JP2011168831A - Method for manufacturing iron-nickel alloy plating film having high hardness and low thermal expansion coefficient - Google Patents

Method for manufacturing iron-nickel alloy plating film having high hardness and low thermal expansion coefficient Download PDF

Info

Publication number
JP2011168831A
JP2011168831A JP2010033377A JP2010033377A JP2011168831A JP 2011168831 A JP2011168831 A JP 2011168831A JP 2010033377 A JP2010033377 A JP 2010033377A JP 2010033377 A JP2010033377 A JP 2010033377A JP 2011168831 A JP2011168831 A JP 2011168831A
Authority
JP
Japan
Prior art keywords
iron
plating film
alloy plating
nickel alloy
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010033377A
Other languages
Japanese (ja)
Other versions
JP5478292B2 (en
Inventor
Tomio Nagayama
富男 永山
Toshihiro Nakamura
俊博 中村
Takayo Yamamoto
貴代 山本
Hajime Okumura
元 奥村
Shigeru Yamato
茂 大和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuno Chemical Industries Co Ltd
Kyoto City
Original Assignee
Okuno Chemical Industries Co Ltd
Kyoto City
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuno Chemical Industries Co Ltd, Kyoto City filed Critical Okuno Chemical Industries Co Ltd
Priority to JP2010033377A priority Critical patent/JP5478292B2/en
Publication of JP2011168831A publication Critical patent/JP2011168831A/en
Application granted granted Critical
Publication of JP5478292B2 publication Critical patent/JP5478292B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for forming an iron-nickel alloy plating film which hardly causes the deterioration of film hardness even after heat treatment in the iron-nickel alloy plating film formed according to an electroplating method. <P>SOLUTION: The method for manufacturing the iron-nickel alloy plating film having high hardness and low thermal expansion coefficient is characterized in that the iron-nickel alloy plating film in which fine particles are co-deposited according to the electroplating method is formed in an iron-nickel alloy plating liquid prepared by dispersing the fine particles having an average particle size of 3 &mu;m or less in an aqueous solution containing nickel salt, a ferrous salt, a complexing agent and a buffer agent and, thereafter, the formed plating film is heat-treated at a temperature of 400&deg;C or higher. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、高硬度及び低熱膨張係数を有する鉄−ニッケル合金めっき皮膜及びその製造方法に関する。   The present invention relates to an iron-nickel alloy plating film having a high hardness and a low thermal expansion coefficient, and a method for producing the same.

鉄−ニッケル合金は、鉄とニッケルの比率を変えることによって、様々な特性が得られることから工業的に広く利用されている。特に、鉄含有率50〜70%程度の鉄−ニッケル合金は、線膨張係数がFeおよびNi単体に比べ小さいことから、低熱膨張材料として半導体リードフレームや光ファイバーのパッケージ部品などの電子通信機器分野を中心に用いられている。   Iron-nickel alloys are widely used industrially because various properties can be obtained by changing the ratio of iron to nickel. In particular, the iron-nickel alloy with an iron content of about 50 to 70% has a smaller coefficient of linear expansion than Fe and Ni alone. Used in the center.

近年、電子通信機器の小型、高機能化に対応した高密度実装が進み、それらに使用される部品の微細化がさらに要求されている。しかしながら、従来のプレスやエッチングなどによる加工方法では、最終製品に用いられる部品の形状や寸法精度に限界が見えつつある。   In recent years, high-density mounting corresponding to miniaturization and high functionality of electronic communication devices has progressed, and further miniaturization of components used for them has been demanded. However, with conventional processing methods such as pressing and etching, there are limits to the shape and dimensional accuracy of the parts used in the final product.

これに対して、LIGAプロセスなどの光リソグラフィー技術と電鋳技術を融合させた微細加工方法によれば、高アスペクト比の形状で寸法精度の高い部品の製造が可能となる。例えば、Ni電鋳法によってメタルマスクや微細成型金型が製造されている。さらに、Ni電鋳製品に代えて、より低い線膨張係数を有する鉄−ニッケル合金の電鋳製品を用いることによって、温度変化に対して寸法安定性がより向上すると考えられる。   On the other hand, according to the microfabrication method in which the photolithography technology such as the LIGA process and the electroforming technology are merged, it is possible to manufacture a part with a high aspect ratio and high dimensional accuracy. For example, metal masks and fine molds are manufactured by Ni electroforming. Furthermore, it is considered that the dimensional stability is improved with respect to the temperature change by using an iron-nickel alloy electroformed product having a lower linear expansion coefficient instead of the Ni electroformed product.

このように低熱膨張性を有する鉄−ニッケル合金の電鋳製品については、幅広い利用分野が期待されるが、電気めっきによって形成された鉄−ニッケル合金皮膜は、合金相が溶製合金とは異なるため、そのままでは溶製合金と同等の低熱膨張特性は得られず、低熱膨張特性を発現させるためには、めっき後に600℃程度で熱処理を行うことが必要となる。しかしながら、電気めっきによって形成された鉄−ニッケル合金皮膜については、熱処理を行うと皮膜硬度が大きく低下するために、鉄−ニッケル合金皮膜の有する優れた性能を十分に利用することができない(下記非特許文献1、2参照)。   As described above, a wide application field is expected for the iron-nickel alloy electroformed product having low thermal expansion, but the iron-nickel alloy film formed by electroplating has an alloy phase different from that of the melted alloy. Therefore, the low thermal expansion characteristics equivalent to those of the molten alloy cannot be obtained as they are, and in order to develop the low thermal expansion characteristics, it is necessary to perform heat treatment at about 600 ° C. after plating. However, the iron-nickel alloy film formed by electroplating cannot sufficiently utilize the superior performance of the iron-nickel alloy film because the film hardness greatly decreases when heat treatment is carried out (the following non-characteristic). (See Patent Documents 1 and 2).

表面技術、第57巻、第10号、733〜737頁Surface Technology, Vol.57, No.10, 733-737 表面技術、第58巻、第11号、675〜681頁Surface Technology, Vol. 58, No. 11, pp. 675-681

本発明は、上記した従来技術の現状に鑑みてなされたものであり、その主な目的は、電気めっき方法で形成される鉄−ニッケル合金めっき皮膜について、熱処理後においても皮膜性能の低下、特に、皮膜硬度の低下が生じ難い新規な鉄−ニッケル合金めっき皮膜の形成方法を提供することである。   The present invention has been made in view of the current state of the prior art described above, and the main purpose of the iron-nickel alloy plating film formed by the electroplating method is to reduce the film performance even after heat treatment. An object of the present invention is to provide a novel method for forming an iron-nickel alloy plating film in which a decrease in film hardness hardly occurs.

本発明者は、上記した目的を達成すべく鋭意研究を重ねてきた。その結果、鉄−ニッケル合金めっき液中に平均粒径3μm程度以下の微粒子を分散させためっき液を用いて形成された複合鉄−ニッケル合金めっき皮膜は、熱処理を行った場合にも結晶粒の成長が抑制されて、皮膜硬度の低下を抑制できることを見出した。その結果、熱処理後の鉄−ニッケル合金皮膜は、溶製鉄−ニッケル合金と同様の低熱膨張係数を有すると共に、高硬度を有する皮膜となり、温度変化に対する安定性に優れ、高硬度を有する鉄−ニッケル合金として、各種の用途に有効に利用できることを見出し、ここに本発明を完成するに至った。   The present inventor has intensively studied to achieve the above-described object. As a result, the composite iron-nickel alloy plating film formed by using a plating solution in which fine particles having an average particle size of about 3 μm or less are dispersed in the iron-nickel alloy plating solution has a crystal grain size even when heat treatment is performed. It has been found that the growth is suppressed and the decrease in film hardness can be suppressed. As a result, the heat-treated iron-nickel alloy film has a low thermal expansion coefficient similar to that of the molten iron-nickel alloy, and has a high hardness, and is excellent in stability against temperature changes and has a high hardness. As an alloy, it has been found that it can be effectively used for various applications, and the present invention has been completed here.

即ち、本発明は、下記の高硬度及び低熱膨張係数を有する鉄−ニッケル合金めっき皮膜及びその製造方法を提供するものである。
1. ニッケル塩、第一鉄塩、錯化剤及び緩衝剤を含む水溶液中に平均粒径3μm以下の微粒子を分散させた鉄−ニッケル合金めっき液中で、電気めっき法によって該微粒子が共析した鉄−ニッケル合金めっき皮膜を形成した後、形成されためっき皮膜を400℃以上の温度で熱処理することを特徴とする、低膨張特性及び高硬度を有する鉄−ニッケル合金めっき皮膜の製造方法。
2. 形成される鉄−ニッケル合金めっき皮膜における鉄とニッケルの比率が、両者の合計量を100質量%として、鉄が60〜68質量%及びニッケルが32〜40質量%である上記項1に記載の鉄−ニッケル合金めっき皮膜の製造方法。
3. 形成される鉄−ニッケル合金めっき皮膜における微粒子の含有量が、鉄、ニッケル及び微粒子の合計量を100質量%として、0.1〜15質量%である上記項1又は2に記載の鉄−ニッケル合金めっき皮膜の製造方法。
4. 上記項1〜3のいずれかの方法によって形成される低膨張特性及び高硬度を有する鉄−ニッケル合金めっき皮膜。
5. 鉄とニッケルの比率が、両者の合計量を100質量%として、鉄が60〜68質量%及びニッケルが32〜40質量%であり、
微粒子の含有量が、鉄、ニッケル及び微粒子の合計量を100質量%として、0.1〜15質量%であり、
線膨張係数が6×10−6/℃以下であり、
ビッカース硬度が170HV以上である、
上記項4に記載の鉄−ニッケル合金めっき皮膜。
6. 微粒子が共析した鉄−ニッケル合金めっき皮膜を400℃以上の温度で熱処理することを特徴とする、低膨張特性及び高硬度を有する鉄−ニッケル合金めっき皮膜の製造方法であって、
該鉄−ニッケル合金めっき皮膜における鉄とニッケルの比率が、両者の合計量を100質量%として、鉄が60〜68質量%及びニッケルが32〜40質量%であり、
該鉄−ニッケル合金めっき皮膜における微粒子の含有量が、鉄、ニッケル及び微粒子の合計量を100質量%として、0.1〜15質量%である、
ことを特徴とする方法。
That is, this invention provides the iron-nickel alloy plating film which has the following high hardness and a low thermal expansion coefficient, and its manufacturing method.
1. Iron in which the fine particles are co-deposited by electroplating in an iron-nickel alloy plating solution in which fine particles having an average particle size of 3 μm or less are dispersed in an aqueous solution containing a nickel salt, a ferrous salt, a complexing agent and a buffer. A method for producing an iron-nickel alloy plating film having low expansion characteristics and high hardness, characterized in that after the nickel alloy plating film is formed, the formed plating film is heat-treated at a temperature of 400 ° C or higher.
2. Item 2. The ratio of iron to nickel in the formed iron-nickel alloy plating film, wherein the total amount of both is 100% by mass, iron is 60 to 68% by mass, and nickel is 32 to 40% by mass. A method for producing an iron-nickel alloy plating film.
3. The iron-nickel according to item 1 or 2, wherein the content of fine particles in the formed iron-nickel alloy plating film is 0.1 to 15% by mass, where the total amount of iron, nickel and fine particles is 100% by mass. A method for producing an alloy plating film.
4). The iron-nickel alloy plating film which has the low expansion characteristic and high hardness formed by the method in any one of said item | item 1-3.
5. The ratio of iron and nickel is 60 to 68% by mass of iron and 32 to 40% by mass of nickel, with the total amount of both being 100% by mass,
The content of fine particles is 0.1 to 15% by mass, where the total amount of iron, nickel and fine particles is 100% by mass,
The linear expansion coefficient is 6 × 10 −6 / ° C. or less,
Vickers hardness is 170HV or more,
Item 5. The iron-nickel alloy plating film according to Item 4.
6). A method for producing an iron-nickel alloy plating film having low expansion characteristics and high hardness, characterized by heat-treating an iron-nickel alloy plating film in which fine particles are co-deposited at a temperature of 400 ° C. or more,
The ratio of iron and nickel in the iron-nickel alloy plating film is 60 to 68% by mass of iron and 32 to 40% by mass of nickel, with the total amount of both being 100% by mass,
The content of fine particles in the iron-nickel alloy plating film is 0.1 to 15% by mass, where the total amount of iron, nickel and fine particles is 100% by mass,
A method characterized by that.

鉄−ニッケル合金めっき浴
本発明では、基本となる鉄−ニッケル合金めっき浴としては、特に限定はなく、公知の鉄−ニッケル合金めっき浴を用いることができる。このようなめっき浴は、通常、第一鉄塩、ニッケル塩、錯化剤及び緩衝剤を含むものである。
Iron-Nickel Alloy Plating Bath In the present invention, the basic iron-nickel alloy plating bath is not particularly limited, and a known iron-nickel alloy plating bath can be used. Such plating baths usually contain ferrous salts, nickel salts, complexing agents and buffering agents.

第一鉄塩の具体例としては、硫酸第一鉄、塩化第一鉄,スルファミン酸第一鉄等を例示できる。ニッケル塩の具体例としては、硫酸ニッケル、塩化ニッケル、炭酸ニッケル、酢酸ニッケル、スルファミン酸ニッケル、メタンスルフォン酸ニッケル等を挙げることができる。錯化剤の具体例としては、マロン酸、酒石酸、コハク酸、クエン酸、リンゴ酸等の有機酸、これらの有機酸の水溶性塩、例えば、ナトリウム塩、カリウム塩、アンモニウム塩等を挙げることができる。これらの内で、特に、マロン酸、酒石酸、これらの水溶性塩を用いることが特に好ましい。緩衝剤の具体例としては、ホウ酸、酢酸、クエン酸等を挙げることができる。   Specific examples of the ferrous salt include ferrous sulfate, ferrous chloride, ferrous sulfamate and the like. Specific examples of the nickel salt include nickel sulfate, nickel chloride, nickel carbonate, nickel acetate, nickel sulfamate, nickel methanesulfonate, and the like. Specific examples of complexing agents include organic acids such as malonic acid, tartaric acid, succinic acid, citric acid, malic acid, and water-soluble salts of these organic acids, such as sodium salts, potassium salts, ammonium salts, etc. Can do. Of these, it is particularly preferable to use malonic acid, tartaric acid, and water-soluble salts thereof. Specific examples of the buffer include boric acid, acetic acid, citric acid and the like.

鉄−ニッケル合金めっき浴における各成分の具体的な配合量については、使用する成分の種類によって異なるが、後述する目的とする組成の鉄−ニッケルめっき皮膜が形成されるように公知の配合量に基づいて決めればよい。   About the specific compounding quantity of each component in an iron-nickel alloy plating bath, although it changes with kinds of component to be used, it becomes a well-known compounding quantity so that the iron-nickel plating film of the target composition mentioned later may be formed. You can decide based on it.

更に、鉄−ニッケル合金めっき浴には、必要に応じて、光沢剤、界面活性剤、酸化防止剤等の公知の添加剤を加えることができる。これらの内で、光沢剤としては、サッカリンナトリウム、ナフタレンスルホン酸ナトリウム、アリルスルホン酸ナトリウム、ビニルスルホン酸ナトリウム、ブチンジオール、プロパギルアルコール、アセチレン系化合物、ピリジニウムプロピルスルホベタイン等を例示できる。界面活性剤としては、硫酸エステル系、アルキルスルホン酸系、スルホコハク酸エステル系等の界面活性剤を例示できる。酸化防止剤としては、アスコルビン酸、イソアスコルビン酸等を例示できる。   Furthermore, well-known additives, such as a brightener, surfactant, antioxidant, can be added to an iron-nickel alloy plating bath as needed. Among these, examples of the brightener include saccharin sodium, sodium naphthalene sulfonate, sodium allyl sulfonate, sodium vinyl sulfonate, butynediol, propargyl alcohol, acetylene compounds, pyridinium propyl sulfobetaine and the like. Examples of the surfactant include sulfate ester-based, alkyl sulfonate-based, sulfosuccinate-based surfactants and the like. Examples of the antioxidant include ascorbic acid and isoascorbic acid.

以下、本発明に適用できる鉄−ニッケル合金めっき浴の好ましい組成範囲及びめっき条件を記載する。   Hereinafter, the preferable composition range and plating conditions of the iron-nickel alloy plating bath applicable to the present invention will be described.

硫酸ニッケル〔NiSO4・6H2O〕 150〜300g/L
塩化ニッケル〔NiCl2・6H2O〕 30〜70g/L
ホウ酸 〔H3BO3〕 30〜45g/L
硫酸第一鉄 〔FeSO4・7H2O〕 3.4〜139g/L
サッカリンナトリウム2水和物 0.5〜6g/L
マロン酸 1〜10g/L
pH 2〜3
浴温 40〜60℃
陰極電流密度 2〜8A/dm2
本発明では、上記した鉄−ニッケル合金めっき浴に対して、平均粒径3μm以下、好ましくは平均粒径1μm以下の微粒子を分散させためっき浴を用いて、該微粒子が共析した鉄−ニッケル合金めっき皮膜を形成することが必要である。微粒子の平均粒径の下限値については特に限定的ではないが、例えば、0.005μm程度以上の粒径のものを用いることができる。
Nickel sulfate (NiSO 4・ 6H 2 O) 150 ~ 300g / L
Nickel chloride [NiCl 2・ 6H 2 O] 30 ~ 70g / L
Boric acid [H 3 BO 3 ] 30-45 g / L
Ferrous sulfate [FeSO 4・ 7H 2 O] 3.4 ~ 139g / L
Saccharin sodium dihydrate 0.5-6g / L
Malonic acid 1-10g / L
pH 2-3
Bath temperature 40-60 ° C
Cathode current density 2 ~ 8A / dm 2
In the present invention, an iron-nickel alloy in which the fine particles are co-deposited by using a plating bath in which fine particles having an average particle size of 3 μm or less, preferably an average particle size of 1 μm or less, are dispersed with respect to the iron-nickel alloy plating bath described above. It is necessary to form an alloy plating film. The lower limit value of the average particle size of the fine particles is not particularly limited, but for example, particles having a particle size of about 0.005 μm or more can be used.

平均粒径3μm以下の微粒子としては、後述する熱処理の際に、分解、溶解などが生じることなく、その形状を維持できるものであればよい。例えば、ダイヤモンド、窒化ホウ素、窒化ケイ素、炭化ケイ素、シリカ、アルミナなどを用いることができる。これらの内で、例えば、炭化ケイ素は、後述する熱処理後の鉄−ニッケル合金めっき皮膜の熱膨張率に近い熱膨張率を有するので、温度変化に対して寸法安定性に優れた鉄−ニッケル合金めっき皮膜を形成するためには、特に有効である。   The fine particles having an average particle size of 3 μm or less may be any fine particles that can maintain their shapes without being decomposed or dissolved during the heat treatment described later. For example, diamond, boron nitride, silicon nitride, silicon carbide, silica, alumina, or the like can be used. Among these, for example, silicon carbide has a thermal expansion coefficient close to that of an iron-nickel alloy plating film after heat treatment, which will be described later. Therefore, an iron-nickel alloy having excellent dimensional stability against temperature changes. This is particularly effective for forming a plating film.

尚、該微粒子の平均粒径は、倍率5000倍の顕微鏡で複数の視野を観察して、視野範囲内の任意に選択した100個の微粒子の粒径の平均値である。この場合、非球形の粒子については、長径の長さを粒径とする。   The average particle diameter of the fine particles is an average value of the particle diameters of 100 fine particles arbitrarily selected within a visual field range by observing a plurality of visual fields with a microscope having a magnification of 5000 times. In this case, for the non-spherical particles, the length of the major axis is defined as the particle size.

鉄−ニッケル合金めっき浴中の微粒子の配合量は、形成される鉄−ニッケル合金めっき皮膜中に共析する微粒子量によって決めればよく、通常、1〜40g/L程度の範囲内とすればよい。   The blending amount of the fine particles in the iron-nickel alloy plating bath may be determined by the amount of fine particles co-deposited in the formed iron-nickel alloy plating film, and is usually within a range of about 1 to 40 g / L. .

鉄−ニッケル合金めっき皮膜の形成方法
上記した微粒子を分散させた鉄−ニッケル合金めっき浴を用いて、微粒子が共析した複合めっき皮膜を形成する方法としては、該合金めっき浴を撹拌して該微粒子を均一に分散させた状態において通電して、電気めっきを行えばよい。具体的なめっき条件については、使用する鉄−ニッケル合金めっき浴の種類に応じて、通常のめっき条件の範囲内から適宜決めればよい。めっき浴を撹拌する方法については、特に限定はなく、例えば、機械的撹拌法、空気撹拌法などを採用して、めっき浴中に添加した微粒子が均一に分散されるように撹拌すればよく、特に、第一鉄塩の酸化を防止するために、機械撹拌法が好ましい。
Method of forming iron-nickel alloy plating film As a method of forming a composite plating film in which fine particles are co-deposited using the iron-nickel alloy plating bath in which the fine particles are dispersed, the alloy plating bath is stirred to Electroplating may be performed by energizing in a state where fine particles are uniformly dispersed. Specific plating conditions may be appropriately determined from the range of normal plating conditions depending on the type of iron-nickel alloy plating bath to be used. The method for stirring the plating bath is not particularly limited. For example, a mechanical stirring method, an air stirring method, or the like may be adopted, and stirring may be performed so that the fine particles added in the plating bath are uniformly dispersed. In particular, a mechanical stirring method is preferable in order to prevent oxidation of the ferrous salt.

本発明の高硬度及び低熱膨張係数を有する鉄−ニッケル合金めっき皮膜の製造方法では、上記した方法で微粒子が共析した鉄−ニッケル合金めっき皮膜を形成した後、熱処理を行うことが必要である。一般に、電気めっき法によって形成される鉄−ニッケル合金めっき皮膜は、めっき直後には、fcc相とbcc相が存在する2相合金であり、十分な低熱膨張特性を発現できないが、熱処理を施すことによって、fcc相の単相合金となり、熱膨張係数が大きく低下する。この際、通常の鉄−ニッケル合金めっき皮膜では、結晶粒が粗大化して皮膜の軟化が起こり溶製合金より低い硬度となる。これに対して、本発明方法によって形成される微粒子が共析した鉄−ニッケル合金めっき皮膜では、熱処理を行う際に、硬度の低下が大きく抑制される。この理由については明確ではないが、本発明の方法で形成される鉄−ニッケル合金めっき皮膜では、皮膜中に微粒子が点在しており、これによって熱処理の際に結晶粒の粗大化が抑制されるため、硬度低下が起こり難くなると考えられる。   In the method for producing an iron-nickel alloy plating film having a high hardness and a low thermal expansion coefficient according to the present invention, it is necessary to perform a heat treatment after forming the iron-nickel alloy plating film in which fine particles are co-deposited by the above-described method. . Generally, an iron-nickel alloy plating film formed by an electroplating method is a two-phase alloy in which an fcc phase and a bcc phase exist immediately after plating, and cannot exhibit sufficient low thermal expansion characteristics, but is subjected to heat treatment. Thus, an fcc phase single-phase alloy is obtained, and the thermal expansion coefficient is greatly reduced. At this time, in an ordinary iron-nickel alloy plating film, the crystal grains become coarse and the film softens, resulting in a lower hardness than that of the melted alloy. On the other hand, in the iron-nickel alloy plating film in which fine particles formed by the method of the present invention are co-deposited, a decrease in hardness is greatly suppressed when heat treatment is performed. Although the reason for this is not clear, in the iron-nickel alloy plating film formed by the method of the present invention, fine particles are scattered in the film, which suppresses the coarsening of crystal grains during heat treatment. For this reason, it is considered that the hardness is unlikely to decrease.

熱処理温度については、通常、400℃程度以上とすればよく、600℃以上とすることが好ましい。熱処理温度の上限については特に限定的ではなく、めっき皮膜中に含まれる微粒子が分解、溶融などを生じない温度であればよいが、過度に高温とすることは経済的に不利である。通常、800℃程度以下とすればよい。   About heat processing temperature, what is necessary is just normally about 400 degreeC or more, and it is preferable to set it as 600 degreeC or more. The upper limit of the heat treatment temperature is not particularly limited as long as the fine particles contained in the plating film do not decompose or melt, but it is economically disadvantageous to have an excessively high temperature. Usually, the temperature may be about 800 ° C. or lower.

熱処理の雰囲気については、特に限定的ではないが、めっき皮膜の酸化による変質を避けるためには、不活性ガス雰囲気、還元性雰囲気などの非酸化性雰囲気とすることが好ましい。   The atmosphere for the heat treatment is not particularly limited, but in order to avoid alteration due to oxidation of the plating film, a non-oxidizing atmosphere such as an inert gas atmosphere or a reducing atmosphere is preferable.

熱処理時間については特に限定的ではなく、めっき皮膜の膜厚などによって異なるが、通常、3分〜1時間程度の範囲とすればよい。   The heat treatment time is not particularly limited, and varies depending on the film thickness of the plating film, but is usually in the range of about 3 minutes to 1 hour.

鉄−ニッケル合金めっき皮膜
上記した方法で熱処理を行って得られる鉄−ニッケル合金めっき皮膜は、熱処理によって膨張係数が低下して低膨張特性を有するものとなる。更に、熱処理の際に、硬度の低下が抑制されており、高硬度及び低熱膨張係数を有する鉄−ニッケル合金めっき皮膜となる。
Iron-nickel alloy plating film The iron-nickel alloy plating film obtained by performing the heat treatment by the above-described method has a low expansion characteristic due to a decrease in expansion coefficient due to the heat treatment. Further, during the heat treatment, a decrease in hardness is suppressed, and an iron-nickel alloy plating film having a high hardness and a low thermal expansion coefficient is obtained.

鉄−ニッケル合金めっき皮膜の組成については、特に限定的ではないが、特に、鉄とニッケルの合計を100質量%として、鉄60〜68質量%及びニッケル32〜40質量%程度の範囲の組成の鉄−ニッケル合金は、熱処理によって膨張係数が大きく低下する点で好ましい。   The composition of the iron-nickel alloy plating film is not particularly limited. Particularly, the composition is in the range of about 60 to 68% by mass of iron and 32 to 40% by mass of nickel, where the total of iron and nickel is 100% by mass. An iron-nickel alloy is preferable in that the expansion coefficient is greatly reduced by heat treatment.

鉄−ニッケル合金めっき皮膜中に共析する微粒子の比率についても特に限定的ではないが、熱処理による硬度の低下を抑制するためには、鉄、ニッケル及び微粒子の合計量を100質量%として、微粒子量を0.1〜15質量%程度とすることが好ましく、1〜12質量%程度とすることがより好ましい。微粒子の量が少なすぎる場合には、硬度低下を抑制する効果が十分には発現されず、一方、微粒子の量が多すぎると、めっき皮膜自体の性能の低下が生じることがあるので、好ましくない。   The ratio of fine particles that are eutectoid in the iron-nickel alloy plating film is not particularly limited, but in order to suppress a decrease in hardness due to heat treatment, the total amount of iron, nickel, and fine particles is set to 100% by mass. The amount is preferably about 0.1 to 15% by mass, and more preferably about 1 to 12% by mass. If the amount of the fine particles is too small, the effect of suppressing the decrease in hardness is not sufficiently exhibited. On the other hand, if the amount of the fine particles is too large, the performance of the plating film itself may be deteriorated, which is not preferable. .

熱処理後の鉄−ニッケル合金めっき皮膜の熱膨張係数については、形成されるめっき皮膜の組成、熱処理温度等によって異なるが、好ましい組成範囲であるFe:Ni(質量%)=60〜68:32:40の範囲の鉄−ニッケル合金を400℃程度以上の温度で熱処理した場合には、6×10−6/℃程度以下という低い線膨張係数を有するものとなる。 The thermal expansion coefficient of the iron-nickel alloy plating film after the heat treatment varies depending on the composition of the plating film to be formed, the heat treatment temperature, and the like, but a preferable composition range is Fe: Ni (mass%) = 60 to 68:32: When an iron-nickel alloy in the range of 40 is heat-treated at a temperature of about 400 ° C. or higher, it has a low linear expansion coefficient of about 6 × 10 −6 / ° C. or lower.

また、熱処理後のめっき皮膜の硬度については、熱処理の際の硬度の低下が大きく抑制されており、ビッカース硬度として170HV程度以上の高い硬度を有するものとなる。   Moreover, about the hardness of the plating film after heat processing, the fall of the hardness in the case of heat processing is suppressed greatly, and it has a high hardness about 170HV or more as Vickers hardness.

鉄−ニッケル合金めっき皮膜の膜厚については特に限定的ではなく、通電時間を調整することによって任意の膜厚のめっき皮膜を形成できる。例えば、200μm程度以上の厚膜の鉄−ニッケル合金めっき皮膜であっても、クラックなどの異常を生じることなく、容易に形成することができる。   The film thickness of the iron-nickel alloy plating film is not particularly limited, and a plating film having an arbitrary film thickness can be formed by adjusting the energization time. For example, even a thick iron-nickel alloy plating film having a thickness of about 200 μm or more can be easily formed without causing abnormalities such as cracks.

本発明の鉄−ニッケル合金めっき皮膜の製造方法によれば、電気めっき法によって形成された鉄−ニッケル合金めっき皮膜について、熱膨張係数を低下させるための熱処理を行う場合にも、硬度の低下が大きく抑制されて、実用上望ましい高硬度を維持することができる。   According to the method for producing an iron-nickel alloy plating film of the present invention, even when a heat treatment for reducing the thermal expansion coefficient is performed on an iron-nickel alloy plating film formed by electroplating, the hardness is reduced. It is greatly suppressed and the high hardness desirable in practice can be maintained.

このため、本発明方法を適用することによって、温度変化に対して寸法安定性がよく、高硬度を有する鉄−ニッケル合金めっき皮膜を形成することが可能となる。   For this reason, by applying the method of the present invention, it is possible to form an iron-nickel alloy plating film having good dimensional stability against temperature changes and high hardness.

以下、実施例を挙げて本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.

実施例1
硫酸ニッケル250g/L、塩化ニッケル40g/L、ホウ酸30g/L、硫酸第一鉄97.3g/L、サッカリンナトリウム2水和物2g/L、及びマロン酸5.2g/Lを含有するpH2.5の水溶液からなる鉄−ニッケル合金めっき浴に、平均粒径0.5μmの炭化ケイ素15g/Lを添加しためっき浴を用い、被めっき物としてステンレス板を用いて、機械撹拌下で、浴温50℃、陰極電流密度4A/dm2で5時間のめっきを行った。
Example 1
PH 2.5 containing nickel sulfate 250 g / L, nickel chloride 40 g / L, boric acid 30 g / L, ferrous sulfate 97.3 g / L, sodium saccharin dihydrate 2 g / L, and malonic acid 5.2 g / L An iron-nickel alloy plating bath made of an aqueous solution, using a plating bath to which 15 g / L of silicon carbide having an average particle size of 0.5 μm is added, using a stainless steel plate as the object to be plated, under mechanical stirring, a bath temperature of 50 ° C., Plating was performed at a cathode current density of 4 A / dm 2 for 5 hours.

形成されためっき皮膜は、膜厚が約200μmであり、線膨張係数が10.7×10-6/℃、硬度がHV245であった。 The formed plating film had a film thickness of about 200 μm, a linear expansion coefficient of 10.7 × 10 −6 / ° C., and a hardness of HV245.

このめっき皮膜について、約5mPaの真空雰囲気下において、600℃、1時間の熱処理を行った。熱処理後のめっき皮膜の線膨張係数は、1.1×10-6/℃と大きく減少しており、溶製(64質量%鉄−36質量%ニッケル)合金の値とほぼ同等となった。また、熱処理後のめっき皮膜の硬度はHV196であり、高硬度が維持されていた。 This plating film was heat-treated at 600 ° C. for 1 hour in a vacuum atmosphere of about 5 mPa. The linear expansion coefficient of the plated film after the heat treatment was greatly reduced to 1.1 × 10 −6 / ° C., which was almost the same as that of the melted (64 mass% iron-36 mass% nickel) alloy. Further, the hardness of the plating film after the heat treatment was HV196, and high hardness was maintained.

尚、めっき皮膜の組成は、蛍光X線分析法によって測定し、めっき皮膜の硬度は、マイクロビッカース硬度計(荷重0.49N)を用いて室温で測定した。また、線膨張係数については、短冊形状(5mm×20mm×0.1mm)の試料を用いて測定した熱膨張曲線から30〜100℃の範囲で求めた。熱膨張測定は、試料の伸びの検出に差動トランスを用いた示差熱膨張計を用い、N雰囲気、昇温速度5℃/minで行った。 The composition of the plating film was measured by fluorescent X-ray analysis, and the hardness of the plating film was measured at room temperature using a micro Vickers hardness meter (load 0.49 N). Moreover, about the linear expansion coefficient, it calculated | required in the range of 30-100 degreeC from the thermal expansion curve measured using the strip-shaped (5 mm x 20 mmx0.1mm) sample. The thermal expansion was measured by using a differential thermal dilatometer using a differential transformer for detecting the elongation of the sample, in an N 2 atmosphere and at a heating rate of 5 ° C./min.

実施例2〜10及び比較例1
下記表1に示す浴I又は浴IIの鉄−ニッケル合金めっき浴を用い、これに、微粒子として、炭化ケイ素(SiC)又は酸化ケイ素(SiO)を添加して、微粒子を分散した鉄−ニッケル合金めっき浴を調製した。
Examples 2 to 10 and Comparative Example 1
The iron-nickel alloy plating bath of bath I or bath II shown in Table 1 below is used, and silicon carbide (SiC) or silicon oxide (SiO 2 ) is added as fine particles to the iron-nickel in which the fine particles are dispersed. An alloy plating bath was prepared.

これらのめっき浴を用い、被めっき物としてステンレス板を用いて、下記表2に示す微粒子の添加量及び電解条件で、微粒子が共析した鉄−ニッケル合金めっき皮膜を形成した。その後、実施例1と同様にして、600℃で1時間の熱処理を行った。   Using these plating baths, an iron-nickel alloy plating film in which fine particles were co-deposited was formed using a stainless steel plate as an object to be plated with the addition amount of fine particles and electrolytic conditions shown in Table 2 below. Thereafter, in the same manner as in Example 1, heat treatment was performed at 600 ° C. for 1 hour.

下記表3に、形成されためっき皮膜の膜厚、合金比及び微粒子の共析量を示し、更に、熱処理前と熱処理後の硬度と線膨張係数を示す。   Table 3 below shows the film thickness of the formed plating film, the alloy ratio, and the amount of eutectoid of fine particles, and further shows the hardness and linear expansion coefficient before and after heat treatment.

Figure 2011168831
Figure 2011168831

Figure 2011168831
Figure 2011168831

Figure 2011168831
Figure 2011168831

以上の結果から明らかなように、微粒子を分散させた鉄−ニッケル合金めっき浴から形成されるめっき皮膜は、熱処理を行うことによって、高硬度を維持したままで、線膨張係数を大きく低減することができる。これに対して、微粒子を含まないめっき皮膜から形成された比較例1の鉄−ニッケル合金めっき皮膜については、熱処理によって熱膨張係数が低下するが、めっき皮膜の硬度も大きく低下することが判る。 As is clear from the above results, the plating film formed from the iron-nickel alloy plating bath in which fine particles are dispersed greatly reduces the linear expansion coefficient while maintaining high hardness by performing heat treatment. Can do. On the other hand, it can be seen that the thermal expansion coefficient of the iron-nickel alloy plating film of Comparative Example 1 formed from a plating film containing no fine particles is reduced by heat treatment, but the hardness of the plating film is also greatly reduced.

Claims (6)

ニッケル塩、第一鉄塩、錯化剤及び緩衝剤を含む水溶液中に平均粒径3μm以下の微粒子を分散させた鉄−ニッケル合金めっき液中で、電気めっき法によって該微粒子が共析した鉄−ニッケル合金めっき皮膜を形成した後、形成されためっき皮膜を400℃以上の温度で熱処理することを特徴とする、低膨張特性及び高硬度を有する鉄−ニッケル合金めっき皮膜の製造方法。 Iron in which the fine particles are co-deposited by electroplating in an iron-nickel alloy plating solution in which fine particles having an average particle size of 3 μm or less are dispersed in an aqueous solution containing a nickel salt, a ferrous salt, a complexing agent and a buffer. A method for producing an iron-nickel alloy plating film having low expansion characteristics and high hardness, characterized in that after the nickel alloy plating film is formed, the formed plating film is heat-treated at a temperature of 400 ° C or higher. 形成される鉄−ニッケル合金めっき皮膜における鉄とニッケルの比率が、両者の合計量を100質量%として、鉄が60〜68質量%及びニッケルが32〜40質量%である請求項1に記載の鉄−ニッケル合金めっき皮膜の製造方法。 The ratio of iron and nickel in the formed iron-nickel alloy plating film is 60 to 68% by mass of iron and 32 to 40% by mass of nickel, with the total amount of both being 100% by mass. A method for producing an iron-nickel alloy plating film. 形成される鉄−ニッケル合金めっき皮膜における微粒子の含有量が、鉄、ニッケル及び微粒子の合計量を100質量%として、0.1〜15質量%である請求項1又は2に記載の鉄−ニッケル合金めっき皮膜の製造方法。 The iron-nickel according to claim 1 or 2, wherein the content of fine particles in the formed iron-nickel alloy plating film is 0.1 to 15% by mass, where the total amount of iron, nickel and fine particles is 100% by mass. A method for producing an alloy plating film. 請求項1〜3のいずれかの方法によって形成される低膨張特性及び高硬度を有する鉄−ニッケル合金めっき皮膜。 The iron-nickel alloy plating film which has the low expansion characteristic and high hardness formed by the method in any one of Claims 1-3. 鉄とニッケルの比率が、両者の合計量を100質量%として、鉄が60〜68質量%及びニッケルが32〜40質量%であり、
微粒子の含有量が、鉄、ニッケル及び微粒子の合計量を100質量%として、0.1〜15質量%であり、
線膨張係数が6×10−6/℃以下であり、
ビッカース硬度が170HV以上である、
請求項4に記載の鉄−ニッケル合金めっき皮膜。
The ratio of iron and nickel is 60 to 68% by mass of iron and 32 to 40% by mass of nickel, with the total amount of both being 100% by mass,
The content of fine particles is 0.1 to 15% by mass, where the total amount of iron, nickel and fine particles is 100% by mass,
The linear expansion coefficient is 6 × 10 −6 / ° C. or less,
Vickers hardness is 170HV or more,
The iron-nickel alloy plating film according to claim 4.
微粒子が共析した鉄−ニッケル合金めっき皮膜を400℃以上の温度で熱処理することを特徴とする、低膨張特性及び高硬度を有する鉄−ニッケル合金めっき皮膜の製造方法であって、
該鉄−ニッケル合金めっき皮膜における鉄とニッケルの比率が、両者の合計量を100質量%として、鉄が60〜68質量%及びニッケルが32〜40質量%であり、
該鉄−ニッケル合金めっき皮膜における微粒子の含有量が、鉄、ニッケル及び微粒子の合計量を100質量%として、0.1〜15質量%である、
ことを特徴とする方法。
A method for producing an iron-nickel alloy plating film having low expansion characteristics and high hardness, characterized by heat-treating an iron-nickel alloy plating film in which fine particles are co-deposited at a temperature of 400 ° C. or more,
The ratio of iron and nickel in the iron-nickel alloy plating film is 60 to 68% by mass of iron and 32 to 40% by mass of nickel, with the total amount of both being 100% by mass,
The content of fine particles in the iron-nickel alloy plating film is 0.1 to 15% by mass, where the total amount of iron, nickel and fine particles is 100% by mass,
A method characterized by that.
JP2010033377A 2010-02-18 2010-02-18 Method for producing iron-nickel alloy plating film having high hardness and low thermal expansion coefficient Active JP5478292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010033377A JP5478292B2 (en) 2010-02-18 2010-02-18 Method for producing iron-nickel alloy plating film having high hardness and low thermal expansion coefficient

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010033377A JP5478292B2 (en) 2010-02-18 2010-02-18 Method for producing iron-nickel alloy plating film having high hardness and low thermal expansion coefficient

Publications (2)

Publication Number Publication Date
JP2011168831A true JP2011168831A (en) 2011-09-01
JP5478292B2 JP5478292B2 (en) 2014-04-23

Family

ID=44683244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010033377A Active JP5478292B2 (en) 2010-02-18 2010-02-18 Method for producing iron-nickel alloy plating film having high hardness and low thermal expansion coefficient

Country Status (1)

Country Link
JP (1) JP5478292B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014237874A (en) * 2013-06-07 2014-12-18 株式会社Jcu Electroplating bath for iron -nickel alloy having low thermal expansion coefficient and high hardness and electroplating method using the same
JP2015217610A (en) * 2014-05-19 2015-12-07 株式会社ボンマーク Metal mask and manufacturing method therefor
JP2018040055A (en) * 2016-09-08 2018-03-15 ポスコPosco Iron-nickel alloy foil and production method thereof
WO2018186217A1 (en) * 2017-04-07 2018-10-11 株式会社Jcu Iron-nickel alloy electroplating liquid for filling and method for filling opening using same, and method for manufacturing circuit substrate
CN110004405A (en) * 2017-12-08 2019-07-12 三星显示有限公司 Mask sheet and its manufacturing method
JP2019157264A (en) * 2018-03-13 2019-09-19 アドバンテック グローバル リミテッドAdvantech Global Ltd Iron nickel alloy shadow mask and manufacturing method thereof
KR20200044860A (en) 2017-09-01 2020-04-29 가부시끼가이샤 제이씨유 Electroplating solution for iron-nickel alloys with low coefficient of thermal expansion and electroplating method using the same
CN112281187A (en) * 2020-11-06 2021-01-29 金川集团股份有限公司 Composite additive for preparing electrolytic nickel and preparation method thereof
WO2021100211A1 (en) * 2019-12-20 2021-05-27 日本製鉄株式会社 Ni-plated steel sheet and method for manufacturing ni-plated steel sheet

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60165389A (en) * 1984-02-09 1985-08-28 Toyota Motor Corp Sliding member and manufacture thereof
JPS61246400A (en) * 1985-04-22 1986-11-01 Riken Corp Wear resistant sliding member
JPH02301591A (en) * 1989-05-17 1990-12-13 Seiko Epson Corp Iron-nickel alloy plating bath
JP2000170914A (en) * 1998-12-10 2000-06-23 Teikoku Piston Ring Co Ltd Combination of cylinder and piston ring
JP2001081594A (en) * 1999-09-16 2001-03-27 Osaka Gas Co Ltd Sliding member
JP2002075730A (en) * 2000-09-05 2002-03-15 Matsushita Electric Ind Co Ltd Plating magnetic alloy film, its manufacturing method, and magnetic alloy plating solution used for the same
JP2005105372A (en) * 2003-09-30 2005-04-21 Tdk Corp Method for manufacturing soft magnetic metal sheet, method for manufacturing laminated soft magnetic member, method for forming plating film, and soft magnetic metal sheet
JP2007262492A (en) * 2006-03-28 2007-10-11 Nippon Steel Corp Surface treated metallic material having excellent magnetic characteristics and method of manufacturing the same
JP2011214057A (en) * 2010-03-31 2011-10-27 Yamagata Prefecture Heat-resistant nickel alloy plating film and forming die using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60165389A (en) * 1984-02-09 1985-08-28 Toyota Motor Corp Sliding member and manufacture thereof
JPS61246400A (en) * 1985-04-22 1986-11-01 Riken Corp Wear resistant sliding member
JPH02301591A (en) * 1989-05-17 1990-12-13 Seiko Epson Corp Iron-nickel alloy plating bath
JP2000170914A (en) * 1998-12-10 2000-06-23 Teikoku Piston Ring Co Ltd Combination of cylinder and piston ring
JP2001081594A (en) * 1999-09-16 2001-03-27 Osaka Gas Co Ltd Sliding member
JP2002075730A (en) * 2000-09-05 2002-03-15 Matsushita Electric Ind Co Ltd Plating magnetic alloy film, its manufacturing method, and magnetic alloy plating solution used for the same
JP2005105372A (en) * 2003-09-30 2005-04-21 Tdk Corp Method for manufacturing soft magnetic metal sheet, method for manufacturing laminated soft magnetic member, method for forming plating film, and soft magnetic metal sheet
JP2007262492A (en) * 2006-03-28 2007-10-11 Nippon Steel Corp Surface treated metallic material having excellent magnetic characteristics and method of manufacturing the same
JP2011214057A (en) * 2010-03-31 2011-10-27 Yamagata Prefecture Heat-resistant nickel alloy plating film and forming die using the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014237874A (en) * 2013-06-07 2014-12-18 株式会社Jcu Electroplating bath for iron -nickel alloy having low thermal expansion coefficient and high hardness and electroplating method using the same
JP2015217610A (en) * 2014-05-19 2015-12-07 株式会社ボンマーク Metal mask and manufacturing method therefor
JP2018040055A (en) * 2016-09-08 2018-03-15 ポスコPosco Iron-nickel alloy foil and production method thereof
CN107805761A (en) * 2016-09-08 2018-03-16 株式会社Posco Iron-nickel alloy paper tinsel and its manufacture method
WO2018186217A1 (en) * 2017-04-07 2018-10-11 株式会社Jcu Iron-nickel alloy electroplating liquid for filling and method for filling opening using same, and method for manufacturing circuit substrate
KR20200044860A (en) 2017-09-01 2020-04-29 가부시끼가이샤 제이씨유 Electroplating solution for iron-nickel alloys with low coefficient of thermal expansion and electroplating method using the same
CN110004405A (en) * 2017-12-08 2019-07-12 三星显示有限公司 Mask sheet and its manufacturing method
JP2019157264A (en) * 2018-03-13 2019-09-19 アドバンテック グローバル リミテッドAdvantech Global Ltd Iron nickel alloy shadow mask and manufacturing method thereof
WO2021100211A1 (en) * 2019-12-20 2021-05-27 日本製鉄株式会社 Ni-plated steel sheet and method for manufacturing ni-plated steel sheet
JP6927433B1 (en) * 2019-12-20 2021-09-01 日本製鉄株式会社 Ni-plated steel sheet and manufacturing method of Ni-plated steel sheet
CN114829678A (en) * 2019-12-20 2022-07-29 日本制铁株式会社 Ni-plated steel sheet and method for producing Ni-plated steel sheet
CN112281187A (en) * 2020-11-06 2021-01-29 金川集团股份有限公司 Composite additive for preparing electrolytic nickel and preparation method thereof

Also Published As

Publication number Publication date
JP5478292B2 (en) 2014-04-23

Similar Documents

Publication Publication Date Title
JP5478292B2 (en) Method for producing iron-nickel alloy plating film having high hardness and low thermal expansion coefficient
JP6839213B2 (en) Boron-doped high entropy alloy and its manufacturing method
TWI447240B (en) Cu-Ni-Si-Co based copper alloy for electronic materials and method of manufacturing the same
JP2008075171A (en) HEAT RESISTANT ALLOY SPRING AND Ni-BASED ALLOY WIRE USED THEREFOR
TW200521254A (en) Copper alloy and method for production thereof
KR20090016485A (en) Cu-ni-si alloy
JP2006299393A (en) Monophase amorphous alloy superior in ductility
Sakita et al. Influence of current density on crystalline structure and magnetic properties of electrodeposited Co-rich CoNiW alloys
TW201736613A (en) Copper alloy sheet material and method for producing copper alloy sheet material
Matsui et al. Effect of additives on tensile properties of bulk nanocrystalline Ni–W alloys electrodeposited from a sulfamate bath
KR20120137507A (en) Cu-si-co alloy for electronic materials, and method for producing same
JP2011195927A (en) Copper alloy for electronic material and method for producing the same
Barzegar et al. Effect of phosphorous content and heat treatment on the structure, hardness and wear behavior of Co-P coatings
Matsui et al. Improvement in tensile ductility of electrodeposited bulk nanocrystalline Ni–W by sulfamate bath using propionic acid
JP2006524292A (en) Nanoinvar alloy and method for producing the same
Bacal et al. Electrodeposition of high-tungsten W-Ni-Cu alloys. Impact of copper on deposition process and coating structure
JP2015095500A (en) Nanocrystalline alloy strip and magnetic core using the same
KR101665617B1 (en) Electroplating composition of low thermal expansion iron-nickel-cobalt ternary alloy and electroplated low-thermal expansion iron-nickel-cobalt ternary alloy using the same
JP2007308801A (en) Nickel/cobalt/phosphorus electroplating composition and its application
JP6055611B2 (en) Chrome plating and chrome plating film
KR100931739B1 (en) Invar alloy and its manufacturing method
JP6084899B2 (en) Electroplating bath for iron-nickel alloy having low thermal expansion coefficient and high hardness, and electroplating method using the same
Nagayama et al. Electrodeposition of invar Fe-Ni alloy/SiC particle composite
JP2013067848A (en) Cu-Co-Si-BASED COPPER ALLOY STRIP AND METHOD FOR PRODUCING THE SAME
JP2016216833A (en) Chromium plated article and chromium plated film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140210

R150 Certificate of patent or registration of utility model

Ref document number: 5478292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250