JP6084899B2 - Electroplating bath for iron-nickel alloy having low thermal expansion coefficient and high hardness, and electroplating method using the same - Google Patents

Electroplating bath for iron-nickel alloy having low thermal expansion coefficient and high hardness, and electroplating method using the same Download PDF

Info

Publication number
JP6084899B2
JP6084899B2 JP2013120400A JP2013120400A JP6084899B2 JP 6084899 B2 JP6084899 B2 JP 6084899B2 JP 2013120400 A JP2013120400 A JP 2013120400A JP 2013120400 A JP2013120400 A JP 2013120400A JP 6084899 B2 JP6084899 B2 JP 6084899B2
Authority
JP
Japan
Prior art keywords
iron
electroplating
nickel alloy
nickel
bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013120400A
Other languages
Japanese (ja)
Other versions
JP2014237874A (en
Inventor
ユリナ 福本
ユリナ 福本
真雄 堀
真雄 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JCU Corp
Original Assignee
JCU Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JCU Corp filed Critical JCU Corp
Priority to JP2013120400A priority Critical patent/JP6084899B2/en
Publication of JP2014237874A publication Critical patent/JP2014237874A/en
Application granted granted Critical
Publication of JP6084899B2 publication Critical patent/JP6084899B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、低熱膨張係数および高硬度を有する鉄−ニッケル合金を形成させるための電気メッキ液およびこれを用いた電気メッキ方法に関する。   The present invention relates to an electroplating solution for forming an iron-nickel alloy having a low thermal expansion coefficient and high hardness, and an electroplating method using the same.

鉄−ニッケル合金は、特定の組成(インバー組成)になると低熱膨張係数および高硬度となることが知られている。このインバー組成の鉄−ニッケル合金は温度によって寸法が変化しないため、フォトマスク、バイメタル等に利用されている。   It is known that an iron-nickel alloy has a low coefficient of thermal expansion and high hardness when it has a specific composition (invar composition). The iron-nickel alloy having this invar composition is used for a photomask, a bimetal, and the like because its dimensions do not change with temperature.

このようなインバー組成の鉄−ニッケル合金は、通常溶製合金であるが、メッキによりインバー組成の鉄−ニッケル合金を直接析出させることができれば、用途が広がることは明らかである。   The iron-nickel alloy having such an invar composition is usually a melted alloy, but it is clear that the use is widened if the iron-nickel alloy having the invar composition can be directly deposited by plating.

しかしながら、溶製で得られる鉄−ニッケル合金と、メッキで得られる鉄−ニッケル合金とは合金相が異なるため、単純にインバー組成と同じ組成になるような鉄−ニッケル合金をメッキで得ても、溶製のものと同様の性質は得られない。   However, the iron-nickel alloy obtained by melting and the iron-nickel alloy obtained by plating have different alloy phases. Therefore, even if an iron-nickel alloy having the same composition as the Invar composition is obtained by plating. , Properties similar to those produced by melting cannot be obtained.

これまでメッキでインバー組成と同様の性質の鉄−ニッケル合金を析出させる技術としては、ニッケル塩、第一鉄塩、錯化剤および緩衝剤を含む水溶液中に平均粒径3μm以下の微粒子を分散させた鉄−ニッケル合金メッキ液で電気メッキを行った後、400℃以上の熱処理を行う方法が報告されている(特許文献1、非特許文献1)。この技術により低熱膨張係数および高硬度を有する鉄−ニッケル合金が得られている。   Until now, as a technique for depositing an iron-nickel alloy having the same properties as the Invar composition by plating, fine particles having an average particle size of 3 μm or less are dispersed in an aqueous solution containing a nickel salt, a ferrous salt, a complexing agent and a buffering agent. There has been reported a method of performing a heat treatment at 400 ° C. or higher after electroplating with an iron-nickel alloy plating solution (Patent Document 1, Non-Patent Document 1). This technique has yielded an iron-nickel alloy having a low coefficient of thermal expansion and high hardness.

特開2011−168831号公報JP 2011-168831 A

山本ら、「表面技術」、第62巻、12号、p702〜707、2011年Yamamoto et al., “Surface Technology”, Vol. 62, No. 12, p702-707, 2011

しかしながら、上記技術では、メッキ液に微粒子を含有させることが必須であったり、撹拌の条件を制御することが必須であったり、更にはメッキ後にも熱処理が必須であるため、工程が煩雑であった。そのため、より簡便にインバー組成と同様の性質の鉄−ニッケル合金をメッキで得る技術が求められていた。   However, in the above technique, it is essential to contain fine particles in the plating solution, it is essential to control the stirring conditions, and furthermore, heat treatment is essential even after plating, so the process is complicated. It was. Therefore, there has been a demand for a technique for easily obtaining an iron-nickel alloy having the same properties as the Invar composition by plating.

本発明は上記課題を解決するために鋭意研究した結果、本発明者らは従来公知の鉄−ニッケル合金電気メッキ液に更に分子末端にビニル基やエチニル基のような不飽和結合を持つ基を有するスルホン酸の化合物を含有させたメッキ液で電気メッキをすることにより、電気メッキ後に熱処理をすることなく、低熱膨張係数および高硬度を有する鉄−ニッケル合金が得られることを見出し、本発明を完成させた。   As a result of diligent research to solve the above-mentioned problems, the inventors of the present invention further added a group having an unsaturated bond such as a vinyl group or an ethynyl group at the molecular end to a conventionally known iron-nickel alloy electroplating solution. The present inventors have found that an iron-nickel alloy having a low coefficient of thermal expansion and high hardness can be obtained without performing a heat treatment after electroplating by electroplating with a plating solution containing a sulfonic acid compound having the present invention. Completed.

すなわち、本発明は鉄−ニッケル合金用電気メッキ浴に、更に、以下の一般式(1)

Figure 0006084899
(ただし、Rはビニル基またはエチニル基、Xは置換されていてもよい、アルキレン基またはフェニレン基、Yはアルカリ金属を示す。)
で表される不飽和スルホン酸化合物を含有させたことを特徴とする低熱膨張係数および高硬度を有する鉄−ニッケル合金用電気メッキ浴である。 That is, the present invention relates to an electroplating bath for iron-nickel alloy, and the following general formula (1):
Figure 0006084899
(However, R represents a vinyl group or ethynyl group, X represents an optionally substituted alkylene group or phenylene group, and Y represents an alkali metal.)
An electroplating bath for an iron-nickel alloy having a low thermal expansion coefficient and high hardness, characterized by containing an unsaturated sulfonic acid compound represented by the formula:

また、本発明は、被メッキ物を、上記低熱膨張係数および高硬度を有する鉄−ニッケル合金用電気メッキ浴で処理することを特徴とする低熱膨張係数および高硬度を有する鉄−ニッケル合金の電気メッキ方法である。   The present invention also relates to an iron-nickel alloy having a low thermal expansion coefficient and high hardness, characterized in that an object to be plated is treated with the above-described electroplating bath for iron-nickel alloy having a low thermal expansion coefficient and high hardness. It is a plating method.

更に、本発明は、被メッキ物を、上記低熱膨張係数および高硬度を有する鉄−ニッケル合金用電気メッキ浴で処理することにより得られる低熱膨張係数および高硬度を有する鉄−ニッケル合金被覆製品である。   Furthermore, the present invention provides an iron-nickel alloy-coated product having a low thermal expansion coefficient and high hardness obtained by treating an object to be plated with an electroplating bath for iron-nickel alloy having the above low thermal expansion coefficient and high hardness. is there.

本発明によれば溶製で得られるインバー組成の鉄−ニッケル合金と同様の性質を有する鉄−ニッケル合金を、電気メッキのみで得ることができ、従来のように、メッキの条件も複雑でなはなく、微粒子の含有が不必要で、更にメッキ後の熱処理も必要ない。   According to the present invention, an iron-nickel alloy having the same properties as an iron-nickel alloy having an invar composition obtained by melting can be obtained only by electroplating, and the plating conditions are complicated as in the prior art. There is no need to contain fine particles, and no heat treatment after plating is required.

そのため、本発明は、溶製で製造されるインバー組成の鉄−ニッケル合金と同様な用途に用いることができるのは勿論のこと、更に、溶製で製造される鉄−ニッケル合金よりも容易に薄く広い面積でも、あるいは微細な物でも均一に被メッキ部材に被覆できるため、新たな用途への応用が期待できる。   Therefore, the present invention can be used for the same application as an iron-nickel alloy having an invar composition manufactured by melting, and more easily than an iron-nickel alloy manufactured by melting. Even a thin, wide area or even a fine object can be uniformly coated on a member to be plated, so that application to a new application can be expected.

本発明の低熱膨張係数および高硬度を有する鉄−ニッケル合金用メッキ浴(以下、「本発明メッキ浴」という)は、従来公知の鉄−ニッケル合金用電気メッキ浴に、更に、以下の一般式(1)

Figure 0006084899
で表される不飽和スルホン酸化合物を含有させたものである。 The plating bath for iron-nickel alloy having the low thermal expansion coefficient and high hardness of the present invention (hereinafter referred to as “the plating bath of the present invention”) is a conventional electroplating bath for iron-nickel alloy, and the following general formula. (1)
Figure 0006084899
An unsaturated sulfonic acid compound represented by the formula:

上記不飽和スルホン酸化合物において、Rはビニル基またはエチニル基であり、好ましくはビニル基である。また、Xは置換されていてもよい、アルキレン基またはフェニレン基であり、好ましくは置換されていないアルキレン基またはフェニレン基であり、より好ましくは置換されていないアルキレン基である。置換基としては炭素数1〜3のアルキル基、ハロゲン、ヒドロキシル基等が挙げられ、アルキレン基としては炭素数1〜10のもの、好ましくは炭素数1〜3のもの、より好ましくは炭素数1のものが挙げられる。更に、Yはアルカリ金属であり、好ましくはリチウム、ナトリウム、カリウムであり、より好ましくはナトリウムである。   In the unsaturated sulfonic acid compound, R is a vinyl group or an ethynyl group, preferably a vinyl group. X is an optionally substituted alkylene group or phenylene group, preferably an unsubstituted alkylene group or phenylene group, and more preferably an unsubstituted alkylene group. Examples of the substituent include an alkyl group having 1 to 3 carbon atoms, a halogen, and a hydroxyl group. The alkylene group has 1 to 10 carbon atoms, preferably 1 to 3 carbon atoms, and more preferably 1 carbon atom. Can be mentioned. Furthermore, Y is an alkali metal, preferably lithium, sodium or potassium, more preferably sodium.

より具体的な不飽和スルホン酸化合物としては、アリルスルホン酸ナトリウム、ビニルスルホン酸ナトリウム、プロピンスルホン酸ナトリウム等が挙げられ、好ましくはアリルスルホン酸ナトリウムである。これらの不飽和スルホン酸化合物は、1種または2種以上を組み合わせて用いても良い。   More specific examples of the unsaturated sulfonic acid compound include sodium allyl sulfonate, sodium vinyl sulfonate, sodium propyne sulfonate, and the like, preferably sodium allyl sulfonate. These unsaturated sulfonic acid compounds may be used alone or in combination of two or more.

本発明メッキ浴における、不飽和スルホン酸化合物の含有量は1〜10質量%(以下、単に「%」という)、好ましくは4〜8%である。   The content of the unsaturated sulfonic acid compound in the plating bath of the present invention is 1 to 10% by mass (hereinafter simply referred to as “%”), preferably 4 to 8%.

本発明メッキ浴のベースとなる従来公知の鉄−ニッケル合金用電気メッキ浴としては、特に限定されないが、例えば、鉄イオン、ニッケルイオン、リンゴ酸、クエン酸等の錯化剤、ホウ酸、酢酸等の緩衝剤を含有するものが挙げられる。より具体的な鉄−ニッケル合金用電気メッキ浴としては、塩化物浴、硫酸塩浴、硫酸塩−塩化物浴、シアン浴、クエン酸浴、ピロリン酸浴、ワット浴、スルファミン酸浴等が挙げられる。これらの中でもワット浴、スルファミン酸浴が好ましい。   Although it does not specifically limit as a conventionally well-known electroplating bath for iron-nickel alloys used as the base of this invention plating bath, For example, complexing agents, such as iron ion, nickel ion, malic acid, a citric acid, boric acid, acetic acid And those containing a buffering agent. More specific examples of the electroplating bath for iron-nickel alloy include chloride bath, sulfate bath, sulfate-chloride bath, cyan bath, citric acid bath, pyrophosphate bath, watt bath, sulfamic acid bath, and the like. It is done. Among these, Watt bath and sulfamic acid bath are preferable.

また、本発明メッキ浴には、上記従来公知の鉄−ニッケル合金用電気メッキ浴に、更にコバルトを含有させてもよい。この場合、この場合のコバルトの添加量は特に限定されず、例えば1〜100g/L、好ましくは1〜50g/Lである。また、コバルト源としては、硫酸コバルト等が挙げられる。   Further, the plating bath of the present invention may further contain cobalt in the above-described conventionally known electroplating bath for iron-nickel alloy. In this case, the addition amount of cobalt in this case is not specifically limited, For example, it is 1-100 g / L, Preferably it is 1-50 g / L. Moreover, cobalt sulfate etc. are mentioned as a cobalt source.

なお、本発明メッキ浴には、上記した従来公知の鉄−ニッケル合金用電気メッキ浴において、特に鉄を4〜12g/l、好ましくは6〜10g/l、ニッケルを20〜50g/l、好ましくは25〜40g/l含有させたものを用いることが好ましい。   In the plating bath of the present invention, in the above-described conventional electroplating bath for iron-nickel alloy, iron is particularly 4 to 12 g / l, preferably 6 to 10 g / l, nickel is 20 to 50 g / l, preferably It is preferable to use those containing 25 to 40 g / l.

以下に、本発明メッキ浴の好ましい態様として、ワット浴、スルファミン酸浴の組成を記載する。   Below, the composition of a watt bath and a sulfamic acid bath is described as a preferred embodiment of the plating bath of the present invention.

<ワット浴>
硫酸ニッケル:50〜125g/L、好ましくは60〜100g/L
塩化ニッケル:40〜80g/L、好ましくは50〜70g/L
ホウ酸:30〜60g/L
硫酸第一鉄:20〜60g/L、好ましくは35〜50g/L
グルコン酸ナトリウム:20〜80g/L、好ましくは50〜60g/L
サッカリンナトリウム:1〜5g/L、好ましくは2〜4g/L
アリルスルホン酸ナトリウム:1.5〜10g/L、好ましくは3.5〜8.5g/L
<Watt bath>
Nickel sulfate: 50 to 125 g / L, preferably 60 to 100 g / L
Nickel chloride: 40-80 g / L, preferably 50-70 g / L
Boric acid: 30-60 g / L
Ferrous sulfate: 20-60 g / L, preferably 35-50 g / L
Sodium gluconate: 20-80 g / L, preferably 50-60 g / L
Saccharin sodium: 1 to 5 g / L, preferably 2 to 4 g / L
Sodium allyl sulfonate: 1.5-10 g / L, preferably 3.5-8.5 g / L

<スルファミン酸浴>
スルファミン酸ニッケル:90〜250g/L、好ましくは140〜190g/L
ホウ酸:30〜60g/L
臭化ニッケル:5〜15g/L、好ましくは6〜10g/L
スルファミン酸鉄:25〜75g/L、好ましくは40〜60g/L
グルコン酸ナトリウム:20〜80g/L、好ましくは50〜60g/L
サッカリンナトリウム:1〜5g/L、好ましくは2〜4g/L
アリルスルホン酸ナトリウム:1.5〜10g/L、好ましくは3.5〜8.5g/L
<Sulphamic acid bath>
Nickel sulfamate: 90 to 250 g / L, preferably 140 to 190 g / L
Boric acid: 30-60 g / L
Nickel bromide: 5 to 15 g / L, preferably 6 to 10 g / L
Iron sulfamate: 25-75 g / L, preferably 40-60 g / L
Sodium gluconate: 20-80 g / L, preferably 50-60 g / L
Saccharin sodium: 1 to 5 g / L, preferably 2 to 4 g / L
Sodium allyl sulfonate: 1.5-10 g / L, preferably 3.5-8.5 g / L

本発明メッキ浴を用いて被メッキ物に電気メッキする方法は、特に限定されず、例えば、被メッキ物に、アルカリ脱脂、酸活性等の前処理を行った後、これを本発明メッキ浴に浸漬する方法等が挙げられる。   The method of electroplating an object to be plated using the plating bath of the present invention is not particularly limited. For example, after subjecting the object to be plated to pretreatment such as alkaline degreasing and acid activity, this is applied to the plating bath of the present invention. Examples include a dipping method.

電気メッキの条件は、特に限定されず、通常の鉄−ニッケル合金の電気メッキの条件を用いればよく、例えば、浴温40〜60℃で、アノードに鉄、ニッケルを併用し、陰極電流密度1〜3A/dmで行えばよい。また、電気メッキの際にはパドル等で撹拌することが好ましい。 Electroplating conditions are not particularly limited, and normal electroplating conditions of iron-nickel alloy may be used. For example, the bath temperature is 40 to 60 ° C., iron and nickel are used in combination with the anode, and the cathode current density is 1 it may be carried out by ~3A / dm 2. Moreover, it is preferable to stir with a paddle or the like during electroplating.

なお、電気メッキの条件として、メッキ浴の温度を高くすれば得られる鉄−ニッケル合金における鉄の比率が低くなり、また、撹拌速度を早くすれば鉄の比率は高くなり、更に、メッキ浴の鉄濃度を相対的に下げれば鉄の比率が低くなる傾向がわかっているため、当業者であればこれらの条件の調整により鉄−ニッケル合金における鉄とニッケルの比率を制御することもできる。   As the electroplating conditions, if the temperature of the plating bath is increased, the iron ratio in the obtained iron-nickel alloy is decreased, and if the stirring speed is increased, the iron ratio is increased. Since it is known that the iron ratio tends to decrease when the iron concentration is relatively lowered, those skilled in the art can control the ratio of iron to nickel in the iron-nickel alloy by adjusting these conditions.

本発明メッキ浴で電気メッキすることができる被メッキ物は特に限定されず、例えば、表面が、銅、ニッケル、ステンレス等の金属、ABS、ポリイミド等の樹脂等で形成されたもの等が挙げられる。   The object to be plated that can be electroplated in the plating bath of the present invention is not particularly limited, and examples thereof include those whose surface is formed of a metal such as copper, nickel or stainless steel, a resin such as ABS or polyimide, and the like. .

上記のようにして被メッキ物に電気メッキして得られる鉄−ニッケル合金メッキ被覆製品は、低熱膨張係数および高硬度を有する。具体的には、鉄とニッケルの比率が、両者の合計量を100%として、鉄が55〜64%およびニッケルが36〜45%、好ましくは鉄が57〜58%およびニッケルが43〜42%であり、熱膨張係数が9.0×10−6/℃以下、好ましくは7.0×10−6/℃以下であり、ビッカース硬度が200HV以上、好ましくは300〜380HVである。 The iron-nickel alloy plating-coated product obtained by electroplating an object to be plated as described above has a low thermal expansion coefficient and high hardness. Specifically, the ratio of iron and nickel is such that the total amount of both is 100%, iron is 55 to 64% and nickel is 36 to 45%, preferably iron is 57 to 58% and nickel is 43 to 42%. The thermal expansion coefficient is 9.0 × 10 −6 / ° C. or less, preferably 7.0 × 10 −6 / ° C. or less, and the Vickers hardness is 200 HV or more, preferably 300 to 380 HV.

このような性質を有する鉄−ニッケル合金メッキ被覆製品は、低熱膨張係数および高硬度を有するためフォトマスク、バイメタル、金型電鋳等に利用することができる。   Since the iron-nickel alloy plated product having such properties has a low thermal expansion coefficient and high hardness, it can be used for photomasks, bimetals, die electroforming, and the like.

以下、本発明を実施例を挙げて詳細に説明するが、本発明はこれら実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these Examples at all.

実 施 例 1
鉄−ニッケル合金用電気メッキ浴の調製:
水に、スルファミン酸ニッケル156g/L、ホウ酸30g/L、臭化ニッケル7g/L、スルファミン酸鉄50g/L、グルコン酸ナトリウム60g/L、サッカリンナトリウム3.2g/Lおよびアリルスルホン酸ナトリウム(36%)16ml/Lを添加、混合し、鉄−ニッケル合金用電気メッキ浴を調製した。このメッキ浴のpHは3.8であり、ニッケルと鉄の含有量はそれぞれ30g/Lおよび8g/Lであった。
Example 1
Preparation of electroplating bath for iron-nickel alloy:
In water, nickel sulfamate 156 g / L, boric acid 30 g / L, nickel bromide 7 g / L, iron sulfamate 50 g / L, sodium gluconate 60 g / L, sodium saccharin 3.2 g / L and sodium allyl sulfonate (36 %) 16 ml / L was added and mixed to prepare an electroplating bath for iron-nickel alloy. The pH of this plating bath was 3.8, and the contents of nickel and iron were 30 g / L and 8 g / L, respectively.

実 施 例 2
鉄−ニッケル合金用電気メッキ浴の調製:
水に、硫酸ニッケル75g/L、塩化ニッケル55g/L、ホウ酸40g/L、硫酸第一鉄40g/L、グルコン酸ナトリウム60g/L、サッカリンナトリウム3.2g/Lおよびアリルスルホン酸ナトリウム(36%)16ml/Lを添加、混合し、鉄−ニッケル合金用電気メッキ浴を調製した。このメッキ浴のpHは3.0であり、ニッケルと鉄の含有量はそれぞれ30g/Lおよび8g/Lであった。
Example 2
Preparation of electroplating bath for iron-nickel alloy:
In water, nickel sulfate 75 g / L, nickel chloride 55 g / L, boric acid 40 g / L, ferrous sulfate 40 g / L, sodium gluconate 60 g / L, sodium saccharin 3.2 g / L and sodium allyl sulfonate (36% 16 ml / L was added and mixed to prepare an electroplating bath for iron-nickel alloy. The pH of this plating bath was 3.0, and the contents of nickel and iron were 30 g / L and 8 g / L, respectively.

実 施 例 3
鉄−ニッケル合金電気メッキ皮膜の形成:
ポリイミド製の基板(10×40mm)に、アルカリ脱脂(40℃、10分)および酸活性(室温、30秒)を行った後、実施例1で調製した鉄−ニッケル合金用電気メッキ浴に以下の条件で浸漬して目標膜厚10μmで電気メッキをして鉄−ニッケル合金電気メッキ皮膜を得た。
Example 3
Formation of iron-nickel alloy electroplating film:
After performing alkaline degreasing (40 ° C., 10 minutes) and acid activity (room temperature, 30 seconds) on a polyimide substrate (10 × 40 mm), the following is applied to the iron-nickel alloy electroplating bath prepared in Example 1. The film was immersed in the above conditions and electroplated with a target film thickness of 10 μm to obtain an iron-nickel alloy electroplated film.

<メッキ条件>
メッキ時間:30分
液温:50℃
アノード:鉄、ニッケル
陰極電流密度:2A/dm
撹拌:パドル撹拌(3m/min)
<Plating conditions>
Plating time: 30 minutes Liquid temperature: 50 ° C
Anode: Iron, nickel Cathode current density: 2 A / dm 2
Stirring: Paddle stirring (3m / min)

実 施 例 4
鉄−ニッケル合金電気メッキ皮膜の形成:
温度を40℃とする以外は実施例3と同様にして電気メッキをして鉄−ニッケル合金電気メッキ皮膜を得た。
Example 4
Formation of iron-nickel alloy electroplating film:
Except that the temperature was 40 ° C., electroplating was performed in the same manner as in Example 3 to obtain an iron-nickel alloy electroplating film.

実 施 例 5
鉄−ニッケル合金電気メッキ皮膜の形成:
撹拌を6m/min、温度を40℃とする以外は実施例3と同様にして電気メッキをして鉄−ニッケル合金電気メッキ皮膜を得た。
Example 5
Formation of iron-nickel alloy electroplating film:
An iron-nickel alloy electroplating film was obtained by electroplating in the same manner as in Example 3 except that the stirring was 6 m / min and the temperature was 40 ° C.

実 施 例 6
鉄−ニッケル合金電気メッキ皮膜の形成:
実施例2で調製した鉄−ニッケル合金用電気メッキ浴を用い、温度を40℃とする以外は実施例3と同様にして電気メッキをして鉄−ニッケル合金電気メッキ皮膜を得た。
Example 6
Formation of iron-nickel alloy electroplating film:
An iron-nickel alloy electroplating film was obtained by electroplating in the same manner as in Example 3 except that the temperature was set to 40 ° C. using the electroplating bath for iron-nickel alloy prepared in Example 2.

試 験 例 1
物性測定:
実施例3〜6で得られたメッキ皮膜について、外観を目視で評価した後、スパイラル応力計((株)山本鍍金試験器社製:スパイラル鍍金応力計)を用いて応力、マイクロメータ((株)ミツトヨ社製)で延展性、マイクロビッカース硬度計((株)明石製作所社製:荷重0.25N)を用いて硬度を測定した。また、熱膨張係数を窒素雰囲気下、25〜200℃の範囲で熱・応力・歪測定装置(エスアイアイ・ナノテクノロジー製:TMA/SS 6100:荷重50mN:昇温速度5℃/min)を用いて測定した。更に、皮膜中の鉄−ニッケルの質量比を蛍光X線分析法で求めた。これらの結果を表1に示した。
Test example 1
Physical property measurement:
About the plating film obtained in Examples 3-6, after visually evaluating the appearance, the stress was measured using a spiral stress meter (manufactured by Yamamoto Metal Tester Co., Ltd .: Spiral Metal Stress Tester), micrometer ((Co., Ltd.). The hardness was measured by using a micro Vickers hardness meter (manufactured by Akashi Seisakusho Co., Ltd .: load 0.25N). Further, a thermal / stress / strain measuring device (manufactured by SII Nanotechnology: TMA / SS 6100: load 50 mN: temperature rising rate 5 ° C./min) is used in a nitrogen atmosphere in a range of 25 to 200 ° C. in a nitrogen atmosphere. Measured. Furthermore, the mass ratio of iron-nickel in the film was determined by fluorescent X-ray analysis. These results are shown in Table 1.

Figure 0006084899
Figure 0006084899

以上の結果より、本発明メッキ浴により、電気メッキだけで熱処理を行わなくても低熱膨張係数および高硬度を有する鉄−ニッケル合金皮膜が得られることがわかった。また、低熱膨張係数が得られる鉄−ニッケル合金の組成は鉄58%およびニッケル42%付近にあることがわかった。   From the above results, it was found that an iron-nickel alloy film having a low thermal expansion coefficient and high hardness can be obtained by the plating bath of the present invention without performing heat treatment only by electroplating. It was also found that the composition of the iron-nickel alloy capable of obtaining a low thermal expansion coefficient was in the vicinity of 58% iron and 42% nickel.

比 較 例 1
比較メッキ:
アリルスルホン酸ナトリウム(36%)を含まない以外は、実施例2と同様に鉄−ニッケル合金用電気メッキ浴を調製し、これを用いて実施例6と同様の条件で鉄−ニッケル合金電気メッキ皮膜を得た。なお、皮膜の外観は均一ではなかった。得られた皮膜について試験例1と同様にして皮膜中の鉄−ニッケルの質量比と、熱膨張係数(/℃)を測定した。その結果、鉄−ニッケルの質量比は鉄64%およびニッケル36%であり、熱膨張係数(/℃)は8.6×10−6/℃であった。
Comparative Example 1
Comparative plating:
An iron-nickel alloy electroplating bath was prepared in the same manner as in Example 2 except that sodium allyl sulfonate (36%) was not contained, and this was used to perform iron-nickel alloy electroplating under the same conditions as in Example 6. A film was obtained. The appearance of the film was not uniform. About the obtained film | membrane, it carried out similarly to Test Example 1, and measured the mass ratio of iron-nickel in a film | membrane, and a thermal expansion coefficient (/ degreeC). As a result, the mass ratio of iron-nickel was iron 64% and nickel 36%, and the thermal expansion coefficient (/ ° C.) was 8.6 × 10 −6 / ° C.

実 施 例 7
鉄−ニッケル合金電気メッキ皮膜の形成:
アリルスルホン酸ナトリウム(36%)をビニルスルホン酸とする以外は、実施例2と同様に鉄−ニッケル合金用電気メッキ浴を調製し、これを用いて実施例6と同様の条件で鉄−ニッケル合金電気メッキ皮膜を得た。均一な皮膜外観が得られ、鉄−ニッケルの質量比は鉄55およびニッケル45%であった。この皮膜は低熱膨張係数および高硬度を有する。
Example 7
Formation of iron-nickel alloy electroplating film:
An electroplating bath for iron-nickel alloy was prepared in the same manner as in Example 2 except that sodium allyl sulfonate (36%) was changed to vinyl sulfonic acid, and iron-nickel was used under the same conditions as in Example 6 using this. An alloy electroplating film was obtained. A uniform film appearance was obtained and the mass ratio of iron-nickel was iron 55 and nickel 45%. This coating has a low coefficient of thermal expansion and a high hardness.

実 施 例 8
鉄−ニッケル合金電気メッキ皮膜の形成:
アリルスルホン酸ナトリウム(36%)をプロピンスルホン酸とする以外は、実施例2と同様に鉄−ニッケル合金用電気メッキ浴を調製し、これを用いて実施例6と同様の条件で鉄−ニッケル合金電気メッキ皮膜を得た。得られた皮膜の鉄−ニッケルの質量比は鉄62%およびニッケル38%であった。この皮膜は低熱膨張係数および高硬度を有する。
Example 8
Formation of iron-nickel alloy electroplating film:
An iron-nickel alloy electroplating bath was prepared in the same manner as in Example 2 except that sodium allyl sulfonate (36%) was used as propyne sulfonic acid. A nickel alloy electroplating film was obtained. The obtained coating had an iron-nickel mass ratio of 62% iron and 38% nickel. This coating has a low coefficient of thermal expansion and a high hardness.

本発明は、溶製で製造されるインバー組成の鉄−ニッケル合金と同様な用途に用いることができるのは勿論のこと、更に、溶製で製造される鉄−ニッケル合金よりも容易に薄く広い面積でも均一に被メッキ部材に被覆できるので新たな用途への応用が期待できる。

以 上
The present invention can be used for the same application as an iron-nickel alloy having an invar composition manufactured by melting, and more easily and wider than an iron-nickel alloy manufactured by melting. Since it is possible to uniformly coat the member to be plated even in the area, application to new applications can be expected.

that's all

Claims (3)

被メッキ物を、鉄を4〜12g/lおよびニッケルを20〜50g/l含有する鉄−ニッケル合金用電気メッキ浴に、更に、以下の一般式(1)
Figure 0006084899
(ただし、Rはビニル基またはエチニル基、Xは置換されていてもよい、アルキレン基またはフェニレン基、Yはアルカリ金属を示す。)
で表される不飽和スルホン酸化合物を含有させた鉄−ニッケル合金用電気メッキ浴(ただし、平均粒径3μm以下の微粒子を含むものを除く)を用い、撹拌して浴温40〜60℃でアノードに鉄、ニッケルを併用し、陰極電流密度1〜3A/dmで電気メッキし、電気メッキ後に、熱処理を行わないことを特徴とする鉄とニッケルの比率が両者の合計量を100質量%として、鉄が55〜64質量%およびニッケルが36〜45質量%であり、窒素雰囲気下、25〜200℃の範囲で測定される熱膨張係数が7.0×10−6/℃以下であり、ビッカース硬度が200HV以上である鉄−ニッケル合金の電気メッキ方法。
An object to be plated is applied to an electroplating bath for iron-nickel alloy containing 4 to 12 g / l of iron and 20 to 50 g / l of nickel, and the following general formula (1)
Figure 0006084899
(However, R represents a vinyl group or ethynyl group, X represents an optionally substituted alkylene group or phenylene group, and Y represents an alkali metal.)
An electroplating bath for an iron-nickel alloy containing an unsaturated sulfonic acid compound represented by the above (excluding those containing fine particles having an average particle size of 3 μm or less) and stirring at a bath temperature of 40 to 60 ° C. Iron and nickel are used in combination with the anode, electroplating is performed at a cathode current density of 1 to 3 A / dm 2 , and heat treatment is not performed after electroplating. The ratio of iron and nickel is 100% by mass. As described above, iron is 55 to 64% by mass and nickel is 36 to 45% by mass, and the thermal expansion coefficient measured in the range of 25 to 200 ° C. in a nitrogen atmosphere is 7.0 × 10 −6 / ° C. or less. Electroplating method of iron-nickel alloy whose Vickers hardness is 200HV or more.
不飽和スルホン酸化合物が、アリルスルホン酸ナトリウム、ビニルスルホン酸ナトリウムおよびプロピンスルホン酸ナトリウムからなる群から選ばれる1種または2種以上である請求項1記載の鉄−ニッケル合金の電気メッキ方法。   The method of electroplating an iron-nickel alloy according to claim 1, wherein the unsaturated sulfonic acid compound is one or more selected from the group consisting of sodium allyl sulfonate, sodium vinyl sulfonate and sodium propyne sulfonate. 鉄−ニッケル合金用電気メッキ浴が、ワット浴またはスルファミン酸浴である請求項1または2記載の鉄−ニッケル合金の電気メッキ方法。
The method of electroplating an iron-nickel alloy according to claim 1 or 2, wherein the electroplating bath for the iron-nickel alloy is a watt bath or a sulfamic acid bath.
JP2013120400A 2013-06-07 2013-06-07 Electroplating bath for iron-nickel alloy having low thermal expansion coefficient and high hardness, and electroplating method using the same Active JP6084899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013120400A JP6084899B2 (en) 2013-06-07 2013-06-07 Electroplating bath for iron-nickel alloy having low thermal expansion coefficient and high hardness, and electroplating method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013120400A JP6084899B2 (en) 2013-06-07 2013-06-07 Electroplating bath for iron-nickel alloy having low thermal expansion coefficient and high hardness, and electroplating method using the same

Publications (2)

Publication Number Publication Date
JP2014237874A JP2014237874A (en) 2014-12-18
JP6084899B2 true JP6084899B2 (en) 2017-02-22

Family

ID=52135239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013120400A Active JP6084899B2 (en) 2013-06-07 2013-06-07 Electroplating bath for iron-nickel alloy having low thermal expansion coefficient and high hardness, and electroplating method using the same

Country Status (1)

Country Link
JP (1) JP6084899B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044383A1 (en) * 2017-09-01 2019-03-07 株式会社Jcu Electroplating liquid for iron-nickel alloy having low coefficient of thermal expansion, and electroplating method using the electroplating liquid

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1024930A (en) * 1972-07-03 1978-01-24 Richard J. Clauss Electrodeposition of bright nickel iron deposits
JPS5187437A (en) * 1975-01-29 1976-07-31 Permalite Chem Ltd Nitsukeru tetsugokinnodenkaimetsukyodenkaishitsuyoeki
US3974044A (en) * 1975-03-31 1976-08-10 Oxy Metal Industries Corporation Bath and method for the electrodeposition of bright nickel-iron deposits
BE891722A (en) * 1981-01-13 1982-07-07 Hooker Chemicals Plastics Corp BATH AND METHOD FOR ELECTRODEPOSITION OF A BRILLIANT NICKEL-IRON ALLOY
SE8505725L (en) * 1985-12-04 1987-06-05 Perstorp Ab INVARFOLIE
JPH03229892A (en) * 1990-02-05 1991-10-11 Mitsui Mining & Smelting Co Ltd Electrolytic invar composite foil
JPH07233494A (en) * 1994-02-24 1995-09-05 Osaka City Iron-group alloy electroplating bath
KR100505002B1 (en) * 2003-04-24 2005-08-01 주식회사 나노인바 Nani invar alloyes and the process of producing the same
JP5478292B2 (en) * 2010-02-18 2014-04-23 京都市 Method for producing iron-nickel alloy plating film having high hardness and low thermal expansion coefficient

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044383A1 (en) * 2017-09-01 2019-03-07 株式会社Jcu Electroplating liquid for iron-nickel alloy having low coefficient of thermal expansion, and electroplating method using the electroplating liquid
KR20200044860A (en) * 2017-09-01 2020-04-29 가부시끼가이샤 제이씨유 Electroplating solution for iron-nickel alloys with low coefficient of thermal expansion and electroplating method using the same
CN111094633A (en) * 2017-09-01 2020-05-01 株式会社杰希优 Electroplating solution for iron-nickel alloy having low thermal expansion coefficient and electroplating method using the same
TWI763907B (en) * 2017-09-01 2022-05-11 日商傑希優股份有限公司 Electroplating solution for iron-nickel alloy with low coefficient of thermal expansion and electroplating method using the same
CN111094633B (en) * 2017-09-01 2023-03-07 株式会社杰希优 Electroplating solution for iron-nickel alloy having low thermal expansion coefficient and electroplating method using the same
KR102591174B1 (en) * 2017-09-01 2023-10-18 가부시끼가이샤 제이씨유 Electroplating solution for iron-nickel alloy with low thermal expansion coefficient and electroplating method using the same

Also Published As

Publication number Publication date
JP2014237874A (en) 2014-12-18

Similar Documents

Publication Publication Date Title
KR101649435B1 (en) Copper-nickel alloy electroplating bath and plating method
EP2141261B1 (en) Electrolytic Tin Plating Solution and Electrolytic Tin Plating Method
TW201250065A (en) Electroplating bath and method for producing dark chromium layers
TW559631B (en) Electroless composite plating solution and electroless composite plating method
TW201406992A (en) Plating bath for electroless deposition of nickel layers
JP5478292B2 (en) Method for producing iron-nickel alloy plating film having high hardness and low thermal expansion coefficient
Tang Pulse reversal plating of nickel and nickel alloys for microgalvanics
TWI548782B (en) Cyanide-free acidic matte silver electroplating compositions and methods
RU2666391C1 (en) Bath for electrolytic coating with copper-nickel alloys
JP6084899B2 (en) Electroplating bath for iron-nickel alloy having low thermal expansion coefficient and high hardness, and electroplating method using the same
JP2007308801A (en) Nickel/cobalt/phosphorus electroplating composition and its application
KR102421883B1 (en) Acidic aqueous binary silver-bismuth alloy electroplating compositions and methods
KR102591174B1 (en) Electroplating solution for iron-nickel alloy with low thermal expansion coefficient and electroplating method using the same
JP2016532004A (en) Electroplating bath
Petro et al. Development of hybrid electro-electroless deposit (HEED) coatings and applications
JP7032502B2 (en) Acidic Aqueous Silver-Nickel Alloy Electroplating Compositions and Methods
JPH0575837B2 (en)
CN115125591A (en) Silver electroplating compositions and methods for electroplating silver with low coefficient of friction
TW201908536A (en) Nickel electroplating composition having copolymer of arginine and diepoxide and method for electroplating nickel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160325

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161107

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20161114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170126

R150 Certificate of patent or registration of utility model

Ref document number: 6084899

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250