US20060037671A1 - Nano invar alloys and process for producing the same - Google Patents

Nano invar alloys and process for producing the same Download PDF

Info

Publication number
US20060037671A1
US20060037671A1 US11/254,821 US25482105A US2006037671A1 US 20060037671 A1 US20060037671 A1 US 20060037671A1 US 25482105 A US25482105 A US 25482105A US 2006037671 A1 US2006037671 A1 US 2006037671A1
Authority
US
United States
Prior art keywords
sna
sodium
chloride
alloy
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/254,821
Inventor
Yong Park
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nano Invar Co Ltd
Original Assignee
Nano Invar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nano Invar Co Ltd filed Critical Nano Invar Co Ltd
Assigned to NANO INVAR CO., LTD. reassignment NANO INVAR CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PARK, YONG BUM
Publication of US20060037671A1 publication Critical patent/US20060037671A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/06Electrolytic production, recovery or refining of metals by electrolysis of solutions or iron group metals, refractory metals or manganese
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/562Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Definitions

  • the present invention relates to an electrolyte for producing a novel Fe—Ni alloy having a Ni content in a range of 33 to 42 wt %, specifically a nanocrystalline invar alloy having a grain size of 5 to 15 nm, by electroplating, and preparation conditions thereof.
  • Fe—Ni alloys exhibit various properties according to the Ni content, and low thermal expansion properties are exhibited when the Ni content is in a range of 20% to 50% by weight (see D. R. Rancourt, S. Chehab and G. Lamarche, J. Mag. Mag. Mater. 78 (1989) 129.).
  • an alloy consisting of 64% Fe and 36% Ni which is referred to as “an invar alloy”
  • the invar alloy has, since its discovery in 1897 by Bryan (see C. E. Nicolas, C.R. Acad. Sci. Paris 124 (1897) 176.), been commercially used for various practical applications as a typical low thermal expansion alloy.
  • Such a typical low thermal expansion invar alloy (Fe-36% Ni) is used in a variety of applications, such as a standard measurement apparatus, an internal combustion engine piston, bimetal, a temperature controller, a liquefied gas storage device, an IC lead frame, a shadow mask, which is an essential component of a cathode ray tube(CRT) for a color monitor of a TV or PC, other electronic devices, or the like.
  • a shadow mask made of invar alloys is expected to be used not only in field emission displays (FEDs) for flat monitors, which have recently been developed, but also in lead frames for mounting integrated circuit(IC) chips.
  • an Fe—Ni alloy containing 33% to 38% by weight of Ni produced by electroplating, using a solution as an electrolyte, on the basis of 1 liter (L) of water, comprising 32 to 53 g of ferrous sulfate (FeSO 4 .7H 2 O), ferrous chloride (FeCl 2 .4H 2 O) or a mixture thereof; 97 g of nickelsulfate (NiSO 4 .6H 2 O), nickel chloride (NiCl 2 .6H 2 O), nickel sulfamate (Ni(NH 2 SO 3 ) 2 ) or a mixture thereof; 20 to 30 g of boric acid (H 3 BO 3 ); 1 to 3 g of sodium saccharin (C 7 H 4 NO 3 SNa); 0.1 to 0.3 g of sodium lauryl sulfate (C 12 H 25 O 4 SNa); and 20 to 40 g of sodium chloride (NaCl), under
  • FIG. 1 is a schematic diagram of an electroplating apparatus for producing a nano invar alloy sheet according to the present invention
  • FIG. 2 illustrates a change in the coefficient of thermal expansion depending on the composition ratio of a nano invar alloy according to the present invention
  • FIG. 3 is a ⁇ 111 ⁇ pole figure of texture after annealing a conventional invar alloy
  • FIG. 4 is a ⁇ 100 ⁇ pole figure of texture of the nano invar alloy according to the present invention.
  • FIG. 5 is a ⁇ 111 ⁇ pole figure of texture after annealing the nano invar alloy according to the present invention.
  • FIG. 1 is a schematic diagram of an electroplating apparatus for producing a nano invar alloy sheet according to the present invention.
  • FIG. 1 electroplating was conducted such that an electrolyte 3 according to the present invention was put in an electroplating bath 9 , and a circulation pump 5 was actuated to allow the electrolyte 3 to flow between a cathode 1 and an anode 2 , spaced 10 mm apart from each other, at a flow rate of 0.1 to 2.0 m/sec.
  • reference numeral 6 denotes a circulation pipe.
  • the electrolyte proposed in the present invention is a solution having a composition comprising ferrous sulfate (FeSO 4 .7H 2 O) or ferrous chloride (FeCl 2 .4H 2 O); nickel sulfate (NiSO 4 .6H 2 O), nickel chloride (NiCl 2 .6H 2 O) or nickel sulfamate (Ni(NH 2 SO 3 ) 2 ); 20 to 30 g/l of boric acid (H 3 BO 3 ); 1 to 3 g/l of sodium saccharin (C 7 H 4 NO 3 SNa); 0.1 to 0.3 g/l of sodium lauryl sulfate (C 12 H 25 O 4 SNa); and 20 to 40 g/l of sodium chloride (NaCl).
  • ferrous sulfate FeSO 4 .7H 2 O
  • FeCl 2 .4H 2 O ferrous chloride
  • NiSO 4 .6H 2 O nickel sulfate
  • More desirable effects of the electrolyte are achieved by comprising 22 to 25 g/l of boric acid (H 3 BO 3 ), 2.0 to 2.4 g/l of sodium saccharin (C 7 H 4 NO 3 SNa), 0.1 to 0.2 g/l of sodium lauryl sulfate pH buffering agent, sodium sacchanrin is added as a stress relaxing agent for the electroplated product, sodium chloride is added for the purpose of enhancing the conductivity of the electrolyte, and sodium lauryl sulfate is added as a surfactant.
  • boric acid H 3 BO 3
  • sodium saccharin C 7 H 4 NO 3 SNa
  • sodium lauryl sulfate pH buffering agent sodium sacchanrin is added as a stress relaxing agent for the electroplated product
  • sodium chloride is added for the purpose of enhancing the conductivity of the electrolyte
  • sodium lauryl sulfate is added as a surfactant.
  • the pH of the electrolyte is maintained in a range of 2 to 3
  • the current density is in a range of 50 to 100 mA/cm 2
  • the temperature of the electrolyte is in a range of 45 to 60° C.
  • the Fe component and Ni component are released in the ionic form from the electrolyte and are electrodeposited on a cathode sheet in the form of Fe—Ni alloy having a thickness of 1 to 200 ⁇ m during electroplating.
  • Tables 1 through 6 show examples of electrolytes for producing nano invar alloy sheets of the present invention by electroplating. TABLE 1 Using solution containing ferrous sulfate (FeSO 4 .7H 2 O) and nickel sulfate (NiSO 4 .6H 2 O) Ni of the FeSO 4 . NiSO 4 .
  • Table 1 shows preparation results of Fe—Ni alloys having desired compositions according to Examples 1 through 3 using electrolytes containing ferrous sulfate (FeSO 4 .7H 2 O) and nickel sulfate (NiSO 4 .6H 2 ) as main components, with keeping the amounts of nickel sulfate at 97 g/l and varying the amounts of ferrous sulfate in a range of 43 to 53 g/l.
  • Table 2 shows a preparation result of an Fe—Ni alloy having a desired composition according to Example 4 using an electrolyte containing ferrous sulfate (FeSO 4 .7H 2 O) and nickel chloride (NiCl 2 .6H 2 O) as main components, with keeping the amount of nickel sulfate at 97 g/l and using 50 g/l of ferrous sulfate.
  • FeSO 4 .7H 2 O ferrous sulfate
  • NiCl 2 .6H 2 O nickel chloride
  • Table 3 shows preparation results of Fe—Ni alloys having desired compositions according to Examples 5 and 6 using electrolytes containing ferrous chloride (FeCl 2 .4H 2 O) and nickel sulfate(NiSO 4 .6H 2 O) as main components, with keeping the amounts of nickel sulfate at 97 g/l and varying the amounts of ferrous chloride in a range of 42 to 44 g/l.
  • Table 4 shows preparation results of Fe—Ni alloys having desired compositions according to Examples 7 and 9 using electrolytes containing ferrous chloride (FeCl 2 .4H 2 O) and nickel chloride (NiCl 2 .6H 2 O) as main components, with keeping the amounts of nickel chloride at 97 g/l and varying the amounts of ferrous chloride in a range of 44 to 50 g/l.
  • Table 5 shows preparation results of Fe—Ni alloys having desired compositions according to Examples 10 and 11 using electrolytes containing ferrous sulfate (FeSO 4 .7H 2 O) and nickel sulfamate (Ni(NH 2 SO 3 ) 2 ) as main components, with keeping the amounts of nickel sulfamate at 97 g/l and varying the amounts of ferrous sulfate in a range of 35 to 37 g/l.
  • Table 6 shows preparation results of Fe—Ni alloys having desired compositions according to Examples 12 and 13 using electrolytes containing ferrous chloride (FeCl 2 .4H 2 O) and nickel sulfamate (Ni(NH 2 SO 3 ) 2 ) as main components, with keeping the amounts of nickel sulfamate at 97 g/l and varying the amounts of ferrous chloride in a range of 32 to 34 g/l.
  • ferrous chloride FeCl 2 .4H 2 O
  • Ni(NH 2 SO 3 ) 2 nickel sulfamate
  • the Fe—Ni alloys produced using the electrolytes having the compositions listed above by electroplating have properties shown in Table 8 below, irrespective of kinds of electrolytes used in Tables 1 through 6.
  • Table 8 When comparing the conventional invar alloys shown in Table 7 with the nano invar alloys according to the present invention in view of their properties, it is confirmed that the nano invar alloys according to the present invention have better material characteristics than the conventional invar alloys.
  • Table 9 The comparison results are shown in Table 9.
  • the nano invar alloy according to the present invention is at least two times higher than the conventional invar alloy in view of hardness, tensile strength, and yield strength.
  • the yield strength of the nano invar alloys according to the present invention is 805 MPa, which is much higher than that of the conventional invar alloy, that is, 275 to 415 MPa. Therefore, the nano invar alloys according to the present invention can be advantageously applied in the fields where there is a demand for providing high strength.
  • Table 10 shows average coefficients of thermal expansion of the conventional invar alloy depending on temperature ranges.
  • the conventional invar alloy has an average coefficient of thermal expansion of about 1.66 ⁇ m/mK in a temperature range of 17 to 100° C., and the coefficient of thermal expansion thereof increases as the temperature becomes higher.
  • the nano invar alloy (Fe-36 wt % Ni) according to the present invention exhibits a coefficient of thermal expansion of about 1.58 ⁇ m/mK in a temperature range of 20 to 100° C., the coefficient of thermal expansion of 0 in a temperature range of 140 to 150° C., and when the temperature increases to 150° C. or higher, the coefficient of thermal expansion thereof becomes a negative value.
  • the average coefficient of thermal expansion of the nano invar alloy according to the present invention is ⁇ 1.78, ⁇ m/mK
  • thermal expansion behaviors are commonly exhibited when the Ni content of the nano invar alloy according to the present invention is in a range of 33 to 38 wt %.
  • FIG. 2 shows a change in the coefficient of thermal expansion of the nano invar alloy according to the present invention depending on its composition ratio, confirming the facts described hereinbefore.
  • percentages of the Ni content, by weight are 33% and 38%, the coefficients of thermal expansion for both cases are negative values at a given temperature or higher. Therefore, since the nano invar alloy according to the present invention has a negative coefficient of thermal expansion, applications where such properties are demanded may be newly possible applications of the present invention.
  • FIG. 3 is a ⁇ 111 ⁇ pole figure of the texture after annealing conventional invar alloy
  • FIG. 4A is a ⁇ 100 ⁇ pole figure of the texture of the nano invar alloy according to the present invention
  • FIG. 4B is a ⁇ 111 ⁇ pole figure of the texture after annealing the nano invar alloy according to the present invention.
  • the Fe—Ni alloy of the present invention has a nanocrystalline structure having a grain size of 5 to 15 nm.
  • Such a nanocrystalline structure presumably accounts for high yield strength of the invar alloy.
  • the production cost can be greatly reduced.
  • the Fe—Ni alloys according to the present invention have a nanocrystalline structure, they exhibit excellent mechanical properties, thereby creating a new range in industrial uses.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

The present invention relates to an electrolyte for producing a novel Fe—Ni alloy having an Ni content in a range of 33 to 42 wt %, specifically a nanocrystalline invar alloy having a grain size of 5 to 15 nm, by electroplating, and preparation conditions thereof. The electrolyte comprises, on the basis of 1 L of water, 32 to 53 g of ferrous sulfate or ferrous chloride, a mixture thereof; 97 g of nickel sulfate, nickel chloride, nickel sulfamate or a mixture thereof; 20 to 30 g of boric acid; 1 to 3 g of sodium saccharin; 0.1 to 0.3 g of sodium lauryl sulfate; and 20 to 40 g of sodium chloride. The Fe—Ni alloy sheet of the present invention exhibits excellent mechanical property compared to the conventional Fe—Ni alloy and a new property, i.e., a negative coefficient of thermal expansion at a given temperature range.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a Continuation-In-Part of PCT International Application No. PCT/KR2004/000516 filed on Mar. 12, 2004, which designated the United States.
  • FIELD OF THE INVENTION
  • The present invention relates to an electrolyte for producing a novel Fe—Ni alloy having a Ni content in a range of 33 to 42 wt %, specifically a nanocrystalline invar alloy having a grain size of 5 to 15 nm, by electroplating, and preparation conditions thereof.
  • BACKGROUND OF THE INVENTION
  • Fe—Ni alloys exhibit various properties according to the Ni content, and low thermal expansion properties are exhibited when the Ni content is in a range of 20% to 50% by weight (see D. R. Rancourt, S. Chehab and G. Lamarche, J. Mag. Mag. Mater. 78 (1989) 129.). Specifically, an alloy consisting of 64% Fe and 36% Ni, which is referred to as “an invar alloy”, has a coefficient of thermal expansion of about zero. The invar alloy has, since its discovery in 1897 by Guillaume (see C. E. Guillaume, C.R. Acad. Sci. Paris 124 (1897) 176.), been commercially used for various practical applications as a typical low thermal expansion alloy.
  • Such a typical low thermal expansion invar alloy (Fe-36% Ni) is used in a variety of applications, such as a standard measurement apparatus, an internal combustion engine piston, bimetal, a temperature controller, a liquefied gas storage device, an IC lead frame, a shadow mask, which is an essential component of a cathode ray tube(CRT) for a color monitor of a TV or PC, other electronic devices, or the like.
  • Also, a shadow mask made of invar alloys is expected to be used not only in field emission displays (FEDs) for flat monitors, which have recently been developed, but also in lead frames for mounting integrated circuit(IC) chips.
  • There may be circumstances where alloys need to be shrinkable as the temperature at which the alloys are used, increases. In such case, development of alloys having a negative coefficient of thermal expansion in an operating temperature range is very highly demanded.
  • Various processes have been employed to produce the Fe—Ni alloy sheets, and cold rolling has been typically used for that purpose. When conducting the cold rolling, vacuum melting, forging, hot rolling, normalizing, primary cold rolling, intermediate annealing, secondary cold rolling, final annealing under a reduction atmosphere and so on should be performed. In order to produce a thin invar alloy sheet having a thickness of 0.1 mm or less, it is necessary to carry out a multi-stage rolling process, as disclosed in U.S. Pat. No. 4,94,834, which is, however, complex, and makes it difficult to obtain homogenous product. Also, this process undesirably requires a high production cost. Furthermore, there are several problems that large-scale equipment, such as a vacuum melting furnace, forging facility, a hot roller or a multi-stage roller, is required, and a heating process for shaping as requested by final product is quite difficult to perform etc. Further, coefficients of thermal expansion are undesirably sensitive to impurities involving in the process and a change in the processing conditions (see Metals Handbook, 9th ed. Vol. 3, ASM (1980) 889.).
  • To overcome the limitations of the conventional preparation methods, vigorous research into preparation methods of Fe—Ni alloys by electroplating electroforming) has been carried out in recent years. However, according to the electroplating, since selecting a proper electrolyte or establishing proper processing conditions, such as a temperature or current density, are quite complicated, the use of electroplating for producing desired Fe—Ni alloys has not been successful.
  • SUMMARY OF THE INVENTION
  • Therefore, there is an increasing demand for providing proper electrolytes and processing conditions for producing nano invar alloys. In particular, since a sheet to be plated should have a width of at least 300 mm (30 cm) for commercial use, it is necessary to find out appropriate conditions for electroplating under such circumstances.
  • It is an object of the present invention to provide an electrolyte for producing a nano invar alloy sheet having a nano-scale grain size by electroplating or electroforming, and processing conditions thereof.
  • It is another object of the present invention to provide an Fe—Ni alloy having a negative coefficient of thermal expansion at a given temperature range.
  • It is still another object of the present invention to provide an Fe—Ni alloy having excellent mechanical properties compared to the conventional invar alloy.
  • It is yet another object of the present invention to provide a method for producing an Fe—Ni alloy having a negative coefficient of thermal expansion at a given temperature range.
  • In accordance with the present invention, there is provided an Fe—Ni alloy containing 33% to 38% by weight of Ni, produced by electroplating, using a solution as an electrolyte, on the basis of 1 liter (L) of water, comprising 32 to 53 g of ferrous sulfate (FeSO4.7H2O), ferrous chloride (FeCl2.4H2O) or a mixture thereof; 97 g of nickelsulfate (NiSO4.6H2O), nickel chloride (NiCl2.6H2O), nickel sulfamate (Ni(NH2SO3)2) or a mixture thereof; 20 to 30 g of boric acid (H3BO3); 1 to 3 g of sodium saccharin (C7H4NO3SNa); 0.1 to 0.3 g of sodium lauryl sulfate (C12H25O4SNa); and 20 to 40 g of sodium chloride (NaCl), under the conditions that a pH of the electrolyte is in a range of 2 to 3, a current density is in a range of 50 to 100 mA/cm2, and a temperature of the electrolyte is in a range of 45 to 60° C.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above and other features and advantages of the present invention will become more apparent by describing in detail exemplary embodiments thereof with reference to the attached drawings in which:
  • FIG. 1 is a schematic diagram of an electroplating apparatus for producing a nano invar alloy sheet according to the present invention;
  • FIG. 2 illustrates a change in the coefficient of thermal expansion depending on the composition ratio of a nano invar alloy according to the present invention;
  • FIG. 3 is a {111} pole figure of texture after annealing a conventional invar alloy;
  • FIG. 4 is a {100} pole figure of texture of the nano invar alloy according to the present invention; and
  • FIG. 5 is a {111} pole figure of texture after annealing the nano invar alloy according to the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • A preferred embodiment of the present invention will now be described in detail with reference to the accompanying drawings.
  • FIG. 1 is a schematic diagram of an electroplating apparatus for producing a nano invar alloy sheet according to the present invention.
  • In FIG. 1, electroplating was conducted such that an electrolyte 3 according to the present invention was put in an electroplating bath 9, and a circulation pump 5 was actuated to allow the electrolyte 3 to flow between a cathode 1 and an anode 2, spaced 10 mm apart from each other, at a flow rate of 0.1 to 2.0 m/sec. Here, reference numeral 6 denotes a circulation pipe. When a 20 μm thick Fe—Ni alloy was electrodeposited on a cathode sheet, a current supply device 4 was stopped operating, and a resulting electroplated sheet was isolated from a cathode surface. According to an aspect of the present invention, the inclination 10 of an anode sheet depends on the flow rate.
  • The electrolyte proposed in the present invention is a solution having a composition comprising ferrous sulfate (FeSO4.7H2O) or ferrous chloride (FeCl2.4H2O); nickel sulfate (NiSO4.6H2O), nickel chloride (NiCl2.6H2O) or nickel sulfamate (Ni(NH2SO3)2); 20 to 30 g/l of boric acid (H3BO3); 1 to 3 g/l of sodium saccharin (C7H4NO3SNa); 0.1 to 0.3 g/l of sodium lauryl sulfate (C12H25O4SNa); and 20 to 40 g/l of sodium chloride (NaCl). More desirable effects of the electrolyte are achieved by comprising 22 to 25 g/l of boric acid (H3BO3), 2.0 to 2.4 g/l of sodium saccharin (C7H4NO3SNa), 0.1 to 0.2 g/l of sodium lauryl sulfate pH buffering agent, sodium sacchanrin is added as a stress relaxing agent for the electroplated product, sodium chloride is added for the purpose of enhancing the conductivity of the electrolyte, and sodium lauryl sulfate is added as a surfactant. During electroplating, the pH of the electrolyte is maintained in a range of 2 to 3, the current density is in a range of 50 to 100 mA/cm2, and the temperature of the electrolyte is in a range of 45 to 60° C.
  • The Fe component and Ni component are released in the ionic form from the electrolyte and are electrodeposited on a cathode sheet in the form of Fe—Ni alloy having a thickness of 1 to 200 μm during electroplating.
  • Tables 1 through 6 show examples of electrolytes for producing nano invar alloy sheets of the present invention by electroplating.
    TABLE 1
    Using solution containing ferrous sulfate
    (FeSO4.7H2O) and nickel sulfate (NiSO4.6H2O)
    Ni of
    the
    FeSO4. NiSO4. C12H25O4S C7H4NO3 Fe-Ni
    7H2O 6H2O H3BO3 Na SNa NaCl Fe:Ni alloy
    Example (g) (g) (g) (g) (g) (g) (mol) (wt %)
    1 43 97 22 0.1 2.0 32 1:2.371 38.8
    2 48 97 22 0.1 2.0 32 1:2.124 36.4
    3 53 97 22 0.1 2.0 32 1:1.923 34.2

    <On the basis of 1 liter of distilled water>
  • TABLE 2
    Using solution containing ferrous sulfate
    (FeSO4.7H2O) and nickel chloride (NiCl2.6H2O)
    Ni of
    the
    FeSO4. NiCl2. C12H25O4S C7H4NO3 Fe-Ni
    7H2O 6H2O H3BO3 Na SNa NaCl Fe:Ni alloy
    Example (g) (g) (g) (g) (g) (g) (mol) (wt %)
    4 50 97 22 0.1 2.0 32 1:2.039 36.6

    <On the basis of 1 liter of distilled water>
  • TABLE 3
    Using solution containing ferrous
    chloride (FeCl2.4H2O) and nickel sulfate (NiSO4.6H2O)
    Ni of
    the
    FeCl2. NiSO4. C12H25O4S C7H4NO3 Fe-Ni
    4H2O 6H2O H3BO3 Na SNa NaCl Fe:Ni alloy
    Example (g) (g) (g) (g) (g) (g) (mol) (wt %)
    5 42 97 22 0.1 2.0 32 1:2.832 37.5
    6 44 97 22 0.1 2.0 32 1:2.427 36.2

    <On the basis of 1 liter of distilled water>
  • TABLE 4
    Using solution containing ferrous chloride
    (FeCl2.4H2O) and nickel chloride (NiCl2.6H2O)
    Ni of
    the
    FeSO4. NiCl2. C12H25O4S C7H4NO3 Fe-Ni
    7H2O 6H2O H3BO3 Na SNa NaCl Fe:Ni alloy
    Example (g) (g) (g) (g) (g) (g) (mol) (wt %)
    7 44 97 22 0.1 2.0 32 1:2.317 38.3
    8 46 97 22 0.1 2.0 32 1:2.216 36.2
    9 50 97 22 0.1 2.0 32 1:2.039 32.7

    <On the basis of 1 liter of distilled water>
  • TABLE 5
    Using solution containing ferrous sulfate
    (FeSO4.7H2O) and nickel sulfamate (Ni (NH2SO3)2)
    Ni of
    the
    FeSO4. Ni (NH2 C12H25O4 C7H4NO3 Fe-Ni
    7H2O SO3)2 H3BO3 SNa SNa NaCl Fe:Ni alloy
    Example (g) (g) (g) (g) (g) (g) (mol) (wt %)
    10 35 97 22 0.1 2.0 32 1:2.913 36.3
    11 37 97 22 0.1 2.0 32 1:2.755 34.5

    <On the basis of 1 liter of distilled water>
  • TABLE 6
    Using solution containing ferrous chloride
    (FeCl2.4H2O) and nickel sulfamate (Ni (NH2SO3)2)
    Ni of
    the
    FeCl2. Ni (NH2 C12H25O4 C7H4NO3 Fe-Ni
    7H2O SO3)2 H3BO3 SNa SNa NaCl Fe:Ni alloy
    Example (g) (g) (g) (g) (g) (g) (mol) (wt %)
    12 32 97 25 0.2 2.4 30 1:3.186 37.0
    13 34 97 25 0.2 2.4 30 1:2.998 35.2

    <On the basis of 1 liter of distilled water>
  • Table 1 shows preparation results of Fe—Ni alloys having desired compositions according to Examples 1 through 3 using electrolytes containing ferrous sulfate (FeSO4.7H2O) and nickel sulfate (NiSO4.6H2) as main components, with keeping the amounts of nickel sulfate at 97 g/l and varying the amounts of ferrous sulfate in a range of 43 to 53 g/l.
  • Table 2 shows a preparation result of an Fe—Ni alloy having a desired composition according to Example 4 using an electrolyte containing ferrous sulfate (FeSO4.7H2O) and nickel chloride (NiCl2.6H2O) as main components, with keeping the amount of nickel sulfate at 97 g/l and using 50 g/l of ferrous sulfate.
  • Table 3 shows preparation results of Fe—Ni alloys having desired compositions according to Examples 5 and 6 using electrolytes containing ferrous chloride (FeCl2.4H2O) and nickel sulfate(NiSO4.6H2O) as main components, with keeping the amounts of nickel sulfate at 97 g/l and varying the amounts of ferrous chloride in a range of 42 to 44 g/l.
  • Table 4 shows preparation results of Fe—Ni alloys having desired compositions according to Examples 7 and 9 using electrolytes containing ferrous chloride (FeCl2.4H2O) and nickel chloride (NiCl2.6H2O) as main components, with keeping the amounts of nickel chloride at 97 g/l and varying the amounts of ferrous chloride in a range of 44 to 50 g/l.
  • Table 5 shows preparation results of Fe—Ni alloys having desired compositions according to Examples 10 and 11 using electrolytes containing ferrous sulfate (FeSO4.7H2O) and nickel sulfamate (Ni(NH2SO3)2) as main components, with keeping the amounts of nickel sulfamate at 97 g/l and varying the amounts of ferrous sulfate in a range of 35 to 37 g/l.
  • Table 6 shows preparation results of Fe—Ni alloys having desired compositions according to Examples 12 and 13 using electrolytes containing ferrous chloride (FeCl2.4H2O) and nickel sulfamate (Ni(NH2SO3)2) as main components, with keeping the amounts of nickel sulfamate at 97 g/l and varying the amounts of ferrous chloride in a range of 32 to 34 g/l.
  • The Fe—Ni alloys produced using the electrolytes having the compositions listed above by electroplating, have properties shown in Table 8 below, irrespective of kinds of electrolytes used in Tables 1 through 6. When comparing the conventional invar alloys shown in Table 7 with the nano invar alloys according to the present invention in view of their properties, it is confirmed that the nano invar alloys according to the present invention have better material characteristics than the conventional invar alloys. The comparison results are shown in Table 9.
    TABLE 7
    Physical properties of conventional invar alloys
    Density, g/cm3 8.1
    Tensile strength, MPa 450-585
    Yield strength, MPa 275˜415
    Elastic limit, MPa 140-205
    Elongation, %  30˜45 
    Reduction in area, %  55˜70 
    Brinell hardness 160
    Modulus of elasticity, GPa (106 psi) 150(21.4)
    Thermoelastic coefficient, mm/m k 500
    Specific heat, at 25˜100° C., J/kg · ° C. 515
    Thermal conductivity, at 20-100° C., W/m k 11
    Electrical resistivity, ml m 750˜850
  • TABLE 8
    Physical properties of nano invar alloys according
    to the present invention
    Hardness, GPa 5.4
    Tensile strength, MPa 1,045
    Yield strength, MPa 805
    Modulus of elasticity, GPa 85˜120
  • TABLE 9
    Comparison between conventional invar alloys
    and nano invar alloys according to the present
    invention in view of the properties
    Conventional invar alloy
    (Commercially available Nano invar alloy
    invar alloy) (Present invention)
    Hardness 2.5 GPa 5.4 GPa
    Tensile 450˜585 MPa 1,045 MPa
    strength
    Yield 275˜415 MPa 805 MPa
    strength
  • In other words, the nano invar alloy according to the present invention is at least two times higher than the conventional invar alloy in view of hardness, tensile strength, and yield strength. In detail, the yield strength of the nano invar alloys according to the present invention is 805 MPa, which is much higher than that of the conventional invar alloy, that is, 275 to 415 MPa. Therefore, the nano invar alloys according to the present invention can be advantageously applied in the fields where there is a demand for providing high strength.
    TABLE 10
    Coefficients of thermal expansion of conventional
    invar alloy
    Temperature range, Coefficient,
    ° C. μm/mK
    As forged 17 to 100 1.66
    17 to 250 3.11
  • TABLE 11
    Coefficients of thermal expansion of nano invar
    alloy (Fe-36 wt % Ni) according to the present invention
    Temperature range, Coefficient,
    ° C. μm/mK
    As forged 20 to 100 1.58
    20 to 200 −1.78
    20 to 300 −2.70
    20 to 400 −3.82
  • Table 10 shows average coefficients of thermal expansion of the conventional invar alloy depending on temperature ranges. As shown in Table 10, the conventional invar alloy has an average coefficient of thermal expansion of about 1.66 μm/mK in a temperature range of 17 to 100° C., and the coefficient of thermal expansion thereof increases as the temperature becomes higher. On the other hand, the nano invar alloy (Fe-36 wt % Ni) according to the present invention exhibits a coefficient of thermal expansion of about 1.58 μm/mK in a temperature range of 20 to 100° C., the coefficient of thermal expansion of 0 in a temperature range of 140 to 150° C., and when the temperature increases to 150° C. or higher, the coefficient of thermal expansion thereof becomes a negative value. When the temperature is in a range of 20 to 200° C., the average coefficient of thermal expansion of the nano invar alloy according to the present invention is −1.78, μm/mK Such thermal expansion behaviors are commonly exhibited when the Ni content of the nano invar alloy according to the present invention is in a range of 33 to 38 wt %.
  • FIG. 2 shows a change in the coefficient of thermal expansion of the nano invar alloy according to the present invention depending on its composition ratio, confirming the facts described hereinbefore. As shown in the drawing, in case that percentages of the Ni content, by weight, are 33% and 38%, the coefficients of thermal expansion for both cases are negative values at a given temperature or higher. Therefore, since the nano invar alloy according to the present invention has a negative coefficient of thermal expansion, applications where such properties are demanded may be newly possible applications of the present invention.
  • FIG. 3 is a {111} pole figure of the texture after annealing conventional invar alloy, FIG. 4A is a {100} pole figure of the texture of the nano invar alloy according to the present invention, and FIG. 4B is a {111} pole figure of the texture after annealing the nano invar alloy according to the present invention.
  • As is apparent from the drawings, when the conventional invar alloy is annealed, a growth texture of {001} <100> type is dominantly indicated. On the contrary, in case of the nano invar alloy according to the present invention, in a plated state, a {100}//ND fiber type is dominantly indicated, and when annealed, a growth of {111}//ND fiber texture type is indicated.
  • According to X-ray diffraction, the Fe—Ni alloy of the present invention has a nanocrystalline structure having a grain size of 5 to 15 nm. The results confirmed that the grain size of the invar alloy composition having the Ni content of 36% is very small to be in a range of 5 to 7 nm. Such a nanocrystalline structure presumably accounts for high yield strength of the invar alloy.
  • According to the present invention, since Fe—Ni alloys having low thermal expansion properties is produced by a single-step electroplating process, the production cost can be greatly reduced. Particularly, since the Fe—Ni alloys according to the present invention have a nanocrystalline structure, they exhibit excellent mechanical properties, thereby creating a new range in industrial uses.

Claims (18)

1. An Fe—Ni alloy containing 33% to 38% by weight of Ni, produced by electroplating, using a solution as an electrolyte, on the basis of 1 liter (L) of water, comprising 32 to 53 g of ferrous sulfate (FeSO4.7H2O), ferrous chloride (FeCl2.4H2O) or a mixture thereof; 97 g of nickel sulfate (NiSO4.6H2O), nickel chloride (NiCl2.6H2O), nickel sulfamate (Ni(NH2SO3)2) or a mixture thereof; 20 to 30 g of boric acid (H3BO3); 1 to 3 g of sodium saccharin (C7H4NO3SNa); 0.1 to 0.3 g of sodium lauryl sulfate (C12H25O4SNa); and 20 to 40 g of sodium chloride (NaCl), under the conditions of a pH of the electrolyte being in a range of 2 to 3, a current density being in a range of 50 to 100 mA/cm2, and a temperature of the electrolyte being in a range of 45 to 60° C.
2. The Fe—Ni alloy of claim 1, wherein the electrolyte, on the basis of 1 L of water, comprises:
43 to 53 g of ferrous sulfate (FeCl2.4H2O);
97 g of nickel sulfate (NiSO4.6H2O);
20 to 30 g of boric acid (H3BO3);
1.0 to 3.0 g of sodium saccharin (C7H4NO3SNa);
0.1 to 0.3 g of sodium lauryl sulfate (C12H25O4SNa); and
20 to 40 g of sodium chloride (NaCl).
3. The Fe—Ni alloy of claim 1, wherein the electrolyte, on the basis of 1 L of water, comprises:
50 g of ferrous sulfate (FeSO4.7H2O);
97 g of nickel chloride (NiCl2.6H2O);
20 to 30 g of boric acid (H3BO3);
1.0 to 3.0 g of sodium saccharin (C7H4NO3SNa);
0.1 to 0.3 g of sodium lauryl sulfate (C12H25O4SNa); and
20 to 40 g of sodium chloride (NaCl).
4. The Fe—Ni alloy of claim 1, wherein the electrolyte, on the basis of 1 L of water, comprises:
42 to 44 g of ferrous chloride (FeCl4.4H2O);
97 g of nickel sulfate (NiSO4.6H2O);
20 to 30 g of boric acid (H3BO3);
1.0 to 3.0 g of sodium saccharin (C7H4NO3SNa);
0.1 to 0.3 g of sodium lauryl sulfate (C12H25O4SNa); and
20 to 40 g of sodium chloride (NaCl).
5. The Fe—Ni alloy of claim 1, wherein the electrolyte, on the basis of 1 L of water, comprises:
44 to 50 g of ferrous chloride (FeCl4.4H2O);
97 g of nickel chloride (NiCl2.6H2O);
20 to 30 g of boric acid (H3BO3);
1.0 to 3.0 g of sodium saccharin (C7H4NO3SNa);
0.1 to 0.3 g of sodium lauryl sulfate (C12H25O4SNa); and
20 to 40 g of sodium chloride (NaCl).
6. The Fe—Ni alloy of claim 1, wherein the electrolyte, on the basis of 1 L of water, comprises:
35 to 37 g of ferrous sulfate (FeSO4.7H2O);
97 g of nickel sulfamate (Ni(NH2SO3)2);
20 to 30 g of boric acid (H3BO3);
1.0 to 3.0 g of sodium saccharin (C7H4NO3SNa);
0.1 to 0.3 g of sodium lauryl sulfate (C12H25O4SNa); and
20 to 40 g of sodium chloride (NaCl).
7. The Fe—Ni alloy of claim 1, wherein the electrolyte, on the basis of 1 L of water, comprises:
32 to 34 g of ferrous chloride (FeCl4.4H2O);
97 g of nickel sulfamate (Ni(NH2SO3)2);
20 to 30 g of boric acid (H3BO3);
1.0 to 3.0 g of sodium saccharin (C7H4NO3SNa);
0.1 to 0.3 g of sodium lauryl sulfate (C12H25O4SNa); and
20 to 40 g of sodium chloride (NaCl).
8. The Fe—Ni alloy of any one of claims 1 through 7, wherein the Fe—Ni alloy has a thickness in a range of 1 to 200 μm.
9. The Fe—Ni alloy of any one of claims 1 through 7, wherein the Fe—Ni alloy has a grain size in a range of 5 to 15 nm.
10. The Fe—Ni alloy of any one of claims 1 through 7, wherein the Fe—Ni alloy has a negative coefficient of thermal expansion at a predetermined temperature or higher.
11. The Fe—Ni alloy of any one of claims 1 through 8, wherein the Fe—Ni alloy has a composition ratio of 64 wt % Fe and 36 wt % Ni.
12. A method of producing an Fe—Ni alloy containing 33% to 38% by weight of Ni, comprising carrying out electroplating, using a solution as an electrolyte, on the basis of 1 liter (L) of water, comprising 32 to 53 g of ferrous sulfate (FeSO4.7H2O), ferrous chloride (FeCl2.4H2O) or a mixture thereof; 97 g of nickel sulfate (NiSO4.6H2O), nickel chloride (NiCl2.6H2O), nickel sulfamate (Ni(NH2SO3)2) or a mixture thereof; 20 to 30 g of boric acid (H3BO3); 1 to 3 g of sodium saccharin (C7H4NO3SNa); 0.1 to 0.3 g of sodium lauryl sulfate (C12H25O4SNa); and 20 to 40 g of sodium chloride (NaCl), under the conditions of a pH of the electrolyte being in a range of 2 to 3, a current density being in a range of 50 to 100 mA/cm2, and a temperature of the electrolyte being in a range of 45 to 60° C.
13. The method of claim 12, wherein the electrolyte, on the basis of 1 L of water, comprises:
43 to 53 g of ferrous sulfate (FeSO4.7H2O);
97 g of nickel sulfate (NiSO4.6H2O);
20 to 30 g of boric acid (H3BO3);
1.0 to 3.0 g of sodium saccharin (C7H4NO3SNa);
0.1 to 0.3 g of sodium lauryl sulfate (C12H25O4SNa); and
20 to 40 g of sodium chloride (NaCl).
14. The method of claim 12, wherein the electrolyte, on the basis of 1 L of water, comprises:
50 g of ferrous sulfate (FeSO4.7H2O);
97 g of nickel chloride (NiCl2.6H2O);
20 to 30 g of boric acid (H3BO3);
1.0 to 3.0 g of sodium saccharin (C7H4NO3SNa);
0.1 to 0.3 g of sodium lauryl sulfate (C12H25O4SNa); and
20 to 40 g of sodium chloride (NaCl).
15. The method of claim 12, wherein the electrolyte, on the basis of 1 L of water, comprises:
42 to 44 g of ferrous chloride (FeCl4.4H2O);
97 g of nickel sulfate (NiSO4.6H2O);
20 to 30 g of boric acid (H3BO3);
1.0 to 3.0 g of sodium saccharin (C7H4NO3SNa);
0.1 to 0.3 g of sodium lauryl sulfate (C12H25O4SNa); and
20 to 40 g of sodium chloride (NaCl).
16. The method of claim 12, wherein the electrolyte, on the basis of 1 L of water, comprises:
44 to 50 g of ferrous chloride (FeCl4.4H2O);
97 g of nickel chloride (NiCl2.6H2O);
20 to 30 g of boric acid (H3BO3);
1.0 to 3.0 g of sodium saccharin (C7H4NO3SNa);
0.1 to 0.3 g of sodium lauryl sulfate (C12H25O4SNa); and
20 to 40 g of sodium chloride (NaCl).
17. The method of claim 12, wherein the electrolyte, on the basis of 1 L of water, comprises:
35 to 37 g of ferrous sulfate (FeSO4.7H2O);
97 g of nickel sulfamate (Ni(NH2SO3)2);
20 to 30 g of boric acid (H3BO3);
1.0 to 3.0 g of sodium saccharin (C7H4NO3SNa);
0.1 to 0.3 g of sodium lauryl sulfate (C12H25O4SNa); and
20 to 40 g of sodium chloride (NaCl).
18. The method of claim 12, wherein the electrolyte, on the basis of 1 L of water, comprises:
32 to 34 g of ferrous chloride (FeCl2.4H2O);
97 g of nickel sulfamate (Ni(NH2SO3)2);
20 to 30 g of boric acid (H3BO3);
1.0 to 3.0 g of sodium saccharin (C7H4NO3SNa);
0.1 to 0.3 g of sodium lauryl sulfate (C12H25O4SNa); and
20 to 40 g of sodium chloride (NaCl).
US11/254,821 2003-04-24 2005-10-21 Nano invar alloys and process for producing the same Abandoned US20060037671A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2003-0026108A KR100505002B1 (en) 2003-04-24 2003-04-24 Nani invar alloyes and the process of producing the same
KR10-2003-0026108 2003-04-24
PCT/KR2004/000516 WO2004094699A1 (en) 2003-04-24 2004-03-12 Nano invar alloys and a process of producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2004/000516 Continuation-In-Part WO2004094699A1 (en) 2003-04-24 2004-03-12 Nano invar alloys and a process of producing the same

Publications (1)

Publication Number Publication Date
US20060037671A1 true US20060037671A1 (en) 2006-02-23

Family

ID=33308297

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/254,821 Abandoned US20060037671A1 (en) 2003-04-24 2005-10-21 Nano invar alloys and process for producing the same

Country Status (4)

Country Link
US (1) US20060037671A1 (en)
JP (1) JP2006524292A (en)
KR (1) KR100505002B1 (en)
WO (1) WO2004094699A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110003171A1 (en) * 2004-12-17 2011-01-06 Integran Technologies Inc. Strong, lightweight article containing a fine-grained metallic layer
US20140269228A1 (en) * 2013-03-14 2014-09-18 Seiko Instruments Inc. Metal structure, method of manufacturing metal structure, spring component, chronograph coupling lever for timepiece, and timepiece
CN108138303A (en) * 2015-09-30 2018-06-08 大日本印刷株式会社 Deposition mask, the manufacturing method of deposition mask and metallic plate
US20180277799A1 (en) * 2015-09-30 2018-09-27 Dai Nippon Printing Co., Ltd. Deposition mask, method of manufacturing deposition mask and metal plate
CN112499640A (en) * 2020-08-05 2021-03-16 北京航空航天大学 Preparation of material with giant thermal hysteresis negative thermal expansion property and application of material in field of embedded pipe joint

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7320832B2 (en) 2004-12-17 2008-01-22 Integran Technologies Inc. Fine-grained metallic coatings having the coefficient of thermal expansion matched to the one of the substrate
CN102424994A (en) * 2011-12-17 2012-04-25 张家港舒马克电梯安装维修服务有限公司镀锌分公司 Ferronickel alloy electroplating liquid
CN102995083B (en) * 2012-12-07 2016-06-15 北京大学 A kind of method adopting plating to prepare soft magnetic materials iron-nickel alloy array
JP6084899B2 (en) * 2013-06-07 2017-02-22 株式会社Jcu Electroplating bath for iron-nickel alloy having low thermal expansion coefficient and high hardness, and electroplating method using the same
KR101420755B1 (en) * 2013-12-02 2014-07-17 주식회사 나노인바 Iron-nickel-ternary ternary alloy having low thermal expansion characteristics and method for manufacturing the same
KR101665802B1 (en) 2014-12-23 2016-10-13 주식회사 포스코 Fe-Ni ALLOY METAL FOIL HAVING EXCELLENT HEAT RESILIENCE AND METHOD FOR MANUFACTURING THE SAME
WO2016105009A1 (en) * 2014-12-24 2016-06-30 주식회사 포스코 High-rigidity metal foil and method for manufacturing same
JP2019044231A (en) * 2017-09-01 2019-03-22 株式会社Jcu Electroplating solution for iron-nickel alloy including low thermal expansion coefficient and electroplating method using the same
CN108468072B (en) * 2018-03-13 2020-05-05 阿德文泰克全球有限公司 Iron-nickel alloy shadow mask and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4014759A (en) * 1975-07-09 1977-03-29 M & T Chemicals Inc. Electroplating iron alloys containing nickel, cobalt or nickel and cobalt
US4231847A (en) * 1978-06-21 1980-11-04 Trw Inc. Electrodeposition of nickel-iron alloys having a low temperature coefficient and articles made therefrom
US4948434A (en) * 1988-04-01 1990-08-14 Nkk Corporation Method for manufacturing Ni-Fe alloy sheet having excellent DC magnetic property and excellent AC magnetic property

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190091A (en) * 1985-02-18 1986-08-23 Tdk Corp Method and device for magnetic alloy plating
KR19990064747A (en) * 1999-05-06 1999-08-05 이종구 Manufacturing method of Ni-Fe alloy thin plate and its apparatus
KR100394741B1 (en) * 2001-04-11 2003-08-14 연합철강공업 주식회사 Electrolytes for Fe-Ni alloy electroforming

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4014759A (en) * 1975-07-09 1977-03-29 M & T Chemicals Inc. Electroplating iron alloys containing nickel, cobalt or nickel and cobalt
US4231847A (en) * 1978-06-21 1980-11-04 Trw Inc. Electrodeposition of nickel-iron alloys having a low temperature coefficient and articles made therefrom
US4948434A (en) * 1988-04-01 1990-08-14 Nkk Corporation Method for manufacturing Ni-Fe alloy sheet having excellent DC magnetic property and excellent AC magnetic property

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110003171A1 (en) * 2004-12-17 2011-01-06 Integran Technologies Inc. Strong, lightweight article containing a fine-grained metallic layer
US8025979B2 (en) * 2004-12-17 2011-09-27 Integran Technologies Inc. Strong, lightweight article containing a fine-grained metallic layer
US20140269228A1 (en) * 2013-03-14 2014-09-18 Seiko Instruments Inc. Metal structure, method of manufacturing metal structure, spring component, chronograph coupling lever for timepiece, and timepiece
US9310772B2 (en) * 2013-03-14 2016-04-12 Seiko Instruments Inc. Metal structure, method of manufacturing metal structure, spring component, chronograph coupling lever for timepiece, and timepiece
US20180334740A1 (en) * 2015-09-30 2018-11-22 Dai Nippon Printing Co., Ltd. Deposition mask, method of manufacturing deposition mask and metal plate
US20180277799A1 (en) * 2015-09-30 2018-09-27 Dai Nippon Printing Co., Ltd. Deposition mask, method of manufacturing deposition mask and metal plate
CN108138303A (en) * 2015-09-30 2018-06-08 大日本印刷株式会社 Deposition mask, the manufacturing method of deposition mask and metallic plate
EP3358038A4 (en) * 2015-09-30 2020-01-01 Dai Nippon Printing Co., Ltd. Deposition mask, method for manufacturing deposition mask, and metal plate
US10541387B2 (en) * 2015-09-30 2020-01-21 Dai Nippon Printing Co., Ltd. Deposition mask, method of manufacturing deposition mask and metal plate
US10538838B2 (en) * 2015-09-30 2020-01-21 Dai Nippon Printing Co., Ltd. Deposition mask, method of manufacturing deposition mask and metal plate
CN108138303B (en) * 2015-09-30 2020-12-25 大日本印刷株式会社 Vapor deposition mask, method for manufacturing vapor deposition mask, and metal plate
EP3757247A1 (en) * 2015-09-30 2020-12-30 Dai Nippon Printing Co., Ltd. Deposition mask, method of manufacturing deposition mask and metal plate
US11118258B2 (en) * 2015-09-30 2021-09-14 Dai Nippon Printing Co., Ltd. Deposition mask, method of manufacturing deposition mask and metal plate
CN112499640A (en) * 2020-08-05 2021-03-16 北京航空航天大学 Preparation of material with giant thermal hysteresis negative thermal expansion property and application of material in field of embedded pipe joint

Also Published As

Publication number Publication date
KR20040092613A (en) 2004-11-04
WO2004094699A1 (en) 2004-11-04
KR100505002B1 (en) 2005-08-01
JP2006524292A (en) 2006-10-26

Similar Documents

Publication Publication Date Title
US20060037671A1 (en) Nano invar alloys and process for producing the same
CN103789571B (en) Cu Ni Co Si series copper alloy sheet material and its manufacture method
US9476109B2 (en) Cu—Ni—Si—Co copper alloy for electronic material and process for producing same
US8142907B2 (en) Aluminum alloy brazing sheet having high-strength and production method therefor
JP5441876B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
EP3239363B1 (en) Fe-ni alloy metal foil having excellent heat resilience and method for manufacturing same
CN113088756B (en) Tin-phosphor bronze strip and preparation method thereof
JP2018040055A (en) Iron-nickel alloy foil and production method thereof
JP5478292B2 (en) Method for producing iron-nickel alloy plating film having high hardness and low thermal expansion coefficient
US9478323B2 (en) Cu—Si—Co-based copper alloy for electronic materials and method for producing the same
US20060011275A1 (en) Copper-titanium alloys excellent in strength, conductivity and bendability, and method for producing same
CN110106394A (en) A kind of Cu-Ni-Sn copper alloy foil and preparation method thereof
US11946129B2 (en) Cu—Ni—Al based copper alloy sheet material, method for producing same, and conductive spring member
CN110157945A (en) A kind of anti-softening copper alloy and its preparation method and application
KR101627696B1 (en) Copper alloy material for car and electrical and electronic components and process for producing same
JP2017179502A (en) Copper alloy sheet excellent in strength and conductivity
KR20170075134A (en) Fe-Ni ALLOY METAL FOIL HAVING EXCELLENT FLEXIBILITY AND STRENGTH
CN109763008A (en) A kind of high strength and high flexibility copper alloy containing niobium and preparation method thereof
WO2004074550A1 (en) ELECTROLYTE FOR NANOCRYSTALLINE Fe-Ni ALLOYS WITH LOW THERMAL EXPANSION
KR101266922B1 (en) METHOD FOR FABRICATING Ni-Fe ALLOY
WO2011152104A1 (en) Cu-co-si-based alloy sheet, and process for production thereof
KR101665617B1 (en) Electroplating composition of low thermal expansion iron-nickel-cobalt ternary alloy and electroplated low-thermal expansion iron-nickel-cobalt ternary alloy using the same
US11802345B2 (en) Metal material with thermodynamic anisotropy and a method of preparing the same
TW201929286A (en) Fe-Ni alloy foil with excellent flexibility resistance
CN1153842C (en) Fe-ni-co alloy for completely flat mask of press-formed type, and completely flat mask and color cathode-ray tube using same

Legal Events

Date Code Title Description
AS Assignment

Owner name: NANO INVAR CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PARK, YONG BUM;REEL/FRAME:017131/0574

Effective date: 20051010

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION