KR20040075207A - ELECTROLYTE FOR NANOCRYSTALLINE Fe-Ni ALLOYS WITH LOW THERMAL EXPANSION AND THE PROCESS OF PRODUCING THE SAME - Google Patents

ELECTROLYTE FOR NANOCRYSTALLINE Fe-Ni ALLOYS WITH LOW THERMAL EXPANSION AND THE PROCESS OF PRODUCING THE SAME Download PDF

Info

Publication number
KR20040075207A
KR20040075207A KR1020030010713A KR20030010713A KR20040075207A KR 20040075207 A KR20040075207 A KR 20040075207A KR 1020030010713 A KR1020030010713 A KR 1020030010713A KR 20030010713 A KR20030010713 A KR 20030010713A KR 20040075207 A KR20040075207 A KR 20040075207A
Authority
KR
South Korea
Prior art keywords
sodium
chloride
boric acid
saccharin
sulfate
Prior art date
Application number
KR1020030010713A
Other languages
Korean (ko)
Other versions
KR100505004B1 (en
Inventor
박용범
Original Assignee
주식회사 나노인바
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 나노인바 filed Critical 주식회사 나노인바
Priority to KR10-2003-0010713A priority Critical patent/KR100505004B1/en
Priority to PCT/KR2004/000334 priority patent/WO2004074550A1/en
Publication of KR20040075207A publication Critical patent/KR20040075207A/en
Application granted granted Critical
Publication of KR100505004B1 publication Critical patent/KR100505004B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/24Alloys obtained by cathodic reduction of all their ions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/06Electrolytic production, recovery or refining of metals by electrolysis of solutions or iron group metals, refractory metals or manganese
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/562Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

PURPOSE: A plating (forming) solution and process conditions are provided to manufacture a low thermal expansion property Fe-Ni alloy sheet having low thermal expansion coefficient of 9 μm/m·K or less by electrodeposition or electroforming. CONSTITUTION: The electrolyte for manufacturing Fe-Ni alloy comprises 1 liter of water; 25 to 73 g of FeSO4·7H2O (ferrous sulfate), FeCl2·4H2O (ferrous chloride) or a mixture thereof; 97 g of NiSO4·6H2O (nickel sulfate), NiCl2·6H2O (nickel chloride), Ni(NH2SO3)2 (nickel sulfamate) or a mixture thereof; 20 to 30 g of H3BO3 (boric acid); 1 to 3 g of C7H4NO3SNa (sodium saccharin); 0.1 to 0.3 g of C12H25O4SNa (sodium lauryl sulfate), and 20 to 40 g of NaCl (sodium chloride), wherein the electrolyte has pH of 2 to 4, current density of 50 to 100 mS/cm¬2 and temperature of 50 to 60 deg.C.

Description

저열팽창특성을 갖는 나노결정질 철-니켈 합금 제조를 위한 도금(성형)액 및 그 제조방법{ELECTROLYTE FOR NANOCRYSTALLINE Fe-Ni ALLOYS WITH LOW THERMAL EXPANSION AND THE PROCESS OF PRODUCING THE SAME}Plating (molding) liquid for manufacturing nanocrystalline iron-nickel alloy having low thermal expansion and manufacturing method therefor {ELECTROLYTE FOR NANOCRYSTALLINE Fe-Ni ALLOYS WITH LOW THERMAL EXPANSION AND THE PROCESS OF PRODUCING THE SAME}

본 발명의 목적은 열팽창계수가 9μm/m·K 이하인 저열팽창특성을 갖는 Fe-Ni 합금 박판을 전기도금(전주도금)(electrodeposition) 또는 전주성형(electroforming) 방법을 이용하여 제조할 수 있는 도금(성형)용액과 공정조건을 제공하는 것이다.An object of the present invention is to provide a plating method for producing a Fe-Ni alloy sheet having a low thermal expansion property having a thermal expansion coefficient of 9 μm / m · K or less by using an electroplating or electroforming method. Molding) solution and process conditions.

Fe-Ni합금은 Ni 함량에 따라 다양한 물성을 나타내며, 저열팽창 특성은 Ni의 함량이 중량비로 20%∼50% 범위일 때 나타난다 (D. R. Rancourt, S. Chehab and G. Lamarche, J. Mag. Mag. Mater. 78 (1989) 129 참조). 이 중 인바합금(Invaralloy)이라 불리는 64%Fe-36%Ni 조성의 합금은 열팽창계수가 0에 근접하며, Guillaume이 1897년 처음 발명한 이래 (C. E. Guillaume, C.R. Acad. Sci. Paris 124 (1897) 176 참조) 대표적인 저열팽창 합금으로 생산되어 상업적으로 널리 이용해 오고 있다.Fe-Ni alloys exhibit various properties depending on the Ni content, and low thermal expansion properties occur when the Ni content is in the range of 20% to 50% by weight (DR Rancourt, S. Chehab and G. Lamarche, J. Mag. Mag). Mater. 78 (1989) 129). Among these alloys, 64% Fe-36% Ni, called Invaralloy, have a coefficient of thermal expansion close to zero, and since Guillaume first invented in 1897 (CE Guillaume, CR Acad. Sci. Paris 124 (1897) It is produced as a representative low thermal expansion alloy and has been widely used commercially.

인바합금을 사용하는 한 예로서, TV와 개인용컴퓨터(PC)의 컬러모니터(color monitor)용 음극관(cathode ray tube, CRT)의 필수부품인 섀도우마스크(shadow mask)를 들 수 있다. 섀도우마스크의 역할은 전자총에서 나온 전자빔이 섀도우마스크의 구멍을 통해 형광체에 충돌하도록 유도하는 것이나, 이 과정에서 전체 전자빔의 2/3 정도는 섀도우마스크에 충돌하여 온도를 상승시킨다. 따라서 섀도우마스크의 온도가 상승하더라도 정확한 구멍크기와 형상을 유지하기 위해서는 저열팽창재료, 즉 인바합금을 사용해야만 컬러모니터의 해상력을 획득할 수 있다. CRT뿐만 아니라 최근 개발되고 있는 평면모니터용 FED(field emission display)에서도 인바합금으로 만든 섀도우마스크의 사용이 예상된다.An example of using inva alloys is a shadow mask which is an integral part of a cathode ray tube (CRT) for color monitors in TVs and personal computers (PCs). The role of the shadow mask is to induce an electron beam from the electron gun to impinge the phosphor through the hole of the shadow mask, but in the process, about two thirds of the total electron beam collides with the shadow mask to raise the temperature. Therefore, in order to maintain accurate hole size and shape even when the temperature of the shadow mask increases, the resolution of the color monitor can be obtained only by using a low thermal expansion material, that is, an inva alloy. In addition to CRTs, shadow masks made of inva alloy are expected to be used in field emission displays (FEDs) for flat panel monitors.

저열팽창 Fe-Ni 합금을 사용하는 또 다른 예로서, 집적회로(integrated circuit, IC) 칩(chip)을 지지하는 리드프레임(lead frame)을 들 수 있다. 리드프레임은 칩과 외부를 전기적으로 접속하는 부품인데, 칩에 사용되는 재료와 리드프레임의 열팽창계수가 비슷해야만 열응력을 줄여 IC칩의 수명을 확보할 수 있다. 이 경우 칩의 재료 선택에 따라 Ni함량을 40%∼49%로 변화시킨 Fe-Ni합금을 사용한다. 이 외에도 저열팽창용 Fe-Ni 합금은 Ni 함량을 변화시키면서 바이메탈, 유리/금속밀봉, 전기부품, 내연기관 피스톤 등에 사용되고 있다.Another example of using a low thermal expansion Fe-Ni alloy is a lead frame supporting an integrated circuit (IC) chip. The lead frame is a component that electrically connects the chip and the outside. The thermal expansion coefficient of the lead frame and the material used for the chip are similar to each other to reduce the thermal stress to ensure the life of the IC chip. In this case, a Fe-Ni alloy is used in which the Ni content is changed from 40% to 49% according to the material selection of the chip. In addition, Fe-Ni alloys for low thermal expansion are used in bimetals, glass / metal seals, electrical components, and internal combustion engine pistons with varying Ni content.

상기한 Fe-Ni합금 박판을 제조하는 방법은 여러 가지가 있으나 냉간압연법이 주로 이용되고 있다. 냉간압연법을 사용하는 경우 진공용해, 단조, 열간압연, 노말라이징, 1차냉간압연, 중간어닐링, 2차냉간압연, 환원분위기에서의 최종어닐링 등의 공정을 거쳐야 하며 두께 0.1mm 이하의 인바합금 박판을 제작하기 위해서는 다단 압연을 시행해야 하기 때문에 (미국등록특허 US patent 494834 참조) 공정이 복잡하고 균질의 제품을 얻기 어려울 뿐만 아니라 제조단가가 높다. 뿐만 아니라 공정 중에 개입되는 불순물 및 공정조건의 변화에 열팽창계수가 민감하게 변하는 문제가 있다 (Metals Handbook, 9th ed. Vol. 3, ASM (1980) 889 참조).There are various methods of manufacturing the above Fe-Ni alloy sheet, but cold rolling is mainly used. When cold rolling is used, vacuum melting, forging, hot rolling, normalizing, primary cold rolling, intermediate annealing, secondary cold rolling, and final annealing in a reducing atmosphere are required. In order to manufacture a thin plate, multi-stage rolling must be performed (see US Patent 494834), which is not only difficult to obtain a homogeneous product but also a high manufacturing cost. In addition, there is a problem that the coefficient of thermal expansion is sensitive to changes in impurities and process conditions involved in the process (see Metals Handbook, 9th ed. Vol. 3, ASM (1980) 889).

종래의 제조방법의 한계를 극복하기 위해 최근, 전기도금(성형)에 의한 Fe-Ni 합금제조에 대한 연구가 많이 이루어지고 있으나, 전해액의 배합과 공정조건이 까다롭기 때문에 Ni 함량을 20∼50wt% 함유하는 Fe-Ni 합금의 전주성형에서는 아직까지 바람직한 제품이 제조되지 못하고 있다. 한 예로, 특허출원(출원번호10-2001-0019169)의 도금(성형)액 및 공정조건으로는 퍼멀로이(20%Fe-80%Ni, Permalloy)는 재현성있게 제조되는 반면, 인바 합금 및 Ni 함유량이 50wt%이하인 Fe-Ni 합금 제조를 위해서는 도금(성형)액의 배합과 공정조건의 근본적인 변화가 요망된다.In order to overcome the limitations of the conventional manufacturing method, a lot of researches have recently been made on the production of Fe-Ni alloys by electroplating (molding). However, since the formulation and process conditions of the electrolyte are difficult, it contains 20 to 50 wt% of Ni. In the electroforming of the Fe-Ni alloy, a desirable product has not yet been produced. For example, as a plating solution and process conditions of the patent application (Application No. 10-2001-0019169), Permalloy (20% Fe-80% Ni, Permalloy) is produced reproducibly, while Invar alloy and Ni content For the production of Fe-Ni alloys of less than 50wt%, it is necessary to mix the plating (molding) solution and fundamentally change the process conditions.

본 발명은 상기의 문제점을 극복하기 위해서 제안된 것으로, 소망하는 열팽창계수 값을 갖는 Fe-Ni 합금이 정확한 합금조성을 갖도록 단일공정인 전주성형방법으로 제조하기 위한 도금(성형)액의 조성과 공정조건을 제공함에 그 목적이 있다.The present invention has been proposed to overcome the above problems, and the composition and process conditions of the plating (molding) liquid for producing in a single-step electroforming method so that the Fe-Ni alloy having a desired coefficient of thermal expansion value has an accurate alloy composition The purpose is to provide.

도 1은 본 발명에서 Fe-Ni합금 박판을 제작할 수 있는 전주도금(성형)장치의 개략도이다.Figure 1 is a schematic diagram of the electroplating (molding) apparatus for producing a Fe-Ni alloy sheet in the present invention.

상기한 본 발명의 달성 목적은 다음과 같이 이상적으로 배합된 전해액의 조성과 특정한 공정조건에 의해 정확한 Fe-Ni 합금 조성이 얻어짐으로써 달성된다.The above object of the present invention is achieved by obtaining an accurate Fe-Ni alloy composition by the composition of the ideally formulated electrolyte solution and the specific process conditions.

본 발명에서 제안하는 전해액은 FeSO4·7H2O(Ferrous Sulfate), NiSO4·6H2O(Nickel Sulfate), NiCl2·6H2O(Nickel Chloride), FeCl2·4H2O(Ferrous Chloride)와 Ni(NH2SO3)2(Nickel Sulfamate)을 기본으로 하여 배합하였으며, 붕산(H3BO3, Boric acid) 20∼30g/l 와, 사카린(C7H4NO3SNa, Sodium Saccharin) 1∼3g/l 와 나트륨라우릴설페이트(C12H25O4SNa, Sodium Lauryl Sulfate) 0.1 ∼ 0.3g/l 와, 염화나트륨(NaCl, Sodium Chloride) 20∼40g/l 를 함유한 용액이다. 이 중 붕산(H3BO3, Boric acid)은 22∼25g/l , 사카린(C7H4NO3SNa, Sodium Saccharin)은 2.0∼2,4g/l 와 나트륨라우릴설페이트(C12H25O4SNa, Sodium Lauryl Sulfate) 0.1 ∼ 0.2g/l 와, 염화나트륨(NaCl, Sodium Chloride) 30∼32g/l 를 함유하였을 때가 더 바람직한 효과를 나타낸다고 보여진다. 상기한 철화합물과 니켈화합물은 전해액에서 이온으로 유리된 후, 전주도금(성형)과정에서 Fe-Ni로 전착되며, 붕산은 pH 완충제, 사카린은 도금(성형)재의 응력완화제, 염화나트륨은 전해질의 전도도 향상을 위해 첨가한다. 전주도금(성형) 중에 전해액의 pH는 2∼4 범위로 유지되며, 전류밀도는 50∼100mA/cm2, 전해액 온도는 50∼60℃에서 시행된다.The electrolyte proposed in the present invention is FeSO 4 · 7H 2 O (Ferrous Sulfate), NiSO 4 · 6H 2 O (Nickel Sulfate), NiCl 2 · 6H 2 O (Nickel Chloride), FeCl 2 · 4H 2 O (Ferrous Chloride) And Ni (NH 2 SO 3 ) 2 (Nickel Sulfamate) was used as the basis, and boric acid (H 3 BO 3 , Boric acid) 20-30g / l and saccharin (C 7 H 4 NO 3 SNa, Sodium Saccharin) A solution containing 1 to 3 g / l, sodium lauryl sulfate (C 12 H 25 O 4 SNa, Sodium Lauryl Sulfate) and 0.1 to 0.3 g / l, and sodium chloride (NaCl, Sodium Chloride) 20 to 40 g / l. Among them, boric acid (H 3 BO 3 , Boric acid) is 22-25g / l, saccharin (C 7 H 4 NO 3 SNa, Sodium Saccharin) is 2.0-2,4g / l and sodium lauryl sulfate (C 12 H 25 O 4 SNa, Sodium Lauryl Sulfate) 0.1-0.2 g / l and sodium chloride (NaCl, Sodium Chloride) 30-32 g / l are shown to show more favorable effect. The iron compound and the nickel compound are released as ions in the electrolyte, and then electrodeposited with Fe-Ni during electroplating (molding), boric acid is a pH buffer, saccharin is a stress relaxation agent of plating (molding) material, and sodium chloride is electrolyte conductivity. Add for improvement. During electroplating (molding), the pH of the electrolyte is maintained in the range of 2 to 4, the current density is 50 to 100mA / cm 2 , the temperature of the electrolyte is carried out at 50 to 60 ℃.

상기한 공정조건하에서 Ni 함량이 20∼50wt% 범위의 조성을 갖는 Fe-Ni합금 박판을 전주도금(성형)방법으로 제조하기 위한 도금(성형, 전해)액의 조성을 <표1∼6>에 나타내었다.Table 1-6 shows the composition of the plating (molding and electrolytic) solution for producing a Fe-Ni alloy thin plate having a composition in the range of 20 to 50wt% Ni under the above process conditions. .

FeSO4·7H2O(Ferrous Sulfate)와 NiSO4·6H2O(Nickel Sulfate) 용액 사용FeSO 4 · 7H 2 O (Ferrous Sulfate) and NiSO 4 · 6H 2 O (Nickel Sulfate) solution 실시예Example FeSO4·7H2O(g)FeSO 4 7H 2 O (g) NiSO4·6H2O(g)NiSO 4 · 6H 2 O (g) 붕산(g)Boric acid (g) 나트륨라우릴설페이트Sodium lauryl sulfate 사카린(g)Saccharin (g) 염화나트륨(g)Sodium chloride (g) 도금(성형)재의 조성(wt%Ni)Composition of plating (molding) material (wt% Ni) 1One 2828 9797 2222 0.10.1 2.02.0 3232 50.450.4 22 3333 9797 2222 0.10.1 2.02.0 3232 45.345.3 33 3838 9797 2222 0.10.1 2.02.0 3232 41.041.0 44 4343 9797 2222 0.10.1 2.02.0 3232 38.838.8 55 4848 9797 2222 0.10.1 2.02.0 3232 36.436.4 66 5353 9797 2222 0.10.1 2.02.0 3232 34.234.2 77 5858 9797 2222 0.10.1 2.02.0 3232 32.332.3 88 6363 9797 2222 0.10.1 2.02.0 3232 30.330.3 99 6868 9797 2222 0.10.1 2.02.0 3232 27.827.8 1010 7373 9797 2222 0.10.1 2.02.0 3232 20.720.7

<증류수 1liter 기준><1 liter of distilled water>

FeSO4·7H2O(Ferrous Sulfate)와 NiCl2·6H2O(Nickel Chloride) 용액 사용FeSO 4 · 7H 2 O (Ferrous Sulfate) and NiCl 2 · 6H 2 O (Nickel Chloride) solution 실시예Example FeSO4·7H2O(g)FeSO 4 7H 2 O (g) NiCl2·6H2O(g)NiCl 2 · 6H 2 O (g) 붕산(g)Boric acid (g) 나트륨라우릴설페이트Sodium lauryl sulfate 사카린(g)Saccharin (g) 염화나트륨(g)Sodium chloride (g) 도금(성형)재의 조성(wt%Ni)Composition of plating (molding) material (wt% Ni) 1111 3636 9797 2222 0.10.1 2.02.0 3232 50.650.6 1212 4040 9797 2222 0.10.1 2.02.0 3232 45.145.1 1313 4343 9797 2222 0.10.1 2.02.0 3232 42.442.4 1414 4545 9797 2222 0.10.1 2.02.0 3232 40.040.0 1515 5050 9797 2222 0.10.1 2.02.0 3232 36.636.6 1616 5858 9797 2222 0.10.1 2.02.0 3232 31.431.4 1717 7070 9797 2222 0.10.1 2.02.0 3232 19.819.8

<증류수 1liter 기준><1 liter of distilled water>

FeCl2·4H2O(Ferrous Chloride)와 NiSO4·6H2O(Nickel Sulfate) 용액 사용FeCl 2 · 4H 2 O (Ferrous Chloride) and NiSO 4 · 6H 2 O (Nickel Sulfate) solution 실시예Example FeCl2·4H2O(g)FeCl 2 · 4H 2 O (g) NiSO4·6H2O(g)NiSO 4 · 6H 2 O (g) 붕산(g)Boric acid (g) 나트륨라우릴설페이트Sodium lauryl sulfate 사카린(g)Saccharin (g) 염화나트륨(g)Sodium chloride (g) 도금(성형)재의 조성(wt%Ni)Composition of plating (molding) material (wt% Ni) 1818 3030 9797 2222 0.10.1 2.02.0 3232 49.249.2 1919 3636 9797 2222 0.10.1 2.02.0 3232 43.043.0 2020 4242 9797 2222 0.10.1 2.02.0 3232 37.537.5 2121 4444 9797 2222 0.10.1 2.02.0 3232 36.236.2 2222 5252 9797 2222 0.10.1 2.02.0 3232 30.130.1 2323 7070 9797 2222 0.10.1 2.02.0 3232 21.021.0

<증류수 1liter 기준><1 liter of distilled water>

FeCl2·4H2O(Ferrous Chloride)와 NiCl2·6H2O(Nickel Chloride) 용액 사용Use FeCl 2 · 4H 2 O (Ferrous Chloride) and NiCl 2 · 6H 2 O (Nickel Chloride) solution 실시예Example FeCl2·4H2O(gFeCl 2 4H 2 O (g NiCl2·6H2O(g)NiCl 2 · 6H 2 O (g) 붕산(g)Boric acid (g) 나트륨라우릴설페이트Sodium lauryl sulfate 사카린(g)Saccharin (g) 염화나트륨(g)Sodium chloride (g) 도금(성형)재의 조성(wt%Ni)Composition of plating (molding) material (wt% Ni) 2424 3434 9797 2222 0.10.1 2.02.0 3232 48.748.7 2525 4040 9797 2222 0.10.1 2.02.0 3232 41.941.9 2626 4444 9797 2222 0.10.1 2.02.0 3232 38.338.3 2727 4646 9797 2222 0.10.1 2.02.0 3232 36.236.2 2828 5050 9797 2222 0.10.1 2.02.0 3232 32.732.7 2929 6565 9797 2222 0.10.1 2.02.0 3232 21.821.8

FeSO4·7H2O(Ferrous Sulfate)와 Ni(NH2SO3)2(Nickel Sulfamate)용액 사용FeSO 4 · 7H 2 O (Ferrous Sulfate) and Ni (NH 2 SO 3 ) 2 (Nickel Sulfamate) solution 실시예Example FeSO4·7H2O(g)FeSO 4 7H 2 O (g) Ni(NH2SO3)2(g)Ni (NH 2 SO 3 ) 2 (g) 붕산(g)Boric acid (g) 나트륨라우릴설페이트Sodium lauryl sulfate 사카린(g)Saccharin (g) 염화나트륨(g)Sodium chloride (g) 도금(성형)재의 조성(wt%Ni)Composition of plating (molding) material (wt% Ni) 3030 2525 9797 2222 0.10.1 2.02.0 3232 49.549.5 3131 2828 9797 2222 0.10.1 2.02.0 3232 44.844.8 3232 3535 9797 2222 0.10.1 2.02.0 3232 36.336.3 3333 3737 9797 2222 0.10.1 2.02.0 3232 34.534.5 3434 4545 9797 2222 0.10.1 2.02.0 3232 27.427.4 3535 5252 9797 2222 0.10.1 2.02.0 3232 22.122.1

<증류수 1liter 기준><1 liter of distilled water>

FeCl2·4H2O(Ferrous Chloride)와 Ni(NH2SO3)2(Nickel Sulfamate)용액 사용Using FeCl 2 · 4H 2 O (Ferrous Chloride) and Ni (NH 2 SO 3 ) 2 (Nickel Sulfamate) solution 실시예Example FeSO4·7H2O(g)FeSO 4 7H 2 O (g) Ni(NH2SO3)2(g)Ni (NH 2 SO 3 ) 2 (g) 붕산(g)Boric acid (g) 나트륨라우릴설페이트Sodium lauryl sulfate 사카린(g)Saccharin (g) 염화나트륨(g)Sodium chloride (g) 도금(성형)재의 조성(wt%Ni)Composition of plating (molding) material (wt% Ni) 3636 2222 9797 2222 0.10.1 2.02.0 3232 50.250.2 3737 2626 9797 2525 0.10.1 2.02.0 3232 44.044.0 3838 3232 9797 2525 0.10.1 2.02.0 3232 37.037.0 3939 3434 9797 2525 0.10.1 2.02.0 3232 35.235.2 4040 4242 9797 2525 0.10.1 2.02.0 3232 2828 4141 5252 9797 2525 0.10.1 2.02.0 3232 20.420.4

<증류수 1liter 기준><1 liter of distilled water>

<표1>은 FeSO4·7H2O(Ferrous Sulfate)와 NiSO4·6H2O(Nickel Sulfate)를 도금(성형)액의 주성분으로 사용하였으며, Nickel Sulfate의 양을 97g/l로 일정하게 유지하면서 Ferrous Sulfate의 양을 28∼73g/l 범위에서 변화하여 소망하는 조성의 Fe-Ni합금을 제조한 결과를 (실시예1∼10)에 나타냈다.Table 1 shows that FeSO 4 · 7H 2 O (Ferrous Sulfate) and NiSO 4 · 6H 2 O (Nickel Sulfate) were used as the main components of the plating (molding) solution, and the amount of Nickel Sulfate was kept constant at 97 g / l. While changing the amount of ferrous sulfate in the range of 28 to 73 g / l, Fe-Ni alloys having the desired compositions were shown in (Examples 1 to 10).

<표2>는 FeSO4·7H2O(Ferrous Sulfate)와 NiCl2·6H2O(Nickel Chloride)를 도금(성형)액의 주성분으로 사용하였으며, Nickel Chloride의 양을 97g/l로 일정하게 유지하면서 Ferrous Sulfate의 양을 36∼70g/l 범위에서 변화하여 소망하는 조성의Fe-Ni합금을 제조한 결과를 (실시예11∼17)에 나타냈다.<Table 2> shows FeSO 4 · 7H 2 O (Ferrous Sulfate) and NiCl 2 · 6H 2 O (Nickel Chloride) as the main components of the plating (molding) solution, keeping the amount of Nickel Chloride constant at 97g / l While changing the amount of Ferrous Sulfate in the range of 36 to 70 g / l, Fe-Ni alloys having the desired compositions were shown in (Examples 11 to 17).

<표3>은 FeCl2·4H2O(Ferrous Chloride)와 NiSO4·6H2O(Nickel Sulfate)를 도금(성형)액의 주성분으로 사용하였으며, Nickel Sulfate의 양을 97g/l로 일정하게 유지하면서 Ferrous Chloride의 양을 30∼70g/l 범위에서 변화하여 소망하는 조성의 Fe-Ni합금을 제조한 결과를 (실시예18∼23)에 나타냈다.<Table 3> shows FeCl 2 · 4H 2 O (Ferrous Chloride) and NiSO 4 · 6H 2 O (Nickel Sulfate) as the main components of the plating (molding) solution, and the amount of Nickel Sulfate was kept constant at 97 g / l. While the amount of Ferrous Chloride was varied in the range of 30 to 70 g / l, Fe-Ni alloys having a desired composition were shown in (Examples 18 to 23).

<표4>는 FeCl2·4H2O(Ferrous Chloride)와 NiCl2·6H2O(Nickel Chloride)를 도금(성형)액의 주성분으로 사용하였으며, Nickel Chloride의 양을 97g/l로 일정하게 유지하면서 Ferrous Chloride의양을 34∼65g/l 범위에서 변화하여 소망하는 조성의 Fe-Ni 합금을 제조한 결과를 (실시예24∼29)에 나타냈다.<Table 4> shows FeCl 2 · 4H 2 O (Ferrous Chloride) and NiCl 2 · 6H 2 O (Nickel Chloride) as the main components of the plating (molding) solution, and the amount of Nickel Chloride is kept constant at 97 g / l. The Ferrous Chloride content was varied in the range of 34 to 65 g / l to produce Fe-Ni alloys of the desired compositions.

<표5>는 FeSO4·7H2O(Ferrous Sulfate) 와 Ni(NH2SO3)2(Nickel Sulfamate)를 도금(성형)액의 주성분으로 사용하였으며, Nickel Sulfamate의 양을 97g/l로 일정하게 유지하면서 Ferrous Sulfate의 양을 25∼52g/l 범위에서 변화하여 소망하는 조성의 Fe-Ni 합금을 제조한 결과를 (실시예30∼35)에 나타냈다.<Table 5> shows FeSO 4 · 7H 2 O (Ferrous Sulfate) and Ni (NH 2 SO 3 ) 2 (Nickel Sulfamate) as the main components of the plating (molding) solution, and the amount of Nickel Sulfamate was constant at 97g / l. The results of preparing the Fe-Ni alloy having the desired composition by varying the amount of Ferrous Sulfate in the range of 25 to 52 g / l while maintaining it were shown in (Examples 30 to 35).

<표6>은 FeCl2·4H2O(Ferrous Chloride) 와 Ni(NH2SO3)2(Nickel Sulfamate)를 도금(성형)액의 주성분으로 사용였으며, Nickel Sulfamate의 양을 97g/l로 일정하게 유지하면서 Ferrous Chloride의 양을 22∼52g/l 범위에서 변화하여 소망하는 조성의 Fe-Ni 합금을 제조한 결과를 (실시예36∼41)에 나타냈다.<Table 6> shows the use of FeCl 2 · 4H 2 O (Ferrous Chloride) and Ni (NH 2 SO 3 ) 2 (Nickel Sulfamate) as the main components of the plating (molding) solution, and the amount of Nickel Sulfamate was constant at 97g / l. The results of producing the Fe-Ni alloy of the desired composition by varying the amount of Ferrous Chloride in the range of 22 to 52 g / l while maintaining it were shown in (Examples 36 to 41).

상기한 본 발명의 전해액을 이용하여 소망하는 조성의 Fe-Ni 합금을 제조하기위한 장치는 특별히 한정되지 않지만, <표1∼6>에 나타낸 (실시예1∼41)의Ni 합금 박판을 제조하기 위해 <도 1>의 배치형 전기도금(성형)장치를 제작하여 이용하였다. <도 1>에서, 전해조(9)에 본 연구에서 발명한 전해액(3)을 넣고 간격거리가 10 mm인 음극(1)과 양극(2) 사이를 전해액이 0.1∼2.0m/sec의 유속으로 흘러가도록 순환펌프(5)를 작동하면서 전주도금(성형)을 실시하였다. 두께 20μm의 Fe-Ni합금이 음극에 전착하면 전류공급장치(4)를 멈춘 후, 음극표면으로부터 도금(성형)재를 분리하여 박판을 획득했다. 이 장치에서 양극재는 유속에 따라 경사각도(10)를 달리한다는 특징을 갖고 있다.Although the apparatus for manufacturing the Fe-Ni alloy of a desired composition using the above-mentioned electrolyte solution of this invention is not specifically limited, To manufacture the Ni alloy thin plate of (Examples 1-41) shown to Tables 1-6. In order to manufacture and use the batch type electroplating (molding) apparatus of <Figure 1>. In FIG. 1, the electrolytic solution 3 invented in the present study was placed in the electrolytic cell 9, and the electrolyte solution flowed between the negative electrode 1 and the positive electrode 2 having a distance of 10 mm at a flow rate of 0.1 to 2.0 m / sec. The electroplating (molding) was performed while operating the circulation pump 5 to flow. When the 20-μm-thick Fe-Ni alloy was electrodeposited on the cathode, the current supply device 4 was stopped, and then a plating (molding) material was separated from the cathode surface to obtain a thin plate. In this device, the cathode material is characterized by varying the inclination angle 10 according to the flow rate.

상기한 방법에 의해 제조된 Fe-Ni 합금은, <표1∼6>에 나타낸 전해액의 종류에 관계없이, 합금조성에 따라서만 1∼9μm/m·K 범위의 열팽창계수값을 나타냈다. <표7>은 열팽창측정장치를 이용하여 얻은 열팽창계수의 값을 몇 가지 실시예에 대하여 나타낸 것이다. 상용인바합금이 같은 온도범위에서 1.2∼1.5μm/m·K의 열팽창계수를 갖는 것과 비교하여 본 발명에 따른 인바합금 박판은 우수한 저열팽창 특성을 나타낸다고 할 수 있다.The Fe-Ni alloy produced by the above-described method showed a coefficient of thermal expansion in the range of 1 to 9 µm / m · K only depending on the alloy composition, regardless of the type of electrolyte solution shown in Tables 1 to 6. Table 7 shows the values of the coefficients of thermal expansion obtained using the thermal expansion measuring apparatus for some examples. Compared with the commercially available bar alloy having a thermal expansion coefficient of 1.2 to 1.5 μm / m · K in the same temperature range, it can be said that the invar alloy sheet according to the present invention exhibits excellent low thermal expansion characteristics.

<표7> 본 발명에서 제조한 Fe-Ni 합금의 열팽차계수 (50∼100℃ 범위)Table 7 Thermal Fluctuation Coefficient of Fe-Ni Alloy Prepared in the Present Invention (50 ~ 100 ° C)

실시예Example 열팽창계수(μm/m·K)Thermal expansion coefficient (μm / mK) 1One 9.019.01 22 8.128.12 33 6.236.23 44 2.992.99 55 1.581.58 66 2.212.21 77 4.254.25 88 8.308.30

본 발명에 의한 Fe-Ni 합금의 또 다른 특징은 그것을 구성하는 결정립(grain)들이 5∼15 nm인 나노결정질 구조란 점이다. X-ray 회절을 이용하여 결정립의 크기분포를 합금조성에 따라 계산한 결과, 인바합금 조성에서 결정립의 크기가 5∼7 nm 정도로 가장 작게 분포하는 것으로 나타났다. 이렇게 나노결정구조를 갖는 경우, 항복강도는 약 2,000 MPa로 기존방식에 의한 인바합금의 항복강도 260∼500 MPa보다 훨씬 크기 때문에 본 발명에 의한 Fe-Ni 합금 박판은 고강도를 요구하는 새로운 용도에의 적용이 가능하다.Another feature of the Fe-Ni alloy according to the present invention is that it is a nanocrystalline structure having 5 to 15 nm of grains constituting it. As a result of calculating the size distribution of the grains according to the alloy composition using X-ray diffraction, the grain size of the invar alloy composition was found to be the smallest in the range of 5-7 nm. In the case of the nanocrystalline structure, the yield strength is about 2,000 MPa, which is much larger than the yield strength of the Invar alloy according to the conventional method, 260 to 500 MPa. Application is possible.

저열팽창특성을 갖는 Fe-Ni합금을 단일공정인 전주성형방법으로 제작하여 제조단가를 크게 저하시킬 수 있으며, 특히 나노결정질 구조를 갖게 함으로써 기계적 성질이 탁월하기 때문에 산업적 이용의 범위를 새롭게 창출할 수 있다.The Fe-Ni alloy with low thermal expansion properties can be manufactured by a single-step electroforming method, which greatly reduces the manufacturing cost. In particular, by having a nanocrystalline structure, the mechanical properties are excellent, thereby creating a new range of industrial applications. have.

Claims (8)

물 1L당, 25내지 73g의 FeSO4·7H2O(Ferrous Sulfate) 또는, FeCl2·4H2O(Ferrous Chloride) 또는 이들의 혼합물, 97g의 NiSO4·6H2O(Nickel Sulfate) 또는 NiCl2·6H2O(Nickel Chloride) 또는 Ni(NH2SO3)2(Nickel Sulfamate) 또는 이들의 혼합물, 붕산(H3BO3, Boric acid) 20∼30g, 사카린(C7H4NO3SNa, Sodium Saccharin) 1∼3g, 나트륨라우릴설페이트(C12H25O4SNa, Sodium Lauryl Sulfate) 0.1 ∼ 0.3g, 염화나트륨(NaCl, Sodium Chloride) 20∼40g을 포함함을 특징으로 하는 Fe-Ni합금을 제조하기 위한 전해액.25 to 73 g of FeSO 4 · 7H 2 O (Ferrous Sulfate) or FeCl 2 · 4H 2 O (Ferrous Chloride) or mixtures thereof, 97 g of NiSO 4 · 6H 2 O (Nickel Sulfate) or NiCl 2 per liter of water 6H 2 O (Nickel Chloride) or Ni (NH 2 SO 3 ) 2 (Nickel Sulfamate) or mixtures thereof, 20-30 g of boric acid (H 3 BO 3 , Boric acid), saccharin (C 7 H 4 NO 3 SNa, Sodium Saccharin) 1 to 3g, Sodium Lauryl Sulfate (C 12 H 25 O 4 SNa, Sodium Lauryl Sulfate) 0.1 ~ 0.3g, Sodium chloride (NaCl, Sodium Chloride) Fe-Ni alloy characterized in that it contains Electrolytic solution for preparing the. 제 1항에 있어서, 물 1L당, 28 내지 73g의 FeSO4·7H2O(Ferrous Sulfate), 97g의 NiSO4·6H2O(Nickel Sulfate), 붕산(H3BO3, Boric acid) 20∼30g, 사카린(C7H4NO3SNa, Sodium Saccharin) 1.0∼3.0g, 나트륨라우릴설페이트(C12H25O4SNa, Sodium Lauryl Sulfate) 0.1 ∼ 0.3g, 염화나트륨(NaCl, Sodium Chloride) 20∼40g을 포함함을 특징으로 하는 Fe-Ni합금을 제조하기 위한 전해액.According to claim 1, 28 to 73 g of FeSO 4 · 7H 2 O (Ferrous Sulfate), 97 g of NiSO 4 · 6H 2 O (Nickel Sulfate), boric acid (H 3 BO 3 , Boric acid) per 20 liters of water 30 g, saccharin (C 7 H 4 NO 3 SNa, Sodium Saccharin) 1.0 to 3.0 g, sodium lauryl sulfate (C 12 H 25 O 4 SNa, Sodium Lauryl Sulfate) 0.1 to 0.3 g, sodium chloride (NaCl, Sodium Chloride) 20 An electrolyte solution for producing a Fe-Ni alloy, characterized in that it comprises -40g. 제1항에 있어서, 물 1L당, 36내지 70g의 FeCl2·4H2O(Ferrous Chloride), 97g의 NiCl2·6H2O(Nickel Chloride), 붕산(H3BO3, Boric acid) 20∼30g, 사카린(C7H4NO3SNa, Sodium Saccharin) 1.0∼3.0g, 나트륨라우릴설페이트(C12H25O4SNa, Sodium Lauryl Sulfate) 0.1 ∼ 0.3g, 염화나트륨(NaCl, Sodium Chloride) 20∼40g을 포함함을 특징으로 하는 Fe-Ni합금을 제조하기 위한 전해액.According to claim 1, per 1 liter of water, 36 to 70g of FeCl 2 · 4H 2 O (Ferrous Chloride), 97g NiCl 2 · 6H 2 O (Nickel Chloride), Boric acid (H 3 BO 3 , Boric acid) 20 ~ 30 g, saccharin (C 7 H 4 NO 3 SNa, Sodium Saccharin) 1.0 to 3.0 g, sodium lauryl sulfate (C 12 H 25 O 4 SNa, Sodium Lauryl Sulfate) 0.1 to 0.3 g, sodium chloride (NaCl, Sodium Chloride) 20 An electrolyte solution for producing a Fe-Ni alloy, characterized in that it comprises -40g. 제1항에 있어서, 물 1L당, 30내지 70g의 FeSO4·7H2O(Ferrous Sulfate), 97g의 NiSO4·6H2O(Nickel Sulfate), 붕산(H3BO3, Boric acid) 20∼30g, 사카린(C7H4NO3SNa, Sodium Saccharin) 1.0∼3.0g, 나트륨라우릴설페이트(C12H25O4SNa, Sodium Lauryl Sulfate) 0.1 ∼ 0.3g, 염화나트륨(NaCl, Sodium Chloride) 20∼40g을 포함함을 특징으로 하는 Fe-Ni합금을 제조하기 위한 전해액.30 to 70 g of FeSO 4 · 7H 2 O (Ferrous Sulfate), 97 g of NiSO 4 · 6H 2 O (Nickel Sulfate), boric acid (H 3 BO 3 , Boric acid) 30 g, saccharin (C 7 H 4 NO 3 SNa, Sodium Saccharin) 1.0 to 3.0 g, sodium lauryl sulfate (C 12 H 25 O 4 SNa, Sodium Lauryl Sulfate) 0.1 to 0.3 g, sodium chloride (NaCl, Sodium Chloride) 20 An electrolyte solution for producing a Fe-Ni alloy, characterized in that it comprises -40g. 제1항에 있어서, 물 1L당, 34내지 65g의 FeCl2·4H2O(Ferrous Chloride), 97g의 NiCl2·6H2O(Nickel Chloride), 붕산(H3BO3, Boric acid) 20∼30g, 사카린(C7H4NO3SNa, Sodium Saccharin) 1.0∼3.0g, 나트륨라우릴설페이트(C12H25O4SNa, Sodium Lauryl Sulfate) 0.1 ∼ 0.3g, 염화나트륨(NaCl, Sodium Chloride) 20∼40g을 포함함을 특징으로 하는 Fe-Ni합금을 제조하기 위한 전해액.According to claim 1, per 1 liter of water, 34 to 65g FeCl 2 · 4H 2 O (Ferrous Chloride), 97g NiCl 2 · 6H 2 O (Nickel Chloride), Boric acid (H 3 BO 3 , Boric acid) 20 to 30 g, saccharin (C 7 H 4 NO 3 SNa, Sodium Saccharin) 1.0 to 3.0 g, sodium lauryl sulfate (C 12 H 25 O 4 SNa, Sodium Lauryl Sulfate) 0.1 to 0.3 g, sodium chloride (NaCl, Sodium Chloride) 20 An electrolyte solution for producing a Fe-Ni alloy, characterized in that it comprises -40g. 제1항에 있어서, 물 1L당, 30내지 35g의 FeSO4·7H2O(Ferrous Sulfate), 97g의 Ni(NH2SO3)2(Nickel Sulfamate), 붕산(H3BO3, Boric acid) 20∼30g, 사카린(C7H4NO3SNa, Sodium Saccharin) 1.0∼3.0g, 나트륨라우릴설페이트(C12H25O4SNa, Sodium Lauryl Sulfate) 0.1 ∼ 0.3g, 염화나트륨(NaCl, Sodium Chloride) 20∼40g을 포함함을 특징으로 하는 Fe-Ni합금을 제조하기 위한 전해액.The method of claim 1, wherein, per liter of water, 30 to 35 g of FeSO 4 7H 2 O (Ferrous Sulfate), 97 g of Ni (NH 2 SO 3 ) 2 (Nickel Sulfamate), boric acid (H 3 BO 3 , Boric acid) 20 to 30 g, saccharin (C 7 H 4 NO 3 SNa, Sodium Saccharin) 1.0 to 3.0 g, sodium lauryl sulfate (C 12 H 25 O 4 SNa, Sodium Lauryl Sulfate) 0.1 to 0.3 g, sodium chloride (NaCl, Sodium Chloride) An electrolyte solution for producing a Fe-Ni alloy, characterized in that it comprises 20 to 40g. 제1항에 있어서, 물 1L당, 22내지 52g의 FeSO4·7H2O(Ferrous Sulfate),97g의 Ni(NH2SO3)2(Nickel Sulfamate), 붕산(H3BO3, Boric acid) 20∼30g, 사카린(C7H4NO3SNa, Sodium Saccharin) 1.0∼3.0g, 나트륨라우릴설페이트(C12H25O4SNa, Sodium Lauryl Sulfate) 0.1 ∼ 0.3g, 염화나트륨(NaCl, Sodium Chloride) 20∼40g을 포함함을 특징으로 하는 Fe-Ni합금을 제조하기 위한 전해액.The method of claim 1, wherein 22 to 52 g of FeSO 4 · 7H 2 O (Ferrous Sulfate), 97 g of Ni (NH 2 SO 3 ) 2 (Nickel Sulfamate), boric acid (H 3 BO 3 , Boric acid) 20 to 30 g, saccharin (C 7 H 4 NO 3 SNa, Sodium Saccharin) 1.0 to 3.0 g, sodium lauryl sulfate (C 12 H 25 O 4 SNa, Sodium Lauryl Sulfate) 0.1 to 0.3 g, sodium chloride (NaCl, Sodium Chloride) An electrolyte solution for producing a Fe-Ni alloy, characterized in that it comprises 20 to 40g. 제 1항내지 제8항에 있어서, 상기 전해액의 pH는 2∼4 , 전류밀도는 50∼100mA/cm2, 전해액의 온도는 50-60℃임을 특징으로 하는 Fe-Ni합금을 제조하기 위한 전해액.The electrolyte solution according to claim 1, wherein the pH of the electrolyte is 2-4, the current density is 50-100 mA / cm 2 , and the temperature of the electrolyte is 50-60 ° C. 11. .
KR10-2003-0010713A 2003-02-20 2003-02-20 ELECTROLYTE FOR NANOCRYSTALLINE Fe-Ni ALLOYS WITH LOW THERMAL EXPANSION KR100505004B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR10-2003-0010713A KR100505004B1 (en) 2003-02-20 2003-02-20 ELECTROLYTE FOR NANOCRYSTALLINE Fe-Ni ALLOYS WITH LOW THERMAL EXPANSION
PCT/KR2004/000334 WO2004074550A1 (en) 2003-02-20 2004-02-19 ELECTROLYTE FOR NANOCRYSTALLINE Fe-Ni ALLOYS WITH LOW THERMAL EXPANSION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2003-0010713A KR100505004B1 (en) 2003-02-20 2003-02-20 ELECTROLYTE FOR NANOCRYSTALLINE Fe-Ni ALLOYS WITH LOW THERMAL EXPANSION

Publications (2)

Publication Number Publication Date
KR20040075207A true KR20040075207A (en) 2004-08-27
KR100505004B1 KR100505004B1 (en) 2005-08-01

Family

ID=32906541

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2003-0010713A KR100505004B1 (en) 2003-02-20 2003-02-20 ELECTROLYTE FOR NANOCRYSTALLINE Fe-Ni ALLOYS WITH LOW THERMAL EXPANSION

Country Status (2)

Country Link
KR (1) KR100505004B1 (en)
WO (1) WO2004074550A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100931739B1 (en) * 2007-10-19 2009-12-14 성낙훈 Invar alloy and its manufacturing method
KR101420755B1 (en) * 2013-12-02 2014-07-17 주식회사 나노인바 Iron-nickel-ternary ternary alloy having low thermal expansion characteristics and method for manufacturing the same
KR20170001373U (en) 2015-10-07 2017-04-17 주식회사 에프에스코리아 Compact container having flat brush
KR20200065462A (en) * 2018-11-30 2020-06-09 (주) 영진아스텍 Method of manufacturing a fine metal mask for microdisplay based on high resolution and low thermal expansion OLED through heterogeneous multilayer electro-forming and heat treatment

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7387578B2 (en) 2004-12-17 2008-06-17 Integran Technologies Inc. Strong, lightweight article containing a fine-grained metallic layer
US7320832B2 (en) 2004-12-17 2008-01-22 Integran Technologies Inc. Fine-grained metallic coatings having the coefficient of thermal expansion matched to the one of the substrate
DE102014208047A1 (en) * 2014-04-29 2015-10-29 Mahle International Gmbh Anode and electrolyte for a metal-air battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4014759A (en) * 1975-07-09 1977-03-29 M & T Chemicals Inc. Electroplating iron alloys containing nickel, cobalt or nickel and cobalt
JPS61190091A (en) * 1985-02-18 1986-08-23 Tdk Corp Method and device for magnetic alloy plating

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100931739B1 (en) * 2007-10-19 2009-12-14 성낙훈 Invar alloy and its manufacturing method
KR101420755B1 (en) * 2013-12-02 2014-07-17 주식회사 나노인바 Iron-nickel-ternary ternary alloy having low thermal expansion characteristics and method for manufacturing the same
KR20170001373U (en) 2015-10-07 2017-04-17 주식회사 에프에스코리아 Compact container having flat brush
KR20200065462A (en) * 2018-11-30 2020-06-09 (주) 영진아스텍 Method of manufacturing a fine metal mask for microdisplay based on high resolution and low thermal expansion OLED through heterogeneous multilayer electro-forming and heat treatment

Also Published As

Publication number Publication date
WO2004074550A1 (en) 2004-09-02
KR100505004B1 (en) 2005-08-01

Similar Documents

Publication Publication Date Title
US20060037671A1 (en) Nano invar alloys and process for producing the same
CN110344089B (en) Gold sodium sulfite plating solution and electroplating method thereof
CN107805761B (en) Iron-nickel alloy foil and method for producing same
JP5478292B2 (en) Method for producing iron-nickel alloy plating film having high hardness and low thermal expansion coefficient
KR20040075207A (en) ELECTROLYTE FOR NANOCRYSTALLINE Fe-Ni ALLOYS WITH LOW THERMAL EXPANSION AND THE PROCESS OF PRODUCING THE SAME
EP3991881A1 (en) Co-fe-ni alloy with high thermal conductivity and high strength for mold and additive manufacturing method thereof
CN107299366A (en) Non-cyanide plating solution for copper-plating used
CN114197017A (en) Composite coating and preparation method and application thereof
KR101266922B1 (en) METHOD FOR FABRICATING Ni-Fe ALLOY
KR100931739B1 (en) Invar alloy and its manufacturing method
TWI678826B (en) Fe-ni alloy foil with excellent flexibility resistance
KR20160017680A (en) Electroplating composition of low thermal expansion iron-nickel-cobalt ternary alloy and electroplated low-thermal expansion iron-nickel-cobalt ternary alloy using the same
KR100486326B1 (en) Fe-Ni-BASED OR Fe-Ni-Co-BASED ALLOY STRIP FOR PRESS MOLD FLAT MASK
DE2541304C2 (en)
KR101420755B1 (en) Iron-nickel-ternary ternary alloy having low thermal expansion characteristics and method for manufacturing the same
US2525943A (en) Copper plating bath and process
CN110408976A (en) A kind of graphene/nanometer twin composite material and preparation method controllable with tissue
KR20020080065A (en) Electrolytes for fe-ni alloy electroforming
CN110184631B (en) Cyanide-free gold plating electroplating solution and preparation method and electroplating process thereof
JPS6310235B2 (en)
KR102043503B1 (en) Method for preparing electroformed fe-ni alloy foil and plating solution for preparing the electroformed fe-ni alloy foil
KR101867733B1 (en) Fe-Ni ALLOY ELECTROLYTES, Fe-Ni ALLOY FOIL HAVING EXCELLENT SURFACE ROUGHNESS AND METHOD FOR THE SAME
CN107460378B (en) A kind of Al-Si-Fe-Mg-Cu alloy conductor material and preparation method thereof
KR102071144B1 (en) Fe-Ni ALLOY SHADOW MASK AND PREPARATION METHOD THEREOF
CN108277417B (en) Al-B-Co-Mn light low-thermal-expansion alloy and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
O035 Opposition [patent]: request for opposition
O074 Maintenance of registration after opposition [patent]: final registration of opposition
O132 Decision on opposition [patent]
FPAY Annual fee payment

Payment date: 20100720

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee