywords
additive
nickel
plating solution
fine particles
conductive fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021100239A
Other languages
Japanese (ja)
Other versions
JP2022191792A (en
Inventor
佳那 柴田
佳那 柴田
西川 賢一
賢一 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JCU Corp
Original Assignee
JCU Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JCU Corp filed Critical JCU Corp
Priority to JP2021100239A priority Critical patent/JP6945761B1/en
Application granted granted Critical
Publication of JP6945761B1 publication Critical patent/JP6945761B1/en
Priority to PCT/JP2022/020620 priority patent/WO2022264739A1/en
Priority to EP22824733.4A priority patent/EP4357488A1/en
Priority to CN202210661523.5A priority patent/CN115478307A/en
Publication of JP2022191792A publication Critical patent/JP2022191792A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/52Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating using reducing agents for coating with metallic material not provided for in a single one of groups C23C18/32 - C23C18/50
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • C25D15/02Combined electrolytic and electrophoretic processes with charged materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • C25D21/14Controlled addition of electrolyte components
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/16Regeneration of process solutions
    • C25D21/18Regeneration of process solutions of electrolytes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Chemically Coating (AREA)

Abstract

【課題】非導電性微粒子を含有した液体であり、特殊な微粒子の調製を必要とせず、安定性が高い、コンポジットめっき液用の添加剤を提供する。【解決手段】非導電性微粒子とニッケルイオンと水を含有することを特徴とするコンポジットめっき液用添加剤。【選択図】図5PROBLEM TO BE SOLVED: To provide an additive for a composite plating solution, which is a liquid containing non-conductive fine particles, does not require preparation of special fine particles, and has high stability. An additive for a composite plating solution, which contains non-conductive fine particles, nickel ions, and water. [Selection diagram] Fig. 5

Description

本発明は、コンポジットめっき液に用いる非導電性微粒子を含有する添加剤の液体化技術に関する。 The present invention relates to a technique for liquefying an additive containing non-conductive fine particles used in a composite plating solution.

光沢のない均一な半光沢ないしは無光沢に近い外観を有するめっきはサテン状ニッケルと呼称されている。サテン状外観を得る方法として、液中に非導電性微粒子を懸濁させニッケルと共析させるコンポジットめっきがある(非特許文献1)。 Plating with a dull, uniform, semi-glossy or near-matte appearance is called satin-like nickel. As a method for obtaining a satin-like appearance, there is composite plating in which non-conductive fine particles are suspended in a liquid and eutectic with nickel (Non-Patent Document 1).

また、同様の非導電性微粒子を利用しためっきとして、自動車部品、水洗金具などの装飾めっきとして用いられるクロムめっきの下地に用いられるマイクロポーラスめっきがある。このマイクロポーラスめっき皮膜があることで、クロムめっき表層に目には見えない微小な孔を多数形成することができ、腐食電流を分散し、耐食性を向上することが可能である(特許文献1)。このマイクロポーラスめっきもコンポジットめっきの一種である。 Further, as plating using the same non-conductive fine particles, there is microporous plating used as a base for chrome plating used as decorative plating for automobile parts, washing metal fittings and the like. With this microporous plating film, it is possible to form a large number of invisible minute pores on the surface layer of the chrome plating, disperse the corrosion current, and improve the corrosion resistance (Patent Document 1). .. This microporous plating is also a type of composite plating.

サテン状外観やマイクロポーラスを形成するために用いられる微粒子は非常に小さい粒子径であるために、めっき液に添加する際に大気中への飛散、作業する上で作業者への暴露や周辺への付着があり、液体の添加剤の形態が以前より切望されていた。 Since the fine particles used to form a satin-like appearance and microporous have a very small particle size, they are scattered into the atmosphere when added to the plating solution, exposed to workers during work, and to the surroundings. The form of the liquid additive has been long-awaited.

しかしながら、水を溶媒とした添加剤については、シリカ粒子等の非導電性微粒子を添加した場合、数時間後には沈降、沈殿を経たのちに固化する現象が確認されており、安定的な微粒子の液体添加剤としては不適合であった。 However, with regard to additives using water as a solvent, when non-conductive fine particles such as silica particles are added, a phenomenon has been confirmed in which they settle and precipitate after several hours and then solidify. It was incompatible as a liquid additive.

ところで、めっき中にマイクロポーラスを形成する技術として、水酸化アルミニウムを用いてプラスに帯電させたシリカ粒子等の非導電性粒子を含有させためっき液を用いて電気めっきを行うことが知られている(特許文献2)。 By the way, as a technique for forming microporous during plating, it is known that electroplating is performed using a plating solution containing non-conductive particles such as silica particles positively charged with aluminum hydroxide. (Patent Document 2).

しかしながら、このような従来の技術でプラスに帯電させた非導電性微粒子を添加剤として予め調製しておくと固化してしまうため、使用時に毎回別々に添加する必要があり、やはり、安定的な微粒子の液体添加剤としては不適合であった。 However, if non-conductive fine particles positively charged by such a conventional technique are prepared in advance as an additive, they will solidify. Therefore, it is necessary to add them separately each time they are used, which is also stable. It was incompatible as a fine particle liquid additive.

特開平03−291395号公報Japanese Unexamined Patent Publication No. 03-291395 特開平04−371597号公報Japanese Unexamined Patent Publication No. 04-371597

めっき技術ガイドブック1987Edition,東京鍍金材料共同組合,P.151Plating Technology Guidebook 1987 Edition, Tokyo Plating Materials Cooperative, P.151

従って、本発明の課題は、非導電性微粒子を含有した液体であり、特殊な微粒子の調製を必要とせず、安定性が高い、コンポジットめっき液用の添加剤を提供することである。 Therefore, an object of the present invention is to provide an additive for a composite plating solution, which is a liquid containing non-conductive fine particles, does not require the preparation of special fine particles, and has high stability.

本発明者らが上記課題を解決するために鋭意研究した結果、非導電性微粒子を液体中で分散させるためのニッケルイオンを含有させることにより、上記課題を解決できることを見出し、本発明を完成させた。 As a result of diligent research to solve the above problems, the present inventors have found that the above problems can be solved by containing nickel ions for dispersing non-conductive fine particles in a liquid, and completed the present invention. rice field.

すなわち、本発明は、非導電性微粒子とニッケルイオンと水を含有することを特徴とするコンポジットめっき液用添加剤である。 That is, the present invention is an additive for a composite plating solution, which is characterized by containing non-conductive fine particles, nickel ions and water.

また、本発明は、非導電性微粒子と水を含有するコンポジットめっき液用添加剤に、ニッケルイオンを含有させることを特徴とするコンポジットめっき液用添加剤における非導電性微粒子の沈殿防止方法である。 Further, the present invention is a method for preventing precipitation of non-conductive fine particles in an additive for a composite plating solution, which comprises adding nickel ions to an additive for a composite plating solution containing non-conductive fine particles and water. ..

本発明のコンポジットめっき液用添加剤は、非導電性微粒子の沈降(非導電性微粒子の懸濁層と上澄みとの分離が遅延していること:沈殿の形成までの時間が遅いこと)の抑制や沈殿物の固化(振盪しても非導電性微粒子が再分散しない)を抑制することができ、液体の添加剤として安定した状態を維持することができる。 The additive for composite plating solution of the present invention suppresses precipitation of non-conductive fine particles (delayed separation of the suspension layer of non-conductive fine particles from the supernatant: slow time to form a precipitate). And solidification of the precipitate (non-conductive fine particles do not redisperse even when shaken) can be suppressed, and a stable state can be maintained as a liquid additive.

そのため、本発明のコンポジットめっき液用添加剤は、めっき液に添加する際に大気中への飛散や、作業する上で作業者への暴露や周辺への付着がなく、安定に使用することができる。 Therefore, the additive for composite plating solution of the present invention can be used stably without being scattered in the atmosphere when added to the plating solution, or being exposed to workers or adhering to the surroundings during work. can.

試験例2において、比較例1の添加剤の168時間放置後の状態を示す図である(左右の図は同じものであり、左の図に説明を加えたものが右の図である)。In Test Example 2, it is a figure which shows the state after leaving the additive of Comparative Example 1 for 168 hours (the figure on the left and right is the same, and the figure on the right is the figure which added the explanation to the figure on the left). 試験例2において、実施例1の添加剤の168時間放置後の状態を示す図である(左右の図は同じものであり、左の図に説明を加えたものが右の図である)。In Test Example 2, it is a figure which shows the state after leaving the additive of Example 1 for 168 hours (the figure on the left and right is the same, and the figure on the right is the figure which added the explanation to the figure on the left). 試験例2において、実施例2の添加剤の168時間放置後の状態を示す図である(左右の図は同じものであり、左の図に説明を加えたものが右の図である)。In Test Example 2, it is a figure which shows the state after leaving the additive of Example 2 for 168 hours (the left and right figures are the same, and the figure which added the explanation to the figure on the left is the figure on the right). 試験例2において、比較例1の添加剤の168時間放置後に振盪を行った後の状態を示す図である(左右の図は同じものであり、左の図に説明を加えたものが右の図である)。In Test Example 2, it is a figure which shows the state after shaking after leaving the additive of Comparative Example 1 for 168 hours (the left and right figures are the same, and the figure which added the explanation to the left figure is the right figure. It is a figure). 試験例2において、実施例1の添加剤の168時間放置後に振盪を行った後の状態を示す図である(左右の図は同じものであり、左の図に説明を加えたものが右の図である)。In Test Example 2, it is a figure which shows the state after shaking after leaving the additive of Example 1 for 168 hours (the left and right figures are the same, and the figure which added the explanation to the left figure is the right figure. It is a figure). 試験例2において、実施例2の添加剤の168時間放置後に振盪を行った後の状態を示す図である(左右の図は同じものであり、左の図に説明を加えたものが右の図である)。In Test Example 2, it is a figure which shows the state after shaking after leaving the additive of Example 2 for 168 hours (the left and right figures are the same, and the figure which added the explanation to the left figure is the right figure. It is a figure). 試験例3で用いたテストピースの外観を示す図である。It is a figure which shows the appearance of the test piece used in Test Example 3.

本発明のコンポジットめっき液用添加剤(以下、「本発明添加剤」という)は、非導電性微粒子とニッケルイオンと水を含有するものである。 The additive for a composite plating solution of the present invention (hereinafter, referred to as "additive of the present invention") contains non-conductive fine particles, nickel ions, and water.

本発明添加剤に用いられる非導電性微粒子は、特に限定されないが、例えば、ケイ素、バリウム、ジルコニウム、アルミニウム、チタン等の金属の酸化物、窒化物、硫化物、無機塩等が挙げられる。これらの中でも効果の点からケイ素、バリウム、ジルコニウム、アルミニウムの酸化物、窒化物、硫化物、無機塩が好ましく、特にシリカ(二酸化ケイ素)、ジルコニア(二酸化ジルコニウム)等の酸化物、硫酸バリウム等の無機塩が好ましい。これら非導電性微粒子は1種または2種以上を用いることができる。 The non-conductive fine particles used in the additive of the present invention are not particularly limited, and examples thereof include metal oxides such as silicon, barium, zirconium, aluminum, and titanium, nitrides, sulfides, and inorganic salts. Among these, silicon, barium, zirconium, aluminum oxides, nitrides, sulfides, and inorganic salts are preferable from the viewpoint of effectiveness, and oxides such as silica (silicon dioxide) and zirconia (zirconium dioxide), barium sulfate, and the like are particularly preferable. Inorganic salts are preferred. One kind or two or more kinds of these non-conductive fine particles can be used.

また、上記非導電性微粒子としては、例えば、株式会社JCUのMP POWDER 308やMP POWDER 309A等の市販品も用いることができる。 Further, as the non-conductive fine particles, for example, commercially available products such as MP POWDER 308 and MP POWDER 309A of JCU Co., Ltd. can be used.

これら非導電性微粒子の平均粒子径は特に限定されないが、例えば、0.1〜10μm、好ましくは1.0〜3.0μmである。なお、この平均粒子径は、大塚電子株式会社製、ゼータ電位・粒径・分子量測定システムELSZ−2000で測定される値である。 The average particle size of these non-conductive fine particles is not particularly limited, but is, for example, 0.1 to 10 μm, preferably 1.0 to 3.0 μm. The average particle size is a value measured by the zeta potential / particle size / molecular weight measurement system ELSZ-2000 manufactured by Otsuka Electronics Co., Ltd.

本発明添加剤における非導電性微粒子の含有量は特に限定されないが、例えば、0.01〜20wt%(以下、単に「%」と言う)、好ましくは0.05〜10%である。また、本発明添加剤における非導電性微粒子の含有量は、通常コンポジットめっき液で非導電性微粒子を使用する場合よりも濃い濃度とすることもでき、その場合には、例えば、5〜50%、好ましくは10〜40%である。 The content of the non-conductive fine particles in the additive of the present invention is not particularly limited, but is, for example, 0.01 to 20 wt% (hereinafter, simply referred to as “%”), preferably 0.05 to 10%. Further, the content of the non-conductive fine particles in the additive of the present invention can be set to a higher concentration than when the non-conductive fine particles are usually used in the composite plating solution, and in that case, for example, 5 to 50%. , Preferably 10-40%.

本発明添加剤におけるニッケルイオンの含有量は特に限定されないが、例えば、0.01〜12%、好ましくは0.05〜10%である。 The content of nickel ions in the additive of the present invention is not particularly limited, but is, for example, 0.01 to 12%, preferably 0.05 to 10%.

上記ニッケルイオンのニッケルイオン供給源は水に溶解させた際にニッケルイオンが生成されるものであれば特に限定されないが、例えば、硫酸ニッケル、塩化ニッケル、スルファミン酸ニッケル、酢酸ニッケル等が挙げられ、これらは水和物または無水物として用いることができる。これらの中でも硫酸ニッケル6水和物が、コストの点とハロゲンを含まないことから好ましい。これらニッケルイオン供給源は1種または2種以上を用いることができる。 The nickel ion supply source of the nickel ions is not particularly limited as long as it produces nickel ions when dissolved in water, and examples thereof include nickel sulfate, nickel chloride, nickel sulfamate, nickel acetate and the like. These can be used as hydrates or anhydrides. Among these, nickel sulfate hexahydrate is preferable because it is cost effective and does not contain halogen. As these nickel ion supply sources, one kind or two or more kinds can be used.

本発明添加剤における非導電性微粒子とニッケルイオンの質量比は、非導電性微粒子の種類にあわせて適宜設定すればよいが、例えば、非導電性微粒子として二酸化ケイ素を用いる場合には、1:0.001〜1:3、好ましくは1:0.003〜1:2である。 The mass ratio of the non-conductive fine particles to the nickel ions in the additive of the present invention may be appropriately set according to the type of the non-conductive fine particles. For example, when silicon dioxide is used as the non-conductive fine particles, 1: It is 0.001 to 1: 3, preferably 1: 0.003 to 1: 2.

本発明添加剤に用いられる水は特に限定されず、例えば、蒸留水、イオン交換水、超純水、市水等を用いればよい。 The water used for the additive of the present invention is not particularly limited, and for example, distilled water, ion-exchanged water, ultrapure water, city water, or the like may be used.

本発明添加剤のpHは特に限定されないが、中性以下が好ましく、特にpH6以上ではニッケルの水酸化物を生成するため、pH6以下とすることがより好ましい。pHの調製には、例えば、硫酸、塩酸、硝酸等の無機酸、酢酸等の有機酸、スルファミン酸等を用いればよい。 The pH of the additive of the present invention is not particularly limited, but is preferably neutral or lower, and particularly preferably pH 6 or lower because nickel hydroxide is produced at pH 6 or higher. For the adjustment of pH, for example, an inorganic acid such as sulfuric acid, hydrochloric acid or nitric acid, an organic acid such as acetic acid, sulfamic acid or the like may be used.

本発明添加剤は、上記したニッケルイオンの作用により水と非導電性微粒子を含有するコンポジットめっき液用添加剤における、非導電性微粒子の沈降の抑制や沈殿物の固化を抑制することができ、液体の添加剤として安定した状態を維持することができるが、更に、電荷付与剤、界面活性剤、光沢剤から選ばれる1種または2種以上を含有させてもよい。 The additive of the present invention can suppress the precipitation of non-conductive fine particles and the solidification of precipitates in the additive for composite plating solution containing water and non-conductive fine particles by the action of nickel ions described above. A stable state can be maintained as a liquid additive, but one or more selected from a charge-imparting agent, a surfactant, and a brightener may be further contained.

上記電荷付与剤としては、例えば、アルミニウムイオン等が挙げられる。このアルミニウムイオンの供給源は特に限定されないが、例えば、硫酸ニッケルや塩化ニッケルを使用しているワット浴をベースとするコンポジットめっき液に添加するのであれば、ポリ塩化アルミニウムや硫酸アルミニウムを用いれば硫酸イオンや塩素イオンに対する影響が少ない。 Examples of the charge-imparting agent include aluminum ions and the like. The source of this aluminum ion is not particularly limited, but for example, if it is added to a composite plating solution based on a watt bath using nickel sulfate or nickel chloride, sulfuric acid can be obtained by using polyaluminum chloride or aluminum sulfate. Little effect on ions and chloride ions.

本発明添加剤に、ポリ塩化アルミニウムを含有させる際には、粉体のポリ塩化アルミニウムを添加してもよいし、例えば、南海化学株式会社のPAC、大明化学工業株式会社のタイパックシリーズ等の酸化アルミニウムとして10%程度の水溶液となっている市販品を添加してもよい。これらのポリ塩化アルミニウムはそのままあるいは適宜希釈等してから添加してもよい。 When polyaluminum chloride is contained in the additive of the present invention, powdered polyaluminum chloride may be added, for example, PAC of Nankai Chemical Co., Ltd., Typack series of Taimei Chemicals Co., Ltd., etc. A commercially available product, which is an aqueous solution of about 10% as aluminum oxide, may be added. These polyaluminum chlorides may be added as they are or after being appropriately diluted.

本発明添加剤におけるポリ塩化アルミニウムの含有量は特に限定されないが、酸化アルミニウムとして例えば、0.01〜50.0%、好ましくは0.1〜30%である(アルミニウムとしては例えば、0.002〜15%、好ましくは0.02〜7%である)。 The content of polyaluminum chloride in the additive of the present invention is not particularly limited, but is, for example, 0.01 to 50.0%, preferably 0.1 to 30% as aluminum oxide (for example, 0.002 as aluminum). ~ 15%, preferably 0.02-7%).

また、本発明添加剤に、硫酸アルミニウムを含有させる際には、粉体の硫酸アルミニウムを添加しても良いし、液体状の硫酸アルミニウムを添加しても良い。液体状の硫酸アルミニウムには、例えば、大明化学工業株式会社の水道用硫酸アルミニウム溶液や一般用の硫酸アルミニウム溶液等の市販品を添加しても良い。 Further, when the additive of the present invention contains aluminum sulfate, powdered aluminum sulfate may be added, or liquid aluminum sulfate may be added. Commercially available products such as an aluminum sulfate solution for water use and an aluminum sulfate solution for general use of Taimei Chemicals Co., Ltd. may be added to the liquid aluminum sulfate.

上記界面活性剤としては、特に限定されないが、例えば、ポリエチレングリコール等のノニオン系、ポリオキシエチレンアルキルエーテル硫酸ナトリウム等のアニオン系、塩化ベンゼトニウム、ステアリルアミンアセテート、ドデシルトリメチルアンモニウムクロライド等のカチオン系、ラウリルベタイン、ラウリルジメチルアミノ酢酸ベタイン、ラウリン酸アミドプロピルジメチルアミノ酢酸ベタイン、ラウリルジメチルアミンオキサイド等の両性界面活性剤等が挙げられる。これら界面活性剤は1種または2種以上を用いることができる。これら界面活性剤の中でもプラスに帯電するカチオン系もしくは使用するpH領域でカチオン性を示す両性界面活性剤が好ましい。これら界面活性剤を用いることにより、より分散性が維持される。 The surfactant is not particularly limited, and is, for example, a nonionic surfactant such as polyethylene glycol, an anionic surfactant such as polyoxyethylene alkyl ether sodium sulfate, a cationic surfactant such as benzethonium chloride, stearylamine acetate, and dodecyltrimethylammonium chloride, and lauryl. Examples thereof include amphoteric surfactants such as betaine, lauryldimethylaminoacetic acid betaine, lauric acid amidopropyldimethylaminoacetic acid betaine, and lauryldimethylamine oxide. One kind or two or more kinds of these surfactants can be used. Among these surfactants, a positively charged cationic surfactant or an amphoteric surfactant that exhibits cationicity in the pH range to be used is preferable. By using these surfactants, more dispersibility is maintained.

本発明添加剤における界面活性剤の含有量は特に限定されないが、例えば、0.001〜5%、好ましくは0.001〜2%である。 The content of the surfactant in the additive of the present invention is not particularly limited, but is, for example, 0.001 to 5%, preferably 0.001 to 2%.

上記光沢剤としては、特に限定されず、通常のコンポジットめっき液に用いられる一次光沢剤、二次光沢剤等が挙げられる。一次光沢剤としては、例えば、スルフォンアミド、スルフォンイミド、ベンゼンスルホン酸、アルキルスルホン酸等が挙げられる。この一次光沢剤としては、例えば、MP333(株式会社JCU製)等が市販されているのでこれを用いてもよい。また、二次光沢剤としては、例えば、1,4−ブチンジオールやクマリン等が挙げられる。二次光沢剤は次のような官能基(C=O、C=C、C≡C、C=N、C≡N、N−C=S、N=N、−CH2−CH−O)を有する有機化合物である。この二次光沢剤としては、例えば、#810(株式会社JCU製)等が市販されているのでこれを用いてもよい。これら一次光沢剤および二次光沢剤は、単独でも複数を組み合わせてもよい。 The brightener is not particularly limited, and examples thereof include a primary brightener and a secondary brightener used in a normal composite plating solution. Examples of the primary brightener include sulfonamide, sulfonimide, benzenesulfonic acid, alkylsulfonic acid and the like. As the primary brightener, for example, MP333 (manufactured by JCU Co., Ltd.) or the like is commercially available, and this may be used. Examples of the secondary brightener include 1,4-butynediol and coumarin. The secondary brightener contains the following functional groups (C = O, C = C, C≡C, C = N, C≡N, NC = S, N = N, -CH2-CH-O). It is an organic compound having. As the secondary brightener, for example, # 810 (manufactured by JCU Co., Ltd.) or the like is commercially available, and this may be used. These primary brighteners and secondary brighteners may be used alone or in combination of two or more.

本発明添加剤における光沢剤の含有量は特に限定されないが、例えば、一次光沢剤であれば、0.1〜900ml/L、二次光沢剤であれば0.1〜900ml/L程度加えることが好ましい。 The content of the brightener in the additive of the present invention is not particularly limited, but for example, 0.1 to 900 ml / L for a primary brightener and 0.1 to 900 ml / L for a secondary brightener. Is preferable.

なお、本発明添加剤は、非導電性微粒子とニッケルイオンと水を含有していればよいので、ニッケルイオンと水を含むものとしてワット浴、スルファミン酸浴等のコンポジットめっき液に用いられる電解ニッケル液を利用してもよい。 Since the additive of the present invention may contain non-conductive fine particles, nickel ions and water, electrolytic nickel used in a composite plating solution such as a watt bath or a sulfamic acid bath as containing nickel ions and water. A liquid may be used.

上記ワット浴の組成としては下記のような組成が挙げられる。また、このワット浴は適宜希釈してもよい。
硫酸ニッケル(NiSO・6HO):1〜450g/L
塩化ニッケル(NiCl・6HO):0.1〜45g/L
ほう酸(HBO):0.1〜45g/L
水:残部
Examples of the composition of the watt bath include the following compositions. Moreover, this watt bath may be diluted appropriately.
Nickel sulfate (NiSO 4 · 6H 2 O) : 1~450g / L
Nickel chloride (NiCl 2 · 6H 2 O) : 0.1~45g / L
Boric acid (H 3 BO 3 ): 0.1 to 45 g / L
Water: the rest

このようにワット浴を利用する場合、本発明添加剤は、非導電性微粒子と、ワット浴を含有するものとなる。 When the watt bath is used in this way, the additive of the present invention contains the non-conductive fine particles and the watt bath.

また、スルファミン酸浴の組成としては下記のような組成が挙げられる。また、このスルファミン酸浴は適宜希釈してもよい。
スルファミン酸ニッケル(Ni(SONH)2・4HO):1〜600g/L
塩化ニッケル(NiCl・6HO):0〜15g/L
ほう酸(HBO):0.1〜40g/L
水:残部
Moreover, the composition of the sulfamic acid bath includes the following composition. Moreover, this sulfamic acid bath may be diluted appropriately.
Nickel sulfamate (Ni (SO 3 NH 2 ) 2.4H 2 O): 1-600 g / L
Nickel chloride (NiCl 2 · 6H 2 O) : 0~15g / L
Boric acid (H 3 BO 3 ): 0.1 to 40 g / L
Water: the rest

このようにスルファミン酸浴を利用する場合、本発明添加剤は、非導電性微粒子と、スルファミン酸浴を含有するものとなる。 When the sulfamic acid bath is used in this way, the additive of the present invention contains non-conductive fine particles and a sulfamic acid bath.

本発明添加剤としては、上記のように、非導電性微粒子とニッケルイオンと水を含有するものが挙げられるが、以下のものでもよい。 Examples of the additive of the present invention include those containing non-conductive fine particles, nickel ions and water as described above, but the following may also be used.

(1)非導電性微粒子とニッケルイオンと水からなることを特徴とするコンポジットめっき液用の添加剤。
(2)コンポジットめっきがサテンニッケルめっき液およびマイクロポーラスニッケルめっき液である(1)に記載のコンポジットめっき液用の添加剤。
(3)非導電性微粒子がケイ素、バリウム、ジルコニウム、アルミニウム、チタンの酸化物、窒化物、硫化物および無機塩から選ばれる1種以上である(1)または(2)記載のコンポジットめっき液用の添加剤。
(4)ニッケルイオンの供給源が、硫酸ニッケル6水和物、塩化ニッケル、スルファミン酸ニッケルから1種もしくは2種以上から選択される(1)〜(3)の何れか1記載のコンポジットめっき液用の添加剤。
(5)非導電性微粒子、
ニッケルイオン、
電荷付与剤、界面活性剤および光沢剤から選ばれる1種以上、
からなることを特徴とするコンポジットめっき液用の添加剤。
(6)非導電性微粒子、
ワット浴またはスルファミン酸浴からなることを特徴とするコンポジットめっき液用の添加剤。
(7)非導電性微粒子、
ワット浴またはスルファミン酸浴、
電荷付与剤、界面活性剤および光沢剤から選ばれる1種以上、
からなることを特徴とするコンポジットめっき液用の添加剤。
(8)非導電性微粒子と水を含有するコンポジットめっき液用の添加剤に、ニッケルイオンを含有させることを特徴とするコンポジットめっき液用の添加剤における非導電性微粒子の沈殿防止方法。
(1) An additive for a composite plating solution, which comprises non-conductive fine particles, nickel ions, and water.
(2) The additive for the composite plating solution according to (1), wherein the composite plating is a satin nickel plating solution and a microporous nickel plating solution.
(3) For the composite plating solution according to (1) or (2), wherein the non-conductive fine particles are at least one selected from silicon, barium, zirconium, aluminum, titanium oxides, nitrides, sulfides and inorganic salts. Additives.
(4) The composite plating solution according to any one of (1) to (3), wherein the source of nickel ions is selected from one or more of nickel sulfate hexahydrate, nickel chloride, and nickel sulfamate. Additives for.
(5) Non-conductive fine particles,
Nickel ion,
One or more selected from charge-imparting agents, surfactants and brighteners,
An additive for composite plating solutions, which is characterized by being composed of.
(6) Non-conductive fine particles,
Additives for composite plating solutions, characterized by consisting of a watt bath or a sulfamic acid bath.
(7) Non-conductive fine particles,
Watt bath or sulfamic acid bath,
One or more selected from charge-imparting agents, surfactants and brighteners,
An additive for composite plating solutions, which is characterized by being composed of.
(8) A method for preventing precipitation of non-conductive fine particles in an additive for a composite plating solution, which comprises adding nickel ions to an additive for a composite plating solution containing non-conductive fine particles and water.

以上説明した本発明添加剤は、上記成分を均一になるまで攪拌・混合することにより調製することができる。 The additive of the present invention described above can be prepared by stirring and mixing the above components until they become uniform.

そして、本発明の非導電性微粒子の沈降の抑制や沈殿物の固化を抑制することができ、液体の添加剤として安定した状態を維持することができる。 Then, it is possible to suppress the precipitation of the non-conductive fine particles of the present invention and the solidification of the precipitate, and it is possible to maintain a stable state as a liquid additive.

なお、本発明添加剤をコンポジットめっき液のベースに添加してサテンニッケルめっき液、マイクロポーラスニッケルめっき液等のコンポジットめっき液を調製することができる。特に、本発明添加剤をマイクロポーラスニッケルめっき液のベースに添加してマイクロポーラスニッケルめっき液を調製することにより、従来と同様にマイクロポーラスの数も良好なマイクロポーラスめっきをすることができる。なお、コンポジットめっき液のベースとは、コンポジットめっき液において非導電性微粒子以外の成分の一部または全部を含むものをいい、本発明添加剤を添加することによりコンポジットめっき液になるものをいう。 The additive of the present invention can be added to the base of the composite plating solution to prepare a composite plating solution such as a satin nickel plating solution and a microporous nickel plating solution. In particular, by adding the additive of the present invention to the base of the microporous nickel plating solution to prepare the microporous nickel plating solution, it is possible to perform microporous plating with a good number of microporouss as in the conventional case. The base of the composite plating solution means a composite plating solution containing a part or all of components other than non-conductive fine particles, and a composite plating solution that becomes a composite plating solution by adding the additive of the present invention.

以下、本発明を、実施例を挙げて詳細に説明するが、本発明はこれら実施例等になんら制約されるものではない。なお、実施例および比較例での添加剤調製においては、ガラス製のスクリュー管瓶 110mL(アズワン株式会社製、9−852−10)(以下、スクリュー管瓶)を使用した。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples and the like. In the preparation of additives in Examples and Comparative Examples, 110 mL of glass screw tube bottle (manufactured by AS ONE Corporation, 9-852-10) (hereinafter referred to as screw tube bottle) was used.

実施例1
ニッケル塩を使用した添加剤の調製:
硫酸ニッケルの500g/L水溶液を100mLと二酸化ケイ素の粉体6gをスクリュー管瓶に入れ、均一になるまで攪拌・混合し、添加剤を得た(pH5.31)。
Example 1
Preparation of additives using nickel salts:
100 mL of a 500 g / L aqueous solution of nickel sulfate and 6 g of silicon dioxide powder were placed in a screw tube bottle, and the mixture was stirred and mixed until uniform to obtain an additive (pH 5.31).

実施例2
ワット浴を使用した添加剤の調製:
以下の組成で調製したワット浴100mLと二酸化ケイ素(平均粒子径は1.5μm)の粉体6gをスクリュー管瓶に入れ、均一になるまで撹拌・混合し、添加剤を得た(pH3.69)。
Example 2
Preparation of additives using a watt bath:
100 mL of a watt bath prepared with the following composition and 6 g of silicon dioxide (average particle size: 1.5 μm) powder were placed in a screw tube bottle and stirred and mixed until uniform to obtain an additive (pH 3.69). ).

<ワット浴>
硫酸ニッケル(NiSO・6HO):250g/L
塩化ニッケル(NiCl・6HO):40g/L
ほう酸(HBO):40g/L
<Watt bath>
Nickel sulfate (NiSO 4 · 6H 2 O) : 250g / L
Nickel chloride (NiCl 2 · 6H 2 O) : 40g / L
Boric acid (H 3 BO 3 ): 40 g / L

実施例3
ニッケル塩を使用した添加剤の調製:
硫酸ニッケルの500g/L水溶液を100mLと二酸化ケイ素の粉体6g、さらにポリ塩化アルミニウム(南海化学株式会社、PAC)をアルミニウムとして0.07gをスクリュー管瓶に入れ、均一になるまで攪拌・混合し、添加剤を得た(pH3.92)。
Example 3
Preparation of additives using nickel salts:
Put 100 mL of a 500 g / L aqueous solution of nickel sulfate, 6 g of silicon dioxide powder, and 0.07 g of polyaluminum chloride (Nankai Chemical Co., Ltd., PAC) as aluminum in a screw tube bottle, and stir and mix until uniform. , An additive was obtained (pH 3.92).

実施例4
ニッケル塩を使用した添加剤の調製:
硫酸ニッケルの60g/L水溶液を100mLと二酸化ケイ素の粉体6g、さらにポリ塩化アルミニウムをアルミニウムとして0.07gをスクリュー管瓶に入れ、均一になるまで攪拌・混合し、添加剤を得た(pH3.99)。
Example 4
Preparation of additives using nickel salts:
100 mL of a 60 g / L aqueous solution of nickel sulfate, 6 g of silicon dioxide powder, and 0.07 g of polyaluminum chloride as aluminum were placed in a screw tube bottle and stirred and mixed until uniform to obtain an additive (pH 3). .99).

実施例5
ニッケル塩を使用した添加剤の調製:
硫酸ニッケルの10g/L水溶液を100mLと二酸化ケイ素の粉体6g、さらにポリ塩化アルミニウムをアルミニウムとして0.07gをスクリュー管瓶に入れ、均一になるまで攪拌・混合し、添加剤を得た(pH4.05)。
Example 5
Preparation of additives using nickel salts:
100 mL of a 10 g / L aqueous solution of nickel sulfate, 6 g of silicon dioxide powder, and 0.07 g of polyaluminum chloride as aluminum were placed in a screw tube bottle and stirred and mixed until uniform to obtain an additive (pH 4). .05).

実施例6
ニッケル塩を使用した添加剤の調製:
硫酸ニッケルの1g/L水溶液を100mLと二酸化ケイ素の粉体6g、さらにポリ塩化アルミニウムをアルミニウムとして0.07gをスクリュー管瓶に入れ、均一になるまで攪拌・混合し、添加剤を得た(pH3.86)。
Example 6
Preparation of additives using nickel salts:
100 mL of a 1 g / L aqueous solution of nickel sulfate, 6 g of silicon dioxide powder, and 0.07 g of polyaluminum chloride as aluminum were placed in a screw tube bottle and stirred and mixed until uniform to obtain an additive (pH 3). .86).

実施例7
ニッケル塩を使用した添加剤の調製:
硫酸ニッケル450g/L、塩化ニッケル40g/L、ホウ酸40g/Lにて調整した水溶液を100mLと二酸化ケイ素の粉体6g、さらにポリ塩化アルミニウムをアルミニウムとして0.07gをスクリュー管瓶に入れ、均一になるまで攪拌・混合し、添加剤を得た(pH3.62)。
Example 7
Preparation of additives using nickel salts:
100 mL of an aqueous solution prepared with 450 g / L of nickel sulfate, 40 g / L of nickel chloride, and 40 g / L of boric acid, 6 g of silicon dioxide powder, and 0.07 g of polyaluminum chloride as aluminum were placed in a screw tube bottle and uniformly placed. The mixture was stirred and mixed until it became an additive (pH 3.62).

実施例8
ニッケル塩を使用した添加剤の調製:
硫酸ニッケル250g/L、塩化ニッケル40g/L、ホウ酸40g/Lにて調整した水溶液を100mLと二酸化ケイ素の粉体6g、さらにポリ塩化アルミニウムをアルミニウムとして0.07gをスクリュー管瓶に入れ、均一になるまで攪拌・混合し、添加剤を得た(pH3.74)。
Example 8
Preparation of additives using nickel salts:
100 mL of an aqueous solution prepared with 250 g / L of nickel sulfate, 40 g / L of nickel chloride, and 40 g / L of boric acid, 6 g of silicon dioxide powder, and 0.07 g of polyaluminum chloride as aluminum were placed in a screw tube bottle and uniformly placed. The mixture was stirred and mixed until it became an additive (pH 3.74).

実施例9
ニッケル塩を使用した添加剤の調製:
硫酸ニッケル10g/L、塩化ニッケル1.6g/L、ホウ酸1.6g/Lにて調整した水溶液を100mLと二酸化ケイ素の粉体6g、さらにポリ塩化アルミニウムをアルミニウムとして0.07gをスクリュー管瓶に入れ、均一になるまで攪拌・混合し、添加剤を得た(pH3.96)。
Example 9
Preparation of additives using nickel salts:
A screw tube bottle containing 100 mL of an aqueous solution prepared with 10 g / L of nickel sulfate, 1.6 g / L of nickel chloride, and 1.6 g / L of boric acid, 6 g of silicon dioxide powder, and 0.07 g of polyaluminum chloride as aluminum. And stirred and mixed until uniform (pH 3.96).

実施例10
ニッケル塩を使用した添加剤の調製:
硫酸ニッケル1g/L、塩化ニッケル0.16g/L、ホウ酸0.16g/Lにて調整した水溶液を100mLと二酸化ケイ素の粉体6g、さらにポリ塩化アルミニウムをアルミニウムとして0.07gをスクリュー管瓶に入れ、均一になるまで攪拌・混合し、添加剤を得た(pH3.85)。
Example 10
Preparation of additives using nickel salts:
A screw tube bottle containing 100 mL of an aqueous solution prepared with 1 g / L of nickel sulfate, 0.16 g / L of nickel chloride, and 0.16 g / L of boric acid, 6 g of silicon dioxide powder, and 0.07 g of polyaluminum chloride as aluminum. And stirred and mixed until uniform (pH 3.85).

実施例11
ニッケル塩を使用した添加剤の調製:
硫酸ニッケルの500g/L水溶液を100mLと二酸化ケイ素の粉体6g、さらに硫酸アルミニウムをアルミニウムとして0.07gをスクリュー管瓶に入れ、均一になるまで攪拌・混合し、添加剤を得た(pH3.31)。
Example 11
Preparation of additives using nickel salts:
100 mL of a 500 g / L aqueous solution of nickel sulfate, 6 g of silicon dioxide powder, and 0.07 g of aluminum sulfate as aluminum were placed in a screw tube bottle and stirred and mixed until uniform to obtain an additive (pH 3. 31).

実施例12
ニッケル塩を使用した添加剤の調製:
硫酸ニッケルの60g/L水溶液を100mLと二酸化ケイ素の粉体6g、さらに硫酸アルミニウムをアルミニウムとして0.07gをスクリュー管瓶に入れ、均一になるまで攪拌・混合し、添加剤を得た(pH3.24)。
Example 12
Preparation of additives using nickel salts:
100 mL of a 60 g / L aqueous solution of nickel sulfate, 6 g of silicon dioxide powder, and 0.07 g of aluminum sulfate as aluminum were placed in a screw tube bottle and stirred and mixed until uniform to obtain an additive (pH 3. 24).

実施例13
ニッケル塩を使用した添加剤の調製:
硫酸ニッケルの10g/L水溶液を100mLと二酸化ケイ素の粉体6g、更に硫酸アルミニウムをアルミニウムとして0.07gをスクリュー管瓶に入れ、均一になるまで攪拌・混合し、添加剤を得た(pH3.41)。
Example 13
Preparation of additives using nickel salts:
100 mL of a 10 g / L aqueous solution of nickel sulfate, 6 g of silicon dioxide powder, and 0.07 g of aluminum sulfate as aluminum were placed in a screw tube bottle and stirred and mixed until uniform to obtain an additive (pH 3. 41).

実施例14
ニッケル塩を使用した添加剤の調製:
硫酸ニッケルの1g/L水溶液を100mLと二酸化ケイ素の粉体6g、さらに硫酸アルミニウムをアルミニウムとして0.07gをスクリュー管瓶に入れ、均一になるまで攪拌・混合し、添加剤を得た(pH3.31)。
Example 14
Preparation of additives using nickel salts:
100 mL of a 1 g / L aqueous solution of nickel sulfate, 6 g of silicon dioxide powder, and 0.07 g of aluminum sulfate as aluminum were placed in a screw tube bottle and stirred and mixed until uniform to obtain an additive (pH 3. 31).

実施例15
ニッケル塩を使用した添加剤の調製:
硫酸ニッケル450g/L、塩化ニッケル40g/L、ホウ酸40g/Lにて調整した水溶液を100mLと二酸化ケイ素の粉体6g、さらに硫酸アルミニウムをアルミニウムとして0.07gをスクリュー管瓶に入れ、均一になるまで攪拌・混合し、添加剤を得た(pH3.08)。
Example 15
Preparation of additives using nickel salts:
100 mL of an aqueous solution prepared with 450 g / L of nickel sulfate, 40 g / L of nickel chloride, and 40 g / L of boric acid, 6 g of silicon dioxide powder, and 0.07 g of aluminum sulfate as aluminum were placed in a screw tube bottle to make them uniform. The mixture was stirred and mixed until it became an additive (pH 3.08).

実施例16
ニッケル塩を使用した添加剤の調製:
硫酸ニッケル250g/L、塩化ニッケル40g/L、ホウ酸40g/Lにて調整した水溶液を100mLと二酸化ケイ素の粉体6g、さらに硫酸アルミニウムをアルミニウムとして0.07gをスクリュー管瓶に入れ、均一になるまで攪拌・混合し、添加剤を得た(pH3.00)。
Example 16
Preparation of additives using nickel salts:
100 mL of an aqueous solution prepared with 250 g / L of nickel sulfate, 40 g / L of nickel chloride, and 40 g / L of boric acid, 6 g of silicon dioxide powder, and 0.07 g of aluminum sulfate as aluminum were placed in a screw tube bottle to make it uniform. The mixture was stirred and mixed until it became an additive (pH 3.00).

実施例17
ニッケル塩を使用した添加剤の調製:
硫酸ニッケル10g/L、塩化ニッケル1.6g/L、ホウ酸1.6g/Lにて調整した水溶液を100mLと二酸化ケイ素の粉体6g、さらに硫酸アルミニウムをアルミニウムとして0.07gをスクリュー管瓶に入れ、均一になるまで攪拌・混合し、添加剤を得た(pH3.30)。
Example 17
Preparation of additives using nickel salts:
100 mL of an aqueous solution prepared with 10 g / L of nickel sulfate, 1.6 g / L of nickel chloride, and 1.6 g / L of boric acid, 6 g of silicon dioxide powder, and 0.07 g of aluminum sulfate as aluminum in a screw tube bottle. The mixture was added, stirred and mixed until uniform, and an additive was obtained (pH 3.30).

実施例18
ニッケル塩を使用した添加剤の調製:
硫酸ニッケル1g/L、塩化ニッケル0.16g/L、ホウ酸0.16g/Lにて調整した水溶液を100mLと二酸化ケイ素の粉体6g、さらに硫酸アルミニウムをアルミニウムとして0.07gをスクリュー管瓶に入れ、均一になるまで攪拌・混合し、添加剤を得た(pH3.30)。
Example 18
Preparation of additives using nickel salts:
100 mL of an aqueous solution prepared with 1 g / L of nickel sulfate, 0.16 g / L of nickel chloride, and 0.16 g / L of boric acid, 6 g of silicon dioxide powder, and 0.07 g of aluminum sulfate as aluminum in a screw tube bottle. The mixture was added, stirred and mixed until uniform, and an additive was obtained (pH 3.30).

実施例19
ニッケル塩を使用した添加剤の調製:
硫酸ニッケル100g/Lにて調整した水溶液を100mLと二酸化ケイ素の粉体6gをスクリュー管瓶に入れ、均一になるまで攪拌・混合し、添加剤を得た(pH5.63)。
Example 19
Preparation of additives using nickel salts:
100 mL of an aqueous solution adjusted with 100 g / L of nickel sulfate and 6 g of silicon dioxide powder were placed in a screw tube bottle, and the mixture was stirred and mixed until uniform to obtain an additive (pH 5.63).

実施例20
ニッケル塩を使用した添加剤の調製:
硫酸ニッケル100g/Lにて調整した水溶液を100mLと二酸化チタン(平均粒子径は0.01μm)の粉体6gをスクリュー管瓶に入れ、均一になるまで攪拌・混合し、添加剤を得た(pH4.94)。
Example 20
Preparation of additives using nickel salts:
100 mL of an aqueous solution adjusted with 100 g / L of nickel sulfate and 6 g of a powder of titanium dioxide (average particle size of 0.01 μm) were placed in a screw tube bottle and stirred and mixed until uniform to obtain an additive (). pH 4.94).

実施例21
ニッケル塩を使用した添加剤の調製:
硫酸ニッケル100g/Lにて調整した水溶液を100mLとケイ酸ジルコニウム(平均粒子径は1.1μm)の粉体6gをスクリュー管瓶に入れ、均一になるまで攪拌・混合し、添加剤を得た(pH5.64)。
Example 21
Preparation of additives using nickel salts:
100 mL of an aqueous solution adjusted with 100 g / L of nickel sulfate and 6 g of a powder of zirconium silicate (average particle size: 1.1 μm) were placed in a screw tube bottle and stirred and mixed until uniform to obtain an additive. (PH 5.64).

比較例として、非導電性微粒子の分散溶媒にニッケルイオンを含まず、実質的に水を主溶媒とした場合を以下に示す。 As a comparative example, the case where the dispersion solvent of the non-conductive fine particles does not contain nickel ions and substantially uses water as the main solvent is shown below.

比較例1
水のみで調製した添加剤の調製:
純水100mLと二酸化ケイ素の粉体6gをスクリュー管瓶に入れ、均一になるまで攪拌・混合し、添加剤を得た(pH7.17)。
Comparative Example 1
Preparation of additives prepared only with water:
100 mL of pure water and 6 g of silicon dioxide powder were placed in a screw tube bottle and stirred and mixed until uniform to obtain an additive (pH 7.17).

比較例2
水のみで調製した添加剤の調製:
純水100mLと二酸化チタンの粉体6gをスクリュー管瓶に入れ、均一になるまで攪拌・混合し、添加剤を得た(pH7.61)。
Comparative Example 2
Preparation of additives prepared only with water:
100 mL of pure water and 6 g of titanium dioxide powder were placed in a screw tube bottle and stirred and mixed until uniform to obtain an additive (pH 7.61).

比較例3
水のみで調製した添加剤の調製:
純水100mLとケイ酸ジルコニウムの粉体6gをスクリュー管瓶に入れ、均一になるまで攪拌・混合し、添加剤を得た(pH6.91)。
Comparative Example 3
Preparation of additives prepared only with water:
100 mL of pure water and 6 g of zirconium silicate powder were placed in a screw tube bottle and stirred and mixed until uniform to obtain an additive (pH 6.91).

比較例4
水のみで調製した添加剤の調製:
純水100mLと二酸化ケイ素の粉体6gをスクリュー管瓶に入れ、均一になるまで攪拌・混合し、少量の硫酸にてpH3以下となるように調整した添加剤を得た(pH2.34)。
Comparative Example 4
Preparation of additives prepared only with water:
100 mL of pure water and 6 g of silicon dioxide powder were placed in a screw tube bottle, stirred and mixed until uniform, and an additive adjusted to pH 3 or less with a small amount of sulfuric acid was obtained (pH 2.34).

比較例5
水のみで調製した添加剤の調製:
純水100mLと二酸化ケイ素の粉体6gをスクリュー管瓶に入れ、さらにポリ塩化アルミニウムをアルミニウムとして0.07gを入れて、均一になるまで攪拌・混合し、添加剤を得た(pH3.36)。
Comparative Example 5
Preparation of additives prepared only with water:
100 mL of pure water and 6 g of silicon dioxide powder were placed in a screw tube bottle, 0.07 g of polyaluminum chloride as aluminum was added, and the mixture was stirred and mixed until uniform to obtain an additive (pH 3.36). ..

比較例6
水のみで調製した添加剤の調製:
純水100mLと二酸化ケイ素の粉体6gをスクリュー管瓶に入れ、さらに硫酸アルミニウムをアルミニウムとして0.07gを入れて、均一になるまで攪拌・混合し、添加剤を得た(pH3.84)。
Comparative Example 6
Preparation of additives prepared only with water:
100 mL of pure water and 6 g of silicon dioxide powder were placed in a screw tube bottle, and 0.07 g of aluminum sulfate was added as aluminum, and the mixture was stirred and mixed until uniform to obtain an additive (pH 3.84).

試験例1
分散性試験:
実施例1〜21と比較例1〜6をスクリュー管瓶に入れた状態にて密封し、均一になるまで振盪後、24時間経過による添加剤の状態を確認した。また、沈殿が発生している場合、再度振盪して非導電性微粒子の再分散性を確認した。振盪はスクリュー管瓶を上下に30回振った。振盪後、24時間経過した添加剤の沈殿の有無を目視で評価し、更に再度振盪した後の再分散性を以下の基準で評価した。それらの結果を表1に示した。
Test Example 1
Dispersibility test:
Examples 1 to 21 and Comparative Examples 1 to 6 were sealed in a screw tube bottle, shaken until uniform, and then the state of the additive was confirmed after 24 hours. In addition, when precipitation occurred, it was shaken again to confirm the redispersibility of the non-conductive fine particles. For shaking, the screw tube bottle was shaken up and down 30 times. The presence or absence of precipitation of the additive 24 hours after shaking was visually evaluated, and the redispersibility after shaking again was evaluated according to the following criteria. The results are shown in Table 1.

<再分散性評価基準>
評価 内容
○:振盪すると均一化する。
×:振盪しても均一化しない。
<Redispersibility evaluation criteria>
Evaluation content ○: Uniformized when shaken.
X: Not uniform even when shaken.

Figure 0006945761
Figure 0006945761

実施例1〜21については、沈殿は発生しているものの、再度振盪した場合、容易に再分散し均一な分散性を確認できた。 In Examples 1 to 21, although precipitation occurred, when the mixture was shaken again, it was easily redispersed and uniform dispersibility could be confirmed.

一方、比較例1、比較例3、比較例4については、沈殿が発生し、再度振盪しても固化して再分散しなかった。また、比較例2、比較例5、比較例6は、沈殿は発生しているものの、再度振盪した場合、容易に再分散し均一な分散性を確認できた。 On the other hand, in Comparative Example 1, Comparative Example 3, and Comparative Example 4, precipitation occurred, and even if it was shaken again, it solidified and did not redisperse. Further, in Comparative Example 2, Comparative Example 5, and Comparative Example 6, although precipitation occurred, when the mixture was shaken again, it was easily redispersed and uniform dispersibility could be confirmed.

試験例2
長期保存後の分散性試験:
実施例1〜21と比較例1〜6をスクリュー管瓶に入れた状態にて密封し、均一になるまで振盪後、168時間経過による添加剤の状態を確認した。また、沈殿が発生している場合、再度振盪して非導電性微粒子の再分散性を確認した。振盪はスクリュー管瓶を上下に30回振った。振盪後、168時間経過した添加剤の沈殿の有無を目視で評価し、再度振盪した後の再分散性を試験例1と同様の基準で評価した。それらの結果を表2に示した。
また、比較例1の添加剤の結果を図1および図4に、実施例1の添加剤の結果を図2および図5に、実施例2の添加剤の結果を図3および図6に示した。
Test Example 2
Dispersibility test after long-term storage:
Examples 1 to 21 and Comparative Examples 1 to 6 were sealed in a screw tube bottle, shaken until uniform, and the state of the additive was confirmed after 168 hours. In addition, when precipitation occurred, it was shaken again to confirm the redispersibility of the non-conductive fine particles. For shaking, the screw tube bottle was shaken up and down 30 times. The presence or absence of precipitation of the additive 168 hours after shaking was visually evaluated, and the redispersibility after shaking again was evaluated based on the same criteria as in Test Example 1. The results are shown in Table 2.
Further, the results of the additive of Comparative Example 1 are shown in FIGS. 1 and 4, the result of the additive of Example 1 is shown in FIGS. 2 and 5, and the result of the additive of Example 2 is shown in FIGS. 3 and 6. rice field.

Figure 0006945761
Figure 0006945761

実施例1〜21については、沈殿は発生しているものの、再度振盪した場合、容易に再分散し均一な分散性を確認できた。 In Examples 1 to 21, although precipitation occurred, when the mixture was shaken again, it was easily redispersed and uniform dispersibility could be confirmed.

一方、比較例1、比較例3、比較例4、比較例5については、沈殿が発生し、再度振盪しても固化して再分散しなかった。また、比較例2、比較例5は、沈殿は発生しているものの、再度振盪した場合、容易に再分散し均一な分散性を確認できた。 On the other hand, in Comparative Example 1, Comparative Example 3, Comparative Example 4, and Comparative Example 5, precipitation occurred, and even if it was shaken again, it solidified and did not redisperse. Further, in Comparative Example 2 and Comparative Example 5, although precipitation occurred, when the mixture was shaken again, it was easily redispersed and uniform dispersibility could be confirmed.

試験例1および試験例2の結果から、非導電性微粒子の沈殿・沈降物を固化させず、分散性の良い液体の状態にするには、非導電性微粒子と共にニッケルイオンを含有させることで、再分散性に効果があることが分かった。 From the results of Test Example 1 and Test Example 2, in order to make the precipitate / sediment of the non-conductive fine particles into a liquid state with good dispersibility without solidifying, it is necessary to contain nickel ions together with the non-conductive fine particles. It was found to be effective in redispersibility.

試験例3
めっき試験:
実施例1で調製した添加剤を、以下の組成のめっき浴に対し、0.5ml/L添加し、マイクロポーラスめっき液を調製した。
Test Example 3
Plating test:
The additive prepared in Example 1 was added at 0.5 ml / L to a plating bath having the following composition to prepare a microporous plating solution.

<めっき浴>
硫酸ニッケル(NiSO・6HO):260g/L
塩化ニッケル(NiCl・6HO):45g/L
ほう酸(HBO):45g/L
光沢剤#810:3ml/L
光沢剤MP333:10ml/L
ポリ塩化アルミニウム:0.3mg/L(アルミニウムとして)
浴温:55℃
比重:1.205
*株式会社JCU製
<Plating bath>
Nickel sulfate (NiSO 4 · 6H 2 O) : 260g / L
Nickel chloride (NiCl 2 · 6H 2 O) : 45g / L
Boric acid (H 3 BO 3 ): 45 g / L
Brightener # 810 * : 3 ml / L
Brightener MP333 * : 10 ml / L
Polyaluminum chloride: 0.3 mg / L (as aluminum)
Bath temperature: 55 ° C
Relative density: 1.205
* Made by JCU Co., Ltd.

次に、試験片として図7の形状のベントカソードテストピース(真鍮:株式会社山本鍍金試験機製)を用い、以下の工程でマイクロポーラスめっき製品を製造した。 Next, a bent cathode test piece (brass: manufactured by Yamamoto Plating Testing Machine Co., Ltd.) having the shape shown in FIG. 7 was used as a test piece, and a microporous plating product was manufactured by the following steps.

(脱脂・酸活性)
試験片をSK−144(株式会社JCU製)で5分間処理して脱脂を行った後、V−345(株式会社JCU製)で30秒処理を行い、酸活性を行った。
(Solvent degreasing / acid activity)
The test piece was treated with SK-144 (manufactured by JCU Co., Ltd.) for 5 minutes to degreasing, and then treated with V-345 (manufactured by JCU Co., Ltd.) for 30 seconds to carry out acid activity.

(光沢ニッケルめっき)
上記で脱脂・酸活性処理を行った試験片を以下のニッケルめっき液中、4A/dmで3分間めっきを行った。
<光沢ニッケルめっき浴>
硫酸ニッケル(NiSO・6HO):260g/L
塩化ニッケル(NiCl・6HO):45g/L
ほう酸(HBO):45g/L
光沢剤#810:3ml/L
光沢剤#83:10ml/L
*株式会社JCU製
(Glossy nickel plating)
The test piece subjected to the above degreasing / acid activity treatment was plated at 4 A / dm 2 in the following nickel plating solution for 3 minutes.
<Glossy nickel plating bath>
Nickel sulfate (NiSO 4 · 6H 2 O) : 260g / L
Nickel chloride (NiCl 2 · 6H 2 O) : 45g / L
Boric acid (H 3 BO 3 ): 45 g / L
Brightener # 810 * : 3 ml / L
Brightener # 83 * : 10 ml / L
* Made by JCU Co., Ltd.

(マイクロポーラスめっき)
光沢めっきを施した試験片を上記で調製したマイクロポーラスめっき液中で3A/dmで3分間めっきを行った。
(Microporous plating)
The gloss-plated test piece was plated at 3 A / dm 2 for 3 minutes in the microporous plating solution prepared above.

(クロムめっき)
上記マイクロポーラスニッケルめっきを施した試験片を以下の組成の六価クロムめっき液中で10A/dmで3分間めっきを行った。
(Chrome plating)
The test piece subjected to the microporous nickel plating was plated at 10 A / dm 2 for 3 minutes in a hexavalent chromium plating solution having the following composition.

<六価クロムめっき浴>
無水クロム酸(CrO):250g/L
硫酸(HSO):1g/L
添加剤ECR 300LN:10ml/L
ミストシャットMISTSHUT NP:0.1ml/L
*株式会社JCU製
<Hexavalent chromium plating bath>
Chromic acid anhydride (CrO 3 ): 250 g / L
Sulfuric acid (H 2 SO 4 ): 1 g / L
Additive ECR 300LN * : 10ml / L
Mist Shut MISTSHUT NP * : 0.1 ml / L
* Made by JCU Co., Ltd.

(微孔数の測定手順1)
クロムめっきあがりの試験片に対して以下の組成の硫酸銅めっき液に3分間浸漬を行い、その後、その硫酸銅めっき液中で0.5A/dmで3分間めっきを行った。
(Measurement procedure 1 for the number of micropores)
The test piece after chrome plating was immersed in a copper sulfate plating solution having the following composition for 3 minutes, and then plated at 0.5 A / dm 2 in the copper sulfate plating solution for 3 minutes.

<硫酸銅めっき浴>
硫酸銅(CuSO・5HO):220g/L
硫酸(HSO):50g/L
塩酸(HCl):0.15ml/L
<Copper sulfate plating bath>
Copper sulfate (CuSO 4 · 5H 2 O) : 220g / L
Sulfuric acid (H 2 SO 4 ): 50 g / L
Hydrochloric acid (HCl): 0.15 ml / L

(微孔数の測定手順2)
硫酸銅めっき後、試験片を静かに水洗し、風乾させた後に、めっき皮膜の微孔数を測定した。なお、微孔数の測定は、試験片の評価面に対して行い、株式会社キーエンス製のマイクロスコープVHX−200を使用して行った。微孔数の測定結果を表3に示す。
(Measuring procedure 2 for the number of micropores)
After plating with copper sulfate, the test piece was gently washed with water and air-dried, and then the number of micropores in the plating film was measured. The number of micropores was measured on the evaluation surface of the test piece, and was performed using a microscope VHX-200 manufactured by KEYENCE CORPORATION. The measurement results of the number of micropores are shown in Table 3.

Figure 0006945761
Figure 0006945761

本発明添加剤により、液体の状態で非導電性微粒子を添加してマイクロポーラスニッケルめっき液を調製しても、期待される微孔数を得ることができた。 With the additive of the present invention, the expected number of micropores could be obtained even when a microporous nickel plating solution was prepared by adding non-conductive fine particles in a liquid state.

本発明添加剤は、コンポジットめっき液の調製に利用することができる。 The additive of the present invention can be used for preparing a composite plating solution.

Claims (6)

非導電性微粒子とニッケルイオンと水を含有することを特徴とするコンポジットめっき液用添加剤。 An additive for a composite plating solution, which contains non-conductive fine particles, nickel ions, and water. コンポジットめっき液がサテンニッケルめっき液またはマイクロポーラスニッケルめっき液である請求項1記載のコンポジットめっき液用添加剤。 The additive for a composite plating solution according to claim 1, wherein the composite plating solution is a satin nickel plating solution or a microporous nickel plating solution. 非導電性微粒子がケイ素、バリウム、ジルコニウム、アルミニウム、チタンからなる群から選ばれる金属の酸化物、窒化物、硫化物または無機塩の1種または2種以上である請求項1または2記載のコンポジットめっき液用添加剤。 The composite according to claim 1 or 2, wherein the non-conductive fine particles are one or more of oxides, nitrides, sulfides or inorganic salts of a metal selected from the group consisting of silicon, barium, zirconium, aluminum and titanium. Additive for plating solution. 硫酸ニッケル、塩化ニッケル、スルファミン酸ニッケル、酢酸ニッケルの水和物または無水物からなる群から選ばれる1種または2種以上を含有するものである請求項1〜3の何れか1項記載のコンポジットめっき液用添加剤。 The composite according to any one of claims 1 to 3, which contains one or more selected from the group consisting of hydrates or anhydrides of nickel sulfate, nickel chloride, nickel sulfamate, nickel acetate. Additive for plating solution. 更に、電荷付与剤、界面活性剤、光沢剤から選ばれる1種または2種以上を含有するものである請求項1〜4の何れか1項記載のコンポジットめっき液用添加剤。 The additive for a composite plating solution according to any one of claims 1 to 4, further comprising one or more selected from a charge-imparting agent, a surfactant, and a brightener. 非導電性微粒子と水を含有するコンポジットめっき液用添加剤に、ニッケルイオンを含有させることを特徴とするコンポジットめっき液用添加剤における非導電性微粒子の沈殿物の固化抑制方法。 A method for suppressing solidification of a precipitate of non-conductive fine particles in an additive for a composite plating solution, which comprises adding nickel ions to an additive for a composite plating solution containing non-conductive fine particles and water.
JP2021100239A 2021-06-16 2021-06-16 Additives for composite plating solutions Active JP6945761B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021100239A JP6945761B1 (en) 2021-06-16 2021-06-16 Additives for composite plating solutions
PCT/JP2022/020620 WO2022264739A1 (en) 2021-06-16 2022-05-18 Additive for composite plating solutions
EP22824733.4A EP4357488A1 (en) 2021-06-16 2022-05-18 Additive for composite plating solutions
CN202210661523.5A CN115478307A (en) 2021-06-16 2022-06-13 Additive for composite plating solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021100239A JP6945761B1 (en) 2021-06-16 2021-06-16 Additives for composite plating solutions

Publications (2)

Publication Number Publication Date
JP6945761B1 true JP6945761B1 (en) 2021-10-06
JP2022191792A JP2022191792A (en) 2022-12-28

Family

ID=77915202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021100239A Active JP6945761B1 (en) 2021-06-16 2021-06-16 Additives for composite plating solutions

Country Status (4)

Country Link
EP (1) EP4357488A1 (en)
JP (1) JP6945761B1 (en)
CN (1) CN115478307A (en)
WO (1) WO2022264739A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537416U (en) * 1976-07-02 1978-01-23
JP2011149071A (en) * 2010-01-22 2011-08-04 Eyetec Co Ltd Composite plating solution having diamonds particle dispersed therein, and method for producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2962598B2 (en) * 1991-06-20 1999-10-12 荏原ユージライト株式会社 Microporous chrome plating method
BRPI0924283B1 (en) * 2009-02-13 2019-11-12 Atotech Deutschland Gmbh chrome part and method of manufacturing it
EP3940119A4 (en) * 2019-03-12 2022-08-10 JCU Corporation Microporous plating solution and method of using this plating solution to perform microporous plating on object to be plated

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537416U (en) * 1976-07-02 1978-01-23
JP2011149071A (en) * 2010-01-22 2011-08-04 Eyetec Co Ltd Composite plating solution having diamonds particle dispersed therein, and method for producing the same

Also Published As

Publication number Publication date
EP4357488A1 (en) 2024-04-24
JP2022191792A (en) 2022-12-28
WO2022264739A1 (en) 2022-12-22
CN115478307A (en) 2022-12-16

Similar Documents

Publication Publication Date Title
CN100480434C (en) Pyrophosphoric acid bath for use in copper-tin alloy plating
JP6370380B2 (en) Electrolyte for electrodeposition of silver-palladium alloy and deposition method thereof
JPS59136491A (en) Cyanide-free copper plating process and alloy anode plating solution
JPH086195B2 (en) Gold and gold alloy plating compositions and methods
JPWO2019117178A1 (en) Trivalent chrome plating solution and chrome plating method using this
CN105624745A (en) Environmentally friendly gold electroplating compositions and methods
TWI391533B (en) High speed method for plating palladium and palladium alloys
JPH0322478B2 (en)
JP6945761B1 (en) Additives for composite plating solutions
JP5452458B2 (en) Nickel plating solution and nickel plating method
WO2017077655A1 (en) Nickel-plating additive and satin nickel-plating bath containing same
TW573075B (en) Sn-Cu alloy plating bath
WO2020184289A1 (en) Microporous plating solution and method of using this plating solution to perform microporous plating on object to be plated
JP5583896B2 (en) High-speed plating method of palladium and palladium alloy
CN118028922A (en) Additive for composite plating solution
US2658867A (en) Electrodeposition of nickel
Eroglu et al. Effect of a cationic polymer, polyethyleneimine, on Ni/SiC co-deposition
JP2016060918A (en) Decorative trivalent chromium plating solution and decorative chromium plating method utilizing the same
TW202126862A (en) Zinc-nickel-silica composite plating bath and plating method using the bath
JPS6257720B2 (en)
CN105970257A (en) Ferrum-manganese-phosphorus magnetic alloy electroplating solution and preparation method thereof
WO2018066398A1 (en) Nickel plating solution and nickel plating solution production method
US3342566A (en) Process for the electrodeposition of a decorative corrosion resistant nickel-chromium coating and products thereof
JP6084899B2 (en) Electroplating bath for iron-nickel alloy having low thermal expansion coefficient and high hardness, and electroplating method using the same
WO2018029967A1 (en) Electrode manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210618

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210914

R150 Certificate of patent or registration of utility model

Ref document number: 6945761

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150