JP2010080933A - Transparent conductive film for solar cell and composition for the transparent conductive film, and multi-junction solar cell - Google Patents

Transparent conductive film for solar cell and composition for the transparent conductive film, and multi-junction solar cell Download PDF

Info

Publication number
JP2010080933A
JP2010080933A JP2009173403A JP2009173403A JP2010080933A JP 2010080933 A JP2010080933 A JP 2010080933A JP 2009173403 A JP2009173403 A JP 2009173403A JP 2009173403 A JP2009173403 A JP 2009173403A JP 2010080933 A JP2010080933 A JP 2010080933A
Authority
JP
Japan
Prior art keywords
binder
mass
film
transparent conductive
fine particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009173403A
Other languages
Japanese (ja)
Other versions
JP5544774B2 (en
Inventor
Masahide Arai
将英 荒井
Kazuhiko Yamazaki
和彦 山崎
Reiko Ogawa
怜子 小川
Toshiharu Hayashi
年治 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2009173403A priority Critical patent/JP5544774B2/en
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to CN2009801422135A priority patent/CN102197492A/en
Priority to US12/737,679 priority patent/US20110139228A1/en
Priority to DE112009002056T priority patent/DE112009002056T5/en
Priority to CN201510688545.0A priority patent/CN105513670A/en
Priority to PCT/JP2009/004168 priority patent/WO2010023920A1/en
Publication of JP2010080933A publication Critical patent/JP2010080933A/en
Priority to US14/100,511 priority patent/US20140090699A1/en
Application granted granted Critical
Publication of JP5544774B2 publication Critical patent/JP5544774B2/en
Priority to US15/050,020 priority patent/US20160172531A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transparent conductive film that meets respective requirements such as excellent optical transparency, high electric conductivity, and a low refractive index for use for a multi-junction solar cell by manufacturing it by a wet coating method using a coating type material, and is also reducible in running cost by manufacturing it without using a vacuum film forming method. <P>SOLUTION: The transparent conductive film for solar cell is provided between photoelectric conversion layers of the multi-junction solar cell and formed in a state wherein a particulate layer is impregnated with a binder layer by impregnating a coating of particulates formed by applying a conductive particulate dispersion liquid by using a wet coating method with a binder dispersion liquid by the wet coating method and baking it, the transparent conductive film for solar cell being characterized in that a base material constituting the conductive film contains 5 to 95% by mass of conductive component and the conductive film is 5 to 200 nm thick. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、2種類以上の光電変換層を重ねて変換効率を向上させる多接合型太陽電池において、光電変換層間に設けてセル出力を向上させる太陽電池用透明導電膜及びその透明導電膜用組成物、多接合型太陽電池に関するものである。   The present invention relates to a multi-junction solar cell that improves conversion efficiency by stacking two or more types of photoelectric conversion layers, and a transparent conductive film for a solar cell that is provided between photoelectric conversion layers to improve cell output and a composition for the transparent conductive film And a multi-junction solar cell.

現在、環境保護の立場から、クリーンなエネルギーの研究開発が進められている。中でも太陽電池は、その資源である太陽光が無限であること、無公害であることなどから注目を集めている。従来、太陽電池による太陽光発電には、単結晶シリコンや多結晶シリコンのバルク状結晶を製造し、これをスライス加工して厚い板状の半導体として使用するバルク太陽電池が用いられてきた。しかし、バルク太陽電池に使用する上記シリコン結晶は、結晶の成長に多くのエネルギーと時間とを要し、かつ、続く製造工程においても複雑な工程が必要となるため量産効率が上がり難く、低価格の太陽電池を提供することが困難であった。   Currently, clean energy research and development is underway from the standpoint of environmental protection. In particular, solar cells are attracting attention because of the infinite amount of sunlight, which is a resource, and no pollution. Conventionally, for solar power generation using a solar cell, a bulk solar cell in which a bulk crystal of single crystal silicon or polycrystalline silicon is manufactured and sliced to be used as a thick plate semiconductor has been used. However, the above silicon crystal used for bulk solar cells requires a lot of energy and time for crystal growth, and it is difficult to increase mass production efficiency because of the complicated manufacturing process required in the subsequent manufacturing process. It was difficult to provide solar cells.

一方、厚さが数マイクロメートル以下のアモルファスシリコンなどの半導体を用いた薄膜半導体太陽電池(以下、薄膜太陽電池という。)は、ガラスやステンレススチールなどの安価な基板上に、光電変換層である半導体層を必要なだけ形成すればよい。従って、この薄膜太陽電池は、薄型で軽量、製造コストの安さ、大面積化が容易であることなどから、今後の太陽電池の主流になると考えられている。   On the other hand, a thin film semiconductor solar cell using a semiconductor such as amorphous silicon having a thickness of several micrometers or less (hereinafter referred to as a thin film solar cell) is a photoelectric conversion layer on an inexpensive substrate such as glass or stainless steel. It is only necessary to form as many semiconductor layers as necessary. Therefore, this thin film solar cell is considered to become the mainstream of future solar cells because it is thin and light, low in manufacturing cost, and easy to increase in area.

光電変換層がシリコン系材料で形成された薄膜太陽電池では、例えば、透明電極、アモルファスシリコン、多結晶シリコン、裏面電極の順で形成された多接合型の構造をとることで発電効率を高めることが検討されている(例えば、特許文献1〜4、非特許文献1参照。)。特許文献1〜4や非特許文献1に示される構造では、アモルファスシリコンや多結晶シリコンが光電変換層を構成している。   In thin-film solar cells in which the photoelectric conversion layer is formed of a silicon-based material, for example, the power generation efficiency is increased by taking a multi-junction structure formed in the order of transparent electrode, amorphous silicon, polycrystalline silicon, and back electrode. (For example, refer to Patent Documents 1 to 4 and Non-Patent Document 1). In the structures shown in Patent Documents 1 to 4 and Non-Patent Document 1, amorphous silicon and polycrystalline silicon constitute a photoelectric conversion layer.

光電変換層がシリコン系の材料によって構成される場合、光電変換層の吸光係数が比較的小さいことから、光電変換層が数マイクロメートルオーダーの膜厚では、入射光の一部は光電変換層を透過してしまい、透過した光は発電に寄与しない。   When the photoelectric conversion layer is made of a silicon-based material, the absorption coefficient of the photoelectric conversion layer is relatively small. The transmitted light does not contribute to power generation.

そのため、薄膜太陽電池を構成する各層の一つに、トップセルとボトムセルの間に中間膜として、透明導電膜が設けられている(例えば、特許文献1〜3、非特許文献1参照。)。   Therefore, a transparent conductive film is provided as an intermediate film between the top cell and the bottom cell in one of the layers constituting the thin film solar cell (see, for example, Patent Documents 1 to 3 and Non-Patent Document 1).

この透明導電膜は、本来であれば、トップセルを通過してボトムセル側へ入射する光の一部を、シリコン層とこの透明導電膜の屈折率差を利用して、波長選択的に反射させることを目的としている。例えば、アモルファスシリコン層(トップセル)−微結晶シリコン層(ボトムセル)のタンデム構造の太陽電池の場合、両光電変換層の界面に透明導電膜が設けられることにより、アモルファスシリコン層が高い変換効率を示す短波長域の光を、この透明導電膜が選択的に反射させる。反射した短波長域の光は再度アモルファスシリコン層に入射するため、発電に再度寄与する。これによって、同一のトップセル膜厚でも従来の構造に比べて実効的な光感度が増大する。一方、長波長域の光の多くはこの透明導電膜を透過し、長波長域の光に対して変換効率の高い微結晶シリコン層に入射する。   Originally, this transparent conductive film reflects part of the light that passes through the top cell and is incident on the bottom cell side in a wavelength-selective manner using the refractive index difference between the silicon layer and the transparent conductive film. The purpose is that. For example, in the case of a solar cell having a tandem structure of an amorphous silicon layer (top cell) and a microcrystalline silicon layer (bottom cell), the amorphous silicon layer has high conversion efficiency by providing a transparent conductive film at the interface between both photoelectric conversion layers. The transparent conductive film selectively reflects light in the short wavelength range shown. Since the reflected light in the short wavelength region is incident again on the amorphous silicon layer, it again contributes to power generation. This increases the effective photosensitivity as compared with the conventional structure even with the same top cell thickness. On the other hand, most of the light in the long wavelength region is transmitted through the transparent conductive film, and is incident on the microcrystalline silicon layer having high conversion efficiency with respect to the light in the long wavelength region.

特開2006−319068号公報JP 2006-31068 A 特開2006−310694号公報JP 2006-310694 A 国際公開第2005/011002号パンフレットInternational Publication No. 2005/011002 Pamphlet 特開2002−141524号公報JP 2002-141524 A

柳田祥三ほか著、「薄膜太陽電池の開発最前線 〜高効率化・量産化・普及促進に向けて〜」、株式会社エヌ・ティー・エス、2005年3月、P.113図1(a)Shozo Yanagida et al., “The Forefront of Thin-Film Solar Cell Development: Toward High Efficiency, Mass Production, and Popularization”, NTS Corporation, March 2005, p. 113 FIG. 1 (a)

薄膜型太陽電池におけるこれまでの開発では、各層はスパッタ法等の真空成膜法によって形成されていた。しかし、一般に、大型の真空成膜装置を維持・運転するには多大なコストが必要とされていることから、この真空成膜法による製法を、湿式製膜法による製法に代えることによって、ランニングコストの大幅な改善が期待されている。   In the development so far in the thin film type solar cell, each layer has been formed by a vacuum film forming method such as a sputtering method. However, in general, a large amount of cost is required to maintain and operate a large-scale vacuum film forming apparatus. Therefore, the manufacturing method using the vacuum film forming method is replaced with the manufacturing method using the wet film forming method. Significant cost improvement is expected.

また、透明導電膜は、少なくとも、良好な光透過性、高い電気伝導性、低屈折率、耐スパッタ性などの要件を満たす必要があった。   In addition, the transparent conductive film must satisfy at least the requirements such as good light transmittance, high electrical conductivity, low refractive index, and sputtering resistance.

更に、多接合型太陽電池の重要な特徴の1つとして、短絡電流密度は、各光電変換層で生じる短絡電流密度のうち、最も小さい短絡電流密度に制限されるというものがある。透明導電膜を用いてセル内部での光反射特性を調整し、各光電変換層で生じる短絡電流密度を最適化することで、セル全体でも短絡電流が増大することが知られている。   Furthermore, one of the important features of a multi-junction solar cell is that the short-circuit current density is limited to the smallest short-circuit current density among the short-circuit current densities generated in each photoelectric conversion layer. It is known that the short circuit current increases in the whole cell by adjusting the light reflection characteristics inside the cell using a transparent conductive film and optimizing the short circuit current density generated in each photoelectric conversion layer.

本発明の目的は、塗布型材料を使用した湿式塗工法によって作製することにより、多接合型太陽電池に使用する際に求められる、良好な光透過性、高い電気伝導性、低屈折率などの各要件を満たすことができるとともに、真空成膜法を用いずに作製することによりランニングコストの低減を図ることができる、太陽電池用透明導電膜を提供することにある。   The object of the present invention is to produce good light transmission, high electrical conductivity, low refractive index, etc. required for use in multi-junction solar cells by producing by a wet coating method using a coating type material. An object of the present invention is to provide a transparent conductive film for a solar cell that can satisfy each requirement and can reduce the running cost by being manufactured without using a vacuum film forming method.

本発明の別の目的は、光電変換層と透明導電膜との屈折率差に関係する透明導電膜の屈折率などの光学特性を容易に調整でき、光電変換層間の光反射特性の最適化が図ることができる、太陽電池用透明導電膜を提供することにある。   Another object of the present invention is to easily adjust optical characteristics such as the refractive index of the transparent conductive film related to the difference in refractive index between the photoelectric conversion layer and the transparent conductive film, and to optimize the light reflection characteristics between the photoelectric conversion layers. The object is to provide a transparent conductive film for a solar cell that can be achieved.

本発明の別の目的は、下地となる光電変換層との密着性に優れ、また、経時変化が少ない、太陽電池用透明導電膜を提供することにある。   Another object of the present invention is to provide a transparent conductive film for a solar cell that is excellent in adhesiveness with a photoelectric conversion layer as a base and has little change with time.

本発明の更に別の目的は、上記透明導電膜を形成するための透明導電膜用組成物及び上記透明導電膜を用いた多接合型太陽電池を提供することにある。   Still another object of the present invention is to provide a transparent conductive film composition for forming the transparent conductive film and a multi-junction solar cell using the transparent conductive film.

本発明者らは多接合型太陽電池の光電変換層間に設けられる透明導電膜に関して鋭意検討した結果、塗布型材料を使用して、微粒子を主成分とする塗膜を形成し、この塗膜の上にバインダを含む分散液を含浸し、焼成することによる湿式塗工法によって、多接合型太陽電池に使用する際に求められる、良好な光透過性、高い電気伝導性、低屈折率などの各要件を満たす透明導電膜の作製が可能であり、真空成膜法を用いない手法として、透明導電膜の作製におけるランニングコストの低減が図ることができることを見出した。また、本発明者らは湿式塗工法で使用する塗布型材料はその配合割合等を調整することで、光電変換層と透明導電膜との屈折率差に関係する透明導電膜の屈折率などの光学特性を容易に調節することができるメリットがあり、光電変換層間の光反射特性を最適化することで、真空成膜法での作製では達成できなかった多接合型太陽電池の性能向上が実現可能であることを見出した。   As a result of intensive studies on the transparent conductive film provided between the photoelectric conversion layers of the multi-junction solar cell, the present inventors formed a coating film mainly composed of fine particles using a coating-type material. Each of the good light transmittance, high electrical conductivity, low refractive index, etc. required when used for multi-junction solar cells by wet coating method by impregnating and baking a dispersion containing binder It has been found that a transparent conductive film that satisfies the requirements can be produced, and that the running cost in the production of the transparent conductive film can be reduced as a technique that does not use the vacuum film formation method. In addition, the present inventors adjust the blending ratio etc. of the coating type material used in the wet coating method, such as the refractive index of the transparent conductive film related to the refractive index difference between the photoelectric conversion layer and the transparent conductive film. There is a merit that the optical characteristics can be easily adjusted, and by optimizing the light reflection characteristics between the photoelectric conversion layers, the performance improvement of the multi-junction solar cell that could not be achieved by the vacuum deposition method has been realized I found it possible.

また、導電性微粒子層とバインダ層の2層構造とすることで、単一の透明導電膜に比べ、下地であるアモルファスシリコン層との密着性に優れ、更に、導電性微粒子層をバインダ層で含浸した状態とすることで、膜の経時変化が少ないことを見出した。   In addition, by adopting a two-layer structure of a conductive fine particle layer and a binder layer, compared with a single transparent conductive film, it has excellent adhesion to an amorphous silicon layer as a base, and the conductive fine particle layer is a binder layer. It was found that changes in the film over time were small by making the impregnation state.

本発明の第1の観点は、多接合型太陽電池の光電変換層間に設けられる太陽電池用透明導電膜において、導電膜が、導電性微粒子を含む分散液(以下、導電性微粒子分散液という。)を湿式塗工法を用いて塗布し形成された微粒子の塗膜上に、バインダを含む分散液(以下、バインダ分散液という。)を湿式塗工法を用いて含浸し焼成することにより、微粒子層がバインダ層で含浸された状態で形成され、導電膜を構成する母材中には導電性成分が5〜95質量%の範囲内で存在し、導電膜の厚さが5〜200nmの範囲内であることを特徴とする。   According to a first aspect of the present invention, in a transparent conductive film for a solar cell provided between photoelectric conversion layers of a multijunction solar cell, the conductive film includes a dispersion containing conductive fine particles (hereinafter referred to as a conductive fine particle dispersion). The fine particle layer is obtained by impregnating and baking a dispersion liquid containing a binder (hereinafter referred to as a binder dispersion liquid) on a fine particle coating film formed by applying a wet coating method using a wet coating method. Is impregnated with a binder layer, and in the base material constituting the conductive film, the conductive component is present in the range of 5 to 95% by mass, and the thickness of the conductive film is in the range of 5 to 200 nm. It is characterized by being.

本発明の第2の観点は、第1の観点に基づく発明であって、更に透明導電膜用組成物が100〜400℃の範囲内での加熱又は紫外線照射によって硬化するバインダを含むことを特徴とする。   A second aspect of the present invention is an invention based on the first aspect, wherein the composition for a transparent conductive film further includes a binder that is cured by heating within a range of 100 to 400 ° C. or ultraviolet irradiation. And

本発明の第3の観点は、第2の観点に基づく発明であって、更にバインダが、アクリル樹脂、アクリレート樹脂、ポリカーボネート樹脂、ポリエステル樹脂、アルキッド樹脂、ポリウレタン樹脂、アクリルウレタン樹脂、ポリスチレン樹脂、ポリアセタール樹脂、ポリアミド樹脂、ポリビニルアルコール樹脂、ポリ酢酸ビニル樹脂、セルロース樹脂、エチルセルロース樹脂、エポキシ樹脂、塩化ビニル樹脂、シロキサンポリマ又は金属アルコキシドの加水分解体(ゾルゲルを含む)のいずれか1種以上を含むことを特徴とする。   A third aspect of the present invention is an invention based on the second aspect, wherein the binder is an acrylic resin, acrylate resin, polycarbonate resin, polyester resin, alkyd resin, polyurethane resin, acrylic urethane resin, polystyrene resin, polyacetal. Containing any one or more of resin, polyamide resin, polyvinyl alcohol resin, polyvinyl acetate resin, cellulose resin, ethyl cellulose resin, epoxy resin, vinyl chloride resin, siloxane polymer or hydrolyzate of metal alkoxide (including sol-gel) It is characterized by.

本発明の第4の観点は、第1の観点に基づく発明であって、更に透明導電膜用組成物がシランカップリング剤、アルミカップリング剤及びチタンカップリング剤からなる群より選ばれた1種又は2種以上を含むことを特徴とする。   4th viewpoint of this invention is invention based on 1st viewpoint, Comprising: Furthermore, the composition for transparent conductive films was chosen from the group which consists of a silane coupling agent, an aluminum coupling agent, and a titanium coupling agent. It contains a seed or two or more kinds.

本発明の第5の観点は、第1の観点に基づく発明であって、更に導電性微粒子が、Zn,In,Sn,Sb,Si,Al,Ga,Co,Mg,Ca,Sr,Ba,Ce,Ti,Y及びZrからなる群より選ばれた1種又は2種以上の酸化物、水酸化物或いは複合化合物、又はこれら2種以上の混合物から構成された第1微粒子であることを特徴とする。   A fifth aspect of the present invention is an invention based on the first aspect, wherein the conductive fine particles further comprise Zn, In, Sn, Sb, Si, Al, Ga, Co, Mg, Ca, Sr, Ba, It is the 1st fine particle comprised from the 1 type, 2 or more types of oxide selected from the group which consists of Ce, Ti, Y, and Zr, a hydroxide, or a composite compound, or these 2 or more types of mixtures. And

本発明の第6の観点は、第1の観点に基づく発明であって、更に導電性微粒子が、C,Si,Cu,Ni,Ag,Pd,Pt,Au,Ru,Rh及びIrからなる群より選ばれた1種又は2種以上を含有する混合合金からなるナノ粒子から構成された第2微粒子であることを特徴とする。   A sixth aspect of the present invention is the invention based on the first aspect, wherein the conductive fine particles further comprise C, Si, Cu, Ni, Ag, Pd, Pt, Au, Ru, Rh, and Ir. It is the 2nd fine particle comprised from the nanoparticle which consists of a mixed alloy containing 1 type, or 2 or more types selected from more.

本発明の第7の観点は、第1の観点に基づく発明であって、更に導電性微粒子が、第1微粒子と第2微粒子の双方を混合させたものであることを特徴とする。   A seventh aspect of the present invention is the invention based on the first aspect, characterized in that the conductive fine particles are a mixture of both the first fine particles and the second fine particles.

本発明の第8の観点は、第1の観点に基づく発明であって、更に湿式塗工法が、スプレーコーティング法、ディスペンサコーティング法、スピンコーティング法、ナイフコーティング法、スリットコーティング法、インクジェットコーティング法、グラビア印刷法、スクリーン印刷法、オフセット印刷法又はダイコーティング法のいずれかの方法であることを特徴とする。   The eighth aspect of the present invention is the invention based on the first aspect, and the wet coating method further includes a spray coating method, a dispenser coating method, a spin coating method, a knife coating method, a slit coating method, an inkjet coating method, It is a gravure printing method, a screen printing method, an offset printing method, or a die coating method.

本発明の第9の観点は、第1ないし第8の観点に基づく発明であって、更に屈折率が1.1〜2.0であることを特徴とする。   A ninth aspect of the present invention is an invention based on the first to eighth aspects, and further has a refractive index of 1.1 to 2.0.

本発明の第10の観点は、第1ないし第9の観点に基づく太陽電池用透明導電膜が光電変換層間に設けられたことを特徴とする多接合型太陽電池である。   A tenth aspect of the present invention is a multi-junction solar cell, characterized in that a transparent conductive film for a solar cell based on the first to ninth aspects is provided between photoelectric conversion layers.

本発明の第11の観点は、第1ないし第9の観点に基づく太陽電池用透明導電膜を形成するための透明導電膜用組成物である。   An eleventh aspect of the present invention is a composition for a transparent conductive film for forming a transparent conductive film for a solar cell based on the first to ninth aspects.

本発明は、透明導電膜の作製において、塗布型材料を使用した湿式塗工法によって、多接合型太陽電池に使用する際に求められる、良好な光透過性、高い電気伝導性、低屈折率などの各要件を満たす透明導電膜の作製が可能であり、真空成膜法を用いない手法として、透明導電膜の作製におけるランニングコストの低減を図ることができる、という利点がある。   The present invention provides good light transmission, high electrical conductivity, low refractive index, etc. required for use in multi-junction solar cells by wet coating using a coating type material in the production of a transparent conductive film. It is possible to produce a transparent conductive film satisfying these requirements, and there is an advantage that the running cost in producing the transparent conductive film can be reduced as a technique not using the vacuum film formation method.

また、本発明は、光電変換層と透明導電膜との屈折率差に関係する透明導電膜の屈折率などの光学特性を容易に調整でき、光電変換層間の光反射特性の最適化が図れる、という別の利点がある。更に、本発明の透明導電膜は、導電性微粒子層とバインダ層の2層から構成されているため、単一の透明導電膜に比べ、下地であるアモルファスシリコン層との密着性に優れ、また、経時変化が少ないという利点をも併せ持つ。   Further, the present invention can easily adjust the optical characteristics such as the refractive index of the transparent conductive film related to the difference in refractive index between the photoelectric conversion layer and the transparent conductive film, and can optimize the light reflection characteristics between the photoelectric conversion layers. There is another advantage. Furthermore, since the transparent conductive film of the present invention is composed of two layers of a conductive fine particle layer and a binder layer, it has superior adhesion to the amorphous silicon layer as a base, compared to a single transparent conductive film. In addition, it has the advantage of little change over time.

多接合型太陽電池の概略図である。It is the schematic of a multijunction solar cell. 焼成前の透明導電塗膜の断面を模式的に表した図である。It is the figure which represented typically the cross section of the transparent conductive coating film before baking.

次に本発明を実施するための形態を図面に基づいて説明する。   Next, an embodiment for carrying out the present invention will be described with reference to the drawings.

本発明の太陽電池用透明導電膜は、多接合型太陽電池の光電変換層間に設けられる。多接合型太陽電池は、図1に示すように、透明な基板11上に表面側電極層12が形成され、この電極層12上に第1の光電変換層としてアモルファスシリコン層13が形成される。そして、アモルファスシリコン層13の上に透明導電膜14が形成され、この透明導電膜14の上に、第2の光電変換層として微結晶シリコン層15が形成されて透明導電膜14が2つの光電変換層13,15に挟まれた構造となる。更に、微結晶シリコン層15の上に、裏面側電極層16が形成されている。   The transparent conductive film for solar cell of the present invention is provided between the photoelectric conversion layers of a multijunction solar cell. In the multi-junction solar cell, as shown in FIG. 1, a surface-side electrode layer 12 is formed on a transparent substrate 11, and an amorphous silicon layer 13 is formed on the electrode layer 12 as a first photoelectric conversion layer. . A transparent conductive film 14 is formed on the amorphous silicon layer 13, and a microcrystalline silicon layer 15 is formed on the transparent conductive film 14 as a second photoelectric conversion layer. The structure is sandwiched between the conversion layers 13 and 15. Further, a back electrode layer 16 is formed on the microcrystalline silicon layer 15.

本発明の透明導電膜14は、導電性微粒子分散液を湿式塗工法を用いて塗布して微粒子の塗膜を形成し、この塗膜上にバインダ分散液を湿式塗工法を用いて含浸し焼成することにより形成される。そして、透明導電膜を構成する母材中には導電性成分が5〜95質量%の範囲内で存在し、導電膜の厚さが5〜200nmの範囲内であることを特徴とする。ここで、導電性成分は、導電性微粒子分散液中に含まれる導電性微粒子が焼成されてその形態が変化したものであり、母材は、バインダ分散液中に含まれるバインダの焼成後の残存成分を主成分として構成されたものである。   The transparent conductive film 14 of the present invention is formed by applying a conductive fine particle dispersion using a wet coating method to form a fine particle coating, and impregnating the binder dispersion on this coating using a wet coating method and firing. It is formed by doing. And in the base material which comprises a transparent conductive film, a conductive component exists in the range of 5-95 mass%, and the thickness of a conductive film exists in the range of 5-200 nm, It is characterized by the above-mentioned. Here, the conductive component is obtained by firing the conductive fine particles contained in the conductive fine particle dispersion and the form thereof is changed, and the base material remains after the binder contained in the binder dispersion is fired. The component is composed of the main component.

透明導電膜14がスパッタ法等の真空成膜法により形成される場合、膜の屈折率は、ターゲット材料の材質によって決まるため、太陽電池の光電変換層間に設けられる中間膜として好適な屈折率が得られ難く、高い屈折率となる傾向がある。一方、湿式塗工法を用いて形成される透明導電膜の場合、一般に導電性微粒子及びバインダと他の成分との混合物である透明導電膜用組成物を塗布、焼成することにより形成されるため、湿式塗工法を用いて形成される膜は組成物の成分調整により所望の低い屈折率が得られる。以上のことから、従来スパッタ法のような真空成膜法により作製していた透明導電膜を塗布型材料を使用する手法で作製することで、ランニングコストの低減を図ることが可能となるという利点がある。更に、塗布型材料を使用することで、光電変換層と透明導電膜との屈折率差に関係する透明導電膜の屈折率などの光学特性を容易に調整できるという別の利点も有する。   When the transparent conductive film 14 is formed by a vacuum film formation method such as a sputtering method, the refractive index of the film is determined by the material of the target material, so that the refractive index suitable as an intermediate film provided between the photoelectric conversion layers of the solar cell is It is difficult to obtain and tends to have a high refractive index. On the other hand, in the case of a transparent conductive film formed using a wet coating method, it is generally formed by applying and baking a composition for transparent conductive film, which is a mixture of conductive fine particles and a binder and other components, A film formed using a wet coating method can have a desired low refractive index by adjusting the composition of the composition. From the above, it is possible to reduce the running cost by producing a transparent conductive film that has been produced by a vacuum film-forming method such as a conventional sputtering method by using a coating-type material. There is. Furthermore, by using a coating type material, there is another advantage that optical characteristics such as the refractive index of the transparent conductive film relating to the difference in refractive index between the photoelectric conversion layer and the transparent conductive film can be easily adjusted.

湿式塗工法を用いて形成される透明導電膜には、例えば、導電性微粒子とバインダ成分とを一緒に含有させて調製した組成物を塗布し、その後焼成して形成した単一の透明導電膜が挙げられる。このような単一の透明導電膜でも、膜中に導電性成分だけでなく、母材が存在した構成となるため、スパッタ法等の真空成膜法を用いた手法で作製された膜に比べて光の屈折率を低くすることができる。   For example, a single transparent conductive film formed by applying a composition prepared by containing conductive fine particles and a binder component together and then baking the transparent conductive film formed using a wet coating method Is mentioned. Even such a single transparent conductive film has a structure in which not only the conductive component but also the base material exists in the film, compared with a film manufactured by a technique using a vacuum film forming method such as a sputtering method. Thus, the refractive index of light can be lowered.

一方、本発明の透明導電膜14は、先ず、光電変換層であるアモルファスシリコン層13上にバインダ成分を含まない導電性微粒子分散液を塗布して塗膜を形成し、この導電性微粒子層上に導電性微粒子を含まないバインダ分散液を塗布し、その後所定の温度で焼成されて形成されたものである。即ち、本発明の透明導電膜14は、図1に示すように、上層に、導電性微粒子を含まないバインダ層14bが形成される。また、アモルファスシリコン層13との界面付近の下層には、その表面の一部又は全部がバインダ層14bで覆われ、バインダ分散液の塗布によりその一部が含浸した導電性微粒子層14aで構成されたものである。この導電性微粒子層14aは、焼成により粒子の一部が焼結し、高い導電性を確保する。   On the other hand, the transparent conductive film 14 of the present invention first forms a coating film by applying a conductive fine particle dispersion containing no binder component on the amorphous silicon layer 13 which is a photoelectric conversion layer. A binder dispersion containing no conductive fine particles is applied to the film, and then fired at a predetermined temperature. That is, as shown in FIG. 1, the transparent conductive film 14 of the present invention has a binder layer 14b that does not contain conductive fine particles formed as an upper layer. The lower layer near the interface with the amorphous silicon layer 13 is composed of a conductive fine particle layer 14a in which part or all of the surface is covered with a binder layer 14b and part of the surface is impregnated by application of a binder dispersion. It is a thing. In the conductive fine particle layer 14a, a part of the particles is sintered by firing to ensure high conductivity.

本発明の透明導電膜14は、上記のように構成されることから、導電性微粒子とバインダ成分とを一緒に含有する組成物により形成された単一の透明導電膜が有する利点を備えるだけでなく、この単一の透明導電膜に比べ、下地であるアモルファスシリコン層との密着性に優れ、また、導電性微粒子層14aの表面の一部又は全部がバインダ層14bで覆われた状態で形成されるため、経時変化が少ないという利点をも併せ持つ。   Since the transparent conductive film 14 of the present invention is configured as described above, it has only the advantage that a single transparent conductive film formed of a composition containing conductive fine particles and a binder component together has. Compared to this single transparent conductive film, the adhesive layer is excellent in adhesion to the underlying amorphous silicon layer, and part or all of the surface of the conductive fine particle layer 14a is covered with the binder layer 14b. Therefore, it also has the advantage of little change with time.

母材中の導電性成分の割合を上記範囲内に規定したのは、下限値未満では十分な導電性が得られず、上限値を越えると上層及び下層で接する光電変換層との密着性が十分に得られないためである。また、上記範囲内から外れると所望の屈折率に調節することが難しいためである。母材中の導電性成分の好ましい割合は5〜95質量%であり、より好ましくは30〜85質量%である。   The ratio of the conductive component in the base material is defined within the above range because sufficient conductivity cannot be obtained below the lower limit value, and when the upper limit value is exceeded, the adhesion with the photoelectric conversion layer contacting the upper layer and the lower layer is poor. This is because it cannot be obtained sufficiently. Moreover, it is because it will be difficult to adjust to a desired refractive index if it is out of the above range. A desirable ratio of the conductive component in the base material is 5 to 95% by mass, and more preferably 30 to 85% by mass.

ここで、膜の厚さを上記範囲内としたのは、膜の厚さも、屈折率を調節することができる要素の一つであり、微結晶シリコン層との屈折率差を大きくすることができるためである。好ましい膜の厚さは20〜100nmである。ここでいう透明導電膜14の厚さは、導電性微粒子層14aの厚さとバインダ層14bの厚さを合わせた合計の厚さである。   Here, the film thickness is within the above range because the film thickness is also one of the elements that can adjust the refractive index, and the difference in refractive index from the microcrystalline silicon layer can be increased. This is because it can. A preferable film thickness is 20 to 100 nm. The thickness of the transparent conductive film 14 here is a total thickness obtained by adding the thickness of the conductive fine particle layer 14a and the thickness of the binder layer 14b.

本発明における透明導電膜14の屈折率は1.1〜2.0に調節することが好ましい。上記範囲内であれば、微結晶シリコン層との屈折率差を大きくすることができ、短波長光のみを選択的にかつ効率的に反射させることができ、かつ長波長光の通過を良好にすることができる。このうち特に好ましい屈折率は1.3〜1.8である。   The refractive index of the transparent conductive film 14 in the present invention is preferably adjusted to 1.1 to 2.0. Within the above range, the difference in refractive index from the microcrystalline silicon layer can be increased, only short wavelength light can be selectively and efficiently reflected, and long wavelength light can be transmitted well. can do. Among these, a particularly preferable refractive index is 1.3 to 1.8.

本発明に係る透明導電膜の形成に用いられる透明導電膜用組成物は、導電性微粒子層14aを形成する導電性微粒子分散液と、バインダ層14bを形成するバインダ分散液の2液からなる。   The composition for transparent conductive film used for forming the transparent conductive film according to the present invention comprises two liquids, a conductive fine particle dispersion for forming the conductive fine particle layer 14a and a binder dispersion for forming the binder layer 14b.

導電性微粒子層14aを形成する導電性微粒子分散液は、導電性微粒子及びその他必要な成分が分散媒に分散した組成物である。   The conductive fine particle dispersion for forming the conductive fine particle layer 14a is a composition in which conductive fine particles and other necessary components are dispersed in a dispersion medium.

導電性微粒子分散液に使用される導電性微粒子としては、その種類は特に制限されないが、例としては、Zn,In,Sn,Sb,Si,Al,Ga,Co,Mg,Ca,Sr,Ba,Ce,Ti,Y及びZrからなる群より選ばれた1種又は2種以上の酸化物、水酸化物或いは複合化合物、又はこれら2種以上の混合物から構成された第1微粒子を使用することができる。このうち、酸化錫粉末や酸化亜鉛粉末、それらに1種又は2種以上の金属をドープした化合物を使用することが好適である。例えば、ITO粉末(Indium doped Tin Oxide)やZnO粉末、ATO粉末(Antimony doped Tin Oxide)、AZO粉末(Aluminum doped Zinc Oxide)、IZO粉末(Indium doped Zinc Oxide)、TZO粉末(Tantalum doped Zinc Oxide)等が挙げられる。   The type of conductive fine particles used in the conductive fine particle dispersion is not particularly limited, but examples include Zn, In, Sn, Sb, Si, Al, Ga, Co, Mg, Ca, Sr, and Ba. Use first fine particles composed of one or more oxides, hydroxides or composite compounds selected from the group consisting of, Ce, Ti, Y and Zr, or a mixture of two or more thereof. Can do. Among these, it is preferable to use a tin oxide powder, a zinc oxide powder, or a compound doped with one or more metals. For example, ITO powder (Indium doped Tin Oxide), ZnO powder, ATO powder (Antimony doped Tin Oxide), AZO powder (Aluminum doped Zinc Oxide), IZO powder (Indium doped Zinc Oxide), TZO powder (Tantalum doped Zinc Oxide), etc. Is mentioned.

また、微粒子は、C,Si,Cu,Ni,Ag,Pd,Pt,Au,Ru,Rh及びIrからなる群より選ばれた1種又は2種以上を含有する混合合金からなるナノ粒子から構成された第2微粒子を使用しても良い。   The fine particles are composed of nanoparticles made of a mixed alloy containing one or more selected from the group consisting of C, Si, Cu, Ni, Ag, Pd, Pt, Au, Ru, Rh and Ir. The second fine particles may be used.

更に、微粒子は、第1微粒子と第2微粒子の双方を所望の割合で混合させたものを使用しても良い。   Further, fine particles obtained by mixing both the first fine particles and the second fine particles in a desired ratio may be used.

また、導電性微粒子分散液に含まれる固形分中に占める導電性微粒子の含有割合は、50〜90質量%の範囲内であることが好ましい。導電性微粒子の含有割合を上記範囲内としたのは、下限値未満では形成する導電性微粒子層の導電性が低下するためであり、上限値を越えると形成する導電性微粒子層の密着性が低下するためである。このうち、70〜90質量%の範囲内であることが特に好ましい。また、導電性微粒子の平均粒径は、分散媒中で安定性を保つため、10〜100nmの範囲内であることが好ましく、このうち、20〜60nmの範囲内であることが特に好ましい。   Moreover, it is preferable that the content rate of the electroconductive fine particle which occupies for the solid content contained in an electroconductive fine particle dispersion exists in the range of 50-90 mass%. The reason why the content ratio of the conductive fine particles is within the above range is that the conductivity of the conductive fine particle layer to be formed is lowered if the content is less than the lower limit, and the adhesion of the conductive fine particle layer to be formed is exceeded if the upper limit is exceeded. It is because it falls. Among these, it is especially preferable that it exists in the range of 70-90 mass%. The average particle diameter of the conductive fine particles is preferably in the range of 10 to 100 nm in order to maintain stability in the dispersion medium, and particularly preferably in the range of 20 to 60 nm.

導電性微粒子は、目的とする多接合型太陽電池の構成や光電変換層と透明導電膜との屈折率差などの諸条件によって、使用する種類や割合が適宜選択される。   The type and ratio of the conductive fine particles to be used are appropriately selected according to various conditions such as the configuration of the target multi-junction solar cell and the refractive index difference between the photoelectric conversion layer and the transparent conductive film.

導電性微粒子分散液に使用される分散媒の種類は特に制限はされないが、例としては、水の他に、メタノール、エタノール、イソプロパノール、ブタノール、ヘキサノールなどのアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、イソホロン、4−ヒドロキシ−4−メチル−2−ペンタノン等のケトン類、トルエン、キシレン、ヘキサン、シクロヘキサン等の炭化水素類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド類、ジメチルスルホキシドなどのスルホキシド類、エチレングリコールなどのグリコール類、エチルセロソルブなどのグリコールエーテル類などが挙げられる。また、これらの分散媒を2種類以上混合して使用することもできる。   The type of the dispersion medium used in the conductive fine particle dispersion is not particularly limited. Examples include water, alcohols such as methanol, ethanol, isopropanol, butanol, hexanol, acetone, methyl ethyl ketone, and methyl isobutyl ketone. , Ketones such as cyclohexanone, isophorone and 4-hydroxy-4-methyl-2-pentanone, hydrocarbons such as toluene, xylene, hexane and cyclohexane, amides such as N, N-dimethylformamide and N, N-dimethylacetamide , Sulfoxides such as dimethyl sulfoxide, glycols such as ethylene glycol, glycol ethers such as ethyl cellosolve, and the like. Further, two or more kinds of these dispersion media can be mixed and used.

分散媒の含有割合は良好な成膜性を得るために、80〜99質量%の範囲内であることが好ましい。   The content ratio of the dispersion medium is preferably in the range of 80 to 99% by mass in order to obtain good film formability.

導電性微粒子分散液には、使用する他の成分に応じてカップリング剤を加えるのが好ましい。それは、導電性微粒子とバインダの結合性や、この導電性微粒子分散液により形成される導電性微粒子層と光電変換層との密着性向上のためである。カップリング剤としては、シランカップリング剤、アルミカップリング剤及びチタンカップリング剤などが挙げられ、これらを1種又は2種以上使用してもよい。   It is preferable to add a coupling agent to the conductive fine particle dispersion according to other components to be used. This is for improving the bonding property between the conductive fine particles and the binder and the adhesion between the conductive fine particle layer formed by the conductive fine particle dispersion and the photoelectric conversion layer. As a coupling agent, a silane coupling agent, an aluminum coupling agent, a titanium coupling agent, etc. are mentioned, You may use these 1 type or 2 or more types.

使用可能なシランカップリング剤としては、ビニルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルトリメトキシシランなどが挙げられる。   Examples of silane coupling agents that can be used include vinyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, and γ-methacryloxypropyltrimethoxysilane.

また、使用可能なアルミカップリング剤としては、次の式(1)で示されるアセトアルコキシ基を含有するアルミカップリング剤が挙げられる。   Moreover, as an aluminum coupling agent which can be used, the aluminum coupling agent containing the acetoalkoxy group shown by following formula (1) is mentioned.

Figure 2010080933
また、使用可能なチタンカップリング剤としては、イソプロピルトリイソステアロイルチタネート、イソプロピルトリデシルベンゼンスルホニルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2−ジアリルオキシメチル−1−ブチル)ビス(ジ−トリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、トリス(ジオクチルパイロホスフェート)エチレンチタネートなどが挙げられる。
Figure 2010080933
Examples of titanium coupling agents that can be used include isopropyl triisostearoyl titanate, isopropyl tridecylbenzenesulfonyl titanate, isopropyl tris (dioctylpyrophosphate) titanate, tetraisopropylbis (dioctylphosphite) titanate, tetraoctylbis (ditridecyl). Phosphite) titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis (di-tridecyl) phosphite titanate, bis (dioctylpyrophosphate) oxyacetate titanate, tris (dioctylpyrophosphate) ethylene titanate It is done.

チタンカップリング剤が加水分解性(例、テトラアルコキシチタン類)の場合には、加水分解・縮合生成物として使用することもできる。このうち、好ましい有機チタン化合物は、テトラアルコキシチタン類、及び次の構造式(2)〜式(8)で示されるチタンカップリング剤である。   When the titanium coupling agent is hydrolyzable (eg, tetraalkoxytitanium), it can also be used as a hydrolysis / condensation product. Among these, preferable organic titanium compounds are tetraalkoxy titaniums and titanium coupling agents represented by the following structural formulas (2) to (8).

Figure 2010080933
Figure 2010080933

Figure 2010080933
Figure 2010080933

Figure 2010080933
Figure 2010080933

Figure 2010080933
Figure 2010080933

Figure 2010080933
Figure 2010080933

Figure 2010080933
Figure 2010080933

Figure 2010080933
カップリング剤の含有割合は、導電性微粒子分散液に占める固形分の割合として、0.2〜5質量%の範囲内が好ましい。下限値未満では、カップリング剤の十分な添加効果が得られず、上限値を越えると、微粒子同士の結合性をカップリング剤が阻害することによる導電性の低下を招くからである。このうち0.5〜2質量%の範囲内が特に好ましい。
Figure 2010080933
The content of the coupling agent is preferably in the range of 0.2 to 5% by mass as the solid content in the conductive fine particle dispersion. If the amount is less than the lower limit, a sufficient effect of adding the coupling agent cannot be obtained. If the amount exceeds the upper limit, the coupling agent inhibits the bonding property between the fine particles, leading to a decrease in conductivity. Among these, the inside of the range of 0.5-2 mass% is especially preferable.

導電性微粒子分散液は、導電性微粒子と分散媒とを所望の割合で混合し、また、必要に応じて上述のカップリング剤やその他任意添加成分を加えて混合し、続いて、ビーズミル等を用いて、混合物中の微粒子を均一に分散させることにより調製される。   In the conductive fine particle dispersion, the conductive fine particles and the dispersion medium are mixed in a desired ratio, and if necessary, the above-described coupling agent and other optional components are added and mixed. And prepared by uniformly dispersing the fine particles in the mixture.

バインダ層14bを形成するバインダ分散液は、バインダ成分及びその他必要な成分が分散媒に分散した組成物である。   The binder dispersion forming the binder layer 14b is a composition in which a binder component and other necessary components are dispersed in a dispersion medium.

バインダ分散液に使用されるバインダとしては、100〜400℃の範囲内での加熱又は紫外線照射によって硬化するものが挙げられる。硬化する加熱温度が上記範囲内であれば、塗膜を焼成して形成された透明導電膜中にこのバインダを起因とした成分が残存して母材の主成分を構成することができる。   Examples of the binder used in the binder dispersion include those that are cured by heating in the range of 100 to 400 ° C. or ultraviolet irradiation. If the heating temperature for curing is within the above range, the component derived from this binder remains in the transparent conductive film formed by baking the coating film, and can constitute the main component of the base material.

具体的な種類としては、アクリル樹脂、アクリレート樹脂、ポリカーボネート樹脂、ポリエステル樹脂、アルキッド樹脂、ポリウレタン樹脂、アクリルウレタン樹脂、ポリスチレン樹脂、ポリアセタール樹脂、ポリアミド樹脂、ポリビニルアルコール樹脂、ポリ酢酸ビニル樹脂、セルロース樹脂、エチルセルロース樹脂、エポキシ樹脂、塩化ビニル樹脂、アルコキシシランを加水分解したシロキサンポリマ、金属アルコキシドの加水分解体(ゾルゲルを含む)のうち、上記条件を満たした、1種又は2種以上を組み合わせたバインダを使用することができる。   Specific types include acrylic resin, acrylate resin, polycarbonate resin, polyester resin, alkyd resin, polyurethane resin, acrylic urethane resin, polystyrene resin, polyacetal resin, polyamide resin, polyvinyl alcohol resin, polyvinyl acetate resin, cellulose resin, Of ethyl cellulose resin, epoxy resin, vinyl chloride resin, siloxane polymer obtained by hydrolyzing alkoxysilane, and hydrolyzate of metal alkoxide (including sol-gel), a binder combining one or more kinds satisfying the above conditions Can be used.

上記種類のバインダを使用することで、低温での低いヘイズ率及び体積抵抗率の透明導電膜の形成を可能とし、透明導電膜の抵抗率を低くすることができ、更に、形成する透明導電膜の屈折率を調節することができる。   By using the above kind of binder, it is possible to form a transparent conductive film having a low haze ratio and volume resistivity at a low temperature, the resistivity of the transparent conductive film can be lowered, and a transparent conductive film to be formed. The refractive index of can be adjusted.

これらバインダの含有割合は、バインダ分散液中の固形分に占める割合として5〜50質量%の範囲内が好ましい。バインダの含有割合を上記範囲内としたのは、下限値未満では形成する透明導電膜の導電性が低下するためであり、上限値を越えると形成する透明導電膜の密着性が低下するためである。このうち、10〜30質量%の範囲内が特に好ましい。   The content of these binders is preferably in the range of 5 to 50% by mass as a proportion of the solid content in the binder dispersion. The reason why the binder content is within the above range is that the conductivity of the transparent conductive film to be formed is lowered if the content is less than the lower limit, and the adhesion of the transparent conductive film to be formed is lowered if the upper limit is exceeded. is there. Among these, the inside of the range of 10-30 mass% is especially preferable.

バインダ分散液の調製には、導電性微粒子層の形成に使用する分散液の調製に用いた分散媒と同種の分散媒を使用するのが好ましい。分散媒の含有割合は均一な膜を形成するために、50〜99.99質量%の範囲内であることが好ましい。   For the preparation of the binder dispersion, it is preferable to use a dispersion medium of the same type as the dispersion medium used for the preparation of the dispersion used for forming the conductive fine particle layer. In order to form a uniform film, the content of the dispersion medium is preferably in the range of 50 to 99.99% by mass.

また、使用する成分に応じて、界面活性剤やpH調整剤などの任意添加成分を更に含有させることができる。係る添加成分としては、界面活性剤(カチオン系、アニオン系、ノニオン系)、pH調整剤(有機酸又は無機酸、例えば、ギ酸、酢酸、プロピオン酸、酪酸、オクチル酸、塩酸、硝酸、過塩素酸等、或いはアミン)などがある。   Further, depending on the components used, optional additional components such as a surfactant and a pH adjuster can be further contained. Such additional components include surfactants (cationic, anionic, nonionic), pH adjusters (organic or inorganic acids such as formic acid, acetic acid, propionic acid, butyric acid, octylic acid, hydrochloric acid, nitric acid, perchlorine. Acid or amine).

界面活性剤を含有させる場合の含有割合は導電性粉末に対して0.5〜2.0質量%が好ましく、pH調整剤を含有させる場合の含有割合は導電性粉末に対して0.5〜2.0質量%が好ましい。   The content ratio when the surfactant is contained is preferably 0.5 to 2.0% by mass with respect to the conductive powder, and the content ratio when the pH adjuster is included is 0.5 to 2.0% with respect to the conductive powder. 2.0 mass% is preferable.

次に本発明の多接合型太陽電池の製造方法を説明する。   Next, the manufacturing method of the multijunction solar cell of this invention is demonstrated.

先ず、図1に示すように、透明基板11を用意し、この基板上に表面電極層12を形成する。使用可能な透明基板11としてはガラス基板やアクリル樹脂、ポリカーボネートが挙げられる。形成する表面電極層12には、ITOやSnO2、ZnO、AZO等の透明で導電性を有する物質が使用される。なお、表面電極層12の形成方法は特に制限されず、従来から知られている方法で形成してよい。なお、表層に透明で導電性を有する膜が形成されたガラス基板11は市販されているので、そのような市販品を用いてもよい。 First, as shown in FIG. 1, a transparent substrate 11 is prepared, and a surface electrode layer 12 is formed on the substrate. Usable transparent substrates 11 include glass substrates, acrylic resins, and polycarbonates. For the surface electrode layer 12 to be formed, a transparent and conductive material such as ITO, SnO 2 , ZnO, or AZO is used. The method for forming the surface electrode layer 12 is not particularly limited, and may be formed by a conventionally known method. In addition, since the glass substrate 11 in which the transparent and electroconductive film | membrane was formed in the surface layer is marketed, you may use such a commercial item.

次いで、表面電極層12が形成された透明基板11上にアモルファスシリコン層13を形成する。このアモルファスシリコン層13の形成方法は特に制限されず、従来から知られているプラズマCVD法などの方法で形成してよい。   Next, an amorphous silicon layer 13 is formed on the transparent substrate 11 on which the surface electrode layer 12 is formed. The method for forming the amorphous silicon layer 13 is not particularly limited, and may be formed by a conventionally known method such as a plasma CVD method.

次に、図2に示すように、アモルファスシリコン層13が設けられた基材上に、前述した導電性微粒子分散液を湿式塗工法により塗布して導電性微粒子の塗膜24aを形成する。この塗膜24aは、温度20〜120℃、好ましくは25〜60℃で1〜30分間、好ましくは2〜10分間乾燥させる。   Next, as shown in FIG. 2, the conductive fine particle dispersion is applied onto the substrate provided with the amorphous silicon layer 13 by a wet coating method to form a conductive fine particle coating 24 a. The coating film 24a is dried at a temperature of 20 to 120 ° C., preferably 25 to 60 ° C. for 1 to 30 minutes, preferably 2 to 10 minutes.

次に、導電性微粒子の塗膜24a上に、上記バインダ分散液を湿式塗工法により含浸させ、導電性微粒子の塗膜24aの表面の一部又は全部をバインダ分散液の塗膜24bで覆うように塗布する。また、ここでの塗布は、塗布するバインダ分散液中のバインダ成分の質量が、塗布した導電性微粒子の塗膜中に含まれる導電性微粒子の総質量に対し、0.5〜10の質量比(塗布するバインダ分散液中のバインダ成分の質量/導電性微粒子の質量)となるように塗布することが好ましい。下限値未満では充分な密着性が得られ難く、上限値を越えると表面抵抗が増大し易い。このうち質量比は0.5〜3が特に好ましい。この塗膜24bは、温度20〜120℃、好ましくは25〜60℃で1〜30分間、好ましくは2〜10分間乾燥させる。上記導電性微粒子分散液及びバインダ分散液の塗布は、焼成後に形成される透明導電膜の厚さが5〜200nm、好ましくは20〜100nmの厚さとなるように塗布する。ここで、焼成後の透明導電膜の厚さが5〜200nmとなるように導電性微粒子分散液及びバインダ分散液を塗布する理由は、下限値未満では均一な膜の形成が困難になり、上限値を越えると材料の使用量が必要以上に多くなって材料が無駄になるからである。このように、導電性微粒子の塗膜24a及びバインダ分散液の塗膜24aからなる透明導電塗膜24を形成する。   Next, the conductive fine particle coating film 24a is impregnated with the binder dispersion liquid by a wet coating method so that a part or all of the surface of the conductive fine particle coating film 24a is covered with the binder dispersion liquid coating film 24b. Apply to. Moreover, application | coating here is the mass ratio of 0.5-10 with respect to the gross mass of the electroconductive fine particles contained in the coating film of the electroconductive fine particles with which the mass of the binder component in the binder dispersion liquid to apply | coat is applied. It is preferable to apply so as to be (mass of binder component / mass of conductive fine particles in binder dispersion to be applied). If it is less than the lower limit, it is difficult to obtain sufficient adhesion, and if it exceeds the upper limit, the surface resistance tends to increase. Among these, the mass ratio is particularly preferably 0.5-3. The coating film 24b is dried at a temperature of 20 to 120 ° C., preferably 25 to 60 ° C. for 1 to 30 minutes, preferably 2 to 10 minutes. The conductive fine particle dispersion and the binder dispersion are applied so that the transparent conductive film formed after firing has a thickness of 5 to 200 nm, preferably 20 to 100 nm. Here, the reason for applying the conductive fine particle dispersion and the binder dispersion so that the thickness of the transparent conductive film after baking is 5 to 200 nm is that the formation of a uniform film becomes difficult if the lower limit is not reached, and the upper limit This is because if the value is exceeded, the amount of material used becomes more than necessary and the material is wasted. In this way, the transparent conductive coating film 24 composed of the conductive fine particle coating film 24a and the binder dispersion liquid coating film 24a is formed.

上記湿式塗工法は、スプレーコーティング法、ディスペンサコーティング法、スピンコーティング法、ナイフコーティング法、スリットコーティング法、インクジェットコーティング法、グラビア印刷法、スクリーン印刷法、オフセット印刷法又はダイコーティング法のいずれかであることが特に好ましいが、これに限られるものではなく、あらゆる方法を利用できる。   The wet coating method is any one of spray coating method, dispenser coating method, spin coating method, knife coating method, slit coating method, inkjet coating method, gravure printing method, screen printing method, offset printing method or die coating method. Although it is particularly preferable, the present invention is not limited to this, and any method can be used.

スプレーコーティング法は分散体を圧縮エアにより霧状にして基材に塗布したり、或いは分散体自体を加圧し霧状にして基材に塗布する方法であり、ディスペンサコーティング法は例えば分散体を注射器に入れこの注射器のピストンを押すことにより注射器先端の微細ノズルから分散体を吐出させて基材に塗布する方法である。スピンコーティング法は分散体を回転している基材上に滴下し、この滴下した分散体をその遠心力により基材周縁に拡げる方法であり、ナイフコーティング法はナイフの先端と所定の隙間をあけた基材を水平方向に移動可能に設け、このナイフより上流側の基材上に分散体を供給して基材を下流側に向って水平移動させる方法である。スリットコーティング法は分散体を狭いスリットから流出させて基材上に塗布する方法であり、インクジェットコーティング法は市販のインクジェットプリンタのインクカートリッジに分散体を充填し、基材上にインクジェット印刷する方法である。スクリーン印刷法は、パターン指示材として紗を用い、その上に作られた版画像を通して分散体を基材に転移させる方法である。オフセット印刷法は、版に付けた分散体を直接基材に付着させず、版から一度ゴムシートに転写させ、ゴムシートから改めて基材に転移させる、インクの撥水性を利用した印刷方法である。ダイコーティング法は、ダイ内に供給された分散体をマニホールドで分配させてスリットより薄膜上に押し出し、走行する基材の表面を塗工する方法である。ダイコーティング法には、スロットコート方式やスライドコート方式、カーテンコート方式がある。   The spray coating method is a method in which the dispersion is atomized by compressed air and applied to the substrate, or the dispersion itself is pressurized and atomized to apply to the substrate. The dispenser coating method is, for example, a method in which the dispersion is injected into a syringe. The dispersion is discharged from the fine nozzle at the tip of the syringe and applied to the substrate by pushing the piston of the syringe. The spin coating method is a method in which a dispersion is dropped onto a rotating substrate, and the dropped dispersion is spread to the periphery of the substrate by its centrifugal force. The knife coating method leaves a predetermined gap from the tip of the knife. In this method, the substrate is provided so as to be movable in the horizontal direction, the dispersion is supplied onto the substrate upstream of the knife, and the substrate is moved horizontally toward the downstream side. The slit coating method is a method in which a dispersion is discharged from a narrow slit and applied onto a substrate, and the inkjet coating method is a method in which a dispersion is filled in an ink cartridge of a commercially available inkjet printer and ink jet printing is performed on the substrate. is there. The screen printing method is a method in which wrinkles are used as a pattern indicating material and a dispersion is transferred to a substrate through a plate image formed thereon. The offset printing method is a printing method utilizing the water repellency of ink, in which the dispersion attached to the plate is not directly attached to the substrate, but is transferred from the plate to a rubber sheet and then transferred from the rubber sheet to the substrate again. . The die coating method is a method in which a dispersion supplied in a die is distributed by a manifold and extruded onto a thin film from a slit to coat the surface of a traveling substrate. The die coating method includes a slot coat method, a slide coat method, and a curtain coat method.

次に、透明導電塗膜24を有する基材を大気中若しくは窒素やアルゴンなどの不活性ガス雰囲気中で130〜400℃、好ましくは150〜350℃の温度に、5〜60分間、好ましくは15〜40分間保持して焼成する。これにより、図2に示す透明導電塗膜24は焼き固められ、図1に示すように、アモルファスシリコン層13の上に透明導電膜14が形成される。透明導電膜14は、導電性微粒子層14aがバインダ層14bで含浸された状態で形成される。   Next, the base material having the transparent conductive coating film 24 is heated to 130 to 400 ° C., preferably 150 to 350 ° C. in the air or an inert gas atmosphere such as nitrogen or argon, for 5 to 60 minutes, preferably 15 Hold for ~ 40 minutes and fire. As a result, the transparent conductive film 24 shown in FIG. 2 is baked and hardened, and the transparent conductive film 14 is formed on the amorphous silicon layer 13 as shown in FIG. The transparent conductive film 14 is formed in a state where the conductive fine particle layer 14a is impregnated with the binder layer 14b.

焼成温度を130〜400℃の範囲としたのは、130℃未満では、透明導電膜の表面抵抗値が高くなりすぎる不具合が生じるからである。また、400℃を越えると、低温プロセスという生産上のメリットを生かせない、即ち製造コストが増大し生産性が低下してしまうからである。また、特にアモルファスシリコン、微結晶シリコン、或いはこれらを用いたハイブリッド型シリコン太陽電池は比較的熱に弱く、焼成工程によって変換効率が低下するからである。   The reason why the firing temperature is in the range of 130 to 400 ° C. is that when the temperature is less than 130 ° C., the surface resistance value of the transparent conductive film becomes too high. On the other hand, if the temperature exceeds 400 ° C., the production merit of the low temperature process cannot be utilized, that is, the manufacturing cost increases and the productivity decreases. In particular, amorphous silicon, microcrystalline silicon, or hybrid silicon solar cells using these are relatively weak against heat, and the conversion efficiency is reduced by the firing process.

更に、塗膜を有する基材の焼成時間を上記範囲内としたのは、下限値未満では微粒子の焼結が不十分であるため充分な導電性が得られない不具合を生じ、上限値を越えるとアモルファスシリコン層が過度の加熱による発電性能の低下が生じるからである。   Furthermore, the reason why the firing time of the substrate having the coating film is within the above-mentioned range is that if the particle is less than the lower limit, sintering of the fine particles is insufficient, so that sufficient conductivity cannot be obtained, and the upper limit is exceeded. This is because the power generation performance is reduced due to excessive heating of the amorphous silicon layer.

以上により、本発明の透明導電膜14を形成することができる。このように塗布型材料(透明導電膜用組成物:導電性微粒子分散液及びバインダ分散液)を使用して、微粒子とバインダが複合した成分を主成分とする塗膜を形成し、この塗膜を焼成することによる湿式塗工法によって、多接合型太陽電池に使用する際に求められる、良好な光透過性、高い電気伝導性、低屈折率などの各要件を満たす透明導電膜の作製が可能であり、真空成膜法を用いない手法として、透明導電膜の作製におけるランニングコストの低減を図ることができる。   As described above, the transparent conductive film 14 of the present invention can be formed. Thus, using a coating-type material (a composition for transparent conductive film: conductive fine particle dispersion and binder dispersion), a coating film mainly composed of a component in which fine particles and a binder are combined is formed. We can fabricate transparent conductive films that meet the requirements for good light transmission, high electrical conductivity, low refractive index, etc. required for use in multi-junction solar cells by wet coating method by baking As a technique not using the vacuum film formation method, the running cost in the production of the transparent conductive film can be reduced.

また、湿式塗工法で使用する塗布型材料(透明導電膜用組成物)は、その配合割合等を調整することで、光電変換層と透明導電膜との屈折率差に関係する透明導電膜の屈折率などの光学特性を容易に調節することができるメリットがあり、光電変換層間の光反射特性を最適化することで、真空成膜法での作製では達成できなかった多接合型太陽電池の性能向上が実現可能である。   Moreover, the coating type material (composition for transparent conductive films) used in the wet coating method is a transparent conductive film related to the refractive index difference between the photoelectric conversion layer and the transparent conductive film by adjusting the blending ratio and the like. There is a merit that optical characteristics such as refractive index can be easily adjusted, and by optimizing the light reflection characteristics between the photoelectric conversion layers, multi-junction solar cells that could not be achieved by vacuum film formation Performance improvement is feasible.

次に、透明導電膜14の上に微結晶シリコン層15を形成する。この微結晶シリコン層15の形成方法は特に制限されず、従来から知られているプラズマCVD法などの方法で形成してよい。   Next, a microcrystalline silicon layer 15 is formed on the transparent conductive film 14. The formation method of the microcrystalline silicon layer 15 is not particularly limited, and may be formed by a conventionally known method such as a plasma CVD method.

最後に、微結晶シリコン層15の上に裏面側電極層16を形成することにより、多接合型太陽電池10が得られる。この多接合型薄膜太陽電池10では透明基板11が受光面となる。   Finally, the multi-junction solar cell 10 is obtained by forming the back surface side electrode layer 16 on the microcrystalline silicon layer 15. In this multi-junction thin-film solar cell 10, the transparent substrate 11 serves as a light receiving surface.

次に本発明の実施例を比較例とともに詳しく説明する。   Next, examples of the present invention will be described in detail together with comparative examples.

<実施例1>
先ず、透明基板11には10cm角のガラスを用意し、表面側電極層12としてSnO2を用いた。この際の表面側電極層12の膜厚は800nm、シート抵抗は10Ω/□、ヘイズ率は15〜20%とした。
<Example 1>
First, 10 cm square glass was prepared for the transparent substrate 11, and SnO 2 was used as the surface side electrode layer 12. The film thickness of the surface side electrode layer 12 at this time was 800 nm, the sheet resistance was 10Ω / □, and the haze ratio was 15 to 20%.

次いで、表面側電極層12の上から、プラズマCVD法を用いてアモルファスシリコン層13を300nmの厚さで成膜した。   Next, an amorphous silicon layer 13 having a thickness of 300 nm was formed on the surface-side electrode layer 12 by plasma CVD.

次に、導電性微粒子分散液及びバインダ分散液からなる透明導電膜用組成物を以下のように調製した。   Next, a transparent conductive film composition comprising a conductive fine particle dispersion and a binder dispersion was prepared as follows.

表1に示すように、導電性微粒子として原子比でSn/(Sn+In)=0.1、粒子径0.03μmのITO粉末を1.0質量部、カップリング剤として上記式(3)に示される有機チタンカップリング剤を0.01質量部添加し、更に分散媒としてエタノールを加えることで全体を100質量部とした。   As shown in Table 1, 1.0 parts by mass of ITO powder having Sn / (Sn + In) = 0.1 and particle size of 0.03 μm as the conductive fine particles is shown in the above formula (3) as a coupling agent. The organic titanium coupling agent to be added was added in an amount of 0.01 parts by mass, and ethanol was added as a dispersion medium to make the whole 100 parts by mass.

なお、上記導電性微粒子の平均粒子径の測定方法については、以下の通り個数平均より算出した。先ず、対象微粒子の電子顕微鏡写真を撮影した。撮影に使用する電子顕微鏡については、粒子径の大きさ、粉末の種類によって、適宜SEMやTEMを使い分けた。次に、得られた電子顕微鏡写真から、1000個程度の各粒子の直径を測定し、頻度分布のデータを得た。そして、累積頻度が50%(D50)の数値を平均粒子径とした。   In addition, about the measuring method of the average particle diameter of the said electroconductive fine particles, it computed from the number average as follows. First, an electron micrograph of the target fine particles was taken. Regarding the electron microscope used for photographing, SEM or TEM was appropriately used depending on the size of the particle diameter and the type of powder. Next, from the obtained electron micrograph, the diameter of about 1000 particles was measured to obtain frequency distribution data. A numerical value with an accumulated frequency of 50% (D50) was taken as the average particle size.

この混合物をダイノーミル(横型ビーズミル)により、0.3mm径のジルコニアビーズを使用して、2時間稼働させて、混合物中の微粒子を分散させることにより、導電性微粒子分散液を得た。   This mixture was operated for 2 hours with a dyno mill (horizontal bead mill) using zirconia beads having a diameter of 0.3 mm to disperse the fine particles in the mixture, thereby obtaining a conductive fine particle dispersion.

また、バインダとしてエチルシリケートを加水分解したシロキサンポリマを1.0質量部用意し、更に分散媒としてエタノールを加えることで全体を100質量部としバインダ分散液を得た。   Further, 1.0 part by mass of a siloxane polymer obtained by hydrolyzing ethyl silicate as a binder was prepared, and ethanol was added as a dispersion medium to make the whole 100 parts by mass to obtain a binder dispersion.

続いて、アモルファスシリコン層13の上に、得られた導電性微粒子分散液をスピンコーティング法により微粒子層の膜厚が80nmとなるように塗工した後、温度50℃で5分間乾燥して導電性微粒子の塗膜を形成した。   Subsequently, the obtained conductive fine particle dispersion is applied on the amorphous silicon layer 13 by spin coating so that the film thickness of the fine particle layer becomes 80 nm, and then dried at a temperature of 50 ° C. for 5 minutes to be conductive. A coating of conductive fine particles was formed.

次に、この導電性微粒子の塗膜上に、得られたバインダ分散液をスピンコーティング法により焼成後の膜厚が90nmとなるように含浸させ、温度50℃で5分間乾燥して透明導電塗膜を形成した。透明導電塗膜形成後の微粒子層の膜厚について、断面をSEMにより撮影した写真により測定した。バインダ分散液は、バインダ分散液中のバインダ成分の質量が、塗布した導電性微粒子の塗膜中に含まれる微粒子の総質量に対し、次の表1に示す質量比(塗布するバインダ分散液中のバインダ成分の質量/導電性微粒子+カップリング剤の質量)となるように塗布した。   Next, this conductive fine particle coating is impregnated with the obtained binder dispersion by spin coating so that the film thickness after firing becomes 90 nm, and dried at a temperature of 50 ° C. for 5 minutes to form a transparent conductive coating. A film was formed. About the film thickness of the fine particle layer after transparent conductive film formation, the cross section was measured with the photograph image | photographed by SEM. In the binder dispersion, the mass of the binder component in the binder dispersion is the mass ratio shown in the following Table 1 with respect to the total mass of fine particles contained in the coating film of the applied conductive fine particles (in the binder dispersion to be applied). The binder component mass / conductive fine particles + coupling agent mass).

更に、透明導電塗膜を200℃で30分で焼き付けることにより、透明導電膜14を成膜した。また、焼成して得られた透明導電膜の膜厚は、断面をSEMにより撮影した写真により測定した。焼成して得られた透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が1/1であった。なお、焼付け時の温度については、10cm角のガラス板の角の4点の温度を測定し、平均値が設定温度の±5℃に入る条件とした。   Furthermore, the transparent conductive film 14 was formed by baking the transparent conductive film at 200 ° C. for 30 minutes. Moreover, the film thickness of the transparent conductive film obtained by baking was measured with the photograph which image | photographed the cross section by SEM. The fine particle / binder ratio in the transparent conductive film obtained by firing was 1/1 in the fine particle / binder ratio. In addition, about the temperature at the time of baking, the temperature of 4 points | pieces of the corner | angular corner of a 10 cm square glass plate was measured, and it was set as the conditions which an average value enters into +/- 5 degreeC of preset temperature.

続いて、透明導電膜14の上に、プラズマCVD法を用いて微結晶シリコン層15を1.7μmの厚さで成膜し、更に裏面側電極層16として、ZnO膜を80nm、Ag膜を300nmの厚さでそれぞれスパッタ法により成膜した。   Subsequently, a microcrystalline silicon layer 15 having a thickness of 1.7 μm is formed on the transparent conductive film 14 by using a plasma CVD method. Further, as the back electrode layer 16, a ZnO film is formed with a thickness of 80 nm and an Ag film is formed. Each film was formed by sputtering to a thickness of 300 nm.

このように作製された多接合型薄膜シリコン太陽電池に入射光としてAM1.5の光を100mW/cm2の光照度で照射し、そのときの短絡電流密度と変換効率を測定した。なお、短絡電流密度と変換効率の値については、実施例1の値を1.0とし、以下の実施例2〜50及び比較例1〜比較例5の短絡電流密度と変換効率の値を、この実施例1の値に対する相対値で表した。また、分光エリプソメーター(J.A. Woollam Japan社製;M-2000DI)を用い、同装置付属の解析ソフトウェア「WVASE32」を使用し、あらかじめSEM断面で観察した膜厚を入力することにより、多接合型薄膜シリコン太陽電池の透明導電膜14の600nm波長における屈折率を測定した。その結果を次の表4に示す。 The thus produced multi-junction thin film silicon solar cell was irradiated with AM1.5 light as incident light at a light illuminance of 100 mW / cm 2 , and the short-circuit current density and conversion efficiency at that time were measured. In addition, about the value of a short circuit current density and conversion efficiency, the value of Example 1 is set to 1.0, and the values of the short circuit current density and conversion efficiency of the following Examples 2 to 50 and Comparative Examples 1 to 5 are It was expressed as a relative value to the value of Example 1. In addition, using a spectroscopic ellipsometer (manufactured by JA Woollam Japan; M-2000DI) and using the analysis software “WVASE32” attached to the same device, the film thickness observed in advance on the SEM cross section is input to obtain a multi-junction thin film. The refractive index at 600 nm wavelength of the transparent conductive film 14 of the silicon solar cell was measured. The results are shown in Table 4 below.

<実施例2>
表1に示すように、導電性微粒子として原子比でSb/(Sb+In)=0.05、粒子径0.02μmのITO粉末を0.5質量部、カップリング剤として上記式(3)に示されるチタン系カップリング剤を0.01質量部添加し、更に分散媒としてエタノールを加えることで全体を100質量部とした導電性微粒子分散液を用い、バインダとしてシロキサンポリマを0.2質量部用意し、更に分散媒としてエタノールを加えることで全体を100質量部としたバインダ分散液を用い、導電性微粒子分散液をスピンコーティング法により微粒子層の膜厚が20nmとなるように塗工して導電性微粒子の塗膜を形成し、導電性微粒子の塗膜上に、バインダ分散液をスピンコーティング法により焼成後の膜厚が20nmとなるように含浸させた以外は、実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が5/2であった。その結果を次の表4に示す。
<Example 2>
As shown in Table 1, 0.5 parts by mass of ITO powder having an atomic ratio of Sb / (Sb + In) = 0.05 and a particle diameter of 0.02 μm as conductive fine particles is shown in the above formula (3) as a coupling agent. 0.01 parts by mass of a titanium coupling agent to be added, and further using ethanol as a dispersion medium to add 100 parts by mass of a conductive fine particle dispersion, and 0.2 parts by mass of a siloxane polymer as a binder are prepared. Furthermore, using a binder dispersion with 100 parts by mass as a whole by adding ethanol as a dispersion medium, the conductive fine particle dispersion is applied by spin coating so that the film thickness of the fine particle layer is 20 nm. A coating film of conductive fine particles was formed, and a binder dispersion was impregnated on the coating film of conductive fine particles by spin coating so that the film thickness after firing was 20 nm. Outside, to produce a multi-junction thin-film silicon solar cell in the same manner as in Example 1, was evaluated in the same manner as in Example 1. At this time, the ratio of the fine particles to the binder in the transparent conductive film was 5/2 in the fine particle / binder ratio. The results are shown in Table 4 below.

<実施例3>
表1に示すように、導電性微粒子として原子比でP/(P+Sn)=0.1、粒子径0.02μmのPTO(PドープSnO2)粉末を1.0質量部、カップリング剤として上記式(2)に示されるチタン系カップリング剤を0.02質量部添加し、更に分散媒としてエタノールを加えることで全体を100質量部とした導電性微粒子分散液を用い、導電性微粒子分散液をスピンコーティング法により微粒子層の膜厚が70nmとなるように塗工して導電性微粒子の塗膜を形成し、導電性微粒子の塗膜上に、バインダ分散液をスピンコーティング法により焼成後の膜厚が70nmとなるように含浸させた以外は、実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が1/1であった。その結果を次の表4に示す。
<Example 3>
As shown in Table 1, 1.0 parts by mass of PTO (P-doped SnO 2 ) powder having an atomic ratio of P / (P + Sn) = 0.1 and a particle size of 0.02 μm as conductive fine particles, and the above as a coupling agent A conductive fine particle dispersion is prepared by adding 0.02 part by mass of a titanium coupling agent represented by the formula (2) and further adding ethanol as a dispersion medium to make the whole 100 parts by mass. Is applied by spin coating so that the film thickness of the fine particle layer becomes 70 nm to form a coating film of conductive fine particles, and the binder dispersion liquid is baked by spin coating method on the conductive fine particle coating film. A multi-junction thin film silicon solar cell was produced in the same manner as in Example 1 except that the film was impregnated so as to have a film thickness of 70 nm, and evaluated in the same manner as in Example 1. The ratio of fine particles to binder in the transparent conductive film at this time was 1/1 in the fine particle / binder ratio. The results are shown in Table 4 below.

<実施例4>
表1に示すように、導電性微粒子として原子比でSb/(Sb+Sn)=0.1、粒子径0.03μmのATO粉末を1.5質量部、カップリング剤として上記式(1)に示されるアルミ系カップリング剤を0.02質量部添加し、更に分散媒としてエタノールを加えることで全体を100質量部とした導電性微粒子分散液を用い、バインダとしてシロキサンポリマを1.2質量部用意し、更に分散媒としてエタノールを加えることで全体を100質量部としたバインダ分散液を用い、導電性微粒子分散液をスピンコーティング法により微粒子層の膜厚が120nmとなるように塗工して導電性微粒子の塗膜を形成し、導電性微粒子の塗膜上に、バインダ分散液をスピンコーティング法により焼成後の膜厚が120nmとなるように含浸させた以外は実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が15/12であった。その結果を次の表4に示す。
<Example 4>
As shown in Table 1, 1.5 parts by mass of ATO powder having an atomic ratio of Sb / (Sb + Sn) = 0.1 and a particle diameter of 0.03 μm as the conductive fine particles, and the coupling agent is shown in the above formula (1). 0.02 parts by mass of an aluminum coupling agent to be added, and further using ethanol as a dispersion medium to add 100 parts by mass of a conductive fine particle dispersion, and 1.2 parts by mass of a siloxane polymer as a binder Furthermore, using a binder dispersion with 100 parts by mass as a whole by adding ethanol as a dispersion medium, the conductive fine particle dispersion is applied by spin coating so that the film thickness of the fine particle layer becomes 120 nm. A coating film of conductive fine particles is formed, and a binder dispersion is impregnated on the coating film of conductive fine particles by spin coating so that the film thickness after baking becomes 120 nm. Except to produce a multi-junction thin-film silicon solar cell in the same manner as in Example 1, it was evaluated in the same manner as in Example 1. At this time, the fine particle / binder ratio in the transparent conductive film was 15/12. The results are shown in Table 4 below.

<実施例5>
表1に示すように、導電性微粒子として粒子径0.03μmのZnO粉末を1.2質量部、カップリング剤としてビニルトリエトキシシランを0.03質量部添加し、更に分散媒としてエタノールを加えることで全体を100質量部とした導電性微粒子分散液を用い、バインダとしてアクリル樹脂を0.5質量部用意し、更に分散媒としてエタノールを加えることで全体を100質量部としたバインダ分散液を用い、導電性微粒子分散液をスピンコーティング法により微粒子層の膜厚が80nmとなるように塗工して導電性微粒子の塗膜を形成し、導電性微粒子の塗膜上に、バインダ分散液をスピンコーティング法により焼成後の膜厚が80nmとなるように含浸させた以外は、実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が3/5であった。その結果を次の表4に示す。
<Example 5>
As shown in Table 1, 1.2 parts by mass of ZnO powder having a particle size of 0.03 μm as conductive fine particles, 0.03 parts by mass of vinyltriethoxysilane as a coupling agent, and ethanol as a dispersion medium are added. Then, using the conductive fine particle dispersion having 100 parts by mass as a whole, preparing 0.5 parts by mass of acrylic resin as a binder, and further adding ethanol as a dispersion medium, a binder dispersion having 100 parts by mass as a whole is prepared. The conductive fine particle dispersion is applied by spin coating so that the film thickness of the fine particle layer becomes 80 nm to form a conductive fine particle coating, and the binder dispersion is applied on the conductive fine particle coating. A multi-junction thin-film silicon solar cell was fabricated in the same manner as in Example 1 except that the film thickness after firing was impregnated to be 80 nm by spin coating. It was evaluated in the same manner as in Example 1. At this time, the ratio of the fine particles to the binder in the transparent conductive film was such that the fine particle / binder ratio was 3/5. The results are shown in Table 4 below.

<実施例6>
表1に示すように、導電性微粒子として原子比でAl/(Al+Zn)=0.1、粒子径0.03μmのAZO粉末を0.8質量部、カップリング剤として上記式(4)に示されるチタン系カップリング剤を0.01質量部添加し、更に分散媒としてエタノールを加えることで全体を100質量部とした導電性微粒子分散液を用い、バインダとしてセルロース樹脂を0.8質量部用意し、更に分散媒として酢酸ブチルカルビトールを加えることで全体を100質量部としたバインダ分散液を用い、導電性微粒子分散液をスピンコーティング法により微粒子層の膜厚が60nmとなるように塗工して導電性微粒子の塗膜を形成し、導電性微粒子の塗膜上に、バインダ分散液をスピンコーティング法により焼成後の膜厚が80nmとなるように含浸させた以外は、実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が12/3であった。その結果を次の表4に示す。
<Example 6>
As shown in Table 1, 0.8 parts by mass of AZO powder having an atomic ratio of Al / (Al + Zn) = 0.1 and a particle diameter of 0.03 μm as conductive fine particles is shown in the above formula (4) as a coupling agent. 0.01 parts by mass of a titanium coupling agent to be added, and further using ethanol as a dispersion medium to add 100 parts by mass of a conductive fine particle dispersion, 0.8 parts by mass of a cellulose resin as a binder are prepared. Furthermore, using a binder dispersion with 100 parts by mass as a whole by adding butyl carbitol acetate as a dispersion medium, the conductive fine particle dispersion is applied by spin coating so that the film thickness of the fine particle layer is 60 nm. Then, a coating film of conductive fine particles is formed, and a binder dispersion is contained on the conductive fine particle coating film by spin coating so that the film thickness after firing is 80 nm. Except that is, to produce a multi-junction thin-film silicon solar cell in the same manner as in Example 1, was evaluated in the same manner as in Example 1. At this time, the ratio of the fine particles to the binder in the transparent conductive film was 12/3 as a fine particle / binder ratio. The results are shown in Table 4 below.

<実施例7>
表1に示すように、導電性微粒子として原子比でSn/(Sn+In)=0.05、粒子径0.02μmのITO粉末を1.5質量部、カップリング剤としてγ−メタクリロキシプロピルトリメトキシシランを0.01質量部添加し、更に分散媒としてエタノールを加えることで全体を100質量部とした導電性微粒子分散液を用い、バインダとしてエポキシ樹脂を0.9質量部用意し、更に分散媒としてトルエンを加えることで全体を100質量部としたバインダ分散液を用い、導電性微粒子分散液をスピンコーティング法により微粒子層の膜厚が100nmとなるように塗工して導電性微粒子の塗膜を形成し、導電性微粒子の塗膜上に、バインダ分散液をスピンコーティング法により焼成後の膜厚が100nmとなるように含浸させた以外は、実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が15/9であった。その結果を次の表4に示す。
<Example 7>
As shown in Table 1, 1.5 parts by mass of ITO powder with Sn / (Sn + In) = 0.05 and particle size of 0.02 μm as the conductive fine particles and γ-methacryloxypropyltrimethoxy as the coupling agent Add 0.01 parts by mass of silane, and further add ethanol as a dispersion medium to prepare a conductive fine particle dispersion with a total of 100 parts by mass, and prepare 0.9 parts by mass of an epoxy resin as a binder. As a coating film of conductive fine particles, a conductive fine particle dispersion is applied by spin coating so that the film thickness of the fine particle layer becomes 100 nm using a binder dispersion with 100 parts by mass of toluene as a whole. Except that the binder dispersion is impregnated on the coating film of the conductive fine particles by spin coating so that the film thickness after baking becomes 100 nm. Produced a multi-junction thin film silicon solar cell in the same manner as in Example 1 and evaluated in the same manner as in Example 1. At this time, the ratio of the fine particles to the binder in the transparent conductive film was 15/9 in the fine particle / binder ratio. The results are shown in Table 4 below.

<実施例8>
表1に示すように、導電性微粒子として原子比でSb/(Sb+Sn)=0.05、粒子径0.02μmのATO粉末を1.2質量部、カップリング剤として上記式(5)に示されるチタン系カップリング剤を0.02質量部添加し、更に分散媒としてエタノールを加えることで全体を100質量部とした導電性微粒子分散液を用い、バインダとしてポリエステル樹脂を1.0質量部用意し、更に分散媒としてキシレンを加えることで全体を100質量部としたバインダ分散液を用い、導電性微粒子分散液をスピンコーティング法により微粒子層の膜厚が80nmとなるように塗工して導電性微粒子の塗膜を形成し、導電性微粒子の塗膜上に、バインダ分散液をスピンコーティング法により焼成後の膜厚が80nmとなるように含浸させた以外は、実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が12/10であった。その結果を次の表4に示す。
<Example 8>
As shown in Table 1, 1.2 parts by mass of ATO powder having an atomic ratio of Sb / (Sb + Sn) = 0.05 and a particle diameter of 0.02 μm as the conductive fine particles is shown in the above formula (5) as a coupling agent. 0.02 parts by mass of a titanium-based coupling agent to be added, and further using ethanol as a dispersion medium to add 100 parts by mass of a conductive fine particle dispersion and 1.0 part by mass of a polyester resin as a binder Furthermore, using a binder dispersion liquid in which xylene is added as a dispersion medium to make the whole 100 parts by mass, the conductive fine particle dispersion liquid is applied by spin coating so that the film thickness of the fine particle layer becomes 80 nm. After forming a coating film of conductive fine particles and impregnating the coating film of conductive fine particles with a binder dispersion liquid by a spin coating method so that the film thickness after firing becomes 80 nm. It is to produce a multi-junction thin-film silicon solar cell in the same manner as in Example 1, was evaluated in the same manner as in Example 1. At this time, the ratio of fine particles to binder in the transparent conductive film was 12/10 in the fine particle / binder ratio. The results are shown in Table 4 below.

<実施例9>
表1に示すように、導電性微粒子として原子比でP/(P+Sn)=0.05、粒子径0.03μmのPTO(PドープSnO2)粉末を2.0質量部、カップリング剤としてγ−グリシドキシプロピルトリメトキシシランを0.05質量部添加し、更に分散媒としてエタノールを加えることで全体を100質量部とした導電性微粒子分散液を用い、バインダとしてアクリルウレタン樹脂を1.1質量部用意し、更に分散媒としてイソホロンを加えることで全体を100質量部としたバインダ分散液を用い、導電性微粒子分散液をスピンコーティング法により微粒子層の膜厚が140nmとなるように塗工して導電性微粒子の塗膜を形成し、導電性微粒子の塗膜上に、バインダ分散液をスピンコーティング法により焼成後の膜厚が140nmとなるように含浸させた以外は、実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が20/11であった。その結果を次の表4に示す。
<Example 9>
As shown in Table 1, 2.0 parts by mass of PTO (P-doped SnO 2 ) powder having an atomic ratio of P / (P + Sn) = 0.05 and a particle size of 0.03 μm as conductive fine particles, and γ as a coupling agent -Addition of 0.05 parts by mass of glycidoxypropyltrimethoxysilane, and addition of ethanol as a dispersion medium to make a total of 100 parts by mass of conductive fine particle dispersion, and 1.1% of acrylic urethane resin as binder. Prepare a part by mass and use a binder dispersion with 100 parts by mass as a whole by adding isophorone as a dispersion medium, and apply the conductive fine particle dispersion to a film thickness of 140 nm by spin coating. Then, a coating film of conductive fine particles is formed, and the film thickness after baking the binder dispersion on the conductive fine particle coating film by spin coating method is 140 nm. A multi-junction thin-film silicon solar cell was produced in the same manner as in Example 1 except that it was impregnated, and evaluated in the same manner as in Example 1. At this time, the ratio of the fine particles to the binder in the transparent conductive film was such that the fine particle / binder ratio was 20/11. The results are shown in Table 4 below.

<実施例10>
表1に示すように、導電性微粒子として粒子径0.03μmのMgO粉末を0.8質量部、カップリング剤として上記式(4)に示されるチタン系カップリング剤を0.02質量部添加し、更に分散媒としてエタノールを加えることで全体を100質量部とした透明導電膜用組成物を用い、バインダとしてポリスチレン樹脂を1.0質量部用意し、更に分散媒としてシクロヘキサノンを加えることで全体を100質量部としたバインダ分散液を用い、導電性微粒子分散液をスピンコーティング法により微粒子層の膜厚が70nmとなるように塗工して導電性微粒子の塗膜を形成し、導電性微粒子の塗膜上に、バインダ分散液をスピンコーティング法により焼成後の膜厚が100nmとなるように含浸させた以外は、実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が8/10であった。その結果を次の表4に示す。
<Example 10>
As shown in Table 1, 0.8 parts by mass of MgO powder having a particle size of 0.03 μm as conductive fine particles and 0.02 parts by mass of titanium-based coupling agent represented by the above formula (4) as a coupling agent are added. Then, using a composition for transparent conductive film with 100 parts by mass as a whole by adding ethanol as a dispersion medium, 1.0 part by mass of polystyrene resin as a binder is prepared, and cyclohexanone is further added as a dispersion medium. The conductive fine particle dispersion is coated by spin coating to form a coating film of conductive fine particles using a binder dispersion liquid containing 100 parts by mass of the conductive fine particle dispersion. In the same manner as in Example 1, except that the binder dispersion was impregnated with a spin coating method so that the film thickness after firing was 100 nm. To prepare a mold thin-film silicon solar cell was evaluated in the same manner as in Example 1. At this time, the ratio of the fine particles to the binder in the transparent conductive film was 8/10 in the fine particle / binder ratio. The results are shown in Table 4 below.

<実施例11>
表1に示すように、導電性微粒子として粒子径0.02μmのTiO2粉末を2.0質量部、カップリング剤として上記式(6)に示されるチタン系カップリング剤を0.02質量部添加し、更に分散媒としてエタノールを加えることで全体を100質量部とした導電性微粒子分散液を用い、バインダとしてポリ酢酸ビニル樹脂を1.5質量部用意し、更に分散媒としてトルエンを加えることで全体を100質量部としたバインダ分散液を用い、導電性微粒子分散液をスピンコーティング法により微粒子層の膜厚が120nmとなるように塗工して導電性微粒子の塗膜を形成し、導電性微粒子の塗膜上に、バインダ分散液をスピンコーティング法により焼成後の膜厚が120nmとなるように含浸させた以外は、実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が20/15であった。その結果を次の表4に示す。
<Example 11>
As shown in Table 1, 2.0 parts by mass of TiO 2 powder having a particle size of 0.02 μm as conductive fine particles, and 0.02 parts by mass of titanium-based coupling agent represented by the above formula (6) as a coupling agent. Add a conductive fine particle dispersion with 100 parts by weight as a whole by adding ethanol as a dispersion medium, prepare 1.5 parts by weight of a polyvinyl acetate resin as a binder, and add toluene as a dispersion medium. Then, using a binder dispersion with 100 parts by mass as a whole, the conductive fine particle dispersion is applied by spin coating so that the film thickness of the fine particle layer is 120 nm to form a coating film of conductive fine particles. Multi-joint type in the same manner as in Example 1 except that a binder dispersion was impregnated onto the coating film of the conductive fine particles by spin coating so that the film thickness after firing was 120 nm. Thin film silicon solar cells were prepared and evaluated in the same manner as in Example 1. The ratio of fine particles to binder in the transparent conductive film at this time was 20/15 in the fine particle / binder ratio. The results are shown in Table 4 below.

<実施例12>
表1に示すように、導電性微粒子として粒子径0.03μmのAg粉末を1.0質量部、カップリング剤として上記式(7)に示されるチタン系カップリング剤を0.01質量部添加し、更に分散媒としてエタノールを加えることで全体を100質量部とした導電性微粒子分散液を用い、バインダとしてポリビニルアルコール樹脂を1.0質量部用意し、更に分散媒としてエタノールを加えることで全体を100質量部としたバインダ分散液を用い、導電性微粒子分散液をスピンコーティング法により微粒子層の膜厚が70nmとなるように塗工して導電性微粒子の塗膜を形成し、導電性微粒子の塗膜上に、バインダ分散液をスピンコーティング法により焼成後の膜厚が80nmとなるように含浸させた以外は、実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が1/1であった。その結果を次の表4に示す。
<Example 12>
As shown in Table 1, 1.0 part by mass of Ag powder having a particle size of 0.03 μm as conductive fine particles and 0.01 part by mass of a titanium coupling agent represented by the above formula (7) as a coupling agent are added. Furthermore, using conductive fine particle dispersion liquid with 100 parts by mass as a whole by adding ethanol as a dispersion medium, 1.0 part by mass of polyvinyl alcohol resin as a binder is prepared, and ethanol is further added as a dispersion medium. The conductive fine particle dispersion is coated by spin coating to form a coating film of conductive fine particles using a binder dispersion liquid containing 100 parts by mass of the conductive fine particle dispersion. In the same manner as in Example 1, except that a binder dispersion was impregnated on the coating film by spin coating so that the film thickness after firing was 80 nm. To produce a thin-film silicon solar cell was evaluated in the same manner as in Example 1. The ratio of fine particles to binder in the transparent conductive film at this time was 1/1 in the fine particle / binder ratio. The results are shown in Table 4 below.

<実施例13>
表1に示すように、導電性微粒子としてAg/Pd=9/1、粒子径0.02μmのAg−Pd合金粉末を0.8質量部、カップリング剤として上記式(7)に示されるチタン系カップリング剤を0.01質量部添加し、更に分散媒としてエタノールを加えることで全体を100質量部とした導電性微粒子分散液を用い、バインダとしてシロキサンポリマを0.8質量部用意し、更に分散媒としてエタノールを加えることで全体を100質量部としたバインダ分散液を用い、導電性微粒子分散液をスピンコーティング法により微粒子層の膜厚が50nmとなるように塗工して導電性微粒子の塗膜を形成し、導電性微粒子の塗膜上に、バインダ分散液をスピンコーティング法により焼成後の膜厚が50nmとなるように含浸させた以外は、実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が8/8であった。その結果を次の表4に示す。
<Example 13>
As shown in Table 1, 0.8 parts by mass of Ag / Pd = 9/1, Ag—Pd alloy powder having a particle diameter of 0.02 μm as conductive fine particles, and titanium represented by the above formula (7) as a coupling agent 0.01 part by mass of a system coupling agent, and further using conductive fine particle dispersion liquid with 100 parts by mass as a whole by adding ethanol as a dispersion medium, preparing 0.8 part by mass of a siloxane polymer as a binder, Further, a conductive fine particle was prepared by applying a conductive fine particle dispersion to a film thickness of 50 nm by a spin coating method using a binder dispersion with 100 parts by mass as a whole by adding ethanol as a dispersion medium. Except that the coating film of conductive fine particles was impregnated with the binder dispersion liquid by spin coating so that the film thickness after firing was 50 nm. 1 to produce a multi-junction thin-film silicon solar cell in the same manner, it was evaluated in the same manner as in Example 1. At this time, the ratio of the fine particles to the binder in the transparent conductive film was 8/8 in the fine particle / binder ratio. The results are shown in Table 4 below.

<実施例14>
表1に示すように、導電性微粒子として粒子径0.02μmのAu粉末を1.0質量部、カップリング剤として上記式(8)に示されるチタン系カップリング剤を0.01質量部添加し、更に分散媒としてエタノールを加えることで全体を100質量部とした導電性微粒子分散液を用い、バインダとしてポリアミド樹脂を1.2質量部用意し、更に分散媒としてキシレンを加えることで全体を100質量部としたバインダ分散液を用い、導電性微粒子分散液をスピンコーティング法により微粒子層の膜厚が80nmとなるように塗工して導電性微粒子の塗膜を形成し、導電性微粒子の塗膜上に、バインダ分散液をスピンコーティング法により焼成後の膜厚が110nmとなるように含浸させた以外は、実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が10/12であった。その結果を次の表4に示す。
<Example 14>
As shown in Table 1, 1.0 part by mass of Au powder having a particle size of 0.02 μm as conductive fine particles and 0.01 part by mass of a titanium-based coupling agent represented by the above formula (8) as a coupling agent are added. Furthermore, using conductive fine particle dispersion liquid with 100 parts by mass as a dispersion medium by adding ethanol as a dispersion medium, preparing 1.2 parts by mass of polyamide resin as a binder, and further adding xylene as a dispersion medium. Using a binder dispersion liquid of 100 parts by mass, the conductive fine particle dispersion is applied by spin coating so that the film thickness of the fine particle layer is 80 nm to form a conductive fine particle coating film. The multi-junction type thin film silicon was coated in the same manner as in Example 1 except that the coating film was impregnated with a binder dispersion by spin coating so that the film thickness after firing was 110 nm. To produce a down solar cell was evaluated in the same manner as in Example 1. In addition, the ratio of the fine particles to the binder in the transparent conductive film at this time was 10/12. The results are shown in Table 4 below.

<実施例15>
表1に示すように、導電性微粒子として粒子径0.03μmのRu粉末を1.2質量部、カップリング剤として上記式(8)に示されるチタン系カップリング剤を0.03質量部添加し、更に分散媒としてエタノールを加えることで全体を100質量部とした導電性微粒子分散液を用い、バインダとして塩化ビニル樹脂を1.2質量部用意し、更に分散媒としてキシレンを加えることで全体を100質量部としたバインダ分散液を用い、導電性微粒子分散液をスピンコーティング法により微粒子層の膜厚が90nmとなるように塗工して導電性微粒子の塗膜を形成し、導電性微粒子の塗膜上に、バインダ分散液をスピンコーティング法により焼成後の膜厚が100nmとなるように含浸させた以外は、実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が12/12であった。その結果を次の表4に示す。
<Example 15>
As shown in Table 1, 1.2 parts by mass of Ru powder having a particle diameter of 0.03 μm as conductive fine particles and 0.03 parts by mass of titanium-based coupling agent represented by the above formula (8) as a coupling agent are added. Furthermore, using conductive fine particle dispersion liquid with 100 parts by mass as a whole by adding ethanol as a dispersion medium, 1.2 parts by mass of vinyl chloride resin is prepared as a binder, and xylene is further added as a dispersion medium. Using a binder dispersion with 100 parts by mass, the conductive fine particle dispersion is applied by spin coating so that the film thickness of the fine particle layer is 90 nm to form a conductive fine particle coating film. In the same manner as in Example 1, except that a binder dispersion was impregnated on the coating film by spin coating so that the film thickness after firing was 100 nm. To produce a down solar cell was evaluated in the same manner as in Example 1. At this time, the ratio of the fine particles to the binder in the transparent conductive film was such that the fine particle / binder ratio was 12/12. The results are shown in Table 4 below.

<実施例16>
表1に示すように、導電性微粒子として粒子径0.03μmのRh粉末を1.0質量部、カップリング剤として上記式(8)に示されるチタン系カップリング剤を0.02質量部添加し、更に分散媒としてエタノールを加えることで全体を100質量部とした導電性微粒子分散液を用い、バインダとしてアクリレート樹脂を0.8質量部用意し、更に分散媒としてエタノールを加えることで全体を100質量部としたバインダ分散液を用い、導電性微粒子分散液をスピンコーティング法により微粒子層の膜厚が80nmとなるように塗工して導電性微粒子の塗膜を形成し、導電性微粒子の塗膜上に、バインダ分散液をスピンコーティング法により焼成後の膜厚が80nmとなるように含浸させた以外は、実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が10/8であった。その結果を次の表4に示す。
<Example 16>
As shown in Table 1, 1.0 part by mass of Rh powder having a particle size of 0.03 μm as conductive fine particles, and 0.02 part by mass of titanium-based coupling agent represented by the above formula (8) as a coupling agent are added. Furthermore, using conductive fine particle dispersion liquid with 100 parts by mass as a dispersion medium by adding ethanol as a dispersion medium, preparing 0.8 parts by mass of acrylate resin as a binder, and further adding ethanol as a dispersion medium Using a binder dispersion liquid of 100 parts by mass, the conductive fine particle dispersion is applied by spin coating so that the film thickness of the fine particle layer is 80 nm to form a conductive fine particle coating film. A multi-junction thin film was prepared in the same manner as in Example 1 except that the coating film was impregnated with a binder dispersion by spin coating so that the film thickness after firing was 80 nm. To prepare a con solar cell was evaluated in the same manner as in Example 1. At this time, the ratio of the fine particles to the binder in the transparent conductive film was 10/8 in the fine particle / binder ratio. The results are shown in Table 4 below.

<実施例17>
表1に示すように、導電性微粒子として原子比でSb/(Sb+In)=0.1、粒子径0.03μmのITO粉末を1.0質量部、カップリング剤として上記式(3)に示されるチタン系カップリング剤を0.02質量部添加し、更に分散媒としてエタノールを加えることで全体を100質量部とした導電性微粒子分散液を用い、バインダとしてポリカーボネート樹脂を1.0質量部用意し、更に分散媒としてトルエンを加えることで全体を100質量部としたバインダ分散液を用い、導電性微粒子分散液をスピンコーティング法により微粒子層の膜厚が80nmとなるように塗工して導電性微粒子の塗膜を形成し、導電性微粒子の塗膜上に、バインダ分散液をスピンコーティング法により焼成後の膜厚が80nmとなるように含浸させた以外は実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が10/10であった。その結果を次の表4に示す。
<Example 17>
As shown in Table 1, 1.0 parts by mass of ITO powder having an atomic ratio of Sb / (Sb + In) = 0.1 and a particle diameter of 0.03 μm as conductive fine particles is shown in the above formula (3) as a coupling agent. 0.02 parts by mass of a titanium coupling agent to be added, and further using ethanol as a dispersion medium to add 100 parts by mass of a conductive fine particle dispersion and 1.0 part by mass of a polycarbonate resin as a binder Furthermore, using a binder dispersion with 100 parts by weight as a whole by adding toluene as a dispersion medium, the conductive fine particle dispersion is applied by spin coating so that the film thickness of the fine particle layer becomes 80 nm. A coating film of conductive fine particles was formed, and a binder dispersion was impregnated on the coating film of conductive fine particles by spin coating so that the film thickness after firing was 80 nm. Outside to produce a multi-junction thin-film silicon solar cell in the same manner as in Example 1, was evaluated in the same manner as in Example 1. At this time, the ratio of the fine particles to the binder in the transparent conductive film was 10/10 in the fine particle / binder ratio. The results are shown in Table 4 below.

<実施例18>
表2に示すように、導電性微粒子として原子比でP/(P+Sn)=0.1、粒子径0.02μmのPTO(PドープSnO2)粉末を1.0質量部、カップリング剤として上記式(3)に示されるチタン系カップリング剤を0.01質量部添加し、更に分散媒としてエタノールを加えることで全体を100質量部とした導電性微粒子分散液を用い、バインダとしてアルキッド樹脂を0.8質量部用意し、更に分散媒としてシクロヘキサノンを加えることで全体を100質量部としたバインダ分散液を用い、導電性微粒子分散液をスピンコーティング法により微粒子層の膜厚が80nmとなるように塗工して導電性微粒子の塗膜を形成し、導電性微粒子の塗膜上に、バインダ分散液をスピンコーティング法により焼成後の膜厚が100nmとなるように含浸させた以外は実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が10/8であった。その結果を次の表4に示す。
<Example 18>
As shown in Table 2, 1.0 parts by mass of PTO (P-doped SnO 2 ) powder having an atomic ratio of P / (P + Sn) = 0.1 and a particle diameter of 0.02 μm as conductive fine particles, and the above as a coupling agent Add 0.01 parts by weight of the titanium coupling agent represented by formula (3), and further add conductive fine particle dispersion with 100 parts by weight as a whole by adding ethanol as a dispersion medium, and use an alkyd resin as a binder. Prepare 0.8 parts by mass and use a binder dispersion with 100 parts by mass as a whole by adding cyclohexanone as a dispersion medium, so that the conductive fine particle dispersion has a fine particle layer thickness of 80 nm by spin coating. To form a coating film of conductive fine particles, and the film thickness after baking the binder dispersion liquid by spin coating method on the coating film of conductive fine particles is 100 nm. Except impregnated on so that is fabricated multi-junction thin-film silicon solar cell in the same manner as in Example 1, was evaluated in the same manner as in Example 1. At this time, the ratio of the fine particles to the binder in the transparent conductive film was 10/8 in the fine particle / binder ratio. The results are shown in Table 4 below.

<実施例19>
表2に示すように、導電性微粒子として原子比でSb/(Sb+Sn)=0.1、粒子径0.03μmのATO粉末を1.0質量部、カップリング剤として上記式(3)に示されるチタン系カップリング剤を0.02質量部添加し、更に分散媒としてエタノールを加えることで全体を100質量部とした導電性微粒子分散液を用い、バインダとしてポリウレタン繊維を1.2質量部用意し、更に分散媒としてキシレンを加えることで全体を100質量部としたバインダ分散液を用い、導電性微粒子分散液をスピンコーティング法により微粒子層の膜厚が80nmとなるように塗工して導電性微粒子の塗膜を形成し、導電性微粒子の塗膜上に、バインダ分散液をスピンコーティング法により焼成後の膜厚が80nmとなるように含浸させた以外は実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が10/12であった。その結果を次の表4に示す。
<Example 19>
As shown in Table 2, 1.0 parts by mass of ATO powder having an atomic ratio of Sb / (Sb + Sn) = 0.1 and a particle size of 0.03 μm as conductive fine particles is shown in the above formula (3) as a coupling agent. 0.02 parts by mass of a titanium-based coupling agent to be added, and further using ethanol as a dispersion medium to add 100 parts by mass of a conductive fine particle dispersion, and 1.2 parts by mass of polyurethane fiber as a binder are prepared. Furthermore, using a binder dispersion liquid in which xylene is added as a dispersion medium to make the whole 100 parts by mass, the conductive fine particle dispersion liquid is applied by spin coating so that the film thickness of the fine particle layer becomes 80 nm. Except for forming a coating film of conductive fine particles and impregnating the conductive fine particle coating film with a binder dispersion by spin coating so that the film thickness after firing is 80 nm. To prepare a multi-junction thin-film silicon solar cell in the same manner as in Example 1, was evaluated in the same manner as in Example 1. In addition, the ratio of the fine particles to the binder in the transparent conductive film at this time was 10/12. The results are shown in Table 4 below.

<実施例20>
表2に示すように、導電性微粒子として原子比でSb/(Sb+In)=0.05、粒子径0.02μmのITO粉末を1.0質量部、カップリング剤として上記式(2)に示されるチタン系カップリング剤を0.01質量部添加し、更に分散媒としてエタノールを加えることで全体を100質量部とした導電性微粒子分散液を用い、バインダとしてポリアセタール樹脂を0.8質量部用意し、更に分散媒としてヘキサンを加えることで全体を100質量部としたバインダ分散液を用いた以外は実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が10/8であった。その結果を次の表4に示す。
<Example 20>
As shown in Table 2, as the conductive fine particles, ITO powder having an atomic ratio of Sb / (Sb + In) = 0.05 and a particle diameter of 0.02 μm is 1.0 part by mass, and the coupling agent is shown in the above formula (2). 0.01 parts by mass of a titanium coupling agent to be added, and further using ethanol as a dispersion medium to add 100 parts by mass of a conductive fine particle dispersion, and 0.8 parts by mass of polyacetal resin as a binder are prepared. Further, a multi-junction thin-film silicon solar cell was produced in the same manner as in Example 1 except that a binder dispersion liquid with 100 parts by mass as a whole was added by adding hexane as a dispersion medium. evaluated. At this time, the ratio of the fine particles to the binder in the transparent conductive film was 10/8 in the fine particle / binder ratio. The results are shown in Table 4 below.

<実施例21>
表2に示すように、導電性微粒子として原子比でSb/(Sb+Sn)=0.05、粒子径0.03μmのATO粉末を1.0質量部、カップリング剤として上記式(2)に示されるチタン系カップリング剤を0.02質量部添加し、更に分散媒としてエタノールを加えることで全体を100質量部とした導電性微粒子分散液を用い、バインダとしてエチルセルロース樹脂を1.0質量部用意し、更に分散媒としてヘキサンを加えることで全体を100質量部としたバインダ分散液を用い、導電性微粒子分散液をスピンコーティング法により微粒子層の膜厚が80nmとなるように塗工して導電性微粒子の塗膜を形成し、導電性微粒子の塗膜上に、バインダ分散液をスピンコーティング法により焼成後の膜厚が100nmとなるように含浸させた以外は実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が10/10であった。その結果を次の表4に示す。
<Example 21>
As shown in Table 2, ATO powder having an atomic ratio of Sb / (Sb + Sn) = 0.05 and an ATO powder of 0.03 μm in terms of atomic ratio as conductive fine particles is shown in the above formula (2) as a coupling agent. 0.02 parts by mass of a titanium-based coupling agent to be added, and further using ethanol as a dispersion medium to add 100 parts by mass of a conductive fine particle dispersion, and 1.0 part by mass of ethyl cellulose resin as a binder are prepared. Furthermore, using a binder dispersion liquid in which hexane is added as a dispersion medium to make the whole 100 parts by mass, the conductive fine particle dispersion liquid is applied by spin coating so that the film thickness of the fine particle layer becomes 80 nm. A coating film of conductive fine particles is formed, and a binder dispersion is impregnated on the conductive fine particle coating film by spin coating so that the film thickness after baking becomes 100 nm. Other than the can to produce a multi-junction thin-film silicon solar cell in the same manner as in Example 1, was evaluated in the same manner as in Example 1. At this time, the ratio of the fine particles to the binder in the transparent conductive film was 10/10 in the fine particle / binder ratio. The results are shown in Table 4 below.

<実施例22>
表2に示すように、導電性微粒子として原子比でP/(P+Sn)=0.05、粒子径0.02μmのPTO(PドープSnO2)粉末を1.0質量部、カップリング剤として上記式(2)に示されるチタン系カップリング剤を0.01質量部添加し、更に分散媒としてエタノールを加えることで全体を100質量部とした導電性微粒子分散液を用い、バインダとしてAlのメトキシ加水分解体を1.0質量部用意し、更に分散媒としてメタノールを加えることで全体を100質量部としたバインダ分散液を用い、導電性微粒子分散液をスピンコーティング法により微粒子層の膜厚が70nmとなるように塗工して導電性微粒子の塗膜を形成し、導電性微粒子の塗膜上に、バインダ分散液をスピンコーティング法により焼成後の膜厚が70nmとなるように含浸させた以外は実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が10/10であった。その結果を次の表4に示す。
<Example 22>
As shown in Table 2, 1.0 parts by mass of PTO (P-doped SnO 2 ) powder having an atomic ratio of P / (P + Sn) = 0.05 and a particle diameter of 0.02 μm as the conductive fine particles, the above as a coupling agent A conductive fine particle dispersion in which 0.01 parts by mass of the titanium coupling agent represented by the formula (2) is added and ethanol is added as a dispersion medium to make the whole 100 parts by mass is used, and Al methoxy is used as a binder. Prepare 1.0 parts by mass of the hydrolyzate, and further add methanol as a dispersion medium, and use a binder dispersion with 100 parts by mass as a whole. A film of conductive fine particles is formed by coating to a thickness of 70 nm, and the film thickness after baking the binder dispersion on the conductive fine particle coating film by spin coating is 70 n. Except that impregnated so that to produce a multi-junction thin-film silicon solar cell in the same manner as in Example 1, was evaluated in the same manner as in Example 1. At this time, the ratio of the fine particles to the binder in the transparent conductive film was 10/10 in the fine particle / binder ratio. The results are shown in Table 4 below.

<実施例23>
表2に示すように、導電性微粒子として原子比でSb/(Sb+Sn)=0.1、粒子径0.02μmのATO粉末を1.0質量部、カップリング剤として上記式(4)に示されるチタン系カップリング剤を0.02質量部添加し、更に分散媒としてエタノールを加えることで全体を100質量部とした導電性微粒子分散液を用い、バインダとしてアルキッド樹脂とポリアミド樹脂を7:3の割合で混合したものを1.0質量部用意し、更に分散媒としてイソホロンを加えることで全体を100質量部としたバインダ分散液を用い、導電性微粒子分散液をスピンコーティング法により微粒子層の膜厚が70nmとなるように塗工して導電性微粒子の塗膜を形成し、導電性微粒子の塗膜上に、バインダ分散液をスピンコーティング法により焼成後の膜厚が90nmとなるように含浸させた以外は実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が10/10であった。その結果を次の表4に示す。
<Example 23>
As shown in Table 2, 1.0 parts by mass of ATO powder having an atomic ratio of Sb / (Sb + Sn) = 0.1 and a particle diameter of 0.02 μm as the conductive fine particles is shown in the above formula (4) as a coupling agent. 0.02 parts by mass of a titanium coupling agent to be added, and further using ethanol as a dispersion medium to add 100 parts by mass of a conductive fine particle dispersion, and 7: 3 alkyd resin and polyamide resin as a binder. 1.0 parts by mass of the mixture prepared at the above ratio was prepared, and a binder dispersion liquid was added to which the total amount was 100 parts by mass by adding isophorone as a dispersion medium. Coating is carried out to a film thickness of 70 nm to form a coating film of conductive fine particles, and the binder dispersion liquid is baked on the coating film of conductive fine particles by a spin coating method. Thickness of non-impregnated so as to 90nm was produced a multi-junction thin-film silicon solar cell in the same manner as in Example 1, was evaluated in the same manner as in Example 1. At this time, the ratio of the fine particles to the binder in the transparent conductive film was 10/10 in the fine particle / binder ratio. The results are shown in Table 4 below.

<実施例24>
表2に示すように、導電性微粒子として粒子径0.02μmのSi粉末を1.0質量部、カップリング剤としてγ−メタクリロキシプロピルトリメトキシシランを0.01質量部添加し、更に分散媒としてエタノールを加えることで全体を100質量部とした導電性微粒子分散液を用い、バインダとしてシロキサンポリマを1.0質量部用意し、更に分散媒としてエタノールを加えることで全体を100質量部としたバインダ分散液を用い、導電性微粒子分散液をスピンコーティング法により微粒子層の膜厚が80nmとなるように塗工して導電性微粒子の塗膜を形成し、導電性微粒子の塗膜上に、バインダ分散液をスピンコーティング法により焼成後の膜厚が80nmとなるように含浸させた以外は実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が10/10であった。その結果を次の表4に示す。
<Example 24>
As shown in Table 2, 1.0 part by mass of Si powder having a particle diameter of 0.02 μm as conductive fine particles, 0.01 part by mass of γ-methacryloxypropyltrimethoxysilane as a coupling agent were added, and a dispersion medium was further added. As a binder, 1.0 part by mass of siloxane polymer is prepared as a binder, and 100 parts by mass is added by adding ethanol as a dispersion medium. Using a binder dispersion, the conductive fine particle dispersion is applied by spin coating so that the film thickness of the fine particle layer is 80 nm to form a conductive fine particle coating film, on the conductive fine particle coating film, The multi-junction thin film silicon is the same as in Example 1 except that the binder dispersion is impregnated by spin coating so that the film thickness after firing is 80 nm. A solar cell was fabricated and evaluated in the same manner as in Example 1. At this time, the ratio of the fine particles to the binder in the transparent conductive film was 10/10 in the fine particle / binder ratio. The results are shown in Table 4 below.

<実施例25>
表2に示すように、導電性微粒子として粒子径0.03μmのGa粉末を1.0質量部、カップリング剤として上記式(2)に示されるチタン系カップリング剤を0.01質量部添加し、更に分散媒としてエタノールを加えることで全体を100質量部とした導電性微粒子分散液を用い、バインダとしてアルキッド樹脂を1.0質量部用意し、更に分散媒としてシクロヘキサノンを加えることで全体を100質量部としたバインダ分散液を用い、導電性微粒子分散液をスピンコーティング法により微粒子層の膜厚が80nmとなるように塗工して導電性微粒子の塗膜を形成し、導電性微粒子の塗膜上に、バインダ分散液をスピンコーティング法により焼成後の膜厚が100nmとなるように含浸させた以外は実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が10/10であった。その結果を次の表4に示す。
<Example 25>
As shown in Table 2, 1.0 parts by mass of Ga powder having a particle size of 0.03 μm as conductive fine particles and 0.01 parts by mass of titanium-based coupling agent represented by the above formula (2) as a coupling agent are added. Furthermore, using conductive fine particle dispersion liquid with 100 parts by mass as a dispersion medium by adding ethanol as a dispersion medium, preparing 1.0 part by mass of alkyd resin as a binder, and further adding cyclohexanone as a dispersion medium Using a binder dispersion liquid of 100 parts by mass, the conductive fine particle dispersion is applied by spin coating so that the film thickness of the fine particle layer is 80 nm to form a conductive fine particle coating film. A multi-junction thin film was formed on the coating film in the same manner as in Example 1 except that the binder dispersion was impregnated by spin coating so that the film thickness after firing was 100 nm. To prepare a silicon solar cell was evaluated in the same manner as in Example 1. At this time, the ratio of the fine particles to the binder in the transparent conductive film was 10/10 in the fine particle / binder ratio. The results are shown in Table 4 below.

<実施例26>
表2に示すように、導電性微粒子として粒子径0.02μmのCo粉末を1.0質量部、カップリング剤として上記式(2)に示されるチタン系カップリング剤を0.01質量部添加し、更に分散媒としてエタノールを加えることで全体を100質量部とした導電性微粒子分散液を用い、バインダとしてエチルセルロース樹脂を1.0質量部用意し、更に分散媒としてヘキサンを加えることで全体を100質量部としたバインダ分散液を用い、導電性微粒子分散液をスピンコーティング法により微粒子層の膜厚が80nmとなるように塗工して導電性微粒子の塗膜を形成し、導電性微粒子の塗膜上に、バインダ分散液をスピンコーティング法により焼成後の膜厚が80nmとなるように含浸させた以外は実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が10/10であった。その結果を次の表4に示す。
<Example 26>
As shown in Table 2, 1.0 part by mass of Co powder having a particle size of 0.02 μm as conductive fine particles and 0.01 part by mass of a titanium coupling agent represented by the above formula (2) as a coupling agent are added. In addition, using conductive fine particle dispersion with 100 parts by mass as a dispersion medium by adding ethanol as a dispersion medium, 1.0 part by mass of ethyl cellulose resin as a binder is prepared, and hexane is further added as a dispersion medium. Using a binder dispersion liquid of 100 parts by mass, the conductive fine particle dispersion is applied by spin coating so that the film thickness of the fine particle layer is 80 nm to form a conductive fine particle coating film. A multi-junction thin film was prepared in the same manner as in Example 1 except that the coating was impregnated with a binder dispersion so that the film thickness after firing was 80 nm by spin coating. To prepare a con solar cell was evaluated in the same manner as in Example 1. At this time, the ratio of the fine particles to the binder in the transparent conductive film was 10/10 in the fine particle / binder ratio. The results are shown in Table 4 below.

<実施例27>
表2に示すように、導電性微粒子として粒子径0.02μmのCa粉末を1.0質量部、カップリング剤として上記式(3)に示されるチタン系カップリング剤を0.01質量部添加し、更に分散媒としてエタノールを加えることで全体を100質量部とした導電性微粒子分散液を用い、バインダとしてポリカーボネート樹脂を1.0質量部用意し、更に分散媒としてトルエンを加えることで全体を100質量部としたバインダ分散液を用いた以外は実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が10/10であった。その結果を次の表4に示す。
<Example 27>
As shown in Table 2, 1.0 part by mass of Ca powder having a particle diameter of 0.02 μm as conductive fine particles and 0.01 part by mass of a titanium coupling agent represented by the above formula (3) as a coupling agent are added. Further, using conductive fine particle dispersion liquid with 100 parts by mass as a dispersion medium by adding ethanol as a dispersion medium, 1.0 part by mass of polycarbonate resin as a binder is prepared, and toluene is further added as a dispersion medium. A multi-junction thin-film silicon solar cell was produced in the same manner as in Example 1 except that the binder dispersion liquid having 100 parts by mass was used, and evaluated in the same manner as in Example 1. At this time, the ratio of the fine particles to the binder in the transparent conductive film was 10/10 in the fine particle / binder ratio. The results are shown in Table 4 below.

<実施例28>
表2に示すように、導電性微粒子として粒子径0.03μmのSr粉末を1.0質量部、カップリング剤として上記式(3)に示されるチタン系カップリング剤を0.01質量部添加し、更に分散媒としてエタノールを加えることで全体を100質量部とした導電性微粒子分散液を用い、バインダとしてポリアセタール樹脂を1.0質量部用意し、更に分散媒としてヘキサンを加えることで全体を100質量部としたバインダ分散液を用い、導電性微粒子分散液をスピンコーティング法により微粒子層の膜厚が80nmとなるように塗工して導電性微粒子の塗膜を形成し、導電性微粒子の塗膜上に、バインダ分散液をスピンコーティング法により焼成後の膜厚が100nmとなるように含浸させた以外は実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が10/10であった。その結果を次の表4に示す。
<Example 28>
As shown in Table 2, 1.0 part by mass of Sr powder having a particle size of 0.03 μm is added as conductive fine particles, and 0.01 part by mass of titanium-based coupling agent represented by the above formula (3) is added as a coupling agent. In addition, using conductive fine particle dispersion with 100 parts by mass as a dispersion medium by adding ethanol as a dispersion medium, 1.0 part by mass of polyacetal resin as a binder is prepared, and hexane is further added as a dispersion medium. Using a binder dispersion liquid of 100 parts by mass, the conductive fine particle dispersion is applied by spin coating so that the film thickness of the fine particle layer is 80 nm to form a conductive fine particle coating film. A multi-junction type thin film was prepared in the same manner as in Example 1 except that the coating film was impregnated with a binder dispersion by spin coating so that the film thickness after firing was 100 nm. To prepare a con solar cell was evaluated in the same manner as in Example 1. At this time, the ratio of the fine particles to the binder in the transparent conductive film was 10/10 in the fine particle / binder ratio. The results are shown in Table 4 below.

<実施例29>
表2に示すように、導電性微粒子として粒子径0.02μmのBa(OH)2粉末を1.0質量部、カップリング剤として上記式(4)に示されるチタン系カップリング剤を0.01質量部添加し、更に分散媒としてエタノールを加えることで全体を100質量部とした導電性微粒子分散液を用い、バインダとしてポリウレタン樹脂を1.0質量部用意し、更に分散媒としてキシレンを加えることで全体を100質量部としたバインダ分散液を用い、導電性微粒子分散液をスピンコーティング法により微粒子層の膜厚が80nmとなるように塗工して導電性微粒子の塗膜を形成し、導電性微粒子の塗膜上に、バインダ分散液をスピンコーティング法により焼成後の膜厚が80nmとなるように含浸させた以外は実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が10/10であった。その結果を次の表4に示す。
<Example 29>
As shown in Table 2, 1.0 part by mass of Ba (OH) 2 powder having a particle diameter of 0.02 μm as the conductive fine particles, and a titanium coupling agent represented by the above formula (4) as the coupling agent was added in an amount of 0.0. Add 01 parts by mass, use conductive fine particle dispersion with 100 parts by mass as a whole by adding ethanol as a dispersion medium, prepare 1.0 part by mass of polyurethane resin as a binder, and add xylene as a dispersion medium By using a binder dispersion with 100 parts by mass as a whole, the conductive fine particle dispersion was applied by spin coating so that the film thickness of the fine particle layer was 80 nm to form a conductive fine particle coating film, A multi-junction thin film was formed in the same manner as in Example 1 except that the conductive fine particle coating was impregnated with a binder dispersion by spin coating so that the film thickness after firing was 80 nm. To prepare a silicon solar cell was evaluated in the same manner as in Example 1. At this time, the ratio of the fine particles to the binder in the transparent conductive film was 10/10 in the fine particle / binder ratio. The results are shown in Table 4 below.

<実施例30>
表2に示すように、導電性微粒子として粒子径0.03μmのCe粉末を1.0質量部、カップリング剤として上記式(4)に示されるチタン系カップリング剤を0.01質量部添加し、更に分散媒としてエタノールを加えることで全体を100質量部とした導電性微粒子分散液を用い、バインダとしてポリアミド樹脂を1.0質量部用意し、更に分散媒としてキシレンを加えることで全体を100質量部としたバインダ分散液を用い、導電性微粒子分散液をスピンコーティング法により微粒子層の膜厚が80nmとなるように塗工して導電性微粒子の塗膜を形成し、導電性微粒子の塗膜上に、バインダ分散液をスピンコーティング法により焼成後の膜厚が100nmとなるように含浸させた以外は実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が10/10であった。その結果を次の表4に示す。
<Example 30>
As shown in Table 2, 1.0 part by mass of Ce powder having a particle size of 0.03 μm as conductive fine particles and 0.01 part by mass of titanium-based coupling agent represented by the above formula (4) as a coupling agent are added. In addition, using conductive fine particle dispersion with 100 parts by mass as a dispersion medium by adding ethanol as a dispersion medium, preparing 1.0 part by mass of polyamide resin as a binder and further adding xylene as a dispersion medium. Using a binder dispersion liquid of 100 parts by mass, the conductive fine particle dispersion is applied by spin coating so that the film thickness of the fine particle layer is 80 nm to form a conductive fine particle coating film. The multi-junction thin film silicon is the same as in Example 1 except that the coating film is impregnated with a binder dispersion by spin coating so that the film thickness after firing becomes 100 nm. To prepare a solar cell were evaluated in the same manner as in Example 1. At this time, the ratio of the fine particles to the binder in the transparent conductive film was 10/10 in the fine particle / binder ratio. The results are shown in Table 4 below.

<実施例31>
表2に示すように、導電性微粒子として粒子径0.03μmのY粉末を1.0質量部、カップリング剤として上記式(5)に示されるチタン系カップリング剤を0.01質量部添加し、更に分散媒としてエタノールを加えることで全体を100質量部とした導電性微粒子分散液を用い、バインダとしてシロキサンポリマを1.0質量部用意し、更に分散媒としてエタノールを加えることで全体を100質量部としたバインダ分散液を用い、導電性微粒子分散液をスピンコーティング法により微粒子層の膜厚が80nmとなるように塗工して導電性微粒子の塗膜を形成し、導電性微粒子の塗膜上に、バインダ分散液をスピンコーティング法により焼成後の膜厚が100nmとなるように含浸させた以外は実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が10/10であった。その結果を次の表4に示す。
<Example 31>
As shown in Table 2, 1.0 part by mass of Y powder having a particle size of 0.03 μm as conductive fine particles and 0.01 part by mass of titanium-based coupling agent represented by the above formula (5) as a coupling agent are added. Then, using conductive fine particle dispersion liquid with 100 parts by mass as a dispersion medium by adding ethanol as a dispersion medium, 1.0 part by mass of siloxane polymer as a binder is prepared, and ethanol is further added as a dispersion medium. Using a binder dispersion liquid of 100 parts by mass, the conductive fine particle dispersion is applied by spin coating so that the film thickness of the fine particle layer is 80 nm to form a conductive fine particle coating film. A multi-junction type thin film silicon was applied in the same manner as in Example 1 except that the coating liquid was impregnated with a binder dispersion by spin coating so that the film thickness after firing was 100 nm. To produce a down solar cell was evaluated in the same manner as in Example 1. At this time, the ratio of the fine particles to the binder in the transparent conductive film was 10/10 in the fine particle / binder ratio. The results are shown in Table 4 below.

<実施例32>
表2に示すように、導電性微粒子として粒子径0.02μmのZr粉末を1.0質量部、カップリング剤として上記式(5)に示されるチタン系カップリング剤を0.01質量部添加し、更に分散媒としてエタノールを加えることで全体を100質量部とした導電性微粒子分散液を用い、バインダとしてアルキッド樹脂を1.0質量部用意し、更に分散媒としてシクロヘキサノンを加えることで全体を100質量部としたバインダ分散液を用い、導電性微粒子分散液をスピンコーティング法により微粒子層の膜厚が80nmとなるように塗工して導電性微粒子の塗膜を形成し、導電性微粒子の塗膜上に、バインダ分散液をスピンコーティング法により焼成後の膜厚が80nmとなるように含浸させた以外は実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が10/10であった。その結果を次の表4に示す。
<Example 32>
As shown in Table 2, 1.0 part by mass of Zr powder having a particle diameter of 0.02 μm as conductive fine particles and 0.01 part by mass of titanium-based coupling agent represented by the above formula (5) as a coupling agent are added. Furthermore, using conductive fine particle dispersion liquid with 100 parts by mass as a dispersion medium by adding ethanol as a dispersion medium, preparing 1.0 part by mass of alkyd resin as a binder, and further adding cyclohexanone as a dispersion medium Using a binder dispersion liquid of 100 parts by mass, the conductive fine particle dispersion is applied by spin coating so that the film thickness of the fine particle layer is 80 nm to form a conductive fine particle coating film. A multi-junction thin film was formed in the same manner as in Example 1 except that a binder dispersion was impregnated on the coating film by spin coating so that the film thickness after firing was 80 nm. To prepare a silicon solar cell was evaluated in the same manner as in Example 1. At this time, the ratio of the fine particles to the binder in the transparent conductive film was 10/10 in the fine particle / binder ratio. The results are shown in Table 4 below.

<実施例33>
表2に示すように、導電性微粒子として粒子径0.02μmのSn(OH)2粉末を1.0質量部、カップリング剤として上記式(6)に示されるチタン系カップリング剤を0.01質量部添加し、更に分散媒としてエタノールを加えることで全体を100質量部とした導電性微粒子分散液を用い、バインダとしてエチルセルロース樹脂を1.0質量部用意し、更に分散媒としてヘキサンを加えることで全体を100質量部としたバインダ分散液を用いた以外は実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が10/10であった。その結果を次の表4に示す。
<Example 33>
As shown in Table 2, 1.0 part by mass of Sn (OH) 2 powder having a particle diameter of 0.02 μm as conductive fine particles, and a titanium-based coupling agent represented by the above formula (6) as a coupling agent were added in an amount of 0.0. Add 01 parts by mass, use conductive fine particle dispersion with 100 parts by mass as a whole by adding ethanol as a dispersion medium, prepare 1.0 part by mass of ethyl cellulose resin as a binder, and add hexane as a dispersion medium Thus, a multi-junction thin film silicon solar cell was produced in the same manner as in Example 1 except that the binder dispersion liquid with 100 parts by mass as a whole was used, and evaluated in the same manner as in Example 1. At this time, the ratio of the fine particles to the binder in the transparent conductive film was 10/10 in the fine particle / binder ratio. The results are shown in Table 4 below.

<実施例34>
表2に示すように、導電性微粒子として粒子径0.03μmのMgOとZnO2を5:5の割合で混合した粉末を1.0質量部、カップリング剤として上記式(6)に示されるチタン系カップリング剤を0.01質量部添加し、更に分散媒としてエタノールを加えることで全体を100質量部とした導電性微粒子分散液を用い、バインダとしてポリカーボネート樹脂を1.0質量部用意し、更に分散媒としてトルエンを加えることで全体を100質量部としたバインダ分散液を用い、導電性微粒子分散液をスピンコーティング法により微粒子層の膜厚が80nmとなるように塗工して導電性微粒子の塗膜を形成し、導電性微粒子の塗膜上に、バインダ分散液をスピンコーティング法により焼成後の膜厚が80nmとなるように含浸させた以外は実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が10/10であった。その結果を次の表4に示す。
<Example 34>
As shown in Table 2, 1.0 parts by mass of a powder obtained by mixing MgO and ZnO 2 having a particle diameter of 0.03 μm at a ratio of 5: 5 as the conductive fine particles is represented by the above formula (6) as a coupling agent. Add 0.01 parts by mass of a titanium coupling agent, and further add ethanol as a dispersion medium to prepare 100 parts by mass of a conductive fine particle dispersion, and prepare 1.0 part by mass of a polycarbonate resin as a binder. Furthermore, using a binder dispersion liquid in which 100 parts by mass as a whole is added by adding toluene as a dispersion medium, the conductive fine particle dispersion liquid is applied by spin coating so that the film thickness of the fine particle layer becomes 80 nm, Except for forming a coating film of fine particles and impregnating the conductive fine particle coating film with a binder dispersion by spin coating so that the film thickness after firing is 80 nm. A multi-junction thin film silicon solar cell was produced in the same manner as in Example 1 and evaluated in the same manner as in Example 1. At this time, the ratio of the fine particles to the binder in the transparent conductive film was 10/10 in the fine particle / binder ratio. The results are shown in Table 4 below.

<実施例35>
表3に示すように、導電性微粒子として粒子径0.03μmのC粉末を1.0質量部、カップリング剤として上記式(7)に示されるチタン系カップリング剤を0.01質量部添加し、更に分散媒としてエタノールを加えることで全体を100質量部とした導電性微粒子分散液を用い、バインダとしてポリアセタール樹脂を1.0質量部用意し、更に分散媒としてヘキサンを加えることで全体を100質量部としたバインダ分散液を用い、導電性微粒子分散液をスピンコーティング法により微粒子層の膜厚が80nmとなるように塗工して導電性微粒子の塗膜を形成し、導電性微粒子の塗膜上に、バインダ分散液をスピンコーティング法により焼成後の膜厚が100nmとなるように含浸させた以外は実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が10/10であった。その結果を次の表4に示す。
<Example 35>
As shown in Table 3, 1.0 part by mass of C powder having a particle size of 0.03 μm as conductive fine particles and 0.01 part by mass of a titanium coupling agent represented by the above formula (7) as a coupling agent are added. In addition, using conductive fine particle dispersion with 100 parts by mass as a dispersion medium by adding ethanol as a dispersion medium, 1.0 part by mass of polyacetal resin as a binder is prepared, and hexane is further added as a dispersion medium. Using a binder dispersion liquid of 100 parts by mass, the conductive fine particle dispersion is applied by spin coating so that the film thickness of the fine particle layer is 80 nm to form a conductive fine particle coating film. A multi-junction type thin film silicon was applied in the same manner as in Example 1 except that the coating liquid was impregnated with a binder dispersion by spin coating so that the film thickness after firing was 100 nm. To produce a down solar cell was evaluated in the same manner as in Example 1. At this time, the ratio of the fine particles to the binder in the transparent conductive film was 10/10 in the fine particle / binder ratio. The results are shown in Table 4 below.

<実施例36>
表3に示すように、導電性微粒子として粒子径0.01μmのSiO2粉末を1.0質量部、カップリング剤として上記式(7)に示されるチタン系カップリング剤を0.01質量部添加し、更に分散媒としてエタノールを加えることで全体を100質量部とした導電性微粒子分散液を用い、バインダとしてポリウレタン樹脂を1.0質量部用意し、更に分散媒としてキシレンを加えることで全体を100質量部としたバインダ分散液を用いた以外は実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が10/10であった。その結果を次の表4に示す。
<Example 36>
As shown in Table 3, 1.0 part by mass of SiO 2 powder having a particle size of 0.01 μm as the conductive fine particles, and 0.01 part by mass of the titanium-based coupling agent represented by the above formula (7) as the coupling agent. Then, using conductive fine particle dispersion with 100 parts by mass as a whole by adding ethanol as a dispersion medium, 1.0 part by mass of polyurethane resin as a binder is prepared, and xylene is further added as a dispersion medium. A multi-junction thin-film silicon solar cell was produced in the same manner as in Example 1 except that the binder dispersion liquid with 100 parts by mass was used and evaluated in the same manner as in Example 1. At this time, the ratio of the fine particles to the binder in the transparent conductive film was 10/10 in the fine particle / binder ratio. The results are shown in Table 4 below.

<実施例37>
表3に示すように、導電性微粒子として粒子径0.03μmのCu粉末を1.0質量部、カップリング剤として上記式(8)に示されるチタン系カップリング剤を0.01質量部添加し、更に分散媒としてエタノールを加えることで全体を100質量部とした導電性微粒子分散液を用い、バインダとしてポリアミド樹脂を1.0質量部用意し、更に分散媒としてキシレンを加えることで全体を100質量部としたバインダ分散液を用い、導電性微粒子分散液をスピンコーティング法により微粒子層の膜厚が80nmとなるように塗工して導電性微粒子の塗膜を形成し、導電性微粒子の塗膜上に、バインダ分散液をスピンコーティング法により焼成後の膜厚が80nmとなるように含浸させた以外は実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が10/10であった。その結果を次の表4に示す。
<Example 37>
As shown in Table 3, 1.0 part by mass of Cu powder having a particle size of 0.03 μm as conductive fine particles and 0.01 part by mass of a titanium coupling agent represented by the above formula (8) as a coupling agent are added. In addition, using conductive fine particle dispersion with 100 parts by mass as a dispersion medium by adding ethanol as a dispersion medium, preparing 1.0 part by mass of polyamide resin as a binder and further adding xylene as a dispersion medium. Using a binder dispersion liquid of 100 parts by mass, the conductive fine particle dispersion is applied by spin coating so that the film thickness of the fine particle layer is 80 nm to form a conductive fine particle coating film. The multi-junction type thin film silicon was applied in the same manner as in Example 1 except that the coating liquid was impregnated with a binder dispersion by spin coating so that the film thickness after firing was 80 nm. To prepare a solar cell were evaluated in the same manner as in Example 1. At this time, the ratio of the fine particles to the binder in the transparent conductive film was 10/10 in the fine particle / binder ratio. The results are shown in Table 4 below.

<実施例38>
表3に示すように、導電性微粒子として粒子径0.03μmのNi粉末を1.0質量部、カップリング剤として上記式(8)に示されるチタン系カップリング剤を0.01質量部添加し、更に分散媒としてエタノールを加えることで全体を100質量部とした導電性微粒子分散液を用い、バインダとしてシロキサンポリマを1.0質量部用意し、更に分散媒としてエタノールを加えることで全体を100質量部としたバインダ分散液を用い、導電性微粒子分散液をスピンコーティング法により微粒子層の膜厚が80nmとなるように塗工して導電性微粒子の塗膜を形成し、導電性微粒子の塗膜上に、バインダ分散液をスピンコーティング法により焼成後の膜厚が80nmとなるように含浸させた以外は実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が10/10であった。その結果を次の表4に示す。
<Example 38>
As shown in Table 3, 1.0 part by mass of Ni powder having a particle size of 0.03 μm as conductive fine particles and 0.01 part by mass of titanium-based coupling agent represented by the above formula (8) as a coupling agent are added. Then, using conductive fine particle dispersion liquid with 100 parts by mass as a dispersion medium by adding ethanol as a dispersion medium, 1.0 part by mass of siloxane polymer as a binder is prepared, and ethanol is further added as a dispersion medium. Using a binder dispersion liquid of 100 parts by mass, the conductive fine particle dispersion is applied by spin coating so that the film thickness of the fine particle layer is 80 nm to form a conductive fine particle coating film. The multi-junction type thin film silicon was coated in the same manner as in Example 1 except that the coating film was impregnated with a binder dispersion by spin coating so that the film thickness after firing was 80 nm. To produce a down solar cell was evaluated in the same manner as in Example 1. At this time, the ratio of the fine particles to the binder in the transparent conductive film was 10/10 in the fine particle / binder ratio. The results are shown in Table 4 below.

<実施例39>
表3に示すように、導電性微粒子として粒子径0.02μmのPt粉末を1.0質量部、カップリング剤として上記式(1)に示されるアルミ系カップリング剤を0.01質量部添加し、更に分散媒としてエタノールを加えることで全体を100質量部とした導電性微粒子分散液を用い、バインダとしてアルキッド樹脂を1.0質量部用意し、更に分散媒としてシクロヘキサノンを加えることで全体を100質量部としたバインダ分散液を用い、導電性微粒子分散液をスピンコーティング法により微粒子層の膜厚が80nmとなるように塗工して導電性微粒子の塗膜を形成し、導電性微粒子の塗膜上に、バインダ分散液をスピンコーティング法により焼成後の膜厚が100nmとなるように含浸させた以外は実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が10/10であった。その結果を次の表4に示す。
<Example 39>
As shown in Table 3, 1.0 part by mass of Pt powder having a particle size of 0.02 μm as conductive fine particles and 0.01 part by mass of an aluminum coupling agent represented by the above formula (1) as a coupling agent are added. Furthermore, using conductive fine particle dispersion liquid with 100 parts by mass as a dispersion medium by adding ethanol as a dispersion medium, preparing 1.0 part by mass of alkyd resin as a binder, and further adding cyclohexanone as a dispersion medium Using a binder dispersion liquid of 100 parts by mass, the conductive fine particle dispersion is applied by spin coating so that the film thickness of the fine particle layer is 80 nm to form a conductive fine particle coating film. A multi-junction thin film was formed on the coating film in the same manner as in Example 1 except that the binder dispersion was impregnated by spin coating so that the film thickness after firing was 100 nm. To prepare a silicon solar cell was evaluated in the same manner as in Example 1. At this time, the ratio of the fine particles to the binder in the transparent conductive film was 10/10 in the fine particle / binder ratio. The results are shown in Table 4 below.

<実施例40>
表3に示すように、導電性微粒子として粒子径0.03μmのIr粉末を1.0質量部、カップリング剤として上記式(1)に示されるアルミ系カップリング剤を0.01質量部添加し、更に分散媒としてエタノールを加えることで全体を100質量部とした導電性微粒子分散液を用い、バインダとしてエチルセルロース樹脂を1.0質量部用意し、更に分散媒としてヘキサンを加えることで全体を100質量部としたバインダ分散液を用い、導電性微粒子分散液をスピンコーティング法により微粒子層の膜厚が80nmとなるように塗工して導電性微粒子の塗膜を形成し、導電性微粒子の塗膜上に、バインダ分散液をスピンコーティング法により焼成後の膜厚が100nmとなるように含浸させた以外は実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が10/10であった。その結果を次の表4に示す。
<Example 40>
As shown in Table 3, 1.0 part by mass of Ir powder having a particle size of 0.03 μm is added as conductive fine particles, and 0.01 part by mass of the aluminum coupling agent represented by the above formula (1) is added as a coupling agent. In addition, using conductive fine particle dispersion with 100 parts by mass as a dispersion medium by adding ethanol as a dispersion medium, 1.0 part by mass of ethyl cellulose resin as a binder is prepared, and hexane is further added as a dispersion medium. Using a binder dispersion liquid of 100 parts by mass, the conductive fine particle dispersion is applied by spin coating so that the film thickness of the fine particle layer is 80 nm to form a conductive fine particle coating film. A multi-junction thin film was formed in the same manner as in Example 1 except that the coating liquid was impregnated with a binder dispersion by spin coating so that the film thickness after firing was 100 nm. To prepare a silicon solar cell was evaluated in the same manner as in Example 1. At this time, the ratio of the fine particles to the binder in the transparent conductive film was 10/10 in the fine particle / binder ratio. The results are shown in Table 4 below.

<実施例41>
表3に示すように、導電性微粒子として原子比でP/(P+Sn)=0.1、粒子径0.02μmのPTO(PドープSnO2)粉末を0.8質量部、カップリング剤として上記式(1)に示されるアルミ系カップリング剤と上記式(3)に示されるチタン系カップリング剤を5:5の割合で混合したものを0.01質量部添加し、更に分散媒としてエタノールを加えることで全体を100質量部とした導電性微粒子分散液を用い、バインダとしてポリカーボネート樹脂を1.0質量部用意し、更に分散媒としてトルエンを加えることで全体を100質量部としたバインダ分散液を用い、導電性微粒子分散液をスピンコーティング法により微粒子層の膜厚が80nmとなるように塗工して導電性微粒子の塗膜を形成し、導電性微粒子の塗膜上に、バインダ分散液をスピンコーティング法により焼成後の膜厚が80nmとなるように含浸させた以外は実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が8/10であった。その結果を次の表4に示す。
<Example 41>
As shown in Table 3, 0.8 parts by mass of PTO (P-doped SnO 2 ) powder having an atomic ratio of P / (P + Sn) = 0.1 and a particle diameter of 0.02 μm as a conductive fine particle, and the above as a coupling agent 0.01 parts by mass of a mixture of an aluminum coupling agent represented by the formula (1) and a titanium coupling agent represented by the above formula (3) in a ratio of 5: 5 was added, and ethanol was further used as a dispersion medium. The conductive fine particle dispersion with 100 parts by mass as a whole is added, 1.0 part by mass of polycarbonate resin is prepared as a binder, and the binder is dispersed with 100 parts by mass as a dispersion medium. The conductive fine particle dispersion is applied by spin coating so that the film thickness of the fine particle layer is 80 nm, and a conductive fine particle coating film is formed on the conductive fine particle coating film. A multi-junction thin-film silicon solar cell was prepared in the same manner as in Example 1 except that the binder dispersion was impregnated by spin coating so that the film thickness after firing was 80 nm, and evaluated in the same manner as in Example 1. did. At this time, the ratio of the fine particles to the binder in the transparent conductive film was 8/10 in the fine particle / binder ratio. The results are shown in Table 4 below.

<実施例42>
表3に示すように、導電性微粒子として原子比でSb/(Sb+In)=0.1、粒子径0.02μmのITO粉末を1.2質量部、カップリング剤として上記式(3)に示されるチタン系カップリング剤を0.02質量部添加し、更に分散媒としてエタノールを加えることで全体を100質量部とした導電性微粒子分散液を用い、バインダとしてシロキサンポリマを1.0質量部用意し、更に分散媒としてエタノールを加えることで全体を100質量部としたバインダ分散液を用い、導電性微粒子分散液をスプレーコーティング法により微粒子層の膜厚が100nmとなるように塗工して導電性微粒子の塗膜を形成し、導電性微粒子の塗膜上に、バインダ分散液をスプレーコーティング法により焼成後の膜厚が120nmとなるように含浸させた以外は実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が12/10であった。その結果を次の表4に示す。
<Example 42>
As shown in Table 3, 1.2 parts by mass of ITO powder having an atomic ratio of Sb / (Sb + In) = 0.1 and a particle diameter of 0.02 μm as the conductive fine particles is shown in the above formula (3) as a coupling agent. 0.02 parts by mass of a titanium coupling agent to be added, and further using ethanol as a dispersion medium to add 100 parts by mass of a conductive fine particle dispersion and 1.0 part by mass of a siloxane polymer as a binder Furthermore, using a binder dispersion with 100 parts by mass as a whole by adding ethanol as a dispersion medium, the conductive fine particle dispersion is applied by spray coating so that the film thickness of the fine particle layer becomes 100 nm. A coating film of conductive fine particles is formed, and a binder dispersion is impregnated on the conductive fine particle coating film by a spray coating method so that the film thickness after baking is 120 nm. Except that was was produced a multi-junction thin-film silicon solar cell in the same manner as in Example 1, was evaluated in the same manner as in Example 1. At this time, the ratio of fine particles to binder in the transparent conductive film was 12/10 in the fine particle / binder ratio. The results are shown in Table 4 below.

<実施例43>
表3に示すように、導電性微粒子として原子比でP/(P+Sn)=0.1、粒子径0.03μmのPTO(PドープSnO2)粉末を1.2質量部、カップリング剤として上記式(3)に示されるチタン系カップリング剤を0.02質量部添加し、更に分散媒としてエタノールを加えることで全体を100質量部とした導電性微粒子分散液を用い、バインダとしてシロキサンポリマを1.2質量部用意し、更に分散媒としてエタノールを加えることで全体を100質量部としたバインダ分散液を用い、導電性微粒子分散液をディスペンサコーティング法により微粒子層の膜厚が100nmとなるように塗工して導電性微粒子の塗膜を形成し、導電性微粒子の塗膜上に、バインダ分散液をディスペンサコーティング法により焼成後の膜厚が110nmとなるように含浸させた以外は実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が12/12であった。その結果を次の表4に示す。
<Example 43>
As shown in Table 3, 1.2 parts by mass of PTO (P-doped SnO 2 ) powder having an atomic ratio of P / (P + Sn) = 0.1 and a particle size of 0.03 μm as the conductive fine particles, and the above as a coupling agent 0.02 parts by mass of a titanium coupling agent represented by the formula (3) is added, and further, a conductive fine particle dispersion having 100 parts by mass as a whole by adding ethanol as a dispersion medium is used, and a siloxane polymer is used as a binder. Prepare 1.2 parts by mass and use a binder dispersion with 100 parts by mass as a whole by adding ethanol as a dispersion medium, so that the film thickness of the fine particle layer becomes 100 nm by the dispenser coating method of the conductive fine particle dispersion. To form a coating film of conductive fine particles, and the film thickness after baking the binder dispersion on the coating film of conductive fine particles by the dispenser coating method is 1 Except that impregnated so that 0nm was produced a multi-junction thin-film silicon solar cell in the same manner as in Example 1, was evaluated in the same manner as in Example 1. At this time, the ratio of the fine particles to the binder in the transparent conductive film was such that the fine particle / binder ratio was 12/12. The results are shown in Table 4 below.

<実施例44>
表3に示すように、導電性微粒子として原子比でSb/(Sb+Sn)=0.1、粒子径0.02μmのATO粉末を1.2質量部、カップリング剤として上記式(3)に示されるチタン系カップリング剤を0.02質量部添加し、更に分散媒としてエタノールを加えることで全体を100質量部とした導電性微粒子分散液を用い、バインダとしてシロキサンポリマを0.8質量部用意し、更に分散媒としてエタノールを加えることで全体を100質量部としたバインダ分散液を用い、導電性微粒子分散液をナイフコーティング法により微粒子層の膜厚が100nmとなるように塗工して導電性微粒子の塗膜を形成し、導電性微粒子の塗膜上に、バインダ分散液をナイフコーティング法により焼成後の膜厚が100nmとなるように含浸させた以外は実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が12/8であった。その結果を次の表4に示す。
<Example 44>
As shown in Table 3, 1.2 parts by mass of ATO powder having an atomic ratio of Sb / (Sb + Sn) = 0.1 and a particle diameter of 0.02 μm as the conductive fine particles, and the coupling agent shown in the above formula (3) 0.02 part by mass of a titanium coupling agent to be added, and further using ethanol as a dispersion medium to add 100 parts by mass of a conductive fine particle dispersion, and 0.8 parts by mass of a siloxane polymer as a binder Furthermore, using a binder dispersion liquid with 100 parts by mass as a whole by adding ethanol as a dispersion medium, the conductive fine particle dispersion liquid is applied by a knife coating method so that the film thickness of the fine particle layer is 100 nm. A coating film of conductive fine particles is formed, and a binder dispersion is impregnated on the coating film of conductive fine particles by a knife coating method so that the film thickness after baking becomes 100 nm. Except to produce a multi-junction thin-film silicon solar cell in the same manner as in Example 1, it was evaluated in the same manner as in Example 1. At this time, the ratio of the fine particles to the binder in the transparent conductive film was 12/8. The results are shown in Table 4 below.

<実施例45>
表3に示すように、導電性微粒子として原子比でSb/(Sb+In)=0.05、粒子径0.02μmのITO粉末を1.2質量部、カップリング剤として上記式(2)に示されるチタン系カップリング剤を0.02質量部添加し、更に分散媒としてエタノールを加えることで全体を100質量部とした導電性微粒子分散液を用い、バインダとしてシロキサンポリマを1.2質量部用意し、更に分散媒としてエタノールを加えることで全体を100質量部としたバインダ分散液を用い、導電性微粒子分散液をスリットコーティング法により微粒子層の膜厚が100nmとなるように塗工して導電性微粒子の塗膜を形成し、導電性微粒子の塗膜上に、バインダ分散液をスリットコーティング法により焼成後の膜厚が100nmとなるように含浸させた以外は実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が12/12であった。その結果を次の表4に示す。
<Example 45>
As shown in Table 3, 1.2 parts by mass of ITO powder having an atomic ratio of Sb / (Sb + In) = 0.05 and a particle diameter of 0.02 μm as conductive fine particles is shown in the above formula (2) as a coupling agent. 0.02 parts by mass of a titanium-based coupling agent to be added, and further using ethanol as a dispersion medium to add 100 parts by mass of a conductive fine particle dispersion, and 1.2 parts by mass of a siloxane polymer as a binder Furthermore, using a binder dispersion liquid with 100 parts by mass as a whole by adding ethanol as a dispersion medium, the conductive fine particle dispersion liquid is applied by a slit coating method so that the film thickness of the fine particle layer is 100 nm. A coating film of conductive fine particles is formed, and a binder dispersion liquid is contained on the conductive fine particle coating film by a slit coating method so that the film thickness after baking becomes 100 nm. Except that was to prepare a multi-junction thin-film silicon solar cell in the same manner as in Example 1, it was evaluated in the same manner as in Example 1. At this time, the ratio of the fine particles to the binder in the transparent conductive film was such that the fine particle / binder ratio was 12/12. The results are shown in Table 4 below.

<実施例46>
表3に示すように、導電性微粒子として原子比でSb/(Sb+Sn)=0.05、粒子径0.03μmのATO粉末を1.0質量部、カップリング剤として上記式(2)に示されるチタン系カップリング剤を0.01質量部添加し、更に分散媒としてエタノールを加えることで全体を100質量部とした導電性微粒子分散液を用い、バインダとしてシロキサンポリマを1.0質量部用意し、更に分散媒としてエタノールを加えることで全体を100質量部としたバインダ分散液を用い、導電性微粒子分散液をインクジェットコーティング法により微粒子層の膜厚が90nmとなるように塗工して導電性微粒子の塗膜を形成し、導電性微粒子の塗膜上に、バインダ分散液をインクジェットコーティング法により焼成後の膜厚が90nmとなるように含浸させた以外は実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が10/10であった。その結果を次の表4に示す。
<Example 46>
As shown in Table 3, 1.0 parts by mass of ATO powder having an atomic ratio of Sb / (Sb + Sn) = 0.05 and a particle diameter of 0.03 μm as conductive fine particles is shown in the above formula (2) as a coupling agent. 0.01 parts by mass of a titanium coupling agent to be added, and further using ethanol as a dispersion medium to add 100 parts by mass of a conductive fine particle dispersion and 1.0 part by mass of a siloxane polymer as a binder Furthermore, using a binder dispersion liquid in which 100 parts by mass as a whole is added by adding ethanol as a dispersion medium, the conductive fine particle dispersion liquid is applied by an inkjet coating method so that the film thickness of the fine particle layer becomes 90 nm. A film of conductive fine particles is formed, and the film thickness after baking the binder dispersion on the conductive fine particle coating film by the inkjet coating method is 90 nm. Except that by Uni impregnated to produce a multi-junction thin-film silicon solar cell in the same manner as in Example 1, it was evaluated in the same manner as in Example 1. At this time, the ratio of the fine particles to the binder in the transparent conductive film was 10/10 in the fine particle / binder ratio. The results are shown in Table 4 below.

<実施例47>
表3に示すように、導電性微粒子として原子比でP/(P+Sn)=0.05、粒子径0.02μmのPTO(PドープSnO2)粉末を5.0質量部、カップリング剤として上記式(2)に示されるチタン系カップリング剤を0.05質量部添加し、更に分散媒としてエチレングリコールを加えることで全体を100質量部とした導電性微粒子分散液を用い、バインダとしてアクリル樹脂を5.0質量部用意し、更に分散媒としてエチレングリコールを加えることで全体を100質量部としたバインダ分散液を用い、導電性微粒子分散液をグラビア印刷法により微粒子層の膜厚が120nmとなるように塗工して導電性微粒子の塗膜を形成し、導電性微粒子の塗膜上に、バインダ分散液をグラビア印刷法により焼成後の膜厚が120nmとなるように含浸させた以外は実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が50/50であった。その結果を次の表4に示す。
<Example 47>
As shown in Table 3, 5.0 parts by mass of PTO (P-doped SnO 2 ) powder having an atomic ratio of P / (P + Sn) = 0.05 and a particle diameter of 0.02 μm as a conductive fine particle, and the above as a coupling agent 0.05 parts by mass of a titanium coupling agent represented by the formula (2) is added, and a conductive fine particle dispersion whose total is 100 parts by mass by adding ethylene glycol as a dispersion medium, and an acrylic resin as a binder. 5.0 parts by mass, and further using ethylene binder as a dispersion medium to form a binder dispersion liquid with a total mass of 100 parts by mass, the conductive fine particle dispersion has a fine particle layer thickness of 120 nm by gravure printing. The conductive fine particles are coated to form a coating film of conductive fine particles, and the film thickness after baking the binder dispersion on the conductive fine particle coating film by gravure printing method is 120 nm. Except impregnated on so that is fabricated multi-junction thin-film silicon solar cell in the same manner as in Example 1, was evaluated in the same manner as in Example 1. At this time, the ratio of the fine particles to the binder in the transparent conductive film was 50/50 in the fine particle / binder ratio. The results are shown in Table 4 below.

<実施例48>
表3に示すように、導電性微粒子として原子比でSb/(Sb+Sn)=0.1、粒子径0.02μmのATO粉末を5.0質量部、カップリング剤として上記式(4)に示されるチタン系カップリング剤を0.05質量部添加し、更に分散媒としてエチレングリコールを加えることで全体を100質量部とした導電性微粒子分散液を用い、バインダとしてエチルセルロース樹脂を5.0質量部用意し、更に分散媒として酢酸ブチルカルビトールを加えることで全体を100質量部としたバインダ分散液を用い、導電性微粒子分散液をスクリーン印刷法により微粒子層の膜厚が160nmとなるように塗工して導電性微粒子の塗膜を形成し、導電性微粒子の塗膜上に、バインダ分散液をスクリーン印刷法により焼成後の膜厚が170nmとなるように含浸させた以外は実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が50/50であった。その結果を次の表4に示す。
<Example 48>
As shown in Table 3, 5.0 parts by mass of an ATO powder having an atomic ratio of Sb / (Sb + Sn) = 0.1 and a particle diameter of 0.02 μm as conductive fine particles, and a coupling agent are shown in the above formula (4). 0.05 parts by mass of a titanium coupling agent to be added, and further using ethylene fine particle as a dispersion medium to add 100 parts by mass of a conductive fine particle dispersion, and 5.0 parts by mass of ethyl cellulose resin as a binder Prepare a binder dispersion with 100 parts by mass as a whole by adding butyl carbitol acetate as a dispersion medium, and apply the conductive fine particle dispersion to a film thickness of 160 nm by screen printing. To form a coating film of conductive fine particles, and the film thickness after baking the binder dispersion on the conductive fine particle coating film by a screen printing method is 170 nm. Except impregnated in this way to produce a multi-junction thin-film silicon solar cell in the same manner as in Example 1, it was evaluated in the same manner as in Example 1. At this time, the ratio of the fine particles to the binder in the transparent conductive film was 50/50 in the fine particle / binder ratio. The results are shown in Table 4 below.

<実施例49>
表3に示すように、導電性微粒子として原子比でP/(P+Sn)=0.1、粒子径0.02μmのPTO(PドープSnO2)粉末を5.0質量部添加し、更に分散媒としてエチレングリコールを加えることで全体を100質量部とした導電性微粒子分散液を用い、バインダとしてアルキッド樹脂を5.0質量部用意し、更に分散媒としてエチレングリコールを加えることで全体を100質量部としたバインダ分散液を用い、導電性微粒子分散液をオフセット印刷法により微粒子層の膜厚が140nmとなるように塗工して導電性微粒子の塗膜を形成し、導電性微粒子の塗膜上に、バインダ分散液をオフセット印刷法により焼成後の膜厚が150nmとなるように含浸させた以外は実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が50/50であった。その結果を次の表4に示す。
<Example 49>
As shown in Table 3, 5.0 parts by mass of PTO (P-doped SnO 2 ) powder having an atomic ratio of P / (P + Sn) = 0.1 and a particle diameter of 0.02 μm was added as conductive fine particles, and a dispersion medium was further added. As a binder, 5.0 parts by mass of an alkyd resin is prepared as a binder, and 100 parts by mass of ethylene glycol is added as a dispersion medium. The conductive fine particle dispersion was coated by the offset printing method so that the film thickness of the fine particle layer was 140 nm to form a conductive fine particle coating film. In addition, a multi-junction thin film silicon solar cell was fabricated in the same manner as in Example 1 except that the binder dispersion was impregnated by an offset printing method so that the film thickness after firing was 150 nm. And it was evaluated in the same manner as in Example 1. At this time, the ratio of the fine particles to the binder in the transparent conductive film was 50/50 in the fine particle / binder ratio. The results are shown in Table 4 below.

<実施例50>
表3に示すように、導電性微粒子として原子比でSb/(Sb+Sn)=0.1、粒子径0.02μmのATO粉末を1.0質量部、カップリング剤として上記式(3)に示されるチタン系カップリング剤を0.01質量部添加し、更に分散媒としてエタノールを加えることで全体を100質量部とした導電性微粒子分散液を用い、バインダとしてシロキサンポリマを0.8質量部用意し、更に分散媒としてエタノールを加えることで全体を100質量部としたバインダ分散液を用い、導電性微粒子分散液をダイコーティング法により微粒子層の膜厚が70nmとなるように塗工して導電性微粒子の塗膜を形成し、導電性微粒子の塗膜上に、バインダ分散液をダイコーティング法により焼成後の膜厚が70nmとなるように含浸させた以外は実施例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。なお、このときの透明導電膜における微粒子とバインダの割合は、微粒子/バインダ比が10/8であった。その結果を次の表4に示す。
<Example 50>
As shown in Table 3, 1.0 parts by mass of ATO powder having an atomic ratio of Sb / (Sb + Sn) = 0.1 and a particle diameter of 0.02 μm as conductive fine particles is shown in the above formula (3) as a coupling agent. 0.01 parts by mass of a titanium coupling agent to be added, and further using ethanol as a dispersion medium to add 100 parts by mass of a conductive fine particle dispersion, 0.8 parts by mass of a siloxane polymer as a binder are prepared. Furthermore, using a binder dispersion with 100 parts by mass as a whole by adding ethanol as a dispersion medium, the conductive fine particle dispersion is applied by a die coating method so that the film thickness of the fine particle layer becomes 70 nm. Except for forming a coating film of conductive fine particles and impregnating the conductive fine particle coating film with a binder dispersion by a die coating method so that the film thickness after firing is 70 nm. To prepare a multi-junction thin-film silicon solar cell in the same manner as in Example 1, was evaluated in the same manner as in Example 1. At this time, the ratio of the fine particles to the binder in the transparent conductive film was 10/8 in the fine particle / binder ratio. The results are shown in Table 4 below.

<比較例1>
アモルファスシリコン層13の上に、実施例1の透明導電膜用組成物を塗工する代わりに、マグネトロンスパッタリング法を用い、基板温度150℃の条件で、1×1021cm-3程度のガリウムが添加されたZnOを厚さ80nmとなるように成膜した以外は、実施例1と同様に多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。その結果を次の表5に示す。
<Comparative Example 1>
Instead of applying the composition for transparent conductive film of Example 1 on the amorphous silicon layer 13, a gallium of about 1 × 10 21 cm −3 is formed under the condition of a substrate temperature of 150 ° C. using a magnetron sputtering method. A multi-junction thin-film silicon solar cell was prepared in the same manner as in Example 1 except that the added ZnO was formed to have a thickness of 80 nm, and evaluated in the same manner as in Example 1. The results are shown in Table 5 below.

<比較例2>
アモルファスシリコン層13の上に、実施例1の透明導電膜用組成物を塗工する代わりに、比較例1と同様に、マグネトロンスパッタリング法を用い、基板温度150℃の条件で、1×1021cm-3程度のガリウムが添加されたZnOを厚さ250nmとなるように成膜した後に、この成膜後の基板を液温が15℃に保たれた0.5質量%HCl水溶液に15秒浸漬してエッチングした以外は、実施例1と同様に多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。その結果を次の表5に示す。
<Comparative example 2>
Instead of coating the composition for transparent conductive film of Example 1 on the amorphous silicon layer 13, the magnetron sputtering method is used in the same manner as in Comparative Example 1, and the substrate temperature is 150 ° C. and 1 × 10 21. After depositing ZnO to which gallium of about cm −3 was added to a thickness of 250 nm, the substrate after the deposition was placed in a 0.5 mass% HCl aqueous solution maintained at a liquid temperature of 15 ° C. for 15 seconds. A multi-junction thin film silicon solar cell was produced in the same manner as in Example 1 except that it was immersed and etched, and was evaluated in the same manner as in Example 1. The results are shown in Table 5 below.

<比較例3>
比較例1のガリウムが添加されたZnOの代わりに、マグネトロンスパッタリング法を用い、基板温度150℃の条件で、1×1021cm-3程度のアルミニウムが添加されたZnOを厚さ50nmとなるように成膜した以外は、比較例1と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。その結果を次の表5に示す。
<Comparative Example 3>
Instead of ZnO to which gallium is added in Comparative Example 1, a magnetron sputtering method is used so that ZnO to which aluminum of about 1 × 10 21 cm −3 is added has a thickness of 50 nm under a substrate temperature of 150 ° C. A multi-junction thin film silicon solar cell was produced in the same manner as in Comparative Example 1 except that the film was formed in the same manner as in Example 1, and evaluated in the same manner as in Example 1. The results are shown in Table 5 below.

<比較例4>
比較例2のガリウムが添加されたZnOの代わりに、マグネトロンスパッタリング法を用い、基板温度150℃の条件で、1×1021cm-3程度のアルミニウムが添加されたZnOを厚さ250nmとなるように成膜した以外は、比較例2と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。その結果を次の表5に示す。
<Comparative example 4>
In place of ZnO to which gallium is added in Comparative Example 2, magnetron sputtering is used, and ZnO to which aluminum of about 1 × 10 21 cm −3 is added has a thickness of 250 nm under a substrate temperature of 150 ° C. A multi-junction thin-film silicon solar cell was produced in the same manner as in Comparative Example 2 except that the film was formed in the same manner as in Example 1. The results are shown in Table 5 below.

<比較例5>
1×1021cm-3程度のアルミニウムが添加されたZnOを厚さ30nmとなるように成膜した以外は、比較例3と同様にして多接合型薄膜シリコン太陽電池を作製し、実施例1と同様に評価した。その結果を次の表5に示す。
<Comparative Example 5>
A multi-junction thin film silicon solar cell was fabricated in the same manner as in Comparative Example 3 except that ZnO to which aluminum of about 1 × 10 21 cm −3 was added was formed to a thickness of 30 nm. And evaluated in the same manner. The results are shown in Table 5 below.

なお、上記実施例では、シリコンを発電層としたシリコン型太陽電池を使用したが、本発明については多接合型太陽電池であれはシリコン型太陽電池に限定されず、CIGS・CIGSS・CIS系太陽電池、CdTe、Cd系太陽電池、有機薄膜系太陽電池といった種類にも適用できる。   In the above embodiment, a silicon solar cell using silicon as a power generation layer was used. However, the present invention is not limited to a silicon solar cell if it is a multi-junction solar cell, and CIGS / CIGSS / CIS solar The present invention can also be applied to types such as batteries, CdTe, Cd solar cells, and organic thin film solar cells.

Figure 2010080933
Figure 2010080933

Figure 2010080933
Figure 2010080933

Figure 2010080933
Figure 2010080933

Figure 2010080933
Figure 2010080933

Figure 2010080933
表4及び表5から明らかなように、実施例1〜50では、屈折率が低く、また、短絡電流密度及び変換効率の結果が高く、スパッタ成膜によってZnO膜を形成した比較例1〜5の透明導電膜と比べて、優れたセル性能が得られていることが確認された。
Figure 2010080933
As is clear from Tables 4 and 5, in Examples 1 to 50, the refractive index is low, the short circuit current density and the conversion efficiency are high, and Comparative Examples 1 to 5 in which a ZnO film is formed by sputtering film formation. It was confirmed that superior cell performance was obtained as compared with the transparent conductive film.

10 多接合型太陽電池
11 透明基板
12 表面側電極層
13 アモルファスシリコン層
14 透明導電膜
15 微結晶シリコン層
16 裏面側電極層
DESCRIPTION OF SYMBOLS 10 Multijunction type solar cell 11 Transparent substrate 12 Front surface side electrode layer 13 Amorphous silicon layer 14 Transparent conductive film 15 Microcrystalline silicon layer 16 Back surface side electrode layer

Claims (11)

多接合型太陽電池の光電変換層間に設けられる太陽電池用透明導電膜において、
前記導電膜が、導電性微粒子を含む分散液を湿式塗工法を用いて塗布し形成された微粒子の塗膜上に、バインダを含む分散液を湿式塗工法を用いて含浸し焼成することにより、微粒子層がバインダ層で含浸された状態で形成され、
前記導電膜を構成する母材中には導電性成分が5〜95質量%の範囲内で存在し、前記導電膜の厚さが5〜200nmの範囲内である
ことを特徴とする太陽電池用透明導電膜。
In the transparent conductive film for solar cell provided between the photoelectric conversion layers of the multi-junction solar cell,
The conductive film is impregnated with a dispersion containing a binder using a wet coating method and baked on a coating of fine particles formed by applying a dispersion containing conductive fine particles using a wet coating method. Formed in a state where the fine particle layer is impregnated with the binder layer,
In the base material constituting the conductive film, a conductive component is present in the range of 5 to 95% by mass, and the thickness of the conductive film is in the range of 5 to 200 nm. Transparent conductive film.
透明導電膜用組成物が100〜400℃の範囲内での加熱又は紫外線照射によって硬化するバインダを含む請求項1記載の太陽電池用透明導電膜。   The transparent conductive film for solar cells of Claim 1 in which the composition for transparent conductive films contains the binder hardened | cured by the heating in the range of 100-400 degreeC, or ultraviolet irradiation. バインダが、アクリル樹脂、アクリレート樹脂、ポリカーボネート樹脂、ポリエステル樹脂、アルキッド樹脂、ポリウレタン樹脂、アクリルウレタン樹脂、ポリスチレン樹脂、ポリアセタール樹脂、ポリアミド樹脂、ポリビニルアルコール樹脂、ポリ酢酸ビニル樹脂、セルロース樹脂、エチルセルロース樹脂、エポキシ樹脂、塩化ビニル樹脂、シロキサンポリマ又は金属アルコキシドの加水分解体(ゾルゲルを含む)のいずれか1種以上を含む請求項2記載の太陽電池用透明導電膜。   Binder is acrylic resin, acrylate resin, polycarbonate resin, polyester resin, alkyd resin, polyurethane resin, acrylic urethane resin, polystyrene resin, polyacetal resin, polyamide resin, polyvinyl alcohol resin, polyvinyl acetate resin, cellulose resin, ethyl cellulose resin, epoxy The transparent conductive film for solar cells according to claim 2, comprising at least one of a resin, a vinyl chloride resin, a siloxane polymer, or a hydrolyzate of metal alkoxide (including sol-gel). 透明導電膜用組成物がシランカップリング剤、アルミカップリング剤及びチタンカップリング剤からなる群より選ばれた1種又は2種以上を含む請求項1記載の太陽電池用透明導電膜。   The transparent conductive film for solar cells of Claim 1 in which the composition for transparent conductive films contains the 1 type (s) or 2 or more types chosen from the group which consists of a silane coupling agent, an aluminum coupling agent, and a titanium coupling agent. 導電性微粒子が、Zn,In,Sn,Sb,Si,Al,Ga,Co,Mg,Ca,Sr,Ba,Ce,Ti,Y及びZrからなる群より選ばれた1種又は2種以上の酸化物、水酸化物或いは複合化合物、又はこれら2種以上の混合物から構成された第1微粒子である請求項1記載の太陽電池用透明導電膜。   The conductive fine particles are one or more selected from the group consisting of Zn, In, Sn, Sb, Si, Al, Ga, Co, Mg, Ca, Sr, Ba, Ce, Ti, Y and Zr. The transparent conductive film for a solar cell according to claim 1, wherein the transparent conductive film is a first fine particle composed of an oxide, a hydroxide, a composite compound, or a mixture of two or more thereof. 導電性微粒子が、C,Si,Cu,Ni,Ag,Pd,Pt,Au,Ru,Rh及びIrからなる群より選ばれた1種又は2種以上を含有する混合合金からなるナノ粒子から構成された第2微粒子である請求項1記載の太陽電池用透明導電膜。   The conductive fine particles are composed of nanoparticles made of a mixed alloy containing one or more selected from the group consisting of C, Si, Cu, Ni, Ag, Pd, Pt, Au, Ru, Rh and Ir. The transparent conductive film for solar cells according to claim 1, wherein the second conductive particles are formed. 導電性微粒子が、第1微粒子と第2微粒子の双方を混合させたものである請求項1記載の太陽電池用透明導電膜。   The transparent conductive film for solar cells according to claim 1, wherein the conductive fine particles are a mixture of both the first fine particles and the second fine particles. 湿式塗工法が、スプレーコーティング法、ディスペンサコーティング法、スピンコーティング法、ナイフコーティング法、スリットコーティング法、インクジェットコーティング法、グラビア印刷法、スクリーン印刷法、オフセット印刷法又はダイコーティング法のいずれかの方法である請求項1記載の太陽電池用透明導電膜。   The wet coating method is any of spray coating method, dispenser coating method, spin coating method, knife coating method, slit coating method, inkjet coating method, gravure printing method, screen printing method, offset printing method or die coating method. The transparent conductive film for solar cells according to claim 1. 屈折率が1.1〜2.0である請求項1ないし8いずれか1項に記載の太陽電池用透明導電膜。   The transparent conductive film for solar cells according to any one of claims 1 to 8, which has a refractive index of 1.1 to 2.0. 請求項1ないし9いずれか1項に記載の太陽電池用透明導電膜が光電変換層間に設けられたことを特徴とする多接合型太陽電池。   A multi-junction solar cell, wherein the transparent conductive film for solar cell according to claim 1 is provided between photoelectric conversion layers. 請求項1ないし9いずれか1項に記載の太陽電池用透明導電膜を形成するための透明導電膜用組成物。   The composition for transparent conductive films for forming the transparent conductive film for solar cells of any one of Claims 1 thru | or 9.
JP2009173403A 2008-08-27 2009-07-24 Multi-junction solar cell Expired - Fee Related JP5544774B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2009173403A JP5544774B2 (en) 2008-08-27 2009-07-24 Multi-junction solar cell
US12/737,679 US20110139228A1 (en) 2008-08-27 2009-08-27 Transparent electroconductive film for solar cell, composition for transparent electroconductive film and multi-junction solar cell
DE112009002056T DE112009002056T5 (en) 2008-08-27 2009-08-27 Transparent electrically conductive film for solar cells, composition for transparent electrically conductive films and multiple solar cells
CN201510688545.0A CN105513670A (en) 2008-08-27 2009-08-27 Transparent electroconductive film for solar cell, composition for transparent electroconductive film and multi-junction solar cell
CN2009801422135A CN102197492A (en) 2008-08-27 2009-08-27 Transparent conductive film for solar cell, composition for said transparent conductive film, and multi-junction solar cell
PCT/JP2009/004168 WO2010023920A1 (en) 2008-08-27 2009-08-27 Transparent conductive film for solar cell, composition for said transparent conductive film, and multi-junction solar cell
US14/100,511 US20140090699A1 (en) 2008-08-27 2013-12-09 Transparent electroconductive film for solar cell, composition for transparent electroconductive film and multi-junction solar cell
US15/050,020 US20160172531A1 (en) 2008-08-27 2016-02-22 Transparent electroconductive film for solar cell, composition for transparent electroconductive film and multi-junction solar cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008218342 2008-08-27
JP2008218342 2008-08-27
JP2009173403A JP5544774B2 (en) 2008-08-27 2009-07-24 Multi-junction solar cell

Publications (2)

Publication Number Publication Date
JP2010080933A true JP2010080933A (en) 2010-04-08
JP5544774B2 JP5544774B2 (en) 2014-07-09

Family

ID=42210966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009173403A Expired - Fee Related JP5544774B2 (en) 2008-08-27 2009-07-24 Multi-junction solar cell

Country Status (1)

Country Link
JP (1) JP5544774B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012102308A (en) * 2010-11-05 2012-05-31 Hyundai Motor Co Ltd Semiconductor-oxide-ink composition for ink-jet printing, method for manufacturing the same, and method for manufacturing photoelectric conversion element utilizing the same
JP2012190856A (en) * 2011-03-08 2012-10-04 Mitsubishi Materials Corp Transparent conductive film composition for solar cell and transparent conductive film
FR2985375A1 (en) * 2011-12-26 2013-07-05 Solsia PHOTOVOLTAIC PANEL WITH DIODES MOUNTED IN PARALLEL WITH DIFFUSING CENTRAL STRUCTURE AND RE-REFLECTIVE REAR STRUCTURE
JP2014033036A (en) * 2012-08-02 2014-02-20 Shin Etsu Chem Co Ltd Paste composition for solar cell electrode
KR20190028509A (en) * 2016-08-01 2019-03-18 가부시키가이샤 니혼 마이크로닉스 Secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107649831A (en) * 2017-08-29 2018-02-02 西安理工大学 A kind of preparation method of al cu bimetal materials conductive head

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6327067A (en) * 1986-06-30 1988-02-04 ザ スタンダ−ド オイル カンパニ− Multiple-cell two-terminal photocell device employing adhesive cell
JPH07106617A (en) * 1993-09-30 1995-04-21 Canon Inc Transparent electrode, formation thereof and solar cell employing same
JPH08102227A (en) * 1994-09-30 1996-04-16 Mitsubishi Materials Corp Transparent conductive film and forming method thereof
JPH10188681A (en) * 1996-09-26 1998-07-21 Catalysts & Chem Ind Co Ltd Transparent-conductive-film forming application liquid, base material with transparent conductive film, its manufacture, and display device
JPH1145619A (en) * 1997-07-23 1999-02-16 Samsung Display Devices Co Ltd Conductive composition, transparent conductive film formed by using this, and its manufacture
JP2003179241A (en) * 2001-12-10 2003-06-27 Kyocera Corp Thin film solar cell
WO2003085052A1 (en) * 2002-04-10 2003-10-16 Fujikura Ltd. Conductive composition, conductive film, and process for the formation of the film
JP2004111106A (en) * 2002-09-13 2004-04-08 Dowa Mining Co Ltd Conductive powder and manufacturing method of the same, and conductive paint and conductive coating film using the same
JP2004182812A (en) * 2002-12-02 2004-07-02 Ishihara Sangyo Kaisha Ltd Electrically conductive coating and method for forming electrically conductive coating film using the same
JP2005243500A (en) * 2004-02-27 2005-09-08 Kyocera Chemical Corp Conductive paste, solar cell and manufacturing method of solar cell
JP2006193594A (en) * 2005-01-12 2006-07-27 Bando Chem Ind Ltd Conductive ink and its use
JP2006210301A (en) * 2004-12-27 2006-08-10 Mitsui Mining & Smelting Co Ltd Conductive ink
JP2006351721A (en) * 2005-06-14 2006-12-28 Matsushita Electric Works Ltd Stacked organic solar cell and its manufacturing method
WO2008001518A1 (en) * 2006-06-30 2008-01-03 Mitsubishi Materials Corporation Composition for forming electrode in solar cell, method of forming the electrode, and solar cell employing electrode obtained by the formation method
WO2008047641A1 (en) * 2006-10-11 2008-04-24 Mitsubishi Materials Corporation Composition for electrode formation and method for forming electrode by using the composition
WO2009035112A1 (en) * 2007-09-12 2009-03-19 Mitsubishi Materials Corporation Composite membrane for super straight solar cell, process for producing the composite membrane for super straight solar cell, composite membrane for substraight solar cell, and process for producing the composite membrane for substraight solar cell

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6327067A (en) * 1986-06-30 1988-02-04 ザ スタンダ−ド オイル カンパニ− Multiple-cell two-terminal photocell device employing adhesive cell
JPH07106617A (en) * 1993-09-30 1995-04-21 Canon Inc Transparent electrode, formation thereof and solar cell employing same
JPH08102227A (en) * 1994-09-30 1996-04-16 Mitsubishi Materials Corp Transparent conductive film and forming method thereof
JPH10188681A (en) * 1996-09-26 1998-07-21 Catalysts & Chem Ind Co Ltd Transparent-conductive-film forming application liquid, base material with transparent conductive film, its manufacture, and display device
JPH1145619A (en) * 1997-07-23 1999-02-16 Samsung Display Devices Co Ltd Conductive composition, transparent conductive film formed by using this, and its manufacture
JP2003179241A (en) * 2001-12-10 2003-06-27 Kyocera Corp Thin film solar cell
WO2003085052A1 (en) * 2002-04-10 2003-10-16 Fujikura Ltd. Conductive composition, conductive film, and process for the formation of the film
JP2004111106A (en) * 2002-09-13 2004-04-08 Dowa Mining Co Ltd Conductive powder and manufacturing method of the same, and conductive paint and conductive coating film using the same
JP2004182812A (en) * 2002-12-02 2004-07-02 Ishihara Sangyo Kaisha Ltd Electrically conductive coating and method for forming electrically conductive coating film using the same
JP2005243500A (en) * 2004-02-27 2005-09-08 Kyocera Chemical Corp Conductive paste, solar cell and manufacturing method of solar cell
JP2006210301A (en) * 2004-12-27 2006-08-10 Mitsui Mining & Smelting Co Ltd Conductive ink
JP2006193594A (en) * 2005-01-12 2006-07-27 Bando Chem Ind Ltd Conductive ink and its use
JP2006351721A (en) * 2005-06-14 2006-12-28 Matsushita Electric Works Ltd Stacked organic solar cell and its manufacturing method
WO2008001518A1 (en) * 2006-06-30 2008-01-03 Mitsubishi Materials Corporation Composition for forming electrode in solar cell, method of forming the electrode, and solar cell employing electrode obtained by the formation method
WO2008047641A1 (en) * 2006-10-11 2008-04-24 Mitsubishi Materials Corporation Composition for electrode formation and method for forming electrode by using the composition
WO2009035112A1 (en) * 2007-09-12 2009-03-19 Mitsubishi Materials Corporation Composite membrane for super straight solar cell, process for producing the composite membrane for super straight solar cell, composite membrane for substraight solar cell, and process for producing the composite membrane for substraight solar cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012102308A (en) * 2010-11-05 2012-05-31 Hyundai Motor Co Ltd Semiconductor-oxide-ink composition for ink-jet printing, method for manufacturing the same, and method for manufacturing photoelectric conversion element utilizing the same
JP2012190856A (en) * 2011-03-08 2012-10-04 Mitsubishi Materials Corp Transparent conductive film composition for solar cell and transparent conductive film
FR2985375A1 (en) * 2011-12-26 2013-07-05 Solsia PHOTOVOLTAIC PANEL WITH DIODES MOUNTED IN PARALLEL WITH DIFFUSING CENTRAL STRUCTURE AND RE-REFLECTIVE REAR STRUCTURE
WO2013098204A3 (en) * 2011-12-26 2013-11-07 Solsia Photovoltaic panel having diodes mounted in parallel and comprising a central diffuse structure and a rear reflective structure
JP2014033036A (en) * 2012-08-02 2014-02-20 Shin Etsu Chem Co Ltd Paste composition for solar cell electrode
KR20190028509A (en) * 2016-08-01 2019-03-18 가부시키가이샤 니혼 마이크로닉스 Secondary battery
KR102166157B1 (en) 2016-08-01 2020-10-15 가부시키가이샤 니혼 마이크로닉스 Secondary battery

Also Published As

Publication number Publication date
JP5544774B2 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
US20160172531A1 (en) Transparent electroconductive film for solar cell, composition for transparent electroconductive film and multi-junction solar cell
JP5979211B2 (en) Electrode forming composition and electrode forming method using the composition
JP5884486B2 (en) Composition for antireflection film for solar cell, antireflection film for solar cell, method for producing antireflection film for solar cell, and solar cell
WO2010113708A1 (en) Method of producing solar cell module
JP5544774B2 (en) Multi-junction solar cell
WO2010023920A1 (en) Transparent conductive film for solar cell, composition for said transparent conductive film, and multi-junction solar cell
JP5810548B2 (en) Transparent substrate with composite film for solar cell and method for producing the same
JP2010087479A (en) Composite film for substraight type solar cell and method of manufacturing the same
JP2012216814A (en) Transparent conductive film composition for thin-film solar cell and transparent conductive film
JP2011222953A (en) Composition for transparent conductive film formation, method for forming composite film for solar cell, and composite film formed by the method
JP5893251B2 (en) Method for producing composite film for solar cell
JP5515499B2 (en) Composite film for substrate type solar cell and manufacturing method thereof
JP5493469B2 (en) Composite film for super straight type thin film solar cell and manufacturing method thereof
JP5444923B2 (en) Composite film for super straight type solar cell and manufacturing method thereof
JP2012190856A (en) Transparent conductive film composition for solar cell and transparent conductive film
JP2010080932A (en) Transparent conductive film for solar cell and composition for the transparent conductive film, and multi-junction solar cell
JP2012151387A (en) Composition for transparent conductive film of solar cell and transparent conductive film
JP5413214B2 (en) Conductive oxide fine particle dispersion for forming transparent conductive film, transparent conductive film formed using the dispersion, composite film, and method for producing the same
JP5407989B2 (en) Method for forming composite film for solar cell
JP2012009840A (en) Method of forming composite film for solar cell and composite film formed by the method
JP2011151291A (en) Transparent conductive film, composite film, and method of manufacturing the same
JP2011192804A (en) Method of manufacturing solar cell
JP2011192802A (en) Method of manufacturing solar cell
JP2012094828A (en) Transparent conductive film composition for solar battery and transparent conductive film
JP2012151388A (en) Composition for transparent conductive film of solar cell and transparent conductive film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140123

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140428

R150 Certificate of patent or registration of utility model

Ref document number: 5544774

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees