KR100931739B1 - Invar alloy and its manufacturing method - Google Patents
Invar alloy and its manufacturing method Download PDFInfo
- Publication number
- KR100931739B1 KR100931739B1 KR1020070105457A KR20070105457A KR100931739B1 KR 100931739 B1 KR100931739 B1 KR 100931739B1 KR 1020070105457 A KR1020070105457 A KR 1020070105457A KR 20070105457 A KR20070105457 A KR 20070105457A KR 100931739 B1 KR100931739 B1 KR 100931739B1
- Authority
- KR
- South Korea
- Prior art keywords
- nickel
- chloride
- invar alloy
- alloy
- hydrochloric acid
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/56—Electroplating: Baths therefor from solutions of alloys
- C25D3/562—Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D1/00—Electroforming
- C25D1/04—Wires; Strips; Foils
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Mechanical Engineering (AREA)
- Electroplating And Plating Baths Therefor (AREA)
Abstract
본 발명은 인바 합금 및 그 제조방법에 관한 것이다. 본 발명에 따른 인바 합금은 물, 염화제1철, 황산니켈, 염화니켈, 염산, 사카린, 나트륨라우릴설페이트, 염화칼슘을 포함하는 용액을 전해액으로 사용하여, 전기도금방식에 의해 형성한 것을 특징으로 한다. 이에 의하여, 상용 인바 합금보다 저열팽창성을 가지고, 기계적 강도가 우수하며, 전해효율을 향상시키며, 재료의 손실을 줄여 제조원가를 절감할 수 있다.The present invention relates to an Invar alloy and a method of manufacturing the same. Invar alloy according to the present invention is formed by electroplating using a solution containing water, ferrous chloride, nickel sulfate, nickel chloride, hydrochloric acid, saccharin, sodium lauryl sulfate, calcium chloride as an electrolyte solution. do. As a result, it has lower thermal expansion properties than commercial invar alloys, has excellent mechanical strength, improves electrolytic efficiency, and reduces material loss, thereby reducing manufacturing costs.
Description
본 발명은, 인바 합금 및 그 제조방법에 관한 것으로서, 보다 상세하게는, 전해효율을 향상시키도록 전해액의 조성물을 개선한 인바 합금 및 그 제조방법에 관한 것이다.The present invention relates to an invar alloy and a method for manufacturing the same, and more particularly, to an inba alloy and a method for manufacturing the same, wherein the composition of the electrolyte solution is improved to improve the electrolytic efficiency.
일반적으로 철-니켈합금은 니켈 함량에 따라 다양한 물성을 나타내며, 저열팽창 특성은 니켈의 함량이 중량비로 20%∼50% 범위일 때 나타난다.In general, iron-nickel alloys exhibit various physical properties depending on the nickel content, and low thermal expansion properties appear when the nickel content is in the range of 20% to 50% by weight.
한편, 인바 합금은 철 63.5%에 니켈 36.5%를 첨가하여 이루어진 합금으로서, 열팽창계수가 0에 가까우며, 스테인레스강과 비교하여 약 1/10 정도인 오스테나이트 결정구조를 가지며, 대표적인 저열팽창 합금으로 생산되어 상업적으로 널리 사용된다.On the other hand, invar alloy is an alloy made by adding 36.5% nickel to iron 63.5%, the coefficient of thermal expansion is close to zero, has an austenite crystal structure of about 1/10 compared to stainless steel, and is produced as a typical low thermal expansion alloy Widely used commercially.
인바 합금의 발명 이후 지난 100여년 동안 기본 조성에 Co, Mo, W, Ti, Al, Cr, C 등을 첨가하여 온도변화에 따른 탄성변화를 보상한 인바(Elinvar), 낮은 열팽창 특성과 석출에 의한 강화 효과를 함께 실현시킨 인바(Metelinvar), 기존 인바 합금의 문제점 중의 하나인 템포럴/디멘져널 불안정성(temporal/dimensional instability)를 상쇄시킨 인바(Fixinvar) 등을 비롯한 다양한 종류의 인바 합금들 이 개발되어 사용되고 있다.Since the invention of Invar alloy, Colin, Mo, W, Ti, Al, Cr, C, etc. have been added to the basic composition for the last 100 years to compensate for the elastic change due to temperature changes. Various types of Invar alloys have been developed, including Intel (Metelinvar), which combines reinforcement effects, and Fixinvar, which offsets the temporal / dimensional instability, one of the problems of existing Invar alloys. It is used.
한편, 인바 합금은 타 강종에 비해 열팽창 계수가 낮으므로, 정밀 계측기기, 서모스태틱 바이메탈(thermostatic bimetal), 칼라 TV의 섀도우 마스크(shadow mask) 등 전자 부품용 소재로 널리 사용되고 있다.On the other hand, the Invar alloy has a lower coefficient of thermal expansion than other steel grades, and thus is widely used as an electronic component material for precision measuring instruments, thermostatic bimetals, and shadow masks of color TVs.
이와 같이 다양한 분야에 적용되는 철-니켈합금 박판을 제조하는 방법은 여러 가지가 있으나, 니켈을 다량 함유한 강들의 경우 고온 산화에 매우 민감하여 고온에서 압연시 산화량이 상당량 발생하며, 이에 현재에는 냉간압연법이 주로 이용되고 있다.As described above, there are various methods of manufacturing iron-nickel alloy thin plates applied to various fields, but steels containing a large amount of nickel are very sensitive to high temperature oxidation, and thus a significant amount of oxidation occurs when rolling at high temperature. The rolling method is mainly used.
냉간압연법을 사용하는 경우 진공용해, 단조, 열간압연, 노말라이징, 1차냉간압연, 중간어닐링, 2차냉간압연, 환원분위기에서의 최종 어닐링 등의 공정을 거쳐야 하며, 두께가 얇은 박판을 제작하기 위해서는 다단 압연을 시행해야 하기 때문에 공정이 복잡하고 균질의 제품을 얻기 어려울 뿐만 아니라 제조원가가 상승하는 문제점이 있다.When cold rolling is used, vacuum melting, forging, hot rolling, normalizing, primary cold rolling, intermediate annealing, secondary cold rolling, and final annealing in a reducing atmosphere are required. In order to perform the multi-stage rolling, the process is complicated and difficult to obtain a homogeneous product, there is a problem that the manufacturing cost increases.
종래의 이러한 제조방법의 한계를 극복하기 위해, 전기도금(성형)(전주성형)에 의한 철-니켈 합금제조에 대한 연구가 많이 이루어지고 있으며, 전기도금 방법에 의한 인바 합금 제조 방법은 적절한 전해액의 선택 공정온도, 전류밀도 등 공정조건이 까다로운 문제점이 있다.In order to overcome the limitations of the conventional manufacturing method, a lot of researches have been made on the production of iron-nickel alloys by electroplating (molding) (electroforming), and the method of preparing Invar alloys by electroplating is appropriate. There is a problem in that the process conditions such as selection process temperature and current density are difficult.
이러한 문제점을 개선하기 위하여 인바 합금 및 그 제조방법이 대한민국등록특허공보 제10-0505002호에 개시되어 있다.In order to improve this problem, Invar alloy and its manufacturing method are disclosed in Korean Patent Publication No. 10-0505002.
종래의 인바 합금 및 그 제조방법에 있어서는, 결정립의 크기가 나노 사이즈 인 나노 인바 합금 박판을 전기도금(전주도금)(electrodeposition) 또는 전주성형(electroforming) 방법을 이용하여 제조할 수 있는 전해(도금, 성형)액과 공정조건을 제공하기 위해, FeSO4·7H2O(Ferrous Sulfate), NiSO4·6H2O(Nickel Sulfate), NiCl2·6H2O(Nickel Chloride), FeCl2·4H2O(Ferrous Chloride)와 Ni(NH2SO3)2 (Nickel Sulfamate)들 중에서 일부를 주성분으로 하고, 여기에 붕산(H3BO3, Boric acid)을 pH 완충제로 첨가한 전해액에서 연속직류 또는 펄스형 직류로 전기도금(성형)하여 음극에 전착하는 철-니켈합금을 전극표면에서 분리하여 인바 합금 박판으로 제작하여 왔다.In the conventional Invar alloy and its manufacturing method, a nano invar alloy sheet having a grain size of nano size can be produced by electroplating (electrodeposition) or electroforming method (plating, FeSO4 · 7H2O (Ferrous Sulfate), NiSO4 · 6H2O (Nickel Sulfate), NiCl2 · 6H2O (Nickel Chloride), FeCl2 · 4H2O (Ferrous Chloride) and Ni (NH2SO3) 2 (Nickel) The iron-nickel alloy electrode which is electroplated (molded) with continuous DC or pulsed DC in an electrolyte solution containing boric acid (H3BO3, Boric acid) as a pH buffer, and electrodeposited on the cathode Separated from the surface has been produced in Inba alloy thin plate.
그런데, 이러한 종래의 인바 합금 및 그 제조방법에 있어서는, 전해액의 pH의 변화를 줄이기 위하여 붕산이 사용되므로, 전해액 내의 물과 염화철은 붕산에 의해 충분히 섞이지 않게 되고, 이에 염화철은 수산화제1철로 변환되어 전해가 발생하는 전해조의 바닥에 침전되어, 전해효율을 저하시킬 뿐만 아니라 재료의 손실이 증대하여 제조원가가 상승하는 문제점이 있다.However, in such a conventional Invar alloy and its manufacturing method, since boric acid is used to reduce the pH change of the electrolyte, water and iron chloride in the electrolyte are not sufficiently mixed by boric acid, and iron chloride is converted to ferrous hydroxide. It is deposited on the bottom of the electrolytic cell in which electrolysis occurs, and not only lowers the electrolytic efficiency but also increases the loss of materials, thereby increasing the manufacturing cost.
상기 배경기술의 문제점에서 해결하고자 하는 과제는, 본 발명에 따라, 전해액의 조성물을 개선하여, 상용 인바 합금보다 저열팽창성을 가지고, 기계적 강도가 우수하며, 전해효율을 향상시키며, 재료의 손실을 줄여 제조원가를 절감할 수 있는 인바 합금 및 그 제조방법을 제공하는 것이다.The problem to be solved in the problems of the background art, according to the present invention, by improving the composition of the electrolyte solution, has a lower thermal expansion than commercial invar alloy, excellent mechanical strength, improve the electrolytic efficiency, reduce the material loss It is to provide an Inba alloy and its manufacturing method that can reduce the manufacturing cost.
상기 과제의 해결 수단은, 본 발명에 따라, 물, 염화제1철(FeCl2·4H2O, Ferrous Chloride), 황산니켈(NiSO4·6H2O, Nickel Sulfate), 염화니켈(NiCl2·6H2O, Nickel Chloride), 염산(HCl, Hydrochloric Acid), 사카린(C7H4NO3SNa, Sodium Saccharin), 나트륨라우릴설페이트(C12H25O4SNa, Sodium Lauryl Sulfate), 염화칼슘(CaCl2, Calcium Chloride)을 포함하는 용액을 전해액으로 사용하여, 전기도금방식에 의해 형성한 것을 특징으로 하는 인바 합금을 제공한다.Means for solving the above problems are water, ferrous chloride (FeCl 2 · 4H 2 O, Ferrous Chloride), nickel sulfate (NiSO 4 · 6H 2 O, Nickel Sulfate), nickel chloride (NiCl 2 · 6H 2 O, Nickel Chloride), and hydrochloric acid according to the present invention. Formed by electroplating using a solution containing (HCl, Hydrochloric Acid), Saccharin (C7H4NO3SNa, Sodium Saccharin), Sodium Lauryl Sulfate (C12H25O4SNa, Sodium Lauryl Sulfate), Calcium Chloride (CaCl2, Calcium Chloride) It provides an Invar alloy characterized in that one.
여기서, 상기 전해액은 물 1L당, 100g의 염화제1철, 220g의 황산니켈, 120g의 염화니켈, 25g의 염산, 2g의 사카린, 0.2g의 나트륨라우릴설페이트, 38g의 염화칼슘을 포함하여 이루어지는 것이 바람직하다.Herein, the electrolyte solution contains 100 g of ferrous chloride, 220 g of nickel sulfate, 120 g of nickel chloride, 25 g of hydrochloric acid, 2 g of saccharin, 0.2 g of sodium lauryl sulfate, and 38 g of calcium chloride per liter of water. desirable.
상기 전해액의 pH는 0.5∼1.5인 것이 바람직하다.It is preferable that pH of the said electrolyte solution is 0.5-1.5.
상기 전해액의 온도는 45∼60℃인 것이 바람직하다.It is preferable that the temperature of the said electrolyte solution is 45-60 degreeC.
상기 전기도금되는 상기 전해액의 전류밀도는 50∼100mA/cm2인 것이 바람직하다.It is preferable that the current density of the electrolytic solution to be electroplated is 50 to 100 mA / cm 2.
상기 과제의 해결 수단은, 본 발명의 다른 분야로서, 물 1L당, 100g의 염화제1철(FeCl2·4H2O, Ferrous Chloride), 220g의 황산니켈(NiSO4·6H2O, Nickel Sulfate), 120g의 염화니켈(NiCl2·6H2O, Nickel Chloride), 25g의 염산(HCl, Hydrochloric Acid), 2g의 사카린(C7H4NO3SNa, Sodium Saccharin), 0.2g의 나트륨라우릴설페이트(C12H25O4SNa, Sodium Lauryl Sulfate), 38g의 염화칼슘(CaCl2, Calcium Chloride)을 포함하는 전해액을 마련한 후, 상기 전해액의 pH는 0.5∼1.5, 전류밀도는 50∼100mA/cm2, 상기 전해액의 온도는 45∼60℃인 상태에서 전기도금방식으로 형성하는 것을 특징으로 하는 인바 합금의 제조방법을 제공한다.As another field of the present invention, a solution of the above problem is 100 g of ferrous chloride (FeCl 2 · 4H 2 O, Ferrous Chloride), 220 g of nickel sulfate (NiSO 4 · 6H 2 O, Nickel Sulfate), 120 g of nickel chloride per liter of water. (NiCl2 · 6H2O, Nickel Chloride), 25g hydrochloric acid (HCl, Hydrochloric Acid), 2g saccharin (C7H4NO3SNa, Sodium Saccharin), 0.2g sodium lauryl sulfate (C12H25O4SNa, Sodium Lauryl Sulfate), 38g calcium chloride (CaCl2, After preparing an electrolyte solution containing Calcium Chloride), the pH of the electrolyte solution is 0.5 to 1.5, the current density is 50 to 100mA / cm2, the temperature of the electrolyte solution is characterized in that the electroplating method is formed in the state of 45 ~ 60 ℃ It provides a method for producing an Invar alloy.
따라서, 상기 과제의 해결 수단에 따르면, 전해액의 조성물을 개선함으로써, 상용 인바 합금보다 저열팽창성을 가지고, 기계적 강도가 우수하며, 전해효율을 향상시키고, 재료의 손실을 줄여 제조원가를 절감할 수 있다.Therefore, according to the solution of the above problem, by improving the composition of the electrolytic solution, it has a lower thermal expansion than commercial invar alloy, excellent mechanical strength, improve the electrolytic efficiency, can reduce the loss of material can reduce the manufacturing cost.
이하에서는 바람직한 실시형태로서, 박판 형태의 인바 합금에 대해 상세히 설명한다.Hereinafter, as a preferable embodiment, the in-bar alloy of a thin plate form is explained in full detail.
박판 형태의 인바 합금은 전기도금방식에 의해 형성되며, 전해액을 사용하여 형성된다.Invar alloy in the form of a thin plate is formed by the electroplating method, it is formed using an electrolyte solution.
본 발명에서 사용되는 전해액은 물, 염화제1철(FeCl2·4H2O, Ferrous Chloride), 황산니켈(NiSO4·6H2O, Nickel Sulfate), 염화니켈(NiCl2·6H2O, Nickel Chloride), 염산(HCl, Hydrochloric Acid), 사카린(C7H4NO3SNa, Sodium Saccharin), 나트륨라우릴설페이트(C12H25O4SNa, Sodium Lauryl Sulfate), 염화칼슘(CaCl2, Calcium Chloride)을 혼합하여 이루어진다. 여기서, 물은 증류수를 사용하는 것이 바람직하다.The electrolyte used in the present invention is water, ferrous chloride (FeCl 2 · 4H 2 O, Ferrous Chloride), nickel sulfate (NiSO 4 · 6H 2 O, Nickel Sulfate), nickel chloride (NiCl 2 · 6H 2 O, Nickel Chloride), hydrochloric acid (HCl, Hydrochloric Acid ), Saccharin (C7H4NO3SNa, Sodium Saccharin), sodium lauryl sulfate (C12H25O4SNa, Sodium Lauryl Sulfate), calcium chloride (CaCl2, Calcium Chloride). Here, it is preferable to use distilled water as water.
한편, 전해액은 바람직하게는, 물 1L당, 100g의 염화제1철, 220g의 황산니켈, 120g의 염화니켈, 25g의 염산, 2g의 사카린, 0.2g의 나트륨라우릴설페이트, 38g의 염화칼슘을 포함하여 이루어지는 것이 보다 효과적이다.On the other hand, the electrolyte preferably contains 100 g of ferrous chloride, 220 g of nickel sulfate, 120 g of nickel chloride, 25 g of hydrochloric acid, 2 g of saccharin, 0.2 g of sodium lauryl sulfate, and 38 g of calcium chloride per liter of water. Is more effective.
사카린은 도금(성형)재의 응력완화제 기능을 위해 첨가하고, 나트륨라우릴설페이트는 계면활성제 기능을 위해 첨가하며, 염화칼슘은 전해질의 전도도 향상을 위해 첨가한다.Saccharin is added for the stress relief function of the plating (molding) material, sodium lauryl sulfate is added for the surfactant function, and calcium chloride is added to improve the conductivity of the electrolyte.
또한, 염산은 pH 유지제로서 첨가하며, 특히 염산은 종래의 붕산(H3BO3, Boric acid)과는 달리 전해액 내의 염화철이 전해가 이루어지는 전해조의 바닥에 침전되는 것을 방지할 뿐만 아니라 물과 충분히 혼합되도록 작용시켜, 전해효율을 향상시킬 뿐만 아니라 재료의 손실을 줄이며 제조원가의 절감을 도모할 수 있게 된다.In addition, hydrochloric acid is added as a pH maintaining agent, and in particular, hydrochloric acid, unlike conventional boric acid (H3BO3, Boric acid), prevents iron chloride in the electrolyte from settling to the bottom of the electrolytic cell where electrolysis is performed, and works to mix with water sufficiently. As a result, not only the electrolytic efficiency is improved, but also material loss can be reduced, and manufacturing cost can be reduced.
한편, 이러한 본 발명에 따른 전해액을 사용하여, 일 예로서 Ni wt%가 36%인 인바 함금 박판을 제조하는 과정에 대해 간략하게 설명하고, 그에 따른 물성치 등을 검토하면 다음과 같다.On the other hand, using the electrolytic solution according to the present invention, a brief description of the process for producing an Invar-alloy thin plate having Ni wt% of 36% as an example, and the physical properties and the like is as follows.
먼저, 상기와 같이 마련된 전해액을 양극과 음극 사이의 간격이 10mm를 유지하고 있는 전해조에 투입한 후, 전해액이 양극과 음극 사이를 0.1∼2.0m/sec의 유속으로 흘러가도록 강제 순환시키면서 양극과 음극에 전기를 가하여 전기도금을 실 시한다. 이때, 전류밀도는 50∼100mA/cm2, 전해액 온도는 45∼60℃에서 시행한다. 한편, 전기도금과정 중에 전해조 내의 전해액은 염산에 의해 pH는 0.5∼1.5 범위로 유지된다.First, the electrolyte prepared as described above is introduced into an electrolytic cell having a gap of 10 mm between the positive electrode and the negative electrode, and then the positive and negative electrodes are forced to circulate so that the electrolyte flows between the positive electrode and the negative electrode at a flow rate of 0.1 to 2.0 m / sec. Apply electroplating to electroplating. At this time, the current density is performed at 50 to 100 mA / cm 2 and the electrolyte temperature at 45 to 60 ° C. On the other hand, the electrolytic solution in the electrolytic cell during the electroplating process is maintained in the pH range of 0.5 to 1.5 by hydrochloric acid.
전기도금이 실시됨에 따라 전해액에 함유된 철화합물과 니켈화합물은 전해액에서 이온으로 유리되며, 전기도금과정에서 음극 판재에 철-니켈(Fe-Ni) 합금으로 전착된다.As the electroplating is carried out, the iron compound and the nickel compound contained in the electrolyte are released as ions from the electrolyte, and are electrodeposited with an iron-nickel (Fe-Ni) alloy on the negative electrode plate during the electroplating process.
그리고, 두께 1∼200㎛의 철-니켈 합금이 음극에 있는 판재에 전착하면 전해작용을 중지시킨 후, 음극 표면으로부터 도금(성형)판재를 분리하여 음극 판재에 1∼200㎛ 두께의 철-니켈(Fe-Ni) 합금이 전착된 박판, 즉 인바 합금 박판을 획득할 수 있게 된다.Then, when the iron-nickel alloy having a thickness of 1 to 200 µm is electrodeposited on the plate in the cathode, the electrolytic action is stopped, and then the plating (molding) sheet is separated from the surface of the cathode, and the iron-nickel having a thickness of 1 to 200 µm on the cathode plate. It is possible to obtain a thin plate on which the (Fe-Ni) alloy is electrodeposited, that is, an Invar alloy thin plate.
한편, 상기와 같은 조성을 갖는 전해액을 사용하여 전기도금방법으로 제조된 본 발명에 따른 인바 합금과 상용 인바 합금의 물성치가 <표 1>에 도시되어 있다.On the other hand, the physical properties of the Inba alloy and the commercial Inba alloy according to the present invention prepared by the electroplating method using the electrolyte having the composition as described above are shown in Table 1.
<표 1> 상용 인바 합금과 본 발명에 따른 인바 합금의 주요 물성치 비교<Table 1> Comparison of main properties of commercial Invar alloy and Invar alloy according to the present invention
<표 1>에 도시된 바와 같이, 본 발명에 따라 제조된 인바 합금의 경우, 상용 인바 합금 보다 우수한 재료특성을 가짐을 알 수 있다.As shown in Table 1, it can be seen that the Invar alloy manufactured according to the present invention has better material properties than the commercial Invar alloy.
즉, 본 발명에 따라 제조된 인바 합금의 경우, 경도(Hardness), 인장강도(Tensile strength), 항복강도(Yield strength)가 상용 인바 합금보다 2배 이상의 값을 가진다.That is, in the case of the Invar alloy produced according to the present invention, the hardness (Hardness), tensile strength (Tensile strength), yield strength (Yield strength) has a value of more than twice than the commercial Invar alloy.
특히, 항복강도의 경우 본 발명에 따라 제조된 인바 합금의 경우 882MPa로 기존의 상용인바 합금의 항복강도 275∼415MPa보다 훨씬 크기 때문에 본 발명에 의한 인바 합금은 고강도를 요구하는 분야에 적용할 수 있다.In particular, in the case of yield strength, the Invar alloy manufactured according to the present invention is 882 MPa, which is much larger than the yield strength of the conventional commercially available Invar alloy 275 to 415 MPa, and thus the Invar alloy according to the present invention can be applied to a field requiring high strength. .
또한, <표 2>에는 상용 인바 합금의 온도구간에 따른 평균 열팽창계수가 도시되어 있고, <표 3>에는 본 발명에 따른 인바 합금의 온도구간에 따른 평균 열팽창계수가 도시되어 있으며, <그래프 1>에는 본 발명에 따른 인바 합금의 온도에 따른 열팽창계수의 변화가 도시되어 있다.In addition, in Table 2, the average coefficient of thermal expansion according to the temperature interval of the commercially available Invar alloy is shown, and in Table 3, the average coefficient of thermal expansion according to the temperature interval of the Invar alloy according to the present invention is shown. The change of the coefficient of thermal expansion according to the temperature of the Invar alloy according to the present invention is shown.
<표 2> 상용 인바 합금의 열팽창계수Table 2 Coefficient of Thermal Expansion of Commercial Invar Alloys
<표 3> 본 발명에 따른 인바 합금의 열팽창계수Table 3 Thermal expansion coefficient of Invar alloy according to the present invention
<그래프 1> <Graph 1>
<표 2> 에 도시된 바와 같이, 상용 인바 합금은 17∼100℃ 범위에서 평균 열팽창계수가 1.66㎛/m·K 정도의 값을 가지며 온도가 상승함에 따라 열팽창계수가 증가함을 알 수 있다.As shown in Table 2, the commercially available Invar alloy has an average thermal expansion coefficient of about 1.66 µm / m · K in the range of 17 to 100 ° C. and the thermal expansion coefficient increases as the temperature increases.
반면, 본 발명에 따른 인바 합금은 <그래프 1>에 도시된 바와 같이 20∼130 ℃ 사이에서는 열팽창계수가 양의 값을 갖고, 130∼140℃ 부근에서 열팽창계수가 0이 된 후, 140℃이상에서는 열팽창계수가 음의 값을 갖는다.On the other hand, the Invar alloy according to the present invention has a positive coefficient of thermal expansion between 20 to 130 ℃ as shown in <graph 1>, and after the thermal expansion coefficient becomes 0 at around 130 to 140 ℃, 140 ℃ or more Has a negative coefficient of thermal expansion.
이에, <표 3> 에 도시된 바와 같이 20∼100℃영역에서의 본 발명에 따른 인바 합금의 평균 열팽창계수는 1.52㎛/m·K 의 값을 가지며, 20∼200℃영역에서의 평균 열팽창계수는 -1.85㎛/m·K 의 값을 갖는다.Thus, as shown in Table 3, the average thermal expansion coefficient of the Invar alloy according to the present invention in the range of 20 to 100 ° C. has a value of 1.52 μm / m · K, and the average coefficient of thermal expansion in the range of 20 to 200 ° C. Has a value of -1.85 µm / m · K.
따라서, 본 발명에 따라 제조된 인바 합금은 일정 온도 이상에서 열팽창계수가 0 또는 음의 값을 가지므로, 이러한 특성이 필요한 새로운 용도에 적용이 가능하다.Therefore, the Invar alloy prepared according to the present invention has a thermal expansion coefficient of 0 or a negative value above a certain temperature, and thus can be applied to new applications requiring such characteristics.
이로써, 본 발명에 따른 인바 합금은 상용 인바 합금보다 저열팽창성을 가지고, 기계적 강도가 우수하다는 것을 알 수 있게 된다.As a result, the Invar alloy according to the present invention has a lower thermal expansion property than the commercial Invar alloy, and it can be seen that the mechanical strength is excellent.
이와 같이, 물, 염화제1철, 황산니켈, 염화니켈, 사카린, 나트륨라우릴설페이트, 염화칼슘을 포함하는 용액에 염산을 pH 유지제로서 첨가하여 전해액을 조성한 후, 이 전해액을 사용하여 전기도금방식으로 전해액에 함유된 철화합물과 니켈화합물을 이온으로 유리시키며 음극 판재에 철-니켈합금을 전착시킴으로써, 상용 인바 합금보다 저열팽창성을 가지고, 기계적 강도가 우수한 인바 합금을 얻을 수 있게 된다.Thus, hydrochloric acid is added as a pH maintainer to a solution containing water, ferrous chloride, nickel sulfate, nickel chloride, saccharin, sodium lauryl sulfate, and calcium chloride to form an electrolyte solution, and then electroplating using this electrolyte solution. As a result, the iron compound and the nickel compound contained in the electrolyte are liberated with ions, and the iron-nickel alloy is electrodeposited on the negative electrode plate, thereby obtaining an Invar alloy having lower thermal expansion property and superior mechanical strength than the commercial Invar alloy.
특히, 전해액에 함유된 염산은 종래의 붕산과는 달리 전해액 내의 염화철이 전해가 이루어지는 전해조의 바닥에 침전되는 것을 방지할 뿐만 아니라 물과 충분히 혼합되도록 작용시켜, 전해효율을 향상시킬 뿐만 아니라 재료의 손실을 줄이며 제조원가의 절감을 도모할 수 있게 된다.In particular, unlike conventional boric acid, hydrochloric acid contained in the electrolyte solution prevents iron chloride in the electrolyte from settling to the bottom of the electrolyzer where electrolysis is performed, and works to be sufficiently mixed with water, thereby improving electrolytic efficiency and loss of material. This can reduce manufacturing costs and reduce manufacturing costs.
본 발명은 기재된 실시예에 한정되는 것이 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형할 수 있음은 이 기술의 분야에서 통상의 지식을 가진 자에게 자명하다. 따라서, 그러한 수정 예 또는 변형 예들은 본 발명의 특허청구범위에 속한다 하여야 할 것이다.It is apparent to those skilled in the art that the present invention is not limited to the described embodiments, and that various modifications and changes can be made without departing from the spirit and scope of the present invention. Therefore, such modifications or variations will have to be belong to the claims of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070105457A KR100931739B1 (en) | 2007-10-19 | 2007-10-19 | Invar alloy and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070105457A KR100931739B1 (en) | 2007-10-19 | 2007-10-19 | Invar alloy and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20090039944A KR20090039944A (en) | 2009-04-23 |
KR100931739B1 true KR100931739B1 (en) | 2009-12-14 |
Family
ID=40763559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020070105457A KR100931739B1 (en) | 2007-10-19 | 2007-10-19 | Invar alloy and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100931739B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101420755B1 (en) * | 2013-12-02 | 2014-07-17 | 주식회사 나노인바 | Iron-nickel-ternary ternary alloy having low thermal expansion characteristics and method for manufacturing the same |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101103386B1 (en) * | 2011-07-11 | 2012-01-13 | 주식회사 광운 | A manufacturing method soldering iron tip for lread free |
KR102065216B1 (en) * | 2017-12-19 | 2020-01-10 | 주식회사 포스코 | Fe-Ni ALLOY FOIL WITH EXCELLENT FLEXIBILITY RESISTANCE |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010022951A (en) * | 1999-05-06 | 2001-03-26 | 이철우 | THE APPARATUS FOR MANUFACTURING Ni-Fe ALLOY THIN FOIL |
KR20020080065A (en) * | 2001-04-11 | 2002-10-23 | 연합철강공업 주식회사 | Electrolytes for fe-ni alloy electroforming |
KR20040075207A (en) * | 2003-02-20 | 2004-08-27 | 주식회사 나노인바 | ELECTROLYTE FOR NANOCRYSTALLINE Fe-Ni ALLOYS WITH LOW THERMAL EXPANSION AND THE PROCESS OF PRODUCING THE SAME |
-
2007
- 2007-10-19 KR KR1020070105457A patent/KR100931739B1/en active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010022951A (en) * | 1999-05-06 | 2001-03-26 | 이철우 | THE APPARATUS FOR MANUFACTURING Ni-Fe ALLOY THIN FOIL |
KR20020080065A (en) * | 2001-04-11 | 2002-10-23 | 연합철강공업 주식회사 | Electrolytes for fe-ni alloy electroforming |
KR20040075207A (en) * | 2003-02-20 | 2004-08-27 | 주식회사 나노인바 | ELECTROLYTE FOR NANOCRYSTALLINE Fe-Ni ALLOYS WITH LOW THERMAL EXPANSION AND THE PROCESS OF PRODUCING THE SAME |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101420755B1 (en) * | 2013-12-02 | 2014-07-17 | 주식회사 나노인바 | Iron-nickel-ternary ternary alloy having low thermal expansion characteristics and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
KR20090039944A (en) | 2009-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dolati et al. | The electrodeposition of quaternary Fe–Cr–Ni–Mo alloys from the chloride-complexing agents electrolyte. Part I. Processing | |
Mizushima et al. | Residual stress in Ni–W electrodeposits | |
KR101153048B1 (en) | - iron-phosphorus electroplating bath and method | |
CN101410556B (en) | Crystalline chromium deposit | |
He et al. | Structure and properties of electrodeposited Fe–Ni–W alloys with different levels of tungsten content: a comparative study | |
US20060037671A1 (en) | Nano invar alloys and process for producing the same | |
de Lima-Neto et al. | A comparative study of the physicochemical and electrochemical properties of Cr and Ni–W–P amorphous electrocoatings | |
KR100931739B1 (en) | Invar alloy and its manufacturing method | |
Matsui et al. | Improvement in tensile ductility of electrodeposited bulk nanocrystalline Ni–W by sulfamate bath using propionic acid | |
CA1058553A (en) | Electrodeposition of alloys of nickel, cobalt, or nickel and cobalt with iron | |
MEDELIENĖ et al. | Structure, corrosion behaviour and physical and mechanical properties of composite nickel coatings with sulfur inclusions | |
KR101266922B1 (en) | METHOD FOR FABRICATING Ni-Fe ALLOY | |
JP2007308801A (en) | Nickel/cobalt/phosphorus electroplating composition and its application | |
Souza et al. | Preparation of Fe–Cr–P–Co amorphous alloys by electrodeposition | |
KR20160017680A (en) | Electroplating composition of low thermal expansion iron-nickel-cobalt ternary alloy and electroplated low-thermal expansion iron-nickel-cobalt ternary alloy using the same | |
KR100505004B1 (en) | ELECTROLYTE FOR NANOCRYSTALLINE Fe-Ni ALLOYS WITH LOW THERMAL EXPANSION | |
Zhang et al. | Effects of pH on the Nickel coating microstructure and internal stress from an additive-free watts-type bath with phytic acid | |
KR101420755B1 (en) | Iron-nickel-ternary ternary alloy having low thermal expansion characteristics and method for manufacturing the same | |
JP2005290500A (en) | Alloy electrode for hydrogen generation and its production method | |
JP4085772B2 (en) | Alloy electrode for hydrogen generation and method for producing the same | |
Nagayama et al. | Electroplating and characterization of invar Fe–Ni alloy films from plating baths containing organic acids | |
EP3498888A1 (en) | Electrode manufacturing method | |
JP4286427B2 (en) | High strength alloy and metal coated with the high strength alloy | |
JP6348743B2 (en) | Alloy electrode for hydrogen generation and method for producing the same | |
Karthik et al. | Effect of addition agents on the electrodeposition of INVAR alloys |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20121203 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20131125 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20141128 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20160603 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20161205 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20171204 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20181129 Year of fee payment: 10 |