JP2019157264A - Iron nickel alloy shadow mask and manufacturing method thereof - Google Patents

Iron nickel alloy shadow mask and manufacturing method thereof Download PDF

Info

Publication number
JP2019157264A
JP2019157264A JP2018178152A JP2018178152A JP2019157264A JP 2019157264 A JP2019157264 A JP 2019157264A JP 2018178152 A JP2018178152 A JP 2018178152A JP 2018178152 A JP2018178152 A JP 2018178152A JP 2019157264 A JP2019157264 A JP 2019157264A
Authority
JP
Japan
Prior art keywords
iron
nickel alloy
shadow mask
manufacturing
alloy layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018178152A
Other languages
Japanese (ja)
Inventor
ジョンコウ パン
Zhongguang Pan
ジョンコウ パン
シンジー トン
Shengzhi Tong
シンジー トン
カレイ チン
Xialing Chen
カレイ チン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantech Global Ltd
Original Assignee
Advantech Global Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantech Global Ltd filed Critical Advantech Global Ltd
Publication of JP2019157264A publication Critical patent/JP2019157264A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • H01L21/2885Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition using an external electrical current, i.e. electro-deposition
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/06Screens for shielding; Masks interposed in the electron stream
    • H01J29/07Shadow masks for colour television tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/38Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions
    • H01L21/388Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions using diffusion into or out of a solid from or into a liquid phase, e.g. alloy diffusion processes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

To provide an iron nickel alloy shadow mask capable of solving such problems in which cost is high, energy consumption is high, accuracy of an opening is low, and a material easily deforms under a high temperature, and the manufacturing method thereof.SOLUTION: A method for manufacturing an iron nickel alloy shadow mask includes the steps of: preparing a substrate; forming an iron nickel alloy layer by electrocasting; peeling a photosensitive film; separating the iron nickel alloy layer; and annealing the iron nickel alloy layer. A reuse rate of the iron nickel alloy shadow mask to be obtained can be increased because it has such characteristics that the shape of the mask is stable and hardly deforms. This is because the mask has high iron content and a low coefficient thermal expansion.SELECTED DRAWING: Figure 1

Description

本発明は、有機発光ダイオード表示技術に関し、詳しくは、金属シャドーマスク及びその製造方法に関する。   The present invention relates to an organic light emitting diode display technology, and more particularly, to a metal shadow mask and a manufacturing method thereof.

OLED技術は、次世代のフラットパネルディスプレイ技術の有力な候補であり、各ディスプレイメーカは、次々と高解像度で高画質のOLEDディスプレイを開発している。この技術のトレンドに従い、市場からの様々なニーズに応えるためには、高精度で、孔径寸法の小さいマスクプレートを開発する必要がある。   OLED technology is a promising candidate for next-generation flat panel display technology, and display manufacturers are developing high-resolution and high-quality OLED displays one after another. In order to meet various needs from the market in accordance with the trend of this technology, it is necessary to develop a mask plate with high accuracy and a small hole size.

現状では、一般に、Ni又はNi−Co合金を用いて、電鋳法により高精度のシャドーマスクを製造している。しかし、Ni又はNi−Co合金の熱膨張率は約13ppm/℃と高いため、エレクトロルミネセンス材料を堆積させる過程で温度が高くなり、その形状が安定せず変形が生じやすいため、再利用率が低い。従来使用している鉄ニッケル合金のなかでもインバール(Fe−36%Ni)の熱膨張率は、約1〜2ppm/℃と低い。しかし、この材料を用いて金属シャドーマスクを製造する場合、主にインバール金属薄片をエッチングする方法を採用し、エッチング対象部位が厚いため、精度低下を招くという問題がある。また、エネルギーの過剰消費、コスト高などの欠点も技術の向上を制限している。そこで、低コストで、エネルギー消費が低く、精度が高いシャドーマスクの製造方法を開発するのが早急に解決すべき課題となっている。   At present, a high-precision shadow mask is generally manufactured by electroforming using Ni or a Ni—Co alloy. However, since the thermal expansion coefficient of Ni or Ni—Co alloy is as high as about 13 ppm / ° C., the temperature becomes high in the process of depositing the electroluminescent material, its shape is not stable, and deformation easily occurs. Is low. Among the conventionally used iron-nickel alloys, the thermal expansion coefficient of Invar (Fe-36% Ni) is as low as about 1 to 2 ppm / ° C. However, when a metal shadow mask is manufactured using this material, there is a problem that the method of etching mainly invar metal flakes is employed, and the portion to be etched is thick, leading to a decrease in accuracy. In addition, drawbacks such as excessive energy consumption and high costs also limit technological improvements. Therefore, developing a shadow mask manufacturing method that is low in cost, low in energy consumption, and high in accuracy is an issue to be solved immediately.

本発明は、製造コストが高い、エネルギー消費が高い、開口部の精度が低い、高温下で変形が生じやすい等の従来技術の課題を解決することができる、鉄ニッケル合金製シャドーマスク及びその製造方法を提供することを目的とする。   The present invention can solve the problems of the prior art such as high manufacturing cost, high energy consumption, low accuracy of the opening, and easy deformation due to high temperature, and manufacturing thereof. It aims to provide a method.

本発明では、上記課題を解決すべく、鉄ニッケル合金製シャドーマスクの製造方法を提供する。基板(設計したパターンを有する基板であってもよいが、これに限定されない)を用意する工程、上記基板に電鋳して、上記基板に鉄ニッケル合金層を形成する工程、剥離(すなわち感光膜の除去)工程、上記鉄ニッケル合金層を上記基板から分離する工程、上記鉄ニッケル合金層に焼なましを施して、鉄ニッケル合金製シャドーマスクを得る工程を含む。   In order to solve the above-mentioned problems, the present invention provides a method for manufacturing a shadow mask made of iron-nickel alloy. A step of preparing a substrate (which may be, but not limited to, a substrate having a designed pattern), a step of electroforming the substrate and forming an iron-nickel alloy layer on the substrate, peeling (that is, a photosensitive film) A step of separating the iron-nickel alloy layer from the substrate, and a step of annealing the iron-nickel alloy layer to obtain a shadow mask made of iron-nickel alloy.

本発明では、上記製造方法により作製される鉄ニッケル合金製シャドーマスクも提供する。   The present invention also provides an iron-nickel alloy shadow mask produced by the above-described production method.

従来技術と比べて、本発明では、以下の技術的効果を得ることができる。
本発明は、鉄ニッケル合金製シャドーマスク及びその製造方法を提供する。電鋳法を用いて、高度なパターンが施された基板において鉄ニッケル合金金属製シャドーマスクを製造するものである。各パラメータを調整することにより、鉄を40〜70%含み、熱膨張率が4〜10ppm/℃である鉄ニッケル合金製シャドーマスクを得ることができる。さらに熱処理を行うと、熱膨張率を1〜3ppm/℃に低減することができる。そのため、本発明では、エネルギー消費が低く、製造しやすい高精度の金属シャドーマスクを得ることができる。そして、その形状は安定しており変形しにくいため、再利用率を高めることができる。
Compared with the prior art, the present invention can obtain the following technical effects.
The present invention provides an iron-nickel alloy shadow mask and a method for manufacturing the same. Using an electroforming method, a shadow mask made of iron-nickel alloy metal is manufactured on a substrate on which an advanced pattern has been applied. By adjusting each parameter, an iron-nickel alloy shadow mask containing 40 to 70% of iron and having a thermal expansion coefficient of 4 to 10 ppm / ° C. can be obtained. Further heat treatment can reduce the coefficient of thermal expansion to 1 to 3 ppm / ° C. Therefore, according to the present invention, a highly accurate metal shadow mask with low energy consumption and easy to manufacture can be obtained. And since the shape is stable and hardly deformed, the reuse rate can be increased.

添付図面は、本発明の理解を深めるためのもので、本発明を構成する一部である。以下に示す例示的な実施例及びその説明は、本発明の理解のためのものであり、本発明の技術範囲を限定するものではない。
本発明の一実施形態による鉄ニッケル合金製シャドーマスクの製造方法のフローチャートである。 本発明の一実施形態による鉄ニッケル合金製シャドーマスクのニッケル含有量と熱膨張率の関係を示す図である。
The accompanying drawings are intended to deepen the understanding of the present invention and are a part of the present invention. The following illustrative examples and explanations thereof are for the understanding of the present invention and are not intended to limit the technical scope of the present invention.
It is a flowchart of the manufacturing method of the shadow mask made from an iron nickel alloy by one Embodiment of this invention. It is a figure which shows the relationship between the nickel content of the shadow mask made from an iron nickel alloy by one Embodiment of this invention, and a thermal expansion coefficient.

以下、図面を参照しながら、実施例を用いて本発明の実施形態について説明する。この説明により、本発明の技術的手段を利用して関連課題を解決し、所望の技術的効果を得る過程を十分に理解し、実施することが可能となる。   Hereinafter, embodiments of the present invention will be described using examples with reference to the drawings. By this explanation, it becomes possible to fully understand and implement a process of solving a related problem using the technical means of the present invention and obtaining a desired technical effect.

本明細書及び請求項において、特定の用語で特定の要素を指す場合、当業者にとって自明となるように、ハードウェアメーカとは異なる用語(名詞)で同一の要素を呼ぶこともある。
なお、本明細書及び請求項における「含む」、又はこれに類する他の用語は、非除外的に包含することを意図する。一連の要素を含む過程、方法、製品又はシステムは、それらの要素を含むだけでなく、明記していないその他の要素も含み、さらに、このような過程、方法、製品又はシステムに固有の要素も含む。よって、特記がない限り、「一つの……を含む」という文言で限定された要素は、上記要素を含む過程、方法、製品又はシステムに同一の要素がさらに含まれる場合を除外しない。
In the present specification and claims, when referring to a specific element by a specific term, the same element may be referred to by a term (noun) different from that of the hardware manufacturer, as will be apparent to those skilled in the art.
It should be noted that the term “including” or similar terms in the present specification and claims is intended to be included non-excluded. A process, method, product, or system that includes a series of elements includes not only those elements, but also other elements that are not specified, as well as elements that are specific to such processes, methods, products, or systems. Including. Therefore, unless otherwise specified, an element limited by the phrase “including one ...” does not exclude the case where the same element is further included in the process, method, product, or system including the element.

本発明の一実施形態では、鉄ニッケル合金製シャドーマスクの製造方法を提供する。この製造方法は、以下に示す工程S101〜工程S109を含む。   In one embodiment of the present invention, a method of manufacturing a shadow mask made of iron-nickel alloy is provided. This manufacturing method includes the following steps S101 to S109.

工程S101:基板を用意する。基板は、露光と現像により、設計したパターンが施された感光膜の貼着した基板であるが、これだけに限定されない。基板は、前処理プロセスを経た清浄な基板でもよいが、当該工程では、基板に脱脂、水洗、酸洗及び再水洗などの前処理を行って、基板表面の不純物を除去してもよい。   Step S101: A substrate is prepared. The substrate is a substrate on which a photosensitive film having a designed pattern is attached by exposure and development, but is not limited thereto. The substrate may be a clean substrate that has undergone a pretreatment process, but in this step, the substrate may be subjected to pretreatment such as degreasing, water washing, pickling, and re-water washing to remove impurities on the substrate surface.

工程S103:基板を電鋳して、基板に鉄ニッケル合金層を形成する。具体的には、基板を電鋳液に入れ、適切な温度下で電気堆積を行う。例えば、基板をpH値が2〜3.5の電鋳液に入れ、40〜60℃の温度下で電鋳を行う。例えば、基板への電鋳工程は、pH値が3の電鋳液の中で、50℃の温度で行ってもよい。電鋳陽極は、インバール(Invar)複合材料陽極、又は1:2〜2:1の比率で配置されるニッケル陽極及び鉄陽極であってもよい。また、整流器は、例えば2つの整流器を用いて、鉄陽極及びニッケル陽極の電流をそれぞれコントロールしてもよい。ここで、電流値が2〜4A/dmの直流、又はスイッチレシオを1:3〜3:1とするパズル電流で給電してもよい。陰極と陽極の距離は10〜50cmとする。30〜60分間電鋳すると、厚みが2〜100μmの鉄ニッケル合金層を得ることができる。OLEDシャドーマスク(又はマスクプレート)の場合、薄ければ薄いほどシャドーが小さくなる。しかし、通常のInvar電鋳の場合、厚みが20%以上変動して不均一となる。本実施例では、電鋳過程で電鋳液を撹拌することにより、電鋳液をより均一に分布させた。さらに、クランプを用いて電流が均一に分布するようにコントロールした。これにより、電鋳層の厚みの変動を10%以内に抑えることができ、鉄ニッケル合金層の厚みを2〜4μmにしても基板から取り外すことができる。合金層の厚みが大きく変動する通常の電鋳では、めっき層が非常に薄い(2μm未満)部位が発生して分離できない現象がよく認められる。
表1及び表2には、本発明の実施例におけるInvar電気めっきシャドーマスク(鉄ニッケル合金層)の厚み及び成分データを示す。
Step S103: Electroforming the substrate to form an iron nickel alloy layer on the substrate. Specifically, the substrate is placed in an electroforming solution and electrodeposition is performed at an appropriate temperature. For example, the substrate is placed in an electroforming solution having a pH value of 2 to 3.5, and electroforming is performed at a temperature of 40 to 60 ° C. For example, the electroforming process on the substrate may be performed at a temperature of 50 ° C. in an electroforming liquid having a pH value of 3. The electroformed anode may be an Invar composite anode or a nickel anode and an iron anode arranged in a ratio of 1: 2 to 2: 1. Further, the rectifier may control the currents of the iron anode and the nickel anode, for example, using two rectifiers. Here, power may be supplied with a DC current having a current value of 2 to 4 A / dm 2 or a puzzle current with a switch ratio of 1: 3 to 3: 1. The distance between the cathode and the anode is 10 to 50 cm. When electroformed for 30 to 60 minutes, an iron-nickel alloy layer having a thickness of 2 to 100 μm can be obtained. In the case of an OLED shadow mask (or mask plate), the thinner the thinner, the smaller the shadow. However, in the case of normal Invar electroforming, the thickness varies by 20% or more and becomes non-uniform. In this example, the electroforming liquid was more uniformly distributed by stirring the electroforming liquid during the electroforming process. Furthermore, it controlled so that an electric current might be distributed uniformly using a clamp. Thereby, the fluctuation | variation of the thickness of an electroformed layer can be suppressed within 10%, and even if the thickness of an iron nickel alloy layer is 2-4 micrometers, it can remove from a board | substrate. In normal electroforming in which the thickness of the alloy layer varies greatly, a phenomenon that the plating layer is very thin (less than 2 μm) and cannot be separated is often observed.
Tables 1 and 2 show the thickness and component data of the Invar electroplating shadow mask (iron nickel alloy layer) in the examples of the present invention.

表1、第1のシャドーマスク試料の厚み及び成分   Table 1, thickness and composition of the first shadow mask sample

表2、第2のシャドーマスク試料の厚み及び成分   Table 2, Thickness and composition of the second shadow mask sample

表1と表2に示すように、本実施例における鉄ニッケル合金層の厚み及び成分のばらつきは、±4〜7%に抑えられており、均一性に優れた鉄ニッケル合金層を得ることができた。   As shown in Tables 1 and 2, the variation in thickness and components of the iron-nickel alloy layer in this example is suppressed to ± 4 to 7%, and an iron-nickel alloy layer excellent in uniformity can be obtained. did it.

また、本実施例では、電鋳液は、1L当たり硫酸ニッケル40〜80g、硫酸第一鉄20〜40g、pH緩衝剤30〜45g、抗酸化剤1〜5g、陽極活性化剤10〜20g及び錯化剤0.2〜1gを含む。抗酸化剤としては、クエン酸、酒石酸、シュウ酸、アスコルビン酸、リンゴ酸、クマリン−3−カルボン酸のうちの1種又は複数種を用いてもよい。陽極活性化剤としては、塩化ニッケル、塩化第一鉄、塩酸のうちの1種又は複数種を用いてもよい。錯化剤としては、アンモニア水、クエン酸ナトリウム、シュウ酸ナトリウムのうちの1種又は複数種を用いてもよい。鉄含有量が異なればめっき合金製品の磁性と熱膨張率も異なり、鉄含有量が高ければ高いほど、磁性が強くなる。   Moreover, in this example, the electroforming liquid is 40-80 g of nickel sulfate per liter, 20-40 g of ferrous sulfate, 30-45 g of pH buffer, 1-5 g of antioxidant, 10-20 g of anodic activator, and Contains 0.2 to 1 g of complexing agent. As the antioxidant, one or more of citric acid, tartaric acid, oxalic acid, ascorbic acid, malic acid, and coumarin-3-carboxylic acid may be used. As the anode activator, one or more of nickel chloride, ferrous chloride, and hydrochloric acid may be used. As the complexing agent, one or more of ammonia water, sodium citrate, and sodium oxalate may be used. If the iron content is different, the magnetism and thermal expansion coefficient of the plated alloy product are also different, and the higher the iron content, the stronger the magnetism.

図2に示すように、40〜64%の鉄含有量範囲において、熱膨張率(CET、α)が鉄含有量の増加に伴って降下し、鉄含有量が64%付近になると最小となり、そして鉄含有量の増加に伴って熱膨張率が上昇する(ニッケル含有量が減少する)。OLED蒸着用マスクプレートは、使用するときに磁性と低い熱膨張率が求めらる。このため、OLED金属マスクプレートとして理想的な材料は、磁性を有し、且つCTEがほぼ0のニッケル鉄合金である。なお、鉄含有量は、電鋳液中の第一鉄イオンの濃度、鉄陽極の数量及び電気めっきパラメータによって調整することができる。本実施例では、上記の電鋳プロセスにより鉄含有量が40〜70%の鉄ニッケル合金層を得ることができる。   As shown in FIG. 2, in the iron content range of 40 to 64%, the coefficient of thermal expansion (CET, α) decreases as the iron content increases, and becomes minimum when the iron content reaches around 64%. As the iron content increases, the coefficient of thermal expansion increases (the nickel content decreases). The OLED deposition mask plate is required to have magnetism and a low coefficient of thermal expansion when used. For this reason, an ideal material for the OLED metal mask plate is a nickel-iron alloy having magnetism and a CTE of almost zero. In addition, iron content can be adjusted with the density | concentration of the ferrous ion in an electroforming liquid, the quantity of an iron anode, and an electroplating parameter. In this example, an iron-nickel alloy layer having an iron content of 40 to 70% can be obtained by the electroforming process.

工程S105:感光膜を剥離する。例えば、電鋳を行った基板を剥離液に20〜40分間浸漬すると、剥離液により感光膜が溶解して、感光膜が剥離さする。   Step S105: The photosensitive film is peeled off. For example, when the electroformed substrate is immersed in a peeling solution for 20 to 40 minutes, the photosensitive film is dissolved by the peeling solution, and the photosensitive film is peeled off.

工程S107:鉄ニッケル合金層を基板から分離する。   Step S107: The iron nickel alloy layer is separated from the substrate.

工程S109:鉄ニッケル合金層に焼なましを施して、鉄ニッケル合金製シャドーマスクを得る。当該工程は、アルゴン水素混合ガス又は真空環境で行ってもよい。焼なまし温度は、約200〜1000℃、時間は、2〜10時間に設定する。表3は、CTE値を示す。   Step S109: The iron-nickel alloy layer is annealed to obtain an iron-nickel alloy shadow mask. This step may be performed in an argon hydrogen mixed gas or a vacuum environment. The annealing temperature is set to about 200 to 1000 ° C., and the time is set to 2 to 10 hours. Table 3 shows the CTE values.

表3、CTE値   Table 3, CTE values

表3に示すように、焼なまし工程により、鉄ニッケル合金電鋳製品(すなわち鉄ニッケル合金層)の熱膨張率を効果的に低減することができる。   As shown in Table 3, the thermal expansion coefficient of the iron-nickel alloy electroformed product (that is, the iron-nickel alloy layer) can be effectively reduced by the annealing step.

上記の電鋳法で製造する場合、直接、鉄含有量が40〜70%で、熱膨張率が4〜10ppm/℃の鉄ニッケル合金製シャドーマスクを得ることができる。工程S109の焼なましを行うと、熱膨張率をさらに1〜3ppm/℃に低減できる。本発明のシャドーマスクは、さらに、構造が安定で変形しにくく、薄くて厚みが均一であるなどの特徴を有する。   When manufactured by the above electroforming method, an iron-nickel alloy shadow mask having an iron content of 40 to 70% and a thermal expansion coefficient of 4 to 10 ppm / ° C. can be obtained directly. When annealing in step S109 is performed, the coefficient of thermal expansion can be further reduced to 1 to 3 ppm / ° C. The shadow mask of the present invention is further characterized in that the structure is stable and hardly deformed, and is thin and uniform in thickness.

上記のとおり、本発明の好ましい実施例をいくつか示して説明した。ただし、本発明は、その他の実施例を除外して、本明細書に開示されている形態に限定されるものではい。その他のさまざまな組み合わせ、修正又は環境に用いることもでき、本明細書に記載されている本発明の技術思想を逸脱しない限り、上記の知見又は関連分野の技術もしくは知識によって変更を加えることができる。よって、当業者による変更や変形などは、本発明の技術的思想と範囲から逸脱しないものであれば、いずれも添付の特許請求の範囲に含まれるものである。
As mentioned above, several preferred embodiments of the present invention have been shown and described. However, the present invention is not limited to the forms disclosed in the present specification, except for other examples. The present invention can be used in various other combinations, modifications, and environments, and can be changed based on the above knowledge or related techniques or knowledge without departing from the technical idea of the present invention described in this specification. . Therefore, any changes or modifications by those skilled in the art are included in the appended claims as long as they do not depart from the technical idea and scope of the present invention.

Claims (18)

鉄ニッケル合金製シャドーマスクの製造方法であって、
感光膜が付着した基板を用意する工程と、
前記基板に電鋳を行い、電鋳液の中で前記基板に鉄ニッケル合金層を形成する工程と、
感光膜を剥離する工程と、
前記鉄ニッケル合金層を前記基板から分離する工程と、
前記鉄ニッケル合金層に焼なましを施して、前記鉄ニッケル合金シャドーマスクを得る工程と、を含み
前記電鋳液は1L当たり硫酸ニッケル40〜80g、硫酸第一鉄20〜40g、抗酸化剤1〜2g、陽極活性化剤10〜20g及び錯化剤0.2〜0.4gを含むことを特徴とする鉄ニッケル合金製シャドーマスクの製造方法。
A method for manufacturing a shadow mask made of iron-nickel alloy,
Preparing a substrate with a photosensitive film attached thereto;
Performing electroforming on the substrate and forming an iron-nickel alloy layer on the substrate in an electroforming solution;
Removing the photosensitive film;
Separating the iron-nickel alloy layer from the substrate;
Annealing the iron-nickel alloy layer to obtain the iron-nickel alloy shadow mask, wherein the electroforming liquid is 40-80 g of nickel sulfate per liter, 20-40 g of ferrous sulfate, and an antioxidant. A method for producing a shadow mask made of iron-nickel alloy, comprising 1-2 g, 10-20 g of an anodic activator and 0.2-0.4 g of a complexing agent.
前記基板に電鋳を行う工程は、前記電鋳液を撹拌する工程をさらに含むことを特徴とする請求項1に記載の鉄ニッケル合金製シャドーマスクの製造方法。   The method of manufacturing a shadow mask made of iron-nickel alloy according to claim 1, wherein the step of electroforming the substrate further includes a step of stirring the electroforming liquid. 前記鉄ニッケル合金層の鉄含有量が40〜70%であることを特徴とする請求項1に記載の鉄ニッケル合金製シャドーマスクの製造方法。   The method for producing a shadow mask made of iron-nickel alloy according to claim 1, wherein the iron-nickel alloy layer has an iron content of 40 to 70%. 前記電鋳液のpH値が2〜3.5であることを特徴とする請求項1に記載の鉄ニッケル合金製シャドーマスクの製造方法。   The method for producing a shadow mask made of iron-nickel alloy according to claim 1, wherein the electroforming solution has a pH value of 2 to 3.5. 前記電鋳液の温度が40〜60℃であることを特徴とする請求項1に記載の鉄ニッケル合金製シャドーマスクの製造方法。   2. The method of manufacturing a shadow mask made of iron-nickel alloy according to claim 1, wherein the temperature of the electroforming liquid is 40 to 60 ° C. 3. 前記感光膜を剥離する工程において、剥離液に20〜40分間浸漬してから、水洗することを特徴とする請求項1に記載の鉄ニッケル合金製シャドーマスクの製造方法。   2. The method of manufacturing a shadow mask made of iron-nickel alloy according to claim 1, wherein in the step of peeling the photosensitive film, the film is immersed in a stripping solution for 20 to 40 minutes and then washed with water. 前記鉄ニッケル合金層に前記焼なましを施す工程は、アルゴン水素混合ガス又は真空下で行われることを特徴とする請求項1に記載の鉄ニッケル合金製シャドーマスクの製造方法。   2. The method of manufacturing a shadow mask made of iron-nickel alloy according to claim 1, wherein the step of annealing the iron-nickel alloy layer is performed under an argon hydrogen mixed gas or under vacuum. 前記鉄ニッケル合金層に前記焼なましを施す工程では、200〜1000℃の温度下で2〜10時間焼なましを行うことを特徴とする請求項7に記載の鉄ニッケル合金製シャドーマスクの製造方法。   8. The iron-nickel alloy shadow mask according to claim 7, wherein in the step of annealing the iron-nickel alloy layer, annealing is performed at a temperature of 200 to 1000 ° C. for 2 to 10 hours. Production method. 前記鉄ニッケル合金層に直接電鋳した後の熱膨張率は、4〜10ppm/℃であり、焼なましを施した後の熱膨張率は、1〜3ppm/℃に低減することを特徴とする請求項1に記載の鉄ニッケル合金製シャドーマスクの製造方法。   The coefficient of thermal expansion after direct electroforming on the iron-nickel alloy layer is 4 to 10 ppm / ° C., and the coefficient of thermal expansion after annealing is reduced to 1 to 3 ppm / ° C. The manufacturing method of the shadow mask made from an iron nickel alloy of Claim 1 to do. 前記基板に電鋳を行う工程で、整流器を用いて鉄陽極及びニッケル陽極の電流をコントロールすることを特徴とする請求項1に記載の鉄ニッケル合金製シャドーマスクの製造方法。   2. The method of manufacturing a shadow mask made of iron-nickel alloy according to claim 1, wherein the current of the iron anode and the nickel anode is controlled using a rectifier in the step of electroforming the substrate. 前記電鋳液は、1L当たりpH緩衝剤30〜45gをさらに含むことを特徴とする請求項1に記載の鉄ニッケル合金製シャドーマスクの製造方法。   2. The method of manufacturing a shadow mask made of iron-nickel alloy according to claim 1, wherein the electroforming liquid further contains 30 to 45 g of a pH buffer per liter. 前記鉄ニッケル合金層の厚みが4〜100μmであることを特徴とする請求項1に記載の鉄ニッケル合金製シャドーマスクの製造方法。   The method of manufacturing a shadow mask made of iron-nickel alloy according to claim 1, wherein the iron-nickel alloy layer has a thickness of 4 to 100 µm. 前記鉄ニッケル合金層の厚みのばらつきは3〜6μmであることを特徴とする請求項1に記載の鉄ニッケル合金製シャドーマスクの製造方法。   The method of manufacturing a shadow mask made of iron-nickel alloy according to claim 1, wherein the thickness variation of the iron-nickel alloy layer is 3 to 6 µm. 請求項1に記載の製造方法により作製されることを特徴とする鉄ニッケル合金製シャドーマスク。   An iron-nickel alloy shadow mask produced by the manufacturing method according to claim 1. 前記鉄ニッケル合金層の厚みが4〜100μmであることを特徴とする請求項14に記載の鉄ニッケル合金製シャドーマスク。   15. The iron-nickel alloy shadow mask according to claim 14, wherein the iron-nickel alloy layer has a thickness of 4 to 100 μm. 前記鉄ニッケル合金層の厚みのばらつきは3〜6μmであることを特徴とする請求項14に記載の鉄ニッケル合金製シャドーマスク。   15. The iron-nickel alloy shadow mask according to claim 14, wherein the thickness variation of the iron-nickel alloy layer is 3 to 6 μm. 前記鉄ニッケル合金層の鉄含有量が40〜70%であることを特徴とする請求項14に記載の鉄ニッケル合金製シャドーマスク。   15. The iron-nickel alloy shadow mask according to claim 14, wherein the iron-nickel alloy layer has an iron content of 40 to 70%. 熱膨張率が1〜3ppm/℃であることを特徴とする請求項14に記載の鉄ニッケル合金製シャドーマスク。
15. The iron-nickel alloy shadow mask according to claim 14, wherein the coefficient of thermal expansion is 1 to 3 ppm / ° C.
JP2018178152A 2018-03-13 2018-09-21 Iron nickel alloy shadow mask and manufacturing method thereof Pending JP2019157264A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810206291.8A CN108468072B (en) 2018-03-13 2018-03-13 Iron-nickel alloy shadow mask and preparation method thereof
CN201810206291.8 2018-03-13

Publications (1)

Publication Number Publication Date
JP2019157264A true JP2019157264A (en) 2019-09-19

Family

ID=63265302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018178152A Pending JP2019157264A (en) 2018-03-13 2018-09-21 Iron nickel alloy shadow mask and manufacturing method thereof

Country Status (3)

Country Link
JP (1) JP2019157264A (en)
KR (1) KR102071144B1 (en)
CN (1) CN108468072B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03229892A (en) * 1990-02-05 1991-10-11 Mitsui Mining & Smelting Co Ltd Electrolytic invar composite foil
JP2006524292A (en) * 2003-04-24 2006-10-26 ナノインバー カンパニー リミテッド Nanoinvar alloy and method for producing the same
JP2011168831A (en) * 2010-02-18 2011-09-01 Kyoto Ichi Method for manufacturing iron-nickel alloy plating film having high hardness and low thermal expansion coefficient
CN103205702A (en) * 2012-01-16 2013-07-17 昆山允升吉光电科技有限公司 A metal mask plate for vapor deposition produced from a nickel-iron alloy
CN103205714A (en) * 2012-01-16 2013-07-17 昆山允升吉光电科技有限公司 A metal mask for vapor plating and a production method thereof
JP2017141482A (en) * 2016-02-08 2017-08-17 アルバック成膜株式会社 Functional component, and method for producing functional component
JP2017226918A (en) * 2016-06-24 2017-12-28 エイピー系▲統▼股▲フン▼有限公司Ap Systems Inc. Production method of fine metal mask using electrocasting plating method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62109991A (en) * 1985-07-29 1987-05-21 C Uyemura & Co Ltd Electroplating solution
JPS6342390A (en) * 1986-08-08 1988-02-23 Seiko Instr & Electronics Ltd Matrix for electroforming
JP2005154879A (en) * 2003-11-28 2005-06-16 Canon Components Inc Metal mask for vapor deposition, and method of producing vapor deposition pattern using the same
CN100449038C (en) * 2005-12-06 2009-01-07 安泰科技股份有限公司 Process for preparing invor alloy foil
KR101374690B1 (en) * 2011-11-16 2014-03-31 한국생산기술연구원 Fe-Ni Alloyed Foil Substrates for CIGS Solar Cell
KR101422609B1 (en) * 2011-11-17 2014-07-24 한국생산기술연구원 Thermal Expansion Control Type Flexible Metal Substrate With Texture
CN103205782A (en) * 2012-01-16 2013-07-17 昆山允升吉光电科技有限公司 A preparation method for a vapor plating mask plate made from a nickel-iron alloy
CN103205695B (en) * 2012-01-16 2015-11-25 昆山允升吉光电科技有限公司 A kind of evaporation mask plate and manufacture craft thereof
CN103205784A (en) * 2012-01-16 2013-07-17 昆山允升吉光电科技有限公司 A preparation method for a vapor plating mask plate
CN103572206B (en) * 2013-11-08 2019-01-15 昆山允升吉光电科技有限公司 A kind of production method of compound mask plate component
CN105177496B (en) * 2015-09-25 2019-06-04 信利(惠州)智能显示有限公司 The production method of mask plate
JP6264523B1 (en) * 2016-05-23 2018-01-24 凸版印刷株式会社 Metal mask for vapor deposition, method for producing metal mask for vapor deposition, and metal mask forming substrate for vapor deposition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03229892A (en) * 1990-02-05 1991-10-11 Mitsui Mining & Smelting Co Ltd Electrolytic invar composite foil
JP2006524292A (en) * 2003-04-24 2006-10-26 ナノインバー カンパニー リミテッド Nanoinvar alloy and method for producing the same
JP2011168831A (en) * 2010-02-18 2011-09-01 Kyoto Ichi Method for manufacturing iron-nickel alloy plating film having high hardness and low thermal expansion coefficient
CN103205702A (en) * 2012-01-16 2013-07-17 昆山允升吉光电科技有限公司 A metal mask plate for vapor deposition produced from a nickel-iron alloy
CN103205714A (en) * 2012-01-16 2013-07-17 昆山允升吉光电科技有限公司 A metal mask for vapor plating and a production method thereof
JP2017141482A (en) * 2016-02-08 2017-08-17 アルバック成膜株式会社 Functional component, and method for producing functional component
JP2017226918A (en) * 2016-06-24 2017-12-28 エイピー系▲統▼股▲フン▼有限公司Ap Systems Inc. Production method of fine metal mask using electrocasting plating method

Also Published As

Publication number Publication date
CN108468072B (en) 2020-05-05
KR102071144B1 (en) 2020-01-29
CN108468072A (en) 2018-08-31
KR20190108029A (en) 2019-09-23

Similar Documents

Publication Publication Date Title
JP2006347165A (en) Metal mask for making pattern
KR20180057461A (en) Producing method of mask integrated frame
JP2019157262A (en) Metal shadow mask and manufacturing method thereof
TW201833350A (en) Mother plate, producing method of mother plate and mask, and deposition method of oled picture element
JP2007182623A (en) Method for producing thin metal product
CN103205782A (en) A preparation method for a vapor plating mask plate made from a nickel-iron alloy
KR101843035B1 (en) Producing methods of the mother plate and mask
JP2019157264A (en) Iron nickel alloy shadow mask and manufacturing method thereof
US3476658A (en) Method of making microcircuit pattern masks
TWI470123B (en) Black passivation treatment method of steel surface
TWI687553B (en) Iron-nickel alloy shadow mask and manufacturing method thereof
KR101832988B1 (en) Mother plate and producing method of the same, and producing method of the same
JP2020500263A (en) Base plate, method of manufacturing base plate, method of manufacturing mask, and method of depositing OLED pixels
US3634205A (en) Method of plating a uniform copper layer on an apertured printed circuit board
US20110088932A1 (en) Wiring circuit board and method of manufacturing the same
JP3745748B2 (en) Manufacturing method of mold by electroforming
US3926748A (en) Electrodeposition of gold-antimony alloys and compositions therefor
KR102104349B1 (en) A method for producing an alloy coating film having high strength, high corrosion resistance and low thermal expansion, and an alloy coating film produced thereby.
Visalli et al. Galvanic Growth
KR20220155047A (en) Method for manufacturing fine-metal-mask using mold coated with graphene
KR102301331B1 (en) Producing method of mask
JPH10265961A (en) Method for electroless-plating aluminum or aluminum alloy
JP2017218631A (en) Air bubble removal method for precision electroforming method
KR101942657B1 (en) Manufacturing method of heat radiating substrate
JP2004300527A (en) Direct gold plating method, and plating device therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190909

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191209

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210316