JP4085772B2 - Alloy electrode for hydrogen generation and method for producing the same - Google Patents

Alloy electrode for hydrogen generation and method for producing the same Download PDF

Info

Publication number
JP4085772B2
JP4085772B2 JP2002305611A JP2002305611A JP4085772B2 JP 4085772 B2 JP4085772 B2 JP 4085772B2 JP 2002305611 A JP2002305611 A JP 2002305611A JP 2002305611 A JP2002305611 A JP 2002305611A JP 4085772 B2 JP4085772 B2 JP 4085772B2
Authority
JP
Japan
Prior art keywords
alloy
hydrogen generation
atomic
electrode
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002305611A
Other languages
Japanese (ja)
Other versions
JP2004137587A (en
Inventor
功二 橋本
エル ザビンスキー ピョートル
眞作 目黒
勝彦 浅見
直和 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiki Ataka Engineering Co Ltd
Original Assignee
Daiki Ataka Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiki Ataka Engineering Co Ltd filed Critical Daiki Ataka Engineering Co Ltd
Priority to JP2002305611A priority Critical patent/JP4085772B2/en
Publication of JP2004137587A publication Critical patent/JP2004137587A/en
Application granted granted Critical
Publication of JP4085772B2 publication Critical patent/JP4085772B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水素発生用合金電極とその製造方法に関する。本発明の電極は、高温の、中性ないし強アルカリ性の液中における電解に使用したとき、水素を高い速度で発生させることができ、電解時および電解停止時における耐久性にすぐれている。
【0002】
【従来の技術】
発明者らは、高温の海水の電解あるいはソーダ工業における食塩水の電解において、水素を発生する電極、すなわち陰極として高性能な電極を求めて研究し、その成果として、高活性で耐久性にすぐれたNi−Mo−C合金電極を見出してすでに開示した(特願2001−297992)。この合金電極は、5〜20原子%のMo、2〜15原子%のCおよび残部を占めるNiからなる。
【0003】
発明者らは、長年にわたって、電解により水素を発生するための電極の材料とする合金の性質を研究し、合金を構成する元素の電気化学的な役割を明らかにしてきた。その過程で、コバルトがニッケルとともに、白金族元素についで電解による水素発生に対し高活性な元素であることと、コバルトにモリブデンを合金化することによって、白金族元素をしのぐ高活性を示すことを見出した。
【0004】
Co−Mo合金電極は、基材金属上に電気メッキを行なうという、きわめて単純な方法によって製造することができ、高温の中性ないしアルカリ性の溶液を電解する場合に使用できる点で、すぐれたものである。しかし、電解を停止したときに、モリブデンがモリブデン酸イオンとなって溶液中に溶解するため、耐久性において劣る。この電極の実用化には、こうした耐久性の向上がキーポイントであった。
【0005】
そこでさらに研究を進めた結果、ニッケルと並んで水素発生に対して高い活性を発揮することが期待されるコバルトをベースとし、これにモリブデンと炭素とを添加してCo−Mo−C合金電極とすることによって、Mo−Co合金電極の弱点であった、電解停止時のモリブデンの溶解が防止できること、しかも、Co−Mo−C合金電極は、前記したニッケルベースの合金電極に匹敵する性能をもつ電極であることを見出した。また、コバルトでニッケルを置換しても、さほど性能に変りはないことを見出した。炭素の添加は、合金中の金属と炭素が結合することによって、金属元素の溶解を防止するものと考えられる。
【0006】
【発明が解決しようとする課題】
本発明の目的は、上述した発明者らの知見を活用し、水素発生に対する活性が高く、しかも電解時および電解停止時を通じて耐久性が高い水素発生用合金電極を提供することにある。そのような合金電極を製造する有利な方法を提供することもまた、本発明の目的に包含される。
【0007】
【課題を解決するための手段】
上記の目的を達成する本発明の水素発生用合金電極の基本的な態様は、モリブデン:5〜40原子%および炭素:2〜15原子%を含有し、残部コバルトおよび不可避な不純物からなる組成の合金を材料とする電極である。
【0008】
本発明の水素発生用合金電極の変更態様は、モリブデン:5〜40原子%および炭素:2〜15原子%を含有し、残部が0.1原子%以上のコバルトとその残りのニッケル、および不可避な不純物からなる組成の合金を材料とする電極である。
【0009】
【発明の実施形態】
上記した基本的な態様の水素発生用合金電極を製造する本発明の方法は、モリブデンの可溶性塩、コバルトの可溶性塩、オキシカルボン酸およびアミノカルボン酸を含有し、アルカリを加えてpH5以上としたメッキ液を使用して電解を行ない、陰極基材上にMo−Co−C合金を析出させることからなる。
【0010】
変更態様の水素発生用合金電極を製造する本発明の方法は、モリブデンの可溶性塩、コバルトの可溶性塩、ニッケルの可溶性塩、オキシカルボン酸およびアミノカルボン酸を含有し、アルカリを加えてpH5以上としたメッキ液を使用して電解を行ない、陰極基材上にMo−Co−Ni−C合金を析出させることからなる。
【0011】
上記の製造方法において使用するオキシカルボン酸およびアミノカルボン酸については、前掲の特願2001−297992の明細書に記述したが、好適な具体例を挙げれば、クエン酸:HOOCCH2C(OH)(COOH)CH2COOH・H2Oおよびリシン:H2N(CH2)4CH(NH2)COOH・HClである。以下に、本発明の電極を構成する合金の成分組成を上記のように限定した理由を説明する。
【0012】
モリブデン:5〜40原子%
モリブデンは、コバルトやニッケルが電気メッキされる際に共同析出し、コバルトおよびニッケル上での水素の放電を加速する作用をもつ元素であって、炭素と共存して水素発生に高活性を付与する。この効果を得るためには、電極とする合金中に、モリブデンが5原子%以上存在する必要がある。しかし、40原子%を超えてモリブデンを存在させても、水素発生の活性を高める効果が飽和する。モリブデンの過剰な存在はまた、電解停止時の高温濃厚アルカリ液中におけるモリブデンの溶解をひき起こし、電極の耐久性を損なう危険がある。
【0013】
炭素:2〜15原子%
炭素は、Co-Mo合金およびCo-Ni-Mo合金中で金属元素と結合し、電荷移動によって水素の放電を加速して、水素発生に対する活性を向上させる。それとともに、電解停止時の金属元素の溶解を防止する作用を有する。合金中の含有量が2原子%以上であるとき、この効果が確保される。一方、多量に炭素を存在させることは、水素発生を担う金属元素の濃度を低下させる結果となり、好ましくない。そこで、15原子%という上限を設けた。
【0014】
コバルト:残部
コバルトは本発明の合金電極の中心的な成分であって、水素発生の活性を主として担う元素である。したがって、モリブデンおよび炭素を除いた部分を、コバルトが占めるようにする。ニッケルを共存させる場合は、この部分のうち0.1原子%に相当する量のコバルトが存在すれば、その残りはニッケルとすることができる。
【0015】
ニッケル:残部のうちコバルトが占める0.1原子%を除く部分
コバルトに対して適量のニッケルを共存させると、水素発生過電圧がいっそう低下した、高活性の電極を得ることができる。
【0016】
本発明の電極を構成する合金において、イオウやリンのような不純物が少量含まれていても、水素発生に対する活性と耐久性には、実質的な影響は認められない。
【0017】
【実施例1】
下記の成分を溶解した水溶液を用意し、
1)硫酸コバルトCoSO4・7H2O 62g/L
2)クエン酸HOOCCH2C(OH)(COOH)CH2COOH・H2O 66g/L
3)サッカリン 1g/L
4)ラウリル硫酸ナトリウム 0.08g/L
5)モリブデン酸ナトリウムNa2MoO4・2H2O 5g/L
6)リシンH2N(CH2)4CH(NH2)COOH・HCl 1.8265g/L
これに4M−NaOHを滴下して、pHを5とした。25℃において、電流密度50A/m2でメッキを行なって、
Co−26.4原子%Mo−10.1原子%C
の組成のメッキ合金を得た。
【0018】
この合金を陰極として使用し、90℃の8M−NaOHの電解を行なったところ、125A/m2という電流密度においても、水素発生過電圧がわずかに43mVと、高い活性を示した。この電極は、8M−NaOH中に浸漬し、90℃に保って50日間経過した後も、水素発生過電圧はまったく上昇することなく、カソード分極曲線は浸漬前と同じであって、耐久性が高い電極であることが確認された。
【0019】
【実施例2】
実施例1で使用したものと同じ成分からなる溶液において、モリブデン酸ナトリウムおよびクエン酸の濃度を表1に示すように変化させた、pHが5〜6の溶液を使用して、やはり表2に示す組成をもつ合金を製造した。これらの合金を、90℃の8M−NaOHの電解に陰極として使用し、125A/m2の電流密度における水素発生過電圧を測定した。その結果を、表1にあわせて掲げる。表1のデータは、各電極が高活性であることを示している。これらの電極を90℃の8M−NaOH中に15〜20日間浸漬した後も、水素発生過電圧には変化がないことが確認された。
【0020】
表1

Figure 0004085772
【0021】
【実施例3】
実施例1で使用したメッキ液の硫酸コバルト62g/Lの一部を硫酸ニッケルNiSO4・6H2Oで置き換え、さらにホウ酸H3BO3を6g/L添加した溶液において、モリブデン酸ナトリウムおよびクエン酸の濃度を表2に示すように種々変化させたpH5〜6の溶液を使用し、表2に示す合金組成のメッキ金属を得た。それらを陰極として90℃の8M−NaOHを電気分解し、125A/m2の電流密度における水素発生過電圧を測定した。その結果を、表2にあわせて掲げる。これらの合金の電極もまた、水素発生過電圧が低い高活性な電極であることが確認され、90℃の8M−NaOH中に15〜20日間浸漬した後も、水素発生過電圧にまったく変化がないことが確認された。
【0022】
表2
Figure 0004085772
【0023】
【発明の効果】
本発明のCo−Mo−C合金またはCo−Ni−Mo−C合金を材料とする水素発生用電極は、高温の中性ないし強アルカリ性の水溶液中における電解に使用したとき、水素発生に対して高活性であって、高い電流密度においても、水素過電圧は低い。またこれらの電極は、高温の濃厚なアルカリ液中に浸漬したまま放置しても安定であって、成分金属が溶出することなく、高い耐久性を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an alloy electrode for hydrogen generation and a method for producing the same. The electrode of the present invention can generate hydrogen at a high rate when it is used for electrolysis in a high-temperature neutral or strong alkaline solution, and has excellent durability during electrolysis and when electrolysis is stopped.
[0002]
[Prior art]
The inventors have studied for an electrode that generates hydrogen, that is, a high-performance electrode as a cathode in electrolysis of high-temperature seawater or salt water in the soda industry. As a result, the inventors have achieved high activity and excellent durability. A Ni-Mo-C alloy electrode was found and already disclosed (Japanese Patent Application No. 2001-279992). This alloy electrode consists of 5-20 atomic% Mo, 2-15 atomic% C and the balance Ni.
[0003]
For many years, the inventors have studied the properties of an alloy used as an electrode material for generating hydrogen by electrolysis, and have clarified the electrochemical role of the elements constituting the alloy. In the process, cobalt, together with nickel, is a highly active element for hydrogen generation by electrolysis following the platinum group element, and shows high activity that surpasses the platinum group element by alloying molybdenum with cobalt. I found it.
[0004]
Co-Mo alloy electrodes are excellent in that they can be manufactured by a very simple method of electroplating on a base metal and can be used when electrolyzing neutral or alkaline solutions at high temperatures. It is. However, when electrolysis is stopped, molybdenum becomes molybdate ions and dissolves in the solution, so that the durability is inferior. Such improvement in durability was a key point for practical use of this electrode.
[0005]
Therefore, as a result of further research, it was based on cobalt, which is expected to exhibit high activity against hydrogen generation along with nickel, and by adding molybdenum and carbon to this, a Co—Mo—C alloy electrode and By doing so, it is possible to prevent the melting of molybdenum when the electrolysis is stopped, which was a weak point of the Mo—Co alloy electrode, and the Co—Mo—C alloy electrode has a performance comparable to the nickel-based alloy electrode described above. It was found to be an electrode. Moreover, even if nickel was substituted by cobalt, it discovered that a performance did not change so much. The addition of carbon is considered to prevent dissolution of the metal element by bonding the metal and carbon in the alloy.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide an alloy electrode for hydrogen generation having high activity for hydrogen generation and high durability during electrolysis and when electrolysis is stopped, utilizing the knowledge of the inventors described above. It is also within the scope of the present invention to provide an advantageous method of manufacturing such an alloy electrode.
[0007]
[Means for Solving the Problems]
The basic aspect of the alloy electrode for hydrogen generation of the present invention that achieves the above object is a composition containing molybdenum: 5 to 40 atomic% and carbon: 2 to 15 atomic%, with the balance being cobalt and inevitable impurities. This is an electrode made of the above alloy.
[0008]
The modification of the alloy electrode for hydrogen generation of the present invention includes molybdenum: 5 to 40 atomic% and carbon: 2 to 15 atomic%, with the balance being 0.1 atomic% or more of cobalt and the remaining nickel , and unavoidable It is an electrode made of an alloy having a composition composed of various impurities .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The method of the present invention for producing the alloy electrode for hydrogen generation of the basic aspect described above contains a soluble salt of molybdenum, a soluble salt of cobalt, an oxycarboxylic acid and an aminocarboxylic acid, and an alkali is added so as to have a pH of 5 or more. Electrolysis is performed using a plating solution to deposit a Mo—Co—C alloy on the cathode substrate.
[0010]
The method of the present invention for producing an alloy electrode for hydrogen generation according to a modified embodiment contains a soluble salt of molybdenum, a soluble salt of cobalt, a soluble salt of nickel, an oxycarboxylic acid and an aminocarboxylic acid, and an alkali is added to adjust the pH to 5 or more. Electrolysis is performed using the plated plating solution, and a Mo—Co—Ni—C alloy is deposited on the cathode substrate.
[0011]
The oxycarboxylic acid and aminocarboxylic acid used in the above production method are described in the specification of the above-mentioned Japanese Patent Application No. 2001-297990. However, citric acid: HOOCCH 2 C (OH) ( COOH) CH 2 COOH · H 2 O and lysine: H 2 N (CH 2) a 4 CH (NH 2) COOH · HCl. The reason why the component composition of the alloy constituting the electrode of the present invention is limited as described above will be described below.
[0012]
Molybdenum: 5 to 40 atomic%
Molybdenum co-precipitates when cobalt or nickel is electroplated, and has the effect of accelerating the discharge of hydrogen on cobalt and nickel. It coexists with carbon and imparts high activity to hydrogen generation. . In order to obtain this effect, it is necessary that 5 atomic% or more of molybdenum be present in the alloy used as the electrode. However, even if molybdenum exceeds 40 atomic%, the effect of increasing the activity of hydrogen generation is saturated. The excessive presence of molybdenum also causes the dissolution of molybdenum in the hot concentrated alkaline solution when the electrolysis is stopped, and there is a risk of impairing the durability of the electrode.
[0013]
Carbon: 2-15 atomic%
Carbon binds to a metal element in the Co—Mo alloy and the Co—Ni—Mo alloy, accelerates the discharge of hydrogen by charge transfer, and improves the activity against hydrogen generation. At the same time, it has an effect of preventing dissolution of the metal element when the electrolysis is stopped. This effect is ensured when the content in the alloy is 2 atomic% or more. On the other hand, the presence of a large amount of carbon is not preferable because it results in a decrease in the concentration of the metal element responsible for hydrogen generation. Therefore, an upper limit of 15 atomic% was set.
[0014]
Cobalt: The remaining cobalt is a central component of the alloy electrode of the present invention, and is an element mainly responsible for the activity of hydrogen generation. Accordingly, cobalt is occupied in the portion excluding molybdenum and carbon. In the case where nickel is present, if the amount of cobalt corresponding to 0.1 atomic% is present in this portion, the remainder can be nickel.
[0015]
Nickel: When an appropriate amount of nickel is allowed to coexist with partial cobalt other than 0.1 atomic% occupied by cobalt in the balance, a highly active electrode with a further reduced hydrogen generation overvoltage can be obtained.
[0016]
Even if the alloy constituting the electrode of the present invention contains a small amount of impurities such as sulfur and phosphorus, there is no substantial effect on the activity and durability against hydrogen generation.
[0017]
[Example 1]
Prepare an aqueous solution in which the following ingredients are dissolved:
1) Cobalt sulfate CoSO 4 · 7H 2 O 62g / L
2) Citric acid HOOCCH 2 C (OH) (COOH) CH 2 COOH · H 2 O 66 g / L
3) Saccharin 1g / L
4) Sodium lauryl sulfate 0.08g / L
5) Sodium molybdate Na 2 MoO 4 · 2H 2 O 5g / L
6) Lysine H 2 N (CH 2 ) 4 CH (NH 2 ) COOH · HCl 1.8265 g / L
4M NaOH was added dropwise thereto to adjust the pH to 5. Plating at a current density of 50 A / m 2 at 25 ° C.
Co-26.4 atomic% Mo-10. 1 atomic% C
A plating alloy having the following composition was obtained.
[0018]
When this alloy was used as a cathode and electrolysis of 8 M NaOH at 90 ° C. was performed, even at a current density of 125 A / m 2 , the hydrogen generation overvoltage was as high as 43 mV, indicating a high activity. This electrode is immersed in 8M-NaOH, and after 50 days at 90 ° C., the hydrogen generation overvoltage does not increase at all, and the cathodic polarization curve is the same as before the immersion, and the durability is high. It was confirmed to be an electrode.
[0019]
[Example 2]
In a solution composed of the same components as those used in Example 1, the concentration of sodium molybdate and citric acid was changed as shown in Table 1, and a solution having a pH of 5 to 6 was used. An alloy having the composition shown was produced. These alloys were used as cathodes for electrolysis of 8M NaOH at 90 ° C., and the hydrogen generation overvoltage at a current density of 125 A / m 2 was measured. The results are listed in Table 1. The data in Table 1 indicates that each electrode is highly active. It was confirmed that the hydrogen generation overvoltage did not change even after these electrodes were immersed in 8 M NaOH at 90 ° C. for 15 to 20 days.
[0020]
Table 1
Figure 0004085772
[0021]
[Example 3]
In a solution in which a part of cobalt sulfate 62 g / L of the plating solution used in Example 1 was replaced with nickel sulfate NiSO 4 .6H 2 O and boric acid H 3 BO 3 was added 6 g / L, sodium molybdate and citric acid were added. Using solutions having a pH of 5 to 6 in which the acid concentration was variously changed as shown in Table 2, plated metals having an alloy composition shown in Table 2 were obtained. Using them as cathodes, 8 M NaOH at 90 ° C. was electrolyzed, and the hydrogen generation overvoltage at a current density of 125 A / m 2 was measured. The results are listed in Table 2. The electrodes of these alloys were also confirmed to be highly active electrodes with low hydrogen generation overvoltage, and there was no change in the hydrogen generation overvoltage even after immersion in 8M NaOH at 90 ° C. for 15 to 20 days. Was confirmed.
[0022]
Table 2
Figure 0004085772
[0023]
【The invention's effect】
The electrode for hydrogen generation using the Co—Mo—C alloy or Co—Ni—Mo—C alloy of the present invention as a material against hydrogen generation when used for electrolysis in a high temperature neutral or strong alkaline aqueous solution. The hydrogen overvoltage is low even at high activity and high current density. In addition, these electrodes are stable even when left immersed in a hot concentrated alkaline solution, and show high durability without elution of component metals.

Claims (4)

モリブデン:5〜40原子%および炭素:2〜15原子%を含有し、残部がコバルトおよび不可避な不純物からなる組成の合金を材料とする水素発生用合金電極。An alloy electrode for hydrogen generation using an alloy having a composition containing molybdenum: 5 to 40 atomic% and carbon: 2 to 15 atomic%, with the balance being cobalt and inevitable impurities. モリブデン:5〜40原子%および炭素:2〜15原子%を含有し、残部が0.1原子%以上のコバルトとその残りのニッケル、および不可避な不純物からなる組成の合金を材料とする水素発生用合金電極。Hydrogen generation using molybdenum: 5 to 40 atomic% and carbon: 2 to 15 atomic%, with the balance being 0.1 atomic% or more of cobalt, the remaining nickel , and an alloy having an inevitable impurity composition Alloy electrode. モリブデンの可溶性塩、コバルトの可溶性塩、オキシカルボン酸およびアミノカルボン酸を含有し、アルカリを加えてpH5以上としたメッキ液を使用して電解を行ない、陰極基材上にMo−Co−C合金を析出させることからなる請求項1に記載の水素発生用合金電極の製造方法。Electrolysis is carried out using a plating solution containing a soluble salt of molybdenum, a soluble salt of cobalt, an oxycarboxylic acid and an aminocarboxylic acid, and an alkali added to a pH of 5 or more, and a Mo-Co-C alloy on the cathode substrate The method for producing an alloy electrode for hydrogen generation according to claim 1, further comprising precipitating. モリブデンの可溶性塩、コバルトの可溶性塩、ニッケルの可溶性塩、オキシカルボン酸およびアミノカルボン酸を含有し、アルカリを加えてpH5以上としたメッキ液を使用して電解を行ない、陰極基材上にMo−Co−Ni−C合金を析出させることからなる請求項2に記載の水素発生用合金電極の製造方法。Electrolysis is carried out using a plating solution containing a soluble salt of molybdenum, a soluble salt of cobalt, a soluble salt of nickel, an oxycarboxylic acid and an aminocarboxylic acid, and an alkali added to a pH of 5 or higher. The method for producing an alloy electrode for hydrogen generation according to claim 2, comprising depositing a —Co—Ni—C alloy.
JP2002305611A 2002-10-21 2002-10-21 Alloy electrode for hydrogen generation and method for producing the same Expired - Lifetime JP4085772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002305611A JP4085772B2 (en) 2002-10-21 2002-10-21 Alloy electrode for hydrogen generation and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002305611A JP4085772B2 (en) 2002-10-21 2002-10-21 Alloy electrode for hydrogen generation and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004137587A JP2004137587A (en) 2004-05-13
JP4085772B2 true JP4085772B2 (en) 2008-05-14

Family

ID=32452665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002305611A Expired - Lifetime JP4085772B2 (en) 2002-10-21 2002-10-21 Alloy electrode for hydrogen generation and method for producing the same

Country Status (1)

Country Link
JP (1) JP4085772B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200005828A (en) 2018-07-09 2020-01-17 충남대학교산학협력단 Porous Ni-Al-Mo Cathod for Alkaline Water Electrolysis, Preparation Method thereof and Ni-Al-Mo Coating Material for Thermal Spray
KR20200096178A (en) 2018-07-09 2020-08-11 충남대학교산학협력단 Porous Ni-Al-Mo Cathode for Alkaline Water Electrolysis

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6760166B2 (en) * 2017-03-23 2020-09-23 トヨタ自動車株式会社 A method for forming a nickel film and a nickel solution for use in the method.
CN110433835A (en) * 2019-07-02 2019-11-12 常州大学 A kind of efficient liberation of hydrogen catalyst and preparation method thereof
CN114959786B (en) * 2022-05-24 2023-02-17 哈尔滨工业大学 Cobalt-aluminum-doped 1T-phase molybdenum disulfide powder and preparation method and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633491A (en) * 1979-08-24 1981-04-03 Chlorine Eng Corp Ltd Cathode for eletrolysis
JPS6056409B2 (en) * 1982-05-17 1985-12-10 東ソー株式会社 Surface activated amorphous alloy for electrolytic cathode
CA2287648C (en) * 1999-10-26 2007-06-19 Donald W. Kirk Amorphous metal/metallic glass electrodes for electrochemical processes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200005828A (en) 2018-07-09 2020-01-17 충남대학교산학협력단 Porous Ni-Al-Mo Cathod for Alkaline Water Electrolysis, Preparation Method thereof and Ni-Al-Mo Coating Material for Thermal Spray
KR20200096178A (en) 2018-07-09 2020-08-11 충남대학교산학협력단 Porous Ni-Al-Mo Cathode for Alkaline Water Electrolysis

Also Published As

Publication number Publication date
JP2004137587A (en) 2004-05-13

Similar Documents

Publication Publication Date Title
JP3816241B2 (en) Aqueous solution for reducing and precipitating metals
Ernst et al. Electrodeposition of molydenum alloys from aqueous solutions
CA1103197A (en) Electroplating gold-cobalt alloys
JP4790191B2 (en) Electrolytic bath for electrochemical deposition of palladium or its alloys
TWI507571B (en) Method of obtaining a yellow gold alloy deposition by galvanoplasty without using toxic metals or metalloids
JP3985904B2 (en) Nickel-tungsten alloy plating solution and method for forming nickel-tungsten alloy plating film
US2027358A (en) Electrodeposition of metals of the platinum group
JP4085772B2 (en) Alloy electrode for hydrogen generation and method for producing the same
JP3458843B2 (en) Continuous plating method for Ni-WP alloy
JP4740508B2 (en) Palladium complex salts and their use to adjust the palladium concentration of electrolytic baths for depositing palladium or one of its alloys
JP4561149B2 (en) Alloy electrode for hydrogen generation and method for producing the same
CN113463148A (en) Method for electroplating gold on surface of titanium or titanium alloy substrate
JP2001200387A (en) Tin-indium alloy electroplating bath
JP6208992B2 (en) Alloy electrode for oxygen generation and manufacturing method thereof
NL8004057A (en) PROCESS FOR MANUFACTURING CATHODES WITH LOW HYDROGEN SPAN.
JP4868121B2 (en) Electroplating solution and method for forming amorphous gold-nickel alloy plating film
WO2018029967A1 (en) Electrode manufacturing method
JP6348743B2 (en) Alloy electrode for hydrogen generation and method for producing the same
JP2522101B2 (en) Nickel-molybdenum alloy plating bath and plating method
JPH049492A (en) Hard nickel alloy plating bath
WO2018029968A1 (en) Electrode manufacturing method
JPS6017096A (en) Production of electrode
JPH036996B2 (en)
JP2003105466A (en) Nickel alloy electrode for hydrogen generation
GB2039532A (en) Electrolyte for the electrodeposition of white gold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051020

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4085772

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20170228

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term