JP5309440B2 - Composition for forming electrode of solar cell, method for forming the electrode, and method for producing solar cell using the electrode obtained by the forming method - Google Patents
Composition for forming electrode of solar cell, method for forming the electrode, and method for producing solar cell using the electrode obtained by the forming method Download PDFInfo
- Publication number
- JP5309440B2 JP5309440B2 JP2006305508A JP2006305508A JP5309440B2 JP 5309440 B2 JP5309440 B2 JP 5309440B2 JP 2006305508 A JP2006305508 A JP 2006305508A JP 2006305508 A JP2006305508 A JP 2006305508A JP 5309440 B2 JP5309440 B2 JP 5309440B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- metal
- solar cell
- forming
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
- Conductive Materials (AREA)
- Hybrid Cells (AREA)
Abstract
Description
本発明は、太陽電池の電極を形成するための組成物と、この組成物を用いて電極を形成する方法並びにこの形成方法により得られた電極を用いた太陽電池の製造方法に関するものである。 The present invention relates to a composition for forming an electrode of a solar cell, a method for forming an electrode using this composition, and a method for producing a solar cell using an electrode obtained by this forming method.
従来、この種の電極の形成方法として、Ag粉末と、V、Mo、Wのうち少なくとも1種類の金属もしくはその化合物と、ガラスフリットと、有機ビヒクルとからなることを特徴とする太陽電池用導電性組成物が開示されている(例えば、特許文献1参照。)。上記特許文献1に示される太陽電池用導電性組成物では、この組成物を印刷した基板を550℃で5分間焼成してAg電極を形成している。特許文献1に示される太陽電池用導電性組成物を用いることで、Ag電極の焼結性を著しく促進させることができる。特に700℃以下の低温焼成における電極の導電性や膜強度を向上させることができ、低温焼成化による低コスト化や、基板素子の処理温度に上限制約がある場合の電極形成に寄与することが可能である。 Conventionally, as a method for forming an electrode of this type, a conductive material for a solar cell comprising Ag powder, at least one metal of V, Mo, and W or a compound thereof, a glass frit, and an organic vehicle. The composition is disclosed (for example, refer to Patent Document 1). In the conductive composition for solar cells shown in Patent Document 1, a substrate on which this composition is printed is baked at 550 ° C. for 5 minutes to form an Ag electrode. By using the conductive composition for solar cells shown in Patent Document 1, the sinterability of the Ag electrode can be remarkably promoted. In particular, the conductivity and film strength of the electrode during low-temperature firing at 700 ° C. or lower can be improved, which contributes to cost reduction by low-temperature firing and electrode formation when there is an upper limit on the processing temperature of the substrate element. Is possible.
また、金属粉末と、酸化物粉末と、ビヒクルとを配合してなる導電ペーストであって、金属粉末が、Ag、Cu及びNiからなる群より選ばれた少なくとも1種の金属粉末であり、酸化物粉末が、Bi、Fe及びAgからなる群より選ばれた少なくとも1種と、周期表第V属元素、第VI属元素より選ばれた少なくとも1種から構成される結晶性の複合酸化物粉末であることを特徴とする導電ペーストが開示されている(例えば、特許文献2参照。)。上記特許文献2では、導電ペーストを印刷したウエハを最高温度750℃で焼成して電極を形成している。この特許文献2に示される導電ペーストでは、接触抵抗が低く、接着強度が大きい電極を確実に形成することができる。 Also, a conductive paste comprising a metal powder, an oxide powder, and a vehicle, wherein the metal powder is at least one metal powder selected from the group consisting of Ag, Cu, and Ni, and oxidized. Crystalline complex oxide powder comprising at least one selected from the group consisting of Bi, Fe and Ag and at least one selected from Group V elements and Group VI elements in the periodic table A conductive paste characterized by the above is disclosed (for example, see Patent Document 2). In Patent Document 2, an electrode is formed by baking a wafer on which a conductive paste is printed at a maximum temperature of 750 ° C. With the conductive paste disclosed in Patent Document 2, it is possible to reliably form an electrode having a low contact resistance and a high adhesive strength.
更に、一導電型を呈する半導体基板の一主面側に他の導電型を呈する領域を形成するとともに、この半導体基板の一主面側に反射防止膜を形成し、この反射防止膜上と半導体基板の他の主面側に銀粉末、有機ビヒクル及びガラスフリットからなる電極材料を焼き付ける太陽電池素子の形成方法において、反射防止膜上に焼き付ける電極材料が、Ti、Bi、Co、Zn、Zr、Fe、Cr成分のうちのいずれか一種又は複数種を含有することを特徴とする太陽電池素子の形成方法が開示されている(例えば、特許文献3参照。)。上記特許文献3では、700℃でペーストを焼き付けて太陽電池素子を形成している。特許文献3に示される方法によれば、電極材料を反射防止膜上から塗布して焼き付けても、オーミックコンタクト性(曲線因子)がよく、引っ張り強度の強い太陽電池素子が得られる。
上記特許文献1〜3に示されるように、基材がシリコン基板やセラミックス基板、ガラス基板の場合では、基材への接着強度を高めるためにガラスフリットを用いるか、或いはその代用物質を用いた高温焼成タイプの厚膜ペーストを使用して、密着強度の高い膜を形成することができる。しかしながら、上記特許文献1〜3に示される電極を形成する組成物は、500℃以上の温度で焼成する必要があり、上記温度では基材を傷めてしまう問題があった。
また、基材として有機ポリマー等の高分子基板を用いた場合では、接着強度を高めるために有機系接着剤を用いる導電性接着剤や、有機バインダを用いる低温ポリマータイプの厚膜ペーストも使用されている。このタイプのペーストは200℃以下の焼成によりバインダが熱収縮を起こし、含有されている導電性微粒子が相互に接触することで電気伝導が得られている。しかし粒子間を絶縁物であるバインダが介在するなどの理由により、導電性微粒子間の接触抵抗成分が大きく、形成された電極は体積抵抗率が高く、低い導電率に留まってしまう問題があった。
As shown in Patent Documents 1 to 3, in the case where the base material is a silicon substrate, a ceramic substrate, or a glass substrate, a glass frit is used to increase the adhesive strength to the base material, or a substitute material thereof is used. A film having high adhesion strength can be formed using a high-temperature fired type thick film paste. However, the composition forming the electrode disclosed in Patent Documents 1 to 3 needs to be fired at a temperature of 500 ° C. or more, and there is a problem that the substrate is damaged at the above temperature.
In addition, when a polymer substrate such as an organic polymer is used as a base material, a conductive adhesive using an organic adhesive or a low-temperature polymer type thick film paste using an organic binder is also used to increase the adhesive strength. ing. In this type of paste, the binder is thermally contracted by firing at 200 ° C. or less, and the conductive fine particles contained therein are brought into contact with each other, so that electric conduction is obtained. However, there is a problem that the contact resistance component between the conductive fine particles is large due to the presence of an insulating binder between the particles, and the formed electrode has a high volume resistivity and remains at a low conductivity. .
本発明の目的は、長年使用しても高導電率及び高反射率を維持することができ、経年安定性に優れ、かつ密着性に優れた電極を得ることができる、太陽電池の電極形成用組成物及び該組成物を用いた太陽電池用電極の形成方法を提供することにある。
本発明の別の目的は、200〜400℃という低温の焼成プロセスにより、長年使用しても高導電率及び高反射率を維持することができ、経年安定性に優れ、かつ密着性に優れた電極を得ることができる、太陽電池の電極の形成方法及び該形成方法により得られた電極を用いた太陽電池の製造方法を提供することにある。
本発明の更に別の目的は、成膜時に真空プロセスを必要とせず、良好なテクスチャ構造を有し、更にはテクスチャ構造の平均表面粗さを制御することが可能な、太陽電池の電極形成用組成物及び該電極の形成方法及び該形成方法により得られた電極を用いた太陽電池の製造方法を提供することにある。
The purpose of the present invention is to form an electrode for a solar cell that can maintain high conductivity and high reflectivity even when used for many years, and can obtain an electrode having excellent aging stability and adhesion. It is providing the composition and the formation method of the electrode for solar cells using this composition.
Another object of the present invention is to maintain a high electrical conductivity and a high reflectance even after many years of use by a low-temperature baking process of 200 to 400 ° C., which has excellent aging stability and adhesion. It is providing the manufacturing method of the solar cell using the electrode formed by the formation method of the solar cell which can obtain an electrode, and this formation method.
Still another object of the present invention is to form an electrode for a solar cell that does not require a vacuum process during film formation, has a good texture structure, and can control the average surface roughness of the texture structure. It is in providing the manufacturing method of the solar cell using the composition, the formation method of this electrode, and the electrode obtained by this formation method.
請求項1に係る発明は、金属ナノ粒子を分散媒に分散し、更にこの分散媒に金属酸化物、金属水酸化物又は有機金属化合物の添加物を添加混合することにより調製された太陽電池の電極形成用組成物であって、前記分散媒を除く前記組成物100重量%中に、金属ナノ粒子が90〜99重量%の銀ナノ粒子と、0〜1重量%のAu、Pt、Pd、Ru、Ni、Cu、Sn、In、Zn、Cr、Fe又はMnからなる金属ナノ粒子と、残部に前記添加物とを含有し、金属ナノ粒子はクエン酸ナトリウムの保護剤で化学修飾され、金属ナノ粒子が一次粒径10〜50nmの範囲内の金属ナノ粒子を数平均で70%以上含有し、分散媒が水、エタノール及びメタノールを含む混合液からなり、金属酸化物がAl2O3、SiO2、TiO2、Cr2O3、MnO2、Fe2O3、Co3O4、Ag2O、ZnO、MoO2、SnO2、ITO又はATOであり、金属水酸化物がCu(OH)2であり、有機金属化合物がメチルシリケート、チタニウムイソプロポキシド、酢酸クロム、ギ酸マンガン、クエン酸鉄、ギ酸コバルト、酢酸ニッケル、酢酸銀、酢酸銅、酢酸亜鉛、酢酸モリブデン又は酢酸錫であり、添加物の含有量が銀ナノ粒子の重量の0.5〜11.1%であることを特徴とする。
この請求項1に記載された組成物では、組成物中に金属酸化物、金属水酸化物又は有機金属化合物の添加物を更に含むため、この組成物を用いて太陽電池の電極を形成すると、実質的に有機物を含有しない銀を主成分とする電極が得られ、この電極は基材との密着性に優れる。また、この組成物を用いて電極を形成すると、金属ナノ粒子間の焼結による粒成長の抑制効果を与えるので、良好なテクスチャ構造を有する電極を形成することができる。また、テクスチャ構造の平均表面粗さを制御することができる。本発明の組成物を用いた電極の形成では、成膜時に真空プロセスを必要としないため、プロセスの制約が小さく、また製造設備のランニングコストを大幅に低減することができる。
The invention according to claim 1 is a solar cell prepared by dispersing metal nanoparticles in a dispersion medium and further adding and mixing an additive of a metal oxide, a metal hydroxide or an organometallic compound to the dispersion medium . A composition for forming an electrode, wherein 100% by weight of the composition excluding the dispersion medium contains 90 to 99% by weight of silver nanoparticles of metal nanoparticles , 0 to 1% by weight of Au, Pt, Pd, It contains metal nanoparticles composed of Ru, Ni, Cu, Sn, In, Zn, Cr, Fe, or Mn, and the remainder contains the additive, and the metal nanoparticles are chemically modified with a protective agent of sodium citrate, The nanoparticles contain metal nanoparticles having a primary particle diameter of 10 to 50 nm in number average of 70% or more, the dispersion medium is composed of a mixed solution containing water, ethanol and methanol, and the metal oxide is Al 2 O 3 , SiO 2 , TiO 2 , Cr 2 O 3 , MnO 2 , Fe 2 O 3 , Co 3 O 4 , Ag 2 O, ZnO, MoO 2 , SnO 2 , ITO or ATO, the metal hydroxide is Cu (OH) 2 , an organometallic compound Is methyl silicate, titanium isopropoxide, chromium acetate, manganese formate, iron citrate, cobalt formate, nickel acetate, silver acetate, copper acetate, zinc acetate, molybdenum acetate or tin acetate, and the additive content is silver nano It is characterized by being 0.5 to 11.1% of the weight of the particles.
In the composition described in claim 1, since the composition further includes an additive of a metal oxide, a metal hydroxide, or an organometallic compound, when an electrode of a solar cell is formed using this composition, An electrode containing silver as a main component which does not substantially contain an organic substance is obtained, and this electrode is excellent in adhesion to the substrate. Further, when an electrode is formed using this composition, an effect of suppressing grain growth due to sintering between metal nanoparticles is given, so that an electrode having a good texture structure can be formed. In addition, the average surface roughness of the texture structure can be controlled. The formation of the electrode using the composition of the present invention does not require a vacuum process at the time of film formation, so the process restrictions are small and the running cost of the production equipment can be greatly reduced.
請求項3に係る発明は、請求項1記載の電極形成用組成物を基材上に湿式塗工法で塗工して焼成後の厚さが0.1〜2.0μmの範囲内となるように成膜する工程と、上面に成膜された基材を200〜400℃で焼成する工程とを含む太陽電池の電極の形成方法である。
この請求項3に記載された太陽電池の電極の形成方法では、200〜400℃という低温での焼成により、金属ナノ粒子の表面を保護していた分散媒中の有機分子が脱離し又は分解し、或いは離脱しかつ分解することにより、実質的に有機物を含有しない銀を主成分とする電極が得られ、また、添加物として組成物中に含まれる金属酸化物、金属水酸化物又は有機金属化合物により、基材との化学的な結合又はアンカー効果の増大、或いは200〜400℃の焼成工程における金属ナノ粒子と基材との濡れ性の改善により、形成された電極は基材との密着性に優れる。この請求項3に記載された形成方法では、組成物を基材上に湿式塗工して成膜し、成膜した基材を焼成する簡易な工程で電極を形成することができる。このように、成膜時に真空プロセスを必要としないため、プロセスの制約が小さく、また製造設備のランニングコストを大幅に低減することができる。
The invention according to claim 3 is such that the electrode-forming composition according to claim 1 is applied on a substrate by a wet coating method, and the thickness after firing is in the range of 0.1 to 2.0 μm. A method for forming an electrode of a solar cell, comprising: a step of forming a film on the upper surface; and a step of baking a base material formed on an upper surface at 200 to 400 ° C.
In the method for forming an electrode of a solar cell according to claim 3 , organic molecules in the dispersion medium that protected the surface of the metal nanoparticles are detached or decomposed by firing at a low temperature of 200 to 400 ° C. Alternatively, by separating and decomposing, an electrode containing silver as a main component which does not substantially contain an organic substance is obtained, and a metal oxide, metal hydroxide or organic metal contained in the composition as an additive more compounds, by chemical bond or increased anchor effect, or improve the wettability between the metal nanoparticles and the substrate at 200 to 400 ° C. firing process with the substrate, the formed electrode and the substrate Excellent adhesion. In the forming method described in claim 3 , the electrode can be formed by a simple process of wet-coating the composition on a substrate to form a film, and firing the formed substrate. As described above, since a vacuum process is not required at the time of film formation, process restrictions are small, and the running cost of manufacturing equipment can be significantly reduced.
以上述べたように、本発明の電極形成用組成物は、水、エタノール及びメタノールを含む混合液からなる分散媒に分散された金属ナノ粒子が、分散媒を除く組成物100重量%中に90〜99重量%の銀ナノ粒子と、0〜1重量%のAu、Pt、Pd、Ru、Ni、Cu、Sn、In、Zn、Cr、Fe又はMnからなる金属ナノ粒子と、残部に金属酸化物、金属水酸化物又は有機金属化合物の添加物を含有し、クエン酸ナトリウムの保護剤で金属ナノ粒子を化学修飾し、金属ナノ粒子が一次粒径10〜50nmの範囲内の金属ナノ粒子を数平均で70%以上含有するので、この組成物を用いて太陽電池の電極を形成すると、実質的に有機物を含有しない銀を主成分とする電極が得られ、この電極は基材との密着性に優れる。また、この組成物を用いて電極を形成すると、金属ナノ粒子間の焼結による粒成長の抑制効果を与えるので、良好なテクスチャ構造を有する電極を形成することができる。また、テクスチャ構造の平均表面粗さを制御することができる。本発明の組成物を用いた電極の形成では、成膜時に真空プロセスを必要としないため、プロセスの制約が小さく、また製造設備のランニングコストを大幅に低減することができる。 As described above, the composition for forming an electrode of the present invention has 90 % by weight of metal nanoparticles dispersed in a dispersion medium composed of a mixed liquid containing water, ethanol and methanol in 100% by weight of the composition excluding the dispersion medium. ~ 99% by weight of silver nanoparticles , 0 ~ 1% by weight of metal nanoparticles composed of Au, Pt, Pd, Ru, Ni, Cu, Sn, In, Zn, Cr, Fe or Mn , and metal oxide in the balance A metal nanoparticle having a primary particle size of 10 to 50 nm, wherein the metal nanoparticle is chemically modified with a sodium citrate protective agent. because it contains a number average of 70% or more, to form an electrode of a solar cell by using this composition, the electrode is obtained mainly containing silver containing substantially no organic matter, the electrode contact with the substrate Excellent in properties. Further, when an electrode is formed using this composition, an effect of suppressing grain growth due to sintering between metal nanoparticles is given, so that an electrode having a good texture structure can be formed. In addition, the average surface roughness of the texture structure can be controlled. The formation of the electrode using the composition of the present invention does not require a vacuum process at the time of film formation, so the process restrictions are small and the running cost of the production equipment can be greatly reduced.
また上記電極形成用組成物を基材上に湿式塗工法で塗工して焼成後の厚さが0.1〜2.0μmの範囲内となるように成膜し、この上面に成膜された基材を200〜400℃で焼成すれば、金属ナノ粒子の表面を保護していた分散媒中の有機分子が脱離し又は分解し、或いは離脱しかつ分解することにより、実質的に有機物を含有しない銀を主成分とする電極が得られる。この結果、上記と同様に、電極の形成された太陽電池を長年使用しても、導電率及び反射率が高い状態に維持されるので、経年安定性に優れた電極を得ることができる。また、添加物として組成物中に含まれる金属酸化物、金属水酸化物又は有機金属化合物により、基材との化学的な結合又はアンカー効果の増大、或いは200〜400℃の焼成工程における金属ナノ粒子と基材との濡れ性の改善により、形成された電極は基材との密着性に優れる。本発明の太陽電池の電極の形成方法では、組成物を基材上に湿式塗工して成膜し、成膜した基材を焼成する簡易な工程で電極を形成することができる。このように、成膜時に真空プロセスを必要としないため、プロセスの制約が小さく、また製造設備のランニングコストを大幅に低減することができる。 In addition, the electrode forming composition is applied onto a substrate by a wet coating method, and a film is formed so that the thickness after firing is within a range of 0.1 to 2.0 μm, and the film is formed on this upper surface. If the base material is baked at 200 to 400 ° C., organic molecules in the dispersion medium that protected the surface of the metal nanoparticles are detached or decomposed, or separated and decomposed, so that the organic matter is substantially removed. An electrode composed mainly of silver not containing is obtained. As a result, similarly to the above, even if the solar cell on which the electrode is formed is used for many years, the conductivity and the reflectance are maintained at a high level, so that an electrode having excellent aging stability can be obtained. The metal oxide contained in the composition as an additive, more metal hydroxides or organic metal compounds, an increase in chemical bonding or anchoring effect to the substrate, or at 200 to 400 ° C. firing step Due to the improvement of the wettability between the metal nanoparticles and the base material, the formed electrode has excellent adhesion to the base material. In the method for forming an electrode of a solar cell of the present invention, the electrode can be formed by a simple process of wet-coating the composition on a substrate to form a film, and firing the formed substrate. As described above, since a vacuum process is not required at the time of film formation, process restrictions are small, and the running cost of manufacturing equipment can be significantly reduced.
次に本発明を実施するための最良の形態を説明する。
本発明の太陽電池の電極形成用組成物は、金属ナノ粒子が分散媒に分散した組成物である。上記分散媒を除く組成物100重量%中に上記金属ナノ粒子は75重量%以上、好ましくは80重量%以上、更に好ましくは90〜99重量%の銀ナノ粒子を含有する。銀ナノ粒子の含有量を全ての金属ナノ粒子100重量%に対して75重量%以上の範囲に限定したのは、75重量%未満ではこの組成物を用いて形成された太陽電池の電極の反射率が低下してしまうからである。また金属ナノ粒子は炭素骨格が炭素数1〜3の有機分子主鎖の保護剤で化学修飾される。金属ナノ粒子を化学修飾する保護剤の有機分子主鎖の炭素骨格の炭素数を1〜3の範囲に限定したのは、炭素数が4以上であると焼成時の熱により保護剤が脱離或いは分解(分離・燃焼)し難く、上記電極内に有機残渣が多く残り、変質又は劣化して電極の導電性及び反射率が低下してしまうからである。
Next, the best mode for carrying out the present invention will be described.
The composition for forming an electrode of a solar cell of the present invention is a composition in which metal nanoparticles are dispersed in a dispersion medium. In 100% by weight of the composition excluding the dispersion medium, the metal nanoparticles contain 75% by weight or more, preferably 80% by weight or more, and more preferably 90 to 99% by weight of silver nanoparticles. The content of silver nanoparticles was limited to a range of 75% by weight or more with respect to 100% by weight of all metal nanoparticles. The reflection of solar cell electrodes formed using this composition was less than 75% by weight. This is because the rate drops. The metal nanoparticles are chemically modified with a protective agent having an organic molecular main chain having a carbon skeleton of 1 to 3 carbon atoms. The number of carbons in the carbon skeleton of the organic molecular main chain of the protective agent that chemically modifies the metal nanoparticles was limited to the range of 1 to 3 because the protective agent was released by the heat during firing when the carbon number was 4 or more. Alternatively, it is difficult to be decomposed (separated / burned), and a large amount of organic residue remains in the electrode, resulting in alteration or deterioration, resulting in a decrease in the conductivity and reflectance of the electrode.
金属ナノ粒子は一次粒径10〜50nmの範囲内の金属ナノ粒子を数平均で70%以上、好ましくは75%以上含有することが好適である。一次粒径10〜50nmの範囲内の金属ナノ粒子の含有量を、数平均で全ての金属ナノ粒子100%に対して70%以上の範囲に限定したのは、70%未満では金属ナノ粒子の比表面積が増大して有機物の占める割合が大きくなり、焼成時の熱により脱離或いは分解(分離・燃焼)し易い有機分子であっても、この有機分子の占める割合が多いため、電極内に有機残渣が多く残り、この残渣が変質又は劣化して電極の導電性及び反射率が低下したり、或いは金属ナノ粒子の粒度分布が広くなり電極の密度が低下し易くなって、電極の導電性及び反射率が低下してしまうからである。更に上記金属ナノ粒子の一次粒径を10〜50nmの範囲内に限定したのは、統計的手法より一次粒径が10〜50nmの範囲内にある金属ナノ粒子が経時安定性(経年安定性)と相関しているからである。 The metal nanoparticles preferably contain 70% or more, preferably 75% or more of the number average of metal nanoparticles having a primary particle size of 10 to 50 nm. The content of the metal nanoparticles in the range of primary particle diameter of 10 to 50 nm, number average was limited to the range of 70% or more relative to 100% all the metal nanoparticles, the metal nanoparticles is less than 70% The specific surface area increases and the proportion of organic matter increases, and even organic molecules that are easily desorbed or decomposed (separated and burned) by heat during firing have a large proportion of organic molecules. A large amount of organic residue remains, and this residue is altered or deteriorated to reduce the conductivity and reflectance of the electrode, or the particle size distribution of the metal nanoparticles becomes wide and the density of the electrode tends to decrease, so that the conductivity of the electrode This is because the reflectance decreases. Furthermore, the primary particle size of the metal nanoparticles was limited to the range of 10 to 50 nm because the metal nanoparticles having a primary particle size within the range of 10 to 50 nm are stable over time (statistical stability). It is because it correlates.
本発明の太陽電池の電極形成用組成物が有する特徴ある構成は、組成物中に金属酸化物、金属水酸化物、有機金属化合物及びシリコーンオイルからなる群より選ばれた1種又は2種以上の添加物を更に含むところにある。添加物として組成物中に含まれる金属酸化物、金属水酸化物、有機金属化合物又はシリコーンオイルにより、基材との化学的な結合又はアンカー効果の増大、或いは130〜400℃、好ましくは200〜400℃の焼成工程における金属ナノ粒子と基材との濡れ性の改善により、導電性を損なうことなく、基材との密着性を向上させることができる。 The characteristic structure which the composition for electrode formation of the solar cell of the present invention has is one or more selected from the group consisting of metal oxide, metal hydroxide, organometallic compound and silicone oil in the composition. The additive is further included. Metal oxide, metal hydroxide, organometallic compound or silicone oil contained in the composition as an additive increases chemical bonding with the substrate or the anchor effect, or 130 to 400 ° C. , preferably 200 to By improving the wettability between the metal nanoparticles and the base material in the baking process at 400 ° C. , the adhesion to the base material can be improved without impairing the conductivity.
また、この組成物を用いて電極を形成すると、金属ナノ粒子間の焼結による粒成長の抑制効果を与えるので、良好なテクスチャ構造を有する電極を形成することができる。また、テクスチャ構造の平均表面粗さを制御することができる。本発明の組成物を用いた電極の形成では、成膜時に真空プロセスを必要としないため、プロセスの制約が小さく、また製造設備のランニングコストを大幅に低減することができる。 Further, when an electrode is formed using this composition, an effect of suppressing grain growth due to sintering between metal nanoparticles is given, so that an electrode having a good texture structure can be formed. In addition, the average surface roughness of the texture structure can be controlled. The formation of the electrode using the composition of the present invention does not require a vacuum process at the time of film formation, so the process restrictions are small and the running cost of the production equipment can be greatly reduced.
上記金属酸化物等が含まれない組成物を用いて電極を形成すると、形成した電極の表面粗さが大きくなるが、電極表面の凹凸形状には光電変換効率を最適化する条件があるとされており、単に表面粗さが大きいだけでは、光電変換効率に優れた電極表面を形成することはできない。本発明の組成物のように、金属酸化物等の種類、濃度等を調整することで、最適化された表面粗さの表面を形成することが可能となる。 When an electrode is formed using a composition that does not contain the above metal oxide or the like, the surface roughness of the formed electrode increases, but the uneven shape of the electrode surface has conditions that optimize the photoelectric conversion efficiency. Therefore, an electrode surface with excellent photoelectric conversion efficiency cannot be formed simply by having a large surface roughness. As in the composition of the present invention, it is possible to form a surface having an optimized surface roughness by adjusting the type, concentration, and the like of the metal oxide.
添加物の含有量は金属ナノ粒子を構成する銀ナノ粒子の重量の0.1〜20%、好ましくは0.5〜11.1%である。添加物の含有量が0.1%未満では基材と電極との密着性が向上せず、添加物の含有量が20%を越えると形成した電極の導電性に悪影響を及ぼし、体積抵抗率が2×10-5Ω・cmを越える不具合を生じる。 The content of the additive is 0.1 to 20%, preferably 0.5 to 11.1% of the weight of the silver nanoparticles constituting the metal nanoparticles. If the additive content is less than 0.1%, the adhesion between the substrate and the electrode is not improved, and if the additive content exceeds 20%, the conductivity of the formed electrode is adversely affected, and the volume resistivity. Causes a defect exceeding 2 × 10 −5 Ω · cm.
金属酸化物としては、アルミ、シリコン、チタン、クロム、マンガン、鉄、コバルト、ニッケル、銀、銅、亜鉛、モリブデン、錫、インジウム及びアンチモンからなる群より選ばれた少なくとも1種を含む酸化物或いは複合酸化物、好ましくはAl 2 O 3 、SiO 2 、TiO 2 、Cr 2 O 3 、MnO 2 、Fe 2 O 3 、Co 3 O 4 、Ag 2 O、ZnO、MoO 2 、SnO 2 が挙げられる。複合酸化物とは具体的には酸化インジウム−酸化錫系複合酸化物(Indium Tin Oxide:ITO)、酸化アンチモン−酸化錫系複合酸化物(Antimony Tin Oxide:ATO)、酸化インジウム−酸化亜鉛系複合酸化物(Indium Zinc Oxide:IZO)等である。また金属水酸化物としては、アルミ、シリコン、チタン、クロム、マンガン、鉄、コバルト、ニッケル、銀、銅、亜鉛、モリブデン、錫、インジウム及びアンチモンからなる群より選ばれた少なくとも1種を含む水酸化物、好ましくはCu(OH) 2 が挙げられる。また有機金属化合物としては、シリコン、チタン、クロム、マンガン、鉄、コバルト、ニッケル、銀、銅、亜鉛、モリブデン、インジウム及び錫の金属石鹸、金属錯体或いは金属アルコキシドが挙げられる。例えば、金属石鹸は、酢酸クロム、ギ酸マンガン、クエン酸鉄、ギ酸コバルト、酢酸ニッケル、酢酸銀、酢酸銅、クエン酸銅、酢酸錫、酢酸亜鉛、酢酸モリブデン、シュウ酸亜鉛等が挙げられる。また金属錯体はアセチルアセトン亜鉛錯体、アセチルアセトンクロム錯体、アセチルアセトンニッケル錯体等が挙げられる。また金属アルコキシドはジルコニウムブトキシド、チタニウムイソプロポキシド、メチルシリケート、イソアナトプロピルトリメトキシシラン、アミノプロピルトリメトキシシラン等が挙げられる。シリコーンオイルとしてはストレートシリコーンオイル並びに変性シリコーンオイルの双方を用いることができる。変性シリコーンオイルは更にポリシロキサンの側鎖の一部に有機基を導入したもの(側鎖型)、ポリシロキサンの両末端に有機基を導入したもの(両末端型)、ポリシロキサンの両末端のうちのどちらか一方に有機基を導入したもの(片末端型)並びにポリシロキサンの側鎖の一部と両末端に有機基を導入したもの(側鎖両末端型)を用いることができる。変性シリコーンオイルには反応性シリコーンオイルと非反応性シリコーンオイルとがあるが、その双方の種類ともに本発明の添加物として使用することができる。なお、反応性シリコーンオイルとは、アミノ変性、エポキシ変性、カルボキシ変性、カルビノール変性、メルカプト変性、並びに異種官能基変性(エポキシ基、アミノ基、ポリエーテル基)を示し、非反応性シリコーンオイルとは、ポリエーテル変性、メチルスチリル基変性、アルキル変性、高級脂肪酸エステル変性、フッ素変性、並びに親水特殊変性を示す。 As the metal oxide, an oxide containing at least one selected from the group consisting of aluminum, silicon, titanium, chromium, manganese, iron, cobalt, nickel, silver, copper, zinc, molybdenum, tin, indium and antimony, or Complex oxides , preferably Al 2 O 3 , SiO 2 , TiO 2 , Cr 2 O 3 , MnO 2 , Fe 2 O 3 , Co 3 O 4 , Ag 2 O, ZnO, MoO 2 , SnO 2 can be mentioned. Specifically, the complex oxide is an indium oxide-tin oxide complex oxide (Indium Tin Oxide: ITO), an antimony oxide-tin oxide complex oxide (Antimony Tin Oxide: ATO), or an indium oxide-zinc oxide complex. An oxide (Indium Zinc Oxide: IZO) or the like. The metal hydroxide is water containing at least one selected from the group consisting of aluminum, silicon, titanium, chromium, manganese, iron, cobalt, nickel, silver, copper, zinc, molybdenum, tin, indium and antimony. Oxides , preferably Cu (OH) 2 are mentioned. Examples of organometallic compounds include metal soaps, metal complexes, and metal alkoxides of silicon, titanium, chromium, manganese, iron, cobalt, nickel, silver, copper, zinc, molybdenum, indium and tin. Examples of the metal soap include chromium acetate, manganese formate, iron citrate, cobalt formate, nickel acetate, silver acetate, copper acetate, copper citrate, tin acetate, zinc acetate, molybdenum acetate, and zinc oxalate. Examples of the metal complex include an acetylacetone zinc complex, an acetylacetone chromium complex, and an acetylacetone nickel complex. Examples of the metal alkoxide include zirconium butoxide, titanium isopropoxide, methyl silicate, isoanatopropyltrimethoxysilane, aminopropyltrimethoxysilane and the like. As the silicone oil, both straight silicone oil and modified silicone oil can be used. The modified silicone oil further has an organic group introduced into part of the side chain of the polysiloxane (side chain type), an organic group introduced into both ends of the polysiloxane (both end type), and both ends of the polysiloxane. Those having an organic group introduced into one of them (one end type) and those having an organic group introduced into a part of both side chains and both ends of the polysiloxane (both side chain end type) can be used. The modified silicone oil includes a reactive silicone oil and a non-reactive silicone oil. Both types can be used as the additive of the present invention. Reactive silicone oil means amino modification, epoxy modification, carboxy modification, carbinol modification, mercapto modification, and heterogeneous functional group modification (epoxy group, amino group, polyether group). Indicates polyether modification, methylstyryl group modification, alkyl modification, higher fatty acid ester modification, fluorine modification, and hydrophilic special modification.
一方、銀ナノ粒子以外の金属ナノ粒子は、Au、Pt、Pd、Ru、Ni、Cu、Sn、In、Zn、Cr、Fe及びMnからなる群より選ばれた1種又は2種以上の混合組成又は合金組成からなる金属ナノ粒子であり、この銀ナノ粒子以外の金属ナノ粒子は全ての金属ナノ粒子100重量%に対して0.02重量%以上かつ25重量%未満、好ましくは0.03重量%〜20重量%、更に好ましくは0.1〜1重量%含有する。銀ナノ粒子以外の金属ナノ粒子の含有量を全ての金属ナノ粒子100重量%に対して0.02重量%以上かつ25重量%未満の範囲に限定したのは、0.02重量%未満では特に大きな問題はないけれども、0.02〜25重量%の範囲内においては、耐候性試験(温度100℃かつ湿度50%の恒温恒湿槽に1000時間保持する試験)後の電極の導電性及び反射率が耐候性試験前と比べて悪化しないという特徴があり、25重量%以上では焼成直後の電極の導電性及び反射率が低下し、しかも耐候性試験後の電極が耐候性試験前の電極より導電性及び反射率が低下してしまうからである。 On the other hand, the metal nanoparticles other than silver nanoparticles are one or a mixture of two or more selected from the group consisting of Au, Pt, Pd, Ru, Ni, Cu, Sn, In, Zn, Cr, Fe and Mn. Metal nanoparticles having a composition or an alloy composition. The metal nanoparticles other than silver nanoparticles are 0.02% by weight or more and less than 25% by weight, preferably 0.03% with respect to 100% by weight of all metal nanoparticles. % By weight to 20% by weight, more preferably 0.1 to 1% by weight . The content of metal nanoparticles other than silver nanoparticles is limited to the range of 0.02% by weight or more and less than 25% by weight with respect to 100% by weight of all metal nanoparticles. Although there is no major problem, within the range of 0.02 to 25% by weight, the conductivity and reflection of the electrode after the weather resistance test (test kept in a constant temperature and humidity chamber at a temperature of 100 ° C. and a humidity of 50% for 1000 hours) There is a feature that the rate does not deteriorate compared with that before the weather resistance test, and when it is 25% by weight or more, the conductivity and reflectance of the electrode immediately after firing are reduced, and the electrode after the weather resistance test is more than the electrode before the weather resistance test. This is because conductivity and reflectivity are reduced.
また銀ナノ粒子を含む金属ナノ粒子の含有量は、金属ナノ粒子及び分散媒からなる組成物100重量%に対して2.5〜95.0重量%、好ましくは3.5〜90重量%含有する。銀ナノ粒子を含む金属ナノ粒子の含有量を金属ナノ粒子及び分散媒からなる組成物100重量%に対して2.5〜95.0重量%の範囲としたのは、2.5重量%未満では特に焼成後の電極の特性には影響はないけれども、必要な厚さの電極を得ることが難しく、95.0重量%を越えると組成物の湿式塗工時にインク或いはペーストとしての必要な流動性を失ってしまうからである。 The content of the metal nanoparticles including silver nanoparticles is 2.5 to 95.0% by weight, preferably 3.5 to 90% by weight, based on 100% by weight of the composition comprising the metal nanoparticles and the dispersion medium. you. The content of the metal nanoparticles including silver nanoparticles is in the range of 2.5 to 95.0% by weight with respect to 100% by weight of the composition comprising the metal nanoparticles and the dispersion medium, and is less than 2.5% by weight. In particular, there is no effect on the characteristics of the electrode after firing, but it is difficult to obtain an electrode having a required thickness. If it exceeds 95.0% by weight, the required flow as an ink or paste during wet coating of the composition Because they lose their sex.
また本発明の電極形成用組成物を構成する分散媒は、アルコール類、或いはアルコール類含有水溶液からなることが好適である。分散媒として使用するアルコール類としては、メタノール、エタノール、プロパノール、ブタノール、エチレングリコール、プロピレングリコール、ジエチレングリコール、グリセロール、イソボニルヘキサノール及びエリトリトールからなる群より選ばれた1種又は2種以上が挙げられる。アルコール類含有水溶液は、全ての分散媒100重量%に対して、1重量%以上、好ましくは2重量%以上の水と、2重量%以上、好ましくは3重量%以上のアルコール類とを含有することが好適である。例えば、分散媒が水及びアルコール類のみからなる場合、水を2重量%含有するときはアルコール類を98重量%含有し、アルコール類を2重量%含有するときは水を98重量%含有する。水の含有量を全ての分散媒100重量%に対して1重量%以上の範囲にしたのは、1重量%未満では、組成物を湿式塗工法により塗工して得られた膜を低温で焼結し難く、また焼成後の電極の導電性と反射率が低下してしまい、アルコール類の含有量を全ての分散媒100重量%に対して2重量%以上の範囲にしたのは、2重量%未満では、上記と同様に組成物を湿式塗工法により塗工して得られた膜を低温で焼結し難く、また焼成後の電極の導電性と反射率が低下してしまうからである。 The dispersion medium constituting the electrode forming composition of the present invention is preferably composed of alcohols or an alcohol-containing aqueous solution. Examples of the alcohol used as the dispersion medium include one or more selected from the group consisting of methanol, ethanol, propanol, butanol, ethylene glycol, propylene glycol, diethylene glycol, glycerol, isobornyl hexanol and erythritol. The alcohol-containing aqueous solution contains 1% by weight or more, preferably 2% by weight or more of water, and 2% by weight or more, preferably 3% by weight or more of alcohol with respect to 100% by weight of all the dispersion media. Is preferred. For example, when the dispersion medium is composed of only water and alcohols, it contains 98% by weight of alcohol when it contains 2% by weight of water and 98% by weight of water when it contains 2% by weight of alcohol. The reason why the water content is in the range of 1% by weight or more with respect to 100% by weight of all the dispersion media is that the film obtained by applying the composition by a wet coating method at a low temperature is less than 1% by weight. It was difficult to sinter, and the conductivity and reflectance of the electrode after firing were lowered, and the content of alcohol was set to a range of 2% by weight or more with respect to 100% by weight of all dispersion media. If it is less than% by weight, it is difficult to sinter the film obtained by applying the composition by the wet coating method at a low temperature as described above, and the conductivity and reflectance of the electrode after firing are reduced. is there.
更に分散媒、即ち金属ナノ粒子表面に化学修飾している保護分子は、水酸基(−OH)又はカルボニル基(−C=O)のいずれか一方又は双方を含有することが好ましい。水酸基(−OH)が銀ナノ粒子等の金属ナノ粒子を化学修飾する保護剤に含有されると、組成物の分散安定性に優れ、塗膜の低温焼結にも効果的な作用があり、カルボニル基(−C=O)が銀ナノ粒子等の金属ナノ粒子を化学修飾する保護剤に含有されると、上記と同様に組成物の分散安定性に優れ、塗膜の低温焼結にも効果的な作用がある。 Furthermore, it is preferable that the protective medium chemically modified on the surface of the dispersion medium, that is, the metal nanoparticle contains one or both of a hydroxyl group (—OH) and a carbonyl group (—C═O). When a hydroxyl group (—OH) is contained in a protective agent that chemically modifies metal nanoparticles such as silver nanoparticles, the composition has excellent dispersion stability and has an effective action for low-temperature sintering of a coating film. When a carbonyl group (—C═O) is contained in a protective agent that chemically modifies metal nanoparticles such as silver nanoparticles, the composition has excellent dispersion stability as described above, and can be used for low-temperature sintering of a coating film. There is an effective action.
このように構成された太陽電池の電極形成用組成物の製造方法を説明する。
(a) 炭素骨格の炭素数を3とする有機分子主鎖の保護剤で化学修飾された銀ナノ粒子を用いる場合
先ず硝酸銀を脱イオン水等の水に溶解して金属塩水溶液を調製する。一方、クエン酸ナトリウムを脱イオン水等の水に溶解させて得られた濃度10〜40%のクエン酸ナトリウム水溶液に、窒素ガス等の不活性ガスの気流中で粒状又は粉状の硫酸第一鉄を直接加えて溶解させ、クエン酸イオンと第一鉄イオンを3:2のモル比で含有する還元剤水溶液を調製する。次に上記不活性ガス気流中で上記還元剤水溶液を撹拌しながら、この還元剤水溶液に上記金属塩水溶液を滴下して混合する。ここで、金属塩水溶液の添加量は還元剤水溶液の量の1/10以下になるように、各溶液の濃度を調整することで、室温の金属塩水溶液を滴下しても反応温度が30〜60℃に保持されるようにすることが好ましい。また上記両水溶液の混合比は、金属塩水溶液中の金属イオンの総原子価数に対する、還元剤水溶液中のクエン酸イオンと第一鉄イオンのモル比がいずれも3倍モルとなるようにする。金属塩水溶液の滴下が終了した後、混合液の撹拌を更に10〜300分間続けて金属コロイドからなる分散液を調製する。この分散液を室温で放置し、沈降した金属ナノ粒子の凝集物をデカンテーションや遠心分離法等により分離した後、この分離物に脱イオン水等の水を加えて分散体とし、限外ろ過により脱塩処理し、更に引き続いてアルコール類で置換洗浄して、金属(銀)の含有量を2.5〜50重量%にする。その後、遠心分離機を用いこの遠心分離機の遠心力を調整して粗粒子を分離することにより、金属ナノ粒子が一次粒径10〜50nmの範囲内の金属ナノ粒子を数平均で70%以上含有するように調製する、即ち数平均で全ての金属ナノ粒子100%に対する一次粒径10〜50nmの範囲内の金属ナノ粒子の占める割合が70%以上になるように調整する。なお、金属ナノ粒子と記載したが、この(a)の場合では、数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの範囲内の銀ナノ粒子の占める割合が70%以上になるように調整している。
The manufacturing method of the composition for electrode formation of the solar cell comprised in this way is demonstrated.
(a) When using silver nanoparticles chemically modified with an organic molecular main chain protecting agent having 3 carbon atoms in the carbon skeleton First, silver nitrate is dissolved in water such as deionized water to prepare an aqueous metal salt solution. On the other hand, the aqueous solution of sodium citrate having a concentration of 10 to 40% obtained by dissolving sodium citrate in deionized water or the like is mixed with granular or powdered sulfuric acid in a stream of inert gas such as nitrogen gas. Iron is directly added and dissolved to prepare an aqueous reducing agent solution containing citrate ions and ferrous ions in a molar ratio of 3: 2. Next, the aqueous metal salt solution is added dropwise to and mixed with the reducing agent aqueous solution while stirring the reducing agent aqueous solution in the inert gas stream. Here, by adjusting the concentration of each solution so that the addition amount of the metal salt aqueous solution is 1/10 or less of the amount of the reducing agent aqueous solution, the reaction temperature is 30 to 30 even when the metal salt aqueous solution at room temperature is dropped. It is preferable to keep the temperature at 60 ° C. The mixing ratio of the two aqueous solutions is such that the molar ratio of the citrate ions and the ferrous ions in the reducing agent aqueous solution is 3 times the total valence of the metal ions in the metal salt aqueous solution. . After the dropping of the aqueous metal salt solution is completed, the mixture is further stirred for 10 to 300 minutes to prepare a dispersion composed of metal colloid. This dispersion is allowed to stand at room temperature, and the aggregates of the precipitated metal nanoparticles are separated by decantation, centrifugation, etc., and then water such as deionized water is added to the separation to form a dispersion, followed by ultrafiltration. The metal (silver) content is adjusted to 2.5 to 50% by weight. Thereafter, by adjusting the centrifugal force of the centrifuge using a centrifuge and separating coarse particles, the metal nanoparticles having a primary particle diameter in the range of 10 to 50 nm are 70% or more in average number of metal nanoparticles. It adjusts so that the ratio for which the metal nanoparticle in the range of the primary particle size of 10-50 nm with respect to 100% of all the metal nanoparticles may be 70% or more may be prepared. Although described as metal nanoparticles, in the case of (a), the proportion of silver nanoparticles in the range of the primary particle size of 10 to 50 nm with respect to 100% of all silver nanoparticles is 70% or more. It is adjusted so that
数平均の測定方法は、先ず、得られた金属ナノ粒子をTEM(Transmission Electron Microscope、透過型電子顕微鏡)により約50万倍程度の倍率で撮影する。次いで、得られた画像から金属ナノ粒子200個について一次粒径を測定し、この測定結果をもとに粒径分布を作成する。次に、作成した粒径分布から、一次粒径10〜50nmの範囲内の金属ナノ粒子が全金属ナノ粒子で占める個数割合を求める。 In the number average measurement method, first, the obtained metal nanoparticles are photographed with a TEM (Transmission Electron Microscope) at a magnification of about 500,000 times. Next, a primary particle size is measured for 200 metal nanoparticles from the obtained image, and a particle size distribution is created based on the measurement result. Next, from the created particle size distribution, the ratio of the number of metal nanoparticles within the range of the primary particle size of 10 to 50 nm occupied by all metal nanoparticles is determined.
これにより炭素骨格の炭素数が3である有機分子主鎖の保護剤で化学修飾された銀ナノ粒子が分散した分散体が得られる。
続いて、得られた分散体を分散体100重量%に対する最終的な金属含有量(銀含有量)が2.5〜95重量%の範囲内となるように調整する。また、分散媒をアルコール類含有水溶液とする場合には、溶媒の水及びアルコール類をそれぞれ1%以上及び2%以上にそれぞれ調整することが好ましい。次に、この分散体に金属酸化物、金属水酸化物及び有機金属化合物からなる群より選ばれた1種又は2種以上の添加物を更に含ませる。添加物の含有量は銀ナノ粒子の重量の1/1000〜1/5の範囲内となるように調整する。これにより炭素骨格の炭素数が3である有機分子主鎖の保護剤で化学修飾された銀ナノ粒子が分散媒に分散し、金属酸化物、金属水酸化物及び有機金属化合物からなる群より選ばれた1種又は2種以上の添加物が更に含まれた電極形成用組成物が得られる。
As a result, a dispersion in which silver nanoparticles chemically modified with a protective agent for an organic molecular main chain having 3 carbon atoms in the carbon skeleton is dispersed is obtained.
Subsequently, the obtained dispersion is adjusted so that the final metal content (silver content) with respect to 100% by weight of the dispersion is in the range of 2.5 to 95% by weight. When the dispersion medium is an alcohol-containing aqueous solution, it is preferable to adjust the solvent water and the alcohol to 1% or more and 2% or more, respectively. Next, this dispersion further includes one or more additives selected from the group consisting of metal oxides, metal hydroxides, and organometallic compounds. The content of the additive is adjusted so as to be in the range of 1/1000 to 1/5 of the weight of the silver nanoparticles. As a result, silver nanoparticles chemically modified with a protective agent of an organic molecular main chain having 3 carbon skeletons are dispersed in a dispersion medium, and selected from the group consisting of metal oxides, metal hydroxides, and organometallic compounds. An electrode-forming composition further containing one or more additives is obtained.
(b) 炭素骨格の炭素数を2とする有機分子主鎖の保護剤で化学修飾された銀ナノ粒子を用いる場合
還元剤水溶液を調製するときに用いたクエン酸ナトリウムをりんご酸ナトリウムに替えること以外は上記(a)と同様にして分散体を調製する。これにより炭素骨格の炭素数が2である有機分子主鎖の保護剤で化学修飾された銀ナノ粒子が分散した分散体が得られる。
(c) 炭素骨格の炭素数を1とする有機分子主鎖の保護剤で化学修飾された銀ナノ粒子を用いる場合
還元剤水溶液を調製するときに用いたクエン酸ナトリウムをグリコール酸ナトリウムに替えること以外は上記(a)と同様にして分散体を調製する。これにより炭素骨格の炭素数が1である有機分子主鎖の保護剤で化学修飾された銀ナノ粒子が分散した分散体が得られる。
(d) 銀ナノ粒子以外の金属ナノ粒子を化学修飾する保護剤の有機分子主鎖の炭素骨格の炭素数を3とする場合
銀ナノ粒子以外の金属ナノ粒子を構成する金属としては、Au、Pt、Pd、Ru、Ni、Cu、Sn、In、Zn、Fe、Cr又はMnが挙げられる。金属塩水溶液を調製するときに用いた硝酸銀を、塩化金酸、塩化白金酸、硝酸パラジウム、三塩化ルテニウム、塩化ニッケル、硝酸第一銅、二塩化錫、硝酸インジウム、塩化亜鉛、硫酸鉄、硫酸クロム又は硫酸マンガンに替えること以外は上記(a)と同様にして分散体を調製する。これにより銀ナノ粒子以外の金属ナノ粒子を化学修飾する保護剤の有機分子主鎖の炭素骨格の炭素数が3である分散体(太陽電池の電極形成用組成物)が得られる。
なお、銀ナノ粒子以外の金属ナノ粒子を化学修飾する保護剤の有機分子主鎖の炭素骨格の炭素数を1や2とする場合、金属塩水溶液を調製するときに用いた硝酸銀を、上記種類の金属塩に替えること以外は上記(b)や上記(c)と同様にして分散体を調製する。これにより、銀ナノ粒子以外の金属ナノ粒子を化学修飾する保護剤の有機分子主鎖の炭素骨格の炭素数が1や2である分散体(太陽電池の電極形成用組成物)が得られる。
(b) In the case of using silver nanoparticles chemically modified with a protective agent for the main chain of the organic molecule having 2 carbon atoms in the carbon skeleton Replacing sodium citrate used in preparing the reducing agent aqueous solution with sodium malate Except for the above, a dispersion is prepared in the same manner as in the above (a). As a result, a dispersion in which silver nanoparticles chemically modified with a protective agent for an organic molecular main chain having 2 carbon skeletons is dispersed is obtained.
(c) In the case of using silver nanoparticles chemically modified with a protective agent for the main chain of the organic molecule having a carbon skeleton of 1 The sodium citrate used when preparing the reducing agent aqueous solution should be replaced with sodium glycolate Except for the above, a dispersion is prepared in the same manner as in the above (a). As a result, a dispersion is obtained in which silver nanoparticles chemically modified with a protective agent for an organic molecular main chain having a carbon skeleton of 1 are dispersed.
(d) When the number of carbon atoms in the carbon skeleton of the organic molecular main chain of the protective agent for chemically modifying metal nanoparticles other than silver nanoparticles is 3, the metal constituting the metal nanoparticles other than silver nanoparticles is Au, Pt, Pd, Ru, Ni, Cu, Sn, In, Zn, Fe, Cr, or Mn may be mentioned. The silver nitrate used to prepare the aqueous metal salt solution is chloroauric acid, chloroplatinic acid, palladium nitrate, ruthenium trichloride, nickel chloride, cuprous nitrate, tin dichloride, indium nitrate, zinc chloride, iron sulfate, sulfuric acid A dispersion is prepared in the same manner as in the above (a) except that it is replaced with chromium or manganese sulfate. As a result, a dispersion (a composition for forming an electrode for a solar cell) in which the carbon skeleton of the organic molecular main chain of the protective agent for chemically modifying metal nanoparticles other than silver nanoparticles is 3 is obtained.
In addition, when the carbon number of the carbon skeleton of the organic molecular main chain of the protective agent that chemically modifies the metal nanoparticles other than the silver nanoparticles is 1 or 2, the silver nitrate used when preparing the metal salt aqueous solution is the above kind. A dispersion is prepared in the same manner as in the above (b) and (c) except that the metal salt is replaced. Thereby, the dispersion (composition for electrode formation of a solar cell) whose carbon number of the carbon skeleton of the organic molecular principal chain of the protective agent which chemically modifies metal nanoparticles other than silver nanoparticles is 1 or 2 is obtained.
金属ナノ粒子として、銀ナノ粒子とともに、銀ナノ粒子以外の金属ナノ粒子を含有させる場合には、上記(a)の方法で製造した銀ナノ粒子を含む分散体を第1分散体とし、上記(d)の方法で製造した銀ナノ粒子以外の金属ナノ粒子を含む分散体を第2分散体とすると、75重量%以上の第1分散体と25重量%未満の第2分散体とを第1及び第2分散体の合計含有量が100重量%となるように混合する。なお、第1分散体は、上記(a)の方法で製造した銀ナノ粒子を含む分散体に留まらず、上記(b)の方法で製造した銀ナノ粒子を含む分散体や上記(c)の方法で製造した銀ナノ粒子を含む分散体を使用しても良い。 When metal nanoparticles other than silver nanoparticles are contained together with silver nanoparticles as metal nanoparticles, a dispersion containing silver nanoparticles produced by the method of (a) is used as the first dispersion, and ( When the dispersion containing metal nanoparticles other than silver nanoparticles produced by the method of d) is defined as the second dispersion, the first dispersion of 75% by weight or more and the second dispersion of less than 25% by weight are the first. And it mixes so that the total content of a 2nd dispersion may be 100 weight%. The first dispersion is not limited to the dispersion containing the silver nanoparticles produced by the method (a), but the dispersion containing the silver nanoparticles produced by the method (b) or the above (c). You may use the dispersion containing the silver nanoparticle manufactured by the method.
このように製造された分散体(太陽電池の電極形成用組成物)を用いて電極を形成する方法を説明する。
先ず上記分散体(太陽電池の電極形成用組成物)を基材上に湿式塗工法で塗工する。この湿式塗工法での塗工は、焼成後の厚さが0.1〜2.0μm、好ましくは0.3〜1.5μmの範囲内となるように成膜する。上記基材は、シリコン、ガラス、透明導電材料を含むセラミックス、高分子材料又は金属からなる基板のいずれか、或いはシリコン、ガラス、透明導電材料を含むセラミックス、高分子材料及び金属からなる群より選ばれた2種以上の積層体であることができる。また基材は太陽電池素子又は透明電極付き太陽電池素子のいずれかであることが好ましい。透明電極としては、インジウム錫酸化物(Indium Tin Oxide:ITO)、アンチモンドープ酸化錫(Antimony Tin Oxide:ATO)、ネサ(酸化錫SnO2)、IZO(Indium Zic Oxide)、AZO(アルミドープZnO)等などが挙げられる。更に、チタン酸ジルコン酸鉛(PZT)のような誘電体薄膜が基材表面に形成されていてもよい。高分子基板としては、ポリイミドやPET(ポリエチレンテレフタレート)等の有機ポリマーにより形成された基板が挙げられる。上記分散体は太陽電池素子の光電変換半導体層の表面や、透明電極付き太陽電池素子の透明電極の表面に塗布される。基材上に形成された分散体の膜厚を、焼成後の厚さが0.2〜2.0μmの範囲内となるよう限定したのは、0.2μm未満では太陽電池に必要な電極の表面抵抗値が不十分となり、2.0μmを越えると特性上の不具合はないけれども、材料の使用量が必要以上に多くなって材料が無駄になるからである。更に上記湿式塗工法は、スプレーコーティング法、ディスペンサコーティング法、スピンコーティング法、ナイフコーティング法、スリットコーティング法、インクジェットコーティング法、スクリーン印刷法、オフセット印刷法又はダイコーティング法のいずれかであることが特に好ましいが、これに限られるものではなく、あらゆる方法を利用できる。スプレーコーティング法は分散体を圧縮エアにより霧状にして基材に塗布したり、或いは分散体自体を加圧し霧状にして基材に塗布する方法であり、ディスペンサコーティング法は例えば分散体を注射器に入れこの注射器のピストンを押すことにより注射器先端の微細ノズルから分散体を吐出させて基材に塗布する方法である。スピンコーティング法は分散体を回転している基材上に滴下し、この滴下した分散体をその遠心力により基材周縁に拡げる方法であり、ナイフコーティング法はナイフの先端と所定の隙間をあけた基材を水平方向に移動可能に設け、このナイフより上流側の基材上に分散体を供給して基材を下流側に向って水平移動させる方法である。スリットコーティング法は分散体を狭いスリットから流出させて基材上に塗布する方法であり、インクジェットコーティング法は市販のインクジェットプリンタのインクカートリッジに分散体を充填し、基材上にインクジェット印刷する方法である。スクリーン印刷法は、パターン指示材として紗を用い、その上に作られた版画像を通して分散体を基材に転移させる方法である。オフセット印刷法は、版に付けた分散体を直接基材に付着させず、版から一度ゴムシートに転写させ、ゴムシートから改めて基材に転移させる、インクの撥水性を利用した印刷方法である。ダイコーティング法は、ダイ内に供給された分散体をマニホールドで分配させてスリットより薄膜上に押し出し、走行する基材の表面を塗工する方法である。ダイコーティング法には、スロットコート方式やスライドコート方式、カーテンコート方式がある。
A method for forming an electrode using the dispersion (a composition for forming an electrode of a solar cell) thus manufactured will be described.
First, the dispersion (a composition for forming an electrode of a solar cell) is coated on a substrate by a wet coating method. Coating by this wet coating method is performed so that the thickness after firing is in the range of 0.1 to 2.0 μm, preferably 0.3 to 1.5 μm. The substrate is selected from the group consisting of silicon, glass, ceramics containing a transparent conductive material, a polymer material or a metal substrate, or silicon, glass, ceramics containing a transparent conductive material, a polymer material and a metal. It can be a laminate of two or more types. Moreover, it is preferable that a base material is either a solar cell element or a solar cell element with a transparent electrode. Transparent electrodes include indium tin oxide (ITO), antimony-doped tin oxide (ATO), nesa (tin oxide SnO 2 ), IZO (Indium Zic Oxide), and AZO (aluminum-doped ZnO). Etc. Furthermore, a dielectric thin film such as lead zirconate titanate (PZT) may be formed on the substrate surface. Examples of the polymer substrate include a substrate formed of an organic polymer such as polyimide or PET (polyethylene terephthalate). The said dispersion is apply | coated to the surface of the photoelectric conversion semiconductor layer of a solar cell element, or the surface of the transparent electrode of a solar cell element with a transparent electrode. The film thickness of the dispersion formed on the substrate was limited so that the thickness after firing was in the range of 0.2 to 2.0 μm. This is because the surface resistance value becomes insufficient, and if it exceeds 2.0 μm, there is no problem in characteristics, but the amount of material used is more than necessary and the material is wasted. Further, the wet coating method is particularly a spray coating method, a dispenser coating method, a spin coating method, a knife coating method, a slit coating method, an ink jet coating method, a screen printing method, an offset printing method or a die coating method. Although it is preferable, the present invention is not limited to this, and any method can be used. The spray coating method is a method in which the dispersion is atomized by compressed air and applied to the substrate, or the dispersion itself is pressurized and atomized to apply to the substrate. The dispenser coating method is, for example, a method in which the dispersion is injected into a syringe. The dispersion is discharged from the fine nozzle at the tip of the syringe and applied to the substrate by pushing the piston of the syringe. The spin coating method is a method in which a dispersion is dropped onto a rotating substrate, and the dropped dispersion is spread to the periphery of the substrate by its centrifugal force. The knife coating method leaves a predetermined gap from the tip of the knife. In this method, the substrate is provided so as to be movable in the horizontal direction, the dispersion is supplied onto the substrate upstream of the knife, and the substrate is moved horizontally toward the downstream side. The slit coating method is a method in which a dispersion is discharged from a narrow slit and applied onto a substrate, and the inkjet coating method is a method in which a dispersion is filled in an ink cartridge of a commercially available inkjet printer and ink jet printing is performed on the substrate. is there. The screen printing method is a method in which wrinkles are used as a pattern indicating material and a dispersion is transferred to a substrate through a plate image formed thereon. The offset printing method is a printing method utilizing the water repellency of ink, in which the dispersion attached to the plate is not directly attached to the substrate, but is transferred from the plate to a rubber sheet and then transferred from the rubber sheet to the substrate again. . The die coating method is a method in which a dispersion supplied in a die is distributed by a manifold and extruded onto a thin film from a slit to coat the surface of a traveling substrate. The die coating method includes a slot coat method, a slide coat method, and a curtain coat method.
次に上面に成膜された基材を大気中若しくは窒素やアルゴンなどの不活性ガス雰囲気中で130〜400℃、好ましくは200〜400℃の温度に、5分間〜1時間、好ましくは15〜40分間保持して焼成する。基材上に形成された分散体の膜の焼成温度を130〜400℃の範囲に限定したのは、130℃未満では金属ナノ粒子同士の焼結が不十分になるとともに保護剤の焼成時の熱により脱離或いは分解(分離・燃焼)し難いため、焼成後の電極内に有機残渣が多く残り、この残渣が変質又は劣化して導電性及び反射率が低下してしまい、400℃を越えると低温プロセスという生産上のメリットを生かせない、即ち製造コストが増大し生産性が低下してしまうからである。更に基材上に形成された分散体の膜の焼成時間を5分間〜1時間の範囲に限定したのは、5分間未満では金属ナノ粒子同士の焼結が不十分になるとともに保護剤の焼成時の熱により脱離或いは分解(分離・燃焼)し難いため、焼成後の電極内に有機残渣が多く残り、この残渣が変質又は劣化して電極の導電性及び反射率が低下してしまい、1時間を越えると特性には影響しないけれども、必要以上に製造コストが増大して生産性が低下してしまうからである。 Next, the substrate formed on the upper surface is heated to 130 to 400 ° C., preferably 200 to 400 ° C. in the air or an inert gas atmosphere such as nitrogen or argon, for 5 minutes to 1 hour, preferably 15 to Bake for 40 minutes. The reason why the firing temperature of the dispersion film formed on the substrate is limited to the range of 130 to 400 ° C. is that when the temperature is less than 130 ° C., the sintering between the metal nanoparticles becomes insufficient and the protective agent is fired. Since it is difficult to desorb or decompose (separate / combust) due to heat, a large amount of organic residue remains in the electrode after firing, and this residue is altered or deteriorated, resulting in a decrease in conductivity and reflectance, exceeding 400 ° C. This is because the production advantage of the low temperature process cannot be utilized, that is, the manufacturing cost increases and the productivity decreases. Furthermore, the firing time of the dispersion film formed on the substrate was limited to the range of 5 minutes to 1 hour because the sintering of the metal nanoparticles became insufficient and the firing of the protective agent in less than 5 minutes. Due to the difficulty of desorption or decomposition (separation / combustion) due to the heat of the time, a lot of organic residue remains in the electrode after firing, the residue is altered or deteriorated, and the conductivity and reflectivity of the electrode decrease, This is because, if the time exceeds 1 hour, the characteristics are not affected, but the manufacturing cost is increased more than necessary and the productivity is lowered.
上記太陽電池の電極形成用組成物では、一次粒径10〜50nmとサイズの比較的大きい金属ナノ粒子を多く含むため、金属ナノ粒子の比表面積が減少し、保護剤の占める割合が小さくなる。この結果、上記組成物を用いて太陽電池の電極を形成すると、上記保護剤中の有機分子が焼成時の熱により脱離し又は分解し、或いは離脱しかつ分解することにより、実質的に有機物を含有しない銀を主成分とする電極が得られる。従って、上記電極の形成された太陽電池を長年使用しても、有機物が変質又は劣化するということがなく、電極の導電率及び反射率が高い状態に維持されるので、経年安定性に優れた電極を得ることができる。具体的には、上記電極を、温度を100℃に保ちかつ湿度を50%に保った恒温恒湿槽に1000時間収容した後であっても、波長750〜1500nmの電磁波、即ち可視光領域から赤外線領域までの電磁波を80%以上電極により反射できるとともに、電極の導電性、即ち電極の体積抵抗率を2×10-5Ω・cm未満と極めて低い値に維持できる。 Since the composition for forming an electrode of the solar cell contains a large amount of metal nanoparticles having a primary particle size of 10 to 50 nm and a relatively large size, the specific surface area of the metal nanoparticles is reduced and the proportion of the protective agent is reduced. As a result, when an electrode of a solar cell is formed using the composition, the organic molecules in the protective agent are desorbed or decomposed by the heat at the time of firing, or desorbed and decomposed, thereby substantially reducing the organic matter. An electrode composed mainly of silver not containing is obtained. Therefore, even if the solar cell on which the electrode is formed is used for many years, the organic matter is not deteriorated or deteriorated, and the conductivity and reflectivity of the electrode are maintained in a high state, so that the aging stability is excellent. An electrode can be obtained. Specifically, even after the electrode is accommodated for 1000 hours in a constant temperature and humidity chamber maintained at a temperature of 100 ° C. and a humidity of 50%, the electromagnetic wave having a wavelength of 750 to 1500 nm, that is, from the visible light region. Electromagnetic waves up to the infrared region can be reflected by the electrode by 80% or more, and the conductivity of the electrode, that is, the volume resistivity of the electrode can be maintained at a very low value of less than 2 × 10 −5 Ω · cm.
上記条件で焼成することにより、基材上に導電性塗膜を形成することができる。形成した導電性塗膜は、金属ナノ粒子間の焼結による粒成長の抑制効果が与えられるため、良好なテクスチャ構造を有する。また、使用する組成物中の添加物の種類及び添加量によって、テクスチャ構造の平均表面粗さを制御した塗膜を得ることができる。形成した導電性塗膜は、平均表面粗さが10〜100nmの範囲内となっていることが好ましい。平均表面粗さが上記範囲内であれば、サブストレート型太陽電池を構成する裏面電極が有するテクスチャ構造に適した範囲となる。形成した導電性塗膜は、組成物中に含まれる金属ナノ粒子を構成する金属そのものが有する比抵抗に近い比抵抗が得られ、また、組成物中に含まれる金属ナノ粒子を構成する金属そのものの反射率に近い優れた反射率が得られる。 By baking on the said conditions, a conductive coating film can be formed on a base material. The formed conductive coating film has a good texture structure because it has an effect of suppressing grain growth by sintering between metal nanoparticles. Moreover, the coating film which controlled the average surface roughness of the texture structure by the kind and addition amount of the additive in the composition to be used can be obtained. The formed conductive coating film preferably has an average surface roughness in the range of 10 to 100 nm. When the average surface roughness is within the above range, the range is suitable for the texture structure of the back electrode constituting the substrate type solar cell. The formed conductive coating film has a resistivity close to that of the metal constituting the metal nanoparticles contained in the composition, and the metal itself constituting the metal nanoparticles contained in the composition. An excellent reflectivity close to the reflectivity is obtained.
このように、本発明の電極の形成方法は、上記電極形成用組成物を基材上に湿式塗工法で塗工して成膜する工程と、上面に成膜された基材を上記温度範囲内で焼成する工程とを含む。この形成方法では、組成物を基材上に湿式塗工して成膜し、成膜した基材を焼成する簡易な工程で電極を形成することができる。このように、成膜時に真空プロセスを必要としないため、プロセスの制約が小さく、また製造設備のランニングコストを大幅に低減することができる。更に、このようにして形成された電極を用いた太陽電池は、長年使用しても高導電率及び高反射率を維持することができ、経年安定性に優れる。 As described above, the electrode forming method of the present invention includes the steps of coating the electrode-forming composition on a substrate by a wet coating method to form a film, and forming the substrate formed on the upper surface in the temperature range. And baking in. In this forming method, the electrode can be formed by a simple process of wet-coating the composition on a substrate to form a film, and firing the formed substrate. As described above, since a vacuum process is not required at the time of film formation, process restrictions are small, and the running cost of manufacturing equipment can be significantly reduced. Furthermore, the solar cell using the electrode formed in this way can maintain high conductivity and high reflectance even when used for many years, and is excellent in aging stability.
次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1〜25及び比較例1,2>
先ず、次の表1及び表2に示す金属ナノ粒子を形成する種類の金属塩を脱イオン水に溶解して金属塩水溶液を調製した。また、クエン酸ナトリウムを脱イオン水に溶解して濃度が26重量%のクエン酸ナトリウム水溶液を調製した。このクエン酸ナトリウム水溶液に、35℃に保持された窒素ガス気流中で粒状の硫酸第1鉄を直接加えて溶解させ、クエン酸イオンと第1鉄イオンを3:2のモル比で含有する還元剤水溶液を調製した。
Next, examples of the present invention will be described in detail together with comparative examples.
< Examples 1 to 25 and Comparative Examples 1 and 2 >
First, the metal salt of the kind which forms the metal nanoparticle shown in following Table 1 and Table 2 was melt | dissolved in deionized water, and metal salt aqueous solution was prepared. In addition, sodium citrate was dissolved in deionized water to prepare an aqueous sodium citrate solution having a concentration of 26% by weight. Reduction in which aqueous ferric sulfate is directly added and dissolved in this sodium citrate aqueous solution in a nitrogen gas stream maintained at 35 ° C. to contain citrate ions and ferrous ions in a molar ratio of 3: 2. An aqueous agent solution was prepared.
次いで、上記窒素ガス気流を35℃に保持した状態で、マグネチックスターラーの攪拌子を還元剤水溶液中に入れ、攪拌子を100rpmの回転速度で回転させて、上記還元剤水溶液を攪拌しながら、この還元剤水溶液に上記金属塩水溶液を滴下して混合した。ここで、還元剤水溶液への金属塩水溶液の添加量は、還元剤水溶液の量の1/10以下になるように、各溶液の濃度を調整することで、室温の金属塩水溶液を滴下しても反応温度が40℃に保持されるようにした。また上記還元剤水溶液と金属塩水溶液との混合比は、金属塩水溶液中の金属イオンの総原子価数に対する、還元剤水溶液のクエン酸イオンと第1鉄イオンのモル比がいずれも3倍モルとなるようにした。還元剤水溶液への金属塩水溶液の滴下が終了した後、混合液の攪拌を更に15分間続けることにより、混合液内部に金属粒子を生じさせ、金属粒子が分散した金属粒子分散液を得た。金属粒子分散液のpHは5.5であり、分散液中の金属粒子の化学量論的生成量は5g/リットルであった。 Next, with the nitrogen gas stream maintained at 35 ° C., a magnetic stirrer stirrer is placed in the reducing agent aqueous solution, the stirrer is rotated at a rotation speed of 100 rpm, and the reducing agent aqueous solution is stirred, The metal salt aqueous solution was added dropwise to the reducing agent aqueous solution and mixed. Here, the amount of the metal salt aqueous solution added to the reducing agent aqueous solution is adjusted so that the concentration of each solution is adjusted to 1/10 or less of the amount of the reducing agent aqueous solution. The reaction temperature was maintained at 40 ° C. The mixing ratio of the reducing agent aqueous solution to the metal salt aqueous solution is such that the molar ratio of citrate ions and ferrous ions in the reducing agent aqueous solution to the total valence of metal ions in the metal salt aqueous solution is 3 times the mole. It was made to become. After the addition of the aqueous metal salt solution to the reducing agent aqueous solution was completed, stirring of the mixed solution was further continued for 15 minutes to generate metal particles inside the mixed solution to obtain a metal particle dispersion in which the metal particles were dispersed. The pH of the metal particle dispersion was 5.5, and the stoichiometric amount of metal particles in the dispersion was 5 g / liter.
得られた分散液は室温で放置することにより、分散液中の金属粒子を沈降させ、沈降した金属粒子の凝集物をデカンテーションにより分離した。分離した金属凝集物に脱イオン水を加えて分散体とし、限外濾過により脱塩処理した後、更にメタノールで置換洗浄することにより、金属の含有量を50重量%にした。その後、遠心分離機を用いこの遠心分離機の遠心力を調整して、粒径が100nmを越える比較的大きな金属粒子を分離することにより、一次粒径10〜50nmの範囲内の金属ナノ粒子を数平均で71%含有するように調整した。即ち、数平均で全ての金属ナノ粒子100%に対する一次粒径10〜50nmの範囲内の金属ナノ粒子の占める割合が71%になるように調整した。得られた金属ナノ粒子は、炭素骨格が炭素数3の有機分子主鎖の保護剤が化学修飾されていた。 The obtained dispersion was allowed to stand at room temperature to precipitate the metal particles in the dispersion, and the aggregates of the precipitated metal particles were separated by decantation. Deionized water was added to the separated metal agglomerate to form a dispersion, subjected to desalting treatment by ultrafiltration, and further subjected to displacement washing with methanol, so that the metal content was 50% by weight. Thereafter, by adjusting the centrifugal force of the centrifuge using a centrifuge and separating relatively large metal particles having a particle size exceeding 100 nm, metal nanoparticles having a primary particle size of 10 to 50 nm are obtained. It adjusted so that it might contain 71% by a number average. That is, the ratio of the metal nanoparticles in the range of the primary particle diameter of 10 to 50 nm to the metal nanoparticles of 100% in terms of the number average was adjusted to 71%. The obtained metal nanoparticles were chemically modified with a protective agent for an organic molecular main chain having a carbon skeleton of 3 carbon atoms.
次に、得られた金属ナノ粒子10重量部を水、エタノール及びメタノールを含む混合溶液90重量部に添加混合することにより分散させ、更にこの分散液に次の表1及び表2に示す添加物を表1及び表2に示す割合となるように加えることで、実施例1〜25及び比較例1,2の塗布試験用組成物をそれぞれ得た。なお、実施例1〜25の塗布試験用組成物を構成する金属ナノ粒子は、75重量%以上の銀ナノ粒子を含有している。 Next, 10 parts by weight of the obtained metal nanoparticles are dispersed by adding and mixing in 90 parts by weight of a mixed solution containing water, ethanol and methanol, and the additives shown in the following Tables 1 and 2 are further added to this dispersion. Were added so as to have the ratios shown in Tables 1 and 2 , to obtain compositions for coating tests of Examples 1 to 25 and Comparative Examples 1 and 2 , respectively. In addition, the metal nanoparticle which comprises the composition for a coating test of Examples 1-25 contains 75 weight% or more of silver nanoparticles.
<比較試験1>
実施例1〜25及び比較例1,2で得られた塗布試験用組成物を次の表1及び表2に示す基材上に焼成後の厚さが102〜2×103nmとなるように様々な成膜方法で塗布した後に、次の表1及び表2に示す熱処理条件で焼成することにより、基材上に導電性塗膜を形成した。
<Comparative test 1 >
The coating test compositions obtained in Examples 1 to 25 and Comparative Examples 1 and 2 were fired on the substrates shown in the following Tables 1 and 2 with a thickness of 10 2 to 2 × 10 3 nm. Thus, after apply | coating with various film-forming methods, the electroconductive coating film was formed on the base material by baking on the heat processing conditions shown in the following Table 1 and Table 2. FIG.
形成した導電性塗膜について、導電性、反射率、塗膜厚さ及び平均表面粗さをそれぞれ求めた。導電性評価は上記比較試験1と同様にして行った。塗膜の反射率評価は、紫外可視分光光度計と積分球の組み合わせにより、波長800nmにおける塗膜の拡散反射率を測定した。塗膜厚さはSEMによる断面観察により測定した。平均表面粗さは、原子間力顕微鏡(Atomic Force Microscope;AFM)によって得られた表面形状に関する評価値をJIS B0601に従って評価することで得た。その結果を表3及び表4にそれぞれ示す。
About the formed conductive coating film, electroconductivity, a reflectance, a coating film thickness, and average surface roughness were calculated | required, respectively. Conductivity evaluation was performed in the same manner as in Comparative Test 1 above. For the evaluation of the reflectance of the coating film, the diffuse reflectance of the coating film at a wavelength of 800 nm was measured by a combination of an ultraviolet-visible spectrophotometer and an integrating sphere. The coating thickness was measured by cross-sectional observation with SEM. The average surface roughness was obtained by evaluating an evaluation value relating to the surface shape obtained by an atomic force microscope (AFM) according to JIS B0601. The results are shown in Table 3 and Table 4 , respectively.
表3及び表4より明らかなように、実施例1〜25の組成物を用いて形成した導電性塗膜と、比較例1の組成物を用いて形成した導電性塗膜とを比較すると、比抵抗及び反射率は同等であるが、塗膜の平均表面粗さは比較例1が110nmであるのに対し、実施例1〜25が10〜100nmの範囲内と、サブストレート型太陽電池を構成する裏面電極が有するテクスチャ構造に適した範囲の表面粗さが得られていることが確認できた。また、比較例2の組成物を用いて形成した導電性塗膜では、金属ナノ粒子に含まれる銀ナノ粒子の割合が75重量%より小さくなると、体積抵抗率が上昇し、800nmにおける反射率は低下することが判った。 As is clear from Tables 3 and 4 , when comparing the conductive coating film formed using the compositions of Examples 1 to 25 and the conductive coating film formed using the composition of Comparative Example 1 , Although the specific resistance and the reflectance are the same, the average surface roughness of the coating film is 110 nm in Comparative Example 1 , whereas Examples 1 to 25 are in the range of 10 to 100 nm. It was confirmed that the surface roughness in a range suitable for the texture structure of the back electrode to be formed was obtained. Further, in the conductive coating film formed using the composition of Comparative Example 2 , when the proportion of silver nanoparticles contained in the metal nanoparticles is less than 75% by weight, the volume resistivity increases and the reflectance at 800 nm is It turns out that it falls.
<実施例26,27及び比較例3,4>
実施例2で使用した塗布試験用組成物を次の表5に示す基材上に焼成後の厚さがそれぞれ100nm(実施例26)、500nm(実施例27)、50nm(比較例3)及び70nm(比較例4)となるように様々な成膜方法で塗布した後に、次の表5に示す熱処理条件で焼成することにより、基材上に導電性塗膜を形成した。
<Examples 26 and 27 and Comparative Examples 3 and 4 >
The coating test compositions used in Example 2 were baked on the substrates shown in Table 5 below, and the thicknesses after firing were 100 nm (Example 26 ), 500 nm (Example 27 ), 50 nm (Comparative Example 3 ) and After coating by various film forming methods so as to be 70 nm (Comparative Example 4 ), a conductive coating film was formed on the substrate by baking under the heat treatment conditions shown in Table 5 below.
形成した導電性塗膜について、上記比較試験1と同様にして比抵抗、反射率、塗膜厚さ及び平均表面粗さをそれぞれ求めた。その結果を表6にそれぞれ示す。 About the formed conductive coating film, it carried out similarly to the said comparative test 1 , and calculated | required the specific resistance, the reflectance, the coating film thickness, and the average surface roughness, respectively. The results are shown in Table 6 , respectively.
表6より明らかなように、膜厚以外は同一条件で製造した膜について、膜厚が100nm未満の比較例3及び4に比べて、実施例26及び27のように膜厚が100nm以上であると、反射率については90%以上、比抵抗については4×106Ω・cm以下の値でほぼ一定値を示すことが判った。これは、膜厚が100nm未満では、焼結によって連続膜を形成することができず、入射光の一部が膜を透過することによる反射率の低下や、粒子間の接触点不足による比抵抗の増大が生じたためと考えられる。 As is apparent from Table 6 , the film manufactured under the same conditions except for the film thickness is 100 nm or more as in Examples 26 and 27 as compared with Comparative Examples 3 and 4 where the film thickness is less than 100 nm. It was found that the reflectance was 90% or more and the specific resistance was substantially constant at a value of 4 × 10 6 Ω · cm or less. This is because when the film thickness is less than 100 nm, a continuous film cannot be formed by sintering, and the resistivity decreases due to a part of incident light passing through the film and the specific resistance due to insufficient contact points between particles. This is thought to be due to the increase in.
<実施例28,29及び比較例5,6>
次の表7に示す金属ナノ粒子10重量部を水、エタノール及びメタノールを含む混合溶液90重量部に添加混合することにより分散させ、更にこの分散液にメチルシリケートを添加物として組成物中に1重量%の割合で含むように加えることで、実施例28,29及び比較例5,6の塗布試験用組成物をそれぞれ得た。
<Examples 28 and 29 and Comparative Examples 5 and 6 >
Next, 10 parts by weight of metal nanoparticles shown in Table 7 were dispersed by adding and mixing in 90 parts by weight of a mixed solution containing water, ethanol and methanol, and methyl silicate was added as an additive to the dispersion. By adding so as to contain at a ratio of% by weight, compositions for application tests of Examples 28 and 29 and Comparative Examples 5 and 6 were obtained.
<比較試験2>
実施例28,29及び比較例5,6で得られた塗布試験用組成物をガラス基板上に102〜2×103nmの膜厚となるようにディスペンサコーティング方法で塗布した後に、大気雰囲気下、320℃で20分間焼成することにより、基材上に導電性塗膜を形成した。
<Comparison test 2 >
The composition for coating test obtained in Examples 28 and 29 and Comparative Examples 5 and 6 was applied on a glass substrate by a dispenser coating method so as to have a film thickness of 10 2 to 2 × 10 3 nm, and then air atmosphere A conductive coating film was formed on the substrate by baking at 320 ° C. for 20 minutes.
形成した導電性塗膜について、導電性、反射率及び接着性評価をそれぞれ求めた。導電性は、四端子法により測定し算出した体積抵抗率(Ω・cm)として求めた。具体的には、電極の体積抵抗率は、先ず焼成後の電極の厚さをSEM(日立製作所社製の電子顕微鏡:S800)を用いて電極断面から電極の厚さを直接計測し、次に四端子法による比抵抗測定器(三菱化学製ロレスタGP)を用い、この測定器に上記実測した電極の厚さを入力して測定した。基材への密着性は、電極を形成した基材への接着テープ引き剥がし試験により定性的に評価し、『良好』とは、基材から接着テープのみが剥がれた場合を示し、『中立』とは、接着テープの剥がれと基材表面が露出した状態が混在した場合を示し、『不良』とは、接着テープ引き剥がしによって基材表面の全面が露出した場合を示す。反射率評価は上記比較試験1と同様にして行った。その結果を表8にそれぞれ示す。 About the formed conductive coating film, electroconductivity, a reflectance, and adhesive evaluation were calculated | required, respectively. The conductivity was determined as a volume resistivity (Ω · cm) measured and calculated by the four probe method. Specifically, the volume resistivity of the electrode is obtained by first measuring the thickness of the electrode after firing directly from the electrode cross section using an SEM (Hitachi Ltd. electron microscope: S800), Using a specific resistance measuring device (Loresta GP, manufactured by Mitsubishi Chemical Corporation) by a four-terminal method, the measured thickness of the electrode was input and measured. Adhesion to the substrate is qualitatively evaluated by an adhesive tape peeling test on the substrate on which the electrode is formed. “Good” indicates that only the adhesive tape is peeled off from the substrate. The case where the peeling of the adhesive tape and the state where the surface of the base material is exposed coexists, and the term “defect” indicates the case where the entire surface of the base material is exposed due to the peeling of the adhesive tape. The reflectance evaluation was performed in the same manner as in Comparative Test 1 above. The results are shown in Table 8 , respectively.
表8より明らかなように、銀ナノ粒子を化学修飾する有機分子の炭素骨格の炭素数が3より大きくなると、体積抵抗率が上昇し、800nmにおける反射率が低下することが判った。更に、平均粒径10〜50nmの銀ナノ粒子の占める数平均が70%より小さくなると、体積抵抗率が上昇し、800nmにおける反射率が低下することが判った。
As is clear from Table 8, it was found that when the carbon number of the carbon skeleton of the organic molecule that chemically modifies the silver nanoparticles was greater than 3, the volume resistivity increased and the reflectance at 800 nm decreased. Furthermore, it was found that when the number average of silver nanoparticles having an average particle diameter of 10 to 50 nm is smaller than 70%, the volume resistivity increases and the reflectance at 800 nm decreases.
Claims (7)
前記分散媒を除く前記組成物100重量%中に、前記金属ナノ粒子が90〜99重量%の銀ナノ粒子と、0〜1重量%のAu、Pt、Pd、Ru、Ni、Cu、Sn、In、Zn、Cr、Fe又はMnからなる金属ナノ粒子と、残部に前記添加物とを含有し、
前記金属ナノ粒子はクエン酸ナトリウムの保護剤で化学修飾され、
前記金属ナノ粒子が一次粒径10〜50nmの範囲内の金属ナノ粒子を数平均で70%以上含有し、
前記分散媒が水、エタノール及びメタノールを含む混合液からなり、
前記金属酸化物がAl2O3、SiO2、TiO2、Cr2O3、MnO2、Fe2O3、Co3O4、Ag2O、ZnO、MoO2、SnO2、ITO又はATOであり、
前記金属水酸化物がCu(OH)2であり、
前記有機金属化合物がメチルシリケート、チタニウムイソプロポキシド、酢酸クロム、ギ酸マンガン、クエン酸鉄、ギ酸コバルト、酢酸ニッケル、酢酸銀、酢酸銅、酢酸亜鉛、酢酸モリブデン又は酢酸錫であり、
前記添加物の含有量が前記銀ナノ粒子の重量の0.5〜11.1%である
ことを特徴とする太陽電池の電極形成用組成物。 A composition for forming an electrode of a solar cell prepared by dispersing metal nanoparticles in a dispersion medium and further adding and mixing an additive of a metal oxide, a metal hydroxide or an organometallic compound to the dispersion medium. ,
In 100% by weight of the composition excluding the dispersion medium, the metal nanoparticles are 90 to 99% by weight of silver nanoparticles, and 0 to 1% by weight of Au, Pt, Pd, Ru, Ni, Cu, Sn, Containing metal nanoparticles composed of In, Zn, Cr, Fe or Mn , and the additive in the balance ,
The metal nanoparticles are chemically modified with a protective agent of sodium citrate,
The metal nanoparticles contain 70% or more of average number of metal nanoparticles having a primary particle size of 10 to 50 nm,
The dispersion medium consists of a mixed solution containing water, ethanol and methanol ,
The metal oxide is Al 2 O 3 , SiO 2 , TiO 2 , Cr 2 O 3 , MnO 2 , Fe 2 O 3 , Co 3 O 4 , Ag 2 O, ZnO, MoO 2 , SnO 2 , ITO or ATO. Yes,
The metal hydroxide is Cu (OH) 2 ;
The organometallic compound is methyl silicate, titanium isopropoxide, chromium acetate, manganese formate, iron citrate, cobalt formate, nickel acetate, silver acetate, copper acetate, zinc acetate, molybdenum acetate or tin acetate;
Content of the said additive is 0.5 to 11.1% of the weight of the said silver nanoparticle. The composition for electrode formation of the solar cell characterized by the above-mentioned .
前記上面に成膜された基材を200〜400℃で焼成する工程と
を含む太陽電池の電極の形成方法。 A step of thickness after firing the coating is deposited to a range of 0.1~2.0μm a wet coating method to claim 1 Symbol mounting electrode forming composition onto a substrate,
A method of forming an electrode of a solar cell, comprising: baking a base material formed on the upper surface at 200 to 400 ° C.
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006305508A JP5309440B2 (en) | 2005-11-15 | 2006-11-10 | Composition for forming electrode of solar cell, method for forming the electrode, and method for producing solar cell using the electrode obtained by the forming method |
KR1020147003065A KR101485304B1 (en) | 2006-06-30 | 2007-03-20 | Composition for forming electrode in solar cell, method of forming the electrode, and solar cell employing electrode obtained by the formation method |
DE112007001507T DE112007001507T5 (en) | 2006-06-30 | 2007-03-20 | A composition for producing an electrode of a solar cell, a method of manufacturing the electrode, and a solar cell comprising the electrode obtainable by this method |
TW096109518A TWI399759B (en) | 2006-06-30 | 2007-03-20 | Composition for forming electrode of solar cell, method for forming same electrode, and solar cell employing electrode formed by same method |
PCT/JP2007/055649 WO2008001518A1 (en) | 2006-06-30 | 2007-03-20 | Composition for forming electrode in solar cell, method of forming the electrode, and solar cell employing electrode obtained by the formation method |
CN201210443825.1A CN103117107B (en) | 2006-06-30 | 2007-03-20 | Form the compositions of electrode of solar battery, method and the solaode of this electrode of use |
KR1020087031479A KR101394704B1 (en) | 2006-06-30 | 2007-03-20 | Composition for forming electrode in solar cell, method of forming the electrode, and solar cell employing electrode obtained by the formation method |
CN2007800317645A CN101506994B (en) | 2006-06-30 | 2007-03-20 | Method of forming the electrode for solar cell, and solar cell employing electrode obtained by the formation method |
US12/306,884 US8816193B2 (en) | 2006-06-30 | 2007-03-20 | Composition for manufacturing electrode of solar cell, method of manufacturing same electrode, and solar cell using electrode obtained by same method |
US14/244,575 US9312404B2 (en) | 2006-06-30 | 2014-04-03 | Composition for manufacturing electrode of solar cell, method of manufacturing same electrode, and solar cell using electrode obtained by same method |
US14/995,035 US9620668B2 (en) | 2006-06-30 | 2016-01-13 | Composition for manufacturing electrode of solar cell, method of manufacturing same electrode, and solar cell using electrode obtained by same method |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005329952 | 2005-11-15 | ||
JP2005329952 | 2005-11-15 | ||
JP2006277230 | 2006-10-11 | ||
JP2006277230 | 2006-10-11 | ||
JP2006288530 | 2006-10-24 | ||
JP2006288530 | 2006-10-24 | ||
JP2006305508A JP5309440B2 (en) | 2005-11-15 | 2006-11-10 | Composition for forming electrode of solar cell, method for forming the electrode, and method for producing solar cell using the electrode obtained by the forming method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008135190A JP2008135190A (en) | 2008-06-12 |
JP5309440B2 true JP5309440B2 (en) | 2013-10-09 |
Family
ID=39559912
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006305508A Expired - Fee Related JP5309440B2 (en) | 2005-11-15 | 2006-11-10 | Composition for forming electrode of solar cell, method for forming the electrode, and method for producing solar cell using the electrode obtained by the forming method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5309440B2 (en) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009035112A1 (en) | 2007-09-12 | 2009-03-19 | Mitsubishi Materials Corporation | Composite membrane for super straight solar cell, process for producing the composite membrane for super straight solar cell, composite membrane for substraight solar cell, and process for producing the composite membrane for substraight solar cell |
JP5359667B2 (en) * | 2008-08-08 | 2013-12-04 | 三菱マテリアル株式会社 | Composite film for super straight type solar cell and manufacturing method thereof |
CN102439716A (en) * | 2008-11-14 | 2012-05-02 | 应用纳米技术控股股份有限公司 | Inks and pastes for solar cell fabrication |
JP5326647B2 (en) * | 2009-02-24 | 2013-10-30 | 三菱マテリアル株式会社 | Method for producing composition for forming electrode of solar cell |
JP4995878B2 (en) * | 2009-09-18 | 2012-08-08 | 大日本塗料株式会社 | Transparent conductive film forming dispersion, transparent conductive film forming photocurable composition, and transparent conductive film |
AU2010319335A1 (en) * | 2009-11-16 | 2012-04-05 | Heraeus Precious Metals North America Conshohocken Llc | Electroconductive paste composition |
JP2011119581A (en) * | 2009-12-07 | 2011-06-16 | Mitsubishi Materials Corp | Coating tool and coating method of electrode-forming composition using the coating tool |
JP2011165805A (en) * | 2010-02-08 | 2011-08-25 | Mitsubishi Electric Corp | Manufacturing method of solar cell |
KR101179047B1 (en) | 2010-10-04 | 2012-09-03 | 한국과학기술연구원 | Photo electrode for plasamonic dye-sensitized solar cells and method for preparing the same |
JP2012226830A (en) * | 2011-04-14 | 2012-11-15 | Sony Corp | Dye-sensitized solar cell, and method for manufacturing dye-sensitized solar cell |
JP5648619B2 (en) * | 2011-10-26 | 2015-01-07 | 信越化学工業株式会社 | Thermally conductive silicone composition |
GB201212407D0 (en) * | 2012-07-12 | 2012-08-22 | Intrinsiq Materials Ltd | Composition for forming a seed layer |
JP2014175175A (en) * | 2013-03-08 | 2014-09-22 | Univ Of Tokyo | Electrode substrate, battery using electrode substrate and method for manufacturing electrode substrate |
JP6132716B2 (en) | 2013-09-10 | 2017-05-24 | 株式会社東芝 | Metal particle paste, cured product using the same, and semiconductor device |
JP5957546B2 (en) * | 2015-01-07 | 2016-07-27 | 株式会社ノリタケカンパニーリミテド | Conductive composition |
KR20170132837A (en) | 2015-03-27 | 2017-12-04 | 헤레우스 도이칠란트 게엠베하 운트 코. 카게 | Electro-conductive paste containing an oxide additive |
US10056508B2 (en) | 2015-03-27 | 2018-08-21 | Heraeus Deutschland GmbH & Co. KG | Electro-conductive pastes comprising a metal compound |
JP2017162824A (en) * | 2017-04-17 | 2017-09-14 | 株式会社東芝 | Metal particle paste, and cured product and semiconductor device prepared therewith |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3697760B2 (en) * | 1995-10-20 | 2005-09-21 | 旭硝子株式会社 | Coating liquid |
JP3473272B2 (en) * | 1996-06-10 | 2003-12-02 | 旭硝子株式会社 | Coating liquid for conductive film formation and conductive film |
JP3429958B2 (en) * | 1996-08-28 | 2003-07-28 | 三井金属鉱業株式会社 | Method for producing silver colloid liquid |
JP3402215B2 (en) * | 1998-09-16 | 2003-05-06 | 三菱マテリアル株式会社 | Coating liquid for conductive film formation and conductive film |
JP2001313400A (en) * | 2000-04-28 | 2001-11-09 | Kyocera Corp | Method for forming solar battery element |
JP2001325831A (en) * | 2000-05-12 | 2001-11-22 | Bando Chem Ind Ltd | Metal colloid solution, conductive ink, conductive coating and conductive coating forming base film |
KR100584073B1 (en) * | 2001-09-20 | 2006-05-29 | 이 아이 듀폰 디 네모아 앤드 캄파니 | Silver conductor composition |
JP2003132734A (en) * | 2001-10-24 | 2003-05-09 | Sumitomo Metal Mining Co Ltd | Coating solution for forming transparent electroconductive layer |
JP4479161B2 (en) * | 2002-03-25 | 2010-06-09 | 住友金属鉱山株式会社 | Transparent conductive film, coating liquid for forming transparent conductive film, transparent conductive laminated structure, and display device |
-
2006
- 2006-11-10 JP JP2006305508A patent/JP5309440B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008135190A (en) | 2008-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5309440B2 (en) | Composition for forming electrode of solar cell, method for forming the electrode, and method for producing solar cell using the electrode obtained by the forming method | |
KR101485304B1 (en) | Composition for forming electrode in solar cell, method of forming the electrode, and solar cell employing electrode obtained by the formation method | |
JP5979211B2 (en) | Electrode forming composition and electrode forming method using the composition | |
EP2190027A1 (en) | Composite membrane for super straight solar cell, process for producing the composite membrane for super straight solar cell, composite membrane for substraight solar cell, and process for producing the composite membrane for substraight solar cell | |
JP5248006B2 (en) | Method for forming electrode of solar cell | |
WO2008047641A1 (en) | Composition for electrode formation and method for forming electrode by using the composition | |
KR20110108274A (en) | Composition for producing transparent conductive film, method of producing composite film for solar cell and composite film produced thereby | |
JP2010087479A (en) | Composite film for substraight type solar cell and method of manufacturing the same | |
JP2011222953A (en) | Composition for transparent conductive film formation, method for forming composite film for solar cell, and composite film formed by the method | |
JP2008135416A (en) | Composition for forming electrode in solar cell, method of forming electrode, and solar cell using electrode obtained by the same | |
JP5515499B2 (en) | Composite film for substrate type solar cell and manufacturing method thereof | |
JP5444923B2 (en) | Composite film for super straight type solar cell and manufacturing method thereof | |
JP2011109069A (en) | Conductive reflecting film and method of manufacturing the same | |
JP5413214B2 (en) | Conductive oxide fine particle dispersion for forming transparent conductive film, transparent conductive film formed using the dispersion, composite film, and method for producing the same | |
JP2012147014A (en) | Composition for forming electrode of solar cell and formation method of the electrode, and solar cell using electrode obtained by the formation method | |
JP2012009840A (en) | Method of forming composite film for solar cell and composite film formed by the method | |
JP5407989B2 (en) | Method for forming composite film for solar cell | |
JP5435088B2 (en) | Method for forming solar cell electrodes | |
JP2011192802A (en) | Method of manufacturing solar cell | |
JP2011192798A (en) | Method of manufacturing solar cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090331 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120807 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120912 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121225 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130214 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130604 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130617 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |