JP2006524292A - Nanoinvar alloy and method for producing the same - Google Patents

Nanoinvar alloy and method for producing the same Download PDF

Info

Publication number
JP2006524292A
JP2006524292A JP2006507753A JP2006507753A JP2006524292A JP 2006524292 A JP2006524292 A JP 2006524292A JP 2006507753 A JP2006507753 A JP 2006507753A JP 2006507753 A JP2006507753 A JP 2006507753A JP 2006524292 A JP2006524292 A JP 2006524292A
Authority
JP
Japan
Prior art keywords
sodium
sna
chloride
alloy
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006507753A
Other languages
Japanese (ja)
Inventor
パク、ヨン−ボム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nano Invar Co Ltd
Original Assignee
Nano Invar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nano Invar Co Ltd filed Critical Nano Invar Co Ltd
Publication of JP2006524292A publication Critical patent/JP2006524292A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/06Electrolytic production, recovery or refining of metals by electrolysis of solutions or iron group metals, refractory metals or manganese
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/562Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

本発明は、電気メッキ法を用いて、Ni含量が33〜42wt%の範囲である新規なFe−Ni合金、具体的には、結晶粒サイズが5〜15nmであるナノ結晶質構造を有するナノインバー合金を製造するための電解液とその製造条件とに関する。電解液は、水1L当たり、32〜53gの硫酸鉄(FeSO・7HO)、塩化第一鉄(FeCl・4HO)若しくはこれらの混合物と、97gの硫酸ニッケル(NiSO・6HO)、塩化ニッケル(NiCl・6HO)、スルファミン酸ニッケル(Ni(NHSO)若しくはこれらの混合物と、20〜30gのホウ酸(HBO)と、1〜3gのサッカリンナトリウム(CNOSNa)と、0.1〜0.3gのラウリル硫酸ナトリウム(C1225SNa)と、20〜40gの塩化ナトリウム(NaCl)と、を含む。本発明のインバー合金薄板は、従来のFi−Ni合金よりも優れた機械的性質を示し、かつ例えば一定の温度範囲では熱膨張係数が負の値を有するなどの新しい物性をも示す。The present invention relates to a novel Fe—Ni alloy having a Ni content in the range of 33 to 42 wt%, specifically a nano-invar having a nanocrystalline structure with a crystal grain size of 5 to 15 nm, using an electroplating method. The present invention relates to an electrolytic solution for producing an alloy and production conditions thereof. The electrolytic solution is 32 to 53 g of iron sulfate (FeSO 4 .7H 2 O), ferrous chloride (FeCl 2 .4H 2 O) or a mixture thereof and 97 g of nickel sulfate (NiSO 4 .6H) per liter of water. 2 O), nickel chloride (NiCl 2 .6H 2 O), nickel sulfamate (Ni (NH 2 SO 3 ) 2 ) or a mixture thereof, 20 to 30 g of boric acid (H 3 BO 3 ), 1 to 3 g sodium saccharin (C 7 H 4 NO 3 SNa), 0.1 to 0.3 g sodium lauryl sulfate (C 12 H 25 O 4 SNa), and 20 to 40 g sodium chloride (NaCl). The invar alloy sheet of the present invention exhibits mechanical properties superior to those of conventional Fi-Ni alloys, and also exhibits new physical properties such as a negative coefficient of thermal expansion in a certain temperature range.

Description

本発明は、電気メッキ法を用いて、Ni含量が33〜42wt%の範囲である新規なFe−Ni合金、具体的には、結晶粒サイズが5〜15nmであるナノ結晶質構造を有するナノインバー合金、を製造するための電解液とその製造条件とに関する。   The present invention relates to a novel Fe—Ni alloy having a Ni content in the range of 33 to 42 wt%, specifically a nano-invar having a nanocrystalline structure with a crystal grain size of 5 to 15 nm, using an electroplating method. The present invention relates to an electrolytic solution for producing an alloy and production conditions thereof.

Fe−Ni合金は、Ni含量により多様な物性を示し、低い熱膨張特性は、Niの含量が重量比で20%〜50%の範囲のときに示される(D.R.Rancourt、S.Chehab及びG.Lamarche、J.Mag.Mag.Mater.78(1989)129を参照)。このうち、インバー合金(invar alloy)と称される64%のFeと36%のNiとからなる合金は、熱膨張係数がほぼ0である。Guillaumeが1897年に最初に発明して以来(C.E.Guillaume、C.R.Acad.Sci.Paris、124(1897)176を参照)、該インバー合金は代表的な低熱膨張合金として種々の実用的な用途において商業的に使用されている。   Fe-Ni alloys exhibit various physical properties depending on the Ni content, and low thermal expansion characteristics are exhibited when the Ni content is in the range of 20% to 50% by weight (DR Rancourt, S. Chehab. And G. Lamarche, J. Mag. Mag. Mater. 78 (1989) 129). Among these, an alloy composed of 64% Fe and 36% Ni, called an invar alloy, has a coefficient of thermal expansion of almost zero. Since Guillaume first invented in 1897 (see CE Guillaume, CR Acad. Sci. Paris, 124 (1897) 176), the Invar alloy has been identified as a typical low thermal expansion alloy. Used commercially in practical applications.

熱膨張係数が小さい代表的なインバー合金(Fe−36%Ni)は、標準測定装置、内燃機関のピストン、バイメタル(bimetal)、温度制御装置、液体ガス貯蔵装置、集積回路リードフレーム、TV及びパソコン(PC)のカラーモニタ用陰極線管(CRT)の必須部品であるシャドーマスク、その他の電子素子など、非常に多様な用途にて使用されている。   Typical invar alloys (Fe-36% Ni) with low thermal expansion coefficients are standard measuring equipment, pistons for internal combustion engines, bimetal, temperature control equipment, liquid gas storage equipment, integrated circuit lead frames, TVs and personal computers. It is used in a wide variety of applications, such as shadow masks and other electronic devices, which are essential components of cathode ray tubes (CRT) for color monitors of (PC).

また、近年、多く開発されている平面モニタ用電界放出ディスプレイ(FED)のみならず、半導体集積回路(IC)チップを支持するリードフレームにおいても、インバー合金から形成されたシャドーマスクが使用可能であると考えられている。   In addition, a shadow mask formed of an invar alloy can be used not only in a field emission display (FED) for flat monitors that has been developed in recent years but also in a lead frame that supports a semiconductor integrated circuit (IC) chip. It is believed that.

合金が使用される環境の温度が上昇するにしたがって、むしろ合金が収縮可能であることを必要とする場合がある。このような場合、使用温度範囲で熱膨張係数がマイナスである合金の開発が非常に必要とされている。   As the temperature of the environment in which the alloy is used increases, it may rather require that the alloy be shrinkable. In such a case, there is a great need for the development of an alloy having a negative thermal expansion coefficient in the operating temperature range.

Fe−Ni合金薄板を製造する方法は多様ではあるが、現在では、冷間圧延法が主として用いられている。冷間圧延法を使用する場合、真空溶融、鍛造(forging)、熱間圧延、焼きならし(normalizing)、1次冷間圧延、中間アニーリング、2次冷間圧延、還元雰囲気での最終アニーリングなどの工程を実施しなければならない。厚さ0.1mm以下のインバー合金薄板を製作するためには、多段階圧延工程を行う必要があるが(米国特許第494834号明細書を参照)、工程が複雑で均質な製品を得難い。また、この工程は製造コストが高い。更に、このような工程に必要な真空溶解炉、鍛造設備、熱間圧延機、多段階圧延機等の大規模な設備が必要であること、及び、最終製品が要求する形状を作るための熱的工程を実施することが非常に難しいこと、のような種々の問題がある。さらに、工程中に介入される不純物及び工程条件の変化に対して熱膨張係数が敏感に変わるという問題もある(Metals Handbook、第9版、第3巻、ASM(1980)889を参照)。   Although there are various methods for producing the Fe—Ni alloy sheet, the cold rolling method is mainly used at present. When using the cold rolling method, vacuum melting, forging, hot rolling, normalizing, primary cold rolling, intermediate annealing, secondary cold rolling, final annealing in a reducing atmosphere, etc. This process must be carried out. In order to produce an Invar alloy sheet having a thickness of 0.1 mm or less, it is necessary to perform a multi-stage rolling process (see US Pat. No. 4,948,34), but it is difficult to obtain a product with a complicated process and a uniform quality. In addition, this process is expensive to manufacture. Furthermore, large-scale equipment such as a vacuum melting furnace, forging equipment, hot rolling mill, multi-stage rolling mill, etc. necessary for such a process is necessary, and heat for making the shape required by the final product. There are various problems such as being very difficult to carry out the process. In addition, there is a problem that the coefficient of thermal expansion changes sensitively to impurities and process conditions intervening during the process (see Metals Handbook, 9th edition, volume 3, ASM (1980) 889).

従来の製造方法のこのような限界を克服するために、近年になり、電気メッキ法(電鋳法)によるFe−Ni合金の製造法に関する研究が盛んに行われている。しかしながら、このような電気メッキ方法によるインバー合金製造方法は、適切な電解液を選択すること、温度及び電流密度などのような適切な工程条件を確立することが極めて厳しいので、現在までに所望のFe−Ni合金を製造するための電気メッキ法の使用が成功を収めてはいない。   In recent years, in order to overcome such limitations of the conventional manufacturing method, research on a method for manufacturing an Fe—Ni alloy by an electroplating method (electroforming method) has been actively conducted. However, invar alloy manufacturing methods using such electroplating methods are extremely difficult to select appropriate electrolytes and establish appropriate process conditions such as temperature and current density. The use of electroplating methods to produce Fe-Ni alloys has not been successful.

従って、ナノインバー合金製造のための適切な電解液と工程条件を提供するという要求が高まっている。特に、商業的な用途に対しては、メッキしようとする板材の幅が少なくとも300mm(30cm)でなければならないので、このような条件下において電気メッキを行うための適切な条件を見出すことが非常に必要となっている。   Accordingly, there is a growing demand to provide suitable electrolytes and process conditions for nanoinvar alloy production. In particular, for commercial applications, the width of the plate to be plated must be at least 300 mm (30 cm), so finding the appropriate conditions for electroplating under such conditions is highly desirable. Is needed.

本発明の目的は、結晶粒のサイズがナノサイズのナノインバー合金薄板を電気メッキ法、又は電鋳法を用いて製造するための電解液とその工程条件とを提供することにある。
本発明の他の目的は、一定の温度範囲で熱膨張係数がマイナスであるFe−Ni合金を提供することにある。
An object of the present invention is to provide an electrolytic solution for producing a nano-invar alloy thin plate having a crystal grain size of nano-size by using an electroplating method or an electroforming method, and its process conditions.
Another object of the present invention is to provide an Fe—Ni alloy having a negative coefficient of thermal expansion in a certain temperature range.

本発明の更に他の目的は、機械的特性が既知のインバー合金よりも優れているFe−Ni合金を提供することにある。
本発明のまた更に他の目的は、一定の温度範囲で熱膨張係数がマイナスであるFe−Ni合金を製造する方法を提供することにある。
Still another object of the present invention is to provide an Fe—Ni alloy that has superior mechanical properties over known Invar alloys.
Still another object of the present invention is to provide a method for producing an Fe—Ni alloy having a negative thermal expansion coefficient in a certain temperature range.

本発明に従って、水1L当たり、32〜53gの硫酸鉄(FeSO・7HO)、塩化第一鉄(FeCl・4HO)若しくはこれらの混合物、97gの硫酸ニッケル(NiSO・6HO)、塩化ニッケル(NiCl・6HO)、スルファミン酸ニッケル(Ni(NHSO)若しくはこれらの混合物、20〜30gのホウ酸(HBO)、1〜3gのサッカリンナトリウム(CNOSNa)、0.1〜0.3gのラウリル硫酸ナトリウム(C1225SNa)及び20〜40gの塩化ナトリウム(NaCl)を含む溶液を電解液として使用し、上記電解液のpHは2〜3の範囲であり、電流密度は50〜100mA/cmであり、かつ電解液の温度は45〜60℃の範囲である条件下にて、電気メッキ法により製造される33〜38wt%のNiを含有するFe−Ni合金を提供する。 According to the present invention, 32-53 g of iron sulfate (FeSO 4 .7H 2 O), ferrous chloride (FeCl 2 .4H 2 O) or a mixture thereof, 97 g of nickel sulfate (NiSO 4 .6H 2 ) per liter of water. O), nickel chloride (NiCl 2 · 6H 2 O), nickel sulfamate (Ni (NH 2 SO 3 ) 2 ) or a mixture thereof, 20 to 30 g boric acid (H 3 BO 3 ), 1 to 3 g saccharin sodium A solution containing (C 7 H 4 NO 3 SNa), 0.1-0.3 g sodium lauryl sulfate (C 12 H 25 O 4 SNa) and 20-40 g sodium chloride (NaCl) as the electrolyte, the pH of the electrolytic solution is in the range of 2-3, the current density is 50~100mA / cm 2, and the temperature of the electrolyte in the range of 45 to 60 ° C. That under the conditions, to provide a Fe-Ni alloy containing 33~38Wt% of Ni produced by electroplating.

本発明に従って、低い熱膨張特性を有するFe−Ni合金が単一工程である電気メッキ法により製造されるので、製造コストを大幅に低減することができる。特に、本発明に従うFe−Ni合金はナノ結晶構造を有するので、優れた機械的特性を有し、産業的利用の範囲を新たに創出することができる。   According to the present invention, since the Fe—Ni alloy having low thermal expansion characteristics is manufactured by the electroplating method which is a single process, the manufacturing cost can be greatly reduced. In particular, since the Fe—Ni alloy according to the present invention has a nanocrystal structure, it has excellent mechanical properties and can newly create a range of industrial use.

以下、本発明の好適な実施形態を添付図面を参照して以下に詳しく説明する。
図1は、本発明に従うナノインバー合金薄板を形成するための電気メッキ装置の概略図である。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a schematic view of an electroplating apparatus for forming a nano-invar alloy sheet according to the present invention.

図1において、電解槽9に、本発明に従う電解液3を入れ、間隔の距離が10mmである陰極1と陽極2との間を電解液3が0.1〜2.0m/秒の流速で流れ込むように循環ポンプ5を作動しながら、電気メッキを行った。ここで、符号6はろ過器、7はノズル、8は循環配管を示す。厚さ20μmのFe−Ni合金が陰極にある板材に電着すると、電流供給装置4を止め、陰極表面からメッキされた板材を分離して薄板を得た。本発明の一態様に従って陽極に使用される板材の傾斜角度10は、流速に依存する。   In FIG. 1, an electrolytic solution 3 according to the present invention is placed in an electrolytic cell 9, and the electrolytic solution 3 is at a flow rate of 0.1 to 2.0 m / sec between a cathode 1 and an anode 2 whose distance is 10 mm. Electroplating was performed while operating the circulation pump 5 to flow. Here, the code | symbol 6 shows a filter, 7 shows a nozzle, 8 shows circulation piping. When a 20 μm thick Fe—Ni alloy was electrodeposited onto the plate material on the cathode, the current supply device 4 was stopped and the plated plate material was separated from the cathode surface to obtain a thin plate. The inclination angle 10 of the plate used for the anode according to one aspect of the present invention depends on the flow rate.

本発明で提案された電解液は、硫酸鉄(FeSO・7HO)又は塩化第一鉄(FeCl・4HO)と、硫酸ニッケル(NiSO・6HO)、塩化ニッケル(NiCl・6HO)又はスルファミン酸ニッケル(Ni(NHSO)と、ホウ酸(HBO)20〜30g/lと、サッカリンナトリウム(CNOSNa)1〜3g/lと、ラウリル硫酸ナトリウム(C1225SNa)0.1〜0.3g/lと、塩化ナトリウム(NaCl)20〜40g/lとを含む組成物を有する溶液である。ホウ酸(HBO)は22〜25g/lを、サッカリンナトリウム(CNOSNa)は2.0〜2.4g/lを、ラウリル硫酸ナトリウム(C1225SNa)は0.1〜0.2g/lを、塩化ナトリウム(NaCl)は30〜32g/lを含有したとき、電解液はより望ましい効果を奏する。ホウ酸はpH緩衝剤として、サッカリンナトリウムはメッキされた製品の応力緩和剤として、塩化ナトリウムは電解液の伝導度の向上のために、また、ラウリル硫酸ナトリウムは界面活性剤として添加される。電気メッキ中、電解液のpHは2〜3の範囲に維持され、電流密度は50〜100mA/cm、電解液の温度は45〜60℃で行われる。 The electrolytic solution proposed in the present invention includes iron sulfate (FeSO 4 · 7H 2 O) or ferrous chloride (FeCl 2 · 4H 2 O), nickel sulfate (NiSO 4 · 6H 2 O), nickel chloride (NiCl). and 2 · 6H 2 O) or nickel sulfamate (Ni (NH 2 SO 3) 2), boric acid (H 3 BO 3) 20~30g / l, sodium saccharin (C 7 H 4 NO 3 SNa ) 1~3g / L, sodium lauryl sulfate (C 12 H 25 O 4 SNa) 0.1 to 0.3 g / l, and sodium chloride (NaCl) 20 to 40 g / l. Boric acid (H 3 BO 3 ) is 22-25 g / l, saccharin sodium (C 7 H 4 NO 3 SNa) is 2.0-2.4 g / l, lauryl sulfate (C 12 H 25 O 4 SNa) When 0.1 to 0.2 g / l and sodium chloride (NaCl) contains 30 to 32 g / l, the electrolyte has a more desirable effect. Boric acid is added as a pH buffering agent, sodium saccharin is added as a stress relaxation agent for plated products, sodium chloride is added to improve the conductivity of the electrolyte, and sodium lauryl sulfate is added as a surfactant. During electroplating, the pH of the electrolyte is maintained in the range of 2-3, the current density is 50-100 mA / cm 2 , and the temperature of the electrolyte is 45-60 ° C.

鉄の組成物とニッケルの組成物とは、電解液からイオンの形態にて遊離された後、電気メッキの過程において陰極板材に1〜200μmの厚さを有するFe−Ni合金の形態にて電着される。   The iron composition and the nickel composition are released from the electrolyte in the form of ions, and then are electroplated in the form of an Fe-Ni alloy having a thickness of 1 to 200 μm on the cathode plate material in the electroplating process. Worn.

本発明のナノインバー合金薄板を電気メッキ法で製造するための電解液の実施例を、表1〜6に表した。   Examples of the electrolytic solution for producing the nano-invar alloy thin plate of the present invention by electroplating are shown in Tables 1-6.

Figure 2006524292
Figure 2006524292

Figure 2006524292
Figure 2006524292

Figure 2006524292
Figure 2006524292

Figure 2006524292
Figure 2006524292

Figure 2006524292
Figure 2006524292

Figure 2006524292
表1は、硫酸鉄(FeSO・7HO)と硫酸ニッケル(NiSO・6HO)とを主成分として含む電解液を使用しており、硫酸ニッケルの量を97g/lと一定に維持しながら、硫酸鉄の量を43〜53g/lの範囲で変化させ、実施例1乃至3に従い所望の組成を有するFe−Ni合金を製造した結果を示した。
Figure 2006524292
Table 1 uses an electrolytic solution containing iron sulfate (FeSO 4 · 7H 2 O) and nickel sulfate (NiSO 4 · 6H 2 O) as main components, and the amount of nickel sulfate is kept constant at 97 g / l. While maintaining, the amount of iron sulfate was changed in the range of 43 to 53 g / l, and the results of producing an Fe—Ni alloy having a desired composition according to Examples 1 to 3 were shown.

表2は、硫酸鉄(FeSO・7HO)と塩化ニッケル(NiCl・6HO)とを主成分として含む電解液を使用しており、塩化ニッケルの量を97g/lと一定に維持しながら、50g/lの量の硫酸鉄を用いて、実施例4に従い所望の組成を有するFe−Ni合金を製造した結果を示した。 Table 2 uses an electrolytic solution containing iron sulfate (FeSO 4 · 7H 2 O) and nickel chloride (NiCl 2 · 6H 2 O) as main components, and the amount of nickel chloride is kept constant at 97 g / l. The results of producing an Fe—Ni alloy having the desired composition according to Example 4 using 50 g / l of iron sulfate while maintaining were shown.

表3は、塩化第一鉄(FeCl・4HO)と硫酸ニッケル(NiSO・6HO)とを主成分として含む電解液を使用しており、硫酸ニッケルの量を97g/lと一定に維持しながら、塩化第一鉄の量を42〜44g/lの範囲で変化させ、実施例5及び6に従い所望の組成を有するFe−Ni合金を製造した結果を示した。 Table 3 uses an electrolytic solution containing ferrous chloride (FeCl 2 .4H 2 O) and nickel sulfate (NiSO 4 .6H 2 O) as main components, and the amount of nickel sulfate is 97 g / l. While maintaining constant, the amount of ferrous chloride was changed in the range of 42 to 44 g / l, and the results of producing an Fe—Ni alloy having a desired composition according to Examples 5 and 6 are shown.

表4は、塩化第一鉄(FeCl・4HO)と塩化ニッケル(NiCl・6HO)とを主成分として含む電解液を使用しており、塩化ニッケルの量を97g/lと一定に維持しながら、塩化第一鉄の量を44〜50g/lの範囲で変化させ、実施例7乃至9に従い所望の組成を有するFe−Ni合金を製造した結果を示した。 Table 4 uses an electrolytic solution containing ferrous chloride (FeCl 2 .4H 2 O) and nickel chloride (NiCl 2 .6H 2 O) as main components, and the amount of nickel chloride is 97 g / l. The results of producing an Fe—Ni alloy having a desired composition according to Examples 7 to 9 were shown by changing the amount of ferrous chloride in the range of 44 to 50 g / l while maintaining constant.

表5は、硫酸鉄(FeSO・7HO)とスルファミン酸ニッケル(Ni(NHSO)とを主成分として含む電解液を使用しており、スルファミン酸ニッケルの量を97g/lと一定に維持しながら、硫酸鉄の量を35〜37g/l範囲で変化させ、実施例10及び11に従い所望の組成を有するFe−Ni合金を製造した結果を示した。 Table 5 uses an electrolytic solution containing iron sulfate (FeSO 4 .7H 2 O) and nickel sulfamate (Ni (NH 2 SO 3 ) 2 ) as main components, and the amount of nickel sulfamate is 97 g / The results of producing an Fe—Ni alloy having a desired composition in accordance with Examples 10 and 11 were shown in which the amount of iron sulfate was changed in the range of 35 to 37 g / l while maintaining a constant 1.

表6は、塩化第一鉄(FeCl・4HO)とスルファミン酸ニッケル(Ni(NHSO)とを主成分として含む電解液を使用しており、スルファミン酸ニッケルの量を97g/lと一定に維持しながら、塩化第一鉄の量を32〜34g/lの範囲で変化させ、実施例12及び13に従い所望の組成を有するFe−Ni合金を製造した結果を示した。 Table 6 uses an electrolytic solution containing ferrous chloride (FeCl 2 .4H 2 O) and nickel sulfamate (Ni (NH 2 SO 3 ) 2 ) as main components, and shows the amount of nickel sulfamate. The result of producing an Fe—Ni alloy having a desired composition according to Examples 12 and 13 by changing the amount of ferrous chloride in the range of 32 to 34 g / l while maintaining constant at 97 g / l was shown. .

このような組成の電解液を用いて、電気メッキ法で製造されたFe−Ni合金は、上記の表1〜表6で用いられた電解液の種類に関わらず、以下の表8のような特性を示す。表7に示された従来のインバー合金と本発明に従うナノインバー合金とをその物性に関して比較した場合、本発明により製造されたナノインバー合金が、従来のインバー合金よりも優れた材料特性を有することが確認された。比較した結果を表9に示す。   The Fe—Ni alloy produced by the electroplating method using the electrolytic solution having such a composition is as shown in Table 8 below regardless of the type of the electrolytic solution used in Tables 1 to 6 above. Show properties. When the conventional invar alloys shown in Table 7 and the nano-invar alloy according to the present invention are compared with respect to their physical properties, it is confirmed that the nano-invar alloy produced according to the present invention has superior material properties than the conventional invar alloy. It was done. Table 9 shows the result of comparison.

Figure 2006524292
Figure 2006524292
Figure 2006524292
即ち、本発明に従うナノインバー合金の場合、硬度、引張強さ、降伏強度において、従来のインバー合金よりも少なくとも2倍の値を有する。より詳細に述べると本発明に従うナノインバー合金の降伏強度は805MPaであり、従来のインバー合金の降伏強度である275〜415MPaよりもはるかに大きい。従って、本発明に従うナノインバー合金は、高強度を必要とする分野において有利に適用することができる。
Figure 2006524292
Figure 2006524292
Figure 2006524292
That is, the nano-invar alloy according to the present invention has a value at least twice that of the conventional invar alloy in terms of hardness, tensile strength, and yield strength. More specifically, the yield strength of the nano Invar alloy according to the present invention is 805 MPa, which is much higher than the yield strength of 275 to 415 MPa of the conventional Invar alloy. Therefore, the nano-invar alloy according to the present invention can be advantageously applied in a field requiring high strength.

Figure 2006524292
Figure 2006524292
表10は、従来のインバー合金の温度範囲に依存する平均熱膨張係数を示す。表10に示されているように、従来のインバー合金は、17〜100℃の温度範囲で平均熱膨張係数が1.66μm/m・Kの値を有し、温度が上昇するに従って、熱膨張係数が増加している。一方、本発明に従うナノインバー合金(Fe−36wt%Ni)は、20〜100℃の温度範囲では熱膨張係数が1.58μm/m・Kの値を示し、140〜150℃の温度範囲では熱膨張係数がゼロとなった後、150℃以上に温度が高くなると、熱膨張係数が負の値を有することになる。温度が20〜200℃の範囲にある場合、本発明に従うナノインバー合金の平均熱膨張係数は−1.78μm/m・Kの値を有する。このような熱膨張挙動は、本発明に従うナノインバー合金のNi含量が33〜38wt%の範囲にある場合に共通に現れる。
Figure 2006524292
Figure 2006524292
Table 10 shows the average thermal expansion coefficient depending on the temperature range of the conventional Invar alloy. As shown in Table 10, the conventional Invar alloy has an average coefficient of thermal expansion of 1.66 μm / m · K in a temperature range of 17 to 100 ° C., and the thermal expansion increases as the temperature increases. The coefficient is increasing. On the other hand, the nano-invar alloy (Fe-36 wt% Ni) according to the present invention has a coefficient of thermal expansion of 1.58 μm / m · K in the temperature range of 20 to 100 ° C. and thermal expansion in the temperature range of 140 to 150 ° C. When the temperature becomes higher than 150 ° C. after the coefficient becomes zero, the thermal expansion coefficient has a negative value. When the temperature is in the range of 20 to 200 ° C., the average thermal expansion coefficient of the nano-invar alloy according to the present invention has a value of −1.78 μm / m · K. Such a thermal expansion behavior appears in common when the Ni content of the nano-invar alloy according to the present invention is in the range of 33 to 38 wt%.

図2は、本発明に従うナノインバー合金の組成比による熱膨張係数の変化を示す図であり、前述した事実を証明するものである。図に示されているように、Ni含量の重量%が33%及び38%の場合、いずれの場合も一定の温度以上で熱膨張係数が負の値を示している。したがって、本発明に従うナノインバー合金は、熱膨張係数が負の値を有するので、このような特性を必要とする新しい用途に適用可能である。   FIG. 2 is a diagram showing a change in the coefficient of thermal expansion according to the composition ratio of the nano-invar alloy according to the present invention, which proves the fact described above. As shown in the figure, when the weight percentage of the Ni content is 33% and 38%, the thermal expansion coefficient is negative at a certain temperature or higher in any case. Therefore, the nano-invar alloy according to the present invention has a negative coefficient of thermal expansion and can be applied to new applications that require such characteristics.

図3は、従来のインバー合金をアニーリングした後の集合組職の{111}極点図であり、図4Aは、本発明に従うナノインバー合金の集合組職の{100}極点図であり、図4Bは、本発明に従うナノインバー合金をアニーリングした後の集合組職の{111}極点図である。   FIG. 3 is a {111} pole figure of the assembly after annealing the conventional Invar alloy, FIG. 4A is a {100} pole figure of the assembly of the nano-invar alloy according to the present invention, and FIG. FIG. 3 is a {111} pole figure of a set organization after annealing a nano-invar alloy according to the present invention.

上記の図から明らかなように、従来のインバー合金をアニーリングすると、{001}<100>の方位が主要方位として発達することが示されている。一方、本発明に従うナノインバー合金の場合、メッキされた状態では、{100}//NDファイバータイプが支配的であり、アニーリング処理すると、{111}//NDファイバーの集合組職が強く発達することが示されている。   As is apparent from the above figure, it is shown that when the conventional Invar alloy is annealed, the orientation of {001} <100> develops as the main orientation. On the other hand, in the case of the nano-invar alloy according to the present invention, {100} // ND fiber type is dominant in the plated state, and {111} // ND fiber aggregate structure is strongly developed by annealing treatment. It is shown.

X線回折によると、本発明によるFe−Ni合金は、結晶粒のサイズが5〜15nmであるナノ結晶構造を有する。Niの含量が36%であるインバー合金の結晶粒のサイズは、5〜7nm程度と非常に小さいことが結果から確認された。このようなナノ結晶構造は、インバー合金が高い降伏強度を有する理由を説明するものであると考えられる。   According to X-ray diffraction, the Fe—Ni alloy according to the present invention has a nanocrystalline structure with a crystal grain size of 5-15 nm. From the results, it was confirmed that the crystal grain size of the Invar alloy having a Ni content of 36% was as small as about 5 to 7 nm. Such a nanocrystalline structure is believed to explain why Invar alloys have high yield strength.

本発明に従うナノインバー合金薄板を製造するために用いた電気メッキ装置の概略図である。1 is a schematic view of an electroplating apparatus used for manufacturing a nano-invar alloy sheet according to the present invention. FIG. 本発明に従うナノインバー合金の組成比による熱膨張係数の変化を示す図である。It is a figure which shows the change of the thermal expansion coefficient by the composition ratio of the nano invar alloy according to this invention. 従来のインバー合金をアニーリングした後の集合組職の{111}極点図である。It is a {111} pole figure of an aggregate organization after annealing a conventional Invar alloy. 本発明に従うナノインバー合金の集合組職の{100}極点図である。FIG. 3 is a {100} pole figure of a nano-invar alloy aggregate according to the present invention. 本発明に従うナノインバー合金をアニーリングした後の集合組職の{111}極点図である。FIG. 4 is a {111} pole figure of the aggregate composition after annealing the nano-invar alloy according to the present invention.

Claims (18)

水1L当たり、32〜53gの硫酸鉄(FeSO・7HO)、塩化第一鉄(FeCl・4HO)若しくはこれらの混合物と、97gの硫酸ニッケル(NiSO・6HO)、塩化ニッケル(NiCl・6HO)、スルファミン酸ニッケル(Ni(NHSO)若しくはこれらの混合物と、20〜30gのホウ酸(HBO)と、1〜3gのサッカリンナトリウム(CNOSNa)と、0.1〜0.3gのラウリル硫酸ナトリウム(C1225SNa)と、20〜40gの塩化ナトリウム(NaCl)と、を含む溶液を電解液として用い、前記電解液のpHは2〜3の範囲であり、電流密度は50〜100mA/cmであり、かつ電解液の温度は45〜60℃の範囲である条件下において電気メッキ法で製造したNiを33〜38重量%含むFe−Ni合金。 32 to 53 g of iron sulfate (FeSO 4 .7H 2 O), ferrous chloride (FeCl 2 .4H 2 O) or a mixture thereof and 97 g of nickel sulfate (NiSO 4 .6H 2 O) per liter of water, Nickel chloride (NiCl 2 · 6H 2 O), nickel sulfamate (Ni (NH 2 SO 3 ) 2 ) or a mixture thereof, 20 to 30 g of boric acid (H 3 BO 3 ), and 1 to 3 g of saccharin sodium ( C 7 H 4 NO 3 SNa), 0.1 to 0.3 g of sodium lauryl sulfate (C 12 H 25 O 4 SNa), and 20 to 40 g of sodium chloride (NaCl) as an electrolytic solution used, pH of the electrolyte is in the range of 2-3, the current density is 50~100mA / cm 2, and the temperature of the electrolyte is in the range of 45 to 60 ° C. Article Fe-Ni alloy containing Ni prepared in electroplating 33-38 wt% in the lower. 前記電解液が、水1L当たり、43〜53gの硫酸鉄(FeSO・7HO)と、97gの硫酸ニッケル(NiSO・6HO)と、20〜30gのホウ酸(HBO)と、1.0〜3.0gのサッカリンナトリウム(CNOSNa)と、0.1〜0.3gのラウリル硫酸ナトリウム(C1225SNa)と、20〜40gの塩化ナトリウム(NaCl)と、を含むことを特徴とする請求項1に記載のFe−Ni合金。 The electrolyte solution is 43 to 53 g of iron sulfate (FeSO 4 .7H 2 O), 97 g of nickel sulfate (NiSO 4 .6H 2 O), and 20 to 30 g of boric acid (H 3 BO 3 ) per liter of water. ), 1.0-3.0 g sodium saccharin (C 7 H 4 NO 3 SNa), 0.1-0.3 g sodium lauryl sulfate (C 12 H 25 O 4 SNa), and 20-40 g chloride. It contains sodium (NaCl), The Fe-Ni alloy of Claim 1 characterized by the above-mentioned. 前記電解液が、水1L当たり、50gの硫酸鉄(FeSO・7HO)と、97gの塩化ニッケル(NiCl・6HO)と、20〜30gのホウ酸(HBO)と、1.0〜3.0gのサッカリンナトリウム(CNOSNa)と、0.1〜0.3gのラウリル硫酸ナトリウム(C1225SNa)と、20〜40gの塩化ナトリウム(NaCl)と、を含むことを特徴とする請求項1に記載のFe−Ni合金。 The electrolyte solution contains 50 g of iron sulfate (FeSO 4 .7H 2 O), 97 g of nickel chloride (NiCl 2 .6H 2 O), and 20 to 30 g of boric acid (H 3 BO 3 ) per liter of water. 1.0-3.0 g sodium saccharin (C 7 H 4 NO 3 SNa), 0.1-0.3 g sodium lauryl sulfate (C 12 H 25 O 4 SNa), 20-40 g sodium chloride ( The Fe—Ni alloy according to claim 1, comprising: NaCl). 前記電解液が、水1L当たり、42〜44gの塩化第一鉄(FeCl・4HO)と、97gの硫酸ニッケル(NiSO・6HO)と、20〜30gのホウ酸(HBO)と、1.0〜3.0gのサッカリンナトリウム(CNOSNa)と、0.1〜0.3gのラウリル硫酸ナトリウム(C1225SNa)と、20〜40gの塩化ナトリウム(NaCl)と、を含むことを特徴とする請求項1に記載のFe−Ni合金。 The electrolyte solution is 42 to 44 g of ferrous chloride (FeCl 2 .4H 2 O), 97 g of nickel sulfate (NiSO 4 .6H 2 O), and 20 to 30 g of boric acid (H 3 ) per liter of water. BO 3 ), 1.0-3.0 g sodium saccharin (C 7 H 4 NO 3 SNa), 0.1-0.3 g sodium lauryl sulfate (C 12 H 25 O 4 SNa), 20-40 g 2. The Fe—Ni alloy according to claim 1, further comprising sodium chloride (NaCl). 前記電解液が、水1L当たり、44〜50gの塩化第一鉄(FeCl・4HO)と、97gの塩化ニッケル(NiCl・6HO)と、20〜30gのホウ酸(HBO)と、1.0〜3.0gのサッカリンナトリウム(CNOSNa)と、0.1〜0.3gのラウリル硫酸ナトリウム(C1225SNa)と、20〜40gの塩化ナトリウム(NaCl)と、を含むことを特徴とする請求項1に記載のFe−Ni合金。 The electrolyte contains 44-50 g of ferrous chloride (FeCl 2 .4H 2 O), 97 g of nickel chloride (NiCl 2 .6H 2 O), and 20-30 g of boric acid (H 3 ) per liter of water. BO 3 ), 1.0-3.0 g sodium saccharin (C 7 H 4 NO 3 SNa), 0.1-0.3 g sodium lauryl sulfate (C 12 H 25 O 4 SNa), 20-40 g 2. The Fe—Ni alloy according to claim 1, further comprising sodium chloride (NaCl). 前記電解液が、水1L当たり、35〜37gの硫酸鉄(FeSO・7HO)と、97gのスルファミン酸ニッケル(Ni(NHSO)と、20〜30gのホウ酸(HBO)と、1.0〜3.0gのサッカリンナトリウム(CNOSNa)と、0.1〜0.3gのラウリル硫酸ナトリウム(C1225SNa)と、20〜40gの塩化ナトリウム(NaCl)と、を含むことを特徴とする請求項1に記載のFe−Ni合金。 The electrolyte solution contains 35 to 37 g of iron sulfate (FeSO 4 .7H 2 O), 97 g of nickel sulfamate (Ni (NH 2 SO 3 ) 2 ), and 20 to 30 g of boric acid (H) per liter of water. 3 BO 3 ), 1.0-3.0 g sodium saccharin (C 7 H 4 NO 3 SNa), 0.1-0.3 g sodium lauryl sulfate (C 12 H 25 O 4 SNa), 20-20 The Fe—Ni alloy according to claim 1, comprising 40 g of sodium chloride (NaCl). 前記電解液が、水1L当たり、32〜34gの塩化第一鉄(FeCl・4HO)と、97gのスルファミン酸ニッケル(Ni(NHSO)と、20〜30gのホウ酸(HBO)と、1.0〜3.0gのサッカリンナトリウム(CNOSNa)と、0.1〜0.3gのラウリル硫酸ナトリウム(C1225SNa)と、20〜40gの塩化ナトリウム(NaCl)と、を含むことを特徴とする請求項1に記載のFe−Ni合金。 The electrolyte is 32 to 34 g of ferrous chloride (FeCl 2 · 4H 2 O), 97 g of nickel sulfamate (Ni (NH 2 SO 3 ) 2 ), and 20 to 30 g of boric acid per liter of water. (H 3 BO 3 ), 1.0-3.0 g saccharin sodium (C 7 H 4 NO 3 SNa), 0.1-0.3 g sodium lauryl sulfate (C 12 H 25 O 4 SNa), The Fe—Ni alloy according to claim 1, comprising 20 to 40 g of sodium chloride (NaCl). 前記Fe−Ni合金は、1〜200μmの範囲の厚みを有することを特徴とする請求項1乃至7のいずれか一項に記載のFe−Ni合金。 The Fe-Ni alloy according to any one of claims 1 to 7, wherein the Fe-Ni alloy has a thickness in the range of 1 to 200 µm. 前記Fe−Ni合金は5〜15μmの範囲の結晶粒サイズを有することを特徴とする請求項1乃至7のいずれか一項に記載のFe−Ni合金。 The Fe-Ni alloy according to any one of claims 1 to 7, wherein the Fe-Ni alloy has a crystal grain size in a range of 5 to 15 µm. 前記Fe−Ni合金は、一定の温度以上で負の熱膨張係数を有することを特徴とする請求項1乃至7のいずれか一項に記載のFe−Ni合金。 The Fe-Ni alloy according to any one of claims 1 to 7, wherein the Fe-Ni alloy has a negative coefficient of thermal expansion above a certain temperature. 前記Fe−Ni合金は、Feが64wt%であり、かつNiが36wt%である組成比を有することを特徴とする請求項1乃至8のいずれか一項に記載のFe−Ni合金。 The Fe-Ni alloy according to any one of claims 1 to 8, wherein the Fe-Ni alloy has a composition ratio in which Fe is 64 wt% and Ni is 36 wt%. 水1L当たり、32〜53gの硫酸鉄(FeSO・7HO)、塩化第一鉄(FeCl・4HO)若しくはこれらの混合物と、97gの硫酸ニッケル(NiSO・6HO)、塩化ニッケル(NiCl・6HO)、スルファミン酸ニッケル(Ni(NHSO)若しくはこれらの混合物と、20〜30gのホウ酸(HBO)と、1〜3gのサッカリンナトリウム(CNOSNa)と、0.1〜0.3gのラウリル硫酸ナトリウム(C1225SNa)と、20〜40gの塩化ナトリウム(NaCl)と、を含む溶液を電解液として用い、上記電解液のpHは2〜3の範囲であり、電流密度は50〜100mA/cmであり、かつ電解液の温度は45〜60℃の範囲である条件下で電気メッキ法で形成することを特徴とするNiを33〜38重量%含むFe−Ni合金を製造する方法。 32 to 53 g of iron sulfate (FeSO 4 .7H 2 O), ferrous chloride (FeCl 2 .4H 2 O) or a mixture thereof and 97 g of nickel sulfate (NiSO 4 .6H 2 O) per liter of water, Nickel chloride (NiCl 2 · 6H 2 O), nickel sulfamate (Ni (NH 2 SO 3 ) 2 ) or a mixture thereof, 20 to 30 g of boric acid (H 3 BO 3 ), and 1 to 3 g of saccharin sodium ( C 7 H 4 NO 3 SNa), 0.1 to 0.3 g of sodium lauryl sulfate (C 12 H 25 O 4 SNa), and 20 to 40 g of sodium chloride (NaCl) as an electrolytic solution used, pH of the electrolyte is in the range of 2-3, the current density is 50~100mA / cm 2, and the temperature of the electrolyte is in the range of 45 to 60 ° C. Article Method for producing a Fe-Ni alloy containing Ni, characterized in that to form an electroplating method under 33-38 wt%. 前記電解液が、水1L当たり、43〜53gの硫酸鉄(FeSO・7HO)と、97gの硫酸ニッケル(NiSO・6HO)と、20〜30gのホウ酸(HBO)と、1.0〜3.0gのサッカリンナトリウム(CNOSNa)と、0.1〜0.3gのラウリル硫酸ナトリウム(C1225SNa)と、20〜40gの塩化ナトリウム(NaCl)と、を含むことを特徴とする請求項12に記載の方法。 The electrolyte solution is 43 to 53 g of iron sulfate (FeSO 4 .7H 2 O), 97 g of nickel sulfate (NiSO 4 .6H 2 O), and 20 to 30 g of boric acid (H 3 BO 3 ) per liter of water. ), 1.0-3.0 g sodium saccharin (C 7 H 4 NO 3 SNa), 0.1-0.3 g sodium lauryl sulfate (C 12 H 25 O 4 SNa), and 20-40 g chloride. 13. The method of claim 12, comprising sodium (NaCl). 前記電解液は、水1L当たり、50gの硫酸鉄(FeSO・7HO)と、97gの塩化ニッケル(NiCl・6HO)と、20〜30gのホウ酸(HBO)と、1.0〜3.0gのサッカリンナトリウム(CNOSNa)と、0.1〜0.3gのラウリル硫酸ナトリウム(C1225SNa)と、20〜40gの塩化ナトリウム(NaCl)と、を含むことを特徴とする請求項12に記載の方法。 The electrolyte solution contains 50 g of iron sulfate (FeSO 4 .7H 2 O), 97 g of nickel chloride (NiCl 2 .6H 2 O), and 20 to 30 g of boric acid (H 3 BO 3 ) per liter of water. 1.0-3.0 g sodium saccharin (C 7 H 4 NO 3 SNa), 0.1-0.3 g sodium lauryl sulfate (C 12 H 25 O 4 SNa), 20-40 g sodium chloride ( The method according to claim 12, comprising: NaCl). 前記電解液は、水1L当たり、42〜44gの硫酸鉄(FeCl・4HO)と、97gの硫酸ニッケル(NiSO・6HO)と、20〜30gのホウ酸(HBO)と、1.0〜3.0gのサッカリンナトリウム(CNOSNa)と、0.1〜0.3gのラウリル硫酸ナトリウム(C1225SNa)と、20〜40gの塩化ナトリウム(NaClと、)を含むことを特徴とする請求項12に記載の方法。 The electrolyte contains 42 to 44 g of iron sulfate (FeCl 2 .4H 2 O), 97 g of nickel sulfate (NiSO 4 .6H 2 O), and 20 to 30 g of boric acid (H 3 BO 3 ) per liter of water. ), 1.0-3.0 g sodium saccharin (C 7 H 4 NO 3 SNa), 0.1-0.3 g sodium lauryl sulfate (C 12 H 25 O 4 SNa), and 20-40 g chloride. 13. The method of claim 12, comprising sodium (NaCl). 前記電解液は、水1L当たり、44〜50gの塩化第一鉄(FeCl・4HO)と、97gの塩化ニッケル(NiCl・6HO)と、20〜30gのホウ酸(HBO)と、1.0〜3.0gのサッカリンナトリウム(CNOSNa)と、0.1〜0.3gのラウリル硫酸ナトリウム(C1225SNa)と、20〜40gの塩化ナトリウム(NaCl)と、を含むことを特徴とする請求項12に記載の方法。 The electrolyte contains 44-50 g of ferrous chloride (FeCl 2 .4H 2 O), 97 g of nickel chloride (NiCl 2 .6H 2 O), and 20-30 g of boric acid (H 3 ) per liter of water. BO 3 ), 1.0-3.0 g sodium saccharin (C 7 H 4 NO 3 SNa), 0.1-0.3 g sodium lauryl sulfate (C 12 H 25 O 4 SNa), 20-40 g The method of claim 12, comprising: sodium chloride (NaCl). 前記電解液は、水1L当たり、35〜37gの硫酸鉄(FeSO・7HO)と、97gのスルファミン酸ニッケル(Ni(NHSO)と、20〜30gのホウ酸(HBO)と、1.0〜3.0gのサッカリンナトリウム(CNOSNa)と、0.1〜0.3gのラウリル硫酸ナトリウム(C1225SNa)と、20〜40gの塩化ナトリウム(NaCl)と、を含むことを特徴とする請求項12に記載の方法。 The electrolyte contains 35 to 37 g of iron sulfate (FeSO 4 .7H 2 O), 97 g of nickel sulfamate (Ni (NH 2 SO 3 ) 2 ), and 20 to 30 g of boric acid (H) per liter of water. 3 BO 3 ), 1.0-3.0 g sodium saccharin (C 7 H 4 NO 3 SNa), 0.1-0.3 g sodium lauryl sulfate (C 12 H 25 O 4 SNa), 20-20 The method according to claim 12, comprising 40 g of sodium chloride (NaCl). 前記電解液は、水1L当たり、32〜34gの塩化第一鉄(FeCl・4HO)と、97gのスルファミン酸ニッケル(Ni(NHSO)と、20〜30gのホウ酸(HBO)と、1.0〜3.0gのサッカリンナトリウム(CNOSNa)と、0.1〜0.3gのラウリル硫酸ナトリウム(C1225SNa)と、20〜40gの塩化ナトリウム(NaCl)と、を含むことを特徴とする請求項12に記載の方法。 The electrolyte contains 32 to 34 g of ferrous chloride (FeCl 2 .4H 2 O), 97 g of nickel sulfamate (Ni (NH 2 SO 3 ) 2 ), and 20 to 30 g of boric acid per liter of water. (H 3 BO 3 ), 1.0-3.0 g saccharin sodium (C 7 H 4 NO 3 SNa), 0.1-0.3 g sodium lauryl sulfate (C 12 H 25 O 4 SNa), The method according to claim 12, comprising 20 to 40 g of sodium chloride (NaCl).
JP2006507753A 2003-04-24 2004-03-12 Nanoinvar alloy and method for producing the same Pending JP2006524292A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2003-0026108A KR100505002B1 (en) 2003-04-24 2003-04-24 Nani invar alloyes and the process of producing the same
PCT/KR2004/000516 WO2004094699A1 (en) 2003-04-24 2004-03-12 Nano invar alloys and a process of producing the same

Publications (1)

Publication Number Publication Date
JP2006524292A true JP2006524292A (en) 2006-10-26

Family

ID=33308297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006507753A Pending JP2006524292A (en) 2003-04-24 2004-03-12 Nanoinvar alloy and method for producing the same

Country Status (4)

Country Link
US (1) US20060037671A1 (en)
JP (1) JP2006524292A (en)
KR (1) KR100505002B1 (en)
WO (1) WO2004094699A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014237874A (en) * 2013-06-07 2014-12-18 株式会社Jcu Electroplating bath for iron -nickel alloy having low thermal expansion coefficient and high hardness and electroplating method using the same
WO2019044383A1 (en) * 2017-09-01 2019-03-07 株式会社Jcu Electroplating liquid for iron-nickel alloy having low coefficient of thermal expansion, and electroplating method using the electroplating liquid
JP2019157264A (en) * 2018-03-13 2019-09-19 アドバンテック グローバル リミテッドAdvantech Global Ltd Iron nickel alloy shadow mask and manufacturing method thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7387578B2 (en) 2004-12-17 2008-06-17 Integran Technologies Inc. Strong, lightweight article containing a fine-grained metallic layer
US7320832B2 (en) 2004-12-17 2008-01-22 Integran Technologies Inc. Fine-grained metallic coatings having the coefficient of thermal expansion matched to the one of the substrate
CN102424994A (en) * 2011-12-17 2012-04-25 张家港舒马克电梯安装维修服务有限公司镀锌分公司 Ferronickel alloy electroplating liquid
CN102995083B (en) * 2012-12-07 2016-06-15 北京大学 A kind of method adopting plating to prepare soft magnetic materials iron-nickel alloy array
JP6296491B2 (en) * 2013-03-14 2018-03-20 セイコーインスツル株式会社 Metal structure, method for manufacturing metal structure, spring component, start / stop lever for watch, and watch
KR101420755B1 (en) * 2013-12-02 2014-07-17 주식회사 나노인바 Iron-nickel-ternary ternary alloy having low thermal expansion characteristics and method for manufacturing the same
KR101665802B1 (en) 2014-12-23 2016-10-13 주식회사 포스코 Fe-Ni ALLOY METAL FOIL HAVING EXCELLENT HEAT RESILIENCE AND METHOD FOR MANUFACTURING THE SAME
WO2016105009A1 (en) * 2014-12-24 2016-06-30 주식회사 포스코 High-rigidity metal foil and method for manufacturing same
CN108138303B (en) * 2015-09-30 2020-12-25 大日本印刷株式会社 Vapor deposition mask, method for manufacturing vapor deposition mask, and metal plate
US10541387B2 (en) * 2015-09-30 2020-01-21 Dai Nippon Printing Co., Ltd. Deposition mask, method of manufacturing deposition mask and metal plate
CN112499640B (en) * 2020-08-05 2021-12-17 北京航空航天大学 Preparation of material with giant thermal hysteresis negative thermal expansion property and application of material in field of embedded pipe joint

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4014759A (en) * 1975-07-09 1977-03-29 M & T Chemicals Inc. Electroplating iron alloys containing nickel, cobalt or nickel and cobalt
US4231847A (en) * 1978-06-21 1980-11-04 Trw Inc. Electrodeposition of nickel-iron alloys having a low temperature coefficient and articles made therefrom
JPS61190091A (en) * 1985-02-18 1986-08-23 Tdk Corp Method and device for magnetic alloy plating
US4948434A (en) * 1988-04-01 1990-08-14 Nkk Corporation Method for manufacturing Ni-Fe alloy sheet having excellent DC magnetic property and excellent AC magnetic property
KR19990064747A (en) * 1999-05-06 1999-08-05 이종구 Manufacturing method of Ni-Fe alloy thin plate and its apparatus
KR100394741B1 (en) * 2001-04-11 2003-08-14 연합철강공업 주식회사 Electrolytes for Fe-Ni alloy electroforming

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014237874A (en) * 2013-06-07 2014-12-18 株式会社Jcu Electroplating bath for iron -nickel alloy having low thermal expansion coefficient and high hardness and electroplating method using the same
WO2019044383A1 (en) * 2017-09-01 2019-03-07 株式会社Jcu Electroplating liquid for iron-nickel alloy having low coefficient of thermal expansion, and electroplating method using the electroplating liquid
JP2019157264A (en) * 2018-03-13 2019-09-19 アドバンテック グローバル リミテッドAdvantech Global Ltd Iron nickel alloy shadow mask and manufacturing method thereof

Also Published As

Publication number Publication date
US20060037671A1 (en) 2006-02-23
KR20040092613A (en) 2004-11-04
WO2004094699A1 (en) 2004-11-04
KR100505002B1 (en) 2005-08-01

Similar Documents

Publication Publication Date Title
US20060037671A1 (en) Nano invar alloys and process for producing the same
JP6501889B2 (en) Method of manufacturing Fe-Ni alloy metal foil excellent in heat recovery
JP2018040055A (en) Iron-nickel alloy foil and production method thereof
JP5478292B2 (en) Method for producing iron-nickel alloy plating film having high hardness and low thermal expansion coefficient
JP2008075171A (en) HEAT RESISTANT ALLOY SPRING AND Ni-BASED ALLOY WIRE USED THEREFOR
JP2012126934A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL, AND METHOD FOR PRODUCING THE SAME
CN110106394A (en) A kind of Cu-Ni-Sn copper alloy foil and preparation method thereof
WO2021027607A1 (en) Preparation method for highly conductive graphene copper/aluminium composite wire
KR101758510B1 (en) Fe-Ni ALLOY METAL FOIL HAVING EXCELLENT FLEXIBILITY AND STRENGTH
TW202024360A (en) Cu-ni-al copper alloy plate and method for producing the same and conductive spring member
EP0293107A2 (en) An aqueous electrolytic cobalt-iron plating bath and a method of electrodeposition using same
KR100505004B1 (en) ELECTROLYTE FOR NANOCRYSTALLINE Fe-Ni ALLOYS WITH LOW THERMAL EXPANSION
CN109763008A (en) A kind of high strength and high flexibility copper alloy containing niobium and preparation method thereof
KR101665617B1 (en) Electroplating composition of low thermal expansion iron-nickel-cobalt ternary alloy and electroplated low-thermal expansion iron-nickel-cobalt ternary alloy using the same
TWI678826B (en) Fe-ni alloy foil with excellent flexibility resistance
KR100931739B1 (en) Invar alloy and its manufacturing method
CN110408976B (en) Graphene/nano twin crystal composite material with controllable tissue and preparation method thereof
KR102043503B1 (en) Method for preparing electroformed fe-ni alloy foil and plating solution for preparing the electroformed fe-ni alloy foil
Nagayama et al. Electrodeposition of invar Fe-Ni alloy/SiC particle composite
KR101420755B1 (en) Iron-nickel-ternary ternary alloy having low thermal expansion characteristics and method for manufacturing the same
JP2005290500A (en) Alloy electrode for hydrogen generation and its production method
KR100485808B1 (en) electroplating bath for copper-nickel alloy and method for manufacturing thin film using said electroplating bath
WO2018029967A1 (en) Electrode manufacturing method
KR102065217B1 (en) Electrolytes for fe-ni alloy foil, and fe-ni alloy foil prepared therefrom
WO2018029968A1 (en) Electrode manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090721