JP4756163B2 - Dispersion and paste of composite particle powder and method for producing silver particle powder used therefor - Google Patents

Dispersion and paste of composite particle powder and method for producing silver particle powder used therefor Download PDF

Info

Publication number
JP4756163B2
JP4756163B2 JP2005269978A JP2005269978A JP4756163B2 JP 4756163 B2 JP4756163 B2 JP 4756163B2 JP 2005269978 A JP2005269978 A JP 2005269978A JP 2005269978 A JP2005269978 A JP 2005269978A JP 4756163 B2 JP4756163 B2 JP 4756163B2
Authority
JP
Japan
Prior art keywords
particle powder
silver
dispersion
organic
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005269978A
Other languages
Japanese (ja)
Other versions
JP2007077479A (en
Inventor
王高 佐藤
孝造 尾木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2005269978A priority Critical patent/JP4756163B2/en
Publication of JP2007077479A publication Critical patent/JP2007077479A/en
Application granted granted Critical
Publication of JP4756163B2 publication Critical patent/JP4756163B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Description

本発明は銀と銀以外の無機物質との微細な(特に粒径がナノメートルオーダーの)複合粒子粉、その分散液およびペースト、およびそれらの製造法に関する。   The present invention relates to fine composite particle powder of silver and an inorganic substance other than silver (particularly having a particle size of the order of nanometers), a dispersion and paste thereof, and a production method thereof.

固体物質の大きさがnmオーダー(ナノメートルオーダー)になると比表面積が非常に大きくなるために、固体でありながら気体や液体との界面が極端に大きくなる。したがって、その表面の特性が固体物質の性質を大きく左右する。金属粒子粉末の場合は、融点がバルク状態のものに比べ劇的に低下することが知られており、そのためにμmオーダーの粒子に比べて微細な配線の描画が可能になり、しかも低温焼結できる等の利点を具備するようになる。金属粒子粉末の中でも銀粒子粉末は、低抵抗でかつ高い耐候性をもち、金属の価格も他の貴金属と比較して安価であることから、微細な配線幅をもつ次世代の配線材料として特に期待されている。   When the size of the solid substance is in the order of nm (on the order of nanometers), the specific surface area becomes very large, so that the interface with the gas or liquid becomes extremely large while being solid. Therefore, the properties of the surface greatly influence the properties of the solid substance. In the case of metal particle powder, it is known that the melting point is drastically lower than that in the bulk state, which makes it possible to draw fine wiring compared to particles on the order of μm, and low temperature sintering. It has advantages such as being able to do so. Among the metal particle powders, the silver particle powder has low resistance and high weather resistance, and the price of the metal is low compared with other noble metals, so it is particularly useful as a next-generation wiring material with a fine wiring width. Expected.

電子部品などの電極や回路を形成するための方法として厚膜ペースト法が広く用いられている。厚膜ペーストは、金属粉末に加えて、ガラスフリット、無機酸化物等を有機ビヒクル中に分散させたものであり、このペーストを印刷やディッピングによって所定のパターンに形成した後、500℃以上の温度で加熱して有機成分を焼き飛ばし、粒子同士を焼結させて導体とする。厚膜ペースト法により形成される配線と基板との密着は、焼成工程で軟化・流動したガラスフリットが基板を濡らすことにより、また、配線を形成する金属の焼結膜中にも軟化・流動したガラスフリットが浸透すること(ガラスボンド)により、さらには、アルミナ基板上では、酸化銅や酸化カドミウム等の無機酸化物が基板と反応性酸化物を形成すること(ケミカルボンド)によっても、密着が確保される。   A thick film paste method is widely used as a method for forming electrodes and circuits of electronic components and the like. A thick film paste is a material in which glass frit, inorganic oxide, and the like are dispersed in an organic vehicle in addition to metal powder. After the paste is formed into a predetermined pattern by printing or dipping, the temperature is 500 ° C. or higher. The organic component is burned off by heating and the particles are sintered to form a conductor. The adhesion between the wiring formed by the thick film paste method and the substrate is caused by the glass frit softened and fluidized in the baking process wets the substrate, and the glass softened and fluidized in the sintered metal film that forms the wiring. Adhesion is ensured by the penetration of the frit (glass bond) and also by the formation of reactive oxides (chemical bond) with inorganic oxides such as copper oxide and cadmium oxide on the alumina substrate. Is done.

従来の厚膜ペーストで用いられるミクロンサイズの粒子と比較して、ナノサイズの粒子は低温で焼結でき、例えば銀のナノ粒子であれば300℃以下での焼結が可能である。ナノ粒子の焼結のみについて考えれば、300℃より高い温度で焼成を行うこともできるが、高温での焼成では、電極や回路の形成対象となる基板の耐熱性による制約により、使用可能な基板の種類が限定されることに加えて、低温焼結性というナノ粒子の特徴を生かせない点で不利である。対象となる基板の種類を増やすためには、焼成温度は300℃以下、好ましくは200℃以下、更に好ましくは100℃以下と、低温であればある程有利になる。   Compared to micron-sized particles used in conventional thick film pastes, nano-sized particles can be sintered at a low temperature. For example, silver nanoparticles can be sintered at 300 ° C. or lower. If only the sintering of nanoparticles is considered, firing can be performed at a temperature higher than 300 ° C. However, in firing at a high temperature, the substrate that can be used is limited by the heat resistance of the substrate on which electrodes and circuits are formed. In addition to being limited to this type, it is disadvantageous in that it cannot take advantage of the low-temperature sintering property of nanoparticles. In order to increase the types of target substrates, the firing temperature is 300 ° C. or lower, preferably 200 ° C. or lower, more preferably 100 ° C. or lower, and the lower the temperature, the more advantageous.

焼成温度が300℃以下と低い場合には、従来の厚膜ペースト法の手法に則ってガラスフリットを添加しても、ガラスフリットが軟化・流動しないために基板を濡らすことがなく、その結果、基板に対する密着が劣るという問題が生じる。特にガラス基板での密着性が劣るため、ガラス基板との密着性改善が望まれる。   When the firing temperature is as low as 300 ° C. or less, even if glass frit is added in accordance with the conventional thick film paste method, the glass frit does not soften and flow, so the substrate is not wetted. The problem of poor adhesion to the substrate arises. In particular, since the adhesion with a glass substrate is inferior, it is desired to improve the adhesion with the glass substrate.

ガラス基板への密着に関しては、粒径1.0μm以下の金粒子と軟化点450℃以下のガラスフリットと有機ビヒクルからなる低温焼成型金ペーストを用いる方法(例えば、特許文献1)、平均粒径が0.01〜0.1μmの貴金属粒子を樹脂組成物と有機溶剤、あるいは金属石鹸溶液からなる貴金属ペーストを用いる方法(例えば、特許文献2)、有機溶剤に金属微粒子が分散された金属微粒子分散液およびシランカップリング剤を含むペーストをガラス基板上に塗布し、250℃以上300℃以下の温度で焼成する方法(例えば、特許文献3)等が提案されている。
特開平10−340619号公報 特開平11−66957号公報 特開2004−179125号公報
For adhesion to a glass substrate, a method using a low-temperature firing type gold paste composed of gold particles having a particle size of 1.0 μm or less, glass frit having a softening point of 450 ° C. or less, and an organic vehicle (for example, Patent Document 1), average particle size A method using a noble metal particle having a particle size of 0.01 to 0.1 μm using a resin composition and an organic solvent or a noble metal paste made of a metal soap solution (for example, Patent Document 2), metal fine particle dispersion in which metal fine particles are dispersed in an organic solvent A method of applying a paste containing a liquid and a silane coupling agent on a glass substrate and firing it at a temperature of 250 ° C. or higher and 300 ° C. or lower (for example, Patent Document 3) has been proposed.
Japanese Patent Laid-Open No. 10-340619 JP-A-11-66957 JP 2004-179125 A

特許文献1では、金粒子の粒径を、従来常用のものの約1/2以下(1.0μm以下)とし、ガラスフリットの軟化点を450℃以下とすると、500〜600℃の焼成温度でガラス基板と金膜の間にガラスフリットが良好に定着して密着強度が高まるとしている。この密着はいわゆるガラスボンドによるもので、ガラスフリットの軟化・流動を前提としているため、ガラスフリットの軟化点以下の温度での焼成は考慮されていない。また、高分子量のエチルセルロースを溶解した有機ビヒクルを添加しているため、脱バイのために焼成時に500℃以上の温度が必要である。したがって、300℃以下での焼成では有機物(エチルセルロース)の残存があり、高い密着性と低い抵抗値ならびに平滑な焼結膜表面を得ることは困難である。有機物が残存すると、形成した配線上に誘電体層を形成したり、配線が真空雰囲気中に置かれた場合には、有機成分の脱離による誘電体層の膨れや真空雰囲気の環境汚染などを起因とする回路の信頼性低下が懸念される。   In Patent Document 1, when the particle size of the gold particles is about ½ or less (1.0 μm or less) of conventional ones and the softening point of the glass frit is 450 ° C. or less, the glass is fired at a firing temperature of 500 to 600 ° C. The glass frit is well fixed between the substrate and the gold film, and the adhesion strength is increased. This adhesion is due to a so-called glass bond and is premised on the softening and flow of the glass frit, and thus firing at a temperature below the softening point of the glass frit is not considered. In addition, since an organic vehicle in which high molecular weight ethyl cellulose is dissolved is added, a temperature of 500 ° C. or higher is required at the time of firing for debuoyancy. Therefore, in baking at 300 degrees C or less, organic substance (ethylcellulose) remains, and it is difficult to obtain high adhesiveness, a low resistance value, and a smooth sintered film surface. If organic matter remains, a dielectric layer may be formed on the formed wiring, or if the wiring is placed in a vacuum atmosphere, the dielectric layer may swell due to the detachment of organic components, or environmental pollution of the vacuum atmosphere. There is a concern that the reliability of the circuit may be lowered.

特許文献2では、平均粒径が0.01〜0.1μmの貴金属粒子を樹脂組成物と有機溶剤、あるいは金属石鹸溶液からなる貴金属ペーストを用いることにより、500℃〜1000℃で焼成し、焼成膜厚1.5〜3.0μmで、平滑かつ緻密な貴金属膜を得ることができるとしている。密着はガラスフリットを使用していない。また、金属石鹸溶液の添加有無に関わらず密着性を有するとしている。しかし、特許文献1と同様に高分子量のエチルセルロースを溶解した有機ビヒクルを添加しているため、脱バイのために焼成時に500℃以上の温度が必要であり、特許文献1の場合と同様の問題がある。   In Patent Document 2, precious metal particles having an average particle size of 0.01 to 0.1 μm are fired at 500 ° C. to 1000 ° C. by using a precious metal paste made of a resin composition and an organic solvent or a metal soap solution, and fired. It is said that a smooth and dense noble metal film can be obtained with a film thickness of 1.5 to 3.0 μm. Adhesion does not use glass frit. Moreover, it is said that it has adhesiveness irrespective of the presence or absence of addition of a metal soap solution. However, since an organic vehicle in which high molecular weight ethyl cellulose is dissolved is added as in Patent Document 1, a temperature of 500 ° C. or higher is required for baking to remove the same problem as in Patent Document 1. There is.

特許文献3では、有機溶剤に金属微粒子が分散された金属微粒子分散液およびシランカップリング剤を含むペーストをガラス基板上に塗布し、250℃以上300℃以下の温度で焼成することでガラス基板上への優れた密着性を示し、かつ高密度で低抵抗の金属薄膜を得られるとしている。この方法では、高分子量のエチルセルロース等を溶解した有機ビヒクルをインクに添加していない。よって、脱バイのために焼成時に500℃以上の温度が特に必要はなく、300℃以下での焼成も可能である。しかし、特許文献3の方法ではシランカップリング剤添加による導電性の悪化が著しい。金属微粒子分散液ないし金属微粒子分散ペーストを配線用途に適用するには少なくとも10μΩ・cm以下の体積抵抗が望ましく、10μΩ・cmを超えるものは配線用途には適さない。また、シランカップリング剤のうちメルカプト基を有するものは硫黄(S)が含まれており、この硫黄分は、配線やその他電子部品を腐食させる原因となり、金属微粒子生成のさいに塩素(Cl)を含むものはインキに残留する塩素が配線やその他電子部品を腐食させる原因となり、回路の信頼性を低下させる原因になる。   In Patent Document 3, a paste containing a metal fine particle dispersion in which metal fine particles are dispersed in an organic solvent and a silane coupling agent is applied onto a glass substrate, and fired at a temperature of 250 ° C. or higher and 300 ° C. or lower. It is said that a high-density, low-resistance metal thin film can be obtained. In this method, an organic vehicle in which high molecular weight ethyl cellulose or the like is dissolved is not added to the ink. Therefore, a temperature of 500 ° C. or higher is not particularly required during firing for debuying, and firing at 300 ° C. or lower is also possible. However, in the method of Patent Document 3, the deterioration of conductivity due to the addition of a silane coupling agent is significant. In order to apply the metal fine particle dispersion or the metal fine particle dispersion paste to the wiring use, a volume resistance of at least 10 μΩ · cm is desirable, and those exceeding 10 μΩ · cm are not suitable for the wiring use. Further, among silane coupling agents, those having a mercapto group contain sulfur (S), and this sulfur content causes corrosion of wiring and other electronic components, and chlorine (Cl) is generated when forming metal fine particles. If it contains, chlorine remaining in the ink may cause corrosion of wiring and other electronic components, which may reduce circuit reliability.

したがって本発明はこのような問題を解決することを課題としたものである。特に厚膜ペーストによる電極や回路の形成にさいして、ガラス基板を接着対象として300℃以下の低温焼成での密着性の改善を図り、同時に、高い導電性と信頼性に優れた回路を形成することができる複合粒子粉および複合粒子粉の分散液を提供しようとするものである。また、複合粒子粉の分散液では粘度が低すぎる等のことから作業適性が劣る分野があるが、このような分野でも強固な密着、高い導電性、信頼性に優れた回路を形成できる複合粒子粉のペーストを提供しようとするものである。   Accordingly, an object of the present invention is to solve such a problem. Especially in the formation of electrodes and circuits using thick film pastes, adhesion is improved by low-temperature firing at 300 ° C. or lower with a glass substrate as an object to be bonded, and at the same time, a circuit having high conductivity and reliability is formed. It is intended to provide a composite particle powder and a dispersion of the composite particle powder. In addition, there are fields in which workability is inferior due to the viscosity of the dispersion of the composite particle powder being too low, etc., but composite particles that can form a circuit with strong adhesion, high conductivity, and reliability even in such fields It is intended to provide a powder paste.

前記の課題を解決せんとしてなされた本発明によれば、平均粒径(DTEM)が50n
m以下で且つ結
晶粒子径(Dx)が50nm以下の銀粒子粉と、平均粒径(DTEM)が100nm以下
の銀以外の無機粒子粉とからなる複合粒子粉を提供する。ここで、銀粒子粉は単結晶化度(DTEM/Dx)が2.0以下であり、銀以外の無機粒子粉が、珪素、チタン、アルミニウムまたはジルコニウムの少なくとも1種の粒子粉、またはこれら元素の無機化合物の少なくとも1種の粒子粉である。複合粒子粉中の無機粒子粉の重量割合は0.1〜10wt%であり、複合粒子粉の銀粒子および無機粒子は有機保護剤で表面処理されているものが好ましい。
According to the present invention made to solve the above problems, the average particle size (D TEM ) is 50 n.
Provided is a composite particle powder comprising a silver particle powder having a crystal particle diameter (Dx) of 50 nm or less and an inorganic particle powder other than silver having an average particle diameter (D TEM ) of 100 nm or less. Here, the silver particle powder has a degree of single crystallinity ( DTEM / Dx) of 2.0 or less, and the inorganic particle powder other than silver is at least one particle powder of silicon, titanium, aluminum, or zirconium, or these It is at least one particle powder of an elemental inorganic compound. The weight ratio of the inorganic particle powder in the composite particle powder is 0.1 to 10 wt%, and it is preferable that the silver particles and the inorganic particles of the composite particle powder are surface-treated with an organic protective agent.

前記の複合粒子粉を得るには、還元剤として機能するアルコールまたはポリオールの1種または2種以上の液中で銀イオンを銀粒子に還元処理するさいに、珪素化合物、チタン化合物、アルミニウム化合物またはジルコニウム化合物の少なくとも1種を共存させて還元処理する方法によって製造することができる。この還元処理において、珪素化合物、チタン化合物、アルミニウム化合物またはジルコニウム化合物を還元して得られるものは、それぞれ珪素、チタン、アルミニウム、ジルコニウムの金属まで還元されることが好ましいが、完全に還元されなくとも、酸化物、水酸化物、あるいはオキシ水酸化物等の形態であっても良い。この還元処理は有機保護剤の共存下で行なわれるのが好ましく、有機保護剤としては、1分子中に少なくとも1個以上の不飽和結合を有する分子量100〜1000のアミン化合物であるのがよい。   In order to obtain the composite particle powder, a silicon compound, a titanium compound, an aluminum compound, or a silver compound when reducing silver ions to silver particles in one or more liquids of alcohol or polyol functioning as a reducing agent. It can be produced by a reduction treatment in the presence of at least one zirconium compound. In this reduction treatment, those obtained by reducing a silicon compound, a titanium compound, an aluminum compound or a zirconium compound are preferably reduced to metals of silicon, titanium, aluminum and zirconium, respectively. , Oxides, hydroxides, oxyhydroxides, and the like. This reduction treatment is preferably carried out in the presence of an organic protective agent, and the organic protective agent is preferably an amine compound having a molecular weight of 100 to 1000 having at least one unsaturated bond in one molecule.

さらに本発明によれば、前記の複合粒子粉を液状有機媒体に分散させてなる複合粒子の分散液を提供する。本発明に従う複合粒子粉の分散液は、300℃程度の低温焼成でも有機物残渣が極めて少なく焼結性が良好で、高い導電性とガラス基板に対する良好な密着性を有する。この分散液には、有機珪素化合物、有機チタン化合物、有機アルミニウム化合物または有機ジルコニウム化合物の少なくとも1種を、複合粒子粉の0.1〜10wt%の割合で含有させることができる。   Furthermore, according to the present invention, there is provided a dispersion of composite particles obtained by dispersing the composite particle powder in a liquid organic medium. The dispersion of the composite particle powder according to the present invention has very little organic residue even at low temperature baking at about 300 ° C., has good sinterability, and has high conductivity and good adhesion to a glass substrate. In this dispersion, at least one of an organosilicon compound, an organotitanium compound, an organoaluminum compound, or an organozirconium compound can be contained in a proportion of 0.1 to 10 wt% of the composite particle powder.

前記の分散液を得るには、還元剤として機能するアルコールまたはポリオールの1種または2種以上の液中で銀イオンを銀粒子に還元処理するさいに、1分子中に少なくとも1個以上の不飽和結合を有する分子量100〜1000のアミン化合物からなる有機保護剤の共存下で、珪素化合物、チタン化合物、アルミニウム化合物またはジルコニウム化合物の少なくとも1種を共存させて還元処理して前記の複合粒子粉を製造し、得られた複合粒子粉を、沸点60〜300℃の非極性もしくは極性の小さい液状有機媒体に分散させる方法によって製造することができる。   In order to obtain the above-mentioned dispersion liquid, at least one or more non-per molecule is contained in one molecule when silver ions are reduced to silver particles in one or more kinds of alcohols or polyols functioning as a reducing agent. In the presence of an organic protective agent composed of an amine compound having a saturated bond and a molecular weight of 100 to 1000, at least one of a silicon compound, a titanium compound, an aluminum compound or a zirconium compound is coexisted to reduce the composite particle powder. The composite particle powder produced and obtained can be produced by a method of dispersing it in a liquid organic medium having a boiling point of 60 to 300 ° C. with a nonpolar or small polarity.

さらに本発明によれば、前記の分散液に高分子量の有機保護剤を含有させてなる複合粒子のペーストを提供する。このペーストを得るには、還元剤として機能するアルコールまたはポリオールの1種または2種以上の液中で銀イオンを銀粒子に還元処理するさいに、1分子中に少なくとも1個以上の不飽和結合を有する分子量100〜1000のアミン化合物からなる有機保護剤の共存下で、珪素化合物、チタン化合物、アルミニウム化合物またはジルコニウム化合物の少なくとも1種を共存させて還元処理して前記の複合粒子粉を製造し、得られた複合粒子粉に分子量1000〜100000の高分子有機保護剤を添加した後に沸点が60〜300℃の液状有機媒体に分散させるか、または、得られた複合粒子粉を沸点60〜300℃の液状有機媒体に分散させた後に分子量1000〜100000の高分子有機保護剤を添加する方法によって、複合粒子粉のペーストとすることができる。   Furthermore, according to the present invention, there is provided a composite particle paste comprising the above dispersion containing a high molecular weight organic protective agent. In order to obtain this paste, at least one or more unsaturated bonds in one molecule when silver ions are reduced to silver particles in one or more liquids of alcohol or polyol functioning as a reducing agent. In the presence of an organic protective agent comprising an amine compound having a molecular weight of 100 to 1000, the composite particle powder is produced by reduction treatment in the presence of at least one of a silicon compound, a titanium compound, an aluminum compound or a zirconium compound. The resulting composite particle powder is dispersed in a liquid organic medium having a boiling point of 60 to 300 ° C. after adding a high molecular weight organic protective agent having a molecular weight of 1000 to 100,000, or the obtained composite particle powder has a boiling point of 60 to 300 By dispersing a high molecular weight organic protective agent having a molecular weight of 1000 to 100,000 after being dispersed in a liquid organic medium at 0 ° C. It can be a flour paste.

本発明の複合粒子粉およびその分散液は、300℃以下での低温焼成において、基板への密着性が良好で、高い導電性と信頼性に優れた回路を形成できる。特にガラス基板への密着性が良好であり、微細な配線や電気的接点形成に適し、本発明の複合粒子粉分散ペーストは、粘度が低すぎる等の問題から複合粒子粉分散液では作業適性が劣る用途に関して有用である。   The composite particle powder and dispersion thereof of the present invention can form a circuit having good adhesion to a substrate and high conductivity and reliability in low-temperature firing at 300 ° C. or lower. In particular, it has good adhesion to a glass substrate and is suitable for fine wiring and electrical contact formation. The composite particle powder dispersion paste of the present invention has workability in the composite particle powder dispersion due to problems such as too low viscosity. Useful for inferior applications.

本発明者らは液相法で銀の粒子粉末を製造する試験を重ねてきたが、沸点が85〜150℃のアルコール中で、硝酸銀を85〜150℃の温度で(蒸発したアルコールを液相に還流させながら)、例えば分子量100〜400のアミン化合物からなる有機保護剤の共存下で還元処理すると、粒径の揃った球状の銀のナノ粒子粉末が得られることを知見し、特願2005−26805号明細書に記載した。また、沸点が85℃以上のアルコールまたはポリオール中で、銀化合物(代表的には炭酸銀または酸化銀)を、85℃以上の温度で、例えば分子量100〜400の脂肪酸からなる保護剤の共存下で還元処理すると、腐食性化合物の少ない粒径の揃った球状の銀の粒子粉末が得ることを知見し、特願2005−26866号明細書に記載した。いずれの場合も、その銀粒子粉末を非極性もしくは極性の小さな液状有機媒体に分散させることによって銀粒子の分散液を得ることができ、この分散液から遠心分離等で粗粒子を除くと粒径のバラツキの少ない(CV値=標準偏差σ/個数平均粒子の百分率が40%未満の)銀粒子が単分散した分散液を得ることができる。   The inventors of the present invention have repeated tests for producing silver particle powder by a liquid phase method. In an alcohol having a boiling point of 85 to 150 ° C., silver nitrate is heated at a temperature of 85 to 150 ° C. For example, when a reduction treatment is performed in the presence of an organic protective agent composed of an amine compound having a molecular weight of 100 to 400, a spherical silver nanoparticle powder having a uniform particle size can be obtained. -26805. Further, in an alcohol or polyol having a boiling point of 85 ° C. or higher, a silver compound (typically silver carbonate or silver oxide) is mixed with a protective agent comprising a fatty acid having a molecular weight of 100 to 400, for example, at a temperature of 85 ° C. or higher. It was found that a spherical silver particle powder having a small particle size with few corrosive compounds can be obtained by reduction treatment with, and described in Japanese Patent Application No. 2005-26866. In either case, a dispersion of silver particles can be obtained by dispersing the silver particle powder in a non-polar or small polar liquid organic medium. When coarse particles are removed from the dispersion by centrifugation, the particle size is reduced. A dispersion in which silver particles are monodispersed (CV value = standard deviation σ / number average particle percentage is less than 40%) can be obtained.

しかし、これら方法では、反応温度を高くすると、液中の銀イオンが効率よく還元されるが、粒子の焼結が起こって粗粒子化し、50nm以下の銀粒子粉末が安定して得られ難くなり、反面、反応温度を低くすれば焼結は抑制できるが、液中の銀イオンの還元効率が低下してしまって収率が下がる等のことから、効率よく50nm以下の銀粒子粉末の作製を行うにはさらなる改善を必要とした。   However, in these methods, when the reaction temperature is increased, the silver ions in the liquid are efficiently reduced, but the particles are sintered and coarsened, making it difficult to stably obtain a silver particle powder of 50 nm or less. On the other hand, if the reaction temperature is lowered, sintering can be suppressed, but the reduction efficiency of silver ions in the liquid decreases and the yield decreases. It needed further improvement to do.

この問題に対し、有機保護剤として分子量500以上のものを使用すると、反応温度を高くしても焼結を抑制でき、その結果、高い還元率で50nm以下の銀粒子粉末を高効率で得ることができることがわかった。しかし、分子量の大きい有機保護剤を用いると、その銀粒子の分散液を配線形成用材料とした場合に、低温での(300℃以下での)焼結性が著しく低下するという別の問題が現れることがわかった。基板として有機フィルム等を用いた回路等では、300℃を超える温度での焼成は実質的にできないので、該分散液の用途に制限を受けることになる。その他の材料の基板を用いる場合でも、低温で焼結性がよいことは作業性や品質面で該分散液の価値を高めることになる。このため、高分子量の有機保護剤を用いたのでは、50nm以下の銀粒子粉末を高収率で得ることと、その銀粒子分散液の低温焼結性とを両立させることはできない。   For this problem, when an organic protective agent having a molecular weight of 500 or more is used, sintering can be suppressed even when the reaction temperature is increased, and as a result, a silver particle powder having a high reduction rate of 50 nm or less can be obtained with high efficiency. I found out that However, when an organic protective agent having a large molecular weight is used, another problem is that the sinterability at a low temperature (below 300 ° C.) is remarkably lowered when the dispersion of silver particles is used as a wiring forming material. I knew it would appear. In a circuit using an organic film or the like as a substrate, firing at a temperature exceeding 300 ° C. cannot be practically performed, so that the use of the dispersion is limited. Even when a substrate made of another material is used, the good sinterability at low temperatures increases the value of the dispersion in terms of workability and quality. For this reason, when a high molecular weight organic protective agent is used, it is impossible to achieve both high yield of silver particle powder of 50 nm or less and low temperature sinterability of the silver particle dispersion.

そこで、さらに研究を重ねた結果、1分子中に2重結合等の不飽和結合を1個以上持つアミン化合物を有機保護剤として用いると、前記の両立ができることがわかった。また当該還元処理において、反応温度を段階的にあげて多段反応温度で還元する処方を採用したり、得られた粒子懸濁液の洗浄および粗粒子除去の操作を高度に組み立てることによって一層有利に前記の両立ができことが判明し、銀ナノ粒子が高度に分散した低温焼結性のよい銀粒子の分散液が高収率で製造できることがわかった。   As a result of further research, it was found that the above-mentioned compatibility can be achieved by using an amine compound having one or more unsaturated bonds such as double bonds in one molecule as an organic protective agent. Further, in the reduction treatment, it is more advantageous to adopt a prescription in which the reaction temperature is raised stepwise and reduced at a multistage reaction temperature, or the operations of washing the resulting particle suspension and removing coarse particles are highly assembled. It was found that both of the above could be achieved, and it was found that a dispersion of silver particles having a high degree of low-temperature sinterability in which silver nanoparticles were highly dispersed could be produced in a high yield.

そして、本発明によれば、このような銀ナノ粒子に、銀以外の無機化合物の粒子を組み合わせることによって、低温焼結性を具備しながら、焼結膜の応力緩和に寄与すると共に、焼結膜の基板に対する密着性に優れた複合粒子粉およびその分散液を得ることができる。また、低温焼結性は劣るものの、複合粒子粉の分散液では粘度が低すぎる等の問題で作業適性が劣る分野において好適に用いることが可能な複合粒子粉の分散ペーストを得ることができる。ここで、銀以外の無機化合物の粒子としては、珪素、チタン、アルミニウムまたはジルコニウムの粒子、またはこれら元素の無機化合物例えばこれら元素の酸化物、水酸化物またはオキシ水酸化物等の粒子が挙げられる。   And according to the present invention, by combining such silver nanoparticles with particles of an inorganic compound other than silver, while contributing to stress relaxation of the sintered film while having low-temperature sinterability, A composite particle powder having excellent adhesion to the substrate and a dispersion thereof can be obtained. Moreover, although the low temperature sinterability is inferior, it is possible to obtain a dispersed paste of composite particle powder that can be suitably used in fields where workability is inferior due to problems such as the viscosity of the composite particle powder being too low. Here, as the particles of inorganic compounds other than silver, particles of silicon, titanium, aluminum or zirconium, or inorganic compounds of these elements such as oxides, hydroxides or oxyhydroxides of these elements can be mentioned. .

以下に本発明で特定する事項および本明細書で用いる用語について説明する。
〔平均粒径DTEM
本発明に従う複合粒子粉中の銀粒子粉は平均粒径(DTEM)が50nm以下であり、無機粒子粉は平均粒径(DTEM)が100nm以下である。これらの平均粒径はTEM(透過電子顕微鏡)観察により測定される平均粒径(DTEMと記す)である。TEM観察では60万倍に拡大した画像から重なっていない独立した粒子300個の径を測定して平均値を求める。銀粒子粉の平均粒径(DTEM)が50nmより大きいと、300℃以下の焼成で十分な低抵抗が得られず、焼結膜密度も上がらない等、低温焼結性が劣るようになる。
The matters specified in the present invention and terms used in the present specification will be described below.
[Average particle diameter D TEM ]
The silver particle powder in the composite particle powder according to the present invention has an average particle diameter (D TEM ) of 50 nm or less, and the inorganic particle powder has an average particle diameter (D TEM ) of 100 nm or less. These average particle size is a TEM average particle diameter measured by (transmission electron microscope) observation (referred to as D TEM). In TEM observation, the average value is obtained by measuring the diameter of 300 independent particles that are not overlapped from an image magnified 600,000 times. When the average particle diameter (DTEM) of the silver particle powder is larger than 50 nm, the low-temperature sinterability becomes inferior, for example, a sufficient low resistance cannot be obtained by firing at 300 ° C. or lower, and the sintered film density does not increase.

〔X線結晶粒径Dx〕
本発明に従う銀粒子粉は、結晶粒子径(Dxと記す)が50nm以下である。銀粒子の結晶粒子径(Dx)が50nmより大きい場合にも、低温焼結性が劣るようになるという不具合がある。低温焼結性を確保するためには、銀粒子粉の平均粒径(DTEM)と結晶粒子径(Dx)とが共に50nm以下、さらに好ましくは30nm以下、場合によっては20nm以下であるのがよい。銀粒子粉のX線結晶粒径はX線回折結果から Scherrer の式を用いて求めることができる。その求め方は、次のとおりである。
Scherrerの式は、次の一般式で表現される。
Dx =K・λ/β COSθ
式中、K:Scherrer定数、Dx :結晶粒子径、λ:測定X線波長、β:X線回折で得られたピークの半価幅、θ:回折線のブラッグ角をそれぞれ表す。Kとして0.94の値を採用し、X線の管球はCuを用いると、前式は下式のように書き換えられる。
Dx =0.94×1.5405/β COSθ
[X-ray crystal grain size Dx]
The silver particle powder according to the present invention has a crystal particle diameter (denoted as Dx) of 50 nm or less. Even when the crystal particle diameter (Dx) of the silver particles is larger than 50 nm, there is a problem that the low-temperature sinterability becomes poor. In order to ensure low temperature sinterability, the average particle size (DTEM) and crystal particle size (Dx) of the silver particle powder are both 50 nm or less, more preferably 30 nm or less, and in some cases 20 nm or less. . The X-ray crystal grain size of the silver particle powder can be determined from the X-ray diffraction result using the Scherrer equation. How to find it is as follows.
Scherrer's formula is expressed by the following general formula.
Dx = K · λ / β COSθ
In the formula, K: Scherrer constant, Dx: crystal particle diameter, λ: measured X-ray wavelength, β: half width of peak obtained by X-ray diffraction, θ: Bragg angle of diffraction line. If a value of 0.94 is adopted as K and Cu is used for the X-ray tube, the previous equation can be rewritten as the following equation.
Dx = 0.94 x 1.5405 / β COSθ

〔単結晶化度〕
本発明に従う銀粒子粉は単結晶化度(DTEM/ Dx)が2.0以下である。このため、焼成時の熱収縮が小さく、焼結膜に生じる応力を低く抑えることができる。
[Single crystallinity]
The silver particle powder according to the present invention has a single crystallinity ( DTEM / Dx) of 2.0 or less. For this reason, the thermal shrinkage at the time of baking is small and the stress which arises in a sintered film can be restrained low.

〔無機粒子粉〕
本発明に従う無機粒子粉は、珪素、チタン、アルミニウム、ジルコニウムの粒子もしくはこれらの無機化合物の粒子からなり、平均粒径(DTEM)が100nm以下の粉体である。この無機粒子粉は厚膜ペーストに配合されるガラスフリットのように軟化・流動化していわゆるガラスボンドを形成するものとは性格を異にし、銀配線の焼結膜中に存在して、熱収縮による応力を緩和させ、ひいては、この応力緩和によって焼結膜の品質向上と基板との密着性を向上させる。
[Inorganic particle powder]
The inorganic particle powder according to the present invention is composed of silicon, titanium, aluminum, zirconium particles or particles of these inorganic compounds, and has an average particle diameter (D TEM ) of 100 nm or less. This inorganic particle powder is different from the one that forms a so-called glass bond by softening and fluidizing like the glass frit blended in the thick film paste, exists in the sintered film of the silver wiring, and is caused by heat shrinkage. The stress is relaxed, and as a result, the quality of the sintered film is improved and the adhesion to the substrate is improved by the stress relaxation.

無機粒子粉の大きさが100nmより大きいと、銀配線中の分布に偏りが生じて応力緩和の均一性が損なわれる。また、このために密着性改善の効果が劣るようになる。無機粒子粉による応力緩和の均一性を安定して確保するためには、無機粒子粉の粒径は好ましくは50nm、さらに好ましくは30nm以下、場合によっては20nm以下であるのがよい。   If the size of the inorganic particle powder is larger than 100 nm, the distribution in the silver wiring is biased and the stress relaxation uniformity is impaired. For this reason, the effect of improving the adhesion is inferior. In order to stably ensure the uniformity of stress relaxation by the inorganic particle powder, the particle size of the inorganic particle powder is preferably 50 nm, more preferably 30 nm or less, and in some cases 20 nm or less.

珪素、チタン、アルミニウムまたはジルコニウムの粉体は、これらの化合物を還元することにより得られる。化合物から金属まで還元されることが好ましいが、完全に還元されなくとも、酸化物、水酸化物、あるいはオキシ水酸化物等の形態の粉体であっても良い。この還元処理は液相法で行うことが可能であり、銀粒子粉の製造の場合と同様の方法で行うことができる。そのさい、銀粒子への還元処理とこれらの無機粒子への還元処理とを同時に行うことも可能であるが、別々に行うこともできる。100nm以下の平均粒径を持つものであれば、化合物からの還元によらず、例えば噴霧熱分解法、気相水素還元法等により得られた無機粒子粉を用いることもできる。   Silicon, titanium, aluminum or zirconium powders can be obtained by reducing these compounds. Although reduction from a compound to a metal is preferred, the powder may be in the form of an oxide, hydroxide, oxyhydroxide or the like, even if it is not completely reduced. This reduction treatment can be performed by a liquid phase method, and can be performed by the same method as in the production of silver particle powder. At that time, the reduction treatment to silver particles and the reduction treatment to these inorganic particles can be performed simultaneously, but can also be performed separately. As long as it has an average particle diameter of 100 nm or less, inorganic particle powder obtained by, for example, a spray pyrolysis method, a gas phase hydrogen reduction method, or the like can be used regardless of the reduction from the compound.

無機粒子粉は、複合粒子粉中0.1〜10wt%の割合で配合されることが好ましい。配合量が0.1wt%より少ないと、銀粒子粉の焼成時の熱収縮によって発生する応力を緩和する作用が現れず、このために基板との密着性改善効果が生じない。他方、配合量が10wt%より多いと、銀粒子の焼結を阻害するようになって焼結体の導電性が悪化する。   The inorganic particle powder is preferably blended at a ratio of 0.1 to 10 wt% in the composite particle powder. If the blending amount is less than 0.1 wt%, the effect of relieving the stress generated by the thermal shrinkage at the time of firing the silver particle powder does not appear, and therefore the effect of improving the adhesion with the substrate does not occur. On the other hand, if the blending amount is more than 10 wt%, the sintering of silver particles is inhibited and the conductivity of the sintered body is deteriorated.

〔有機保護剤〕
本発明においては、表面が有機保護剤で覆われた銀粒子粉を液状有機媒体中に分散させることによって、銀ナノ粒子であっても良好に銀粒子が分散した分散液を得ることができ、その分散液に無機粒子粉を複合して含有させることができる。無機粒子粉の表面も、場合によっては有機保護剤で覆われたものを使用することができる。
[Organic protective agent]
In the present invention, by dispersing silver particle powder whose surface is covered with an organic protective agent in a liquid organic medium, it is possible to obtain a dispersion in which silver particles are well dispersed even in the case of silver nanoparticles, The dispersion can contain a composite of inorganic particle powder. In some cases, the surface of the inorganic particle powder may be covered with an organic protective agent.

使用する有機保護剤は、1分子中に少なくとも1個以上の不飽和結合を有し且つ分子量が100〜1000、好ましくは100〜400のアミン化合物であるのがよい。このような不飽和結合をもつアミン化合物を液相法による銀ナノ粒子の製造時に共存させると、還元反応において粒子核を一斉に発生させることができ、且つ析出した粒子核の成長を全体的に均斉に抑制する現象が起き、本発明に従う銀粒子粉を高収率で得ることができ、しかも分散液中での良好な分散性を確保しながら、このアミン化合物は比較的低温で分解するのでその複合粒子粉の分散液の低温焼結性を確保することができる。   The organic protective agent to be used is an amine compound having at least one unsaturated bond in one molecule and having a molecular weight of 100 to 1000, preferably 100 to 400. When such an amine compound having an unsaturated bond coexists in the production of silver nanoparticles by the liquid phase method, particle nuclei can be generated simultaneously in the reduction reaction, and the growth of the precipitated particle nuclei is totally performed. Since the phenomenon of uniform suppression occurs, the silver particle powder according to the present invention can be obtained in a high yield, and this amine compound decomposes at a relatively low temperature while ensuring good dispersibility in the dispersion. The low temperature sinterability of the dispersion of the composite particle powder can be ensured.

このアミン化合物は銀粒子粉と無機粒子粉とを液相法で同時に生成させる場合にも共存させることができ、この場合にも粒子核の一斉発生と核成長の全体的な抑制ができ、しかも分散液中の粒子の分散性と分散液の低温焼結性を確保できる。   This amine compound can coexist even when silver particle powder and inorganic particle powder are simultaneously produced by the liquid phase method, and in this case as well, the simultaneous generation of particle nuclei and the overall suppression of nucleus growth can be achieved. Dispersibility of particles in the dispersion and low-temperature sinterability of the dispersion can be ensured.

本発明で使用できる代表的なアミン化合物として、例えばトリアリルアミン、オレイルアミン、ジオレイルアミン、オレイルプロピレンジアミンを例示できる。なお、有機保護材に硫黄や塩素を含むものは配線腐食の原因となるので好ましくない。   Examples of typical amine compounds that can be used in the present invention include triallylamine, oleylamine, dioleylamine, and oleylpropylenediamine. An organic protective material containing sulfur or chlorine is not preferable because it causes wiring corrosion.

〔高分子量の有機保護剤〕
本発明に従う複合粒子粉のペーストを形成するのに、高分子量の有機保護剤を用いるとペーストに適正な粘性を付与することができる。すなわち、本発明の複合粒子粉の分散液に高分子量の有機保護剤を含有させることによって、適正な粘度をもつ複合粒子粉のペーストが得られる。このための高分子量の有機保護剤としては分子量1000〜100000の有機化合物を使用する。本発明で使用できる代表的な有機化合物として、例えばエポキシ樹脂、ウレタン樹脂、シリコーン樹脂、アクリル樹脂、ポリエステル樹脂、エチルセルロース樹脂、ポリビニルピロリドン樹脂、ポリビニルアルコール樹脂、ヒドロキシプロピルメチルセルロースフタレート樹脂等のポリマーや脂肪族系多価カルボン酸、高分子ポリエステルのアミン塩、長鎖ポリアミノアマイドと高分子酸ポリエステルの塩、特殊アクリル系重合物、特殊シリコーン系重合物等の界面活性剤を例示できる。
[High molecular weight organic protective agent]
When a high molecular weight organic protective agent is used to form a composite particle powder paste according to the present invention, an appropriate viscosity can be imparted to the paste. That is, a composite particle powder paste having an appropriate viscosity can be obtained by adding a high molecular weight organic protective agent to the composite particle powder dispersion of the present invention. For this purpose, an organic compound having a molecular weight of 1,000 to 100,000 is used as the high molecular weight organic protective agent. Typical organic compounds that can be used in the present invention include, for example, polymers such as epoxy resins, urethane resins, silicone resins, acrylic resins, polyester resins, ethyl cellulose resins, polyvinyl pyrrolidone resins, polyvinyl alcohol resins, hydroxypropyl methylcellulose phthalate resins, and aliphatics. Examples of surfactants include polyvalent carboxylic acids, amine salts of high molecular polyesters, salts of long-chain polyaminoamides and high molecular acid polyesters, special acrylic polymers, and special silicone polymers.

〔液状有機媒体〕
本発明に従う複合粒子粉の分散液およびペーストを得るための媒体として液状有機媒体を使用するが、この液状有機媒体としては、沸点が60〜300℃の非極性もしくは極性の小さい液状有機媒体を用いる。ここで、「非極性もしくは極性の小さい」というのは25℃での比誘電率が15以下であることを指し、より好ましく5以下である。比誘電率が15を超える場合、銀粒子の分散性が悪化し沈降することがあり、好ましくない。分散液の用途に応じて各種の液状有機媒体が使用できるが、炭化水素系が好適に使用でき、とくに、イソオクタン、n−デカン、イソドデカン、イソヘキサン、n−ウンデカン、n−テトラデカン、n−ドデカン、トリデカン、ヘキサン、ヘプタン等の脂肪族炭化水素、ベンゼン、トルエン、キシレン、エチルベンゼン、デカリン、テトラリン等の芳香族炭化水素等が使用できる。これらの液状有機媒体は1種類または2種類以上を使用することができ、ケロシンのような混合物であっても良い。更に、極性を調整するために、混合後の液状有機媒体の25℃での比誘電率が15以下となる範囲でアルコール系、ケトン系、エーテル系、エステル系等の極性の大きな液状有機媒体を添加しても良い。
[Liquid organic medium]
A liquid organic medium is used as a medium for obtaining a dispersion and paste of composite particle powder according to the present invention. As this liquid organic medium, a nonpolar or low polarity liquid organic medium having a boiling point of 60 to 300 ° C. is used. . Here, “non-polar or low polarity” means that the relative dielectric constant at 25 ° C. is 15 or less, more preferably 5 or less. When the relative dielectric constant exceeds 15, the dispersibility of silver particles may deteriorate and settle, which is not preferable. Various liquid organic media can be used depending on the use of the dispersion, but hydrocarbons can be preferably used. In particular, isooctane, n-decane, isododecane, isohexane, n-undecane, n-tetradecane, n-dodecane, Aliphatic hydrocarbons such as tridecane, hexane and heptane, and aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, decalin and tetralin can be used. These liquid organic media may be used alone or in combination of two or more, and may be a mixture such as kerosene. Furthermore, in order to adjust the polarity, a liquid organic medium having a large polarity such as alcohol, ketone, ether, ester, etc. is used in the range where the relative permittivity at 25 ° C. of the mixed liquid organic medium is 15 or less. It may be added.

〔有機金属化合物〕
本発明に従う複合粒子粉の分散液またはペーストに有機金属化合物を適量配合することによって、焼成された配線の諸特性を改善することができる。使用できる有機金属化合物としては有機珪素、有機チタン、有機アルミニウム、有機ジルコニウムの少なくとも1種があるが、これらは分散液中の液状有機媒体に溶解することが好ましい。有機金属化合物は、配線や電極の硬度を高めることによる配線や電極の磨耗抑制、ガラス基板との密着性の改善、焼結膜表面の平滑化、焼結膜密度の向上等の品質改善に効果を示す。代表的な有機珪素化合物としてはテトラエトキシシラン、テトラメトキシシラン、シランカップリング剤、シリル化剤を、代表的な有機チタン化合物としてはテトライソプロポキシチタン、テトラ−n−ブトキシチタン、チタンアセチルアセトネート、チタンテトラアセチルアセトネート、チタネート系カップリング剤等を、代表的な有機アルミニウムとしてはアルミニウムイソプロピレート、アルミニウムトリス(エチルアセトアセテート)、アルミニウム系カップリング剤等を、そして、代表的な有機ジルコニウム化合物としてはジルコニウムブトキシアセチルアセトネート、テトラ−n−ブトキシジルコニウム等を挙げることができる。
[Organic metal compound]
Various characteristics of the fired wiring can be improved by adding an appropriate amount of an organometallic compound to the dispersion or paste of the composite particle powder according to the present invention. The organometallic compound that can be used includes at least one of organosilicon, organotitanium, organoaluminum, and organozirconium, but these are preferably dissolved in the liquid organic medium in the dispersion. Organometallic compounds are effective in improving quality such as suppressing wiring and electrode wear by improving the hardness of the wiring and electrodes, improving adhesion to the glass substrate, smoothing the surface of the sintered film, and increasing the density of the sintered film. . Typical organic silicon compounds include tetraethoxysilane, tetramethoxysilane, silane coupling agent, and silylating agent, and typical organic titanium compounds include tetraisopropoxy titanium, tetra-n-butoxy titanium, and titanium acetylacetonate. , Titanium tetraacetylacetonate, titanate coupling agent, etc., and typical organic aluminum include aluminum isopropylate, aluminum tris (ethyl acetoacetate), aluminum coupling agent, etc., and typical organic zirconium compounds Examples thereof include zirconium butoxyacetylacetonate and tetra-n-butoxyzirconium.

次に本発明に従う複合粒子粉、その分散液およびペーストの製造法について説明する。先ず、複合粒子粉については、銀粒子粉と無機粒子粉とを別々に製造して両者を混合してもよいが、銀粒子粉と無機粒子粉とからなる複合粒子粉を同時に製造する方法(同時法という)によれば、一挙に複合粒子粉が得られるので便宜である。この同時法は、液相法で銀粒子粉を製造するさいに、無機粒子粉の原料も同時に仕込む方法である。   Next, the composite particle powder according to the present invention, a dispersion thereof, and a method for producing a paste will be described. First, about composite particle powder, although silver particle powder and inorganic particle powder may be manufactured separately and both may be mixed, the method of manufacturing composite particle powder which consists of silver particle powder and inorganic particle powder simultaneously ( According to the simultaneous method), a composite particle powder can be obtained all at once, which is convenient. This simultaneous method is a method in which the raw material of the inorganic particle powder is simultaneously charged when the silver particle powder is produced by the liquid phase method.

すなわち、液相法で銀粒子粉を製造する方法として、還元剤として機能するアルコールまたはポリオールの1種または2種以上の液中で銀イオンを銀粒子に還元処理する方法を採用し、そのさいに、珪素化合物、チタン化合物、アルミニウム化合物またはジルコニウム化合物の少なくとも1種を共存させて還元処理する。より具体的には、プロピルアルコール、イソプロピルアルコール、n−ブタノール、イソブタノール、sec−ブチルアルコール、tert−ブチルアルコール、アリルアルコール、クロチルアルコール、シクロペンタノール等が使用できる。またポリオールとしては、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール等のアルコールまたはポリオール中で、銀化合物と、珪素、チタン、アルミニウム、ジルコニウム等の化合物(各種の金属塩や銀酸化物等)を、有機保護剤の共存下で、85℃〜150℃の温度で還元処理することによって製造することができる。この還元処理時に、前述のように1分子中に少なくとも1個以上の不飽和結合を有する分子量100〜1000のアミン化合物からなる有機保護剤を共存させると、この有機保護剤が核の一斉発生を促し且つ発生した核の成長を抑制し、しかも液状有機媒体に対して分散性のよい複合粒子粉を製造することができる。この同時法において、珪素、チタン、アルミニウム、ジルコニウムの化合物を還元して得られる無機化合物はそれぞれ珪素、チタン、アルミニウム、ジルコニウムの金属まで還元されることが好ましいが、完全に還元されなくとも、酸化物、水酸化物、あるいはオキシ水酸化物等であっても良い。   That is, as a method for producing silver particle powder by the liquid phase method, a method is adopted in which silver ions are reduced to silver particles in one or more liquids of alcohol or polyol that functions as a reducing agent. Further, reduction treatment is performed in the presence of at least one of a silicon compound, a titanium compound, an aluminum compound, or a zirconium compound. More specifically, propyl alcohol, isopropyl alcohol, n-butanol, isobutanol, sec-butyl alcohol, tert-butyl alcohol, allyl alcohol, crotyl alcohol, cyclopentanol and the like can be used. In addition, as the polyol, in an alcohol or polyol such as diethylene glycol, triethylene glycol, tetraethylene glycol, etc., a silver compound and a compound such as silicon, titanium, aluminum or zirconium (various metal salts, silver oxides, etc.) are organic. It can manufacture by carrying out the reduction process at the temperature of 85 to 150 degreeC in coexistence of a protective agent. At the time of this reduction treatment, when an organic protective agent composed of an amine compound having a molecular weight of 100 to 1000 having at least one unsaturated bond in one molecule is allowed to coexist as described above, the organic protective agent causes simultaneous generation of nuclei. It is possible to produce composite particle powder that promotes and suppresses the growth of generated nuclei and has good dispersibility in a liquid organic medium. In this simultaneous method, inorganic compounds obtained by reducing silicon, titanium, aluminum and zirconium compounds are preferably reduced to metals of silicon, titanium, aluminum and zirconium, respectively. It may be a substance, a hydroxide, an oxyhydroxide or the like.

還元反応は加熱下でアルコールまたはポリオールの蒸発と凝縮を繰り返す還流条件下で行なわせるのがよい。還元に供する銀、珪素、チタン、アルミニウム、ジルコニウムの化合物としては、これらの酸化物、硝酸塩、炭酸塩、脂肪酸塩等がある。工業的観点から硝酸塩が好ましいが、硝酸塩に限定されるものではない。ただし、出発原料中に硫黄や塩素を含むものは配線腐食の原因となるので好ましくない。本発明法では反応時の液中の金属イオン濃度は50mmol/L以上で行うことができる。還元処理にあたっては、反応温度を段階的にあげて、多段反応温度で還元する処方を採用したり、還元助剤を添加したり、得られた粒子懸濁液の洗浄および粗粒子除去の操作を高度に組み立てることによって、一層有利に本発明に従う複合粒子粉を製造することができる。   The reduction reaction is preferably carried out under reflux conditions in which evaporation or condensation of alcohol or polyol is repeated under heating. Examples of the compound of silver, silicon, titanium, aluminum, and zirconium used for the reduction include these oxides, nitrates, carbonates, and fatty acid salts. Although nitrate is preferable from an industrial viewpoint, it is not limited to nitrate. However, starting materials containing sulfur or chlorine are not preferred because they cause wiring corrosion. In the method of the present invention, the concentration of metal ions in the solution during the reaction can be 50 mmol / L or more. In the reduction treatment, the reaction temperature is raised stepwise and a formulation that reduces at a multistage reaction temperature is adopted, a reduction aid is added, and the resulting particle suspension is washed and coarse particles removed. By highly assembling, the composite particle powder according to the present invention can be produced more advantageously.

銀粒子粉と無機粒子粉とを、液相法で別々に製造する場合には、同じく還元剤として機能するアルコールまたはポリオールの1種または2種以上の液中で銀イオンを銀粒子に還元処理する方法と、還元剤として機能するアルコールまたはポリオールの1種または2種以上の液中で前記の無機化合物を溶存させて還元処理する方法で、銀粒子粉と無機粒子粉を別々に製造し、両者を混合すればよい。この場合も、前記同様の有機保護剤の共存下で還元処理するのが望ましい。また、銀化合物のみを還元して銀粒子粉を得た後で、珪素、チタン、アルミニウム、ジルコニウムもしくはこれらの無機化合物を添加することによって複合粒子粉末を得ることもできる。   When silver particle powder and inorganic particle powder are produced separately by the liquid phase method, silver ions are reduced to silver particles in one or more liquids of alcohol or polyol that also function as a reducing agent. And a method in which the inorganic compound is dissolved in one or more liquids of alcohol or polyol that functions as a reducing agent and the reduction treatment is performed, and silver particle powder and inorganic particle powder are separately produced. What is necessary is just to mix both. Also in this case, it is desirable to carry out the reduction treatment in the presence of the same organic protective agent as described above. Moreover, after reducing only a silver compound and obtaining silver particle powder, a composite particle powder can also be obtained by adding silicon, titanium, aluminum, zirconium, or these inorganic compounds.

このようにして得た複合粒子粉は、これを沸点60〜300℃の非極性もしくは極性の小さい液状有機媒体に分散させることによって、その分散液を製造することができる。この複合粒子粉の分散液には、必要に応じて、前記のように有機珪素化合物、有機チタン化合物、有機アルミニウム化合物、有機ジルコニウム化合物を添加してその特性改善を図ることができる。また、この分散液の低温焼結性や分散性等を損なわない範囲で他の添加剤を当該分散液に添加することもできる。例えば増粘剤、沈降防止剤、色分かれ防止剤、消泡剤、レベリング剤等のこの分野で既知の添加材を使用することができる。それらの添加量は当該分散液の重量に対して0.01〜10重量%とするのが良い。0.01重量%未満では添加剤の効果が少なく、10重量%より多くても添加剤の効果が飽和するばかりか、低温焼結性や分散性等を悪化させることがある。   The composite particle powder thus obtained can be dispersed in a non-polar or small-polar liquid organic medium having a boiling point of 60 to 300 ° C. to produce a dispersion. If necessary, an organosilicon compound, an organotitanium compound, an organoaluminum compound, and an organozirconium compound can be added to the dispersion of the composite particle powder as described above to improve the characteristics. In addition, other additives can be added to the dispersion as long as the low-temperature sinterability and dispersibility of the dispersion are not impaired. For example, additives known in this field such as thickeners, anti-settling agents, anti-color separation agents, antifoaming agents, and leveling agents can be used. The addition amount thereof is preferably 0.01 to 10% by weight with respect to the weight of the dispersion. If it is less than 0.01% by weight, the effect of the additive is small, and if it is more than 10% by weight, the effect of the additive is not only saturated, but the low-temperature sinterability and dispersibility may be deteriorated.

また、この複合粒子粉のペーストを得るには、前記のようにして得た複合粒子粉に、分子量1000〜100000の高分子有機保護剤を添加した後、沸点が60〜300℃の液状有機媒体に分散させてペースト化するか、或いは、該複合粒子粉を沸点60〜300℃の液状有機媒体に分散させた後に、分子量1000〜100000の高分子有機保護剤を添加することによってペースト化すればよい。高分子有機保護剤の添加は反面において低温焼結性を悪化させるが、このような高分子量の有機保護剤を用いると、分散液の粘度を高くすることができ、ペーストとして使用するのに適した粘性を付与させることができる。   Moreover, in order to obtain this composite particle powder paste, a liquid organic medium having a boiling point of 60 to 300 ° C. is added to the composite particle powder obtained as described above after adding a polymer organic protective agent having a molecular weight of 1000 to 100,000. Or by dispersing the composite particle powder in a liquid organic medium having a boiling point of 60 to 300 ° C. and then adding a high molecular weight organic protective agent having a molecular weight of 1000 to 100,000. Good. On the other hand, the addition of a polymer organic protective agent deteriorates the low-temperature sinterability, but using such a high molecular weight organic protective agent can increase the viscosity of the dispersion and is suitable for use as a paste. Can be imparted with a high viscosity.

さらに、複合粒子粉を沸点60℃〜300℃の非極性または極性が小さい分散媒に分散させたあと、その分散液から粗粒子を分離することにより、良品質の複合粒子粉の分散液を得ることができる。また、前記した有機珪素化合物、有機チタン化合物、有機アルミニウム化合物、有機ジルコニウム化合物を該分散液に添加して、焼結膜の密着性改善等の品質改善を行うことができる。   Furthermore, after dispersing the composite particle powder in a non-polar or low-polarity dispersion medium having a boiling point of 60 ° C. to 300 ° C., the coarse particles are separated from the dispersion to obtain a dispersion of good quality composite particle powder. be able to. In addition, the above-described organosilicon compound, organotitanium compound, organoaluminum compound, and organozirconium compound can be added to the dispersion to improve quality such as adhesion of the sintered film.

本発明に従う分散液を、液相法による還元反応後のスラリーから得る場合、その反応後の処理として、次のような洗浄・分散・分級・混合等の諸工程を経て本発明に従う複合粒子粉の分散液とすることができる。   When the dispersion according to the present invention is obtained from the slurry after the reduction reaction by the liquid phase method, the composite particle powder according to the present invention is subjected to the following steps such as washing, dispersion, classification, and mixing as the treatment after the reaction. It can be set as the dispersion liquid.

〔洗浄工程〕
(1) 反応後のスラリー40mLを遠心分離器(日立工機株式会社製のCF7D2)を用いて3000rpmで30分固液分離を実施し、上澄みを廃棄する。
(2) 沈殿物に「極性の大きい液状有機媒体」(例えばメタノール)40mLを加えて超音波分散機で分散させる。
(3) 前記の(1) →(2) を3回繰り返す。
(4) 前記の(1) を実施して上澄み廃棄し沈殿物を得る。
[Washing process]
(1) 40 mL of the slurry after the reaction is subjected to solid-liquid separation at 3000 rpm for 30 minutes using a centrifuge (CF7D2 manufactured by Hitachi Koki Co., Ltd.), and the supernatant is discarded.
(2) Add 40 mL of “a highly polar liquid organic medium” (for example, methanol) to the precipitate and disperse it with an ultrasonic disperser.
(3) Repeat (1) → (2) three times.
(4) Carry out the above (1) and discard the supernatant to obtain a precipitate.

〔分散工程〕
(1) 前記の洗浄工程を経た沈殿物に「非極性もしくは極性の小さい液状有機媒体」(例えばケロシン)40mLを添加する。
(2) 次いで超音波分散機にかける。
[Dispersing process]
(1) Add 40 mL of “nonpolar or low-polar liquid organic medium” (for example, kerosene) to the precipitate that has undergone the washing step.
(2) Then apply to an ultrasonic disperser.

〔分級工程〕
(1) 分散工程を経た分散体と「非極性もしくは極性の小さい液状有機媒体」の混濁液40mLを前記と同様の遠心分離器を用いて3000rpmで30分間固液分離を実施する。
(2) 上澄み液を回収する。この上澄み液が本発明に従う複合粒子粉の分散液となる。
[Classification process]
(1) Solid-liquid separation is performed for 30 minutes at 3000 rpm using a centrifugal separator similar to the above for 40 mL of the turbid liquid of the dispersion subjected to the dispersion step and the “nonpolar or low polarity liquid organic medium”.
(2) Collect the supernatant. This supernatant becomes a dispersion of the composite particle powder according to the present invention.

前記洗浄工程では「極性の大きい液状有機媒体」を用いる。「極性の大きい」というのは25℃での比誘電率が15より大きいことを指す。比誘電率が15以下の場合、銀、もしくは珪素、チタン、アルミニウム、ジルコニウムもしくはこれらの無機化合物の分散性が良好すぎるため、洗浄工程での洗浄効率が悪化する。極性の大きい液状有機媒体としては各種のものが使用できるが、アルコール系とケトン系が好適に使用でき、アルコール系としては、とくに、メタノール、エタノール、プロピルアルコール、イソプロピルアルコール等が、ケトン系としてはアセトン、アセチルアセトン等が使用できる。これらの極性の大きい液状有機媒体は1種類または2種類以上を使用することができ、混合物であっても良い。   In the washing step, “a liquid organic medium having a large polarity” is used. “Large polarity” means that the relative dielectric constant at 25 ° C. is larger than 15. When the relative dielectric constant is 15 or less, the dispersibility of silver, silicon, titanium, aluminum, zirconium, or these inorganic compounds is too good, so that the cleaning efficiency in the cleaning step is deteriorated. Various types of liquid organic media having a large polarity can be used, but alcohols and ketones can be preferably used. As alcohols, methanol, ethanol, propyl alcohol, isopropyl alcohol, etc. are particularly preferred as ketones. Acetone, acetylacetone, etc. can be used. These liquid organic media having a large polarity can be used alone or in combination of two or more, and may be a mixture.

次の分散工程では「非極性もしくは極性の小さい液状有機媒体」を用いる。「非極性もしくは極性の小さい」というのは、既に説明したとおり、25℃での比誘電率が15以下であることを指し、より好ましく5以下であって、前掲例示の非極性もしくは極性の小さい液状有機媒体を使用することができる。   In the next dispersion step, “a non-polar or low-polar liquid organic medium” is used. “Nonpolar or low polarity” means that the relative dielectric constant at 25 ° C. is 15 or less as described above, more preferably 5 or less, and the nonpolarity or low polarity exemplified above. Liquid organic media can be used.

以上のようにして製造された複合粒子粉の分散液またはペーストを基板に塗布して焼結膜を形成する場合、形成される焼結膜を配線として用いるには体積抵抗は低い程良いが、本発明に従う分散液またはペーストは10μΩ・cm以下、好ましくは5μΩ・cm以下、更に好ましくは3μΩ・cm以下の焼結膜を形成することができる。   In the case of forming a sintered film by applying a dispersion or paste of composite particle powder produced as described above to a substrate, a lower volume resistance is better for using the formed sintered film as a wiring. The dispersion or paste according to the above can form a sintered film of 10 μΩ · cm or less, preferably 5 μΩ · cm or less, more preferably 3 μΩ · cm or less.

本発明の複合粒子粉は300℃以下の低温焼結性に優れ、焼結膜中に残存する有機物残渣も極めて少なくなる。有機物残渣が多いと、形成した配線上に誘電体層を形成したり、配線が真空雰囲気中に置かれた場合には、有機成分の脱離による誘電体層の膨れや真空雰囲気の環境汚染などを起因とする回路の信頼性低下が懸念される。有機物残渣は低いほど好ましく、配線の焼結膜中に存在する炭素が、有機物残渣の指標になる。後記の実施例に示すように、ESCAを用いて深さ方向の定性分析を行い、SiO2換算で5nmより深い部位に炭素検出の有無を確認しても、本発明に従う複合粒子粉の焼結膜には有機物残渣が検出されず、低温焼成しても高品質の焼結膜が得られる。また、焼結膜の密着性についても、本発明に従う複合粒子粉の焼結膜は後記の実施例に示すようにガラス基板に対して良好な密着性を示す点で特徴的である。 The composite particle powder of the present invention is excellent in low temperature sinterability at 300 ° C. or less, and the organic residue remaining in the sintered film is extremely reduced. When there are many organic residues, a dielectric layer is formed on the formed wiring, and when the wiring is placed in a vacuum atmosphere, the dielectric layer swells due to desorption of organic components, environmental pollution of the vacuum atmosphere, etc. There is a concern that the reliability of the circuit is reduced due to the above. The lower the organic residue, the better. The carbon present in the sintered film of the wiring is an indicator of the organic residue. As shown in the examples described later, even if the qualitative analysis in the depth direction is performed using ESCA and the presence or absence of carbon detection is confirmed at a site deeper than 5 nm in terms of SiO 2 , the composite particle powder sintered film according to the present invention No organic residue is detected, and a high-quality sintered film can be obtained even by low-temperature firing. In addition, as for the adhesion of the sintered film, the sintered film of the composite particle powder according to the present invention is characteristic in that it exhibits good adhesion to the glass substrate as shown in the examples described later.

本発明の複合粒子粉は、特にガラス基板との密着性に優れるので、ガラス基板上での
配線に有利に利用できる。しかし、これ以外でもLSI基板の配線やFPD(フラットパネルディスプレイ)の電極、配線用途、さらには微細なトレンチ、ビアホール、コンタクトホールの埋め込み等の配線形成材料としても好適である。車の塗装等の色材としても適用でき、医療・診断・バイオテクノロジー分野に
おいて生化学物質等を吸着させるキャリヤーにも適用できる。また、本発明の複合粒子
粉は低温焼成が可能なため、フレキシブルなフィルム上への電極形成材料として、エレクトロニクス実装に於いては接合材として用いることも出来る。さらに導電性皮膜として電磁波シールド膜、透明導電膜等の用途に利用でき、光学特性を利用して赤外線反射シールド等としても好適である。一方、分散液としては、液体(分散媒)とほぼ同様の挙動を示すため、前述のインクジェット法に限らず、スピンコート、ディッピング、ブレードコート等各種塗布方法、およびスクリーン印刷等にも適用可能である。また、分散液粘度が低すぎる等の問題があって、複合粒子粉の分散液が適用しづらい用途では、複合粒子粉のペーストとしてその適用範囲を拡大することができる。
Since the composite particle powder of the present invention is particularly excellent in adhesion to a glass substrate, it can be advantageously used for wiring on the glass substrate. However, other than these, it is also suitable as wiring material for LSI substrate wiring, FPD (flat panel display) electrodes, wiring applications, and for filling fine trenches, via holes and contact holes. It can also be used as a coloring material for car paints, and can also be applied to carriers that adsorb biochemicals in the medical, diagnostic, and biotechnology fields. Further, since the composite particle powder of the present invention can be fired at a low temperature, it can also be used as an electrode forming material on a flexible film and as a bonding material in electronic packaging. Furthermore, it can be used as an electromagnetic wave shielding film, a transparent conductive film or the like as a conductive film, and is also suitable as an infrared reflection shield or the like by utilizing optical characteristics. On the other hand, since the dispersion exhibits almost the same behavior as the liquid (dispersion medium), it can be applied not only to the ink jet method described above but also to various coating methods such as spin coating, dipping, blade coating, and screen printing. is there. Further, in applications where the dispersion of the composite particle powder is difficult to be applied due to problems such as the viscosity of the dispersion being too low, the application range can be expanded as a paste of the composite particle powder.

〔実施例1〕
反応媒体兼還元剤としてのイソブタノール140mLに、有機保護剤として不飽和結合を分子中に1個有するオレイルアミン185.8mLと、銀化合物として硝酸銀結晶19.2gとを添加し、マグネットスターラーにて攪拌して硝酸銀を分散させる。この液を還流器のついた容器に移してオイルバスに載せ、容器内に不活性ガスとして窒素ガスを400mL/minの流量で吹込みながら、該液をマグネットスターラーにより100rpmの回転速度で撹拌しつつ加熱し、100℃の温度で2時間30分の還流を行った。その後、108℃まで温度を上げ、2時間30分の還流を行い、反応を終了した。そのさい100℃および108℃に至るまでの昇温速度はいずれも2℃/minとした。
[Example 1]
Add 185.8 mL of oleylamine having one unsaturated bond in the molecule as an organic protective agent and 19.2 g of silver nitrate crystals as a silver compound to 140 mL of isobutanol as a reaction medium and reducing agent, and stir with a magnetic stirrer. To disperse the silver nitrate. This liquid is transferred to a container equipped with a reflux device and placed in an oil bath, and the liquid is stirred at a rotational speed of 100 rpm by a magnetic stirrer while blowing nitrogen gas as an inert gas at a flow rate of 400 mL / min. The mixture was heated and refluxed at a temperature of 100 ° C. for 2 hours and 30 minutes. Thereafter, the temperature was raised to 108 ° C., refluxing was performed for 2 hours and 30 minutes, and the reaction was completed. At that time, the heating rate up to 100 ° C. and 108 ° C. was set to 2 ° C./min.

反応終了後のスラリーについて本文に記載した洗浄、分散および分級の工程を実施した。洗浄工程では極性の大きいメタノールを、分散工程では極性の小さいケロシンを使用した。得られた銀粒子粉は平均粒径DTEM=12.3nmで、結晶粒子径Dx=15.0nm、単結晶化度DTEM/Dx=0.82であった。 The slurry after the reaction was subjected to the washing, dispersing, and classification steps described in the text. Methanol having a high polarity was used in the washing step, and kerosene having a low polarity was used in the dispersion step. The obtained silver particle powder had an average particle diameter D TEM = 12.3 nm, a crystal particle diameter Dx = 15.0 nm, and a single crystallinity D TEM /Dx=0.82.

他方、反応媒体兼還元剤としてのイソブタノール140mLに、有機保護剤として不飽和結合を分子中に1個有するオレイルアミン185.8mLと、チタン化合物としてテトライソプロポキシチタン4.4gとを添加し、マグネットスターラーにて攪拌してテトライソプロポキシチタンを分散させる。この液を還流器のついた容器に移してオイルバスに載せ、容器内に不活性ガスとして窒素ガスを400mL/minの流量で吹込みながら、該液をマグネットスターラーにより100rpmの回転速度で撹拌しつつ加熱し、100℃の温度で1時間の還流を行った。その後、108℃まで温度を上げ、5時間の還流を行い、反応を終了した。そのさい100℃および108℃に至るまでの昇温速度はいずれも2℃/minとした。   On the other hand, to 140 mL of isobutanol as a reaction medium and reducing agent, 185.8 mL of oleylamine having one unsaturated bond in the molecule as an organic protective agent and 4.4 g of tetraisopropoxytitanium as a titanium compound were added. Stir with a stirrer to disperse the tetraisopropoxy titanium. This liquid is transferred to a container equipped with a reflux device and placed in an oil bath, and the liquid is stirred at a rotational speed of 100 rpm by a magnetic stirrer while blowing nitrogen gas as an inert gas at a flow rate of 400 mL / min. The mixture was heated and refluxed at a temperature of 100 ° C. for 1 hour. Thereafter, the temperature was raised to 108 ° C. and refluxed for 5 hours to complete the reaction. At that time, the heating rate up to 100 ° C. and 108 ° C. was set to 2 ° C./min.

反応終了後のスラリーについて本文に記載した洗浄、分散および分級の工程を実施した。洗浄工程では極性の大きいメタノールを、分散工程では極性の小さいケロシンを使用した。その結果、得られた酸化チタン粒子粉は平均粒径DTEM=14.6nmであった。 The slurry after the reaction was subjected to the washing, dispersing, and classification steps described in the text. Methanol having a high polarity was used in the washing step, and kerosene having a low polarity was used in the dispersion step. As a result, the obtained titanium oxide particle powder had an average particle diameter D TEM = 14.6 nm.

前記の方法で得られた銀粒子分散液と、前記の方法で得られた酸化チタン粒子分散液とを混合し、複合粒子粉の分散液を得た。混合にあたっては、複合粒子粉中の酸化チタン粒子粉の重量割合が5wt%となるように両分散液を分取合体し、マグネットスターラーにより100rpmの回転速度で室温において撹拌混合した。   The silver particle dispersion obtained by the above method and the titanium oxide particle dispersion obtained by the above method were mixed to obtain a dispersion of composite particle powder. In mixing, both dispersions were separated and combined so that the weight ratio of the titanium oxide particle powder in the composite particle powder was 5 wt%, and stirred and mixed at room temperature with a magnetic stirrer at a rotation speed of 100 rpm.

得られた複合粒子粉の分散液をガラス基板に塗布して200℃で60分焼成した。焼成に当たっては、次の手順で洗浄したガラス基板の上に焼結膜を作製した。
〔ガラス基板洗浄〕
ガラス基板をアセトン溶液に浸漬し、超音波を印加し脱脂処理を行う。この脱脂処理を行ったガラス基板を水洗、乾燥後、更にUV光により洗浄を行い、評価に用いるガラス基板を得た。
〔焼結膜作製〕
前記のガラス基板にスピンコートで塗布膜を形成し、室温にて5分放置する。この分散液塗布基板を所定の温度(200℃)に調整したホットプレート上に置き、そのまま60分の焼成を行い、焼結膜を得た。
The obtained composite particle powder dispersion was applied to a glass substrate and baked at 200 ° C. for 60 minutes. In firing, a sintered film was produced on a glass substrate washed by the following procedure.
[Glass substrate cleaning]
A glass substrate is immersed in an acetone solution, and degreasing is performed by applying ultrasonic waves. The glass substrate subjected to the degreasing treatment was washed with water and dried, and further washed with UV light to obtain a glass substrate used for evaluation.
(Sintered film production)
A coating film is formed on the glass substrate by spin coating and left at room temperature for 5 minutes. This dispersion-coated substrate was placed on a hot plate adjusted to a predetermined temperature (200 ° C.) and baked as it was for 60 minutes to obtain a sintered film.

得られた焼結膜の体積抵抗率、密着性および有機物残渣量を下記の方法で評価した。
〔体積抵抗値〕
4探針法により測定された表面抵抗と膜厚計で得られた膜厚から計算により体積抵抗値を求めた。その結果、本例の焼結膜の体積抵抗値は3.0μΩ・cmであった。
〔密着性〕
焼結膜上に、カッターにより1mm角の升目を100個作製し、その上にテープを圧着したあと剥離させ、残存する升目の数を数えた。密着性が良好で100個の升目が全て残存している場合を100/100、密着性が不良で100個の升目が全て剥離している場合を0/100として、密着の良否を評価した。その結果、本例の焼結膜の密着性は70/100であった。
〔有機物残渣量〕
ESCAを用いて焼結膜の深さ方向の定性分析を行い、5nm(SiO2換算)より深い部位に炭素検出の有無を確認した。その結果、本例の焼結膜では有機物残渣は検出されなかった。
The volume resistivity, adhesion, and organic residue amount of the obtained sintered film were evaluated by the following methods.
(Volume resistance value)
The volume resistance value was obtained by calculation from the surface resistance measured by the 4-probe method and the film thickness obtained by the film thickness meter. As a result, the volume resistance value of the sintered film of this example was 3.0 μΩ · cm.
[Adhesion]
On the sintered film, 100 squares of 1 mm square were produced with a cutter, and a tape was pressure-bonded thereon and then peeled to count the number of remaining squares. Adequacy was evaluated as 100/100 when the adhesion was good and all 100 cells remained, and 0/100 when the adhesion was poor and all 100 cells were peeled off. As a result, the adhesion of the sintered film of this example was 70/100.
[Amount of organic residue]
Qualitative analysis in the depth direction of the sintered film was performed using ESCA, and the presence or absence of carbon detection was confirmed at a site deeper than 5 nm (SiO 2 conversion). As a result, no organic residue was detected in the sintered film of this example.

〔実施例2〕
実施例1で得られた複合粒子粉の分散液に、ビニルトリメトキシシランを、複合粒子粉の2%量で添加し、マグネットスターラーにより100rpmの回転速度で室温において撹拌混合した。
[Example 2]
Vinyl trimethoxysilane was added to the dispersion of the composite particle powder obtained in Example 1 in an amount of 2% of the composite particle powder, and the mixture was stirred and mixed at room temperature with a magnetic stirrer at a rotation speed of 100 rpm.

得られた複合粒子粉の分散液を実施例1と同様にガラス基板に塗布し、200℃で60分焼成して、実施例1と同様の評価を行なった。その結果、焼結膜の体積抵抗率は4.8μΩ・cm、密着性は85/100であり、有機物残渣は検出されなかった。   The obtained dispersion of composite particle powder was applied to a glass substrate in the same manner as in Example 1, and baked at 200 ° C. for 60 minutes, and the same evaluation as in Example 1 was performed. As a result, the volume resistivity of the sintered film was 4.8 μΩ · cm, the adhesion was 85/100, and no organic residue was detected.

〔実施例3〕
実施例1の酸化チタンの分散液に代えて市販のオルガノシリカゾル(平均粒径DTEM=12nm)を使用し、このオルガノシリカゾルを、その重量割合が複合粒子粉中の6%になるように、実施例1で得られた銀粒子粉の分散液に添加し、マグネットスターラーにより100rpmの回転速度で室温において撹拌混合することにより、銀粒子粉とオルガノシリカゾルとの複合粒子粉の分散液を得た。
Example 3
A commercially available organosilica sol (average particle diameter D TEM = 12 nm) was used in place of the titanium oxide dispersion of Example 1, and this organosilica sol was adjusted so that its weight ratio was 6% in the composite particle powder. By adding to the silver particle powder dispersion obtained in Example 1 and stirring and mixing at room temperature at a rotational speed of 100 rpm with a magnetic stirrer, a composite particle powder dispersion of silver particle powder and organosilica sol was obtained. .

得られた複合粒子粉の分散液を実施例1と同様にガラス基板に塗布し、200℃で60分焼成して、実施例1と同様の評価を行なった。その結果、焼結膜の体積抵抗率は9.7μΩ・cm、密着性は85/100であり、有機物残渣は検出されなかった。   The obtained dispersion of composite particle powder was applied to a glass substrate in the same manner as in Example 1, and baked at 200 ° C. for 60 minutes, and the same evaluation as in Example 1 was performed. As a result, the volume resistivity of the sintered film was 9.7 μΩ · cm, the adhesion was 85/100, and no organic residue was detected.

〔実施例4〕
実施例3で得られた複合粒子粉末分散液に、ステアリン酸アルミニウムを、複合粒子粉の3%の量で添加し、マグネットスターラーにより100rpmの回転速度で室温において撹拌混合した。
Example 4
Aluminum stearate was added to the composite particle powder dispersion obtained in Example 3 in an amount of 3% of the composite particle powder, and the mixture was stirred and mixed at room temperature with a magnetic stirrer at a rotation speed of 100 rpm.

得られた複合粒子粉の分散液を実施例1と同様にガラス基板に塗布し、200℃で60分焼成して、実施例1と同様の評価を行なった。その結果、体積抵抗率は8.5μΩ・cm、密着性は90/100であり、有機物残渣は検出されなかった。   The obtained dispersion of composite particle powder was applied to a glass substrate in the same manner as in Example 1, and baked at 200 ° C. for 60 minutes, and the same evaluation as in Example 1 was performed. As a result, the volume resistivity was 8.5 μΩ · cm, the adhesion was 90/100, and no organic residue was detected.

〔比較例1〕
実施例1で得られた銀粒子の分散液だけを、ガラス基板に塗布し、200℃で60分焼成し、実施例1と同様の評価を行なった。その結果、体積抵抗率は2.2μΩ・cm、密着性は20/100であり、有機物残渣は検出されなかった。
[Comparative Example 1]
Only the dispersion of silver particles obtained in Example 1 was applied to a glass substrate and baked at 200 ° C. for 60 minutes, and the same evaluation as in Example 1 was performed. As a result, the volume resistivity was 2.2 μΩ · cm, the adhesion was 20/100, and no organic residue was detected.

〔比較例2〕
反応媒体兼還元剤としてのエチレングリコール(和光純薬株式会社製の特級)200mLに、有機保護剤としてポリビニルピロリドン(和光純薬株式会社MW≒40000)13.3gと、銀化合物として硝酸銀結晶(関東化学株式会社製)2.7gとを添加し、マグネットスターラーにて攪拌して硝酸銀を溶解させる。
[Comparative Example 2]
200 mL of ethylene glycol (special grade manufactured by Wako Pure Chemical Industries, Ltd.) as a reaction medium and reducing agent, 13.3 g of polyvinylpyrrolidone (MW≈40000) as an organic protective agent, and silver nitrate crystals (Kanto) as a silver compound 2.7 g of Chemical Co., Ltd.) is added and stirred with a magnetic stirrer to dissolve silver nitrate.

この溶液を還流器のついた容器に移してオイルバスに載せ、容器内に不活性ガスとして窒素ガスを400mL/minの流量で吹込みながら、該溶液をマグネットスターラーにより200rpmの回転速度で撹拌しつつ加熱し、120℃の温度で1時間の還流を行い、反応を終了した。そのさい120℃に至るまでの昇温速度は1℃/min とした。   The solution was transferred to a container equipped with a refluxer and placed on an oil bath. The nitrogen gas was blown into the container as an inert gas at a flow rate of 400 mL / min, and the solution was stirred at a rotation speed of 200 rpm with a magnetic stirrer. The mixture was heated and refluxed at 120 ° C. for 1 hour to complete the reaction. At that time, the temperature raising rate up to 120 ° C. was set to 1 ° C./min.

反応終了後のスラリーについて本文に記載した洗浄、分散および分級の工程を実施した。洗浄工程では極性の大きいメタノールを、分散工程では極性の小さいケロシンを使用した。得られた銀粒子粉は、平均粒径DTEM=43.5nm、結晶粒子径Dx=16.0であり、単結晶化度DTEM/Dx=2.72であった。 The slurry after the reaction was subjected to the washing, dispersing, and classification steps described in the text. Methanol having a high polarity was used in the washing step, and kerosene having a low polarity was used in the dispersion step. The obtained silver particle powder had an average particle diameter D TEM = 43.5 nm, a crystal particle diameter Dx = 16.0, and a single crystallinity D TEM /Dx=2.72.

この銀粒子粉の分散液をガラス基板に塗布し、200℃で60分焼成して、実施例1と同様の評価を行なった。その結果、体積抵抗率は11.7μΩ・cm、密着性は0/100であり、有機物残渣が検出された。   This silver particle powder dispersion was applied to a glass substrate and baked at 200 ° C. for 60 minutes, and the same evaluation as in Example 1 was performed. As a result, the volume resistivity was 11.7 μΩ · cm, the adhesion was 0/100, and organic residues were detected.

Claims (11)

平均粒径(DTEM)が50nm以下で且つ結晶粒子径(DX)が50nm以下の銀粒子粉と、平均粒径(DTEM)が100nm以下の銀以外の無機粒子粉とが液状有機媒体に分散されてなり、前記の銀以外の無機粒子粉が、珪素、チタン、アルミニウムまたはジルコニウムの少なくとも1種の粒子粉、またはこれら元素の無機化合物の少なくとも1種の粒子粉である分散液。 A liquid organic medium is a silver particle powder having an average particle size (D TEM ) of 50 nm or less and a crystal particle size (D X ) of 50 nm or less, and an inorganic particle powder other than silver having an average particle size (D TEM ) of 100 nm or less. Ri Na are dispersed, the inorganic particles powder other than the silver is silicon, titanium, at least one particle powder of the aluminum or zirconium, or at least one particle powder der Ru dispersion of inorganic compounds of these elements . 銀粒子粉は単結晶化度(DTEM/DX)が2.0以下である請求項1に記載の分散液。 The dispersion according to claim 1, wherein the silver particle powder has a single crystallinity (D TEM / D X ) of 2.0 or less. 前記銀粒子粉と前記無機粒子粉の合計量に対する該無機粒子粉の重量割合が0.1〜10wt%である請求項1または2に記載の分散液。 The dispersion according to claim 1 or 2, wherein a weight ratio of the inorganic particle powder to the total amount of the silver particle powder and the inorganic particle powder is 0.1 to 10 wt%. 前記銀粒子粉と前記無機粒子粉とがそれぞれ有機保護剤で表面処理された請求項1ないし3のいずれかに記載の分散液。 The dispersion according to any one of claims 1 to 3, wherein the silver particle powder and the inorganic particle powder are each surface-treated with an organic protective agent. 有機保護剤は1分子中に少なくとも1個以上の不飽和結合を有する分子量100〜1000のアミン化合物である請求項4に記載の分散液。 The dispersion according to claim 4, wherein the organic protective agent is an amine compound having a molecular weight of 100 to 1000 and having at least one unsaturated bond in one molecule. 有機珪素化合物、有機チタン化合物、有機アルミニウム化合物または有機ジルコニウム化合物の少なくとも1種の有機金属化合物を、前記銀粒子粉と前記無機粒子粉の合計量の0.1〜10wt%の割合で含有する請求項1〜5のいずれかに記載の分散液。 Organosilicon compounds, organotitanium compounds, at least one organometallic compound of an organic aluminum compound or an organic zirconium compound, in a proportion of 0.1-10% of the total amount of the inorganic particles powder and the silver particles powder according Item 6. The dispersion according to any one of Items 1 to 5 . 請求項1〜6のいずれかに記載の分散液に、分子量1000〜100000の有機保護剤を含有させてなるペースト。 The paste formed by making the dispersion liquid in any one of Claims 1-6 contain the organic protective agent of molecular weight 1000-100,000 . 請求項1〜6のいずれかに記載の銀粒子粉の製造法であって、還元剤として機能するアルコールまたはポリオールの1種または2種以上の液中で銀イオンを銀粒子に還元処理する製造法。 It is a manufacturing method of the silver particle powder in any one of Claims 1-6, Comprising: Manufacturing which carries out the reduction process of a silver ion to silver particle in the 1 type, or 2 or more types of liquid of alcohol or polyol which functions as a reducing agent. Law. 還元処理は有機保護剤の共存下で行われる請求項8に記載の製造法。 The production method according to claim 8, wherein the reduction treatment is performed in the presence of an organic protective agent. 有機保護剤は1分子中に少なくとも1個以上の不飽和結合を有する分子量100〜1000のアミン化合物である請求項9に記載の製造法。 The method according to claim 9, wherein the organic protective agent is an amine compound having a molecular weight of 100 to 1000 and having at least one unsaturated bond in one molecule. 前記液状有機媒体が沸点60〜300℃の非極性の液状有機媒体である請求項1〜6のいずれかに記載の分散液。 The dispersion according to any one of claims 1 to 6, wherein the liquid organic medium is a nonpolar liquid organic medium having a boiling point of 60 to 300C.
JP2005269978A 2005-09-16 2005-09-16 Dispersion and paste of composite particle powder and method for producing silver particle powder used therefor Active JP4756163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005269978A JP4756163B2 (en) 2005-09-16 2005-09-16 Dispersion and paste of composite particle powder and method for producing silver particle powder used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005269978A JP4756163B2 (en) 2005-09-16 2005-09-16 Dispersion and paste of composite particle powder and method for producing silver particle powder used therefor

Publications (2)

Publication Number Publication Date
JP2007077479A JP2007077479A (en) 2007-03-29
JP4756163B2 true JP4756163B2 (en) 2011-08-24

Family

ID=37938080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005269978A Active JP4756163B2 (en) 2005-09-16 2005-09-16 Dispersion and paste of composite particle powder and method for producing silver particle powder used therefor

Country Status (1)

Country Link
JP (1) JP4756163B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2591918C2 (en) * 2014-12-08 2016-07-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Бурятский государственный университет" Method of dispersing nano-sized copper powder in base engine oil
US10941304B2 (en) 2016-04-04 2021-03-09 Nichia Corporation Metal powder sintering paste and method of producing the same, and method of producing conductive material

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8535573B2 (en) * 2007-11-05 2013-09-17 Sumitomo Metal Mining Co., Ltd. Copper fine particles, method for producing the same, and copper fine particle dispersion
JP5274000B2 (en) * 2007-12-07 2013-08-28 Dowaエレクトロニクス株式会社 Low-temperature sinterable silver fine powder and silver paint and method for producing them
JP5226293B2 (en) * 2007-12-25 2013-07-03 Dowaエレクトロニクス株式会社 Method for producing silver conductive film
JP5191844B2 (en) * 2008-09-10 2013-05-08 国立大学法人東北大学 Method for producing aqueous solvent-dispersible silver fine powder
HUE039370T2 (en) 2010-03-15 2018-12-28 Dowa Electronics Materials Co Bonding material and bonding method using same
JP4928639B2 (en) * 2010-03-15 2012-05-09 Dowaエレクトロニクス株式会社 Bonding material and bonding method using the same
KR20140047663A (en) * 2011-07-29 2014-04-22 도다 고교 가부시끼가이샤 Fine silver particles, conductive paste containing fine silver particles, conductive film and electronic device
JP5982156B2 (en) * 2012-04-05 2016-08-31 株式会社アルバック Metal fine particle dispersion
JP2013151753A (en) * 2013-03-04 2013-08-08 Dowa Electronics Materials Co Ltd Silver micropowder excellent in affinity for polar medium, and silver ink
US20240034896A1 (en) * 2020-12-22 2024-02-01 Kao Corporation Fine-metal-particle-containing ink
CN114769577A (en) * 2022-03-15 2022-07-22 温州伟达贵金属粉体材料有限公司 Preparation method of high-dispersion micron-sized silver powder for electrical contact

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3578484B2 (en) * 1993-06-29 2004-10-20 旭化成エレクトロニクス株式会社 Composition for anisotropic conductive connection
JP3564089B2 (en) * 2001-01-24 2004-09-08 株式会社ノリタケカンパニーリミテド Conductive paste and method for producing the same
JP4390057B2 (en) * 2003-06-25 2009-12-24 戸田工業株式会社 Silver ultrafine particle colloid production method
US20050136638A1 (en) * 2003-12-18 2005-06-23 3M Innovative Properties Company Low temperature sintering nanoparticle compositions

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2591918C2 (en) * 2014-12-08 2016-07-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Бурятский государственный университет" Method of dispersing nano-sized copper powder in base engine oil
US10941304B2 (en) 2016-04-04 2021-03-09 Nichia Corporation Metal powder sintering paste and method of producing the same, and method of producing conductive material
US11634596B2 (en) 2016-04-04 2023-04-25 Nichia Corporation Metal powder sintering paste and method of producing the same, and method of producing conductive material

Also Published As

Publication number Publication date
JP2007077479A (en) 2007-03-29

Similar Documents

Publication Publication Date Title
JP4756163B2 (en) Dispersion and paste of composite particle powder and method for producing silver particle powder used therefor
JP5164239B2 (en) Silver particle powder, dispersion thereof, and method for producing silver fired film
JP5139659B2 (en) Silver particle composite powder and method for producing the same
KR101431570B1 (en) Particles and inks and films using them
JP4973830B2 (en) Conductive composition, conductive paste and conductive film
TWI389751B (en) Silver micro powder, silver ink and silver paint, and the manufacturing method thereof
JP5309440B2 (en) Composition for forming electrode of solar cell, method for forming the electrode, and method for producing solar cell using the electrode obtained by the forming method
JP5761483B2 (en) Silver fine particles and production method thereof, and conductive paste, conductive film and electronic device containing the silver fine particles
WO2006041030A1 (en) Conductive ink
JP5785023B2 (en) Silver particle dispersion composition, conductive circuit using the same, and method for forming conductive circuit
WO2011040521A1 (en) Fine silver particles, method for producing same, conductive paste containing the fine silver particles, conductive film, and electronic device
JP5924481B2 (en) Method for producing silver fine particles, silver fine particles obtained by the method for producing silver fine particles, and conductive paste containing the silver fine particles
JP2019036628A (en) Capacitor and manufacturing method thereof
JP5176060B2 (en) Method for producing silver particle dispersion
JP5005362B2 (en) Silver particle dispersion and method for producing the same
JP5070808B2 (en) Composition for forming electrode of solar cell, method for forming the electrode, and solar cell using the electrode obtained by the forming method
JP5124822B2 (en) Method for producing composite metal powder and dispersion thereof
JP5435063B2 (en) Method for producing composition for forming electrode of solar cell and method for forming the electrode
JP2012031478A (en) Silver fine particle and method of manufacturing the same, conductive paste containing the silver fine particle, conductive film, and electronic device
TW201819303A (en) Cuprous oxide particle, method for producing same, composition for light sintering, method for forming conductive film, and cuprous oxide particle paste
KR100819904B1 (en) Metallic ink, and method for forming of electrode using the same and substrate
TWI791829B (en) Photosintering composition and method of forming conductive film using the same
JP5081454B2 (en) Silver conductive film and manufacturing method thereof
CN110574125B (en) Conductive paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110418

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110418

R150 Certificate of patent or registration of utility model

Ref document number: 4756163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250