WO2008047641A1 - Composition for electrode formation and method for forming electrode by using the composition - Google Patents

Composition for electrode formation and method for forming electrode by using the composition Download PDF

Info

Publication number
WO2008047641A1
WO2008047641A1 PCT/JP2007/069750 JP2007069750W WO2008047641A1 WO 2008047641 A1 WO2008047641 A1 WO 2008047641A1 JP 2007069750 W JP2007069750 W JP 2007069750W WO 2008047641 A1 WO2008047641 A1 WO 2008047641A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
metal
substrate
composition
forming
Prior art date
Application number
PCT/JP2007/069750
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiharu Hayashi
Kazuhiko Yamasaki
Yoshiaki Takata
Original Assignee
Mitsubishi Materials Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007258311A external-priority patent/JP5309521B2/en
Application filed by Mitsubishi Materials Corporation filed Critical Mitsubishi Materials Corporation
Priority to DE112007002342T priority Critical patent/DE112007002342T5/en
Priority to KR1020097007905A priority patent/KR101419079B1/en
Priority to CN2007800377186A priority patent/CN101523511B/en
Priority to US12/444,720 priority patent/US8822814B2/en
Publication of WO2008047641A1 publication Critical patent/WO2008047641A1/en

Links

Classifications

    • H01L31/022425
    • H01L31/02363
    • H01L31/02366

Definitions

  • the present invention relates to an electrode forming composition, a method of forming an electrode using this composition, a solar cell electrode, an electronic paper electrode, a solar cell, and an electronic paper obtained by the above method. Is.
  • thin film semiconductor solar cells (hereinafter referred to as thin film solar cells) using a semiconductor such as amorphous silicon have a semiconductor layer as a photoelectric conversion layer formed on an inexpensive substrate such as glass or stainless steel. It is sufficient to form as many as necessary. Therefore, this thin-film solar cell is considered to become the mainstream of future solar cells because it is thin and light, inexpensive to manufacture, and easy to increase in area.
  • thin-film solar cells have not been used in earnest until now because their conversion efficiency is lower than that of solar cells using crystalline silicon.
  • Various measures are currently being taken to improve the performance of thin-film solar cells.
  • the back side of the photoelectric conversion layer that is, the thin film thickness which is one of the fields of application of the present invention. It is to improve the reflection characteristics of light from the back electrode of the positive battery. As a result, sunlight that has not been absorbed by the photoelectric conversion layer can be returned to the photoelectric conversion layer, and sunlight that has not been absorbed can be used effectively.
  • a surface structure having a concavo-convex shape of several tens of nanometers to a micron size is formed on the back electrode, so-called texture structure. It is very effective. Light that reaches the back electrode without being completely absorbed by the photoelectric conversion layer is scattered and reflected by the back electrode having this textured structure, changes its direction, and enters the photoelectric conversion layer again. This scattering increases the optical path length, and the light is effectively confined in the solar cell due to the total reflection condition. This so-called light confinement effect promotes light absorption in the photoelectric conversion layer and improves the conversion efficiency of the solar cell. The light confinement effect is now an indispensable technology for improving the efficiency of solar cells.
  • a super straight type solar cell 110 in which light is incident from the translucent substrate side usually includes a substrate 111—a transparent electrode 112—an amorphous Si layer 113a and a microcrystalline Si layer 113b.
  • a transparent electrode 112 on the light incident side such as SnO, for example, in order to achieve the light scattering and light confinement effects.
  • the light confinement effect is expressed by forming the texture structure 112a in the light and causing light scattering.
  • the surface badge badge of the photoelectric conversion layer 113 the ohmic contact with the back electrode 115, and the transparent reflection between the photoelectric conversion layer 113 and the back electrode 115 due to the increased reflection optical design.
  • a conductive film 114 is formed.
  • the back electrode 122 is formed with a textured structure 122a to cause light scattering, thereby producing a light confinement effect. I am letting.
  • Patent Document 1 Japanese Patent Laid-Open No. 03-99477 (page 6, upper left column, line 19 to page 6, upper right column, line 3)
  • Patent Document 2 Japanese Patent Laid-Open No. 03-99478 (Claims (1))
  • Patent Document 3 Japanese Patent Laid-Open No. 04-218977 (Claim 2, paragraphs [0019] to [0020], FIG. 1)
  • Patent Document 4 Japanese Patent Laid-Open No. 04 334069 (paragraph [0014])
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2005-2387 (paragraph [0062])
  • the conventional method for forming a back electrode having a texture structure of a super straight type solar cell is based on a vacuum film formation method, and requires a vacuum process. There was a big problem.
  • a conductive paste flaky silver particles are added and mixed with a binder such as an acrylic resin, a butyl acetate resin, an epoxy resin or a polyester resin, a solvent, a curing agent, a catalyst, and the like. The silver paste obtained.
  • the coating film obtained we were using a paste having such a common conductive, force resistivity (volume resistivity) to have the have the adhesion to the substrate is 10 4 to; 'and the order of cm, resistivity 1 ⁇ 6 X 10- 6 ⁇ metallic silver' 10- 5 Omega Ri Contact become 10-100 times cm, sufficient conductivity is a problem that has not been obtained.
  • a space such as an air layer may be formed at the interface between the transparent conductive film 114 and the back electrode 115. Transparent When such a space is formed at the interface between the conductive film 114 and the back electrode 115, the light that has reached is confined in the space, causing attenuation due to scattering and absorption of light into the metal. As a result, the conversion efficiency is significantly reduced.
  • the conventional method for forming a back electrode having a texture structure of a substrate type solar cell is based on a vacuum film forming method as described in Patent Documents 1 to 5 above. For this reason, since a vacuum process is necessary, there have been major problems with respect to process restrictions or the running cost of manufacturing equipment.
  • Electronic paper is a collective term for display devices that have extreme ease like paper, and as shown in FIG. 7, an operation layer 133 is formed on a base material 131 with a transparent conductive film 132 interposed therebetween.
  • an operation layer 133 is formed on a base material 131 with a transparent conductive film 132 interposed therebetween.
  • One having a structure in which an electrode layer 134 is bonded to the interface 133 is known.
  • the electrode layer 134 is formed on the surface of the working layer 133 using a conductive paste such as a conventional silver paste, the working layer 133 and the electrode layer 134 are not bonded in the sintering process by firing. There was a problem that unevenness (space) occurred at the joint interface. For this reason, in the electrode layer formed using the conventional conductive paste, the electric field concentration occurs due to the generated unevenness, and the electric field concentration occurs! /, Where it occurs! /, What! /, Where This is not suitable for electronic paper because it causes a difference in operation.
  • An object of the present invention is to provide a space such as a fine air layer at the bonding interface between the transparent conductive film and the back electrode without requiring a vacuum process during film formation when forming the back electrode of the superstrate solar cell.
  • Another object of the present invention is that a vacuum process is not required at the time of film formation when forming the back electrode of a substrate type solar cell, and a good texture structure can be formed.
  • Still another object of the present invention is to use an electrode-forming composition capable of smoothing a bonding interface with an operating layer when forming an electrode layer of electronic paper, and the composition. It is an object of the present invention to provide a method for forming an electrode, an electrode for electronic paper obtained by the method, and electronic paper.
  • Still another object of the present invention is to provide a reflectance close to the reflectance of the metal constituting the metal nanoparticle contained in the composition, and the metal constituting the metal nanoparticle contained in the composition.
  • an electrode-forming composition capable of obtaining an electrode having a specific resistance close to / and having a specific resistance and excellent adhesion, and a method of forming an electrode using this composition Talk to your child.
  • a first aspect of the present invention is an electrode-forming composition in which metal nanoparticles are dispersed in a dispersion medium, wherein polybulurpyrrolidone (hereinafter referred to as PVP) and PVP are co-polymerized in the composition.
  • An electrode-forming composition comprising one or more organic polymers selected from the group consisting of a coalesced polybutyl alcohol (hereinafter referred to as PVA) and cellulose ether.
  • the content of the organic polymer may be 0.;! To 20% by mass of the metal nanoparticles.
  • the metal nanoparticles may contain 75% by mass or more of silver nanoparticles.
  • the metal nanoparticles may be chemically modified with a protective agent for an organic molecular main chain having a carbon skeleton of 1 to 3 carbon atoms.
  • the metal nanoparticles include a number average of metal nanoparticles having a primary particle size in the range of 10 to 50 nm.
  • the metal nanoparticles contain 75% by mass or more of silver nanoparticles and are made of gold, platinum, palladium, ruthenium, nickel, copper, tin, indium, zinc, iron, chromium and manganese.
  • 1 type of particles selected from the above or particles of a mixed composition or alloy composition of 2 or more types, and the content of particles other than silver nanoparticles contained in the metal nanoparticles is 0.02% by mass or more 25 It may be less than% by mass! /.
  • the dispersion medium may be an alcohol, or! /, Or an alcohol-containing aqueous solution.
  • the electroforming composition comprises a metal oxide, a metal hydroxide, an organometallic compound, and silicon. It may further contain one or more additives selected from the group consisting of green oil.
  • the metal oxide includes at least one selected from the group consisting of aluminum, silicon, titanium, chromium, manganese, iron, cobalt, nickel, silver, copper, zinc, molybdenum, tin, indium and antimony. It may be an oxide or a complex oxide.
  • the metal hydroxide is at least one selected from the group consisting of aluminum, silicon, titanium, chromium, manganese, iron, cobalt, nickel, silver, copper, zinc, molybdenum, tin, indium and antimony. It may be a hydroxide containing.
  • the organometallic compound may be a metal sarcophagus, metal complex or metal alkoxide of silicon, titanium, chromium, manganese, iron, cobalt, nickel, silver, copper, zinc, molybdenum and tin.
  • the thickness of the fired electrode formed on the upper surface of the substrate may be in the range of 0.;! To 2.0 m.
  • the average surface roughness of the electrode formed on the upper surface of the substrate may be in the range of 10 to! OOnm.
  • the substrate is made of silicon, glass, ceramics including a transparent conductive material, a substrate made of a polymer material or a metal, or ceramics including a silicon, glass, or a transparent conductive material, a polymer material, and a metal. It may be two or more kinds of laminates selected from the group of! /,
  • the substrate may be either a solar cell element or a solar cell element with a transparent electrode.
  • the wet coating method is any one of a spray coating method, a dispenser coating method, a spin coating method, a knife coating method, a slit coating method, an inkjet coating method, a screen printing method, an offset printing method or a die coating method. It may be.
  • a third aspect of the present invention is a solar cell electrode obtained by any of the electrode forming methods described above.
  • a fourth aspect of the present invention is an electrode for electronic paper obtained by any one of the electrode forming methods described above.
  • the solar cell electrode is composed of at least a substrate, a back electrode, a photoelectric conversion layer, and a transparent electrode, and has a substrate structure formed in the order of the substrate, the back electrode, the photoelectric conversion layer, and the transparent electrode. It may be a back electrode of a solar cell.
  • the solar cell electrode has at least a substrate, a transparent electrode, a photoelectric conversion layer, and a back electrode, and has a super straight type structure formed in the order of the substrate, the transparent electrode, the photoelectric conversion layer, and the back electrode. It may be a back electrode of a solar cell.
  • a fifth aspect of the present invention is a solar cell including any one of the above-described solar cell electrodes.
  • a sixth aspect of the present invention is an electronic paper including any of the electronic paper electrodes described above.
  • the electrode-forming composition of the present invention does not require a vacuum process during film formation when forming the back electrode of a super straight solar cell, and is fine at the junction interface between the transparent conductive film and the back electrode. It is possible to control such that a space such as a simple air layer is not formed.
  • a vacuum process is not required at the time of film formation when forming the back electrode of the substrate type solar cell, a good texture structure can be formed, and the average surface roughness and shape of this texture structure can be controlled. Power S can be.
  • the bonding interface with the operation layer can be smoothed.
  • the reflectance is close to the reflectance of the metal itself constituting the metal nanoparticles contained in the composition, and the specific resistance of the metal itself constituting the metal nanoparticles contained in the composition! It is possible to obtain an electrode having resistance and excellent adhesion.
  • FIG. 1A is a cross-sectional view showing one embodiment of a manufacturing process of a super straight type solar cell according to the present invention.
  • FIG. IB A sectional view showing the manufacturing method of the same embodiment.
  • FIG. 1C is a cross-sectional view showing the manufacturing method of the same embodiment.
  • FIG. 1D is a cross-sectional view showing the manufacturing method of the same embodiment.
  • FIG. 2A is a cross-sectional view showing one embodiment of a production process of a substrate type solar cell according to the present invention.
  • FIG. 2B is a cross-sectional view showing the manufacturing method of the same embodiment.
  • FIG. 2C is a cross-sectional view showing the manufacturing method of the same embodiment.
  • FIG. 2D is a cross-sectional view showing the manufacturing method of the same embodiment.
  • FIG. 3 is a cross-sectional view showing an electronic paper according to the present invention.
  • FIG. 4 is a graph showing diffuse reflectance in the coating films obtained in Examples 1 to 7 and Comparative Examples 1 to 3.
  • FIG. 5 is a cross-sectional view showing a conventional super straight solar cell.
  • FIG. 6 is a cross-sectional view showing a conventional substrate type solar cell.
  • FIG. 7 is a cross-sectional view showing a conventional electronic paper.
  • the composition for forming an electrode of the present invention is a composition in which metal nanoparticles are dispersed in a dispersion medium.
  • the composition of the present invention is characterized in that the composition contains one or more organic polymers selected from the group consisting of PVP, a copolymer of PVP, PVA and cellulose ether.
  • the back electrode of the substrate type solar cell is formed using this composition, the effect of suppressing the grain growth due to the sintering between the metal nanoparticles is given, so the electrode having a good texture structure is formed. can do. In this case, the average surface roughness and shape of the texture structure can be controlled. Moreover, an electrode using this composition is excellent in adhesion to the substrate.
  • the formation of the electrode using the composition of the present invention does not require a vacuum process at the time of film formation, so the process restrictions are small and the running cost of the manufacturing equipment is greatly reduced. And force S.
  • an organic polymer having a heterocyclic ring such as PVP when added to the composition, it has an effect of reducing the surface roughness of a coating film formed using the composition. Therefore, by adjusting the addition ratio of the organic polymer, it is possible to form a coating film surface having a desired surface roughness.
  • the content of the organic polymer is selected within the range of 0.;! To 20% by mass of the metal nanoparticles. Among these, although depending on the kind to be added, the content of the organic polymer is more preferably in the range of about 0.2 to 10% by mass.
  • the reason why the content of the organic polymer is in the range of 0.1% to 20% by mass of the metal nanoparticles is that if the content is less than 0.1% by mass, the effect of suppressing the sintering cannot be obtained, and the formed film This is because sufficient adhesion between the substrate and the substrate cannot be obtained, and when the content exceeds 20% by mass, the specific resistance and the reflectance decrease.
  • Specific examples of the PVP copolymer include a PVP-metatalylate copolymer, a PVP-styrene copolymer, and a PVP-butyl acetate copolymer.
  • cellulose etc. are mentioned as a cellulose ether.
  • the surface roughness of the formed electrode increases.
  • an organic polymer such as PVP
  • the surface roughness of the formed electrode increases.
  • there are conditions for optimizing photoelectric conversion efficiency in the uneven shape of the electrode surface and it is not possible to form an electrode surface with excellent photoelectric conversion efficiency simply by having a large surface roughness.
  • the composition of the present invention it is possible to form a surface having an optimized surface roughness by adjusting the type and concentration of PVP and the like.
  • the metal nanoparticles contain 75% by mass or more, preferably 80% by mass or more of silver nanoparticles.
  • the reason why the content of silver nanoparticles is in the range of 75% by mass or more with respect to 100% by mass of all metal nanoparticles is that the reflectivity of the electrode formed using this composition is lowered if it is less than 75% by mass. Because it will end up.
  • the above-mentioned metal nanoparticles are preferably chemically modified with an organic molecular main chain protective agent having a carbon skeleton of 1 to 3 carbon atoms.
  • an organic molecular main chain protective agent having a carbon skeleton of 1 to 3 carbon atoms.
  • the protective agent that is, the protective molecule chemically modified on the surface of the metal nanoparticle contains a hydroxyl group (one OH) or a carbonyl group (one C ⁇ O) and / or one of both.
  • a hydroxyl group (—OH) is contained in a protective agent that chemically modifies metal nanoparticles such as silver nanoparticles
  • the composition has excellent dispersion stability and is effective for low-temperature sintering of the coating film.
  • the composition has excellent dispersion stability as described above, and can be used for low-temperature sintering of the coating film. Has an effective action
  • the metal nanoparticles contain 70% or more, preferably 75% or more of the number average of metal nanoparticles having a primary particle size in the range of 10 to 50 nm.
  • the content of metal nanoparticles in the primary particle size range of 10 to 50 nm is more than 70% with respect to 100% of all metal nanoparticles on a number average basis. Since the surface area increases and the proportion of the protective agent increases, even organic molecules that are easily desorbed or decomposed (separated and burned) by the heat during firing, the organic molecules account for a large proportion. This is because a lot of organic residue remains.
  • the primary particle size of the above metal nanoparticles within the range of 10-50 nm, which decreases the emissivity, is that the metal nanoparticles with the primary particle size within the range of 10-50 nm are statistically determined by statistical methods. This is because it correlates with stability (aging stability).
  • the metal nanoparticles contain 75% by mass or more of silver nanoparticles, and gold, platinum, palladium, ruthenium, nickel, copper, tin, indium, zinc, iron, chromium and manganese. It is preferable to further contain metal nanoparticles composed of one kind of particles selected from the group consisting of two or more kinds of mixed compositions or alloy compositions.
  • the metal nanoparticles other than silver nanoparticles should have a force of 0.02% by mass or more and less than 25% by mass with respect to 100% by mass of all metal nanoparticles, preferably 0.03% by mass to 20% by mass. More preferably.
  • the content of particles other than silver nanoparticles is in the range of 0.02% by mass to less than 25% by mass with respect to 100% by mass of all metal nanoparticles
  • the resistance of the electrode after the weather resistance test (a test held in a constant temperature and humidity chamber at a temperature of 100 ° C and a humidity of 50% for 1000 hours) This is because the conductivity and reflectivity are not deteriorated compared to those before the weather resistance test! /, And! /.
  • the content is 25% by mass or more, the conductivity and reflectance of the electrode immediately after firing are reduced, and the electrode after the weather resistance test has a lower conductivity and reflectance than the electrode before the weather resistance test. It is.
  • the composition may further include one or more additives selected from the group consisting of metal oxides, metal hydroxides, organometallic compounds, and silicone oils.
  • additives selected from the group consisting of metal oxides, metal hydroxides, organometallic compounds, and silicone oils.
  • the addition ratio of the additive is preferably in the range of 0.;! To 20% by mass with respect to the composition. Of these, the range of 1 to 5% by mass is particularly preferable. If the additive ratio is less than the lower limit, the effect of suppressing grain growth cannot be obtained, and if the additive content exceeds the upper limit, the specific resistance increases significantly.
  • the metal oxide referred to in the present invention includes a metalloid oxide that is not only a metal element oxide.
  • the metal hydroxide referred to in the present invention includes a metalloid hydroxide which is not only a metal element hydroxide.
  • the organometallic compound referred to in the present invention includes not only metal elements but also metalloid elements. As a component.
  • the metal oxide used as the additive is selected from the group consisting of aluminum, silicon, titanium, chromium, manganese, iron, cobalt, nickel, silver, copper, zinc, molybdenum, tin, indium and antimony.
  • an oxide or composite oxide containing at least one kind is preferable.
  • Specific examples of composite oxides include indium tin oxide (ITO), antimony tin oxide (ATO), and zinc indium oxide.
  • Complex oxide Indium Zinc Oxide: IZO
  • the metal hydroxide used as the additive is selected from the group consisting of aluminum, silicon, titanium, chromium, manganese, iron, cobalt, nickel, silver, copper, zinc, molybdenum, tin, indium and antimony. Hydroxides containing at least one of these are preferred.
  • organometallic compound used as the additive examples include silicon, titanium, chromium, manganese, iron, cobalt, nickel, silver, copper, zinc, molybdenum and tin metal sarcophagus, metal complexes or metal alkoxides.
  • metal sarcophagus includes chromium acetate, manganese formate, iron citrate, cobalt formate, nickel acetate, silver citrate, copper acetate, copper citrate, tin acetate, zinc acetate, zinc oxalate, molybdenum acetate, etc. It is done.
  • metal complex examples include a acetylacetone zinc complex, a acetylacetone chrome complex, and a acetylacetone nickel complex.
  • Metal alkoxides are titanium isopropoxide, methyl silicate.
  • both straight silicone oil and modified silicone oil can be used.
  • Modified silicone oil is more poly Either one of the side chains of the siloxane introduced with an organic group (side chain type), one introduced with an organic group at both ends of the polysiloxane (both ends type), or one of both ends of the polysiloxane
  • One having an organic group introduced (one-end type) and one having a side chain of polysiloxane and an organic group introduced at both ends (both side-chain type) can be used.
  • the modified silicone oil has both a reactive silicone oil and a non-reactive silicone oil, and both types can be used as additives in the present invention.
  • Reactive silicone oil means amino modification, epoxy modification, carboxy modification, carbinol modification, mercapto modification, and heterofunctional modification (epoxy group, amino group, polyether group), and non-reactive silicone.
  • Oil means polyether modification, methylstyryl group modification, alkyl modification, higher fatty acid ester modification, fluorine modification, and hydrophilic special modification.
  • the content of the metal nanoparticles in the electrode-forming composition is preferably 2.5 to 95.0% by mass with respect to 100% by mass of the metal nanoparticle and the dispersion medium that also serves as a dispersion medium. More preferably, the content is 3.5 to 90.0% by mass.
  • the content of metal nanoparticles in the range of 2.5 to 95.0% by mass with respect to 100% by mass of the metal nanoparticle and dispersion medium is less than 2.5% by mass, especially after firing. Although it does not affect the characteristics of the electrode, it is difficult to obtain an electrode of the required thickness. If it exceeds 95% by mass, the required fluidity as an ink or paste will be lost during wet coating of the composition. Because it will end up.
  • the dispersion medium constituting the electrode forming composition of the present invention is 1% by mass or more, preferably 2% by mass or more, and 2% by mass or more, with respect to 100% by mass of all the dispersion media. It is preferable to contain 3% by mass or more of alcohols. For example, when the dispersion medium consists only of water and alcohols, when 2% by mass of water is contained, 98% by mass of alcohol is contained, and when 2% by mass of alcohol is contained, 98% by mass of water is contained. . The reason why the water content is preferably in the range of 1% by mass or more with respect to 100% by mass of all the dispersion media was obtained by applying the composition by a wet coating method when it was less than 1% by mass.
  • the content of alcohols is preferably in the range of 2% by mass or more with respect to 100% by mass of all the dispersion media. If the content is less than 2% by mass, the composition is applied by the wet coating method as described above. It is difficult to sinter the resulting film at low temperatures, and the conductivity and reflectivity of the electrode after firing are reduced. The power to do it.
  • the alcohol used in the dispersion medium is one selected from the group consisting of methanol, ethanol, prononor, butanol, ethylene glycol, propylene glycol, jetylene glycol, glycerol, isobornylhexanol and erythritol. Or use two or more!
  • the addition of alcohols is for improving the wettability with the base material, and the mixing ratio of water and alcohols can be freely changed in accordance with the type of base material.
  • a method for producing the above electrode forming composition is as follows.
  • silver nitrate is dissolved in water such as deionized water to prepare an aqueous metal salt solution.
  • aqueous sodium citrate having a concentration of 10 to 40% obtained by dissolving sodium taenate in deionized water or the like is added to a granular or powdered sulfuric acid solution in an inert gas stream such as nitrogen gas.
  • an inert gas stream such as nitrogen gas.
  • the metal salt aqueous solution is dropped into and mixed with the reducing agent aqueous solution.
  • the reaction temperature is 30 to 30%. Force to keep at 60 ° C S is preferable.
  • the mixing ratio of the two aqueous solutions is such that the molar ratio of the citrate ion and ferrous ion in the reducing agent aqueous solution to the total valence of the metal ions in the metal salt aqueous solution is 3 times as much as each other.
  • the mixture is stirred for an additional 10 to 300 minutes to prepare a dispersion composed of metal colloid.
  • This dispersion is allowed to stand at room temperature, and the aggregates of the precipitated metal nanoparticles are separated by decantation, centrifugation, or the like. Thereafter, water such as deionized water is added to the separated product to form a dispersion, which is desalted by ultrafiltration. Subsequent substitution cleaning with alcohols is performed to adjust the metal (silver) content to 2.5 to 50% by mass.
  • silver nanoparticles with a primary particle size in the range of 10 to 50 nm are 70% or more on average.
  • Prepare to contain That is, the number average of all silver nanoparticles 100% primary particle size within the range of 10-50nm Adjust the silver nanoparticles to 70% or more.
  • a dispersion having 3 carbon atoms in the carbon skeleton of the organic molecular main chain of the protective agent for chemically modifying the silver nanoparticles can be obtained.
  • the obtained dispersion is adjusted so that the final metal content (silver content) with respect to 100% by mass of the dispersion is in the range of 2.5 to 95% by mass.
  • the dispersion medium is an aqueous solution containing alcohols
  • one or more organic polymers selected from the group consisting of PVP, a PVP copolymer and cellulose ether are added to the dispersion.
  • the content of the organic polymer is adjusted so as to be in the range of 0.;! To 20% by mass of the metal nanoparticles.
  • the silver nanoparticles chemically modified with a protective agent for the organic molecular main chain having a carbon number strength of the carbon skeleton are dispersed in the dispersion medium and selected from the group consisting of PVP, PVP copolymer and cellulose ether.
  • an electrode-forming composition containing one or more organic polymers can be obtained.
  • one or more additives selected from the group consisting of metal oxides, metal hydroxides, organometallic compounds, and silicone oils may be further included.
  • the additive is further included, the combined content of the organic polymer and the additive is adjusted to be in the range of 0.;! To 20% by mass with respect to 100% by mass of the obtained composition.
  • a dispersion is prepared in the same manner as in (a) above, except that sodium citrate used for preparing the reducing agent aqueous solution is replaced with sodium malate. As a result, a dispersion having a carbon number strength of the carbon skeleton of the organic molecular main chain that chemically modifies the silver nanoparticles can be obtained.
  • a dispersion is prepared in the same manner as in the above (a) except that the sodium citrate used for preparing the reducing agent aqueous solution is replaced with sodium glycolate. This gives a dispersion in which the carbon skeleton of the carbon backbone of the organic molecular chain that chemically modifies the silver nanoparticles is one.
  • Examples of the metal constituting the metal nanoparticles other than the silver nanoparticles include gold, platinum, palladium, ruthenium, nickel, copper, tin, indium, zinc, iron, chromium and manganese.
  • the silver nitrate used in preparing the metal salt aqueous solution was chloroauric acid, chloroplatinic acid, palladium nitrate, ruthenium trichloride, nickel chloride, cuprous nitrate, tin dichloride, indium nitrate, zinc chloride, iron sulfate, Prepare a dispersion in the same manner as (a) above, except replacing with chromium sulfate or manganese sulfate. As a result, a dispersion in which the carbon skeleton of the carbon skeleton of the organic molecular main chain of the protective agent that chemically modifies the metal nanoparticles other than the silver nanoparticles is obtained.
  • the number of carbon skeletons of the organic molecular main chain of the protective agent for chemically modifying metal nanoparticles other than silver nanoparticles is 1 or 2
  • the silver nitrate used when preparing the metal salt aqueous solution A dispersion is prepared in the same manner as in the above (b) and (c) except that is replaced with the above-mentioned metal salt.
  • a carbon number force of the carbon skeleton of the organic main chain of the protective agent that chemically modifies the metal nanoparticles other than the silver nanoparticles and a dispersion having 2 are obtained.
  • the metal nanoparticles include metal nanoparticles other than silver nanoparticles together with silver nanoparticles
  • a dispersion containing silver nanoparticles produced by the method of (a) above is used as the first.
  • a dispersion containing metal nanoparticles other than silver nanoparticles produced by the method (d) above is used as the second dispersion, 75% by mass or more of the first dispersion and less than 25% by mass of the first dispersion are used.
  • the two dispersions are mixed so that the total content of the first and second dispersions is 100% by mass.
  • the first dispersion is not limited to the dispersion containing the silver nanoparticles produced by the method (a), but the dispersion containing the silver nanoparticles produced by the method (b) or the above (c). It is also possible to use a dispersion containing silver nanoparticles produced by the above method.
  • the electrode forming composition is coated on a substrate by a wet coating method to form a film.
  • the substrate is made of silicon, glass, ceramics including a transparent conductive material, a substrate made of a polymer material or a metal, or a group consisting of silicon, glass, ceramics including a transparent conductive material, a high molecular material, and a metal. Two or more selected laminates can be used.
  • a substrate containing at least one of the transparent conductive films or a transparent conductive film is formed on the surface.
  • a filmed substrate may be used.
  • the transparent conductive film include indium oxide, tin oxide, and zinc oxide.
  • Examples of the indium oxide system include indium oxide, ⁇ , and ⁇ .
  • tin oxides include nesa (tin oxide SnO), silver, and fluorine-doped tin oxide.
  • zinc oxides include zinc oxide, cocoon (aluminum-doped zinc oxide), and gallium doped zinc oxide.
  • the substrate is preferably either a solar cell element or a solar cell element with a transparent electrode.
  • transparent electrodes include ⁇ , ⁇ , Nesa, ⁇ , ⁇ ⁇ and the like.
  • a dielectric thin film such as lead zirconate titanate ( ⁇ ) may be formed on the surface of the base material.
  • the polymer substrate include a substrate formed of an organic polymer such as polyimide PET (polyethylene terephthalate). The dispersion is applied to the surface of the photoelectric conversion semiconductor layer of the solar cell element or the surface of the transparent electrode of the solar cell element with a transparent electrode.
  • the wet coating method includes spray coating method, dispenser coating method, spin coating method, knife coating method, slit coating method, ink jet coating method, screen printing method, offset printing method or die coating method. Any of these methods is particularly preferable, but any method other than this is available.
  • the spray coating method is a method in which the dispersion is atomized with compressed air and applied to the substrate, or the dispersion itself is pressurized and atomized to apply to the substrate.
  • the dispenser coating method is, for example, a method in which a dispersion is placed in a syringe and the piston of the syringe is pushed to discharge the dispersion from a fine nozzle at the tip of the injector and apply it to a substrate.
  • the spin coating method is a method in which a dispersion is dropped onto a rotating substrate, and the dropped dispersion is spread around the periphery of the substrate by its centrifugal force.
  • a base material having a predetermined gap from the tip of the knife is provided so as to be movable in the horizontal direction, and a dispersion is supplied onto the base material upstream from the knife so that the base material faces downstream. It is a method to move horizontally
  • the slit coating method is a method in which a dispersion is discharged from a narrow slit and applied onto a substrate.
  • the ink jet coating method is a method in which a dispersion is filled in an ink cartridge of a commercially available ink jet printer and ink jet printing is performed on a substrate.
  • the screen printing method is a method in which wrinkles are used as a pattern indicating material, and the dispersion is transferred to a substrate through a plate image formed thereon.
  • the offset printing method is a printing method that utilizes the water repellency of ink, in which the dispersion attached to the plate is not directly attached to the substrate, but is transferred from the plate to a rubber sheet and then transferred from the rubber sheet to the substrate again. is there.
  • the die coating method is a method in which the dispersion supplied into the die is distributed by means of a manifold and extruded onto the thin film from the slit, and the surface of the traveling substrate is applied.
  • Die coating methods include slot coating, slide coating, and curtain coating.
  • the substrate formed on the upper surface is heated to 130 to 400 ° C, preferably 170 to 400 ° C for 5 minutes to 1 in the atmosphere or in an inert gas atmosphere such as nitrogen or argon. Bake for an hour, preferably 15-40 minutes.
  • the firing temperature of the electrode-forming composition film formed on the substrate was set in the range of 130 to 400 ° C. If the temperature was less than 130 ° C, the metal nanoparticles were not sufficiently sintered.
  • the temperature exceeds 400 ° C, the low temperature process and the production advantage can be utilized! /. In other words, manufacturing costs will increase and productivity will decrease. In particular, it affects the light wavelength range of photoelectric conversion in amorphous silicon, microcrystalline silicon, or a hybrid silicon solar cell using these.
  • the firing time of the electrode-forming composition film formed on the substrate was set in the range of 5 minutes to 1 hour because, if less than 5 minutes, the metal nanoparticles were not sufficiently sintered and the protective agent was used. This is because it is difficult to desorb or decompose (separate and burn) due to the heat during firing, so that many organic residues remain in the electrode after firing. This residue is altered or deteriorated, and the conductivity and reflectivity of the electrode are lowered. If it exceeds 1 hour, the characteristics are not affected, but the manufacturing cost is increased more than necessary and the productivity is lowered. .
  • the thickness after firing formed on the upper surface of the substrate is 0.;! ⁇ 2.O ⁇ m, preferably 0.3 ⁇ ; 1.5
  • the electrode-forming composition formed on the substrate had a thickness after firing in the range of 0.;! To 2.0 m.
  • the surface resistance of the electrode required for the battery becomes insufficient, and if it exceeds 2.0 0 111, there will be no characteristic defects, but there will be no material if the amount of material used is more than necessary. Because it becomes useless.
  • the composition for forming an electrode includes a large amount of metal nanoparticles having a primary particle size of 10 to 50 nm and a relatively large size, the specific surface area of the metal nanoparticles is reduced and the proportion of the protective agent is reduced.
  • the protective agent is desorbed or decomposed by the heat during firing, or is separated and decomposed, so that an organic substance that has a substantial adverse effect on electrical conduction can be obtained. An electrode that does not contain is obtained.
  • an electrode made of a conductive coating film can be formed on the substrate.
  • the formed conductive coating film has excellent adhesion and does not form a fine air layer or other space at the bonding interface with the base material. Therefore, when it is used as the back electrode of a super straight solar cell, A reduction in conversion efficiency can be suppressed.
  • the formed conductive coating film can control grain growth by sintering between metal nanoparticles, and has a good texture structure when used as a back electrode of a substrate type solar cell. Have. Moreover, the coating film which controlled the average surface roughness and shape of the texture structure by the kind and addition amount of the additive in the composition to be used can be obtained.
  • the electrode made of a conductive coating film formed on the upper surface of the substrate preferably has an average surface roughness in the range of 10 to OOnm. When the average surface roughness is within the above range, the range is suitable for the texture structure of the back electrode constituting the substrate type solar cell.
  • the formed conductive coating film has a specific resistance close to the specific resistance of the metal itself constituting the metal nanoparticles contained in the composition. Moreover, an excellent reflectance close to the reflectance of the metal itself constituting the metal nanoparticles contained in the composition can be obtained.
  • the formed conductive coating film when used as an electrode layer of electronic paper, it can smooth the bonding interface with the operating layer, and thus is suitable for electronic paper without causing electric field concentration.
  • the electrode forming method of the present invention is a method in which the electrode forming composition is wet-coated on a substrate to form a film, and the electrode is formed by a simple process of firing the formed substrate. Can be formed. In this way, since a vacuum process is not required at the time of film formation, the running cost of a manufacturing facility can be significantly reduced with less process restrictions.
  • a transparent conductive film is formed on a substrate 11 by sputtering, vapor deposition, or spray pyrolysis (for example, pyrolysis by spray spraying a tin chloride solution: Nesa glass). )
  • a transparent electrode 12 is formed on a substrate 11 by sputtering, vapor deposition, or spray pyrolysis (for example, pyrolysis by spray spraying a tin chloride solution: Nesa glass).
  • a translucent substrate 11 such as glass.
  • This transparent conductive film is formed so that its surface layer has a textured structure 12a in order to exhibit light scattering and light confinement effects.
  • Nesa glass As a material for the transparent conductive film, Nesa glass (SnO type) is generally used.
  • the photoelectric conversion layer 13 is formed on the transparent electrode 12 having the texture structure 12a.
  • This photoelectric conversion layer 13 is formed by a plasma CVD method.
  • the texture structure 12 a of the transparent electrode 12 is also reflected in the photoelectric conversion layer 13.
  • the photoelectric conversion layer 13 is made of amorphous silicon 13a and the microcrystalline silicon 13b is a PIN junction laminated film.
  • a solar cell in which the photoelectric conversion layer 13 is formed from a PIN junction laminated film of amorphous silicon 13a and microcrystalline silicon 13b is called a hybrid type or a tandem type.
  • the transparent conductive film 14 is formed by sputtering, vapor deposition, or MOCVD.
  • the back electrode 15 is formed by applying and baking the electrode forming composition of the present invention on the transparent conductive film 14, thereby forming the back electrode 15 from the translucent substrate side.
  • a super straight type solar cell 10 in which light is incident can be obtained.
  • the base material 11 serves as a light receiving surface.
  • the formed back electrode 15 has excellent adhesion to the transparent conductive film 14 and does not form a space such as a fine air layer at the bonding interface with the transparent conductive film 14, so that it is possible to suppress a reduction in conversion efficiency.
  • a substrate type solar cell that can be formed into a straight type solar cell using the electrode forming composition of the present invention will be described.
  • the back electrode 22 is formed by applying and baking the electrode forming composition of the present invention on the substrate 21.
  • the base material 21 include glass and organic films. I can get lost. Since the formed back electrode 22 has an effect of suppressing grain growth by sintering between metal nanoparticles, the surface layer has a texture structure 22a that can effectively exhibit light scattering and light confinement effects. Can be formed.
  • a photoelectric conversion layer 23 is formed on the back electrode 22 having the texture structure 22a.
  • This photoelectric conversion layer 23 is formed by the plasma CVD method similarly to the photoelectric conversion layer 13 of the super straight type solar cell described above, and the texture structure 22a of the back electrode 22 is reflected.
  • a transparent conductive film is formed by sputtering, vapor deposition, or spray pyrolysis to form a transparent electrode 24.
  • the material of the transparent conductive film is Nesa glass (SnO series)
  • the electronic paper 30 has a transparent conductive film on the base 31.
  • An operation layer 33 is formed through 32, and an electrode layer 34 is bonded to the interface of the operation layer 33.
  • the substrate 31 include glass, an organic polymer film, a plastic film, and an organic polymer film on which a silica thin film is formed.
  • the transparent conductive film 32 is formed by a sputtering method.
  • the material for the transparent conductive film include indium oxide, tin oxide, and zinc oxide.
  • indium oxide include indium oxide, IT 0, and IZO.
  • tin oxides include Nesa (tin oxide SnO), ATO, and fluorine-doped tin oxide.
  • the zinc oxide system include zinc oxide, AZO (aluminum doped zinc oxide), and gallium doped zinc oxide.
  • the electrode layer 34 is formed by applying and baking the electrode forming composition of the present invention.
  • the electrode layer 34 formed in this manner can smooth the bonding interface with the operation layer 33, and therefore does not cause electric field concentration and is suitable for electronic paper.
  • silver nitrate was dissolved in deionized water to prepare a metal salt aqueous solution having a concentration of 25% by mass.
  • sodium citrate was dissolved in deionized water to prepare an aqueous sodium citrate solution having a concentration of 26% by mass.
  • granular ferrous sulfate is directly added and dissolved in a nitrogen gas stream maintained at 35 ° C to contain citrate ions and ferrous ions in a molar ratio of 3: 2.
  • An aqueous reducing agent solution was prepared.
  • the magnetic stirrer stirrer is placed in the reducing agent aqueous solution, and the stirrer is rotated at a rotation speed of lOO rpm, so that the reducing agent aqueous solution is
  • the aqueous metal salt solution was added dropwise to the aqueous reducing agent solution while stirring.
  • the metal salt aqueous solution at room temperature was dropped by adjusting the concentration of each solution so that the amount of the metal salt aqueous solution added to the reducing agent aqueous solution was 1/10 or less of the amount of the reducing agent aqueous solution.
  • the reaction temperature was kept at 40 ° C.
  • the mixing ratio of the reducing agent aqueous solution to the metal salt aqueous solution is 3 times the molar ratio of the citrate ion and ferrous ion in the reducing agent aqueous solution to the total valence of the metal ions in the metal salt aqueous solution. It was made to be a mole.
  • the mixture is continuously stirred for 15 minutes to generate metal particles inside the mixture, and the metal particles are dispersed. A liquid was obtained.
  • the pH of the metal particle dispersion was 5.5, and the stoichiometric amount of metal particles in the dispersion was 5 g / liter.
  • the obtained dispersion was allowed to stand at room temperature, whereby the metal particles in the dispersion were allowed to settle, and the aggregates of the precipitated metal particles were separated by decantation.
  • Deionized water was added to the separated metal agglomerate to form a dispersion, which was desalted by ultrafiltration, and further washed by displacement with methanol to make the metal content 50% by mass.
  • the centrifugal force of the centrifuge is adjusted using a centrifuge to separate relatively large metal particles having a particle size exceeding lOOnm, so that a metal having a primary particle size in the range of 10 to 50nm is obtained.
  • the nanoparticles were adjusted so as to contain 71% in number average. That is, the number average of 100% of all metal nanoparticles is occupied by metal nanoparticles in the primary particle size range of 10-50nm.
  • the ratio was adjusted to 71%.
  • the obtained metal nanoparticles consisted of silver nanoparticles, and these silver nanoparticles were chemically modified with a protective agent for an organic molecular main chain having a carbon skeleton of 3 carbon atoms.
  • the silver nanoparticles were adjusted so as to contain 71% of silver nanoparticles having a primary particle size of 10 to 50 nm on the average. That is, the first dispersion was obtained by adjusting with a centrifuge so that the ratio of silver nanoparticles having a primary particle diameter of 10 to 50 nm to 71% with respect to 100% of all silver nanoparticles was 71%.
  • the silver nitrate of Example 1 was replaced with palladium nitrate, and dispersions washed with ethanol in the same manner as in Examples 1 to 7 were used. The number of palladium nanoparticles having a primary particle size of 10 to 50 nm was measured. It was adjusted to contain 71% on average.
  • the second dispersion was obtained by adjusting with a centrifuge so that the proportion of the palladium nanoparticles having a primary particle diameter of 10 to 50 nm to the palladium average of 100% was 71%.
  • 77% by mass of the first dispersion and 23% by mass of the second dispersion were adjusted.
  • This dispersion was used in Example 8 and evaluated in the same manner as in Examples 1 to 7.
  • 10 parts by weight of the obtained metal nanoparticles were dispersed by adding and mixing in 90 parts by weight of a mixed solution containing water, ethanol and methanol.
  • PV P was added to the dispersion so as to have a ratio of 10.0 mass% shown in Table 1.
  • the silver nanoparticles and palladium nanoparticles in the dispersion were each chemically modified with an organic molecular main chain protective agent having a carbon skeleton of 3 carbon atoms. Furthermore, the protective agent chemically modifying silver nanoparticles and palladium nanoparticles contained a hydroxyl group and a carbonyl group.
  • the silver nanoparticles were adjusted so as to contain 71% of silver nanoparticles having a primary particle size of 10 to 50 nm on the average.
  • the number average of silver nanoparticles with a primary particle size of 10-50 nm to 100% of all silver nanoparticles is 71%.
  • a dispersion instead of ruthenium trichloride instead of silver nitrate in Example 1, a dispersion that was washed with ethanol in the same manner as in Examples 1 to 7 was used to obtain ruthenium nanoparticles with ruthenium nanoparticles having a primary particle size of 10 to 50 nm. It was adjusted to contain 71% on average.
  • the second dispersion was obtained by adjusting with a centrifuge so that the ratio of the ruthenium nanoparticles having a primary particle size of 10 to 5 Onm to 72% of the ruthenium nanoparticles with respect to 100% of all the ruthenium nanoparticles was 72%.
  • 77% by mass of the first dispersion and 23% by mass of the second dispersion were adjusted.
  • This dispersion was used in Example 9 and evaluated in the same manner as in Examples 1 to 7.
  • 10 parts by weight of the obtained metal nanoparticles were dispersed by adding and mixing in 90 parts by weight of a mixed solution containing water, ethanol and methanol.
  • PVP was adjusted by adding PVP at a ratio of 10.0% by mass shown in Table 1.
  • the silver nanoparticles and ruthenium nanoparticles in the dispersion were each chemically modified with a protective agent of an organic molecular main chain with a carbon skeleton of 3 carbon atoms.
  • the protective agent that chemically modified silver nanoparticles and ruthenium nanoparticles contained hydroxyl and carbonyl groups.
  • the coating test compositions obtained in Examples;! To 9 and Comparative Examples;! To 3 were applied by spin coating or spray coating to a thickness of 600 nm on the substrate shown in Table 1 below. did. Then, the conductive coating film was formed on the base material by baking in the air under the heat treatment conditions shown in Table 1 below. The formed conductive coating film was evaluated for adhesion to the substrate and coating film reflectance. In addition, the specific resistance of the conductive film formed was determined.
  • the adhesion to the substrate was evaluated by a method based on JIS K 5600-5-6 (cross-cut method) and evaluated qualitatively. Specifically, when no significant peeling occurred in the coating film, that is, when the peeling classification was in the range of 0 to 2, it was evaluated as “good”, and the others were evaluated as “bad”.
  • the diffuse reflectance of the coating film was measured by a combination of an ultraviolet-visible spectrophotometer and an integrating sphere. Figure 4 shows the measurement results. In addition, a relative evaluation was made based on the measurement results.
  • the diffuse reflectance of Comparative Example 1 in which no additive was added to the coating test composition was used as a reference value, and the diffuse reflectance was improved from this reference value, it was evaluated as “good”. If the value is almost the same as the reference value, When it was worse than the reference value, it was evaluated as “bad”.
  • the specific resistance of the coating film is determined by measuring the surface resistance of the coating film by a four-probe method, and measuring the film thickness of the coating film by a scanning electron microscope (SEM). Calculated from the film thickness. The results are shown in Table 1, respectively.
  • the composition of the present invention is compared to Comparative Example 1 in which no additive is added to the composition and Comparative Examples 2 and 3 in which a resin such as urethane or acrylic is added to the composition.
  • Comparative Examples 1 to 7 in which PVP, a PVP copolymer or cellulose ether was added to the product, it was high and diffuse reflectance was obtained at all measured wavelengths.
  • a coating film having such properties is suitable for use as a solar cell electrode.
  • a metal salt solution that forms metal nanoparticles shown in Table 2 below was dissolved in deionized water to prepare an aqueous metal salt solution.
  • sodium citrate was dissolved in deionized water to prepare a sodium citrate aqueous solution having a concentration of 6 mass%.
  • granular ferrous sulfate is directly added and dissolved in a nitrogen gas stream maintained at 35 ° C., and the molar ratio of citrate ions and ferrous ions is 3: 2.
  • An aqueous reducing agent solution was prepared.
  • the magnetic stirrer stirrer is placed in the reducing agent aqueous solution, and the stirrer is rotated at a rotation speed of lOOrpm, thereby reducing the reducing agent aqueous solution.
  • the aqueous metal salt solution was added dropwise to the aqueous reducing agent solution while stirring.
  • the metal salt aqueous solution at room temperature was dropped by adjusting the concentration of each solution so that the amount of the metal salt aqueous solution added to the reducing agent aqueous solution was 1/10 or less of the amount of the reducing agent aqueous solution.
  • the reaction temperature was kept at 40 ° C.
  • the mixing ratio of the reducing agent aqueous solution to the metal salt aqueous solution is 3 times the molar ratio of the citrate ion and ferrous ion in the reducing agent aqueous solution to the total valence of the metal ions in the metal salt aqueous solution. It was made to be a mole.
  • stirring of the mixed solution is further continued for 15 minutes to generate metal particles inside the mixed solution, thereby obtaining a metal particle dispersion liquid in which the metal particles are dispersed. It was.
  • the pH of the metal particle dispersion was 5.5, and the stoichiometric amount of metal particles in the dispersion was 5 g / liter.
  • the obtained dispersion was allowed to stand at room temperature, so that the metal particles in the dispersion were allowed to settle, and the aggregates of the precipitated metal particles were separated by decantation.
  • Deionized water is added to the separated metal agglomerates to form a dispersion, which is desalted by ultrafiltration, and then further treated with methanol.
  • substitution cleaning the metal content was adjusted to 50% by mass.
  • the centrifugal force of the centrifuge is adjusted to separate relatively large metal particles with a particle size exceeding lOOnm. Was adjusted to contain 71% in number average.
  • the proportion of metal nanoparticles in the primary particle size range of 10 to 50 nm with respect to 100% of all metal nanoparticles was adjusted to 71% on a number average.
  • the resulting metal nanoparticles were chemically modified with a protective agent for an organic molecular main chain having a carbon skeleton of 3 carbon atoms.
  • composition for coating test obtained in Examples 10 to 21 and Comparative Example 4 was coated on the base materials shown in Table 2 by various film forming methods so as to have a film thickness of 10 2 to 2 X 10 nm. did. Then, the conductive coating film was formed on the base material by baking under the heat treatment conditions shown in Table 2 below.
  • the specific resistance of the coating film was calculated by measuring the surface resistance of the coating film by the four-probe method, measuring the film thickness of the coating film by SEM, and calculating from the measured surface resistance and film thickness.
  • the reflectance of the coating film was evaluated by measuring the diffuse reflectance of the coating film at a wavelength of 800 nm using a combination of an ultraviolet-visible spectrophotometer and an integrating sphere.
  • the coating thickness was measured by cross-sectional observation with SEM.
  • the average surface roughness was obtained by evaluating the evaluation value regarding the surface shape obtained by an atomic force microscope (AFM) according to JIS B0601. The results are shown in Table 3, respectively.
  • oxio 2 110 table 3 as is apparent from the composition and the conductive coating film formed using the embodiments 10 to 21, conductive coating formed by using the composition of Comparative example 4 Compared to the film, the specific resistance and reflectance were comparable, but the average surface roughness of the coating film was llOnm in Comparative Example 4, whereas Examples 10-21 were in the range of 10-40 nm. It was confirmed that the surface roughness in a range suitable for the texture structure of the back electrode constituting the substrate type solar cell was obtained.
  • metal salts of the type forming metal nanoparticles shown in Tables 4 to 6 below were dissolved in deionized water to prepare an aqueous metal salt solution.
  • the concentration was prepared Kuen aqueous solution of sodium 26 weight 0/0 by dissolving sodium Kuen acid in deionized water.
  • aqueous sodium citrate solution granular ferrous sulfate is directly added and dissolved in a nitrogen gas stream maintained at 35 ° C, and the citrate ion and ferrous ion are mixed at a molar ratio of 3: 2.
  • An aqueous reducing agent solution was prepared.
  • the magnetic stirrer stirrer was placed in the reducing agent aqueous solution, and the stirrer was rotated at a rotation speed of lOOrpm, While stirring the reducing agent aqueous solution, the metal salt aqueous solution was added dropwise to the reducing agent aqueous solution and mixed.
  • the metal salt aqueous solution at room temperature was dropped by adjusting the concentration of each solution so that the amount of the metal salt aqueous solution added to the reducing agent aqueous solution was 1/10 or less of the amount of the reducing agent aqueous solution.
  • the reaction temperature was kept at 40 ° C.
  • the mixing ratio of the reducing agent aqueous solution to the metal salt aqueous solution is 3 times the molar ratio of the citrate ion and ferrous ion in the reducing agent aqueous solution to the total valence of the metal ions in the metal salt aqueous solution. It was made to be a mole.
  • stirring of the mixed solution is further continued for 15 minutes to generate metal particles inside the mixed solution, thereby obtaining a metal particle dispersion liquid in which the metal particles are dispersed. It was.
  • the pH of the metal particle dispersion was 5.5, and the stoichiometric amount of metal particles in the dispersion was 5 g / liter.
  • the obtained dispersion was allowed to stand at room temperature, whereby the metal particles in the dispersion were allowed to settle, and aggregates of the precipitated metal particles were separated by decantation.
  • Deionized water was added to the separated metal agglomerate to form a dispersion, which was desalted by ultrafiltration, and further washed by displacement with methanol to make the metal content 50% by mass. Then, using a centrifuge, the centrifugal force of the centrifuge is adjusted to separate relatively large metal particles with a particle size exceeding lOOnm. Was adjusted to contain 71% in number average.
  • the proportion of metal nanoparticles in the primary particle size range of 10 to 50 nm with respect to 100% of all metal nanoparticles was adjusted to 71% on a number average.
  • the resulting metal nanoparticles were chemically modified with a protective agent for an organic molecular main chain having a carbon skeleton of 3 carbon atoms.
  • adhesion to the substrate was evaluated by a method based on JIS K 5600-5-6 (cross-cut method) and evaluated qualitatively. Specifically, when no significant peeling occurred in the coating film, that is, when the peeling classification was in the range of 0 to 2, it was evaluated as “good”, and the others were evaluated as “bad”.
  • the specific resistance of the coating film was calculated by measuring the surface resistance of the coating film by the four-probe method, measuring the film thickness of the coating film by SEM, and calculating from the measured surface resistance and film thickness.
  • the reflectance of the coating film was evaluated by measuring the diffuse reflectance of the coating film at a wavelength of 800 nm using a combination of an ultraviolet-visible spectrophotometer and an integrating sphere.
  • the coating thickness was measured by cross-sectional observation with SEM.
  • the average surface roughness was obtained by evaluating the evaluation value for the surface shape obtained by AFM according to JIS B0601. The results are shown in Table 7 and Table 8, respectively.
  • Adhesiveness Specific resistance [ ⁇ ⁇ cm] Reflectivity (800nm) [% R] Coating thickness [nm] Average surface roughness [nm] Actual 2 Good 3.1X10— 6 95 1.0X10 2 10 Shelf 23 Good 3.5X10 1 6 95 5. OX 10 2 30 Glue 24 Good 5. IX 10— 6 90 1.
  • Adhesiveness Specific resistance [ ⁇ ⁇ ⁇ ] Reflectance (800tim) [R] Coating thickness [nm] Average surface roughness [nm] Difficult 1 Good 5.5X10 " 6 80 LOX10 3 50
  • the reflectance does not decrease even when an additive is added. Furthermore, it can be confirmed that the average surface roughness of the coating film is within the range of 10 to 100 nm, and the surface roughness is in a range suitable for the texture structure of the back electrode constituting the substrate type solar cell. It was. Industrial applicability
  • an electrode forming composition a method of forming an electrode using this composition, a solar cell electrode, an electronic paper electrode, a solar cell, and an electronic paper obtained by the above method can be provided. It is extremely useful in industry.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Disclosed is a composition for electrode formation, wherein metal nanoparticles are dispersed in a dispersion medium. The composition contains one or more organic polymers selected from the group consisting of polyvinylpyrrolidones, copolymers of polyvinylpyrrolidones, polyvinyl alcohols and cellulose ethers.

Description

明 細 書  Specification
電極形成用組成物及び該組成物を用いた電極の形成方法  Electrode forming composition and electrode forming method using the composition
技術分野  Technical field
[0001] 本発明は、電極形成用組成物とこの組成物を用いて電極を形成する方法、前記方 法により得られた太陽電池用電極、電子ペーパー用電極並びに太陽電池、電子ぺ 一パーに関するものである。  The present invention relates to an electrode forming composition, a method of forming an electrode using this composition, a solar cell electrode, an electronic paper electrode, a solar cell, and an electronic paper obtained by the above method. Is.
本願 (ま、 2006年 10月 11曰 ίこ曰本国 ίこ出願された特願 2006— 277228号、 200 7年 2月 16曰〖こ曰本国 ίこ出願された特願 2007— 35650号、及び 2007年 10月 2曰 に日本国に出願された特願 2007— 258311号に基づき優先権を主張し、その内容 をここに援用する。  This application (October 2006, November 11, 2006, Japanese Patent Application No. 2006—277228 filed, February 2007, 2007, Japanese Patent Application No. 2007—35650, and Claimed priority based on Japanese Patent Application No. 2007-258311 filed in Japan on October 2, 2007, the contents of which are incorporated herein by reference.
背景技術  Background art
[0002] 現在、環境保護の立場から、クリーンなエネルギの研究開発が進められている。中 でも太陽電池は、その資源である太陽光が無限であること、無公害であることなどか ら注目を集めている。従来、太陽電池による太陽光発電には、単結晶又は多結晶シ リコンが多く用いられてきた。し力、し太陽電池に使用するこれらのシリコンでは、結晶 の成長に多くのエネルギと時間とを要し、かつ、続く製造工程においても複雑な工程 が必要となるため、量産効率が上がり難ぐ低価格の太陽電池を提供することが困難 であった。  [0002] Currently, research and development of clean energy is underway from the standpoint of environmental protection. Among them, solar cells are attracting attention because of their infinite and non-polluting sunlight. Conventionally, monocrystalline or polycrystalline silicon has been frequently used for photovoltaic power generation using solar cells. However, these silicons used in solar cells require a lot of energy and time for crystal growth, and complicated processes are required in the subsequent manufacturing process, making it difficult to increase mass production efficiency. It was difficult to provide low-cost solar cells.
[0003] 一方、アモルファスシリコンなどの半導体を用いた、いわゆる薄膜半導体太陽電池( 以下、薄膜太陽電池という。)は、ガラス又はステンレススチールなどの安価な基板上 に、光電変換層である半導体層を必要なだけ形成すればよい。従って、この薄膜太 陽電池は、薄型で軽量、製造コストの安さ、大面積化が容易であることなどから、今後 の太陽電池の主流になると考えられてレ、る。  [0003] On the other hand, so-called thin film semiconductor solar cells (hereinafter referred to as thin film solar cells) using a semiconductor such as amorphous silicon have a semiconductor layer as a photoelectric conversion layer formed on an inexpensive substrate such as glass or stainless steel. It is sufficient to form as many as necessary. Therefore, this thin-film solar cell is considered to become the mainstream of future solar cells because it is thin and light, inexpensive to manufacture, and easy to increase in area.
[0004] しかし、薄膜太陽電池は、その変換効率が結晶シリコンを用いた太陽電池に比べ て低ぐこれまで本格的に使用されてこなかった。そこで薄膜太陽電池の性能を改善 するために、現在様々な工夫がなされている。  [0004] However, thin-film solar cells have not been used in earnest until now because their conversion efficiency is lower than that of solar cells using crystalline silicon. Various measures are currently being taken to improve the performance of thin-film solar cells.
[0005] その一つが、光電変換層の裏面側、つまり本発明の利用分野の一つである薄膜太 陽電池の裏面電極からの光の反射特性を高めることである。これによつて、光電変換 層で吸収されなかった太陽光を、再び光電変換層に戻し、従来吸収されていなかつ た太陽光を有効に利用することが可能となる。 One of them is the back side of the photoelectric conversion layer, that is, the thin film thickness which is one of the fields of application of the present invention. It is to improve the reflection characteristics of light from the back electrode of the positive battery. As a result, sunlight that has not been absorbed by the photoelectric conversion layer can be returned to the photoelectric conversion layer, and sunlight that has not been absorbed can be used effectively.
[0006] 中でも、エネルギの低い長波長領域の光を光電変換層に効率的に吸収させるため には、裏面電極に数十ナノメートルからミクロンサイズの凹凸形状を有する表面構造 、いわゆるテクスチャ構造を形成させることが大変効果的である。光電変換層で吸収 されきれずに裏面電極に到達した光は、このテクスチャ構造を持つ裏面電極で散乱 反射され、方向を変えて再び光電変換層に入っていく。この散乱により光路長が伸 びるとともに、全反射条件により光が効果的に太陽電池内に閉じ込められる。この光 閉じ込め効果と称される効果により、光電変換層での光吸収が促進されて太陽電池 の変換効率が向上する。光閉じ込め効果は、太陽電池の高効率化技術として今や 必須の技術となっている。  In particular, in order to efficiently absorb light in a long wavelength region with low energy into the photoelectric conversion layer, a surface structure having a concavo-convex shape of several tens of nanometers to a micron size is formed on the back electrode, so-called texture structure. It is very effective. Light that reaches the back electrode without being completely absorbed by the photoelectric conversion layer is scattered and reflected by the back electrode having this textured structure, changes its direction, and enters the photoelectric conversion layer again. This scattering increases the optical path length, and the light is effectively confined in the solar cell due to the total reflection condition. This so-called light confinement effect promotes light absorption in the photoelectric conversion layer and improves the conversion efficiency of the solar cell. The light confinement effect is now an indispensable technology for improving the efficiency of solar cells.
[0007] 図 5に示すように、透光性基板側から光を入射させるスーパーストレート型太陽電 池 110では、通常、基板 111—透明電極 112—アモルファス Si層 113aと微結晶 Si 層 113bからなる光電変換層 113—裏面電極 115の順で形成された構造をとつてお り、光の散乱と光閉じ込め効果を発現させるために、一般的にこの光入射側の透明 電極 112、例えば SnOといった材料にテクスチャ構造 112aを形成させて光散乱を 生じさせることで、光閉じ込め効果を発現させている。なお、このスーパーストレート型 太陽電池では、光電変換層 113の表面バッジべーシヨン、裏面電極 115とのォーミツ クコンタクト、並びに増反射光学設計のために、光電変換層 113と裏面電極 115の間 に透明導電膜 114が形成される。  [0007] As shown in FIG. 5, a super straight type solar cell 110 in which light is incident from the translucent substrate side usually includes a substrate 111—a transparent electrode 112—an amorphous Si layer 113a and a microcrystalline Si layer 113b. In order to achieve the light scattering and light confinement effect, it is common to use a transparent electrode 112 on the light incident side, such as SnO, for example, in order to achieve the light scattering and light confinement effects. The light confinement effect is expressed by forming the texture structure 112a in the light and causing light scattering. Note that in this super straight type solar cell, the surface badge badge of the photoelectric conversion layer 113, the ohmic contact with the back electrode 115, and the transparent reflection between the photoelectric conversion layer 113 and the back electrode 115 due to the increased reflection optical design. A conductive film 114 is formed.
[0008] 一方、図 6に示すように、光電変換層の表面から光を入射させるサブストレート型太 陽電池 20では、通常、基板 121—裏面電極 122—アモルファス Si層 123aと微結晶 Si層 123bからなる光電変換層 123—透明電極 124の順で形成された構造をとつて おり、一般的にこの裏面電極 122にテクスチャ構造 122aを形成させて光散乱を生じ させることで、光閉じ込め効果を発現させている。  On the other hand, as shown in FIG. 6, in the substrate type solar cell 20 in which light is incident from the surface of the photoelectric conversion layer, the substrate 121—the back electrode 122—the amorphous Si layer 123a and the microcrystalline Si layer 123b are usually used. It consists of a photoelectric conversion layer 123 and a transparent electrode 124 in this order. In general, the back electrode 122 is formed with a textured structure 122a to cause light scattering, thereby producing a light confinement effect. I am letting.
[0009] このサブストレート型太陽電池のテクスチャ構造を有する裏面電極を形成する方法 として、蒸着中に加熱することで金属膜を多結晶化する方法 (例えば、特許文献 1参 照。)、金属電極を蒸着'熱処理後、スパッタエッチングする方法 (例えば、特許文献 2参照。)、蒸着中の加熱で局所的な銀の凝集を促し、凹凸を持つ半連続膜を形成さ せた後に、低温で銀を蒸着することで連続膜を形成する方法 (例えば、特許文献 3参 照。)、基材を加熱しながら Al— Siの合金などを蒸着することで凹凸膜を形成し、そ の上に反射率の高い金属膜を蒸着する方法 (例えば、特許文献 4参照。)、更に、 Ag Al合金を蒸着することで凹凸膜を形成する方法 (例えば、特許文献 5参照。)等が それぞれ提案されている。 [0009] As a method of forming a back electrode having a texture structure of this substrate type solar cell, a method of polycrystallizing a metal film by heating during vapor deposition (see, for example, Patent Document 1) Teru. ), After vapor deposition 'heat treatment and sputter etching (see, for example, Patent Document 2), after heating during deposition promotes local aggregation of silver and forms a semi-continuous film with irregularities A method of forming a continuous film by evaporating silver at a low temperature (see, for example, Patent Document 3), an Al—Si alloy or the like is deposited while heating the substrate, and an uneven film is formed. A method of depositing a metal film having a high reflectance on the substrate (for example, see Patent Document 4), and a method of forming an uneven film by depositing an AgAl alloy (for example, see Patent Document 5). Each has been proposed.
特許文献 1:特開平 03— 99477号公報(第 6頁左上欄 19行目〜第 6頁右上欄 3行目 ) Patent Document 1: Japanese Patent Laid-Open No. 03-99477 (page 6, upper left column, line 19 to page 6, upper right column, line 3)
特許文献 2:特開平 03— 99478号公報 (特許請求の範囲 (1)) Patent Document 2: Japanese Patent Laid-Open No. 03-99478 (Claims (1))
特許文献 3:特開平 04— 218977号公報 (請求項 2、段落 [0019]〜段落 [0020]、 第 1図) Patent Document 3: Japanese Patent Laid-Open No. 04-218977 (Claim 2, paragraphs [0019] to [0020], FIG. 1)
特許文献 4:特開平 04 334069号公報 (段落 [0014] ) Patent Document 4: Japanese Patent Laid-Open No. 04 334069 (paragraph [0014])
特許文献 5 :特開 2005— 2387号公報 (段落 [0062] ) Patent Document 5: Japanese Unexamined Patent Publication No. 2005-2387 (paragraph [0062])
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
しかしながら、従来のスーパーストレート型太陽電池のテクスチャ構造を有する裏面 電極を形成する方法では、真空成膜法を基本としており、真空プロセスが必要である ことからプロセスの制約又は製造設備のランニングコスト等に関して大きな問題があ つた。また、導電性を有するペーストを用いて塗布、焼成することにより裏面電極 115 を形成することも検討されている。しかし、従来知られている導電性を有するペースト としては、フレーク状の銀粒子にアクリル樹脂、酢酸ビュル樹脂、エポキシ樹脂、ポリ エステル樹脂などのバインダ、溶剤、硬化剤、触媒などを添加混合して得られる銀ぺ 一スト等である。そのため、このような一般的な導電性を有するペーストを用いて得ら れた塗膜は、基材との密着性を有してはいる力 比抵抗(体積抵抗率)は 10— 4〜; 10— 5 Ω 'cmのオーダーと、金属銀の比抵抗 1 · 6 X 10— 6 Ω 'cmの 10〜100倍になってお り、十分な導電性が得られていない問題があった。また、透明導電膜 114と裏面電極 115との界面に空気層などの空間(隙間)が形成されてしまうおそれがあった。透明 導電膜 114と裏面電極 115との界面にこのような空間が形成されると、到達した光が 空間内に閉じ込められ、散乱による減衰と金属への光吸収が起こってしまうため、主 として 600nm以上の光の吸収損失となって、変換効率の低下が著しくなる。 However, the conventional method for forming a back electrode having a texture structure of a super straight type solar cell is based on a vacuum film formation method, and requires a vacuum process. There was a big problem. In addition, it has been studied to form the back electrode 115 by applying and baking using a conductive paste. However, as a conventionally known conductive paste, flaky silver particles are added and mixed with a binder such as an acrylic resin, a butyl acetate resin, an epoxy resin or a polyester resin, a solvent, a curing agent, a catalyst, and the like. The silver paste obtained. Therefore, the coating film obtained we were using a paste having such a common conductive, force resistivity (volume resistivity) to have the have the adhesion to the substrate is 10 4 to; 'and the order of cm, resistivity 1 · 6 X 10- 6 Ω metallic silver' 10- 5 Omega Ri Contact become 10-100 times cm, sufficient conductivity is a problem that has not been obtained. In addition, a space (gap) such as an air layer may be formed at the interface between the transparent conductive film 114 and the back electrode 115. Transparent When such a space is formed at the interface between the conductive film 114 and the back electrode 115, the light that has reached is confined in the space, causing attenuation due to scattering and absorption of light into the metal. As a result, the conversion efficiency is significantly reduced.
[0011] また、従来のサブストレート型太陽電池のテクスチャ構造を有する裏面電極を形成 する方法では、上記特許文献 1〜 5に示されるように真空成膜法を基本としている。こ のため、真空プロセスが必要であることからプロセスの制約又は製造設備のランニン グコスト等に関して大きな問題があった。 [0011] In addition, the conventional method for forming a back electrode having a texture structure of a substrate type solar cell is based on a vacuum film forming method as described in Patent Documents 1 to 5 above. For this reason, since a vacuum process is necessary, there have been major problems with respect to process restrictions or the running cost of manufacturing equipment.
[0012] また、近年、次世代の表示デバイスとして期待されている電子ペーパーの研究開発 が盛んである。電子ペーパーは、紙のような极いやすさを兼ね備えた表示デバイスの 総称であり、図 7に示すように、基材 131に透明導電膜 132を介して動作層 133が形 成され、この動作層 133の界面に電極層 134が接合された構造を有するものが知ら れている。  [0012] In recent years, research and development of electronic paper, which is expected as a next-generation display device, has been actively conducted. Electronic paper is a collective term for display devices that have extreme ease like paper, and as shown in FIG. 7, an operation layer 133 is formed on a base material 131 with a transparent conductive film 132 interposed therebetween. One having a structure in which an electrode layer 134 is bonded to the interface 133 is known.
[0013] しかしながら、従来の銀ペーストのような導電性を有するペーストを用いて動作層 1 33表面に電極層 134を形成する場合、焼成による焼結の過程で動作層 133と電極 層 134との接合界面に凹凸(空間)が発生してしまう問題があった。このため、従来の 導電性を有するペーストを用いて形成した電極層では、発生した凹凸によって電界 集中が起こり、電界集中が生じて!/、る箇所と生じて!/、な!/、箇所とで動作に違!/、が生じ るため、電子ペーパーには適してはいなかった。  [0013] However, when the electrode layer 134 is formed on the surface of the working layer 133 using a conductive paste such as a conventional silver paste, the working layer 133 and the electrode layer 134 are not bonded in the sintering process by firing. There was a problem that unevenness (space) occurred at the joint interface. For this reason, in the electrode layer formed using the conventional conductive paste, the electric field concentration occurs due to the generated unevenness, and the electric field concentration occurs! /, Where it occurs! /, What! /, Where This is not suitable for electronic paper because it causes a difference in operation.
[0014] 本発明の目的は、スーパーストレート型太陽電池の裏面電極を形成する際の成膜 時に真空プロセスを必要とせず、透明導電膜と裏面電極との接合界面に細かな空気 層などの空間を形成させない制御をすることが可能な、電極を形成するために好適 な組成物と、この組成物を用いて電極を形成する方法、前記方法により得られた太 陽電池用電極、太陽電池を提供することにある。  [0014] An object of the present invention is to provide a space such as a fine air layer at the bonding interface between the transparent conductive film and the back electrode without requiring a vacuum process during film formation when forming the back electrode of the superstrate solar cell. A composition suitable for forming an electrode that can be controlled so as not to form an electrode, a method of forming an electrode using this composition, a solar cell electrode obtained by the above method, and a solar cell It is to provide.
[0015] 本発明の別の目的は、サブストレート型太陽電池の裏面電極を形成する際の成膜 時に真空プロセスを必要とせず、良好なテクスチャ構造を形成でき、更にはこのテク スチヤ構造の平均表面粗さ及び形状を制御することが可能な、電極を形成するため に好適な組成物と、この組成物を用いて電極を形成する方法、前記方法により得ら れた太陽電池用電極、太陽電池を提供することにある。 [0016] 本発明の更に別の目的は、電子ペーパーの電極層を形成する際に、動作層との 接合界面を平滑にすることが可能な、電極形成用組成物と、この組成物を用いて電 極を形成する方法、前記方法により得られた電子ペーパー用電極、電子ペーパーを 提供することにある。 [0015] Another object of the present invention is that a vacuum process is not required at the time of film formation when forming the back electrode of a substrate type solar cell, and a good texture structure can be formed. A composition suitable for forming an electrode capable of controlling the surface roughness and shape, a method for forming an electrode using this composition, a solar cell electrode obtained by the method, a solar cell To provide a battery. [0016] Still another object of the present invention is to use an electrode-forming composition capable of smoothing a bonding interface with an operating layer when forming an electrode layer of electronic paper, and the composition. It is an object of the present invention to provide a method for forming an electrode, an electrode for electronic paper obtained by the method, and electronic paper.
[0017] 本発明の更に別の目的は、組成物中に含まれる金属ナノ粒子を構成する金属その ものの反射率に近い反射率と、組成物中に含まれる金属ナノ粒子を構成する金属そ のものが有する比抵抗に近!/、比抵抗とを有し、かつ密着性に優れた電極を得ること ができる、電極形成用組成物と、この組成物を用いて電極を形成する方法を提供す るこどにめる。  [0017] Still another object of the present invention is to provide a reflectance close to the reflectance of the metal constituting the metal nanoparticle contained in the composition, and the metal constituting the metal nanoparticle contained in the composition. Provided is an electrode-forming composition capable of obtaining an electrode having a specific resistance close to / and having a specific resistance and excellent adhesion, and a method of forming an electrode using this composition Talk to your child.
課題を解決するための手段  Means for solving the problem
[0018] 本発明の第 1の態様は、金属ナノ粒子が分散媒に分散した電極形成用組成物であ つて、前記組成物中にポリビュルピロリドン(以下、 PVPという。)、 PVPの共重合体、 ポリビュルアルコール(以下、 PVAという。)及びセルロースエーテルからなる群より選 ばれた 1種又は 2種以上の有機高分子を含むことを特徴とする電極形成用組成物で ある。 [0018] A first aspect of the present invention is an electrode-forming composition in which metal nanoparticles are dispersed in a dispersion medium, wherein polybulurpyrrolidone (hereinafter referred to as PVP) and PVP are co-polymerized in the composition. An electrode-forming composition comprising one or more organic polymers selected from the group consisting of a coalesced polybutyl alcohol (hereinafter referred to as PVA) and cellulose ether.
[0019] 前記有機高分子の含有率は、金属ナノ粒子の 0.;!〜 20質量%であってもよい。  [0019] The content of the organic polymer may be 0.;! To 20% by mass of the metal nanoparticles.
[0020] 前記金属ナノ粒子は、 75質量%以上の銀ナノ粒子を含有していてもよい。  [0020] The metal nanoparticles may contain 75% by mass or more of silver nanoparticles.
[0021] 前記金属ナノ粒子は、炭素骨格が炭素数 1〜3である有機分子主鎖の保護剤で化 学修飾されていてもよい。  [0021] The metal nanoparticles may be chemically modified with a protective agent for an organic molecular main chain having a carbon skeleton of 1 to 3 carbon atoms.
[0022] 前記金属ナノ粒子は、一次粒径 10〜50nmの範囲内の金属ナノ粒子を数平均で 7[0022] The metal nanoparticles include a number average of metal nanoparticles having a primary particle size in the range of 10 to 50 nm.
0%以上含有して!/、てもよ!/、。 Contains 0% or more!
[0023] 前記金属ナノ粒子は、 75質量%以上の銀ナノ粒子を含有し、かつ、金、白金、パラ ジゥム、ルテニウム、ニッケル、銅、錫、インジウム、亜鉛、鉄、クロム及びマンガンから なる群より選ばれた 1種の粒子又は 2種以上の混合組成又は合金組成からなる粒子 を更に含有し、金属ナノ粒子に含まれる銀ナノ粒子以外の粒子の含有量が 0. 02質 量%以上 25質量%未満であってもよ!/、。 [0023] The metal nanoparticles contain 75% by mass or more of silver nanoparticles and are made of gold, platinum, palladium, ruthenium, nickel, copper, tin, indium, zinc, iron, chromium and manganese. 1 type of particles selected from the above or particles of a mixed composition or alloy composition of 2 or more types, and the content of particles other than silver nanoparticles contained in the metal nanoparticles is 0.02% by mass or more 25 It may be less than% by mass! /.
[0024] 前記分散媒は、アルコール類、或!/、はアルコール含有水溶液であってもよレ、。 [0024] The dispersion medium may be an alcohol, or! /, Or an alcohol-containing aqueous solution.
[0025] 前記電形成用組成物は、金属酸化物、金属水酸化物、有機金属化合物及びシリコ ーンオイルからなる群より選ばれた 1種又は 2種以上の添加物を更に含んでいてもよ い。 [0025] The electroforming composition comprises a metal oxide, a metal hydroxide, an organometallic compound, and silicon. It may further contain one or more additives selected from the group consisting of green oil.
[0026] 前記金属酸化物は、アルミニウム、シリコン、チタン、クロム、マンガン、鉄、コバルト 、ニッケル、銀、銅、亜鉛、モリブデン、錫、インジウム及びアンチモンからなる群より 選ばれた少なくとも 1種を含む酸化物或いは複合酸化物であってもよい。  [0026] The metal oxide includes at least one selected from the group consisting of aluminum, silicon, titanium, chromium, manganese, iron, cobalt, nickel, silver, copper, zinc, molybdenum, tin, indium and antimony. It may be an oxide or a complex oxide.
[0027] 前記金属水酸化物は、アルミニウム、シリコン、チタン、クロム、マンガン、鉄、コバルト 、ニッケル、銀、銅、亜鉛、モリブデン、錫、インジウム及びアンチモンからなる群より 選ばれた少なくとも 1種を含む水酸化物であってもよい。  [0027] The metal hydroxide is at least one selected from the group consisting of aluminum, silicon, titanium, chromium, manganese, iron, cobalt, nickel, silver, copper, zinc, molybdenum, tin, indium and antimony. It may be a hydroxide containing.
[0028] 前記有機金属化合物は、シリコン、チタン、クロム、マンガン、鉄、コバルト、ニッケル 、銀、銅、亜鉛、モリブデン及び錫の金属石鹼、金属錯体或いは金属アルコキシドで あってもよい。  [0028] The organometallic compound may be a metal sarcophagus, metal complex or metal alkoxide of silicon, titanium, chromium, manganese, iron, cobalt, nickel, silver, copper, zinc, molybdenum and tin.
[0029] 本発明の第 2の態様は、前述したいずれかの電極形成用組成物を基材上に湿式塗 工法で塗工して成膜する工程と、上面に成膜された基材を 130〜400°Cで焼成する 工程とを含む電極の形成方法である。  [0029] In a second aspect of the present invention, there is provided a step of coating one of the electrode forming compositions described above on a base material by a wet coating method, and a base material formed on the upper surface. And a step of firing at 130 to 400 ° C.
[0030] 請前記基材上面に形成した焼成後の電極の厚さは、 0. ;!〜 2. 0 mの範囲内で あってもよい。  [0030] The thickness of the fired electrode formed on the upper surface of the substrate may be in the range of 0.;! To 2.0 m.
[0031] 前記基材上面に形成した電極の平均表面粗さは、 10〜; !OOnmの範囲内であって あよい。  [0031] The average surface roughness of the electrode formed on the upper surface of the substrate may be in the range of 10 to! OOnm.
[0032] 前記基材は、シリコン、ガラス、透明導電材料を含むセラミックス、高分子材料又は 金属からなる基板のいずれか、或いはシリコン、ガラス、透明導電材料を含むセラミツ タス、高分子材料及び金属からなる群より選ばれた 2種以上の積層体であってもよ!/、 [0032] The substrate is made of silicon, glass, ceramics including a transparent conductive material, a substrate made of a polymer material or a metal, or ceramics including a silicon, glass, or a transparent conductive material, a polymer material, and a metal. It may be two or more kinds of laminates selected from the group of! /,
Yes
[0033] 前記基材は、太陽電池素子又は透明電極付き太陽電池素子のいずれかであって あよい。  [0033] The substrate may be either a solar cell element or a solar cell element with a transparent electrode.
[0034] 前記湿式塗工法は、スプレーコーティング法、ディスぺンサコーティング法、スピン コーティング法、ナイフコーティング法、スリットコーティング法、インクジェットコーティ ング法、スクリーン印刷法、オフセット印刷法又はダイコーティング法のいずれかであ つてもよい。 [0035] 本発明の第 3の態様は、前述したいずれかの電極の形成方法により得られた太陽 電池用電極である。 [0034] The wet coating method is any one of a spray coating method, a dispenser coating method, a spin coating method, a knife coating method, a slit coating method, an inkjet coating method, a screen printing method, an offset printing method or a die coating method. It may be. [0035] A third aspect of the present invention is a solar cell electrode obtained by any of the electrode forming methods described above.
[0036] 本発明の第 4の態様は、前述したいずれかの電極の形成方法により得られた電子 ペーパー用電極である。  [0036] A fourth aspect of the present invention is an electrode for electronic paper obtained by any one of the electrode forming methods described above.
[0037] 前記太陽電池用電極は、基板、裏面電極、光電変換層及び透明電極から少なくと も構成され、基板、裏面電極、光電変換層及び透明電極の順で形成されたサブスト レート型構造を有する太陽電池の裏面電極であってもよい。 [0037] The solar cell electrode is composed of at least a substrate, a back electrode, a photoelectric conversion layer, and a transparent electrode, and has a substrate structure formed in the order of the substrate, the back electrode, the photoelectric conversion layer, and the transparent electrode. It may be a back electrode of a solar cell.
[0038] 前記太陽電池用電極は、基板、透明電極、光電変換層及び裏面電極から少なくと も構成され、基板、透明電極、光電変換層及び裏面電極の順で形成されたスーパー ストレート型構造を有する太陽電池の裏面電極であってもよい。  [0038] The solar cell electrode has at least a substrate, a transparent electrode, a photoelectric conversion layer, and a back electrode, and has a super straight type structure formed in the order of the substrate, the transparent electrode, the photoelectric conversion layer, and the back electrode. It may be a back electrode of a solar cell.
[0039] 本発明の第 5の態様は、前述したいずれかの太陽電池用電極を含む太陽電池であ  [0039] A fifth aspect of the present invention is a solar cell including any one of the above-described solar cell electrodes.
[0040] 本発明の第 6の態様は、前述したいずれかの電子ペーパー用電極を含む電子ぺ 一パーである。 [0040] A sixth aspect of the present invention is an electronic paper including any of the electronic paper electrodes described above.
発明の効果  The invention's effect
[0041] 本発明の電極形成用組成物は、スーパーストレート型太陽電池の裏面電極を形成 する際の成膜時に、真空プロセスを必要とせず、透明導電膜と裏面電極との接合界 面に細かな空気層などの空間を形成させない制御をすることができる。また、サブスト レート型太陽電池の裏面電極を形成する際の成膜時に真空プロセスを必要とせず、 良好なテクスチャ構造を形成でき、更にはこのテクスチャ構造の平均表面粗さ及び形 状を制御すること力 Sできる。また、電子ペーパーの電極層を形成する際に、動作層と の接合界面を平滑にすることができる。更に、組成物中に含まれる金属ナノ粒子を構 成する金属そのものの反射率に近い反射率と、組成物中に含まれる金属ナノ粒子を 構成する金属そのものが有する比抵抗に近!/、比抵抗とを有し、かつ密着性に優れた 電極を得ること力 Sできる。  [0041] The electrode-forming composition of the present invention does not require a vacuum process during film formation when forming the back electrode of a super straight solar cell, and is fine at the junction interface between the transparent conductive film and the back electrode. It is possible to control such that a space such as a simple air layer is not formed. In addition, a vacuum process is not required at the time of film formation when forming the back electrode of the substrate type solar cell, a good texture structure can be formed, and the average surface roughness and shape of this texture structure can be controlled. Power S can be. In addition, when the electrode layer of the electronic paper is formed, the bonding interface with the operation layer can be smoothed. Furthermore, the reflectance is close to the reflectance of the metal itself constituting the metal nanoparticles contained in the composition, and the specific resistance of the metal itself constituting the metal nanoparticles contained in the composition! It is possible to obtain an electrode having resistance and excellent adhesion.
図面の簡単な説明  Brief Description of Drawings
[0042] [図 1A]本発明に係るスーパーストレート型太陽電池の製造工程の一実施形態を示す 断面図である。 [図 IB]同実施形態の製造方法を示す断面図である。 FIG. 1A is a cross-sectional view showing one embodiment of a manufacturing process of a super straight type solar cell according to the present invention. [FIG. IB] A sectional view showing the manufacturing method of the same embodiment.
[図 1C]同実施形態の製造方法を示す断面図である。 FIG. 1C is a cross-sectional view showing the manufacturing method of the same embodiment.
[図 1D]同実施形態の製造方法を示す断面図である。 FIG. 1D is a cross-sectional view showing the manufacturing method of the same embodiment.
[図 2A]本発明に係るサブストレート型太陽電池の製造工程の一実施例を示す断面 図である。  FIG. 2A is a cross-sectional view showing one embodiment of a production process of a substrate type solar cell according to the present invention.
[図 2B]同実施形態の製造方法を示す断面図である。  FIG. 2B is a cross-sectional view showing the manufacturing method of the same embodiment.
[図 2C]同実施形態の製造方法を示す断面図である。 FIG. 2C is a cross-sectional view showing the manufacturing method of the same embodiment.
[図 2D]同実施形態の製造方法を示す断面図である。 FIG. 2D is a cross-sectional view showing the manufacturing method of the same embodiment.
[図 3]本発明に係る電子ペーパーを示す断面図である。 FIG. 3 is a cross-sectional view showing an electronic paper according to the present invention.
[図 4]実施例 1〜 7及び比較例 1〜 3で得られた塗膜における拡散反射率を示すダラ フである。  FIG. 4 is a graph showing diffuse reflectance in the coating films obtained in Examples 1 to 7 and Comparative Examples 1 to 3.
[図 5]従来のスーパーストレート型太陽電池を示す断面図である。  FIG. 5 is a cross-sectional view showing a conventional super straight solar cell.
[図 6]従来のサブストレート型太陽電池を示す断面図である。 FIG. 6 is a cross-sectional view showing a conventional substrate type solar cell.
[図 7]従来の電子ペーパーを示す断面図である。 FIG. 7 is a cross-sectional view showing a conventional electronic paper.
符号の説明 Explanation of symbols
10 スーパーストレート型太陽電池  10 Super straight type solar cell
11 基材  11 Base material
12 透明電極  12 Transparent electrode
12a テクスチャ構造  12a Texture structure
13 光電変換層  13 Photoelectric conversion layer
13a ァモノレファス Si  13a Ammonorefusus Si
13b 微結晶 Si  13b Microcrystalline Si
14 透明導電膜  14 Transparent conductive film
15 裏面電極  15 Back electrode
20 サブストレート型太陽電池  20 Substrate type solar cell
21 基材  21 Base material
22 裏面電極  22 Back electrode
22a テクスチャ構造 23 光電変換層 22a Texture structure 23 Photoelectric conversion layer
23a ァモノレファス Si  23a Ammonorefusus Si
23b 微結晶 Si  23b Microcrystalline Si
24 透明電極  24 Transparent electrode
25 封止材  25 Sealant
30 電子ペーパー  30 electronic paper
31 基材  31 Substrate
32 透明導電膜  32 Transparent conductive film
33 動作層  33 Operation layer
34 電極層  34 Electrode layer
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0044] 次に本発明を実施するための最良の形態を説明する。 Next, the best mode for carrying out the present invention will be described.
[0045] 本発明の電極形成用組成物は、金属ナノ粒子が分散媒に分散した組成物である。  [0045] The composition for forming an electrode of the present invention is a composition in which metal nanoparticles are dispersed in a dispersion medium.
本発明の組成物では、この組成物中に PVP、 PVPの共重合体、 PVA及びセルロー スエーテルからなる群より選ばれた 1種又は 2種以上の有機高分子を含むことを特徴 とする。組成物中に窒素や酸素を含む上記種類からなる群より選ばれた 1種又は 2種 以上の有機高分子を所望の割合で含むことで、この組成物を用いてスーパーストレ ート型太陽電池の裏面電極を形成すると、金属ナノ粒子間の焼結による粒成長を制 御すること力 Sできる。粒成長を抑制する方向で制御すれば、透明導電膜と裏面電極 との接合界面の裏面電極側に凹凸が発生せず、空気層などの空間を形成させない ようにすることカでさる。  The composition of the present invention is characterized in that the composition contains one or more organic polymers selected from the group consisting of PVP, a copolymer of PVP, PVA and cellulose ether. A super-straight type solar cell using this composition containing one or more organic polymers selected from the group consisting of the above-mentioned types containing nitrogen and oxygen in a desired ratio in the composition. By forming the back electrode, it is possible to control grain growth by sintering between metal nanoparticles. If the control is performed in a direction that suppresses the grain growth, unevenness is not generated on the back electrode side of the bonding interface between the transparent conductive film and the back electrode, and a space such as an air layer is not formed.
[0046] また、この組成物を用いてサブストレート型太陽電池の裏面電極を形成すると、金 属ナノ粒子間の焼結による粒成長の抑制効果を与えるので、良好なテクスチャ構造 を有する電極を形成することができる。この場合、テクスチャ構造の平均表面粗さ及 び形状を制御することができる。なおかつ、この組成物を用いた電極は基材との密着 性に優れる。  [0046] Further, when the back electrode of the substrate type solar cell is formed using this composition, the effect of suppressing the grain growth due to the sintering between the metal nanoparticles is given, so the electrode having a good texture structure is formed. can do. In this case, the average surface roughness and shape of the texture structure can be controlled. Moreover, an electrode using this composition is excellent in adhesion to the substrate.
[0047] 本発明の組成物を用いた電極の形成では、成膜時に真空プロセスを必要としない ため、プロセスの制約が小さぐまた製造設備のランニングコストを大幅に低減するこ と力 Sできる。 [0047] The formation of the electrode using the composition of the present invention does not require a vacuum process at the time of film formation, so the process restrictions are small and the running cost of the manufacturing equipment is greatly reduced. And force S.
[0048] また、この組成物を用いて電子ペーパーの電極層を形成すると、金属ナノ粒子間 の焼結による粒成長を制御することができる。粒成長を抑制する方向で制御すれば、 動作層との接合界面を平滑にすることができる。  [0048] When an electrode layer of electronic paper is formed using this composition, grain growth due to sintering between metal nanoparticles can be controlled. If the control is performed in a direction that suppresses the grain growth, the bonding interface with the operation layer can be smoothed.
[0049] 更に、この組成物を用いて電極を形成すると、従来のエポキシ樹脂やウレタン樹脂 のような一般的なバインダを添加した場合ほどではな!/、が、実用上十分な密着性を 有し、かつ組成物中に含まれる金属ナノ粒子を構成する金属そのものの反射率に近 い反射率と、組成物中に含まれる金属ナノ粒子を構成する金属そのものが有する比 抵抗に近!/、比抵抗とを有する電極が得られる。  [0049] Further, when an electrode is formed using this composition, it is not as good as when a conventional binder such as a conventional epoxy resin or urethane resin is added! /, But has practically sufficient adhesion. In addition, the reflectance is close to the reflectance of the metal itself constituting the metal nanoparticle contained in the composition and the specific resistance of the metal itself constituting the metal nanoparticle contained in the composition! /, An electrode having a specific resistance is obtained.
[0050] 例えば、 PVPのような複素環を有する有機高分子を組成物中に添加すると、その 組成物を用いて形成した塗膜の表面粗さを低下させる効果を有する。そのため、上 記有機高分子の添加割合を調整することで、所望の表面粗さを有する塗膜表面を形 成すること力 Sできる。有機高分子の含有率は金属ナノ粒子の 0. ;!〜 20質量%の範 囲内で選択される。このうち、添加する種類にもよるが有機高分子の含有率は概ね 0 . 2-10. 0質量%の範囲内がより好ましい。有機高分子の含有率を金属ナノ粒子の 0. ;!〜 20質量%の範囲内としたのは、 0. 1質量%未満では焼結を抑制する効果が 得られず、また、形成した膜と基材との密着性が十分に得られないためであり、 20質 量%を越えると比抵抗及び反射率が低下する不具合を生じるためである。具体的に は、 PVPの共重合体としては、 PVP—メタタリレート共重合体、 PVP—スチレン共重 合体、 PVP—酢酸ビュル共重合体等が挙げられる。またセルロースエーテルとして セルロース等が挙げられる。  [0050] For example, when an organic polymer having a heterocyclic ring such as PVP is added to the composition, it has an effect of reducing the surface roughness of a coating film formed using the composition. Therefore, by adjusting the addition ratio of the organic polymer, it is possible to form a coating film surface having a desired surface roughness. The content of the organic polymer is selected within the range of 0.;! To 20% by mass of the metal nanoparticles. Among these, although depending on the kind to be added, the content of the organic polymer is more preferably in the range of about 0.2 to 10% by mass. The reason why the content of the organic polymer is in the range of 0.1% to 20% by mass of the metal nanoparticles is that if the content is less than 0.1% by mass, the effect of suppressing the sintering cannot be obtained, and the formed film This is because sufficient adhesion between the substrate and the substrate cannot be obtained, and when the content exceeds 20% by mass, the specific resistance and the reflectance decrease. Specific examples of the PVP copolymer include a PVP-metatalylate copolymer, a PVP-styrene copolymer, and a PVP-butyl acetate copolymer. Moreover, cellulose etc. are mentioned as a cellulose ether.
[0051] 上記 PVP等の有機高分子が含まれない組成物を用いて電極を形成すると、形成し た電極の表面粗さが大きくなる。しかし、電極表面の凹凸形状には光電変換効率を 最適化する条件があるとされており、単に表面粗さが大きいだけでは、光電変換効率 に優れた電極表面を形成することはできない。本発明の組成物のように、 PVP等の 種類、濃度等を調整することで、最適化された表面粗さの表面を形成することが可能 となる。 [0052] 上記金属ナノ粒子は 75質量%以上、好ましくは 80質量%以上の銀ナノ粒子を含 有する。銀ナノ粒子の含有量を全ての金属ナノ粒子 100質量%に対して 75質量% 以上の範囲としたのは、 75質量%未満ではこの組成物を用いて形成された電極の 反射率が低下してしまうからである。 [0051] When an electrode is formed using a composition that does not contain an organic polymer such as PVP, the surface roughness of the formed electrode increases. However, it is said that there are conditions for optimizing photoelectric conversion efficiency in the uneven shape of the electrode surface, and it is not possible to form an electrode surface with excellent photoelectric conversion efficiency simply by having a large surface roughness. As in the composition of the present invention, it is possible to form a surface having an optimized surface roughness by adjusting the type and concentration of PVP and the like. [0052] The metal nanoparticles contain 75% by mass or more, preferably 80% by mass or more of silver nanoparticles. The reason why the content of silver nanoparticles is in the range of 75% by mass or more with respect to 100% by mass of all metal nanoparticles is that the reflectivity of the electrode formed using this composition is lowered if it is less than 75% by mass. Because it will end up.
[0053] 上記金属ナノ粒子は炭素骨格が炭素数 1〜3の有機分子主鎖の保護剤で化学修 飾されること力 S好適である。基材上に組成物を塗布した後、焼成すると、金属ナノ粒 子の表面を保護して!/、た保護剤中の有機分子が脱離し又は分解し、或!/、は離脱し かつ分解することにより、実質的に電極の導電性及び反射率に悪影響を及ぼす有機 物残渣を含有しなレ、金属を主成分とする電極が得られるためである。金属ナノ粒子 を化学修飾する保護剤の有機分子主鎖の炭素骨格の炭素数を;!〜 3の範囲としたの は、炭素数力 以上であると焼成時の熱により保護剤が脱離或いは分解 (分離 '燃焼 )し難ぐ上記電極内に電極の導電性及び反射率に悪影響を及ぼす有機残渣が多く 残るからである。  [0053] The above-mentioned metal nanoparticles are preferably chemically modified with an organic molecular main chain protective agent having a carbon skeleton of 1 to 3 carbon atoms. When the composition is applied on the substrate and then baked, the surface of the metal nanoparticles is protected! /, And the organic molecules in the protective agent are detached or decomposed, or! / Are detached and decomposed. This is because an electrode containing a metal residue and a metal as a main component can be obtained without containing an organic residue that substantially affects the conductivity and reflectance of the electrode. The carbon number of the carbon skeleton of the organic molecular main chain of the protective agent that chemically modifies the metal nanoparticles was set in the range of! ~ 3. This is because many organic residues that adversely affect the conductivity and reflectance of the electrode remain in the electrode, which is difficult to decompose (separate and burn).
[0054] 更に保護剤、即ち金属ナノ粒子表面に化学修飾している保護分子は、水酸基(一 OH)又はカルボニル基(一 C = O)の!/、ずれか一方又は双方を含有する。水酸基( -OH)が銀ナノ粒子等の金属ナノ粒子を化学修飾する保護剤に含有されると、組成 物の分散安定性に優れ、塗膜の低温焼結にも効果的な作用がある。カルボニル基( c= o)が銀ナノ粒子等の金属ナノ粒子を化学修飾する保護剤に含有されると、上 記と同様に組成物の分散安定性に優れ、塗膜の低温焼結にも効果的な作用がある Further, the protective agent, that is, the protective molecule chemically modified on the surface of the metal nanoparticle contains a hydroxyl group (one OH) or a carbonyl group (one C═O) and / or one of both. When a hydroxyl group (—OH) is contained in a protective agent that chemically modifies metal nanoparticles such as silver nanoparticles, the composition has excellent dispersion stability and is effective for low-temperature sintering of the coating film. When a carbonyl group (c = o) is contained in a protective agent that chemically modifies metal nanoparticles such as silver nanoparticles, the composition has excellent dispersion stability as described above, and can be used for low-temperature sintering of the coating film. Has an effective action
Yes
[0055] 金属ナノ粒子は一次粒径 10〜50nmの範囲内の金属ナノ粒子を数平均で 70%以 上、好ましくは 75%以上含有する。一次粒径 10〜50nmの範囲内の金属ナノ粒子 の含有量を、数平均で全ての金属ナノ粒子 100%に対して 70%以上の範囲としたの は、 70%未満では金属ナノ粒子の比表面積が増大して保護剤の占める割合が大き くなり、焼成時の熱により脱離或いは分解(分離'燃焼)し易い有機分子であっても、 この有機分子の占める割合が多いため、電極内に有機残渣が多く残るからである。こ の残渣が変質又は劣化して電極の導電性及び反射率が低下したり、或いは金属ナ ノ粒子の粒度分布が広くなり電極の密度が低下し易くなつて、電極の導電性及び反 射率が低下してしまう更に上記金属ナノ粒子の一次粒径を 10〜50nmの範囲内とし たのは、統計的手法より一次粒径が 10〜50nmの範囲内にある金属ナノ粒子が経 時安定性 (経年安定性)と相関してレ、るからである。 [0055] The metal nanoparticles contain 70% or more, preferably 75% or more of the number average of metal nanoparticles having a primary particle size in the range of 10 to 50 nm. The content of metal nanoparticles in the primary particle size range of 10 to 50 nm is more than 70% with respect to 100% of all metal nanoparticles on a number average basis. Since the surface area increases and the proportion of the protective agent increases, even organic molecules that are easily desorbed or decomposed (separated and burned) by the heat during firing, the organic molecules account for a large proportion. This is because a lot of organic residue remains. This residue is altered or deteriorated to decrease the conductivity and reflectance of the electrode, or the particle size distribution of the metal nanoparticles is widened and the density of the electrode is easily decreased. The primary particle size of the above metal nanoparticles within the range of 10-50 nm, which decreases the emissivity, is that the metal nanoparticles with the primary particle size within the range of 10-50 nm are statistically determined by statistical methods. This is because it correlates with stability (aging stability).
[0056] また、上記金属ナノ粒子は 75質量%以上の銀ナノ粒子を含有し、かつ、金、白金、 パラジウム、ルテニウム、ニッケル、銅、錫、インジウム、亜鉛、鉄、クロム及びマンガン 力、らなる群より選ばれた 1種の粒子又は 2種以上の混合組成又は合金組成からなる 金属ナノ粒子を更に含有することが好適である。この銀ナノ粒子以外の金属ナノ粒子 は全ての金属ナノ粒子 100質量%に対して 0. 02質量%以上かつ 25質量%未満と すること力 S好ましく、 0. 03質量%〜20質量%とすることが更に好ましい。銀ナノ粒子 以外の粒子の含有量を全ての金属ナノ粒子 100質量%に対して 0. 02質量%以上 かつ 25質量%未満の範囲としたのは、 0. 02質量%未満では特に大きな問題はな いけれども、 0. 02質量%以上かつ 25質量%未満の範囲内においては、耐候性試 験(温度 100°Cかつ湿度 50 %の恒温恒湿槽に 1000時間保持する試験)後の電極 の導電性及び反射率が耐候性試験前と比べて悪化しな!/、と!/、う特徴があるからであ る。また、 25質量%以上では焼成直後の電極の導電性及び反射率が低下し、しかも 耐候性試験後の電極が耐候性試験前の電極より導電性及び反射率が低下してしま う力、らである。 [0056] The metal nanoparticles contain 75% by mass or more of silver nanoparticles, and gold, platinum, palladium, ruthenium, nickel, copper, tin, indium, zinc, iron, chromium and manganese. It is preferable to further contain metal nanoparticles composed of one kind of particles selected from the group consisting of two or more kinds of mixed compositions or alloy compositions. The metal nanoparticles other than silver nanoparticles should have a force of 0.02% by mass or more and less than 25% by mass with respect to 100% by mass of all metal nanoparticles, preferably 0.03% by mass to 20% by mass. More preferably. The reason why the content of particles other than silver nanoparticles is in the range of 0.02% by mass to less than 25% by mass with respect to 100% by mass of all metal nanoparticles However, within the range of 0.02% by mass or more and less than 25% by mass, the resistance of the electrode after the weather resistance test (a test held in a constant temperature and humidity chamber at a temperature of 100 ° C and a humidity of 50% for 1000 hours) This is because the conductivity and reflectivity are not deteriorated compared to those before the weather resistance test! /, And! /. On the other hand, if the content is 25% by mass or more, the conductivity and reflectance of the electrode immediately after firing are reduced, and the electrode after the weather resistance test has a lower conductivity and reflectance than the electrode before the weather resistance test. It is.
[0057] また、組成物は、金属酸化物、金属水酸化物、有機金属化合物及びシリコーンオイ ルからなる群より選ばれた 1種又は 2種以上の添加物を更に含むことができる。組成 物に上記種類の添加物を 1種又は 2種以上更に含ませることで、金属ナノ粒子間の 焼結による粒成長の更なる抑制効果を与えるので、 目的に応じた表面形状を作成す ること力 S可能となる。添加物の添加割合は組成物に対して 0. ;!〜 20質量%の範囲内 が好ましい。このうち、 1〜5質量%の範囲内が特に好ましい。添加物の添加割合が 下限値未満では粒成長の抑制効果が得られず、添加物の含有割合が上限値を越え ると比抵抗の著しい上昇という不具合を生じる。なお、本発明でいう金属酸化物には 、金属元素の酸化物だけでなぐ半金属元素の酸化物をも含む。また、本発明でいう 金属水酸化物には、金属元素の水酸化物だけでなぐ半金属元素の水酸化物をも 含む。同様に、本発明でいう有機金属化合物には、金属元素だけでなく半金属元素 を構成要素として含む。 [0057] The composition may further include one or more additives selected from the group consisting of metal oxides, metal hydroxides, organometallic compounds, and silicone oils. By further adding one or more of the above types of additives to the composition, the effect of further suppressing grain growth due to sintering between metal nanoparticles is given, so a surface shape corresponding to the purpose is created. That power S is possible. The addition ratio of the additive is preferably in the range of 0.;! To 20% by mass with respect to the composition. Of these, the range of 1 to 5% by mass is particularly preferable. If the additive ratio is less than the lower limit, the effect of suppressing grain growth cannot be obtained, and if the additive content exceeds the upper limit, the specific resistance increases significantly. Note that the metal oxide referred to in the present invention includes a metalloid oxide that is not only a metal element oxide. In addition, the metal hydroxide referred to in the present invention includes a metalloid hydroxide which is not only a metal element hydroxide. Similarly, the organometallic compound referred to in the present invention includes not only metal elements but also metalloid elements. As a component.
[0058] 前述した有機高分子及び上記種類の添加物の双方が含まれな!/、組成物を用いて 電極を形成すると、形成した電極の表面粗さが大きくなる。しかし、電極表面の凹凸 形状には光電変換効率を最適化する条件があるとされており、単に表面粗さが大き いだけでは、光電変換効率に優れた電極表面を形成することはできない。本発明の 組成物のように、有機高分子及び添加物の種類、濃度等を調整することで、最適化 された凹凸形状を形成することが可能となる。  [0058] Both the above-mentioned organic polymer and the above-mentioned types of additives are not included! / When an electrode is formed using the composition, the surface roughness of the formed electrode increases. However, it is said that there are conditions for optimizing the photoelectric conversion efficiency in the uneven shape of the electrode surface, and it is not possible to form an electrode surface with excellent photoelectric conversion efficiency simply by having a large surface roughness. As in the composition of the present invention, it is possible to form an optimized uneven shape by adjusting the kind and concentration of the organic polymer and additives.
[0059] 添加物として使用する金属酸化物としては、アルミニウム、シリコン、チタン、クロム、 マンガン、鉄、コバルト、ニッケル、銀、銅、亜鉛、モリブデン、錫、インジウム及びアン チモンからなる群より選ばれた少なくとも 1種を含む酸化物或いは複合酸化物が好適 である。複合酸化物とは具体的には酸化インジウム一酸化錫系複合酸化物(Indium Tin Oxide : ITO)、酸化アンチモン一酸化錫系複合酸化物(Antimony Tin Oxide : A TO)、酸化インジウム一酸化亜鉛系複合酸化物(Indium Zinc Oxide: IZO)等である [0059] The metal oxide used as the additive is selected from the group consisting of aluminum, silicon, titanium, chromium, manganese, iron, cobalt, nickel, silver, copper, zinc, molybdenum, tin, indium and antimony. In addition, an oxide or composite oxide containing at least one kind is preferable. Specific examples of composite oxides include indium tin oxide (ITO), antimony tin oxide (ATO), and zinc indium oxide. Complex oxide (Indium Zinc Oxide: IZO)
Yes
[0060] 添加物として使用する金属水酸化物としては、アルミニウム、シリコン、チタン、クロ ム、マンガン、鉄、コバルト、ニッケル、銀、銅、亜鉛、モリブデン、錫、インジウム及び アンチモンからなる群より選ばれた少なくとも 1種を含む水酸化物が好適である。  [0060] The metal hydroxide used as the additive is selected from the group consisting of aluminum, silicon, titanium, chromium, manganese, iron, cobalt, nickel, silver, copper, zinc, molybdenum, tin, indium and antimony. Hydroxides containing at least one of these are preferred.
[0061] 添加物として使用する有機金属化合物としては、シリコン、チタン、クロム、マンガン 、鉄、コバルト、ニッケル、銀、銅、亜鉛、モリブデン及び錫の金属石鹼、金属錯体或 いは金属アルコキシドが好適である。例えば、金属石鹼は、酢酸クロム、ギ酸マンガ ン、クェン酸鉄、ギ酸コバルト、酢酸ニッケル、クェン酸銀、酢酸銅、クェン酸銅、酢酸 錫、酢酸亜鉛、シユウ酸亜鉛、酢酸モリブデン等が挙げられる。また金属錯体はァセ チルアセトン亜鉛錯体、ァセチルアセトンクロム錯体、ァセチルアセトンニッケル錯体 等が挙げられる。また金属アルコキシドはチタニウムイソプロポキシド、メチルシリケ一  [0061] Examples of the organometallic compound used as the additive include silicon, titanium, chromium, manganese, iron, cobalt, nickel, silver, copper, zinc, molybdenum and tin metal sarcophagus, metal complexes or metal alkoxides. Is preferred. For example, metal sarcophagus includes chromium acetate, manganese formate, iron citrate, cobalt formate, nickel acetate, silver citrate, copper acetate, copper citrate, tin acetate, zinc acetate, zinc oxalate, molybdenum acetate, etc. It is done. Examples of the metal complex include a acetylacetone zinc complex, a acetylacetone chrome complex, and a acetylacetone nickel complex. Metal alkoxides are titanium isopropoxide, methyl silicate.
[0062] 添加物として使用するシリコーンオイルとしては、ストレートシリコーンオイル並びに 変性シリコーンオイルの双方を用いることができる。変性シリコーンオイルは更にポリ シロキサンの側鎖の一部に有機基を導入したもの(側鎖型)、ポリシロキサンの両末 端に有機基を導入したもの(両末端型)、ポリシロキサンの両末端のうちのどちらか一 方に有機基を導入したもの(片末端型)並びにポリシロキサンの側鎖の一部と両末端 に有機基を導入したもの (側鎖両末端型)を用いることができる。変性シリコーンオイ ルには反応性シリコーンオイルと非反応性シリコーンオイルとがある力 S、その双方の 種類ともに本発明の添加物として使用することができる。なお、反応性シリコーンオイ ルとは、ァミノ変性、エポキシ変性、カルボキシ変性、カルビノール変性、メルカプト変 性、並びに異種官能基変性 (エポキシ基、アミノ基、ポリエーテル基)を示し、非反応 性シリコーンオイルとは、ポリエーテル変性、メチルスチリル基変性、アルキル変性、 高級脂肪酸エステル変性、フッ素変性、並びに親水特殊変性を示す。 [0062] As the silicone oil used as an additive, both straight silicone oil and modified silicone oil can be used. Modified silicone oil is more poly Either one of the side chains of the siloxane introduced with an organic group (side chain type), one introduced with an organic group at both ends of the polysiloxane (both ends type), or one of both ends of the polysiloxane One having an organic group introduced (one-end type) and one having a side chain of polysiloxane and an organic group introduced at both ends (both side-chain type) can be used. The modified silicone oil has both a reactive silicone oil and a non-reactive silicone oil, and both types can be used as additives in the present invention. Reactive silicone oil means amino modification, epoxy modification, carboxy modification, carbinol modification, mercapto modification, and heterofunctional modification (epoxy group, amino group, polyether group), and non-reactive silicone. Oil means polyether modification, methylstyryl group modification, alkyl modification, higher fatty acid ester modification, fluorine modification, and hydrophilic special modification.
[0063] また電極形成用組成物中の金属ナノ粒子の含有量は、金属ナノ粒子及び分散媒 力もなる分散体 100質量%に対して 2. 5〜95. 0質量%含有することが好ましぐ 3. 5〜90. 0質量%含有することが更に好ましい。金属ナノ粒子の含有量を金属ナノ粒 子及び分散媒からなる分散体 100質量%に対して 2. 5〜95. 0質量%の範囲とした のは、 2. 5質量%未満では特に焼成後の電極の特性には影響はないけれども、必 要な厚さの電極を得ることが難しぐ 95. 0質量%を越えると組成物の湿式塗工時に インク或いはペーストとしての必要な流動性を失ってしまうからである。  [0063] The content of the metal nanoparticles in the electrode-forming composition is preferably 2.5 to 95.0% by mass with respect to 100% by mass of the metal nanoparticle and the dispersion medium that also serves as a dispersion medium. More preferably, the content is 3.5 to 90.0% by mass. The content of metal nanoparticles in the range of 2.5 to 95.0% by mass with respect to 100% by mass of the metal nanoparticle and dispersion medium is less than 2.5% by mass, especially after firing. Although it does not affect the characteristics of the electrode, it is difficult to obtain an electrode of the required thickness. If it exceeds 95% by mass, the required fluidity as an ink or paste will be lost during wet coating of the composition. Because it will end up.
[0064] また本発明の電極形成用組成物を構成する分散媒は、全ての分散媒 100質量% に対して、 1質量%以上、好ましくは 2質量%以上の水と、 2質量%以上、好ましくは 3 質量%以上のアルコール類とを含有することが好適である。例えば、分散媒が水及 びアルコール類のみからなる場合、水を 2質量%含有するときはアルコール類を 98 質量%含有し、アルコール類を 2質量%含有するときは水を 98質量%含有する。水 の含有量を全ての分散媒 100質量%に対して 1質量%以上の範囲が好適であるとし たのは、 1質量%未満では、組成物を湿式塗工法により塗工して得られた膜を低温 で焼結し難ぐまた焼成後の電極の導電性と反射率が低下してしまうからである。ァ ルコール類の含有量を全ての分散媒 100質量%に対して 2質量%以上の範囲が好 適であるとしたのは、 2質量%未満では、上記と同様に組成物を湿式塗工法により塗 ェして得られた膜を低温で焼結し難ぐまた焼成後の電極の導電性と反射率が低下 してしまう力、らである。分散媒に用いる上記アルコール類としては、メタノール、ェタノ 一ノレ、プロノ ノーノレ、ブタノーノレ、エチレングリコーノレ、プロピレングリコーノレ、ジェチ レングリコール、グリセロール、イソボニルへキサノール及びエリトリトールからなる群よ り選ばれた 1種又は 2種以上を用いることが好まし!/、。 [0064] The dispersion medium constituting the electrode forming composition of the present invention is 1% by mass or more, preferably 2% by mass or more, and 2% by mass or more, with respect to 100% by mass of all the dispersion media. It is preferable to contain 3% by mass or more of alcohols. For example, when the dispersion medium consists only of water and alcohols, when 2% by mass of water is contained, 98% by mass of alcohol is contained, and when 2% by mass of alcohol is contained, 98% by mass of water is contained. . The reason why the water content is preferably in the range of 1% by mass or more with respect to 100% by mass of all the dispersion media was obtained by applying the composition by a wet coating method when it was less than 1% by mass. This is because it is difficult to sinter the film at a low temperature and the conductivity and reflectivity of the electrode after firing are lowered. The content of alcohols is preferably in the range of 2% by mass or more with respect to 100% by mass of all the dispersion media. If the content is less than 2% by mass, the composition is applied by the wet coating method as described above. It is difficult to sinter the resulting film at low temperatures, and the conductivity and reflectivity of the electrode after firing are reduced. The power to do it. The alcohol used in the dispersion medium is one selected from the group consisting of methanol, ethanol, prononor, butanol, ethylene glycol, propylene glycol, jetylene glycol, glycerol, isobornylhexanol and erythritol. Or use two or more!
[0065] アルコール類の添加は、基材との濡れ性の改善のためであり、基材の種類に合わ せて水とアルコール類の混合割合を自由に変えることができる。 [0065] The addition of alcohols is for improving the wettability with the base material, and the mixing ratio of water and alcohols can be freely changed in accordance with the type of base material.
[0066] 上記電極形成用組成物を製造する方法は以下の通りである。 [0066] A method for producing the above electrode forming composition is as follows.
[0067] (a)銀ナノ粒子を化学修飾する保護剤の有機分子主鎖の炭素骨格の炭素数を 3と する場合 [0067] (a) When the carbon skeleton of the organic molecular main chain of the protective agent for chemically modifying the silver nanoparticles is 3
先ず硝酸銀を脱イオン水等の水に溶解して金属塩水溶液を調製する。一方、タエ ン酸ナトリウムを脱イオン水等の水に溶解させて得られた濃度 10〜40%のクェン酸 ナトリウム水溶液に、窒素ガス等の不活性ガスの気流中で粒状又は粉状の硫酸第一 鉄を直接加えて溶解させ、クェン酸イオンと第一鉄イオンを 3: 2のモル比で含有する 還元剤水溶液を調製する。次に上記不活性ガス気流中で上記還元剤水溶液を撹拌 しながら、この還元剤水溶液に上記金属塩水溶液を滴下して混合する。ここで、金属 塩水溶液の添加量は還元剤水溶液の量の 1/10以下になるように、各溶液の濃度 を調整することで、室温の金属塩水溶液を滴下しても反応温度が 30〜60°Cに保持 されるようにすること力 S好ましい。また上記両水溶液の混合比は、金属塩水溶液中の 金属イオンの総原子価数に対する、還元剤水溶液中のクェン酸イオンと第一鉄ィォ ンのモル比がいずれも 3倍モルとなるようにする。金属塩水溶液の滴下が終了した後 、混合液の撹拌を更に 10〜300分間続けて金属コロイドからなる分散液を調製する 。この分散液を室温で放置し、沈降した金属ナノ粒子の凝集物をデカンテーシヨンや 遠心分離法等により分離する。その後、この分離物に脱イオン水等の水を加えて分 散体とし、限外ろ過により脱塩処理する。更に引き続いてアルコール類で置換洗浄し て、金属(銀)の含有量を 2· 5〜50質量%にする。その後、遠心分離機を用いこの 遠心分離機の遠心力を調整して粗粒子を分離することにより、銀ナノ粒子が一次粒 径 10〜50nmの範囲内の銀ナノ粒子を数平均で 70%以上含有するように調製する 。即ち数平均で全ての銀ナノ粒子 100%に対する一次粒径 10〜50nmの範囲内の 銀ナノ粒子の占める割合が 70%以上になるように調整する。これにより銀ナノ粒子を 化学修飾する保護剤の有機分子主鎖の炭素骨格の炭素数が 3である分散体が得ら れる。 First, silver nitrate is dissolved in water such as deionized water to prepare an aqueous metal salt solution. On the other hand, aqueous sodium citrate having a concentration of 10 to 40% obtained by dissolving sodium taenate in deionized water or the like is added to a granular or powdered sulfuric acid solution in an inert gas stream such as nitrogen gas. Prepare a reducing agent aqueous solution containing citrate ions and ferrous ions in a molar ratio of 3: 2 by adding iron directly. Next, while stirring the reducing agent aqueous solution in the inert gas stream, the metal salt aqueous solution is dropped into and mixed with the reducing agent aqueous solution. Here, by adjusting the concentration of each solution so that the amount of the metal salt aqueous solution added is 1/10 or less of the amount of the reducing agent aqueous solution, even if the metal salt aqueous solution at room temperature is dropped, the reaction temperature is 30 to 30%. Force to keep at 60 ° C S is preferable. In addition, the mixing ratio of the two aqueous solutions is such that the molar ratio of the citrate ion and ferrous ion in the reducing agent aqueous solution to the total valence of the metal ions in the metal salt aqueous solution is 3 times as much as each other. To. After the dropwise addition of the aqueous metal salt solution, the mixture is stirred for an additional 10 to 300 minutes to prepare a dispersion composed of metal colloid. This dispersion is allowed to stand at room temperature, and the aggregates of the precipitated metal nanoparticles are separated by decantation, centrifugation, or the like. Thereafter, water such as deionized water is added to the separated product to form a dispersion, which is desalted by ultrafiltration. Subsequent substitution cleaning with alcohols is performed to adjust the metal (silver) content to 2.5 to 50% by mass. After that, by using a centrifuge to adjust the centrifugal force of this centrifuge and separating coarse particles, silver nanoparticles with a primary particle size in the range of 10 to 50 nm are 70% or more on average. Prepare to contain. That is, the number average of all silver nanoparticles 100% primary particle size within the range of 10-50nm Adjust the silver nanoparticles to 70% or more. As a result, a dispersion having 3 carbon atoms in the carbon skeleton of the organic molecular main chain of the protective agent for chemically modifying the silver nanoparticles can be obtained.
[0068] 続いて、得られた分散体を分散体 100質量%に対する最終的な金属含有量 (銀含 有量)が 2. 5〜95質量%の範囲内となるように調整する。また、分散媒をアルコール 類含有水溶液とする場合には、溶媒の水及びアルコール類をそれぞれ 1 %以上及 び 2%以上にそれぞれ調整することが好ましい。次に、この分散体に PVP、 PVPの 共重合体及びセルロースエーテルからなる群より選ばれた 1種又は 2種以上の有機 高分子を加える。有機高分子の含有率は金属ナノ粒子の 0. ;!〜 20質量%の範囲内 となるように調整する。これにより炭素骨格の炭素数力 ¾である有機分子主鎖の保護 剤で化学修飾された銀ナノ粒子が分散媒に分散し、 PVP、 PVPの共重合体及びセ ルロースエーテルからなる群より選ばれた 1種又は 2種以上の有機高分子が含まれた 電極形成用組成物が得られる。また、金属酸化物、金属水酸化物、有機金属化合物 及びシリコーンオイルからなる群より選ばれた 1種又は 2種以上の添加物を更に含ま せてもよい。添加物を更に含ませる場合、有機高分子と上記添加物を併せた含有量 は、得られる組成物 100質量%に対して 0. ;!〜 20質量%の範囲内となるように調整 する。  [0068] Subsequently, the obtained dispersion is adjusted so that the final metal content (silver content) with respect to 100% by mass of the dispersion is in the range of 2.5 to 95% by mass. When the dispersion medium is an aqueous solution containing alcohols, it is preferable to adjust the water and alcohols of the solvent to 1% or more and 2% or more, respectively. Next, one or more organic polymers selected from the group consisting of PVP, a PVP copolymer and cellulose ether are added to the dispersion. The content of the organic polymer is adjusted so as to be in the range of 0.;! To 20% by mass of the metal nanoparticles. As a result, the silver nanoparticles chemically modified with a protective agent for the organic molecular main chain having a carbon number strength of the carbon skeleton are dispersed in the dispersion medium and selected from the group consisting of PVP, PVP copolymer and cellulose ether. In addition, an electrode-forming composition containing one or more organic polymers can be obtained. In addition, one or more additives selected from the group consisting of metal oxides, metal hydroxides, organometallic compounds, and silicone oils may be further included. When the additive is further included, the combined content of the organic polymer and the additive is adjusted to be in the range of 0.;! To 20% by mass with respect to 100% by mass of the obtained composition.
[0069] (b)銀ナノ粒子を化学修飾する保護剤の有機分子主鎖の炭素骨格の炭素数を 2と する場合  [0069] (b) When the carbon skeleton of the organic molecular main chain of the protective agent for chemically modifying the silver nanoparticles is 2
還元剤水溶液を調製するときに用いたクェン酸ナトリウムをりんご酸ナトリウムに替 えること以外は上記 (a)と同様にして分散体を調製する。これにより銀ナノ粒子を化学 修飾する有機分子主鎖の炭素骨格の炭素数力 ¾である分散体が得られる。  A dispersion is prepared in the same manner as in (a) above, except that sodium citrate used for preparing the reducing agent aqueous solution is replaced with sodium malate. As a result, a dispersion having a carbon number strength of the carbon skeleton of the organic molecular main chain that chemically modifies the silver nanoparticles can be obtained.
[0070] (c)銀ナノ粒子を化学修飾する保護剤の有機分子主鎖の炭素骨格の炭素数を 1と する場合 [0070] (c) When the carbon skeleton of the carbon skeleton of the organic molecular main chain of the protective agent for chemically modifying the silver nanoparticles is 1
還元剤水溶液を調製するときに用いたクェン酸ナトリウムをグリコール酸ナトリウムに 替えること以外は上記 (a)と同様にして分散体を調製する。これにより銀ナノ粒子を化 学修飾する有機分子主鎖の炭素骨格の炭素数が 1である分散体が得られる。  A dispersion is prepared in the same manner as in the above (a) except that the sodium citrate used for preparing the reducing agent aqueous solution is replaced with sodium glycolate. This gives a dispersion in which the carbon skeleton of the carbon backbone of the organic molecular chain that chemically modifies the silver nanoparticles is one.
[0071] (d)銀ナノ粒子以外の金属ナノ粒子を化学修飾する保護剤の有機分子主鎖の炭素 骨格の炭素数を 3とする場合 [0071] (d) Carbon in the organic molecular main chain of a protective agent for chemically modifying metal nanoparticles other than silver nanoparticles When the skeleton has 3 carbon atoms
銀ナノ粒子以外の金属ナノ粒子を構成する金属としては、金、白金、パラジウム、ル テニゥム、ニッケル、銅、錫、インジウム、亜鉛、鉄、クロム及びマンガンが挙げられる。 金属塩水溶液を調製するときに用いた硝酸銀を、塩化金酸、塩化白金酸、硝酸パラ ジゥム、三塩化ルテニウム、塩化ニッケル、硝酸第一銅、二塩化錫、硝酸インジウム、 塩化亜鉛、硫酸鉄、硫酸クロム又は硫酸マンガンに替えること以外は上記 (a)と同様 にして分散体を調製する。これにより銀ナノ粒子以外の金属ナノ粒子を化学修飾す る保護剤の有機分子主鎖の炭素骨格の炭素数が 3である分散体が得られる。  Examples of the metal constituting the metal nanoparticles other than the silver nanoparticles include gold, platinum, palladium, ruthenium, nickel, copper, tin, indium, zinc, iron, chromium and manganese. The silver nitrate used in preparing the metal salt aqueous solution was chloroauric acid, chloroplatinic acid, palladium nitrate, ruthenium trichloride, nickel chloride, cuprous nitrate, tin dichloride, indium nitrate, zinc chloride, iron sulfate, Prepare a dispersion in the same manner as (a) above, except replacing with chromium sulfate or manganese sulfate. As a result, a dispersion in which the carbon skeleton of the carbon skeleton of the organic molecular main chain of the protective agent that chemically modifies the metal nanoparticles other than the silver nanoparticles is obtained.
[0072] なお、銀ナノ粒子以外の金属ナノ粒子を化学修飾する保護剤の有機分子主鎖の 炭素骨格の炭素数を 1や 2とする場合、金属塩水溶液を調製するときに用いた硝酸 銀を、上記種類の金属塩に替えること以外は上記 (b)や上記 (c)と同様にして分散体を 調製する。これにより、銀ナノ粒子以外の金属ナノ粒子を化学修飾する保護剤の有 機分子主鎖の炭素骨格の炭素数力 や 2である分散体が得られる。  [0072] When the number of carbon skeletons of the organic molecular main chain of the protective agent for chemically modifying metal nanoparticles other than silver nanoparticles is 1 or 2, the silver nitrate used when preparing the metal salt aqueous solution A dispersion is prepared in the same manner as in the above (b) and (c) except that is replaced with the above-mentioned metal salt. As a result, a carbon number force of the carbon skeleton of the organic main chain of the protective agent that chemically modifies the metal nanoparticles other than the silver nanoparticles and a dispersion having 2 are obtained.
[0073] 金属ナノ粒子として、銀ナノ粒子とともに、銀ナノ粒子以外の金属ナノ粒子を含有さ せる場合には、例えば、上記 (a)の方法で製造した銀ナノ粒子を含む分散体を第 1分 散体とし、上記 (d)の方法で製造した銀ナノ粒子以外の金属ナノ粒子を含む分散体を 第 2分散体とすると、 75質量%以上の第 1分散体と 25質量%未満の第 2分散体とを 第 1及び第 2分散体の合計含有量が 100質量%となるように混合する。なお、第 1分 散体は、上記 (a)の方法で製造した銀ナノ粒子を含む分散体に留まらず、上記 (b)の 方法で製造した銀ナノ粒子を含む分散体や上記 (c)の方法で製造した銀ナノ粒子を 含む分散体を使用しても良レ、。  [0073] When the metal nanoparticles include metal nanoparticles other than silver nanoparticles together with silver nanoparticles, for example, a dispersion containing silver nanoparticles produced by the method of (a) above is used as the first. When a dispersion containing metal nanoparticles other than silver nanoparticles produced by the method (d) above is used as the second dispersion, 75% by mass or more of the first dispersion and less than 25% by mass of the first dispersion are used. The two dispersions are mixed so that the total content of the first and second dispersions is 100% by mass. Note that the first dispersion is not limited to the dispersion containing the silver nanoparticles produced by the method (a), but the dispersion containing the silver nanoparticles produced by the method (b) or the above (c). It is also possible to use a dispersion containing silver nanoparticles produced by the above method.
[0074] このように製造された電極形成用組成物を用いて電極を形成する方法を説明する  [0074] A method of forming an electrode using the electrode-forming composition thus produced will be described.
[0075] 先ず上記電極形成用組成物を基材上に湿式塗工法で塗工して成膜する。上記基 材は、シリコン、ガラス、透明導電材料を含むセラミックス、高分子材料又は金属から なる基板のいずれ力、、或いはシリコン、ガラス、透明導電材料を含むセラミックス、高 分子材料及び金属からなる群より選ばれた 2種以上の積層体を使用することができる 。また透明導電膜のいずれか 1種を少なくとも含む基材や、透明導電膜を表面に成 膜した基材を用いてもよい。透明導電膜としては、酸化インジウム系、酸化スズ系、酸 化亜鉛系が挙げられる。酸化インジウム系としては、酸化インジウム、 ΙΤΟ、 ΙΖΟが挙 げられる。酸化錫系としては、ネサ(酸化錫 SnO )、 ΑΤΟ、フッ素ドープ酸化錫が挙 げられる。酸化亜鉛系としては、酸化亜鉛、 ΑΖΟ (アルミドープ酸化亜鉛)、ガリウムド ープ酸化亜鉛が挙げられる。基材は太陽電池素子又は透明電極付き太陽電池素子 のいずれかであることが好ましい。透明電極としては、 ΙΤΟ、 ΑΤΟ、ネサ、 ΙΖΟ、 ΑΖ Ο等などが挙げられる。更に、チタン酸ジルコン酸鉛 (ΡΖΤ)のような誘電体薄膜が基 材表面に形成されていてもよい。高分子基板としては、ポリイミドゃ PET (ポリエチレ ンテレフタレート)等の有機ポリマーにより形成された基板が挙げられる。上記分散体 は太陽電池素子の光電変換半導体層の表面や、透明電極付き太陽電池素子の透 明電極の表面に塗布される。 [0075] First, the electrode forming composition is coated on a substrate by a wet coating method to form a film. The substrate is made of silicon, glass, ceramics including a transparent conductive material, a substrate made of a polymer material or a metal, or a group consisting of silicon, glass, ceramics including a transparent conductive material, a high molecular material, and a metal. Two or more selected laminates can be used. In addition, a substrate containing at least one of the transparent conductive films or a transparent conductive film is formed on the surface. A filmed substrate may be used. Examples of the transparent conductive film include indium oxide, tin oxide, and zinc oxide. Examples of the indium oxide system include indium oxide, ΙΤΟ, and ΙΖΟ. Examples of tin oxides include nesa (tin oxide SnO), silver, and fluorine-doped tin oxide. Examples of zinc oxides include zinc oxide, cocoon (aluminum-doped zinc oxide), and gallium doped zinc oxide. The substrate is preferably either a solar cell element or a solar cell element with a transparent electrode. Examples of transparent electrodes include ΙΤΟ, ΑΤΟ, Nesa, ΙΖΟ, ΑΖ Ο and the like. Furthermore, a dielectric thin film such as lead zirconate titanate (ΡΖΤ) may be formed on the surface of the base material. Examples of the polymer substrate include a substrate formed of an organic polymer such as polyimide PET (polyethylene terephthalate). The dispersion is applied to the surface of the photoelectric conversion semiconductor layer of the solar cell element or the surface of the transparent electrode of the solar cell element with a transparent electrode.
[0076] 更に上記湿式塗工法は、スプレーコーティング法、ディスぺンサコーティング法、ス ピンコーティング法、ナイフコーティング法、スリットコーティング法、インクジェットコー ティング法、スクリーン印刷法、オフセット印刷法又はダイコーティング法のいずれか であることが特に好ましいが、これに限られるものではなぐあらゆる方法を利用できる[0076] Further, the wet coating method includes spray coating method, dispenser coating method, spin coating method, knife coating method, slit coating method, ink jet coating method, screen printing method, offset printing method or die coating method. Any of these methods is particularly preferable, but any method other than this is available.
Yes
[0077] スプレーコーティング法は分散体を圧縮エアにより霧状にして基材に塗布したり、或 いは分散体自体を加圧し霧状にして基材に塗布する方法である。デイスペンサコー ティング法は例えば分散体を注射器に入れこの注射器のピストンを押すことにより注 射器先端の微細ノズルから分散体を吐出させて基材に塗布する方法である。  [0077] The spray coating method is a method in which the dispersion is atomized with compressed air and applied to the substrate, or the dispersion itself is pressurized and atomized to apply to the substrate. The dispenser coating method is, for example, a method in which a dispersion is placed in a syringe and the piston of the syringe is pushed to discharge the dispersion from a fine nozzle at the tip of the injector and apply it to a substrate.
[0078] スピンコーティング法は分散体を回転している基材上に滴下し、この滴下した分散 体をその遠心力により基材周縁に拡げる方法である。ナイフコーティング法はナイフ の先端と所定の隙間をあけた基材を水平方向に移動可能に設け、このナイフより上 流側の基材上に分散体を供給して基材を下流側に向って水平移動させる方法であ  [0078] The spin coating method is a method in which a dispersion is dropped onto a rotating substrate, and the dropped dispersion is spread around the periphery of the substrate by its centrifugal force. In the knife coating method, a base material having a predetermined gap from the tip of the knife is provided so as to be movable in the horizontal direction, and a dispersion is supplied onto the base material upstream from the knife so that the base material faces downstream. It is a method to move horizontally
[0079] スリットコーティング法は分散体を狭いスリットから流出させて基材上に塗布する方 法である。インクジェットコーティング法は市販のインクジェットプリンタのインクカートリ ッジに分散体を充填し、基材上にインクジェット印刷する方法である。 [0080] スクリーン印刷法は、パターン指示材として紗を用い、その上に作られた版画像を 通して分散体を基材に転移させる方法である。オフセット印刷法は、版に付けた分散 体を直接基材に付着させず、版から一度ゴムシートに転写させ、ゴムシートから改め て基材に転移させる、インクの撥水性を利用した印刷方法である。 [0079] The slit coating method is a method in which a dispersion is discharged from a narrow slit and applied onto a substrate. The ink jet coating method is a method in which a dispersion is filled in an ink cartridge of a commercially available ink jet printer and ink jet printing is performed on a substrate. [0080] The screen printing method is a method in which wrinkles are used as a pattern indicating material, and the dispersion is transferred to a substrate through a plate image formed thereon. The offset printing method is a printing method that utilizes the water repellency of ink, in which the dispersion attached to the plate is not directly attached to the substrate, but is transferred from the plate to a rubber sheet and then transferred from the rubber sheet to the substrate again. is there.
[0081] ダイコーティング法は、ダイ内に供給された分散体をマ二ホールドで分配させてスリ ットより薄膜上に押し出し、走行する基材の表面を塗工する方法である。ダイコーティ ング法には、スロットコート方式やスライドコート方式、カーテンコート方式がある。  [0081] The die coating method is a method in which the dispersion supplied into the die is distributed by means of a manifold and extruded onto the thin film from the slit, and the surface of the traveling substrate is applied. Die coating methods include slot coating, slide coating, and curtain coating.
[0082] 次に上面に成膜された基材を大気中若しくは窒素やアルゴンなどの不活性ガス雰 囲気中で 130〜400°C、好ましくは 170〜400°Cの温度に、 5分間〜 1時間、好まし くは 15〜40分間保持して焼成する。ここで、基材上に形成された電極形成用組成物 の膜の焼成温度を 130〜400°Cの範囲としたのは、 130°C未満では金属ナノ粒子同 士の焼結が不十分になるとともに保護剤の焼成時の熱により脱離或いは分解 (分離- 燃焼)し難いため、焼成後の電極内に有機残渣が多く残るからである。この残渣が変 質又は劣化して導電性及び反射率が低下してしまい、 400°Cを越えると低温プロセ スとレ、う生産上のメリットを生かせな!/、。即ち製造コストが増大し生産性が低下してし まう。特にアモルファスシリコン、微結晶シリコン、或いはこれらを用いたハイブリッド型 シリコン太陽電池における光電変換の光波長域に影響を及ぼしてしまう。更に基材 上に形成された電極形成用組成物の膜の焼成時間を 5分間〜 1時間の範囲としたの は、 5分間未満では金属ナノ粒子同士の焼結が不十分になるとともに保護剤の焼成 時の熱により脱離或いは分解(分離'燃焼)し難いため、焼成後の電極内に有機残渣 が多く残るからである。この残渣が変質又は劣化して電極の導電性及び反射率が低 下してしまい、 1時間を越えると特性には影響しないけれども、必要以上に製造コスト が増大して生産性が低下してしまう。  [0082] Next, the substrate formed on the upper surface is heated to 130 to 400 ° C, preferably 170 to 400 ° C for 5 minutes to 1 in the atmosphere or in an inert gas atmosphere such as nitrogen or argon. Bake for an hour, preferably 15-40 minutes. Here, the firing temperature of the electrode-forming composition film formed on the substrate was set in the range of 130 to 400 ° C. If the temperature was less than 130 ° C, the metal nanoparticles were not sufficiently sintered. In addition, it is difficult for desorption or decomposition (separation-combustion) due to heat during firing of the protective agent, so that a large amount of organic residue remains in the electrode after firing. This residue is altered or deteriorated, and the conductivity and reflectivity are lowered. If the temperature exceeds 400 ° C, the low temperature process and the production advantage can be utilized! /. In other words, manufacturing costs will increase and productivity will decrease. In particular, it affects the light wavelength range of photoelectric conversion in amorphous silicon, microcrystalline silicon, or a hybrid silicon solar cell using these. Furthermore, the firing time of the electrode-forming composition film formed on the substrate was set in the range of 5 minutes to 1 hour because, if less than 5 minutes, the metal nanoparticles were not sufficiently sintered and the protective agent was used. This is because it is difficult to desorb or decompose (separate and burn) due to the heat during firing, so that many organic residues remain in the electrode after firing. This residue is altered or deteriorated, and the conductivity and reflectivity of the electrode are lowered. If it exceeds 1 hour, the characteristics are not affected, but the manufacturing cost is increased more than necessary and the productivity is lowered. .
[0083] また、基板上面に形成した焼成後の厚さは 0. ;!〜 2. O ^ m,好ましくは 0. 3〜; 1. 5  [0083] The thickness after firing formed on the upper surface of the substrate is 0.;! ~ 2.O ^ m, preferably 0.3 ~; 1.5
の範囲内となるように、成膜時に調整する。ここで、基材上に形成された電極形 成用組成物を焼成後の厚さが 0. ;!〜 2. 0 mの範囲となるようにしたのは、 0. l ^ m 未満では太陽電池に必要な電極の表面抵抗値が不十分となり、 2. 0 111を越えると 特性上の不具合はないけれども、材料の使用量が必要以上に多くなつて材料が無 駄になるからである。 It adjusts at the time of film-forming so that it may become in this range. Here, the electrode-forming composition formed on the substrate had a thickness after firing in the range of 0.;! To 2.0 m. The surface resistance of the electrode required for the battery becomes insufficient, and if it exceeds 2.0 0 111, there will be no characteristic defects, but there will be no material if the amount of material used is more than necessary. Because it becomes useless.
[0084] 上記電極形成用組成物では、一次粒径 10〜50nmとサイズの比較的大きい金属 ナノ粒子を多く含むため、金属ナノ粒子の比表面積が減少し、保護剤の占める割合 が小さくなる。この結果、上記組成物を用いて電極を形成すると、上記保護剤が焼成 時の熱により脱離し又は分解し、或いは離脱しかつ分解することにより、実質的に電 気伝導に悪影響を与える有機物を含有しない電極が得られる。  [0084] Since the composition for forming an electrode includes a large amount of metal nanoparticles having a primary particle size of 10 to 50 nm and a relatively large size, the specific surface area of the metal nanoparticles is reduced and the proportion of the protective agent is reduced. As a result, when an electrode is formed using the above composition, the protective agent is desorbed or decomposed by the heat during firing, or is separated and decomposed, so that an organic substance that has a substantial adverse effect on electrical conduction can be obtained. An electrode that does not contain is obtained.
[0085] 上記条件で焼成することにより、基材上に導電性塗膜からなる電極を形成すること ができる。形成した導電性塗膜は、密着性に優れ、また、基材との接合界面に細かな 空気層などの空間を形成させないため、スーパーストレート型太陽電池の裏面電極と した場合に、太陽電池の変換効率の低下を抑制することができる。  [0085] By firing under the above conditions, an electrode made of a conductive coating film can be formed on the substrate. The formed conductive coating film has excellent adhesion and does not form a fine air layer or other space at the bonding interface with the base material. Therefore, when it is used as the back electrode of a super straight solar cell, A reduction in conversion efficiency can be suppressed.
[0086] また、形成した導電性塗膜は、金属ナノ粒子間の焼結による粒成長を制御すること が可能になり、サブストレート型太陽電池の裏面電極とした場合に、良好なテクスチャ 構造を有する。また、使用する組成物中の添加物の種類及び添加量によって、テク スチヤ構造の平均表面粗さ及び形状を制御した塗膜を得ることができる。基材上面 に形成した導電性塗膜からなる電極は、平均表面粗さが 10〜; !OOnmの範囲内とな つていることが好ましい。平均表面粗さが上記範囲内であれば、サブストレート型太 陽電池を構成する裏面電極が有するテクスチャ構造に適した範囲となる。形成した 導電性塗膜は、組成物中に含まれる金属ナノ粒子を構成する金属そのものが有する 比抵抗に近い比抵抗が得られる。また、組成物中に含まれる金属ナノ粒子を構成す る金属そのものの反射率に近い優れた反射率が得られる。  [0086] Further, the formed conductive coating film can control grain growth by sintering between metal nanoparticles, and has a good texture structure when used as a back electrode of a substrate type solar cell. Have. Moreover, the coating film which controlled the average surface roughness and shape of the texture structure by the kind and addition amount of the additive in the composition to be used can be obtained. The electrode made of a conductive coating film formed on the upper surface of the substrate preferably has an average surface roughness in the range of 10 to OOnm. When the average surface roughness is within the above range, the range is suitable for the texture structure of the back electrode constituting the substrate type solar cell. The formed conductive coating film has a specific resistance close to the specific resistance of the metal itself constituting the metal nanoparticles contained in the composition. Moreover, an excellent reflectance close to the reflectance of the metal itself constituting the metal nanoparticles contained in the composition can be obtained.
[0087] また、形成した導電性塗膜は、電子ペーパーの電極層とした場合、動作層との接 合界面を平滑にすることができるので、電界集中を生じず、電子ペーパーに適する。  [0087] In addition, when the formed conductive coating film is used as an electrode layer of electronic paper, it can smooth the bonding interface with the operating layer, and thus is suitable for electronic paper without causing electric field concentration.
[0088] このように、本発明の電極の形成方法は、上記電極形成用組成物を基材上に湿式 塗工して成膜し、成膜した基材を焼成する簡易な工程で電極を形成することができる 。このように、成膜時に真空プロセスを必要としないため、プロセスの制約が小さぐま た製造設備のランニングコストを大幅に低減することができる。  [0088] As described above, the electrode forming method of the present invention is a method in which the electrode forming composition is wet-coated on a substrate to form a film, and the electrode is formed by a simple process of firing the formed substrate. Can be formed. In this way, since a vacuum process is not required at the time of film formation, the running cost of a manufacturing facility can be significantly reduced with less process restrictions.
[0089] 本発明の電極形成用組成物を用いて形成したスーパーストレート型太陽電池につ いて説明する。 [0090] 先ず、図 1Aに示すように、基材 11の上に、透明導電膜をスパッタ法、蒸着法或い は噴霧熱分解法 (例えば、塩化錫溶液のスプレイ噴霧による熱分解法:ネサガラス) により形成して透明電極 12とする。基材としてはガラスのような透光性基板 11が挙げ られる。この透明導電膜は光の散乱と光閉じ込め効果を発現させるために、その表 層がテクスチャ構造 12aとなるように形成される。透明導電膜の材質としては、ネサガ ラス(SnO系)が一般的である。 [0089] A superstrate solar cell formed using the electrode forming composition of the present invention will be described. First, as shown in FIG. 1A, a transparent conductive film is formed on a substrate 11 by sputtering, vapor deposition, or spray pyrolysis (for example, pyrolysis by spray spraying a tin chloride solution: Nesa glass). ) To form a transparent electrode 12. An example of the base material is a translucent substrate 11 such as glass. This transparent conductive film is formed so that its surface layer has a textured structure 12a in order to exhibit light scattering and light confinement effects. As a material for the transparent conductive film, Nesa glass (SnO type) is generally used.
[0091] 次いで、図 1Bに示すように、テクスチャ構造 12aを有する透明電極 12の上に、光 電変換層 13を形成する。この光電変換層 13はプラズマ CVD法により形成される。透 明電極 12のテクスチャ構造 12aは、この光電変換層 13にも反映される。なお、本実 施の形態では、光電変換層 13をアモルファスシリコン 13aと微結晶シリコン 13bを PI N接合積層膜とした力 アモルファスシリコン 13aのみでもよいし、微結晶シリコン 13b のみでも良い。このアモルファスシリコン 13aと微結晶シリコン 13bとの PIN接合積層 膜から光電変換層 13が形成された太陽電池は、ハイブリッド型或いはタンデム型と 呼ばれる。  Next, as shown in FIG. 1B, the photoelectric conversion layer 13 is formed on the transparent electrode 12 having the texture structure 12a. This photoelectric conversion layer 13 is formed by a plasma CVD method. The texture structure 12 a of the transparent electrode 12 is also reflected in the photoelectric conversion layer 13. In the present embodiment, only the amorphous silicon 13a or the microcrystalline silicon 13b may be used, in which the photoelectric conversion layer 13 is made of amorphous silicon 13a and the microcrystalline silicon 13b is a PIN junction laminated film. A solar cell in which the photoelectric conversion layer 13 is formed from a PIN junction laminated film of amorphous silicon 13a and microcrystalline silicon 13b is called a hybrid type or a tandem type.
[0092] 次に、図 1Cに示すように、光電変換層 13の上に、光電変換層の表面バッジべーシ ヨン、裏面電極 15とのォーミックコンタクト、並びに増反射光学設計のために、透明導 電膜 14をスパッタ法、蒸着法或いは MOCVD法により形成する。  Next, as shown in FIG. 1C, on the photoelectric conversion layer 13, the surface badge base of the photoelectric conversion layer, the ohmic contact with the back electrode 15, and the increased reflection optical design The transparent conductive film 14 is formed by sputtering, vapor deposition, or MOCVD.
[0093] 最後に、図 1Dに示すように、透明導電膜 14の上に、本発明の電極形成用組成物 を塗布、焼成して裏面電極 15を形成することにより、透光性基板側から光を入射させ るスーパーストレート型太陽電池 10が得られる。このスーパーストレート型太陽電池 1 0では基材 11が受光面となる。形成した裏面電極 15は、透明導電膜 14との密着性 に優れ、また、透明導電膜 14との接合界面に細かな空気層などの空間を形成させな いため、変換効率の低下を抑制したスーパーストレート型太陽電池とすることができ 本発明の電極形成用組成物を用いて形成したサブストレート型太陽電池について 説明する。  [0093] Finally, as shown in FIG. 1D, the back electrode 15 is formed by applying and baking the electrode forming composition of the present invention on the transparent conductive film 14, thereby forming the back electrode 15 from the translucent substrate side. A super straight type solar cell 10 in which light is incident can be obtained. In the super straight type solar cell 10, the base material 11 serves as a light receiving surface. The formed back electrode 15 has excellent adhesion to the transparent conductive film 14 and does not form a space such as a fine air layer at the bonding interface with the transparent conductive film 14, so that it is possible to suppress a reduction in conversion efficiency. A substrate type solar cell that can be formed into a straight type solar cell using the electrode forming composition of the present invention will be described.
[0094] 先ず、図 2Aに示すように、基材 21の上に、本発明の電極形成用組成物を塗布、 焼成して裏面電極 22を形成する。基材 21としては、ガラスや有機フィルムなどが挙 げられる。形成した裏面電極 22は、金属ナノ粒子間の焼結による粒成長の抑制効果 が与えられるため、その表層には光の散乱と光閉じ込め効果を効果的に発現させる ことが可能なテクスチャ構造 22aを形成することができる。 First, as shown in FIG. 2A, the back electrode 22 is formed by applying and baking the electrode forming composition of the present invention on the substrate 21. Examples of the base material 21 include glass and organic films. I can get lost. Since the formed back electrode 22 has an effect of suppressing grain growth by sintering between metal nanoparticles, the surface layer has a texture structure 22a that can effectively exhibit light scattering and light confinement effects. Can be formed.
[0095] 次いで、図 2Bに示すように、テクスチャ構造 22aを有する裏面電極 22の上に、光 電変換層 23を形成する。この光電変換層 23は、前述したスーパーストレート型太陽 電池の光電変換層 13と同様にプラズマ CVD法により形成され、裏面電極 22のテク スチヤ構造 22aが反映される。 Next, as shown in FIG. 2B, a photoelectric conversion layer 23 is formed on the back electrode 22 having the texture structure 22a. This photoelectric conversion layer 23 is formed by the plasma CVD method similarly to the photoelectric conversion layer 13 of the super straight type solar cell described above, and the texture structure 22a of the back electrode 22 is reflected.
[0096] 次に、図 2Cに示すように、透明導電膜をスパッタ法、蒸着法或いは噴霧熱分解法 により形成して透明電極 24とする。透明導電膜の材質としては、ネサガラス(SnO系Next, as shown in FIG. 2C, a transparent conductive film is formed by sputtering, vapor deposition, or spray pyrolysis to form a transparent electrode 24. The material of the transparent conductive film is Nesa glass (SnO series)
)が一般的である。 ) Is common.
[0097] 最後に、図 2Dに示すように、透明電極 24の上に、封止材を形成することにより、サ ブストレート型太陽電池 20が得られる。このサブストレート型太陽電池 20では封止材 が受光面となる。  Finally, as shown in FIG. 2D, by forming a sealing material on the transparent electrode 24, a vertical solar cell 20 is obtained. In this substrate type solar cell 20, the sealing material becomes the light receiving surface.
[0098] 本発明の電極形成用組成物を用いて形成した電子ペーパーについて説明する。  [0098] An electronic paper formed using the electrode forming composition of the present invention will be described.
[0099] 本実施の形態では、図 3に示すように、電子ペーパー 30は、基材 31に透明導電膜 In the present embodiment, as shown in FIG. 3, the electronic paper 30 has a transparent conductive film on the base 31.
32を介して動作層 33が形成され、この動作層 33の界面に電極層 34が接合された 構造を有する。基材 31としては、ガラス、有機高分子フィルム、プラスチックフィルム、 或いはシリカ薄膜が形成された有機高分子フィルムなどが挙げられる。透明導電膜 3 2はスパッタ法により形成される。透明導電膜の材質としては、酸化インジウム系、酸 化スズ系、酸化亜鉛系が挙げられる。酸化インジウム系としては、酸化インジウム、 IT 0、 IZOが挙げられる。酸化錫系としては、ネサ(酸化錫 SnO )、 ATO、フッ素ドープ 酸化錫が挙げられる。酸化亜鉛系としては、酸化亜鉛、 AZO (アルミドープ酸化亜鉛 )、ガリウムドープ酸化亜鉛が挙げられる。動作層 33は、マイクロカプセル電気泳動 型、電子粉流体型、コレスティック液晶型、有機 ELといった様々な方式が提案されて いる。電極層 34は、本発明の電極形成用組成物を塗布、焼成することで形成される 。このように形成した電極層 34は、動作層 33との接合界面を平滑にすることができる ので、電界集中を生じず、電子ペーパーに適する。  An operation layer 33 is formed through 32, and an electrode layer 34 is bonded to the interface of the operation layer 33. Examples of the substrate 31 include glass, an organic polymer film, a plastic film, and an organic polymer film on which a silica thin film is formed. The transparent conductive film 32 is formed by a sputtering method. Examples of the material for the transparent conductive film include indium oxide, tin oxide, and zinc oxide. Examples of indium oxide include indium oxide, IT 0, and IZO. Examples of tin oxides include Nesa (tin oxide SnO), ATO, and fluorine-doped tin oxide. Examples of the zinc oxide system include zinc oxide, AZO (aluminum doped zinc oxide), and gallium doped zinc oxide. For the operation layer 33, various methods such as a microcapsule electrophoresis type, an electropowder fluid type, a cholestic liquid crystal type, and an organic EL have been proposed. The electrode layer 34 is formed by applying and baking the electrode forming composition of the present invention. The electrode layer 34 formed in this manner can smooth the bonding interface with the operation layer 33, and therefore does not cause electric field concentration and is suitable for electronic paper.
実施例 [0100] 次に本発明の実施例を比較例とともに詳しく説明する。 Example Next, examples of the present invention will be described in detail together with comparative examples.
[0101] <実施例;!〜 7、比較例;!〜 3〉  [0101] <Example;! To 7, Comparative example;! To 3>
先ず、硝酸銀を脱イオン水に溶解して濃度が 25質量%の金属塩水溶液を調製し た。また、クェン酸ナトリウムを脱イオン水に溶解して濃度が 26質量%のクェン酸ナト リウム水溶液を調製した。このクェン酸ナトリウム水溶液に、 35°Cに保持された窒素ガ ス気流中で粒状の硫酸第 1鉄を直接加えて溶解させ、クェン酸イオンと第 1鉄イオン を 3: 2のモル比で含有する還元剤水溶液を調製した。  First, silver nitrate was dissolved in deionized water to prepare a metal salt aqueous solution having a concentration of 25% by mass. In addition, sodium citrate was dissolved in deionized water to prepare an aqueous sodium citrate solution having a concentration of 26% by mass. In this sodium citrate aqueous solution, granular ferrous sulfate is directly added and dissolved in a nitrogen gas stream maintained at 35 ° C to contain citrate ions and ferrous ions in a molar ratio of 3: 2. An aqueous reducing agent solution was prepared.
[0102] 次いで、上記窒素ガス気流を 35°Cに保持した状態で、マグネチックスターラーの攪 拌子を還元剤水溶液中に入れ、攪拌子を lOOrpmの回転速度で回転させて、上記 還元剤水溶液を攪拌しながら、この還元剤水溶液に上記金属塩水溶液を滴下して 混合した。ここで、還元剤水溶液への金属塩水溶液の添加量は、還元剤水溶液の量 の 1/10以下になるように、各溶液の濃度を調整することで、室温の金属塩水溶液を 滴下しても反応温度が 40°Cに保持されるようにした。また上記還元剤水溶液と金属 塩水溶液との混合比は、金属塩水溶液中の金属イオンの総原子価数に対する、還 元剤水溶液のクェン酸イオンと第 1鉄イオンのモル比がいずれも 3倍モルとなるように した。  [0102] Next, with the nitrogen gas stream maintained at 35 ° C, the magnetic stirrer stirrer is placed in the reducing agent aqueous solution, and the stirrer is rotated at a rotation speed of lOO rpm, so that the reducing agent aqueous solution is The aqueous metal salt solution was added dropwise to the aqueous reducing agent solution while stirring. Here, the metal salt aqueous solution at room temperature was dropped by adjusting the concentration of each solution so that the amount of the metal salt aqueous solution added to the reducing agent aqueous solution was 1/10 or less of the amount of the reducing agent aqueous solution. The reaction temperature was kept at 40 ° C. The mixing ratio of the reducing agent aqueous solution to the metal salt aqueous solution is 3 times the molar ratio of the citrate ion and ferrous ion in the reducing agent aqueous solution to the total valence of the metal ions in the metal salt aqueous solution. It was made to be a mole.
[0103] 還元剤水溶液への金属塩水溶液の滴下が終了した後、混合液の攪拌を更に 15分 間続けることにより、混合液内部に金属粒子を生じさせ、金属粒子が分散した金属粒 子分散液を得た。金属粒子分散液の pHは 5. 5であり、分散液中の金属粒子の化学 量論的生成量は 5g/リットルであった。  [0103] After the addition of the metal salt aqueous solution to the reducing agent aqueous solution is completed, the mixture is continuously stirred for 15 minutes to generate metal particles inside the mixture, and the metal particles are dispersed. A liquid was obtained. The pH of the metal particle dispersion was 5.5, and the stoichiometric amount of metal particles in the dispersion was 5 g / liter.
[0104] 得られた分散液は室温で放置することにより、分散液中の金属粒子を沈降させ、沈 降した金属粒子の凝集物をデカンテーシヨンにより分離した。分離した金属凝集物に 脱イオン水を加えて分散体とし、限外濾過により脱塩処理した後、更にメタノールで 置換洗浄することにより、金属の含有量を 50質量%にした。  [0104] The obtained dispersion was allowed to stand at room temperature, whereby the metal particles in the dispersion were allowed to settle, and the aggregates of the precipitated metal particles were separated by decantation. Deionized water was added to the separated metal agglomerate to form a dispersion, which was desalted by ultrafiltration, and further washed by displacement with methanol to make the metal content 50% by mass.
[0105] その後、遠心分離機を用いこの遠心分離機の遠心力を調整して、粒径が lOOnm を越える比較的大きな金属粒子を分離することにより、一次粒径 10〜50nmの範囲 内の金属ナノ粒子を数平均で 71 %含有するように調整した。即ち、数平均で全ての 金属ナノ粒子 100%に対する一次粒径 10〜50nm範囲内の金属ナノ粒子の占める 割合が 71 %になるように調整した。得られた金属ナノ粒子は銀ナノ粒子からなり、こ の銀ナノ粒子には、炭素骨格が炭素数 3の有機分子主鎖の保護剤が化学修飾され ていた。 [0105] Thereafter, the centrifugal force of the centrifuge is adjusted using a centrifuge to separate relatively large metal particles having a particle size exceeding lOOnm, so that a metal having a primary particle size in the range of 10 to 50nm is obtained. The nanoparticles were adjusted so as to contain 71% in number average. That is, the number average of 100% of all metal nanoparticles is occupied by metal nanoparticles in the primary particle size range of 10-50nm. The ratio was adjusted to 71%. The obtained metal nanoparticles consisted of silver nanoparticles, and these silver nanoparticles were chemically modified with a protective agent for an organic molecular main chain having a carbon skeleton of 3 carbon atoms.
[0106] 次に、得られた金属ナノ粒子 10重量部を水、エタノール及びメタノールを含む混合 溶液 90重量部に添加混合することにより分散させた。更にこの分散液に次の表 1に 示す添加物を表 1に示す割合となるように加えることで、実施例;!〜 7及び比較例;!〜 3の塗布試験用組成物をそれぞれ得た。  [0106] Next, 10 parts by weight of the obtained metal nanoparticles were dispersed by adding to 90 parts by weight of a mixed solution containing water, ethanol and methanol. Furthermore, by adding the additives shown in the following Table 1 to this dispersion so as to have the ratio shown in Table 1, compositions for application tests of Examples;! To 7 and Comparative Examples;! To 3 were obtained, respectively. .
[0107] <実施例 8〉  <Example 8>
実施例 1〜7と同様にして銀ナノ粒子が一次粒径 10〜50nmの銀ナノ粒子を数平 均で 71 %含有するように調整した。即ち数平均で全ての銀ナノ粒子 100%に対する 一次粒径 10〜50nmの銀ナノ粒子の占める割合が 71 %になるように、遠心分離機 により調整して第 1分散体を得た。一方、実施例 1の硝酸銀を硝酸パラジウムに代え 、実施例 1〜7と同様にしてエタノールで置換洗浄された分散体を、ノ ラジウムナノ粒 子が一次粒径 10〜50nmのパラジウムナノ粒子を数平均で 71 %含有するように調 整した。即ち数平均で全てのパラジウムナノ粒子 100%に対する一次粒径 10〜50n mのパラジウムナノ粒子の占める割合が 71 %になるように、遠心分離機により調整し て第 2分散体を得た。次に第 1分散体 77質量%と第 2分散体 23質量%とを調整した 。この分散体を実施例 8で使用し、実施例 1〜7と同様の評価を行った。次に、得られ た金属ナノ粒子 10重量部を水、エタノール及びメタノールを含む混合溶液 90重量 部に添加混合することにより分散させた。更にこの分散液に次の表 1に示す通り、 PV Pを表 1に示す割合 10. 0質量%となるように加えることで調整した。また分散体中の 銀ナノ粒子及びパラジウムナノ粒子は炭素骨格が炭素数 3の有機分子主鎖の保護 剤でそれぞれ化学修飾された。更に銀ナノ粒子及びパラジウムナノ粒子を化学修飾 している保護剤は水酸基及びカルボ二ル基を含有した。  In the same manner as in Examples 1 to 7, the silver nanoparticles were adjusted so as to contain 71% of silver nanoparticles having a primary particle size of 10 to 50 nm on the average. That is, the first dispersion was obtained by adjusting with a centrifuge so that the ratio of silver nanoparticles having a primary particle diameter of 10 to 50 nm to 71% with respect to 100% of all silver nanoparticles was 71%. On the other hand, the silver nitrate of Example 1 was replaced with palladium nitrate, and dispersions washed with ethanol in the same manner as in Examples 1 to 7 were used. The number of palladium nanoparticles having a primary particle size of 10 to 50 nm was measured. It was adjusted to contain 71% on average. That is, the second dispersion was obtained by adjusting with a centrifuge so that the proportion of the palladium nanoparticles having a primary particle diameter of 10 to 50 nm to the palladium average of 100% was 71%. Next, 77% by mass of the first dispersion and 23% by mass of the second dispersion were adjusted. This dispersion was used in Example 8 and evaluated in the same manner as in Examples 1 to 7. Next, 10 parts by weight of the obtained metal nanoparticles were dispersed by adding and mixing in 90 parts by weight of a mixed solution containing water, ethanol and methanol. Further, as shown in Table 1 below, PV P was added to the dispersion so as to have a ratio of 10.0 mass% shown in Table 1. The silver nanoparticles and palladium nanoparticles in the dispersion were each chemically modified with an organic molecular main chain protective agent having a carbon skeleton of 3 carbon atoms. Furthermore, the protective agent chemically modifying silver nanoparticles and palladium nanoparticles contained a hydroxyl group and a carbonyl group.
[0108] <実施例 9〉  <Example 9>
実施例 1〜7と同様にして銀ナノ粒子が一次粒径 10〜50nmの銀ナノ粒子を数平 均で 71 %含有するように調整した。即ち数平均で全ての銀ナノ粒子 100%に対する 一次粒径 10〜50nmの銀ナノ粒子の占める割合が 71 %になるように、遠心分離機 により調整して第 1分散体を得た。一方、実施例 1の硝酸銀を三塩化ルテニウムに代 え、実施例 1〜7と同様にしてエタノールで置換洗浄された分散体を、ルテニウムナノ 粒子が一次粒径 10〜50nmのルテニウムナノ粒子を数平均で 71 %含有するように 調整した。即ち数平均で全てのルテニウムナノ粒子 100%に対する一次粒径 10〜5 Onmのルテニウムナノ粒子の占める割合が 72%になるように、遠心分離機により調 整して第 2分散体を得た。次に第 1分散体 77質量%と第 2分散体 23質量%とを調整 した。この分散体を実施例 9で使用し、実施例 1〜7と同様の評価を行った。次に、得 られた金属ナノ粒子 10重量部を水、エタノール及びメタノールを含む混合溶液 90重 量部に添加混合することにより分散させた。更にこの分散液に次の表 1に示す通り、 PVPを表 1に示す割合 10. 0質量%となるように加えることで調整した。また分散体 中の銀ナノ粒子及びルテニウムナノ粒子は炭素骨格が炭素数 3の有機分子主鎖の 保護剤でそれぞれ化学修飾された。更に銀ナノ粒子及びルテニウムナノ粒子を化学 修飾している保護剤は水酸基及びカルボ二ル基を含有した。 In the same manner as in Examples 1 to 7, the silver nanoparticles were adjusted so as to contain 71% of silver nanoparticles having a primary particle size of 10 to 50 nm on the average. In other words, the number average of silver nanoparticles with a primary particle size of 10-50 nm to 100% of all silver nanoparticles is 71%. To obtain a first dispersion. On the other hand, instead of ruthenium trichloride instead of silver nitrate in Example 1, a dispersion that was washed with ethanol in the same manner as in Examples 1 to 7 was used to obtain ruthenium nanoparticles with ruthenium nanoparticles having a primary particle size of 10 to 50 nm. It was adjusted to contain 71% on average. That is, the second dispersion was obtained by adjusting with a centrifuge so that the ratio of the ruthenium nanoparticles having a primary particle size of 10 to 5 Onm to 72% of the ruthenium nanoparticles with respect to 100% of all the ruthenium nanoparticles was 72%. Next, 77% by mass of the first dispersion and 23% by mass of the second dispersion were adjusted. This dispersion was used in Example 9 and evaluated in the same manner as in Examples 1 to 7. Next, 10 parts by weight of the obtained metal nanoparticles were dispersed by adding and mixing in 90 parts by weight of a mixed solution containing water, ethanol and methanol. Furthermore, as shown in Table 1 below, PVP was adjusted by adding PVP at a ratio of 10.0% by mass shown in Table 1. The silver nanoparticles and ruthenium nanoparticles in the dispersion were each chemically modified with a protective agent of an organic molecular main chain with a carbon skeleton of 3 carbon atoms. Furthermore, the protective agent that chemically modified silver nanoparticles and ruthenium nanoparticles contained hydroxyl and carbonyl groups.
[0109] <比較試験 1〉 [0109] <Comparison test 1>
実施例;!〜 9及び比較例;!〜 3で得られた塗布試験用組成物を次の表 1に示す基 材上に 600nmの膜厚となるようにスピンコーティング法或いはスプレーコーティング 法で塗布した。その後、次の表 1に示す熱処理条件で大気中焼成することにより、基 材上に導電性塗膜を形成した。形成した導電性塗膜について、基材への密着性及 び塗膜の反射率についてそれぞれ評価した。また、形成した導電性塗膜の比抵抗を 求めた。  The coating test compositions obtained in Examples;! To 9 and Comparative Examples;! To 3 were applied by spin coating or spray coating to a thickness of 600 nm on the substrate shown in Table 1 below. did. Then, the conductive coating film was formed on the base material by baking in the air under the heat treatment conditions shown in Table 1 below. The formed conductive coating film was evaluated for adhesion to the substrate and coating film reflectance. In addition, the specific resistance of the conductive film formed was determined.
[0110] 基材への密着性評価は、 JIS K 5600— 5— 6 (クロスカット法)に準拠した方法に より行い、定性的に評価した。具体的には、塗膜に著しい剥離が生じない場合、即ち 、剥離分類が 0〜2の範囲内の場合に「良好」と評価付けし、それ以外を「不良」と評 価付けした。塗膜の反射率評価は、紫外可視分光光度計と積分球の組み合わせに より、塗膜の拡散反射率を測定した。その測定結果を図 4に示す。また、この測定結 果をもとに相対的に評価した。具体的には、塗布試験用組成物中に添加物を加えて いない比較例 1の拡散反射率を基準値とし、この基準値よりも拡散反射率が向上す る場合に「良好」と評価付けし、基準値とほぼ同じ値の場合に「同等」と評価付けし、 基準値よりも悪化する場合に「不良」と評価付けした。塗膜の比抵抗は、四探針法に より塗膜の表面抵抗を測定し、走査型電子顕微鏡(Scanning Electron Microscope; S EM)により塗膜の膜厚を測定し、それぞれ測定した表面抵抗と膜厚とから計算により 求めた。その結果を表 1にそれぞれ示す。 [0110] The adhesion to the substrate was evaluated by a method based on JIS K 5600-5-6 (cross-cut method) and evaluated qualitatively. Specifically, when no significant peeling occurred in the coating film, that is, when the peeling classification was in the range of 0 to 2, it was evaluated as “good”, and the others were evaluated as “bad”. For the evaluation of the reflectance of the coating film, the diffuse reflectance of the coating film was measured by a combination of an ultraviolet-visible spectrophotometer and an integrating sphere. Figure 4 shows the measurement results. In addition, a relative evaluation was made based on the measurement results. Specifically, when the diffuse reflectance of Comparative Example 1 in which no additive was added to the coating test composition was used as a reference value, and the diffuse reflectance was improved from this reference value, it was evaluated as “good”. If the value is almost the same as the reference value, When it was worse than the reference value, it was evaluated as “bad”. The specific resistance of the coating film is determined by measuring the surface resistance of the coating film by a four-probe method, and measuring the film thickness of the coating film by a scanning electron microscope (SEM). Calculated from the film thickness. The results are shown in Table 1, respectively.
[表 1]  [table 1]
Figure imgf000027_0001
Figure imgf000027_0001
図 4より明らかなように、組成物中に添加物を加えていない比較例 1や、組成物中 にウレタンやアクリル等の樹脂が添加された比較例 2及び 3に比べて、本発明の組成 物中に PVP、 PVPの共重合体又はセルロースエーテルが添加された実施例 1〜7で は、測定した全ての波長で高レ、拡散反射率となってレ、た。  As can be seen from FIG. 4, the composition of the present invention is compared to Comparative Example 1 in which no additive is added to the composition and Comparative Examples 2 and 3 in which a resin such as urethane or acrylic is added to the composition. In Examples 1 to 7 in which PVP, a PVP copolymer or cellulose ether was added to the product, it was high and diffuse reflectance was obtained at all measured wavelengths.
[0112] 表 1より明らかなように、組成物中に添加物を加えていない比較例 1では、基材との 密着性力 S『不良』に劣る結果となった。また、組成物中にウレタンやアクリル等の樹脂 が添加された比較例 2及び 3では、基材との密着性及び塗膜の比抵抗は優れた結果 が得られていた力 S、塗膜の反射率に劣ることが確認された。  [0112] As is clear from Table 1, in Comparative Example 1 in which no additive was added to the composition, the adhesion strength S with the substrate S was inferior. In Comparative Examples 2 and 3 in which a resin such as urethane or acrylic was added to the composition, the adhesion with the base material and the specific resistance of the coating film were excellent. It was confirmed that the reflectance was inferior.
[0113] 一方、組成物中に PVP、 PVPの共重合体又はセルロースエーテルのいずれかを 添加した実施例;!〜 9では、どのような種類の基材に対しても優れた密着性を示して いた。また、実施例;!〜 7では優れた反射率が、実施例 8及び 9では基準値と同等の 反射率がそれぞれ得られており、組成物中に添加する種類によっては添加物を加え ても反射率が低下しないことが判った。更に、金属銀の比抵抗に近い比抵抗が得ら れており、本発明の組成物を用いて形成した塗膜は高!/、導電性を有して!/、ること力 S 確認された。 [0113] On the other hand, either PVP, a copolymer of PVP, or cellulose ether is added to the composition. The added examples;! To 9 showed excellent adhesion to any kind of substrate. Moreover, excellent reflectance was obtained in Examples;! To 7, and reflectances equivalent to the reference values were obtained in Examples 8 and 9, respectively. Depending on the type to be added to the composition, additives may be added. It was found that the reflectance did not decrease. Furthermore, a specific resistance close to that of metallic silver was obtained, and the coating film formed using the composition of the present invention was highly! It was.
[0114] このような性質を有する塗膜は太陽電池用電極の用途に好適である。  [0114] A coating film having such properties is suitable for use as a solar cell electrode.
[0115] <実施例 10〜21、比較例 4〉  <Examples 10 to 21, Comparative Example 4>
先ず、次の表 2に示す金属ナノ粒子を形成する種類の金属塩を脱イオン水に溶解 して金属塩水溶液を調製した。また、クェン酸ナトリウムを脱イオン水に溶解して濃度 力 ¾6質量%のクェン酸ナトリウム水溶液を調製した。このクェン酸ナトリウム水溶液に 、 35°Cに保持された窒素ガス気流中で粒状の硫酸第 1鉄を直接加えて溶解させ、ク ェン酸イオンと第 1鉄イオンを 3: 2のモル比で含有する還元剤水溶液を調製した。  First, a metal salt solution that forms metal nanoparticles shown in Table 2 below was dissolved in deionized water to prepare an aqueous metal salt solution. Further, sodium citrate was dissolved in deionized water to prepare a sodium citrate aqueous solution having a concentration of 6 mass%. In this aqueous sodium citrate solution, granular ferrous sulfate is directly added and dissolved in a nitrogen gas stream maintained at 35 ° C., and the molar ratio of citrate ions and ferrous ions is 3: 2. An aqueous reducing agent solution was prepared.
[0116] 次いで、上記窒素ガス気流を 35°Cに保持した状態で、マグネチックスターラーの攪 拌子を還元剤水溶液中に入れ、攪拌子を lOOrpmの回転速度で回転させて、上記 還元剤水溶液を攪拌しながら、この還元剤水溶液に上記金属塩水溶液を滴下して 混合した。ここで、還元剤水溶液への金属塩水溶液の添加量は、還元剤水溶液の量 の 1/10以下になるように、各溶液の濃度を調整することで、室温の金属塩水溶液を 滴下しても反応温度が 40°Cに保持されるようにした。また上記還元剤水溶液と金属 塩水溶液との混合比は、金属塩水溶液中の金属イオンの総原子価数に対する、還 元剤水溶液のクェン酸イオンと第 1鉄イオンのモル比がいずれも 3倍モルとなるように した。還元剤水溶液への金属塩水溶液の滴下が終了した後、混合液の攪拌を更に 1 5分間続けることにより、混合液内部に金属粒子を生じさせ、金属粒子が分散した金 属粒子分散液を得た。金属粒子分散液の pHは 5. 5であり、分散液中の金属粒子の 化学量論的生成量は 5g/リットルであった。  [0116] Next, with the nitrogen gas stream maintained at 35 ° C, the magnetic stirrer stirrer is placed in the reducing agent aqueous solution, and the stirrer is rotated at a rotation speed of lOOrpm, thereby reducing the reducing agent aqueous solution. The aqueous metal salt solution was added dropwise to the aqueous reducing agent solution while stirring. Here, the metal salt aqueous solution at room temperature was dropped by adjusting the concentration of each solution so that the amount of the metal salt aqueous solution added to the reducing agent aqueous solution was 1/10 or less of the amount of the reducing agent aqueous solution. The reaction temperature was kept at 40 ° C. The mixing ratio of the reducing agent aqueous solution to the metal salt aqueous solution is 3 times the molar ratio of the citrate ion and ferrous ion in the reducing agent aqueous solution to the total valence of the metal ions in the metal salt aqueous solution. It was made to be a mole. After the addition of the aqueous metal salt solution to the reducing agent aqueous solution is completed, stirring of the mixed solution is further continued for 15 minutes to generate metal particles inside the mixed solution, thereby obtaining a metal particle dispersion liquid in which the metal particles are dispersed. It was. The pH of the metal particle dispersion was 5.5, and the stoichiometric amount of metal particles in the dispersion was 5 g / liter.
[0117] 得られた分散液は室温で放置することにより、分散液中の金属粒子を沈降させ、沈 降した金属粒子の凝集物をデカンテーシヨンにより分離した。分離した金属凝集物に 脱イオン水を加えて分散体とし、限外濾過により脱塩処理した後、更にメタノールで 置換洗浄することにより、金属の含有量を 50質量%にした。その後、遠心分離機を 用いこの遠心分離機の遠心力を調整して、粒径が lOOnmを越える比較的大きな金 属粒子を分離することにより、一次粒径 10〜 50nmの範囲内の金属ナノ粒子を数平 均で 71 %含有するように調整した。即ち、数平均で全ての金属ナノ粒子 100%に対 する一次粒径 10〜50nm範囲内の金属ナノ粒子の占める割合が 71 %になるように 調整した。得られた金属ナノ粒子は、炭素骨格が炭素数 3の有機分子主鎖の保護剤 が化学修飾されていた。 [0117] The obtained dispersion was allowed to stand at room temperature, so that the metal particles in the dispersion were allowed to settle, and the aggregates of the precipitated metal particles were separated by decantation. Deionized water is added to the separated metal agglomerates to form a dispersion, which is desalted by ultrafiltration, and then further treated with methanol. By substitution cleaning, the metal content was adjusted to 50% by mass. Then, using a centrifuge, the centrifugal force of the centrifuge is adjusted to separate relatively large metal particles with a particle size exceeding lOOnm. Was adjusted to contain 71% in number average. That is, the proportion of metal nanoparticles in the primary particle size range of 10 to 50 nm with respect to 100% of all metal nanoparticles was adjusted to 71% on a number average. The resulting metal nanoparticles were chemically modified with a protective agent for an organic molecular main chain having a carbon skeleton of 3 carbon atoms.
[0118] 次に、得られた金属ナノ粒子 10重量部を水、エタノール及びメタノールを含む混合 溶液 90重量部に添加混合することにより分散させ、更にこの分散液に次の表 2に示 す添加物を表 2に示す割合となるように加えることで、実施例 10〜21及び比較例 4 の塗布試験用組成物をそれぞれ得た。  [0118] Next, 10 parts by weight of the obtained metal nanoparticles were dispersed by adding and mixing in 90 parts by weight of a mixed solution containing water, ethanol and methanol, and the addition shown in Table 2 below was further added to this dispersion. The composition for application | coating test of Examples 10-21 and the comparative example 4 was obtained by adding a thing so that it might become a ratio shown in Table 2, respectively.
[0119] <比較試験 2〉  [0119] <Comparison test 2>
実施例 10〜 21及び比較例 4で得られた塗布試験用組成物を次の表 2に示す基材 上に 102〜2 X 10 nmの膜厚となるように様々な成膜方法で塗布した。その後、次の 表 2に示す熱処理条件で焼成することにより、基材上に導電性塗膜を形成した。 The composition for coating test obtained in Examples 10 to 21 and Comparative Example 4 was coated on the base materials shown in Table 2 by various film forming methods so as to have a film thickness of 10 2 to 2 X 10 nm. did. Then, the conductive coating film was formed on the base material by baking under the heat treatment conditions shown in Table 2 below.
[0120] 形成した導電性塗膜について、比抵抗、反射率、塗膜厚さ及び平均表面粗さをそ れぞれ求めた。塗膜の比抵抗は、四探針法により塗膜の表面抵抗を測定し、 SEM により塗膜の膜厚を測定し、それぞれ測定した表面抵抗と膜厚とから計算により求め た。塗膜の反射率評価は、紫外可視分光光度計と積分球の組み合わせにより、波長 800nmにおける塗膜の拡散反射率を測定した。塗膜厚さは SEMによる断面観察に より測定した。平均表面粗さは、原子間力顕微鏡(Atomic Force Microscope ;AFM) によって得られた表面形状に関する評価値を JIS B0601に従って評価することで得 た。その結果を表 3にそれぞれ示す。  [0120] With respect to the formed conductive coating film, specific resistance, reflectance, coating film thickness and average surface roughness were determined. The specific resistance of the coating film was calculated by measuring the surface resistance of the coating film by the four-probe method, measuring the film thickness of the coating film by SEM, and calculating from the measured surface resistance and film thickness. The reflectance of the coating film was evaluated by measuring the diffuse reflectance of the coating film at a wavelength of 800 nm using a combination of an ultraviolet-visible spectrophotometer and an integrating sphere. The coating thickness was measured by cross-sectional observation with SEM. The average surface roughness was obtained by evaluating the evaluation value regarding the surface shape obtained by an atomic force microscope (AFM) according to JIS B0601. The results are shown in Table 3, respectively.
[0121] [表 2] [0121] [Table 2]
[ε挲] [ζζ\ϋ] [ε 挲] [ζζ \ ϋ]
Figure imgf000030_0001
Figure imgf000030_0001
0SL690/L00Zdf/13d 63 9_謂00 OAV 比抵抗 [Ω 'cm] 反射率 (800nm) [ ] 塗膜厚さ [nm] 平均表面粗さ [nm] 実脑 10 3.1X10— 6 95 1.0X102 10 難 1 3.5X10"6 95 5.0X102 30 0SL690 / L00Zdf / 13d 63 9_ So-called 00 OAV Resistivity [Ω 'cm] Reflectivity (800nm) [] Coating thickness [nm] Average surface roughness [nm] Actual 10 3.1X10— 6 95 1.0X10 2 10 Difficult 1 3.5X10 ” 6 95 5.0X10 2 30
5.1X10— 6 90 1.0X103 15 5.1X10— 6 90 1.0X10 3 15
難 3 8.2X10一6 92 1.1X103 40Difficult 3 8.2X10 1 6 92 1.1X10 3 40
■14 6· 7Χ1(Γ6 92 1. OX 103 30 議 15 4.5X10—6 94 1.2X103 40 謹 3.2X10一6 94 1. OX 103 40 赚 7 3· 7X10— 6 94 1. O 103 40 棚 18 3.2X10一6 93 1.9X103 30 難 9 3.5X1CT6 94 1.8X103 30 翻 20 3.6X10" 6 94 2. OX103 20 実 ,1 3.4X10一6 92 2.0X103 15 翻 4 2.5X10— 6 94 1. oxio2 110 表 3より明らかなように、実施例 10〜21の組成物を用いて形成した導電性塗膜と、 比較例 4の組成物を用いて形成した導電性塗膜とを比較すると、比抵抗及び反射率 は同等であった。しかし、塗膜の平均表面粗さは比較例 4が llOnmであるのに対し、 実施例 10〜21が 10〜40nmの範囲内と、サブストレート型太陽電池を構成する裏 面電極が有するテクスチャ構造に適した範囲の表面粗さが得られていることが確認 できた。 ■ 14 6 · 7Χ1 (Γ 6 92 1. OX 10 3 30 discussions 15 4.5X10- 6 94 1.2X10 3 40謹3.2X10 one 6 94 1. OX 10 3 40赚7 3 · 7X10- 6 94 1. O 10 3 40 Shelf 18 3.2X10 1 6 93 1.9X10 3 30 Difficult 9 3.5X1CT 6 94 1.8X10 3 30 Translate 20 3.6X10 " 6 94 2. OX10 3 20 Actual, 1 3.4X10 1 6 92 2.0X10 3 15 Translate 4 2.5 X10- 6 94 1. oxio 2 110 table 3 as is apparent from the composition and the conductive coating film formed using the embodiments 10 to 21, conductive coating formed by using the composition of Comparative example 4 Compared to the film, the specific resistance and reflectance were comparable, but the average surface roughness of the coating film was llOnm in Comparative Example 4, whereas Examples 10-21 were in the range of 10-40 nm. It was confirmed that the surface roughness in a range suitable for the texture structure of the back electrode constituting the substrate type solar cell was obtained.
[0123] <実施例 22〜58、比較例 5〜8〉  <Examples 22 to 58, Comparative Examples 5 to 8>
先ず、次の表 4〜表 6に示す金属ナノ粒子を形成する種類の金属塩を脱イオン水 に溶解して金属塩水溶液を調製した。また、クェン酸ナトリウムを脱イオン水に溶解し て濃度が 26質量0 /0のクェン酸ナトリウム水溶液を調製した。このクェン酸ナトリウム水 溶液に、 35°C ίこ保持された窒素ガス気流中で粒状の硫酸第 1鉄を直接加えて溶解 させ、クェン酸イオンと第 1鉄イオンを 3: 2のモル比で含有する還元剤水溶液を調製 した。 First, metal salts of the type forming metal nanoparticles shown in Tables 4 to 6 below were dissolved in deionized water to prepare an aqueous metal salt solution. The concentration was prepared Kuen aqueous solution of sodium 26 weight 0/0 by dissolving sodium Kuen acid in deionized water. In this aqueous sodium citrate solution, granular ferrous sulfate is directly added and dissolved in a nitrogen gas stream maintained at 35 ° C, and the citrate ion and ferrous ion are mixed at a molar ratio of 3: 2. An aqueous reducing agent solution was prepared.
[0124] 次いで、上記窒素ガス気流を 35°Cに保持した状態で、マグネチックスターラーの攪 拌子を還元剤水溶液中に入れ、攪拌子を lOOrpmの回転速度で回転させて、上記 還元剤水溶液を攪拌しながら、この還元剤水溶液に上記金属塩水溶液を滴下して 混合した。ここで、還元剤水溶液への金属塩水溶液の添加量は、還元剤水溶液の量 の 1/10以下になるように、各溶液の濃度を調整することで、室温の金属塩水溶液を 滴下しても反応温度が 40°Cに保持されるようにした。また上記還元剤水溶液と金属 塩水溶液との混合比は、金属塩水溶液中の金属イオンの総原子価数に対する、還 元剤水溶液のクェン酸イオンと第 1鉄イオンのモル比がいずれも 3倍モルとなるように した。還元剤水溶液への金属塩水溶液の滴下が終了した後、混合液の攪拌を更に 1 5分間続けることにより、混合液内部に金属粒子を生じさせ、金属粒子が分散した金 属粒子分散液を得た。金属粒子分散液の pHは 5. 5であり、分散液中の金属粒子の 化学量論的生成量は 5g/リットルであった。 [0124] Next, with the nitrogen gas stream maintained at 35 ° C, the magnetic stirrer stirrer was placed in the reducing agent aqueous solution, and the stirrer was rotated at a rotation speed of lOOrpm, While stirring the reducing agent aqueous solution, the metal salt aqueous solution was added dropwise to the reducing agent aqueous solution and mixed. Here, the metal salt aqueous solution at room temperature was dropped by adjusting the concentration of each solution so that the amount of the metal salt aqueous solution added to the reducing agent aqueous solution was 1/10 or less of the amount of the reducing agent aqueous solution. The reaction temperature was kept at 40 ° C. The mixing ratio of the reducing agent aqueous solution to the metal salt aqueous solution is 3 times the molar ratio of the citrate ion and ferrous ion in the reducing agent aqueous solution to the total valence of the metal ions in the metal salt aqueous solution. It was made to be a mole. After the addition of the aqueous metal salt solution to the reducing agent aqueous solution is completed, stirring of the mixed solution is further continued for 15 minutes to generate metal particles inside the mixed solution, thereby obtaining a metal particle dispersion liquid in which the metal particles are dispersed. It was. The pH of the metal particle dispersion was 5.5, and the stoichiometric amount of metal particles in the dispersion was 5 g / liter.
[0125] 得られた分散液は室温で放置することにより、分散液中の金属粒子を沈降させ、沈 降した金属粒子の凝集物をデカンテーシヨンにより分離した。分離した金属凝集物に 脱イオン水を加えて分散体とし、限外濾過により脱塩処理した後、更にメタノールで 置換洗浄することにより、金属の含有量を 50質量%にした。その後、遠心分離機を 用いこの遠心分離機の遠心力を調整して、粒径が lOOnmを越える比較的大きな金 属粒子を分離することにより、一次粒径 10〜 50nmの範囲内の金属ナノ粒子を数平 均で 71 %含有するように調整した。即ち、数平均で全ての金属ナノ粒子 100%に対 する一次粒径 10〜50nm範囲内の金属ナノ粒子の占める割合が 71 %になるように 調整した。得られた金属ナノ粒子は、炭素骨格が炭素数 3の有機分子主鎖の保護剤 が化学修飾されていた。  [0125] The obtained dispersion was allowed to stand at room temperature, whereby the metal particles in the dispersion were allowed to settle, and aggregates of the precipitated metal particles were separated by decantation. Deionized water was added to the separated metal agglomerate to form a dispersion, which was desalted by ultrafiltration, and further washed by displacement with methanol to make the metal content 50% by mass. Then, using a centrifuge, the centrifugal force of the centrifuge is adjusted to separate relatively large metal particles with a particle size exceeding lOOnm. Was adjusted to contain 71% in number average. That is, the proportion of metal nanoparticles in the primary particle size range of 10 to 50 nm with respect to 100% of all metal nanoparticles was adjusted to 71% on a number average. The resulting metal nanoparticles were chemically modified with a protective agent for an organic molecular main chain having a carbon skeleton of 3 carbon atoms.
[0126] 次に、得られた金属ナノ粒子 10重量部を水、エタノール及びメタノールを含む混合 溶液 90重量部に添加混合することにより分散させた。更にこの分散液に次の表 4〜 表 6に示す添加物を表 4〜表 6に示す割合となるように加えることで、実施例 22〜58 及び比較例 5〜8の塗布試験用組成物をそれぞれ得た。  [0126] Next, 10 parts by weight of the obtained metal nanoparticles were added and dispersed in 90 parts by weight of a mixed solution containing water, ethanol and methanol. Furthermore, by adding the additives shown in the following Table 4 to Table 6 to this dispersion so as to have the ratios shown in Table 4 to Table 6, compositions for application tests of Examples 22 to 58 and Comparative Examples 5 to 8 Respectively.
[0127] <比較試験 3〉  [0127] <Comparison test 3>
実施例 22〜58及び比較例 5〜8で得られた塗布試験用組成物を次の表 4〜表 6 に示す基材上に 102〜2 X 103nmの膜厚となるように様々な成膜方法で塗布した後 に、次の表 4〜表 6に示す熱処理条件で焼成することにより、基材上に導電性塗膜を 形成した。 Various coating test compositions obtained in Examples 22 to 58 and Comparative Examples 5 to 8 were formed on the substrates shown in Tables 4 to 6 so as to have a film thickness of 10 2 to 2 × 10 3 nm. After coating with a suitable film formation method, the conductive coating film is formed on the substrate by baking under the heat treatment conditions shown in Table 4 to Table 6 below. Formed.
[0128] 形成した導電性塗膜について、基材への密着性、比抵抗、反射率、塗膜厚さ及び 平均表面粗さをそれぞれ求めた。基材への密着性評価は、 JIS K 5600— 5— 6 ( クロスカット法)に準拠した方法により行い、定性的に評価した。具体的には、塗膜に 著しい剥離が生じない場合、即ち、剥離分類が 0〜2の範囲内の場合に「良好」と評 価付けし、それ以外を「不良」と評価付けした。塗膜の比抵抗は、四探針法により塗 膜の表面抵抗を測定し、 SEMにより塗膜の膜厚を測定し、それぞれ測定した表面抵 杭と膜厚とから計算により求めた。塗膜の反射率評価は、紫外可視分光光度計と積 分球の組み合わせにより、波長 800nmにおける塗膜の拡散反射率を測定した。塗 膜厚さは SEMによる断面観察により測定した。平均表面粗さは、 AFMによって得ら れた表面形状に関する評価値を JIS B0601に従って評価することで得た。その結 果を表 7及び表 8にそれぞれ示す。  [0128] With respect to the formed conductive coating film, adhesion to the substrate, specific resistance, reflectance, coating film thickness and average surface roughness were determined. The adhesion to the substrate was evaluated by a method based on JIS K 5600-5-6 (cross-cut method) and evaluated qualitatively. Specifically, when no significant peeling occurred in the coating film, that is, when the peeling classification was in the range of 0 to 2, it was evaluated as “good”, and the others were evaluated as “bad”. The specific resistance of the coating film was calculated by measuring the surface resistance of the coating film by the four-probe method, measuring the film thickness of the coating film by SEM, and calculating from the measured surface resistance and film thickness. The reflectance of the coating film was evaluated by measuring the diffuse reflectance of the coating film at a wavelength of 800 nm using a combination of an ultraviolet-visible spectrophotometer and an integrating sphere. The coating thickness was measured by cross-sectional observation with SEM. The average surface roughness was obtained by evaluating the evaluation value for the surface shape obtained by AFM according to JIS B0601. The results are shown in Table 7 and Table 8, respectively.
[0129] [表 4] [0129] [Table 4]
Figure imgf000034_0001
5]
Figure imgf000034_0001
Five]
[9挲] [τετο] [9 挲] [τετο]
Figure imgf000035_0001
Figure imgf000035_0001
0S.690/Z.00idf/X3d 9ん讓 00Z OAV 熱処理 金羼ナ /粒子 添カロ物 成膜方法 基材 0S.690 / Z.00idf / X3d 9 讓 00Z OAV Heat treatment Gold crab / Particles Additives Film formation method Base material
温度 [で] 時間 [分] 雰囲気 删 49 Ag  Temperature [in] Time [min] Atmosphere 删 49 Ag
コo b 95|ί¾ PVP (MW360000) 4質量 ¾ スピンコーティング ポ ミト' 320 20 大気  Co b 95 | ί¾ PVP (MW360000) 4 mass ¾ Spin coating Pomit '320 20 Atmosphere
ク ム 1質量 ¾  Cum 1 mass ¾
娜 0 Ag 95. 9質^ PVP (MW360000) 4||¾ スピンコーティング ボ 5ィミト' 320 20 大ヌ、 マンガン 0. 1質量 ¾ 娜 0 Ag 95. 9 quality ^ PVP (MW360000) 4 || ¾ Spin coating Boi 5 '320 20 Danu, manganese 0.1 mass ¾
難 1 Ag 95. 9質量 ¾ PVP ( W360000) 4質量% スピンコーティング ポ' ミト' 320 20 大' Difficult 1 Ag 95. 9 mass ¾ PVP (W360000) 4 mass% Spin coating Po'Mito '320 20 Large'
0. 1質量%  0.1% by mass
実糊 52 Ag 95. 9質量 ¾ PVP (MW360000) 4質量¾ スピンコーティング ポリイミト' 320 20 大¼ ギ酸コバル卜 0. 1質量 ¾ Actual paste 52 Ag 95. 9 mass ¾ PVP (MW 360000) 4 mass ¾ Spin coating Polyimito '320 20 Large cobalt formate 0.1 mass ¾
娜 3 Ag 95g|% PVA ( W 16000) 4ΪΙ% スピンコーティング ポリィ 320 20 大 娜 3 Ag 95g |% PVA (W 16000) 4ΪΙ% Spin coating Poly 320 20 Large
鼸ニッケル 1質量 ¾  Nickel 1 mass ¾
実, Ag 9511% PVP ( W360000) 4質量 ¾ ¾e。 スピンコーティング ポリィミト' 320 20 大気 In fact, Ag 9511% PVP (W360000) 4 mass ¾ ¾e. Spin coating polyimito '320 20 atmosphere
クエン^ 1質量 ¾  Quan 1 mass ¾
棚 55 Ag 95fl¾ スピンコーティング ポリイミト' 320 20 2 6 Ag 95質量 スピンコーティング ポ ίイミト' 320 20 大気 実綳 57 Ag 95質量¾ PVA (MW 16000) 4質量 ¾ スピンコ-ティング ポリィミト' 320 20 大¼ ft リブデン 1質量 ¾ Shelf 55 Ag 95fl¾ Spin coating Polyimito '320 20 2 6 Ag 95 Mass Spin coating Polyimito' 320 20 Atmosphere Actual 57 Ag 95 Mass¾ PVA (MW 16000) 4 Mass ¾ Spin coating Polyimito '320 20 Large ft ft 1 mass ¾
Ag 95質量 PVA ( W 16000) 4貧量 ¾ スビンコ一ティング ポリ ミド 320 20 大気 m 1質量 ¾  Ag 95 mass PVA (W 16000) 4 Poor amount ¾ Subcoating polyimide 320 20 Atmosphere m 1 mass ¾
删 5 Ag 100質量 ¾ なし スプレ-コ-ティング ポ ミト' 200 20 大気 顧 6 なし スプレーコーティング IT0 200 20 大気 細 / Ag 95質 t¾ なし ディスペンサー PET 130 20 N , Cu 5li¾ コーティング 删 5 Ag 100 mass ¾ None Spray coating pomito '200 20 Atmosphere Reference 6 None Spray coating IT0 200 20 Atmosphere fine / Ag 95 quality t¾ None Dispenser PET 130 20 N, Cu 5li¾ Coating
顏 8 Ag 99. 8質量 ¾ なし ス" -ン關 ポリイミト' 320 20 大気 Mn 0. 2質量 ¾ 7] 顏 8 Ag 99. 8 Mass ¾ None Su--Polymit '320 20 Atmosphere Mn 0.2 Mass ¾ 7]
密着性 比抵抗 [Ω · cm] 反射率 (800nm) [%R] 塗膜厚さ [nm] 平均表面粗さ [nm] 実赚 2 良好 3.1X10— 6 95 1.0X102 10 棚 23 良好 3.5X10一6 95 5. OX 102 30 糊 24 良好 5. IX 10— 6 90 1. OX 103 15 細 25 良好 8.2X 10— 6 92 1.1X103 40 測 26 良好 6.7X10— 6 92 1.0X103 30 誦 27 良好 4.5X10— 6 94 1.2X 103 40 難 8 良好 3.2X10一6 94 1.0X103 40 翻 29 良好 3.7X10— 6 94 1.0X103 40 実 0 良好 3.2X 10— 6 93 1.9X 103 30 棚 31 良好 3. δΧΙΟ—1* 94 1.8X103 30 赚 2 良好 3.6X10一6 94 2.0X103 20 瞧 3 良好 3· 4X 10一6 92 2. OX 103 15 纖 34 良好 2.1X10— 6 88 2.0X103 90Adhesiveness Specific resistance [Ω · cm] Reflectivity (800nm) [% R] Coating thickness [nm] Average surface roughness [nm] Actual 2 Good 3.1X10— 6 95 1.0X10 2 10 Shelf 23 Good 3.5X10 1 6 95 5. OX 10 2 30 Glue 24 Good 5. IX 10— 6 90 1. OX 10 3 15 Fine 25 Good 8.2X 10— 6 92 1.1X10 3 40 Measurement 26 Good 6.7X10— 6 92 1.0X10 3 30誦27 good 4.5X10- 6 94 1.2X 10 3 40 flame 8 good 3.2X10 one 6 94 1.0 × 10 3 40 transliteration 29 good 3.7X10- 6 94 1.0X10 3 40 real 0 good 3.2X 10- 6 93 1.9X 10 3 30 Shelf 31 Good 3. δΧΙΟ— 1 * 94 1.8X10 3 30 赚 2 Good 3.6X10 16 94 2.0X10 3 20 瞧 3 Good 3.4 × 10 1 6 92 2. OX 10 3 15 纖 34 Good 2.1X10— 6 88 2.0X10 3 90
■ 35 良好 2.5X10一6 86 1.9X 103 100 細 36 良好 4.2X 10— 6 83 1. OX 103 70 実 良好 4. ΙΧΙΟ-6 85 1.1X103 90 実 8 良好 3.9X10一6 88 1. OX 103 80 赚 9 良好 5.2X 10一6 82 1.2X 103 90 実瞧 良好 3.2X10—6 94 1.2X 103 30 8] ■ 35 Good 2.5X10 1 6 86 1.9X 10 3 100 Thin 36 Good 4.2X 10— 6 83 1. OX 10 3 70 Real Good 4. ΙΧΙΟ -6 85 1.1X10 3 90 Real 8 Good 3.9X10 1 6 88 1. OX 10 3 80 赚 9 Good 5.2X 10 1 6 82 1.2X 10 3 90 Actual Good 3.2X10— 6 94 1.2X 10 3 30 8]
密着性 比抵抗 [Ω· η] 反射率(800tim) [ R] 塗膜厚さ [nm] 平均表面粗さ [nm] 難 1 良好 5.5X10"6 80 LOX103 50 Adhesiveness Specific resistance [Ω · η] Reflectance (800tim) [R] Coating thickness [nm] Average surface roughness [nm] Difficult 1 Good 5.5X10 " 6 80 LOX10 3 50
良好 4.9X10一6 85 1.0X103 60 Good 4.9X10 1 6 85 1.0X10 3 60
良好 5.2X10"6 81 1. O 103 50 Good 5.2X10 " 6 81 1. O 10 3 50
実, 良好 4.9X10—6 82 1.0X 103 70 Real, Good 4.9X10— 6 82 1.0X 10 3 70
細 45 良好 4.8X10— 6 85 1.1 X 103 80 Thin 45 Good 4.8X10— 6 85 1.1 X 10 3 80
糊 良好 5.1X10— 6 84 1. OX 103 70 Good glue 5.1X10— 6 84 1. OX 10 3 70
調 良好 3.5X10— 6 85 1.1X103 60 Tone Good 3.5X10— 6 85 1.1X10 3 60
翻 48 良好 3.2X10"° 82 1. OX 103 60 48 good 3.2X10 "° 82 1. OX 10 3 60
難 9 良好 3.3Χ 10— 6 80 1.1X103 70 Difficult 9 Good 3.3Χ 10— 6 80 1.1X10 3 70
実 良好 3.7X10一6 88 1. OX 103 70 Real Good 3.7X10 1 6 88 1. OX 10 3 70
誦 51 良好 3.2Χ 10"6 90 1. OX 103 50 誦 51 Good 3.2Χ 10 " 6 90 1. OX 10 3 50
良好 2.5X10"6 91 1.2X 103 30 Good 2.5X10 " 6 91 1.2X 10 3 30
翻 53 良好 4. IX 10一6 86 1. IX 103 50 Transform 53 Good 4. IX 10 1 6 86 1. IX 10 3 50
実, 良好 3.7X10— 6 88 1. OX 103 40 Real, Good 3.7X10— 6 88 1. OX 10 3 40
良好 4.5X10一6 85 l.OX 103 60 Good 4.5X10 1 6 85 l.OX 10 3 60
翻 56 良好 3.4X10一6 82 1. OX 103 50 56 56 Good 3.4X10 1 6 82 1. OX 10 3 50
赚 7 良好 3.2X10— 6 83 1. IX 103 70 赚 7 Good 3.2X10— 6 83 1. IX 10 3 70
纖 58 良好 4.2Χ 10"6 84 1. OX 103 50 纖 58 Good 4.2Χ 10 " 6 84 1. OX 10 3 50
綱 5 不良 2.5X10- 0 94 1.0X103 110 Class 5 Defect 2.5X10- 0 94 1.0X10 3 110
細 6 不良 4.9X10 6 89 1.0X103 105 Fine 6 Defect 4.9X10 6 89 1.0X10 3 105
比糊 7 不良 4.3Χ 10"6 92 1.2 103 110 Specific glue 7 Defect 4.3Χ 10 " 6 92 1.2 10 3 110
綱 8 不良 3.2X10一6 89 2. OX 103 110 表 8より明らかなように、組成物中に添加物を加えていない比較例 5〜8では、基材と の密着性が『不良』と、密着性に劣る結果となった。一方、表 7及び表 8より明らかなよ うに、実施例 22〜58の組成物を用いて形成した導電性塗膜は、基材と良好な密着 性を有していた。また、実施例 22〜58では、組成物中に含まれる金属ナノ粒子を構 成する金属そのものが有する比抵抗に近い比抵抗が得られており、本発明の組成物 を用いて形成した塗膜は高い導電性を有していることが確認された。また、組成物中 に含まれる金属ナノ粒子を構成する金属そのものの反射率に近い優れた反射率が 得られており、添加物を加えても反射率が低下しないことが判った。更に、塗膜の平 均表面粗さも 10〜100nmの範囲内と、サブストレート型太陽電池を構成する裏面電 極が有するテクスチャ構造に適した範囲の面粗さが得られていることが確認できた。 産業上の利用可能性 Class 8 Defect 3.2X10 1 6 89 2. OX 10 3 110 As is clear from Table 8, in Comparative Examples 5 to 8 where no additive was added to the composition, the adhesion to the base material was `` Poor ''. The result was inferior in adhesion. On the other hand, as is clear from Tables 7 and 8, the conductive coating films formed using the compositions of Examples 22 to 58 had good adhesion to the substrate. Further, in Examples 22 to 58, specific resistance close to the specific resistance of the metal itself constituting the metal nanoparticles contained in the composition was obtained, and the coating film formed using the composition of the present invention. Was confirmed to have high conductivity. In addition, an excellent reflectance close to the reflectance of the metal itself constituting the metal nanoparticles contained in the composition is obtained. It was found that the reflectance does not decrease even when an additive is added. Furthermore, it can be confirmed that the average surface roughness of the coating film is within the range of 10 to 100 nm, and the surface roughness is in a range suitable for the texture structure of the back electrode constituting the substrate type solar cell. It was. Industrial applicability
本発明により、電極形成用組成物とこの組成物を用いて電極を形成する方法、前 記方法により得られた太陽電池用電極、電子ペーパー用電極並びに太陽電池、電 子ペーパーを提供できるから、産業上極めて有用である。  According to the present invention, an electrode forming composition, a method of forming an electrode using this composition, a solar cell electrode, an electronic paper electrode, a solar cell, and an electronic paper obtained by the above method can be provided. It is extremely useful in industry.

Claims

請求の範囲 The scope of the claims
[1] 金属ナノ粒子が分散媒に分散した電極形成用組成物であって、  [1] An electrode-forming composition in which metal nanoparticles are dispersed in a dispersion medium,
前記組成物中にポリビュルピロリドン、ポリビュルピロリドンの共重合体、ポリビュル アルコール及びセルロースエーテルからなる群より選ばれた 1種又は 2種以上の有機 高分子を含む  The composition contains one or more organic polymers selected from the group consisting of polybulurpyrrolidone, polybulurpyrrolidone copolymer, polybulal alcohol and cellulose ether.
ことを特徴とする電極形成用組成物。  A composition for forming an electrode.
[2] 有機高分子の含有率が金属ナノ粒子の 0. ;!〜 20質量%である請求項 1記載の電 極形成用組成物。 [2] The composition for electrode formation according to [1], wherein the content of the organic polymer is from 0.;
[3] 金属ナノ粒子が 75質量%以上の銀ナノ粒子を含有する請求項 1記載の電極形成 用組成物。  [3] The composition for electrode formation according to [1], wherein the metal nanoparticles contain 75% by mass or more of silver nanoparticles.
[4] 金属ナノ粒子は炭素骨格が炭素数 1〜3である有機分子主鎖の保護剤で化学修 飾されて!/、る請求項 1記載の電極形成用組成物。  [4] The composition for electrode formation according to claim 1, wherein the metal nanoparticles are chemically modified with a protective agent for an organic molecular main chain having a carbon skeleton of 1 to 3 carbon atoms!
[5] 金属ナノ粒子が一次粒径 10〜50nmの範囲内の金属ナノ粒子を数平均で 70%以 上含有する請求項 1記載の電極形成用組成物。 5. The electrode forming composition according to claim 1, wherein the metal nanoparticles contain a metal nanoparticle having a primary particle size in the range of 10 to 50 nm in a number average of 70% or more.
[6] 金属ナノ粒子が 75質量%以上の銀ナノ粒子を含有し、かつ、金、白金、パラジウム[6] Metal nanoparticles containing 75% by mass or more of silver nanoparticles, and gold, platinum, palladium
、ルテニウム、ニッケル、銅、錫、インジウム、亜鉛、鉄、クロム及びマンガンからなる群 より選ばれた 1種の粒子又は 2種以上の混合組成又は合金組成からなる粒子を更に 含有し、 Further comprising one particle selected from the group consisting of ruthenium, nickel, copper, tin, indium, zinc, iron, chromium, and manganese, or a particle composed of two or more mixed compositions or alloy compositions,
前記金属ナノ粒子に含まれる銀ナノ粒子以外の粒子の含有量が 0. 02質量%以上 25質量%未満である請求項 1記載の電極形成用組成物。  2. The electrode forming composition according to claim 1, wherein the content of particles other than silver nanoparticles contained in the metal nanoparticles is 0.02 mass% or more and less than 25 mass%.
[7] 分散媒がアルコール類、或いはアルコール含有水溶液である請求項 1記載の電極 形成用組成物。 7. The electrode forming composition according to claim 1, wherein the dispersion medium is an alcohol or an alcohol-containing aqueous solution.
[8] 金属酸化物、金属水酸化物、有機金属化合物及びシリコーンオイルからなる群より 選ばれた 1種又は 2種以上の添加物を更に含む請求項 1記載の電極形成用組成物 8. The electrode forming composition according to claim 1, further comprising one or more additives selected from the group consisting of metal oxides, metal hydroxides, organometallic compounds, and silicone oils.
Yes
[9] 金属酸化物がアルミニウム、シリコン、チタン、クロム、マンガン、鉄、コバルト、ニッケ ノレ、銀、銅、亜鉛、モリブデン、錫、インジウム及びアンチモンからなる群より選ばれた 少なくとも 1種を含む酸化物或いは複合酸化物である請求項 8記載の電極形成用組 成物。 [9] Oxidation in which the metal oxide includes at least one selected from the group consisting of aluminum, silicon, titanium, chromium, manganese, iron, cobalt, nickelol, silver, copper, zinc, molybdenum, tin, indium, and antimony 9. The electrode forming assembly according to claim 8, wherein the electrode forming assembly is an oxide or a complex oxide Adult.
[10] 金属水酸化物がアルミニウム、シリコン、チタン、クロム、マンガン、鉄、コバルト、二 ッケル、銀、銅、亜鉛、モリブデン、錫、インジウム及びアンチモンからなる群より選ば れた少なくとも 1種を含む水酸化物である請求項 8記載の電極形成用組成物。  [10] The metal hydroxide contains at least one selected from the group consisting of aluminum, silicon, titanium, chromium, manganese, iron, cobalt, nickel, silver, copper, zinc, molybdenum, tin, indium and antimony 9. The electrode forming composition according to claim 8, which is a hydroxide.
[11] 有機金属化合物がシリコン、チタン、クロム、マンガン、鉄、コバルト、ニッケル、銀、 銅、亜鉛、モリブデン及び錫の金属石鹼、金属錯体或いは金属アルコキシドである 請求項 8記載の電極形成用組成物。 [11] The electrode formation according to claim 8, wherein the organometallic compound is a metal sarcophagus, metal complex or metal alkoxide of silicon, titanium, chromium, manganese, iron, cobalt, nickel, silver, copper, zinc, molybdenum and tin. Composition.
[12] 請求項 1記載の電極形成用組成物を基材上に湿式塗工法で塗工して成膜するェ 程と、 [12] A process of coating the electrode-forming composition according to claim 1 on a substrate by a wet coating method to form a film;
前記上面に成膜された基材を 130〜400°Cで焼成する工程と  Firing the substrate formed on the upper surface at 130 to 400 ° C;
を含む電極の形成方法。  A method for forming an electrode comprising:
[13] 基材上面に形成した焼成後の電極の厚さが 0. ;!〜 2. 0 mの範囲内である請求 項 12記載の電極の形成方法。 13. The method for forming an electrode according to claim 12, wherein the thickness of the electrode after firing formed on the upper surface of the substrate is in the range of 0 .;! To 2.0 m.
[14] 基材上面に形成した電極の平均表面粗さが 10〜; !OOnmの範囲内である請求項 1[14] The average surface roughness of the electrode formed on the upper surface of the substrate is in the range of 10 to;! OOnm.
2記載の電極の形成方法。 2. The method for forming an electrode according to 2.
[15] 基材がシリコン、ガラス、透明導電材料を含むセラミックス、高分子材料又は金属か らなる基板のいずれ力、、或いは前記シリコン、前記ガラス、前記透明導電材料を含む セラミックス、前記高分子材料及び前記金属からなる群より選ばれた 2種以上の積層 体である請求項 12記載の電極の形成方法。 [15] The substrate is made of silicon, glass, ceramics including a transparent conductive material, a substrate made of a polymer material or metal, or the silicon, glass, ceramics including the transparent conductive material, or the polymer material 13. The method for forming an electrode according to claim 12, wherein the electrode is a laminate of two or more selected from the group consisting of the metals.
[16] 基材が太陽電池素子又は透明電極付き太陽電池素子のいずれかである請求項 1[16] The base material is either a solar cell element or a solar cell element with a transparent electrode.
2記載の電極の形成方法。 2. The method for forming an electrode according to 2.
[17] 湿式塗工法がスプレーコーティング法、ディスぺンサコーティング法、スピンコーティ ング法、ナイフコーティング法、スリットコーティング法、インクジェットコーティング法、 スクリーン印刷法、オフセット印刷法又はダイコーティング法のいずれかである請求項[17] The wet coating method is one of the spray coating method, the dispenser coating method, the spin coating method, the knife coating method, the slit coating method, the ink jet coating method, the screen printing method, the offset printing method or the die coating method. Claim
12記載の電極の形成方法。 12. A method for forming an electrode according to 12.
[18] 請求項 12記載の形成方法により得られた太陽電池用電極。 18. A solar cell electrode obtained by the forming method according to claim 12.
[19] 請求項 12記載の形成方法により得られた電子ペーパー用電極。 [19] An electrode for electronic paper obtained by the forming method according to claim 12.
[20] 基板、裏面電極、光電変換層及び透明電極から少なくとも構成され、 前記基板、前記裏面電極、前記光電変換層及び前記透明電極の順で形成された サブストレート型構造を有する太陽電池の裏面電極である請求項 18記載の太陽電 池用電極。 [20] At least composed of a substrate, a back electrode, a photoelectric conversion layer, and a transparent electrode, 19. The solar cell electrode according to claim 18, which is a back electrode of a solar cell having a substrate structure formed in the order of the substrate, the back electrode, the photoelectric conversion layer, and the transparent electrode.
[21] 基板、透明電極、光電変換層及び裏面電極から少なくとも構成され、  [21] at least composed of a substrate, a transparent electrode, a photoelectric conversion layer and a back electrode,
前記基板、前記透明電極、前記光電変換層及び前記裏面電極の順で形成された スーパーストレート型構造を有する太陽電池の裏面電極である請求項 18記載の太 陽電池用電極。  19. The solar cell electrode according to claim 18, which is a back electrode of a solar cell having a superstrate structure formed in the order of the substrate, the transparent electrode, the photoelectric conversion layer, and the back electrode.
[22] 請求項 18記載の太陽電池用電極を含む太陽電池。  22. A solar cell comprising the solar cell electrode according to claim 18.
[23] 請求項 19記載の電子ペーパー用電極を含む電子ペーパー。  23. An electronic paper comprising the electronic paper electrode according to claim 19.
PCT/JP2007/069750 2006-10-11 2007-10-10 Composition for electrode formation and method for forming electrode by using the composition WO2008047641A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112007002342T DE112007002342T5 (en) 2006-10-11 2007-10-10 Electrode forming composition and method of forming the electrode using the composition
KR1020097007905A KR101419079B1 (en) 2006-10-11 2007-10-10 Composition for electrode formation and method for forming electrode by using the composition
CN2007800377186A CN101523511B (en) 2006-10-11 2007-10-10 Composition for electrode formation and method for forming electrode by using the composition
US12/444,720 US8822814B2 (en) 2006-10-11 2007-10-10 Composition for electrode formation and method for forming electrode by using the composition

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006277228 2006-10-11
JP2006-277228 2006-10-11
JP2007035650 2007-02-16
JP2007-035650 2007-02-16
JP2007258311A JP5309521B2 (en) 2006-10-11 2007-10-02 Electrode forming composition, method for producing the same, and electrode forming method using the composition
JP2007-258311 2007-10-02

Publications (1)

Publication Number Publication Date
WO2008047641A1 true WO2008047641A1 (en) 2008-04-24

Family

ID=39313880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/069750 WO2008047641A1 (en) 2006-10-11 2007-10-10 Composition for electrode formation and method for forming electrode by using the composition

Country Status (1)

Country Link
WO (1) WO2008047641A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010023920A1 (en) * 2008-08-27 2010-03-04 三菱マテリアル株式会社 Transparent conductive film for solar cell, composition for said transparent conductive film, and multi-junction solar cell
JP2010080933A (en) * 2008-08-27 2010-04-08 Mitsubishi Materials Corp Transparent conductive film for solar cell and composition for the transparent conductive film, and multi-junction solar cell
JP2010087480A (en) * 2008-08-08 2010-04-15 Mitsubishi Materials Corp Composite film for substraight type solar cell and method of manufacturing the same
JP2010087479A (en) * 2008-08-08 2010-04-15 Mitsubishi Materials Corp Composite film for substraight type solar cell and method of manufacturing the same
JP2010087478A (en) * 2008-08-08 2010-04-15 Mitsubishi Materials Corp Composite film for super straight type solar cell and method of manufacturing the same
JP2011138949A (en) * 2009-12-28 2011-07-14 Noritake Co Ltd Conductive paste composition for solar cell
CN102197492A (en) * 2008-08-27 2011-09-21 三菱综合材料株式会社 Transparent conductive film for solar cell, composition for said transparent conductive film, and multi-junction solar cell
CN102201274A (en) * 2010-03-26 2011-09-28 三菱综合材料株式会社 Conductive film forming composition, solar cell composite film and forming method thereof
US8921688B2 (en) 2007-09-12 2014-12-30 Mitsubishi Materials Corporation Composite film for superstrate solar cell having conductive film and electroconductive reflective film formed by applying composition containing metal nanoparticles and comprising air pores of preset diameter in contact surface
JP2015105372A (en) * 2013-12-02 2015-06-08 住友金属鉱山株式会社 Aqueous silver colloidal liquid and production method of the same, and coating material using aqueous silver colloidal liquid
CN114314762A (en) * 2021-10-11 2022-04-12 西南石油大学 Nano ZnO/pyrolusite composite particle electrode and preparation method thereof
CN115046989A (en) * 2022-04-07 2022-09-13 河北省产品质量监督检验研究院 Functionalized nano-silver probe and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10188681A (en) * 1996-09-26 1998-07-21 Catalysts & Chem Ind Co Ltd Transparent-conductive-film forming application liquid, base material with transparent conductive film, its manufacture, and display device
JPH1145619A (en) * 1997-07-23 1999-02-16 Samsung Display Devices Co Ltd Conductive composition, transparent conductive film formed by using this, and its manufacture
JP2004182812A (en) * 2002-12-02 2004-07-02 Ishihara Sangyo Kaisha Ltd Electrically conductive coating and method for forming electrically conductive coating film using the same
JP2006193594A (en) * 2005-01-12 2006-07-27 Bando Chem Ind Ltd Conductive ink and its use
JP2006210301A (en) * 2004-12-27 2006-08-10 Mitsui Mining & Smelting Co Ltd Conductive ink

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10188681A (en) * 1996-09-26 1998-07-21 Catalysts & Chem Ind Co Ltd Transparent-conductive-film forming application liquid, base material with transparent conductive film, its manufacture, and display device
JPH1145619A (en) * 1997-07-23 1999-02-16 Samsung Display Devices Co Ltd Conductive composition, transparent conductive film formed by using this, and its manufacture
JP2004182812A (en) * 2002-12-02 2004-07-02 Ishihara Sangyo Kaisha Ltd Electrically conductive coating and method for forming electrically conductive coating film using the same
JP2006210301A (en) * 2004-12-27 2006-08-10 Mitsui Mining & Smelting Co Ltd Conductive ink
JP2006193594A (en) * 2005-01-12 2006-07-27 Bando Chem Ind Ltd Conductive ink and its use

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8921688B2 (en) 2007-09-12 2014-12-30 Mitsubishi Materials Corporation Composite film for superstrate solar cell having conductive film and electroconductive reflective film formed by applying composition containing metal nanoparticles and comprising air pores of preset diameter in contact surface
JP2010087480A (en) * 2008-08-08 2010-04-15 Mitsubishi Materials Corp Composite film for substraight type solar cell and method of manufacturing the same
JP2010087479A (en) * 2008-08-08 2010-04-15 Mitsubishi Materials Corp Composite film for substraight type solar cell and method of manufacturing the same
JP2010087478A (en) * 2008-08-08 2010-04-15 Mitsubishi Materials Corp Composite film for super straight type solar cell and method of manufacturing the same
WO2010023920A1 (en) * 2008-08-27 2010-03-04 三菱マテリアル株式会社 Transparent conductive film for solar cell, composition for said transparent conductive film, and multi-junction solar cell
JP2010080933A (en) * 2008-08-27 2010-04-08 Mitsubishi Materials Corp Transparent conductive film for solar cell and composition for the transparent conductive film, and multi-junction solar cell
CN102197492A (en) * 2008-08-27 2011-09-21 三菱综合材料株式会社 Transparent conductive film for solar cell, composition for said transparent conductive film, and multi-junction solar cell
JP2011138949A (en) * 2009-12-28 2011-07-14 Noritake Co Ltd Conductive paste composition for solar cell
CN102201274A (en) * 2010-03-26 2011-09-28 三菱综合材料株式会社 Conductive film forming composition, solar cell composite film and forming method thereof
JP2015105372A (en) * 2013-12-02 2015-06-08 住友金属鉱山株式会社 Aqueous silver colloidal liquid and production method of the same, and coating material using aqueous silver colloidal liquid
CN114314762A (en) * 2021-10-11 2022-04-12 西南石油大学 Nano ZnO/pyrolusite composite particle electrode and preparation method thereof
CN115046989A (en) * 2022-04-07 2022-09-13 河北省产品质量监督检验研究院 Functionalized nano-silver probe and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP5979211B2 (en) Electrode forming composition and electrode forming method using the composition
WO2008047641A1 (en) Composition for electrode formation and method for forming electrode by using the composition
JP5309440B2 (en) Composition for forming electrode of solar cell, method for forming the electrode, and method for producing solar cell using the electrode obtained by the forming method
JP5169389B2 (en) Method for manufacturing conductive reflective film
CN101803037B (en) Composite membrane for super straight solar cell, process for producing the composite membrane for super straight solar cell, composite membrane for substraight solar cell, and process for producing the composite membrane for substraight solar cell
WO2008001518A1 (en) Composition for forming electrode in solar cell, method of forming the electrode, and solar cell employing electrode obtained by the formation method
JP5637196B2 (en) Composite film for super straight type thin film solar cell and manufacturing method thereof
JP5359667B2 (en) Composite film for super straight type solar cell and manufacturing method thereof
JP2010087479A (en) Composite film for substraight type solar cell and method of manufacturing the same
JP2011222953A (en) Composition for transparent conductive film formation, method for forming composite film for solar cell, and composite film formed by the method
JP5515499B2 (en) Composite film for substrate type solar cell and manufacturing method thereof
JP5444923B2 (en) Composite film for super straight type solar cell and manufacturing method thereof
JP2011109069A (en) Conductive reflecting film and method of manufacturing the same
JP5407989B2 (en) Method for forming composite film for solar cell
JP2011151292A (en) Conductive oxide fine particle dispersion liquid for forming transparent conductive film and transparent conductive film formed using the conductive oxide fine particle dispersion liquid, composite film, and method of manufacturing the same
JP2011151291A (en) Transparent conductive film, composite film, and method of manufacturing the same
JP5423860B2 (en) Conductive reflective film and manufacturing method thereof
JP2012009840A (en) Method of forming composite film for solar cell and composite film formed by the method
JP2011192802A (en) Method of manufacturing solar cell
JP2011192799A (en) Method of manufacturing solar cell
JP2011192798A (en) Method of manufacturing solar cell
JP2011192803A (en) Method of manufacturing solar cell

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780037718.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07829488

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12444720

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120070023422

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 1020097007905

Country of ref document: KR

RET De translation (de og part 6b)

Ref document number: 112007002342

Country of ref document: DE

Date of ref document: 20091105

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 07829488

Country of ref document: EP

Kind code of ref document: A1