JP2006351721A - Stacked organic solar cell and its manufacturing method - Google Patents

Stacked organic solar cell and its manufacturing method Download PDF

Info

Publication number
JP2006351721A
JP2006351721A JP2005174135A JP2005174135A JP2006351721A JP 2006351721 A JP2006351721 A JP 2006351721A JP 2005174135 A JP2005174135 A JP 2005174135A JP 2005174135 A JP2005174135 A JP 2005174135A JP 2006351721 A JP2006351721 A JP 2006351721A
Authority
JP
Japan
Prior art keywords
organic solar
solar cell
layer
stacked
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005174135A
Other languages
Japanese (ja)
Other versions
JP4991126B2 (en
Inventor
Atsushi Sakai
淳 阪井
Kenji Kono
謙司 河野
Taisuke Nishimori
泰輔 西森
Nobuhiro Ito
宜弘 伊藤
Masahiro Nakamura
将啓 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2005174135A priority Critical patent/JP4991126B2/en
Publication of JP2006351721A publication Critical patent/JP2006351721A/en
Application granted granted Critical
Publication of JP4991126B2 publication Critical patent/JP4991126B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stacked organic solar cell having a high conversion efficiency. <P>SOLUTION: In the stacked organic solar cell, a plurality of organic solar cells are stacked having a photoelectric transfer layer 20 formed by blending a donor material with an acceptor material. A recoupling layer 23 which recouples electrons generated from first and second organic solar cells 21, 22 to holes is inserted into between the first organic solar cell 21 disposed on a side on which light is incident and the second organic solar cell 22 which is disposed and stacked on a side opposing to the incident side of the light of the first organic solar cell 21. The recoupling layer 23 is formed with conductive layers 24, 25 of two layers of a different work function, and also, of the conductive layers 24, 25 of two layers of the recoupling layer 23, the work function of the conductive layer 25 on a side of the second organic solar cell 22 is greater than the work function of the conductive layer 24 on a side of the firs organic solar cell 21. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光を受けて発電する有機太陽電池の層を複数積層して形成される積層型有機太陽電池に関するものである。   The present invention relates to a stacked organic solar cell formed by laminating a plurality of layers of organic solar cells that generate light by receiving light.

従来から、Si、GaAs、CuInGaSeなどの薄膜からなる無機系の太陽電池が開発されているが、これらはいずれも高価な半導体製造装置を用いる必要があり、また製造に要するエネルギーが大きいため、一般の電気代と同等以下程度の発電コストを実現することが難しく、今後の見通しも厳しい。そこで近年、高価な半導体製造設備が不要な有機系の太陽電池の開発が盛んになってきた。   Conventionally, inorganic solar cells made of thin films such as Si, GaAs, and CuInGaSe have been developed. However, it is necessary to use an expensive semiconductor manufacturing apparatus, and the energy required for manufacturing is large. It is difficult to realize a power generation cost equivalent to or less than the electricity bill of the future, and the future prospects are severe. Therefore, in recent years, development of organic solar cells that do not require expensive semiconductor manufacturing facilities has become active.

有機太陽電池を大きく分類すると、ポーラスTiO上に色素を担持させ、これに電解質を満たした色素増感太陽電池、固体有機薄膜と金属薄膜とで生じるショットキ障壁を利用するショットキ障壁型、p型有機半導体薄膜とn型有機半導体薄膜を積層したバイレイヤpn接合型、p型有機半導体材料(アクセプタ)とn型有機半導体材料(ドナー)を溶媒に溶かして溶液状態でブレンドし、塗布して薄膜を形成するバルクヘテロジャンクション接合型がある。 Organic solar cells can be broadly classified as follows: Dye-sensitized solar cells in which a dye is supported on porous TiO 2 and filled with an electrolyte; Schottky barrier type using p-type barrier formed by solid organic thin film and metal thin film; p-type Bilayer pn-junction type laminated organic semiconductor thin film and n-type organic semiconductor thin film, p-type organic semiconductor material (acceptor) and n-type organic semiconductor material (donor) are dissolved in solvent, blended in solution, applied and thin film applied There is a bulk heterojunction junction type to be formed.

これらのうち、色素増感型は変換効率がすでに10%を超えているが、このものは液体電解質を用いているため信頼性が低いこと、高効率を得るためにRu、白金電極等の高価な材料が必要で低コストにならないこと、安価な材料に変更すると変換効率が大きく低下することなどの問題がある。一方、全固体のポリマー系有機半導体を用いるタイプは塗布法で安価に製造できる可能性があり、特に導電性高分子とフラーレン誘導体をブレンドしてなるバルクヘテロジャンクション型有機太陽電池は変換効率が3%を超え、低コストで高効率の可能性がある太陽電池として、開発が活発に行なわれている。   Of these, the dye-sensitized type already has a conversion efficiency of over 10%, but this one uses a liquid electrolyte and thus has low reliability. In order to obtain high efficiency, Ru, a platinum electrode, etc. are expensive. There is a problem that a new material is necessary and the cost is not reduced, and that conversion efficiency is greatly reduced when the material is changed to an inexpensive material. On the other hand, the type using an all-solid polymer organic semiconductor may be manufactured at low cost by a coating method. In particular, a bulk heterojunction type organic solar cell made by blending a conductive polymer and a fullerene derivative has a conversion efficiency of 3%. As a solar cell having a possibility of high efficiency at a low cost, the development is actively carried out.

図3はCuフタロシアニン(CuPc)でp型半導体層1を、PTCBIでn型半導体層2をそれぞれ蒸着によって形成した低分子系の有機太陽電池を示すものであり、3はガラスなど透明基板、4は透明電極、5はAgなどの電極である。このものでは、p型半導体層1とn型半導体層2のpn接合近傍に内蔵電界が生じ、光励起によりCuPcのp型半導体層1内で発生したエキシトンがpn接合近傍に移動すると内蔵電界により電荷分離が起こり、電子と正孔に分かれて互いに逆の電極4,5に輸送されることによって、発電されるものである。ここで問題となるのは、p型半導体層1内のエキシトンが移動できる距離が短く、また内蔵電界の層の厚みも薄いため、膜厚を薄くせざるを得ないことであり、これが光吸収の不足を起こし、高い変換効率を得られないでいる。   FIG. 3 shows a low-molecular organic solar cell in which a p-type semiconductor layer 1 is formed by Cu phthalocyanine (CuPc) and an n-type semiconductor layer 2 is formed by PTCBI by vapor deposition. 3 is a transparent substrate such as glass, 4 Is a transparent electrode, and 5 is an electrode such as Ag. In this structure, a built-in electric field is generated in the vicinity of the pn junction between the p-type semiconductor layer 1 and the n-type semiconductor layer 2, and when excitons generated in the p-type semiconductor layer 1 of CuPc are moved to the vicinity of the pn junction by photoexcitation, charges are generated by the built-in electric field. Separation occurs, and electricity is generated by being divided into electrons and holes and transported to the opposite electrodes 4 and 5. The problem here is that the distance that excitons in the p-type semiconductor layer 1 can move is short, and the thickness of the built-in electric field layer is also thin, so that the film thickness must be reduced. Insufficient conversion efficiency cannot be obtained.

また図4はバルクヘテロジャンクション型の有機太陽電池の一例を示すものであり、この例ではアクセプタとしてフラーレン誘導体6を、ドナーとして導電性高分子7をブレンドして光電変換層8の薄膜を塗布形成するようにしてある。3はガラスなど透明基板、4は透明電極、5はAlなどの電極であり、9は正孔輸送層である。このものでは、光電変換層8の膜内において、p型有機半導体材料であるナノサイズのフラーレン6がn型有機半導体材料である導電性高分子7に均一に分散しているため、光電変換層8内の全体にpn接合部が分散していることになる。このため、エキシトン移動距離が短くても、エキシトンの移動距離内に必ずpn接合部が存在するため、エキシトンの消滅を低減することができるものである。そして、pn接合部で電荷分離を起こした後は、エネルギー準位に従って電子はフラーレン6に落ち、フラーレン6間をホッピング移動してAlの電極5に到達すると共に、正孔は導電性高分子7中を輸送されて透明電極4に到達し、出力電流を取り出すことができるものである。これによって、最近では3%を超える変換効率が報告されている。   FIG. 4 shows an example of a bulk heterojunction type organic solar cell. In this example, a fullerene derivative 6 as an acceptor and a conductive polymer 7 as a donor are blended to form a thin film of the photoelectric conversion layer 8. It is like that. 3 is a transparent substrate such as glass, 4 is a transparent electrode, 5 is an electrode such as Al, and 9 is a hole transport layer. In this structure, in the film of the photoelectric conversion layer 8, the nano-sized fullerene 6 that is a p-type organic semiconductor material is uniformly dispersed in the conductive polymer 7 that is an n-type organic semiconductor material. In other words, the pn junctions are dispersed in the entire portion 8. For this reason, even if the exciton movement distance is short, the pn junction always exists within the exciton movement distance, so that the extinction of exciton can be reduced. After charge separation at the pn junction, electrons fall to the fullerene 6 according to the energy level, hop between the fullerenes 6 and reach the Al electrode 5, and the holes become conductive polymer 7. The inside is transported to reach the transparent electrode 4 and the output current can be taken out. As a result, a conversion efficiency exceeding 3% has been reported recently.

ここで、変換効率が制約されるのは、キャリアの輸送可能な距離であり、現状では約100nmである。従って光電変換層8の膜厚をこれ以上の厚みにすると、電極4,5にまで到達することができずに電子と正孔が再結合して消滅してしまう確率が増え、かえって変換効率が低下することになる。しかし、光電変換層8の膜厚が100nm以下では、光吸収が不足するために、これ以上の高い変換効率を望むことはできない。   Here, the conversion efficiency is limited by the distance that the carrier can be transported, which is currently about 100 nm. Therefore, if the film thickness of the photoelectric conversion layer 8 is greater than this, the probability that electrons and holes cannot be re-combined and disappeared without reaching the electrodes 4 and 5 is increased. Will be reduced. However, if the film thickness of the photoelectric conversion layer 8 is 100 nm or less, light absorption is insufficient, so that a higher conversion efficiency cannot be desired.

以上のように、有機太陽電池の共通する課題は、キャリア輸送能力が低いため、膜厚を厚くすることができず光吸収が不足するという問題であり、これを改善にするためには2つの手段がある。一つは、有機半導体材料の移動度や、キャリア寿命を高めることであるが、これには多大な開発期間が必要であることが予想される。もう一つは、現行の有機半導体材料を用いたまま光吸収を増加させる方法であり、有機太陽電池の光電変換層を複数積層して形成される積層型有機太陽電池である(たとえば特許文献1、非特許文献1等参照)。   As described above, the common problem of organic solar cells is that the carrier transport capability is low, so that the film thickness cannot be increased and light absorption is insufficient. There is a means. One is to increase the mobility and carrier life of the organic semiconductor material, and this is expected to require a long development period. The other is a method of increasing light absorption while using the current organic semiconductor material, and is a stacked organic solar cell formed by stacking a plurality of photoelectric conversion layers of an organic solar cell (for example, Patent Document 1). And non-patent document 1).

図5はこれまでに開発された低分子系の積層型有機太陽電池を示すものであり(非特許文献1参照)、CuPcからなるp型半導体層10とPTCBIからなるn型半導体層11を蒸着法で積層した第1の有機太陽電池12と、CuPcからなるp型半導体層13とPTCBIからなるn型半導体層14を蒸着法で積層した第2の有機太陽電池15とを、Ag電極からなる再結合層16を介して積層したものである。3はガラスなど透明基板、4は透明電極、5はAgなどの電極である。   FIG. 5 shows a low molecular weight stacked organic solar cell developed so far (see Non-Patent Document 1), in which a p-type semiconductor layer 10 made of CuPc and an n-type semiconductor layer 11 made of PTCBI are deposited. The first organic solar cell 12 stacked by the method, and the second organic solar cell 15 stacked by the vapor deposition method of the p-type semiconductor layer 13 made of CuPc and the n-type semiconductor layer 14 made of PTCBI are made of an Ag electrode. These are stacked via the recombination layer 16. 3 is a transparent substrate such as glass, 4 is a transparent electrode, and 5 is an electrode such as Ag.

このように有機太陽電池12,15を積層することによって、第1の有機太陽電池12を通過した光は第2の有機太陽電池15で吸収され、全体として光吸収を増加させることができ、変換効率を高めることができるものである。このような積層型有機太陽電池において、発電の出力を得るためには、第1の有機太陽電池12と第2の有機太陽電池15の間に電子と正孔を再結合させる再結合層16が必要になる。すなわち、第1の有機太陽電池12で発生した電子と第2の有機太陽電池15で発生した正孔が再結合層16を介して消滅し、第1の有機太陽電池12の正孔や第2の有機太陽電池15の電子が電極3,4にまで到達して、出力電流として外部に取り出すことができるものである。   By laminating the organic solar cells 12 and 15 in this way, the light that has passed through the first organic solar cell 12 is absorbed by the second organic solar cell 15 and can increase light absorption as a whole. Efficiency can be increased. In such a stacked organic solar cell, in order to obtain an output of power generation, a recombination layer 16 that recombines electrons and holes between the first organic solar cell 12 and the second organic solar cell 15 is provided. I need it. That is, the electrons generated in the first organic solar cell 12 and the holes generated in the second organic solar cell 15 disappear through the recombination layer 16, and the holes in the first organic solar cell 12 and the second The electrons of the organic solar cell 15 reach the electrodes 3 and 4 and can be taken out as an output current.

ここで、再結合層16に要求されるのは、正孔と電子を再結合させるための導電性と、第1の有機太陽電池12のn型半導体層11や第2の有機太陽電池15のp型半導体層13とのオーミックな接合を持つことと、第1の有機太陽電池12の未吸収光を第2の有機太陽電池15にできるだけ通すために、光透過率が高いこと、つまり膜厚を薄くすることである。このため、上記の非特許文献1では厚み5ÅのAgの極薄膜で再結合層16を形成するようにしている。
特公平8−31616号公報 Apply Physics Letter Vol80 No9 March 2002 page1667
Here, the recombination layer 16 is required to have conductivity for recombining holes and electrons, and the n-type semiconductor layer 11 of the first organic solar cell 12 and the second organic solar cell 15. To have an ohmic junction with the p-type semiconductor layer 13 and to pass unabsorbed light of the first organic solar cell 12 through the second organic solar cell 15 as much as possible. Is to make it thinner. For this reason, in the above-mentioned Non-Patent Document 1, the recombination layer 16 is formed of an ultra-thin Ag film having a thickness of 5 mm.
Japanese Patent Publication No. 8-31616 Apply Physics Letter Vol80 No9 March 2002 page1667

ここで、複数の有機太陽電池を積層したバルクヘテロジャンクション型の積層型有機太陽電池では、各有機太陽電池を挟む両側の電極の仕事関数差を適正化することによって、膜厚方向に電界が生じ、これが発生電流、発生電圧の向上に寄与し、変換効率を高めることができるのである。しかし、上記のように再結合層を1層の極薄膜で形成すると、仕事関数差による電界をかけることが難しく、また適性な仕事関数は各有機太陽電池において陽極側と陰極側の電極において異なっており、再結合層が1層では適切な仕事関数の材料を選択することが難しくなり、変換効率を高めることが困難になるという問題があった。   Here, in the bulk heterojunction type stacked organic solar cell in which a plurality of organic solar cells are stacked, by optimizing the work function difference between the electrodes on both sides sandwiching each organic solar cell, an electric field is generated in the film thickness direction, This contributes to the improvement of the generated current and the generated voltage, and the conversion efficiency can be increased. However, when the recombination layer is formed of a single ultrathin film as described above, it is difficult to apply an electric field due to a work function difference, and the appropriate work function differs between the anode and cathode electrodes in each organic solar cell. When the recombination layer is one layer, it is difficult to select a material having an appropriate work function, and it is difficult to increase the conversion efficiency.

本発明は上記の点に鑑みてなされたものであり、変換効率の高い積層型有機太陽電池を提供することを目的とするものであり、また低コストで製造することができる積層型有機太陽電池の製造方法を提供することを目的とするものである。   The present invention has been made in view of the above points, and aims to provide a stacked organic solar cell with high conversion efficiency, and can be manufactured at low cost. An object of the present invention is to provide a manufacturing method.

本発明の請求項1に係る積層型有機太陽電池は、ドナー材料とアクセプター材料をブレンドして形成される光電変換層を有する有機太陽電池を複数積層した積層型有機太陽電池において、光が入射する側に配置される第1の有機太陽電池とこの第1の有機太陽電池の光の入射側と反対側に配置して積層される第2の有機太陽電池との間に、第1及び第2の有機太陽電池から発生した電子と正孔が再結合する再結合層を挿入し、再結合層を仕事関数の異なる2層の導電層を備えて形成すると共に、再結合層の2層の導電層のうち、第2の有機太陽電池の側の導電層の仕事関数が、第1の有機太陽電池の側の導電層の仕事関数より大きいことを特徴とするものである。   The stacked organic solar cell according to claim 1 of the present invention is a stacked organic solar cell in which a plurality of organic solar cells having a photoelectric conversion layer formed by blending a donor material and an acceptor material are stacked. Between the first organic solar cell arranged on the side and the second organic solar cell laminated on the side opposite to the light incident side of the first organic solar cell. A recombination layer for recombination of electrons and holes generated from the organic solar cell is formed, and the recombination layer is formed with two conductive layers having different work functions. Among the layers, the work function of the conductive layer on the second organic solar cell side is larger than the work function of the conductive layer on the first organic solar cell side.

また請求項2の発明は、請求項1において、2層の導電層の膜厚の合計が2〜40nmであることを特徴とするものである。   According to a second aspect of the present invention, in the first aspect, the total thickness of the two conductive layers is 2 to 40 nm.

また請求項3の発明は、請求項1又は2において、2層の導電層の間に光透過性の電気絶縁層を挿入したことを特徴とするものである。   The invention of claim 3 is characterized in that, in claim 1 or 2, a light-transmitting electrical insulating layer is inserted between the two conductive layers.

また本発明の請求項4に係る積層型有機太陽電池の製造方法は、請求項1乃至3のいずれかに記載の積層型有機太陽電池を製造するにあたって、Al,Ca,Mg,Ti,Ag,Mo,Inから選ばれる粒径100nm以下の粒子状材料を溶剤に分散したペーストを塗布することによって第1の有機太陽電池の側の導電層を形成し、Pd,Au,ITO,PEDOTから選ばれる粒径100nm以下の粒子状材料を溶剤に分散したペーストを塗布することによって第2の有機太陽電池の側の導電層を形成することを特徴とするものである。   According to a fourth aspect of the present invention, there is provided a method for manufacturing a stacked organic solar cell according to any one of the first to third aspects, wherein Al, Ca, Mg, Ti, Ag, A conductive layer on the first organic solar cell side is formed by applying a paste in which a particulate material having a particle size of 100 nm or less selected from Mo and In is dispersed in a solvent, and is selected from Pd, Au, ITO, and PEDOT A conductive layer on the second organic solar cell side is formed by applying a paste in which a particulate material having a particle size of 100 nm or less is dispersed in a solvent.

本発明によれば、第1及び第2の有機太陽電池の間に挿入する再結合層を仕事関数の異なる2層の導電層で形成し、第2の有機太陽電池の側の導電層の仕事関数が、第1の有機太陽電池の側の導電層の仕事関数より大きくなるように設定しているので、各有機太陽電池において電極と導電層との間で仕事関数差を設けることができ、この仕事関数差による電界を駆動力として、各有機太陽電池で発電された電流を効率良く電極から取り出すことができるものであり、これによって変換効率を高めることができるものである。   According to the present invention, the recombination layer inserted between the first and second organic solar cells is formed of two conductive layers having different work functions, and the work of the conductive layer on the second organic solar cell side is performed. Since the function is set to be larger than the work function of the conductive layer on the first organic solar cell side, a work function difference can be provided between the electrode and the conductive layer in each organic solar cell, Using the electric field due to the work function difference as a driving force, the current generated by each organic solar cell can be efficiently taken out from the electrode, thereby improving the conversion efficiency.

以下、本発明を実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

図1は本発明の実施の形態の一例を示すものである。この実施の形態ではバルクヘテロジャンクション型を採用しており、第1の有機太陽電池21や第2の有機太陽電池22を構成する光電変換層20は、アクセプタ材料(電子受容性材料)としてフラーレン誘導体6を、ドナー材料(電子供与性材料)として導電性高分子7を用い、これらをブレンドして塗布することによって形成するようにしてある。そしてガラス等の透明基板28の表面に透明電極29及び正孔輸送層30を形成した後に、この上に第1の有機太陽電池21を構成する光電変換層20を積層し、また第1の有機太陽電池21の上に再結合層23を形成した後に、この上に第2の有機太陽電池22を構成する光電変換層20を積層し、さらにこの上にAl等の電極31を形成することによって、積層型有機太陽電池を作製することができる。   FIG. 1 shows an example of an embodiment of the present invention. In this embodiment, a bulk heterojunction type is adopted, and the photoelectric conversion layer 20 constituting the first organic solar cell 21 and the second organic solar cell 22 is composed of a fullerene derivative 6 as an acceptor material (electron-accepting material). The conductive polymer 7 is used as a donor material (electron-donating material), and these are blended and applied. And after forming the transparent electrode 29 and the positive hole transport layer 30 on the surface of the transparent substrates 28, such as glass, the photoelectric converting layer 20 which comprises the 1st organic solar cell 21 is laminated | stacked on this, and 1st organic After forming the recombination layer 23 on the solar cell 21, the photoelectric conversion layer 20 which comprises the 2nd organic solar cell 22 is laminated | stacked on this, and also electrode 31, such as Al, is formed on this. A laminated organic solar cell can be produced.

そしてこの積層型有機太陽電池にあって、第1及び第2の有機太陽電池21,22の各光電変換層20で光励起により発生したエキシトンは、アクセプタ材料(p型有機半導体材料)であるフラーレン誘導体6とドナー材料(n型有機半導体材料)である導電性高分子7の界面のpn接合部で電荷分離され、電子はアクセプタへ、正孔はドナーへ移動する。その後、正孔はドナーの導電性高分子7のネットワーク中を、電子はアクセプタのフラーレン誘導体6のネットワーク中をそれぞれ移動するが、このとき、両側の電極29,31の仕事関数の差によって生じた電界が第1及び第2の有機太陽電池21,22の各光電変換層20の全体にかかっているため、電子や正孔はこの電界を駆動力として電極29,31にまで高い確率で到達することができ、透明電極29を正極として、電極31を負極として、電流を取り出すことができるものである。   In this stacked organic solar cell, the exciton generated by photoexcitation in each photoelectric conversion layer 20 of the first and second organic solar cells 21 and 22 is a fullerene derivative that is an acceptor material (p-type organic semiconductor material). 6 and the pn junction at the interface between the conductive polymer 7 which is a donor material (n-type organic semiconductor material), and the electrons are transferred to the acceptor and the holes are transferred to the donor. Thereafter, holes move in the network of the donor conductive polymer 7 and electrons move in the network of the acceptor fullerene derivative 6, and at this time, the holes are generated by the difference in work functions of the electrodes 29 and 31 on both sides. Since the electric field is applied to the entire photoelectric conversion layers 20 of the first and second organic solar cells 21 and 22, electrons and holes reach the electrodes 29 and 31 with a high probability using the electric field as a driving force. The transparent electrode 29 can be used as a positive electrode and the electrode 31 can be used as a negative electrode to extract current.

このバルクヘテロジャンクション型の積層型有機太陽電池においても、第1の有機太陽電池21や第2の有機太陽電池22の間に再結合層23を設け、第1の有機太陽電池21から発生した電子と第2の有機太陽電池22から発生した正孔を再結合させることが必要であるが、既述の図5の低分子型の再結合層16のように5Å程度の極薄層として形成すると、電子と正孔を再結合させる機能は果たすものの、極端に薄いためにバルクヘテロジャンクション型に必要な仕事関数差による電界を、図5の再結合層16と電極4,5との間にかけることができない。   Also in this bulk heterojunction type stacked organic solar cell, a recombination layer 23 is provided between the first organic solar cell 21 and the second organic solar cell 22, and electrons generated from the first organic solar cell 21 Although it is necessary to recombine the holes generated from the second organic solar cell 22, when it is formed as an ultrathin layer of about 5 mm like the low molecular type recombination layer 16 of FIG. 5 described above, Although it functions to recombine electrons and holes, an electric field due to the work function difference necessary for the bulk heterojunction type can be applied between the recombination layer 16 and the electrodes 4 and 5 in FIG. Can not.

そこで本発明では図1に示すように、再結合層23を第1の有機太陽電池21の側の導電層24と、第2の有機太陽電池の側の導電層25との2層構造に形成し、第1の有機太陽電池21において透明電極29や正孔輸送層30と導電層24との間で仕事関数差を設けると共に、第2の有機太陽電池22において電極31と導電層25との間で仕事関数差を設けるようにしてある。そしてこの2層の導電層24は、第2の有機太陽電池22の側の導電層25の仕事関数が、第1の有機太陽電池21の側の導電層24の仕事関数より大きくなるように形成してある。このことにより、第1の有機太陽電池21においては透明電極29や正孔輸送層30の仕事関数よりも導電層24の仕事関数が小さくなり、第2の有機太陽電池22においては電極31の仕事関数よりも導電層25の仕事関数が大きくなるように設計することができるものである。   Therefore, in the present invention, as shown in FIG. 1, the recombination layer 23 is formed in a two-layer structure of a conductive layer 24 on the first organic solar cell 21 side and a conductive layer 25 on the second organic solar cell side. In the first organic solar cell 21, a work function difference is provided between the transparent electrode 29 or the hole transport layer 30 and the conductive layer 24, and the second organic solar cell 22 has a difference between the electrode 31 and the conductive layer 25. A work function difference is provided between them. The two conductive layers 24 are formed so that the work function of the conductive layer 25 on the second organic solar cell 22 side is larger than the work function of the conductive layer 24 on the first organic solar cell 21 side. It is. As a result, the work function of the conductive layer 24 is smaller than the work functions of the transparent electrode 29 and the hole transport layer 30 in the first organic solar cell 21, and the work of the electrode 31 in the second organic solar cell 22. The work function of the conductive layer 25 can be designed to be larger than the function.

ここで、一般的にITO(インジウムスズオキサイド)で形成される透明電極29の仕事関数は4.5〜5.1eV、PEDOT:PSS(ポリ(3,4−エチレンジオキシチオフェン):ポリ(4−スチレンスルホナート))等で形成される正孔輸送層30の仕事関数は5.1〜5.3eVであるので、第1の有機太陽電池21の側の導電層24の仕事関数は4.5eV以下が好ましく、より強い電界を得るためには4.2eV以下であることが好ましい。また第2の有機太陽電池22の裏側のAlで形成される電極31の仕事関数は、成膜方法によって異なるが3.5〜4.2eVであるので、第2の有機太陽電池22の側の導電層25の仕事関数は4.2eV以上が好ましく、より強い電界を得るためには4.5eV以上であることが好ましい。そして第2の有機太陽電池22の側の導電層25の仕事関数が、第1の有機太陽電池21の側の導電層24の仕事関数より大きくなるように設定することによって、第1及び第2の有機太陽電池21,22のいずれにも高い電界がかかり、高効率な積層型有機太陽電池を得ることができるものである。尚、2つの導電層24,25の仕事関数の値は、使用される透明電極29、正孔輸送層30、電極31の仕事関数に応じて設定されるものである。   Here, the work function of the transparent electrode 29 generally formed of ITO (indium tin oxide) is 4.5 to 5.1 eV, PEDOT: PSS (poly (3,4-ethylenedioxythiophene): poly (4 -The work function of the hole transport layer 30 formed of styrene sulfonate)) or the like is 5.1 to 5.3 eV, so that the work function of the conductive layer 24 on the first organic solar cell 21 side is 4. 5 eV or less is preferable, and 4.2 eV or less is preferable in order to obtain a stronger electric field. Further, the work function of the electrode 31 formed of Al on the back side of the second organic solar cell 22 is 3.5 to 4.2 eV although it varies depending on the film forming method. The work function of the conductive layer 25 is preferably 4.2 eV or more, and is preferably 4.5 eV or more in order to obtain a stronger electric field. By setting the work function of the conductive layer 25 on the second organic solar cell 22 side to be larger than the work function of the conductive layer 24 on the first organic solar cell 21 side, the first and second A high electric field is applied to both of the organic solar cells 21 and 22, and a highly efficient stacked organic solar cell can be obtained. The work function values of the two conductive layers 24 and 25 are set according to the work functions of the transparent electrode 29, the hole transport layer 30 and the electrode 31 used.

このような仕様を満たす材料として、第1の有機太陽電池21の側の導電層24としてAl,Ca,Mg,Ti,Ag,Mo,In等があり、第2の有機太陽電池22の側の導電層25としてPd,Au,ITO,PEDOT等があり、これらから選ばれる材料で導電層24,25を形成することが好ましい。尚、これらの各材料の仕事関数は次の通りである。Al:3.5〜4.2eV、Ca:2.9eV、Mg:3.7eV、Ti:4.3eV、Ag:4.5eV、Mo:4.2eV、In:4.2eV、Pd:4.8eV、Au:4.6eV、ITO:4.5〜5.1eV、PEDOT:5.1〜5.3eV。   As a material satisfying such specifications, there are Al, Ca, Mg, Ti, Ag, Mo, In and the like as the conductive layer 24 on the first organic solar cell 21 side, and on the second organic solar cell 22 side. Examples of the conductive layer 25 include Pd, Au, ITO, PEDOT, and the like. It is preferable to form the conductive layers 24 and 25 using a material selected from these. The work functions of these materials are as follows. Al: 3.5-4.2 eV, Ca: 2.9 eV, Mg: 3.7 eV, Ti: 4.3 eV, Ag: 4.5 eV, Mo: 4.2 eV, In: 4.2 eV, Pd: 4. 8 eV, Au: 4.6 eV, ITO: 4.5 to 5.1 eV, PEDOT: 5.1 to 5.3 eV.

また所定の仕事関数差による電界が第1及び第2の有機太陽電池21,22に作用するようにするためには、2つの導電層24,25の膜厚はある一定以上の厚みであることが必要であるが、膜厚が厚すぎると、導電層24,25の光の透過量が少なくなるので、ある一定以下の膜厚に抑える必要がある。このため、本発明では、2つの導電層24,25の膜厚は合計量が2〜400nmに設定するのが好ましく、この膜厚の範囲であれば、これらの要求を満たして高効率な積層型有機太陽電池を得ることができるものである。ここで、導電層24,25は光を通過させる必要があるので、金属で形成する場合は10nm厚以下に形成するのが好ましく、ITOのような透明酸化物で形成する場合は400nmまで厚く形成することができる。これ以上厚くすると、直列抵抗性が増えるので特性低下をもたらすおそれがある。   In addition, in order for an electric field due to a predetermined work function difference to act on the first and second organic solar cells 21 and 22, the thickness of the two conductive layers 24 and 25 must be a certain thickness or more. However, if the film thickness is too thick, the amount of light transmitted through the conductive layers 24 and 25 decreases, so the film thickness must be kept below a certain level. Therefore, in the present invention, it is preferable that the total thickness of the two conductive layers 24 and 25 is set to 2 to 400 nm. Type organic solar cell can be obtained. Here, since it is necessary for the conductive layers 24 and 25 to transmit light, it is preferable that the conductive layers 24 and 25 are formed to have a thickness of 10 nm or less when formed of metal, and the conductive layers 24 and 25 are formed to a thickness of 400 nm when formed of transparent oxide such as ITO. can do. If it is thicker than this, the series resistance is increased, and there is a risk of degrading the characteristics.

図2は本発明の他の実施の形態を示すものであり、上記の2つの導電層24,25の間に電気絶縁層26が挿入してある。この電気絶縁層26は、シリコン酸化膜などの無機薄膜で形成したり、有機フィルムで形成したりすることができるものであり、特に限定されるものではない。その他の構成は図1のものと同じである。   FIG. 2 shows another embodiment of the present invention, in which an electrical insulating layer 26 is inserted between the two conductive layers 24 and 25 described above. The electrical insulating layer 26 can be formed of an inorganic thin film such as a silicon oxide film or an organic film, and is not particularly limited. Other configurations are the same as those in FIG.

このものでは、第1及び第2の有機太陽電池21,22は直列に積層されているのではなく、電気絶縁層26で分離されている。従って、第1の有機太陽電池21で発電された電流は透明電極29を正極として、導電層24を負極として取り出すことができると共に、第2の有機太陽電池22で発電された電流は導電層24を正極として、電極31を負極として取り出すことができるものであり、外部の配線で第1及び第2の有機太陽電池21,22を直列又は並列に接続して使用することができるものである。このものにあっても、2つの導電層24,25の仕事関数の仕様は図1のものと同じである。   In this structure, the first and second organic solar cells 21 and 22 are not stacked in series, but are separated by an electrical insulating layer 26. Therefore, the current generated by the first organic solar cell 21 can be taken out using the transparent electrode 29 as a positive electrode and the conductive layer 24 as a negative electrode, and the current generated by the second organic solar cell 22 is extracted from the conductive layer 24. Can be taken out as a positive electrode and the electrode 31 as a negative electrode, and the first and second organic solar cells 21 and 22 can be connected in series or in parallel with an external wiring. Even in this case, the specifications of the work functions of the two conductive layers 24 and 25 are the same as those in FIG.

通常、第1の有機太陽電池21や第2の有機太陽電池22を構成する光電変換層20は、ポリマ等を溶剤に溶解して塗布するウェットプロセスで作製されるが、第1の有機太陽電池21の光電変換層20を作製し、この光電変換層20の上に再結合層23の導電層24,25を蒸着等で形成した後に、この上にウェットプロセスで第2の有機太陽電池22の光電変換層20を作製する際に、導電層24,25にピンホールが存在すると、このピンホールを通して溶剤が第1の有機太陽電池21の光電変換層20に到達して、この光電変換層20の一部を溶かしてしまうおそれがある。特に光の透過量を高めるために、導電層24,25を薄くすると、ピンホールが発生し易くなってこのような問題が発生し易くなる。このときに、上記のように2つの導電層24,25の間に電気絶縁層26を介在させるようにすると、導電層24,25にピンホールが存在しても電気絶縁層26で溶剤の浸入を遮断することができるので、第1の有機太陽電池21の光電変換層20への影響を無くすことができるものである。   Usually, the photoelectric conversion layer 20 constituting the first organic solar cell 21 and the second organic solar cell 22 is produced by a wet process in which a polymer or the like is dissolved in a solvent and applied. The first organic solar cell After the photoelectric conversion layer 20 of 21 is produced and the conductive layers 24 and 25 of the recombination layer 23 are formed on the photoelectric conversion layer 20 by vapor deposition or the like, the second organic solar cell 22 of the second organic solar cell 22 is formed thereon by a wet process. When the photoelectric conversion layer 20 is produced, if there are pinholes in the conductive layers 24 and 25, the solvent reaches the photoelectric conversion layer 20 of the first organic solar cell 21 through the pinholes, and the photoelectric conversion layer 20. There is a risk of melting a part of. In particular, if the conductive layers 24 and 25 are thinned in order to increase the amount of light transmission, pinholes are likely to occur, and such problems are likely to occur. At this time, if the electric insulating layer 26 is interposed between the two conductive layers 24 and 25 as described above, even if pinholes exist in the conductive layers 24 and 25, the electric insulating layer 26 infiltrates the solvent. Therefore, the influence on the photoelectric conversion layer 20 of the first organic solar cell 21 can be eliminated.

次に、本発明の積層型有機太陽電池の製造方法について説明する。図1の積層型有機太陽電池を例にとると、各層の形成は、透明基板28の上に形成する透明電極29や正孔輸送層30はスパッタリングや真空蒸着などの真空プロセスで作製し、第1の有機太陽電池21を構成する光電変換層20と第2の有機太陽電池22を構成する光電変換層20はドナー材料とアクセプター材料をブレンドして溶剤に溶解した塗液を印刷プロセスで塗布することによって作製し、さらに電極31はスパッタリングや真空蒸着などの真空プロセスで作製することになる。そして第1の有機太陽電池21と第2の有機太陽電池22の間に形成する再結合層16の導電層24,25をスパッタリングや真空蒸着などの真空プロセスで作製してもよいが、この方法で作製すると、全体のプロセスは真空−印刷−真空−印刷−真空と異なるプロセスが交互入れ替わり、不連続なプロセスとなって、ひいては生産性の低下をもたらすことになる。   Next, the manufacturing method of the laminated organic solar cell of this invention is demonstrated. Taking the stacked organic solar cell of FIG. 1 as an example, each layer is formed by forming the transparent electrode 29 and the hole transport layer 30 formed on the transparent substrate 28 by a vacuum process such as sputtering or vacuum deposition. The photoelectric conversion layer 20 constituting the first organic solar cell 21 and the photoelectric conversion layer 20 constituting the second organic solar cell 22 are coated with a coating solution prepared by blending a donor material and an acceptor material and dissolving in a solvent. Further, the electrode 31 is manufactured by a vacuum process such as sputtering or vacuum deposition. The conductive layers 24 and 25 of the recombination layer 16 formed between the first organic solar cell 21 and the second organic solar cell 22 may be produced by a vacuum process such as sputtering or vacuum deposition. In this case, the entire process is alternately replaced by a process different from vacuum-printing-vacuum-printing-vacuum, resulting in a discontinuous process, which leads to a decrease in productivity.

そこで、再結合層16の導電層24,25を塗布型の導電材料を用いて印刷プロセスで作製するようにし、全体のプロセスが真空−印刷−印刷−印刷−真空となり、最初と最後に真空プロセス、その間は印刷プロセスが入るようにして、プロセスの連続性が保たれるようにすることが好ましい。塗布型の導電材料としては従来よりAgペーストなどの印刷用導電膜材料があるが、このものは焼成温度が120〜150℃であるため、第1の有機太陽電池21の上に用いることはできず、しかも膜厚を10nmオーダーで調整する必要がある導電層24,25を形成することは困難である。   Therefore, the conductive layers 24 and 25 of the recombination layer 16 are produced by a printing process using a coating-type conductive material, and the entire process is vacuum-printing-printing-printing-vacuum, and the vacuum process is first and last. In the meantime, it is preferable that the printing process is entered so that the continuity of the process is maintained. Conventionally, there is a conductive film material for printing such as an Ag paste as a coating type conductive material, but since this has a baking temperature of 120 to 150 ° C., it can be used on the first organic solar cell 21. Moreover, it is difficult to form the conductive layers 24 and 25 whose film thickness needs to be adjusted on the order of 10 nm.

このため、Al,Ca,Mg,Ti,Ag,Mo,Inから選ばれる粒径100nm以下の粒子状材料を溶剤に分散したペーストを塗布して乾燥することによって、第1の有機太陽電池21の側の導電層24を印刷プロセスで作製するようにし、またPd,Au,ITO,PEDOTから選ばれる粒径100nm以下の粒子状材料を溶剤に分散したペーストを塗布することによって、第2の有機太陽電池22の側の導電層25を印刷プロセスで作製するようにしてある。このように、導電層24を形成する材料や導電層25を形成する材料として粒径100nm以下の粒子状材料を用い、これを溶剤に分散したペーストを塗布して乾燥することによって、導電層24,25を10nmオーダーで調整した膜厚に形成することができるものである。これらの粒子状材料の粒径は、入手可能な範囲で小さいほど好ましいものであり、従って粒径の下限は特に設定されるものではない。   For this reason, by applying and drying a paste in which a particulate material having a particle size of 100 nm or less selected from Al, Ca, Mg, Ti, Ag, Mo, and In is dispersed in a solvent, the first organic solar cell 21 The conductive layer 24 on the side is prepared by a printing process, and a second organic solar cell is applied by applying a paste in which a particulate material having a particle size of 100 nm or less selected from Pd, Au, ITO, and PEDOT is dispersed in a solvent. The conductive layer 25 on the battery 22 side is produced by a printing process. As described above, a particulate material having a particle size of 100 nm or less is used as a material for forming the conductive layer 24 or a material for forming the conductive layer 25, and a conductive material layer 24 is applied and dried by applying a paste dispersed in a solvent. , 25 can be formed to a thickness adjusted to the order of 10 nm. The particle size of these particulate materials is preferably as small as possible within the available range, and therefore the lower limit of the particle size is not particularly set.

次に、本発明を実施例によって具体的に説明する。   Next, the present invention will be specifically described with reference to examples.

(実施例1)
透明電極として膜厚150nmのITOを片面に設けたITO付きガラス基板を用い、このITO付きガラス基板のITOの表面に、PEDOT溶液(Bayer社製「AI4083」)をスピンコート法にて3000rpm、1分の条件で塗布することによって、膜厚30nmのPEDOTからなる正孔輸送層を形成した。
Example 1
As a transparent electrode, a glass substrate with ITO provided with ITO having a film thickness of 150 nm on one side was used, and a PEDOT solution (“AI4083” manufactured by Bayer) was applied to the surface of the ITO of the glass substrate with ITO at 3000 rpm, 1 The hole transport layer which consists of PEDOT with a film thickness of 30 nm was formed by apply | coating on the conditions of minutes.

次に、アクセプター材料としてフラーレン誘導体([6,6]−フェニルC61−ブチッリク アシッド メチル エステル)を、ドナー材料として導電性高分子のMDMO−PPV(ポリ(2−メトキシ−5−(3,7−ジメチルオクチルオキシ)−1,4−フェニレンビニレン))を用い、フラーレン誘導体とMDMO−PPVを質量比1:4で混合してクロロベンゼンに溶解することによって、ブレンド溶液を調製し、このブレンド溶液を正孔輸送層の表面にスピンコート法にて4000rpm、40秒の条件で塗布することによって、膜厚80nmの第1の有機太陽電池を形成する光電変換層を形成した。   Next, a fullerene derivative ([6,6] -phenyl C61-butylic acid methyl ester) is used as an acceptor material, and a conductive polymer MDMO-PPV (poly (2-methoxy-5- (3,7-) is used as a donor material. Using dimethyloctyloxy) -1,4-phenylenevinylene)), a fullerene derivative and MDMO-PPV were mixed at a mass ratio of 1: 4 and dissolved in chlorobenzene to prepare a blend solution. The photoelectric conversion layer which forms a 80-nm-thick 1st organic solar cell was formed by apply | coating on the surface of a hole transport layer on condition of 4000 rpm and 40 second with a spin coat method.

次に、この第1の有機太陽電池を構成する光電変換層の表面にAlを真空蒸着することによって、膜厚10nmのAl膜からなる第1の導電層を形成した。さらに、上記のPEDOT溶液を用いて同様に塗布することによって、第1の導電層の表面に膜厚30nmのPEDOT膜からなる第2の導電層を形成した。尚、Alで形成した第1の導電層の仕事関数は4.2eV、PEDOTで形成した第2の導電層の仕事関数は5.1eVである。   Next, a first conductive layer made of an Al film with a thickness of 10 nm was formed by vacuum-depositing Al on the surface of the photoelectric conversion layer constituting the first organic solar cell. Furthermore, the 2nd conductive layer which consists of a PEDOT film | membrane with a film thickness of 30 nm was formed in the surface of a 1st conductive layer by apply | coating similarly using said PEDOT solution. Note that the work function of the first conductive layer formed of Al is 4.2 eV, and the work function of the second conductive layer formed of PEDOT is 5.1 eV.

次に、上記と同じフラーレン誘導体とMDMO−PPVのブレンド液を第2の導電膜の表面にスピンコート法にて2500rpm、40秒の条件で塗布することによって、膜厚100nmの第2の有機太陽電池を構成する光電変換層を形成した。   Next, by applying the same fullerene derivative and MDMO-PPV blend liquid as described above to the surface of the second conductive film by spin coating method at 2500 rpm for 40 seconds, the second organic sun having a thickness of 100 nm is applied. A photoelectric conversion layer constituting the battery was formed.

最後にこの第2の有機太陽電池を構成する光電変換層の表面にAlを真空蒸着して膜厚150nmのAl電極を形成することによって、図1の層構成の積層型有機太陽電池を得た。この積層型有機太陽電池にあって、有効発電面積は6mmであった。 Finally, Al was vacuum-deposited on the surface of the photoelectric conversion layer constituting the second organic solar cell to form an Al electrode having a film thickness of 150 nm, thereby obtaining the stacked organic solar cell having the layer configuration of FIG. . In this stacked organic solar cell, the effective power generation area was 6 mm 2 .

(実施例2)
実施例1と同じITO付きガラス基板を用い、実施例1と同様にして正孔輸送層を形成した。次にアクセプター材料として実施例1と同じフラーレン誘導体を、ドナー材料として導電性高分子のP3HT(ポリ3ヘキシルチオフェン)を用い、フラーレン誘導体とP3HTを質量比1:4で混合してクロロベンゼンに溶解することによって、ブレンド溶液を調製し、このブレンド溶液を正孔輸送層の表面にスピンコート法にて4000rpm、40秒の条件で塗布することによって、膜厚80nmの第1の有機太陽電池を形成する光電変換層を形成した。
(Example 2)
Using the same glass substrate with ITO as in Example 1, a hole transport layer was formed in the same manner as in Example 1. Next, the same fullerene derivative as in Example 1 is used as an acceptor material, and conductive polymer P3HT (poly-3hexylthiophene) is used as a donor material. The fullerene derivative and P3HT are mixed at a mass ratio of 1: 4 and dissolved in chlorobenzene. By preparing a blend solution and applying this blend solution to the surface of the hole transport layer by spin coating at 4000 rpm for 40 seconds, a first organic solar cell having a thickness of 80 nm is formed. A photoelectric conversion layer was formed.

次に、液相還元法により合成された粒子径10〜100nmのAg粒子を96質量%の含有量でアルコール中に分散したペーストを用い、上記の第1の有機太陽電池を構成する光電変換層の表面にこのペーストを塗布して120℃で焼き付けることによって、第1の導電層を形成した。さらに、PEDOT−PSSのペーストを塗布して120℃で焼き付けることによって、第1の導電層の表面に第2の導電層を形成した。   Next, a photoelectric conversion layer constituting the first organic solar cell is formed using a paste in which Ag particles having a particle diameter of 10 to 100 nm synthesized by a liquid phase reduction method are dispersed in alcohol at a content of 96% by mass. The first conductive layer was formed by applying this paste to the surface of the substrate and baking it at 120 ° C. Furthermore, the 2nd conductive layer was formed in the surface of the 1st conductive layer by apply | coating the paste of PEDOT-PSS and baking at 120 degreeC.

次に、上記と同じフラーレン誘導体とP3HTのブレンド液を第2の導電膜の表面にスピンコート法にて2500rpm、40秒の条件で塗布することによって、膜厚100nmの第2の有機太陽電池を構成する光電変換層を形成した。   Next, a second organic solar cell having a film thickness of 100 nm is formed by applying the same fullerene derivative and P3HT blend liquid as described above to the surface of the second conductive film by spin coating at 2500 rpm for 40 seconds. A constituent photoelectric conversion layer was formed.

最後にこの第2の有機太陽電池を構成する光電変換層の表面にAlを真空蒸着して膜厚150nmのAl電極を形成することによって、図1の層構成の積層型有機太陽電池を得た。   Finally, Al was vacuum-deposited on the surface of the photoelectric conversion layer constituting the second organic solar cell to form an Al electrode having a film thickness of 150 nm, thereby obtaining the stacked organic solar cell having the layer configuration of FIG. .

(比較例1)
実施例1において、再結合層を、Al膜からなる導電層とPEDOT膜からなる導電層の2層で形成する代りに、Al膜からなる導電層のみで形成するようにした。その他は、実施例1と同様にして積層型有機太陽電池を得た。
(Comparative Example 1)
In Example 1, the recombination layer was formed only with a conductive layer made of an Al film instead of being formed with a conductive layer made of an Al film and a conductive layer made of a PEDOT film. Others were carried out similarly to Example 1, and obtained the laminated organic solar cell.

(比較例2)
実施例1において、再結合層を、Al膜からなる導電層とPEDOT膜からなる導電層の2層で形成する代りに、PEDOT膜からなる導電層のみで形成するようにした。その他は、実施例1と同様にして積層型有機太陽電池を得た。
(Comparative Example 2)
In Example 1, the recombination layer was formed only with the conductive layer made of the PEDOT film, instead of the two layers of the conductive layer made of the Al film and the conductive layer made of the PEDOT film. Others were carried out similarly to Example 1, and obtained the laminated organic solar cell.

(比較例3)
実施例1において、再結合層を、Al膜からなる第1の導電層とPEDOT膜からなる第2の導電層で形成する代りに、Auの真空蒸着による膜厚5nmのAu膜からなる第1の導電層と、Agの真空蒸着による膜厚5nmのAg膜からなる第2の導電層で形成するようにした。その他は、実施例1と同様にして積層型有機太陽電池を得た。尚、Auで形成した第1の導電層の仕事関数は4.6eV、Agで形成した第2の導電層の仕事関数は4.5eVである。
(Comparative Example 3)
In Example 1, instead of forming the recombination layer with the first conductive layer made of the Al film and the second conductive layer made of the PEDOT film, the first is made of the Au film having a thickness of 5 nm by vacuum evaporation of Au. And a second conductive layer made of an Ag film having a thickness of 5 nm formed by vacuum deposition of Ag. Others were carried out similarly to Example 1, and obtained the laminated organic solar cell. Note that the work function of the first conductive layer formed of Au is 4.6 eV, and the work function of the second conductive layer formed of Ag is 4.5 eV.

上記のようにして作製した実施例1〜2及び比較例1〜3の積層型有機太陽電池に、ソーラーシミュレータ(山下電装社製)により擬似太陽光(AM1.5)を照射して、出力特性を評価した。その結果、表1のような結果が得られた。   The stacked organic solar cells of Examples 1 and 2 and Comparative Examples 1 to 3 manufactured as described above were irradiated with simulated sunlight (AM1.5) by a solar simulator (manufactured by Yamashita Denso Co., Ltd.), and output characteristics were obtained. Evaluated. As a result, the results shown in Table 1 were obtained.

Figure 2006351721
Figure 2006351721

表1にみられるように、導電層を介して2層の有機太陽電池を積層するにあたって、第1の導電層よりも第2の導電層の仕事関数が大きい2層構成の導電層を形成するようにした実施例1や実施例2のものは、導電層を1層に形成した比較例1や比較例2のもの、第1の導電層よりも第2の導電層の仕事関数が小さい2層構成の導電層を形成するようにした比較例3に比べて、開放電圧がほぼ2倍になり、高い変換効率を得ることができるものであった。そして、第1の有機太陽電池や第2の有機太陽電池を構成する光電変換層の光吸収特性を調整して、第1の有機太陽電池を高バンドギャップに、第2の有機太陽電池を低バンドギャップにすると、さらに光吸収が増し、開放電圧が高くなることと相俟って、より高い変換効率を得ることができるものである。   As can be seen in Table 1, when the two-layer organic solar cell is stacked via the conductive layer, a conductive layer having a two-layer structure in which the work function of the second conductive layer is larger than that of the first conductive layer is formed. In Examples 1 and 2, the work functions of the second conductive layer are smaller than those of Comparative Example 1 and Comparative Example 2 in which the conductive layer is formed as a single layer. Compared to Comparative Example 3 in which a conductive layer having a layer structure was formed, the open circuit voltage was almost doubled, and high conversion efficiency could be obtained. And the light absorption characteristic of the photoelectric converting layer which comprises a 1st organic solar cell or a 2nd organic solar cell is adjusted, a 1st organic solar cell is made into a high band gap, and a 2nd organic solar cell is made low. When the band gap is adopted, the light absorption is further increased and the open circuit voltage is increased, so that higher conversion efficiency can be obtained.

また、実施例1では、第1の有機太陽電池の表面にAlを真空蒸着して第1の導電層を形成した後に、このAlの導電層の表面にPEDOT溶液を塗布して第2の導電層を形成するようにしており、PEDOT溶液が第1の有機太陽電池に作用することをAlの導電層で防ぐことができる。一方、比較例2では第1の有機太陽電池の表面に直接PEDOT溶液を塗布して導電層を形成するようにしており、PEDOT溶液が第1の有機太陽電池に作用して劣化することによって、特性が特に低くなっていることが考えられる。   In Example 1, Al is vacuum-deposited on the surface of the first organic solar cell to form a first conductive layer, and then a PEDOT solution is applied to the surface of the Al conductive layer to form a second conductive layer. An Al conductive layer can prevent the PEDOT solution from acting on the first organic solar cell. On the other hand, in Comparative Example 2, the PEDOT solution is directly applied to the surface of the first organic solar cell to form a conductive layer, and the PEDOT solution acts on the first organic solar cell and deteriorates. It is conceivable that the characteristics are particularly low.

尚、P3HTを用いた場合の単層型での太陽電池特性はMDMO−PPVと比較すると、発生電流が高く、発生電圧が低くなるという特徴があるので、積層型においても実施例1と実施例2のようにその特徴が表れるものであった。また比較例3は、第1の導電層よりも第2の導電層の仕事関数が小さいため、第1及び第2の有機太陽電池において両側の電極の仕事関数が小さくなって発生電流、発生電圧が減少するが、しかも第1の導電層及び第2の導電層がともに金属の層であるので光の透過が少なくなって、第2の有機太陽電池での発生電流が少なくなるために、変換効率がより低下するものであった。   In addition, since the solar cell characteristics in the single layer type when P3HT is used are characterized in that the generated current is higher and the generated voltage is lower than that of MDMO-PPV, the first embodiment and the first embodiment are also used in the stacked type. As shown in FIG. In Comparative Example 3, since the work function of the second conductive layer is smaller than that of the first conductive layer, the work functions of the electrodes on both sides of the first and second organic solar cells are reduced, and the generated current and generated voltage are reduced. However, since both the first conductive layer and the second conductive layer are metal layers, light transmission is reduced and current generated in the second organic solar cell is reduced. The efficiency was further reduced.

本発明の実施の形態の一例の層構成を示す図である。It is a figure which shows the layer structure of an example of embodiment of this invention. 本発明の実施の形態の他の一例の層構成を示す図である。It is a figure which shows the layer structure of the other example of embodiment of this invention. 従来の低分子系有機太陽電池の層構成を示す図である。It is a figure which shows the layer structure of the conventional low molecular weight type | system | group organic solar cell. 従来のバルクヘテロジャンクション型有機太陽電池の層構成を示す図である。It is a figure which shows the layer structure of the conventional bulk heterojunction type organic solar cell. 従来の低分子系積層型有機太陽電池の層構成を示す図である。It is a figure which shows the layer structure of the conventional low molecular type laminated | stacked organic solar cell.

符号の説明Explanation of symbols

20 光電変換層
21 第1の有機太陽電池
22 第2の有機太陽電池
23 再結合層
24 導電層
25 導電層
26 電気絶縁層
DESCRIPTION OF SYMBOLS 20 Photoelectric conversion layer 21 1st organic solar cell 22 2nd organic solar cell 23 Recombination layer 24 Conductive layer 25 Conductive layer 26 Electrical insulation layer

Claims (4)

ドナー材料とアクセプター材料をブレンドして形成される光電変換層を有する有機太陽電池を複数積層した積層型有機太陽電池において、光が入射する側に配置される第1の有機太陽電池とこの第1の有機太陽電池の光の入射側と反対側に配置して積層される第2の有機太陽電池との間に、第1及び第2の有機太陽電池から発生した電子と正孔が再結合する再結合層を挿入し、再結合層を仕事関数の異なる2層の導電層を備えて形成すると共に、再結合層の2層の導電層のうち、第2の有機太陽電池の側の導電層の仕事関数が、第1の有機太陽電池の側の導電層の仕事関数より大きいことを特徴とする積層型有機太陽電池。   In a stacked organic solar cell in which a plurality of organic solar cells each having a photoelectric conversion layer formed by blending a donor material and an acceptor material are stacked, the first organic solar cell disposed on the light incident side and the first organic solar cell Electrons and holes generated from the first and second organic solar cells are recombined between the second organic solar cell and the second organic solar cell which is stacked on the opposite side of the light incident side of the organic solar cell. A recombination layer is inserted, the recombination layer is formed with two conductive layers having different work functions, and among the two conductive layers of the recombination layer, the conductive layer on the second organic solar cell side The stacked organic solar cell is characterized in that the work function of is higher than the work function of the conductive layer on the first organic solar cell side. 2層の導電層の膜厚の合計が2〜400nmであることを特徴とする請求項1に記載の積層型有機太陽電池。   2. The stacked organic solar cell according to claim 1, wherein the total thickness of the two conductive layers is 2 to 400 nm. 2層の導電層の間に光透過性の電気絶縁層を挿入したことを特徴とする請求項1又は2に記載の積層型有機太陽電池。   The stacked organic solar cell according to claim 1, wherein a light-transmitting electrical insulating layer is inserted between the two conductive layers. 請求項1乃至3のいずれかに記載の積層型有機太陽電池を製造するにあたって、Al,Ca,Mg,Ti,Ag,Mo,Inから選ばれる粒径100nm以下の粒子状材料を溶剤に分散したペーストを塗布することによって第1の有機太陽電池の側の導電層を形成し、Pd,Au,ITO,PEDOTから選ばれる粒径100nm以下の粒子状材料を溶剤に分散したペーストを塗布することによって第2の有機太陽電池の側の導電層を形成することを特徴とする積層型有機太陽電池の製造方法。
In manufacturing the stacked organic solar cell according to any one of claims 1 to 3, a particulate material having a particle size of 100 nm or less selected from Al, Ca, Mg, Ti, Ag, Mo, and In is dispersed in a solvent. By forming a conductive layer on the first organic solar cell side by applying a paste, and applying a paste in which a particulate material having a particle size of 100 nm or less selected from Pd, Au, ITO, and PEDOT is dispersed in a solvent A method for producing a stacked organic solar cell, comprising forming a conductive layer on the second organic solar cell side.
JP2005174135A 2005-06-14 2005-06-14 Laminated organic solar cell and method for producing the same Expired - Fee Related JP4991126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005174135A JP4991126B2 (en) 2005-06-14 2005-06-14 Laminated organic solar cell and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005174135A JP4991126B2 (en) 2005-06-14 2005-06-14 Laminated organic solar cell and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006351721A true JP2006351721A (en) 2006-12-28
JP4991126B2 JP4991126B2 (en) 2012-08-01

Family

ID=37647263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005174135A Expired - Fee Related JP4991126B2 (en) 2005-06-14 2005-06-14 Laminated organic solar cell and method for producing the same

Country Status (1)

Country Link
JP (1) JP4991126B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009514147A (en) * 2005-10-05 2009-04-02 ベレティッチィ,トーマス Thermally enhanced solid-state generator
JP2009521810A (en) * 2005-12-21 2009-06-04 コナルカ テクノロジーズ インコーポレイテッド Tandem photovoltaic cell
WO2009133792A1 (en) * 2008-04-28 2009-11-05 住友化学株式会社 Organic photoelectric conversion element and manufacturing method thereof
WO2010023920A1 (en) * 2008-08-27 2010-03-04 三菱マテリアル株式会社 Transparent conductive film for solar cell, composition for said transparent conductive film, and multi-junction solar cell
JP2010080933A (en) * 2008-08-27 2010-04-08 Mitsubishi Materials Corp Transparent conductive film for solar cell and composition for the transparent conductive film, and multi-junction solar cell
WO2010107261A2 (en) * 2009-03-18 2010-09-23 한양대학교 산학협력단 Solar cell and a production method therefor
WO2010120082A2 (en) * 2009-04-13 2010-10-21 광주과학기술원 Multilayer organic solar cell using a polyelectrolyte layer, and method for manufacturing same
KR20120101057A (en) * 2009-11-06 2012-09-12 나노-씨, 인크. Fullerene-functionalized particles, methods for making the same and their use in blukheterojunction organic photovoltaic devices
JP2013531886A (en) * 2010-06-07 2013-08-08 ザ ガバニング カウンシル オブ ザ ユニバーシティ オブ トロント Photovoltaic device with multiple junctions separated by graded recombination layers
JP2013161917A (en) * 2012-02-03 2013-08-19 Konica Minolta Inc Tandem type organic photoelectric conversion element
CN116887652A (en) * 2023-09-07 2023-10-13 南开大学 Perovskite organic laminated solar cell at two ends and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0831616B2 (en) * 1990-11-22 1996-03-27 積水化学工業株式会社 Tandem type organic solar cell
WO2004025746A2 (en) * 2002-09-05 2004-03-25 Konarka Technologies, Inc. Method for treating a photovoltaic active layer and organic photovoltaic element
JP2004158661A (en) * 2002-11-07 2004-06-03 Matsushita Electric Ind Co Ltd Organic light to electricity transducing device and its manufacturing method
WO2004057674A2 (en) * 2002-12-20 2004-07-08 Cambridge Display Technology Limited Electrical connection of optoelectronic devices
JP2004349657A (en) * 2003-05-26 2004-12-09 Matsushita Electric Works Ltd Organic solar cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0831616B2 (en) * 1990-11-22 1996-03-27 積水化学工業株式会社 Tandem type organic solar cell
WO2004025746A2 (en) * 2002-09-05 2004-03-25 Konarka Technologies, Inc. Method for treating a photovoltaic active layer and organic photovoltaic element
JP2004158661A (en) * 2002-11-07 2004-06-03 Matsushita Electric Ind Co Ltd Organic light to electricity transducing device and its manufacturing method
WO2004057674A2 (en) * 2002-12-20 2004-07-08 Cambridge Display Technology Limited Electrical connection of optoelectronic devices
JP2004349657A (en) * 2003-05-26 2004-12-09 Matsushita Electric Works Ltd Organic solar cell

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009514147A (en) * 2005-10-05 2009-04-02 ベレティッチィ,トーマス Thermally enhanced solid-state generator
JP2009521810A (en) * 2005-12-21 2009-06-04 コナルカ テクノロジーズ インコーポレイテッド Tandem photovoltaic cell
WO2009133792A1 (en) * 2008-04-28 2009-11-05 住友化学株式会社 Organic photoelectric conversion element and manufacturing method thereof
WO2010023920A1 (en) * 2008-08-27 2010-03-04 三菱マテリアル株式会社 Transparent conductive film for solar cell, composition for said transparent conductive film, and multi-junction solar cell
JP2010080933A (en) * 2008-08-27 2010-04-08 Mitsubishi Materials Corp Transparent conductive film for solar cell and composition for the transparent conductive film, and multi-junction solar cell
WO2010107261A2 (en) * 2009-03-18 2010-09-23 한양대학교 산학협력단 Solar cell and a production method therefor
KR101334222B1 (en) * 2009-03-18 2013-11-29 한양대학교 산학협력단 Solar cell and method of manufacturing the same
WO2010107261A3 (en) * 2009-03-18 2010-11-25 한양대학교 산학협력단 Solar cell and a production method therefor
WO2010120082A3 (en) * 2009-04-13 2010-12-23 광주과학기술원 Multilayer organic solar cell using a polyelectrolyte layer, and method for manufacturing same
KR101038469B1 (en) * 2009-04-13 2011-06-01 광주과학기술원 Tandem organic solar cell having polymer electrolyte layer and method of fabricating the same
CN102396072A (en) * 2009-04-13 2012-03-28 光州科学技术院 Multilayer organic solar cell using a polyelectrolyte layer, and method for manufacturing same
WO2010120082A2 (en) * 2009-04-13 2010-10-21 광주과학기술원 Multilayer organic solar cell using a polyelectrolyte layer, and method for manufacturing same
KR20120101057A (en) * 2009-11-06 2012-09-12 나노-씨, 인크. Fullerene-functionalized particles, methods for making the same and their use in blukheterojunction organic photovoltaic devices
KR102134928B1 (en) * 2009-11-06 2020-08-26 나노-씨, 인크. Fullerene-functionalized particles, methods for making the same and their use in blukheterojunction organic photovoltaic devices
JP2013531886A (en) * 2010-06-07 2013-08-08 ザ ガバニング カウンシル オブ ザ ユニバーシティ オブ トロント Photovoltaic device with multiple junctions separated by graded recombination layers
US8975509B2 (en) 2010-06-07 2015-03-10 The Governing Council Of The University Of Toronto Photovoltaic devices with multiple junctions separated by a graded recombination layer
JP2013161917A (en) * 2012-02-03 2013-08-19 Konica Minolta Inc Tandem type organic photoelectric conversion element
CN116887652A (en) * 2023-09-07 2023-10-13 南开大学 Perovskite organic laminated solar cell at two ends and preparation method thereof
CN116887652B (en) * 2023-09-07 2023-11-24 南开大学 Perovskite organic laminated solar cell at two ends and preparation method thereof

Also Published As

Publication number Publication date
JP4991126B2 (en) 2012-08-01

Similar Documents

Publication Publication Date Title
JP4991126B2 (en) Laminated organic solar cell and method for producing the same
US8692112B2 (en) Organic thin film solar cell and fabrication method of same
Hadipour et al. Organic tandem and multi‐junction solar cells
AU2003200122B2 (en) Apparatus and method for photovoltaic energy production based on internal charge emission in a solid-state heterostructure
EP2311101B1 (en) Photovoltaic module and the processing thereof
Liu et al. Perovskite-organic hybrid tandem solar cells using a nanostructured perovskite layer as the light window and a pfn/doped-moo 3/moo 3 multilayer as the interconnecting layer
Zhang et al. Simple tandem organic photovoltaic cells for improved energy conversion efficiency
Shirakawa et al. Effect of ZnO layer on characteristics of conducting polymer/C60 photovoltaic cell
US20080142079A1 (en) Photovoltaic cell
KR100986159B1 (en) Organic solar cell enhancing energy conversion efficiency and method for preparing the same
TW201019518A (en) Organic tandem solar cells
CA2827632A1 (en) Organic photovoltaic cell incorporating electron conducting exciton blocking layers
JP6387410B2 (en) Organic solar cells with improved photocurrent
KR20110133717A (en) Organic solar cell and method of manufacturing the same
JP2011082396A (en) Tandem organic solar cell
KR20150038353A (en) Organic optoelectronics with electrode buffer layers
TW201535818A (en) Exciton management in organic photovoltaic multi-donor energy cascades
JP5170746B2 (en) Stacked organic solar cell
KR20150037974A (en) Multijunction organic photovoltaics incorporating solution and vacuum deposited active layers
TW201424073A (en) Polymer photovoltaics employing a squaraine donor additive
JP2006332380A (en) Organic solar cell and manufacturing method thereof
JP5359255B2 (en) Organic photoelectric conversion element
KR20140012224A (en) Tandem solar cells comprising a transparent conducting intermediate layer and fabrication methods thereof
TWI538271B (en) Organic solar cell with oriented-distributed structure for carriers and manufacturing method of the same
Janssen Introduction to polymer solar cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100709

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101207

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101214

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110902

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120315

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees