KR100505002B1 - Nani invar alloyes and the process of producing the same - Google Patents
Nani invar alloyes and the process of producing the same Download PDFInfo
- Publication number
- KR100505002B1 KR100505002B1 KR10-2003-0026108A KR20030026108A KR100505002B1 KR 100505002 B1 KR100505002 B1 KR 100505002B1 KR 20030026108 A KR20030026108 A KR 20030026108A KR 100505002 B1 KR100505002 B1 KR 100505002B1
- Authority
- KR
- South Korea
- Prior art keywords
- alloy
- sodium
- saccharin
- sna
- boric acid
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C1/00—Electrolytic production, recovery or refining of metals by electrolysis of solutions
- C25C1/06—Electrolytic production, recovery or refining of metals by electrolysis of solutions or iron group metals, refractory metals or manganese
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/56—Electroplating: Baths therefor from solutions of alloys
- C25D3/562—Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electroplating And Plating Baths Therefor (AREA)
- Electrolytic Production Of Metals (AREA)
Abstract
본 발명은 전기도금(성형)(전주성형) 방법을 이용하여 Ni 함량이 33 ~ 42 wt% 범위인 새로운 Fe-Ni 합금, 구체적으로는 결정립 크기가 5 ~ 15 nm 인 나노 결정질 구조를 갖는 나노인바 합금, 을 제조하는 전해(도금,성형)용액과 공정조건에 관한 기술이다. 특히, 본 발명에 의해 제조된 합금 중 64wt% Fe - 36wt%Ni 조성의 합금은 결정립의 크기가 5 ~ 7(경우에 따라 10)nm 정도로 매우 작았다. 인바합금(Invar Alloy, 64%Fe-36%Ni)을 포함한 저열팽창 특성을 나타내는 Fe-Ni 합금을 제조하기 위한 기존의 합금 제조방법은 용해, 주조, 단조, 압연, 열처리 등의 여러 공정을 거쳐야 한다. 하지만, 본 발명에 따르면, FeSO4·7H2O(Ferrous Sulfate), NiSO4·6H2O(Nickel Sulfate), NiCl2·6H2O(Nickel Chloride), FeCl2·4H2O(Ferrous Chloride)와 Ni(NH2SO3)2 (Nickel Sulfamate)들 중에서 일부를 주성분으로 하고, 여기에 사카린(C7H4NO3SNa, Sodium Saccharin)을 응력완화제로 첨가한 전해(도금,성형)액에서 연속직류 또는 펄스형 직류로 전기도금(성형)하여 음극에 전착하는 Fe-Ni합금을 전극표면에서 분리하여 1∼200㎛ 두께의 박판으로 제작한다. 특히 전해액은 물 1L당, 32내지 53g의 FeSO4·7H2O(Ferrous Sulfate) 또는, FeCl2·4H2O(Ferrous Chloride) 또는 이들의 혼합물, 97g의 NiSO4·6H2O(Nickel Sulfate) 또는 NiCl2·6H2O(Nickel Chloride) 또는 Ni(NH2SO3)2 (Nickel Sulfamate) 또는 이들의 혼합물, 붕산(H3BO3, Boric acid) 20∼30g, 사카린(C7H4NO3SNa, Sodium Saccharin) 1∼3g, 나트륨라우릴설페이트(C12H25O4SNa, Sodium Lauryl Sulfate) 0.1 ∼ 0.3g, 염화나트륨(NaCl, Sodium Chloride) 20∼40g을 포함한다. 이러한 방법으로 제조되는 나노 인바 합금 포일(foil) 또는 박판들은 철화합물과 니켈화합물의 성분의 변화와 함께, 전류밀도, pH값 등을 조절함으로써 합금중 Ni의 함량을 32.7wt%에서 38.8wt% 사이의 범위로 변화시킬 수 있다. 본 발명에 의해 제조된 인바 합금 박판을 구성하는 결정립들은 5∼15나노미터 크기의 분포를 갖기 때문에 기존방법에 의한 인바 합금보다 탁월한 기계적 성질을 나타내며, 일정한 온도 구간에서는 열팽창계수가 0 또는 음의 값을 갖는 등 새로운 물성을 나타낸다.The present invention is a novel Fe-Ni alloy having a Ni content in the range of 33 to 42 wt% using an electroplating (forming) method, specifically, a nano-invar having a nanocrystalline structure having a grain size of 5 to 15 nm. This is a description of the electrolytic (plating, molding) solution for producing alloys, and process conditions. In particular, in the alloy prepared according to the present invention, the alloy having a composition of 64 wt% Fe-36 wt% Ni was very small in size of 5 to 7 nm in some cases (10) nm. Conventional alloying methods for producing Fe-Ni alloys with low thermal expansion properties including Invar Alloy (64% Fe-36% Ni) have to go through various processes such as melting, casting, forging, rolling, and heat treatment. do. However, according to the present invention, FeSO 4 · 7H 2 O (Ferrous Sulfate), NiSO 4 · 6H 2 O (Nickel Sulfate), NiCl 2 · 6H 2 O (Nickel Chloride), FeCl 2 · 4H 2 O (Ferrous Chloride) Some of Ni (NH 2 SO 3 ) 2 (Nickel Sulfamate) and electrolytic (plating, molding) solution containing Saccharin (C 7 H 4 NO 3 SNa, Sodium Saccharin) as a stress relaxation agent The Fe-Ni alloy, which is electroplated (molded) with a continuous direct current or pulsed direct current and electrodeposited on the cathode, is separated from the electrode surface and manufactured into a thin plate having a thickness of 1 to 200 μm. In particular, the electrolyte solution is 32 to 53 g of FeSO 4 · 7H 2 O (Ferrous Sulfate) or FeCl 2 · 4H 2 O (Ferrous Chloride) or a mixture thereof, 97 g of NiSO 4 · 6H 2 O (Nickel Sulfate) per liter of water. Or NiCl 2 · 6H 2 O (Nickel Chloride) or Ni (NH 2 SO 3 ) 2 (Nickel Sulfamate) or mixtures thereof, 20-30 g of boric acid (H 3 BO 3 , Boric acid), saccharin (C 7 H 4 NO 3 SNa, Sodium Saccharin (1-3g), sodium lauryl sulfate (C 12 H 25 O 4 SNa, Sodium Lauryl Sulfate) 0.1-0.3g, sodium chloride (NaCl, Sodium Chloride) 20-40g. Nano invar alloy foils or thin plates produced in this way are used to adjust the current density, pH value, etc. together with the changes in the composition of iron and nickel compounds to adjust the Ni content in the alloy between 32.7wt% and 38.8wt%. It can be changed in the range of. The crystal grains constituting the Invar alloy thin plate manufactured by the present invention have a distribution of 5 to 15 nanometers, and thus exhibit excellent mechanical properties than those of the Invar alloy by the conventional method, and have a thermal expansion coefficient of 0 or a negative value at a certain temperature range. It shows new physical properties such as having.
Description
Fe-Ni합금은 Ni 함량에 따라 다양한 물성을 나타내며, 저열팽창 특성은 Ni의 함량이 중량비로 20%∼50% 범위일 때 나타난다 (D. R. Rancourt, S. Chehab and G. Lamarche, J. Mag. Mag. Mater. 78 (1989) 129 참조). 이 중 인바합금(Invar alloy)이라 불리는 64%Fe-36%Ni 조성의 합금은 열팽창계수가 0에 근접하며, Guillaume이 1897년 처음 발명한 이래 (C. E. Guillaume, C.R. Acad. Sci. Paris 124 (1897) 176 참조) 대표적인 저열팽창 합금으로 생산되어 상업적으로 널리 이용해 오고 있다.Fe-Ni alloys exhibit various properties depending on the Ni content, and low thermal expansion properties occur when the Ni content is in the range of 20% to 50% by weight (DR Rancourt, S. Chehab and G. Lamarche, J. Mag. Mag). Mater. 78 (1989) 129). Among these, an alloy of 64% Fe-36% Ni composition, called Invar alloy, has a coefficient of thermal expansion close to zero, and since Guillaume first invented in 1897 (CE Guillaume, CR Acad. Sci. Paris 124 (1897) It is produced as a representative low thermal expansion alloy and has been widely used commercially.
열팽창계수가 작은 재료들의 대표격인 인바 합금(INVAR ALLOY, Fe-36%Ni)은 표준 측정 장치, 내연기관의 피스톤, 바이메탈(Bimetal), 온도제어장치, 액체가스 저장 장치, 집적회로 리드프레임(Lead Frame), TV와 개인용컴퓨터(PC)의 컬러모니터(color monitor)용 음극관(cathode ray tube, CRT)의 필수부품인 섀도우 마스크(Shadow Mask), 전기 전자 소자 등 매우 다양한 분야에서 응용되고 있다. INVAR ALLOY (Fe-36% Ni), which is representative of materials with low coefficient of thermal expansion, is a standard measuring device, piston of internal combustion engine, bimetal, temperature control device, liquid gas storage device, integrated circuit lead frame. ), Shadow mask which is an essential part of cathode ray tube (CRT) for color monitor of TV and personal computer (PC), electric electronic device, etc.
또한, 최근에 많이 개발되고 있는 평면모니터용 FED(field emission display)에서도 인바합금으로 만든 섀도우마스크의 사용이 예상되며, 반도체 집적회로(integrated circuit, IC) 칩(chip)을 지지하는 리드프레임(lead frame)에도 사용될 수 있다고 보여진다. In addition, shadow masks made of Inva alloy are expected to be used in field emission displays (FEDs) for flat panel monitors, which are being developed in recent years, and lead frames supporting semiconductor integrated circuit (IC) chips. frame can also be used.
특히, 합금이 사용되는 환경중 합금의 열팽창계수가 마이너스이면, 즉 합금이 사용되는 환경의 온도가 상승함에 따라 오히려 합금이 수축함을 요구하는 경우가 있다. 이러한 경우 사용온도 구간에서 열팽창계수가 마이너스인 합금을 개발하면 매우 긴요하게 사용될 수 있다. In particular, if the coefficient of thermal expansion of the alloy is negative in the environment in which the alloy is used, that is, the alloy may shrink as the temperature of the environment in which the alloy is used increases. In such a case, if an alloy with a negative thermal expansion coefficient is developed in a temperature range of use, it may be very important.
이와 같이 다양한 분야에 적용되는 Fe-Ni합금 박판을 제조하는 방법은 여러 가지가 있으나 현재에는 냉간압연법이 주로 이용되고 있다. 냉간압연법을 사용하는 경우 진공용해, 단조, 열간압연, 노말라이징, 1차냉간압연, 중간어닐링, 2차냉간압연, 환원분위기에서의 최종어닐링 등의 공정을 거쳐야 하며 두께 0.1mm 이하의 인바합금 박판을 제작하기 위해서는 다단 압연을 시행해야 하기 때문에 (미국등록특허 US patent 494834 참조) 공정이 복잡하고 균질의 제품을 얻기 어려울 뿐만 아니라 제조단가가 높다. 또한, 이러한 공정에 필요한 진공용해로, 단조설비, 열간압연기, 다단압연기등 대규모 설비가 필요한 점 및 최종제품이 요구하는 형상을 만들기 위한 소성가공이 매우 힘들다는 점이 문제가 된다. 뿐만 아니라 공정 중에 개입되는 불순물 및 공정조건의 변화에 열팽창계수가 민감하게 변하는 문제도 있다 (Metals Handbook, 9th ed. Vol. 3, ASM (1980) 889 참조).As described above, there are various methods of manufacturing a Fe-Ni alloy thin plate applied to various fields, but now cold rolling is mainly used. When cold rolling is used, vacuum melting, forging, hot rolling, normalizing, primary cold rolling, intermediate annealing, secondary cold rolling, and final annealing in a reducing atmosphere are required. In order to manufacture a thin plate, multi-stage rolling must be performed (see US Patent 494834), which is not only difficult to obtain a homogeneous product but also a high manufacturing cost. In addition, due to the vacuum melting required for such a process, there is a problem that large-scale equipment such as forging equipment, hot rolling mill, multi-stage rolling mill, etc., and plastic processing to make the shape required for the final product is very difficult. In addition, there is a problem in that the coefficient of thermal expansion is sensitive to changes in impurities and process conditions involved in the process (see Metals Handbook, 9th ed. Vol. 3, ASM (1980) 889).
종래의 제조방법의 이러한 한계를 극복하기 위해 최근, 전기도금(성형)(전주성형)에 의한 Fe-Ni 합금제조에 대한 연구가 많이 이루어지고 있다. 다만, 이러한 전기도금 방법에 의한 인바 합금 제조 방법은 적절한 전해액의 선택 공정온도, 전류밀도 등 공정조건이 까다롭기 때문에 현재까지 적정한 전해액 및 공정조건을 찾아내지 못하고 있다. In order to overcome these limitations of the conventional manufacturing method, a lot of researches have recently been made on the production of Fe-Ni alloys by electroplating (molding) (pole molding). However, the Invar alloy manufacturing method by such an electroplating method is difficult to find the proper electrolyte solution and process conditions until now because of the difficult process conditions, such as the selection process temperature, current density of the appropriate electrolyte solution.
따라서, 재현성 있는 나노 인바 합금 제조를 위한 전해(도금,성형)액과 공정조건을 알아내는 것이 요구되고 있다. 특히, 상업적으로 의미 있기 위해서는 도금하고자 하는 판재의 넓이가 300mm(30cm) 이상이어야 하므로, 이러한 경우에도 적용가능한 전기도금 환경을 찾는 것이 매우 필요하게 되었다. Therefore, it is required to find out the electrolytic (plating, molding) solution and process conditions for producing reproducible nano invar alloy. In particular, in order to be commercially meaningful, since the width of the plate to be plated should be 300 mm (30 cm) or more, it is very necessary to find an applicable electroplating environment even in this case.
본 발명의 목적은 결정립의 크기가 나노사이즈인 나노 인바 합금 박판을 전기도금(전주도금)(electrodeposition) 또는 전주성형(electroforming) 방법을 이용하여 제조할 수 있는 전해(도금, 성형)용액과 공정조건을 제공하고자 함이다.An object of the present invention is an electrolytic (plating, molding) solution and process conditions that can be produced by using the electroplating (electrodeposition) or electroforming method of the nano invar alloy sheet having a nano-sized grain size To provide.
본 발명의 다른 목적은 일정한 온도구간에서 열팽창계수가 마이너스인 Fe-Ni 합금을 제공함에 그 목적이 있다.Another object of the present invention is to provide a Fe-Ni alloy having a negative coefficient of thermal expansion at a constant temperature range.
본 발명의 또 다른 목적은 기계적 성질이 기존 인바합금보다 우수한 Fe-Ni 합금을 제공함에 그 목적이 있다.Another object of the present invention is to provide a Fe-Ni alloy having excellent mechanical properties than the conventional Invar alloy.
본 발명의 또 다른 목적은 전기도금 방법을 사용하여 일정한 온도구간에서 열팽창계수가 마이너스인 Fe-Ni 합금을 제조하는 방법을 제공함에 그 목적이 있다. Another object of the present invention is to provide a method for producing a Fe-Ni alloy having a negative coefficient of thermal expansion in a constant temperature section using an electroplating method.
이러한 목적을 달성하기 위하여 본 발명에서는 물 1L당, 32내지 53g의In order to achieve this purpose, in the present invention, 32 to 53 g of 1 L of water
FeSO4·7H2O(Ferrous Sulfate) 또는, FeCl2·4H2O(Ferrous Chloride) 또는 이들의 혼합물, 97g의 NiSO4·6H2O(Nickel Sulfate) 또는 NiCl2·6H2O(Nickel Chloride) 또는 Ni(NH2SO3)2 (Nickel Sulfamate) 또는 이들의 혼합물, 붕산(H3BO 3, Boric acid) 20∼30g, 사카린(C7H4NO3SNa, Sodium Saccharin) 1∼3g, 나트륨라우릴설페이트(C12H25O4SNa, Sodium Lauryl Sulfate) 0.1 ∼ 0.3g, 염화나트륨(NaCl, Sodium Chloride) 20∼40g을 포함하는 용액을 전해액으로 사용하고, 상기 전해액의 pH는 2∼3 , 전류밀도는 50∼100mA/cm2, 전해액의 온도는 45 ~ 60℃인 상태에서 전기도금방식으로 Ni wt%가 33 ~ 38%인 FeNi 합금을 제조한다.FeSO 4 · 7H 2 O (Ferrous Sulfate) or FeCl 2 · 4H 2 O (Ferrous Chloride) or mixtures thereof, 97 g of NiSO 4 · 6H 2 O (Nickel Sulfate) or NiCl 2 · 6H 2 O (Nickel Chloride) Or Ni (NH 2 SO 3 ) 2 (Nickel Sulfamate) or a mixture thereof, 20-30 g of boric acid (H 3 BO 3 , Boric acid), 1-3 g of saccharin (C 7 H 4 NO 3 SNa, Sodium Saccharin), sodium A solution containing 0.1 to 0.3 g of lauryl sulfate (C 12 H 25 O 4 SNa, Sodium Lauryl Sulfate) and 20 to 40 g of sodium chloride (NaCl, Sodium Chloride) is used as an electrolyte, and the pH of the electrolyte is 2-3. In the state of the current density is 50 ~ 100mA / cm 2 , the temperature of the electrolyte solution 45 ~ 60 ℃ by electroplating method to produce a FeNi alloy with Ni wt% 33 ~ 38%.
이하 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명에서 나노인바 합금 박판을 제작하기 위해 사용한 전기도금(성형)장치의 개략도이다. 도 1에서, 전해조(9)에 본 발명에서 사용한 전해액(3)을 넣고 간격거리가 10 mm인 음극(1)과 양극(2) 사이를 전해액이 0.1∼2.0m/sec의 유속으로 흘러가도록 순환펌프(5)를 작동하면서 전기도금(성형)을 실시하였다. 여기에서 6은 여과기, 7은 노즐, 8은 순환배관을 나타낸다. 두께 20㎛의 Fe-Ni합금이 음극에 있는 판재에 전착하면 전류공급장치(4)를 멈춘 후, 음극표면으로부터 도금(성형)판재를 분리하여 박판을 획득했다. 이 장치에서 양극에 사용되는 판재는 유속에 따라 경사각도(10)를 달리하여 사용한다.1 is a schematic diagram of an electroplating (molding) apparatus used to fabricate a nano invar alloy sheet in the present invention. In Fig. 1, the electrolytic solution 3 used in the present invention is placed in the electrolytic cell 9 and circulated so that the electrolyte flows between the negative electrode 1 and the positive electrode 2 having a distance of 10 mm at a flow rate of 0.1 to 2.0 m / sec. Electroplating (molding) was performed while the pump 5 was operating. 6 is a filter, 7 is a nozzle, and 8 is a circulation pipe. When the Fe-Ni alloy having a thickness of 20 µm was electrodeposited on the sheet material in the cathode, the current supply device 4 was stopped, and then the plated (molded) sheet material was separated from the cathode surface to obtain a thin plate. The plate used for the anode in this device is used by varying the inclination angle (10) according to the flow rate.
본 발명에서 사용된 전해액은 FeSO4·7H2O(Ferrous Sulfate), NiSO4·6H2O(Nickel Sulfate), NiCl2·6H2O(Nickel Chloride), FeCl2·4H2O(Ferrous Chloride)와 Ni(NH2SO3)2(Nickel Sulfamate)을 기본으로 하여 배합한 것으로, 붕산(H3BO3, Boric acid) 20∼30g/l 와, 사카린(C7H4NO3 SNa, Sodium Saccharin) 1∼3g/l 와 나트륨라우릴설페이트(C12H25O4SNa, Sodium Lauryl Sulfate) 0.1 ∼ 0.3g/l 와, 염화나트륨(NaCl, Sodium Chloride) 20∼40g/l 를 함유한 용액이다.The electrolyte used in the present invention is FeSO 4 · 7H 2 O (Ferrous Sulfate), NiSO 4 · 6H 2 O (Nickel Sulfate), NiCl 2 · 6H 2 O (Nickel Chloride), FeCl 2 · 4H 2 O (Ferrous Chloride) And Ni (NH 2 SO 3 ) 2 (Nickel Sulfamate), based on boric acid (H 3 BO 3 , Boric acid) 20-30g / l, and saccharin (C 7 H 4 NO 3 SNa, Sodium Saccharin A solution containing 1 to 3 g / l, sodium lauryl sulfate (C 12 H 25 O 4 SNa, Sodium Lauryl Sulfate) and 0.1 to 0.3 g / l, and sodium chloride (NaCl, Sodium Chloride) 20 to 40 g / l.
이 중에서 붕산(H3BO3, Boric acid)은 22∼25g/l , 사카린(C7H4NO 3SNa, Sodium Saccharin)은 2.0∼2,4g/l 와 나트륨라우릴설페이트(C12H25O4SNa, Sodium Lauryl Sulfate) 0.1 ∼ 0.2g/l 와, 염화나트륨(NaCl, Sodium Chloride) 30∼32g/l 를 함유하였을 때가 바람직한 효과를 나타낸다.Among them, boric acid (H 3 BO 3 , Boric acid) is 22-25g / l, saccharin (C 7 H 4 NO 3 SNa, Sodium Saccharin) is 2.0-2,4g / l and sodium lauryl sulfate (C 12 H 25 A preferable effect is obtained when 0.1 to 0.2 g / l of O 4 SNa, Sodium Lauryl Sulfate) and 30 to 32 g / l of sodium chloride (NaCl, Sodium Chloride) are contained.
붕산은 pH 완충제, 사카린은 도금(성형)재의 응력완화제, 염화나트륨은 전해질의 전도도 향상을 위해, 나트륨라우릴설페이트는 계면활성제 기능을 위해 첨가한다. 전기도금(성형) 중에 전해액의 pH는 2∼3 범위로 유지되며, 전류밀도는 50∼100mA/cm2, 전해액 온도는 45∼60℃에서 시행된다.Boric acid is added as a pH buffer, saccharin is a stress relieving agent for plating (molding) material, sodium chloride is used to improve electrolyte conductivity, and sodium lauryl sulfate is added for surfactant function. During electroplating (molding) the pH of the electrolyte is maintained in the range of 2 to 3, the current density is 50 to 100mA / cm 2 , the temperature of the electrolyte is carried out at 45 ~ 60 ℃.
상기한 철화합물과 니켈화합물은 전해액에서 이온으로 유리된 후, 전기도금(성형)과정에서 음극 판재에 1~200㎛의 두께의 Fe-Ni 합금으로 전착된다.The iron compound and the nickel compound are liberated with ions in the electrolyte, and then electrodeposited with a Fe-Ni alloy having a thickness of 1 to 200 μm on the negative electrode plate during electroplating (molding).
본 발명에 사용된 나노 인바 합금 박판을 전기도금(성형)방법으로 제조하기 위한 전해(도금, 성형)액의 실시예를 <표1∼6>에 나타내었다.Examples of the electrolytic (plating, molding) solution for producing the nano-Inba alloy thin plate used in the present invention by the electroplating (molding) method is shown in Tables 1 to 6.
<증류수 1liter 기준><1 liter of distilled water>
<증류수 1liter 기준><1 liter of distilled water>
<증류수 1liter 기준><1 liter of distilled water>
<증류수 1liter 기준><1 liter of distilled water>
<증류수 1liter 기준><1 liter of distilled water>
<표 1>은 FeSO4·7H2O(Ferrous Sulfate)와 NiSO4·6H2O(Nickel Sulfate)를 도금(성형)액의 주성분으로 사용하였으며, Nickel Sulfate의 양을 97g/l로 일정하게 유지하면서 Ferrous Sulfate의 양을 43∼53g/l 범위에서 변화하여 소망하는 조성의 Fe-Ni합금을 제조한 결과를 (실시예1∼3)에 나타냈다.<Table 1> shows FeSO 4 · 7H 2 O (Ferrous Sulfate) and NiSO 4 · 6H 2 O (Nickel Sulfate) as the main components of the plating (molding) solution, keeping the amount of Nickel Sulfate constant at 97g / l While the amount of Ferrous Sulfate was varied in the range of 43 to 53 g / l, Fe-Ni alloys having a desired composition were shown in (Examples 1 to 3).
<표2>는 FeSO4·7H2O(Ferrous Sulfate)와 NiCl2·6H2O(Nickel Chloride)를 도금(성형)액의 주성분으로 사용하였으며, Nickel Chloride의 양을 97g/l로 일정하게 유지하면서 Ferrous Sulfate의 양을 50g/l 으로 하여 소망하는 조성의 Fe-Ni합금을 제조한 결과를 (실시예4)에 나타냈다.<Table 2> shows FeSO 4 · 7H 2 O (Ferrous Sulfate) and NiCl 2 · 6H 2 O (Nickel Chloride) as the main components of the plating (molding) solution, keeping the amount of Nickel Chloride constant at 97g / l In addition, the result of manufacturing the Fe-Ni alloy of a desired composition by making the amount of Ferrous Sulfate 50g / l is shown in (Example 4).
<표3>은 FeCl2·4H2O(Ferrous Chloride)와 NiSO4·6H2O(Nickel Sulfate)를 도금(성형)액의 주성분으로 사용하였으며, Nickel Sulfate의 양을 97g/l로 일정하게 유지하면서 Ferrous Chloride의 양을 42∼44g/l 범위에서 변화하여 소망하는 조성의 Fe-Ni합금을 제조한 결과를 (실시예5∼6)에 나타냈다.<Table 3> shows FeCl 2 · 4H 2 O (Ferrous Chloride) and NiSO 4 · 6H 2 O (Nickel Sulfate) as the main components of the plating (molding) solution, and the amount of Nickel Sulfate was kept constant at 97 g / l. While the amount of Ferrous Chloride was changed in the range of 42 to 44 g / l, Fe-Ni alloys having the desired compositions were shown in (Examples 5 to 6).
<표4>는 FeCl2·4H2O(Ferrous Chloride)와 NiCl2·6H2O(Nickel Chloride)를 도금(성형)액의 주성분으로 사용하였으며, Nickel Chloride의 양을 97g/l로 일정하게 유지하면서 Ferrous Chloride의양을 44∼50g/l 범위에서 변화하여 소망하는 조성의 Fe-Ni 합금을 제조한 결과를 (실시예7∼9)에 나타냈다.<Table 4> shows FeCl 2 · 4H 2 O (Ferrous Chloride) and NiCl 2 · 6H 2 O (Nickel Chloride) as the main components of the plating (molding) solution, and the amount of Nickel Chloride is kept constant at 97 g / l. While changing the amount of Ferrous Chloride in the range of 44-50 g / l, the result of producing Fe-Ni alloy of a desired composition is shown in (Examples 7-9).
<표5>는 FeSO4·7H2O(Ferrous Sulfate) 와 Ni(NH2SO3) 2(Nickel Sulfamate)를 도금(성형)액의 주성분으로 사용하였으며, Nickel Sulfamate의 양을 97g/l로 일정하게 유지하면서 Ferrous Sulfate의 양을 35∼37g/l 범위에서 변화하여 소망하는 조성의 Fe-Ni 합금을 제조한 결과를 (실시예10∼11)에 나타냈다.<Table 5> shows FeSO 4 · 7H 2 O (Ferrous Sulfate) and Ni (NH 2 SO 3 ) 2 (Nickel Sulfamate) as the main components of the plating (molding) solution, and the amount of Nickel Sulfamate was constant at 97g / l. The results of preparing the Fe-Ni alloy of the desired composition by varying the amount of Ferrous Sulfate in the range of 35 to 37 g / l while maintaining it were shown in (Examples 10 to 11).
<표6>은 FeCl2·4H2O(Ferrous Chloride) 와 Ni(NH2SO3) 2(Nickel Sulfamate)를 도금(성형)액의 주성분으로 사용였으며, Nickel Sulfamate의 양을 97g/l로 일정하게 유지하면서 Ferrous Chloride의 양을 32∼34g/l 범위에서 변화하여 소망하는 조성의 Fe-Ni 합금을 제조한 결과를 (실시예12∼13)에 나타냈다.<Table 6> shows the use of FeCl 2 · 4H 2 O (Ferrous Chloride) and Ni (NH 2 SO 3 ) 2 (Nickel Sulfamate) as the main components of the plating (molding) solution, and the amount of Nickel Sulfamate was constant at 97g / l. The results of preparing the Fe-Ni alloy having the desired composition by varying the amount of Ferrous Chloride in the range of 32 to 34 g / l while maintaining it were shown in (Examples 12 to 13).
이와 같은 조성의 전해액을 사용하여 전기도금방법으로 제조된 Fe-Ni 합금은 위 <표 1> 내지<표 6>에서 사용된 전해액의 종류에 관계없이 아래의 <표 8>과 같은 특성을 나타낸다. 아래의 <표 7>에 나타난 상용 인바 합금의 물성 중 중요한 몇 가지 사항을 본 발명에 따라 제조된 나노 인바 합금의 물성과 비교하여 보면(비교한 표는 <표 9>에 나타남) 본 발명에 따라 제조된 나노 인바 합금이 상용 인바 합금보다 우수한 재료특성을 나타냄을 알 수 있다.The Fe-Ni alloy prepared by the electroplating method using the electrolytic solution having such a composition exhibits the characteristics as shown in Table 8 below regardless of the type of the electrolytic solution used in Tables 1 to 6. Some of the important properties of the commercially available Invar alloys shown in Table 7 below are compared with those of the nano Invar alloys prepared according to the present invention (comparative tables are shown in Table 9). It can be seen that the manufactured nano inva alloy exhibits superior material properties than the commercial inva alloy.
즉, 본 발명에 따라 제조된 나노 인바 합금의 경우, 경도(Hardness), 인장강도(Tensile strength), 항복강도(Yield strength)에서 상용인바 합금보다 2배 이상의 값을 가진다. 따라서, 항복강도의 경우 본 발명에 따라 제조된 나노인바 합금의 경우 805 MPa로 기존의 상용인바 합금의 항복강도 275~415 MPa보다 훨씬 크기 때문에 본 발명에 의한 나노인바 합금은 고강도를 요구하는 분야에 적용할 수 있다. That is, in the case of the nano invar alloy prepared according to the present invention, the hardness (Hardness), tensile strength (Tensile strength), yield strength (Yield strength) has a value of more than twice than that of the commercially available bar alloy. Therefore, in the case of yield strength, the nano invar alloy manufactured according to the present invention is 805 MPa, which is much larger than the yield strength of the conventional commercial bar alloy, 275 to 415 MPa. Applicable
<표 10>은 상용 인바 합금의 온도구간에 따른 평균 열팽창계수를 나타내는 표이다. <표 10>에 나타나 있는 바와 같이 상용 인바 합금은 17 ~ 100℃ 범위에서 평균 열팽창계수가 1.66㎛/m·K 정도의 값을 가지며 온도가 상승함에 따라 열팽창계수가 증가함을 알 수 있다. 그러나 본 발명에 따라 제조된 나노 인바 합금(Fe - 36wt%Ni)의 경우에는 열팽창계수가 20 ~ 100℃영역에서는 1.58 ㎛/m·K 의 값을 나타내다가 140 ~ 150℃ 부근에서 열팽창계수가 0이 된 후, 150℃이상으로 온도가 높아지면 열팽창계수가 음의 값을 갖게 되어, 20 ~ 200℃영역에서의 평균값은 -1.78㎛/m·K 의 값을 갖는다. 이러한 열팽창거동은 본 발명에 따라 제조된 나노 인바 합금의 Ni 함량이 33 ~ 38 wt%인 경우에 공통적으로 나타나는 특징이다.<Table 10> is a table showing the average coefficient of thermal expansion according to the temperature section of the commercial Invar alloy. As shown in Table 10, the commercial Invar alloy has an average thermal expansion coefficient of about 1.66 µm / m · K in the range of 17 to 100 ° C. and the thermal expansion coefficient increases as the temperature increases. However, in the case of the nano invar alloy (Fe-36wt% Ni) prepared according to the present invention, the coefficient of thermal expansion shows a value of 1.58 μm / m · K in the range of 20 to 100 ° C., but the coefficient of thermal expansion is around 140 to 150 ° C. After this, if the temperature is increased to 150 ° C. or higher, the coefficient of thermal expansion has a negative value, and the average value in the 20 to 200 ° C. region has a value of −1.78 μm / m · K. This thermal expansion behavior is a feature commonly seen when the Ni content of the nano Invar alloy prepared according to the present invention is 33 to 38 wt%.
도 2는 본 발명에 따라 제조된 나노 인바 합금의 조성비에 따른 열팽창계수의 변화를 나타내는 도면으로, 위에 언급한 사실을 나타내 주고 있다. 도면에 나타나 있는 바와 같이 Ni wt%가 33%, 38%이 경우 모두 각각 일정온도 이상에서 열팽차계수가 음의 값을 나타내고 있다. 따라서, 본 발명에 따라 제조된 나노 인바 합금은 일정 온도 이상에서 열팽창계수가 0 또는 음의 값을 가지므로, 이러한 특성이 필요한 새로운 용도에 적용이 가능하다. Figure 2 is a view showing the change in the coefficient of thermal expansion according to the composition ratio of the nano invar alloy prepared according to the present invention, it shows the fact mentioned above. As shown in the figure, in the case of Ni wt% of 33% and 38%, the coefficient of thermal difference was negative at all temperatures above a certain temperature. Therefore, the nano invar alloy prepared according to the present invention has a thermal expansion coefficient of 0 or a negative value at a predetermined temperature or more, and thus can be applied to new applications requiring such characteristics.
도 3은 상용 인바 합금을 어닐링 한 후의 집합조직의 {111}극점도이며, 도 4 (a)는 본 발명에 따라 제조된 나노 인바 합금의 집합조직의 {100} 극점도이고, 도 4 (b)는 본 발명에 따라 제조된 나노 인바 합금을 어닐링 한 후의 집합조직의 {111} 극점도이다. FIG. 3 is a {111} pole figure of the aggregate structure after annealing a commercially available Invar alloy, FIG. 4 (a) is a {100} pole figure of the aggregate structure of a nano invar alloy prepared according to the present invention, and FIG. ) Is the {111} pole figure of the texture after annealing the nano invar alloy prepared according to the present invention.
위의 도면들로부터, 상용 인바 합금을 어닐링하면 {001}<100>의 방위가 주요방위로 발달하는 반면, 나노 인바 합금의 경우에는 도금된 상태에서는 {100}//ND 파이버(fiber)가 지배적이며, 어닐링 처리하면 {111}//ND 파이버(fiber) 집합조직이 강하게 발달함을 알 수 있다.From the above figures, the annealing of commercially available Invar alloy develops the orientation of {001} <100> as the main orientation, whereas in the case of Nano Invar alloy, {100} // ND fiber dominates in the plated state. It can be seen that when the annealing treatment, the {111} // ND fiber aggregate structure is strongly developed.
본 발명에 의한 Fe-Ni 합금을 X-ray 회절을 이용하여 결정립의 크기분포를 계산하면 5 ~ 15nm 임을 알 수 있었다. 특히, Niwt%가 36%인 인바합금 조성에서는 결정립의 크기가 5 ∼ 7(경우에 따라 10)nm 정도로 가장 작게 분포하는 것으로 나타났다. 이러한 나노결정구조가 본 발명에 따른 나노인바 합금이 높은 항복강도를 갖는 이유를 설명하는 것으로 보여진다. The Fe-Ni alloy according to the present invention was found to be 5 ~ 15nm by calculating the size distribution of the crystal grains using X-ray diffraction. Particularly, in the invar alloy composition having a Niwt% of 36%, the grain size was found to be smallest in the range of 5 to 7 nm (10) nm in some cases. This nanocrystal structure seems to explain why the nano invar alloy according to the present invention has a high yield strength.
나노 인바 합금을 본 발명에 따른 단일 공정인 전기도금방법으로 제조하면, 상용 인바 합금보다 기계적 성질이 우수하며, 양호한 저열팽창특성을 가지며, 제조단가도 크게 저하시킬 수 있다. 특히, 일정한 온도이상에서는 열팽창계수가 음의 값을 가지므로 나노 인바 합금의 산업적 이용의 범위를 새롭게 창출할 수 있다.When the nano invar alloy is manufactured by the electroplating method, which is a single process according to the present invention, mechanical properties are superior to those of commercial invar alloys, and have good low thermal expansion properties and manufacturing costs may be greatly reduced. In particular, since the coefficient of thermal expansion has a negative value above a certain temperature, it is possible to create a new range of industrial use of the nano invar alloy.
도 1은 본 발명에서 나노 인바 합금 박판을 제조하기 위해 사용한 전기도금(성형)장치의 개략도.1 is a schematic view of an electroplating (molding) apparatus used to manufacture nano invar alloy sheet in the present invention.
도 2은 본 발명에 따라 제조된 나노 인바 합금의 조성비에 따른 열팽창계수의 변화를 나타내는 도면. 2 is a view showing a change in the coefficient of thermal expansion according to the composition ratio of the nano Invar alloy prepared according to the present invention.
도 3은 상용 인바 합금을 어닐링 한 후의 집합조직의 {111}극점도Fig. 3 is a {111} pole figure of the texture after annealing a commercially available Invar alloy.
도 4 (a)는 본 발명에 따라 제조된 나노 인바 합금의 집합조직의 {100} 극점도Figure 4 (a) is a {100} pole figure of the texture of the nano Invar alloy prepared according to the present invention
도 4 (b)는 본 발명에 따라 제조된 나노 인바 합금을 어닐링 한 후의 집합조직의 {111} 극점도Figure 4 (b) is a {111} pole figure of the texture after annealing the nano invar alloy prepared according to the present invention
Claims (18)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2003-0026108A KR100505002B1 (en) | 2003-04-24 | 2003-04-24 | Nani invar alloyes and the process of producing the same |
PCT/KR2004/000516 WO2004094699A1 (en) | 2003-04-24 | 2004-03-12 | Nano invar alloys and a process of producing the same |
JP2006507753A JP2006524292A (en) | 2003-04-24 | 2004-03-12 | Nanoinvar alloy and method for producing the same |
US11/254,821 US20060037671A1 (en) | 2003-04-24 | 2005-10-21 | Nano invar alloys and process for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2003-0026108A KR100505002B1 (en) | 2003-04-24 | 2003-04-24 | Nani invar alloyes and the process of producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20040092613A KR20040092613A (en) | 2004-11-04 |
KR100505002B1 true KR100505002B1 (en) | 2005-08-01 |
Family
ID=33308297
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2003-0026108A KR100505002B1 (en) | 2003-04-24 | 2003-04-24 | Nani invar alloyes and the process of producing the same |
Country Status (4)
Country | Link |
---|---|
US (1) | US20060037671A1 (en) |
JP (1) | JP2006524292A (en) |
KR (1) | KR100505002B1 (en) |
WO (1) | WO2004094699A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102424994A (en) * | 2011-12-17 | 2012-04-25 | 张家港舒马克电梯安装维修服务有限公司镀锌分公司 | Ferronickel alloy electroplating liquid |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7387578B2 (en) * | 2004-12-17 | 2008-06-17 | Integran Technologies Inc. | Strong, lightweight article containing a fine-grained metallic layer |
US7320832B2 (en) | 2004-12-17 | 2008-01-22 | Integran Technologies Inc. | Fine-grained metallic coatings having the coefficient of thermal expansion matched to the one of the substrate |
CN102995083B (en) * | 2012-12-07 | 2016-06-15 | 北京大学 | A kind of method adopting plating to prepare soft magnetic materials iron-nickel alloy array |
JP6296491B2 (en) * | 2013-03-14 | 2018-03-20 | セイコーインスツル株式会社 | Metal structure, method for manufacturing metal structure, spring component, start / stop lever for watch, and watch |
JP6084899B2 (en) * | 2013-06-07 | 2017-02-22 | 株式会社Jcu | Electroplating bath for iron-nickel alloy having low thermal expansion coefficient and high hardness, and electroplating method using the same |
KR101420755B1 (en) * | 2013-12-02 | 2014-07-17 | 주식회사 나노인바 | Iron-nickel-ternary ternary alloy having low thermal expansion characteristics and method for manufacturing the same |
KR101665802B1 (en) | 2014-12-23 | 2016-10-13 | 주식회사 포스코 | Fe-Ni ALLOY METAL FOIL HAVING EXCELLENT HEAT RESILIENCE AND METHOD FOR MANUFACTURING THE SAME |
WO2016105009A1 (en) * | 2014-12-24 | 2016-06-30 | 주식회사 포스코 | High-rigidity metal foil and method for manufacturing same |
WO2017057621A1 (en) * | 2015-09-30 | 2017-04-06 | 大日本印刷株式会社 | Deposition mask, method for manufacturing deposition mask, and metal plate |
US10541387B2 (en) * | 2015-09-30 | 2020-01-21 | Dai Nippon Printing Co., Ltd. | Deposition mask, method of manufacturing deposition mask and metal plate |
JP2019044231A (en) * | 2017-09-01 | 2019-03-22 | 株式会社Jcu | Electroplating solution for iron-nickel alloy including low thermal expansion coefficient and electroplating method using the same |
CN108468072B (en) * | 2018-03-13 | 2020-05-05 | 阿德文泰克全球有限公司 | Iron-nickel alloy shadow mask and preparation method thereof |
CN112499640B (en) * | 2020-08-05 | 2021-12-17 | 北京航空航天大学 | Preparation of material with giant thermal hysteresis negative thermal expansion property and application of material in field of embedded pipe joint |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4014759A (en) * | 1975-07-09 | 1977-03-29 | M & T Chemicals Inc. | Electroplating iron alloys containing nickel, cobalt or nickel and cobalt |
US4231847A (en) * | 1978-06-21 | 1980-11-04 | Trw Inc. | Electrodeposition of nickel-iron alloys having a low temperature coefficient and articles made therefrom |
JPS61190091A (en) * | 1985-02-18 | 1986-08-23 | Tdk Corp | Method and device for magnetic alloy plating |
US4948434A (en) * | 1988-04-01 | 1990-08-14 | Nkk Corporation | Method for manufacturing Ni-Fe alloy sheet having excellent DC magnetic property and excellent AC magnetic property |
KR19990064747A (en) * | 1999-05-06 | 1999-08-05 | 이종구 | Manufacturing method of Ni-Fe alloy thin plate and its apparatus |
KR100394741B1 (en) * | 2001-04-11 | 2003-08-14 | 연합철강공업 주식회사 | Electrolytes for Fe-Ni alloy electroforming |
-
2003
- 2003-04-24 KR KR10-2003-0026108A patent/KR100505002B1/en not_active IP Right Cessation
-
2004
- 2004-03-12 JP JP2006507753A patent/JP2006524292A/en active Pending
- 2004-03-12 WO PCT/KR2004/000516 patent/WO2004094699A1/en active Application Filing
-
2005
- 2005-10-21 US US11/254,821 patent/US20060037671A1/en not_active Abandoned
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102424994A (en) * | 2011-12-17 | 2012-04-25 | 张家港舒马克电梯安装维修服务有限公司镀锌分公司 | Ferronickel alloy electroplating liquid |
Also Published As
Publication number | Publication date |
---|---|
US20060037671A1 (en) | 2006-02-23 |
WO2004094699A1 (en) | 2004-11-04 |
JP2006524292A (en) | 2006-10-26 |
KR20040092613A (en) | 2004-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100505002B1 (en) | Nani invar alloyes and the process of producing the same | |
KR101819367B1 (en) | Fe-Ni ALLOY FOIL AND METHOD FOR MANUFACTURING THEREOF | |
EP2554693B1 (en) | Ni-si-co copper alloy for electronic material and process for producing same | |
EP3239363B1 (en) | Fe-ni alloy metal foil having excellent heat resilience and method for manufacturing same | |
EP1873267B1 (en) | Copper alloy for electronic material | |
EP2692879A1 (en) | Cu-co-si-based copper alloy strip for electron material, and method for manufacturing same | |
EP2692878A1 (en) | Cu-si-co-base copper alloy for electronic materials and method for producing same | |
KR101758510B1 (en) | Fe-Ni ALLOY METAL FOIL HAVING EXCELLENT FLEXIBILITY AND STRENGTH | |
KR100505004B1 (en) | ELECTROLYTE FOR NANOCRYSTALLINE Fe-Ni ALLOYS WITH LOW THERMAL EXPANSION | |
CN109763019A (en) | A kind of high-strength high-elasticity Manic and preparation method thereof | |
CN109136987A (en) | A kind of gradient nano twin copper block materials and its temperature control preparation method | |
CN109763008A (en) | A kind of high strength and high flexibility copper alloy containing niobium and preparation method thereof | |
KR102065216B1 (en) | Fe-Ni ALLOY FOIL WITH EXCELLENT FLEXIBILITY RESISTANCE | |
KR100931739B1 (en) | Invar alloy and its manufacturing method | |
KR101665617B1 (en) | Electroplating composition of low thermal expansion iron-nickel-cobalt ternary alloy and electroplated low-thermal expansion iron-nickel-cobalt ternary alloy using the same | |
KR102043503B1 (en) | Method for preparing electroformed fe-ni alloy foil and plating solution for preparing the electroformed fe-ni alloy foil | |
EP0530440A1 (en) | Copper oxide whiskers and process for producing the same | |
KR101420755B1 (en) | Iron-nickel-ternary ternary alloy having low thermal expansion characteristics and method for manufacturing the same | |
KR20160077465A (en) | Fe-Ni ALLOY HAVING EXCELLENT CURL PREVENTING PROPERTY AND METHOD FOR MANUFACTURING THE SAME | |
KR20190073733A (en) | A method for preparing electroformed fe-ni alloy foil and a plating solution for preparing electroformed fe-ni alloy foil | |
KR20200058759A (en) | Electrolytic invar foil with superior thermal expansion property and manufacturing method thereof | |
KR20190074134A (en) | Electrolytes for fe-ni alloy foil, and fe-ni alloy foil prepared therefrom | |
JPH11293408A (en) | Iron-nickel series alloy thin sheet for electronic parts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
N231 | Notification of change of applicant | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
O035 | Opposition [patent]: request for opposition | ||
O074 | Maintenance of registration after opposition [patent]: final registration of opposition | ||
O132 | Decision on opposition [patent] | ||
FPAY | Annual fee payment |
Payment date: 20120720 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20130719 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20140721 Year of fee payment: 10 |
|
LAPS | Lapse due to unpaid annual fee |