JP5359255B2 - Organic photoelectric conversion element - Google Patents

Organic photoelectric conversion element Download PDF

Info

Publication number
JP5359255B2
JP5359255B2 JP2008323545A JP2008323545A JP5359255B2 JP 5359255 B2 JP5359255 B2 JP 5359255B2 JP 2008323545 A JP2008323545 A JP 2008323545A JP 2008323545 A JP2008323545 A JP 2008323545A JP 5359255 B2 JP5359255 B2 JP 5359255B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
electrode
conversion element
layer
organic photoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008323545A
Other languages
Japanese (ja)
Other versions
JP2010147276A (en
Inventor
晃矢子 和地
隆彦 野島
康 大久保
宏明 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2008323545A priority Critical patent/JP5359255B2/en
Publication of JP2010147276A publication Critical patent/JP2010147276A/en
Application granted granted Critical
Publication of JP5359255B2 publication Critical patent/JP5359255B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Description

本発明は、第二の電極(陰極)が少なくとも二種以上の金属を含む有機光電変換素子に関し、さらに好ましくは、第二の電極(陰極)に仕事関数の異なる2種類の金属を含む有機光電変換素子に関する。   The present invention relates to an organic photoelectric conversion element in which a second electrode (cathode) contains at least two kinds of metals, and more preferably, an organic photoelectric conversion containing two kinds of metals having different work functions in the second electrode (cathode). The present invention relates to a conversion element.

有機太陽電池は塗布法で形成できることから大量生産に適した太陽電池として注目され、多くの研究機関で盛んに研究がなされている。有機太陽電池は有機ドナー材料と有機アクセプター材料を混合した、所謂、バルクヘテロジャンクション構造によって、課題だった電荷分離効率を向上させている(例えば、特許文献1参照)。結果としてエネルギー変換効率は5%台まで向上し、一気に実用レベルにまで発展してきた分野と言える。   Organic solar cells are attracting attention as solar cells suitable for mass production because they can be formed by a coating method, and many research institutions are actively researching them. In organic solar cells, the so-called bulk heterojunction structure in which an organic donor material and an organic acceptor material are mixed improves charge separation efficiency, which has been a problem (see, for example, Patent Document 1). As a result, the energy conversion efficiency has been improved to the 5% level, and it can be said that this field has been developed to a practical level at once.

従来技術では、第二の電極にはAgやAlなどの金属を用いることが多いが、電子輸送層との接合がオーミック接合でコストが低いAlを電極として用いることが一般的である。しかし、Alは酸化されやすく封止を行っても、電極としての機能が劣化しやすいことが問題であった。しかし、Agのような酸化に強い金属を用いると、耐久性は良いが、電子輸送層との仕事関数接続が悪く効率が低下してしまうという問題もあった。さらには、Agを主成分として易酸化金属元素を添加した合金層を積層させて導電性反射膜を形成した薄膜太陽電池の発明が開示され(例えば、特許文献2参照)ている。この発明では、易酸化金属を酸素存在下でわざと酸化させることにより、透明導電性層との密着性を増加させるために添加されている。   In the prior art, a metal such as Ag or Al is often used for the second electrode, but it is common to use Al, which is an ohmic junction with the electron transport layer and has a low cost. However, Al is easily oxidized, and even if sealing is performed, the function as an electrode is likely to deteriorate. However, when a metal resistant to oxidation such as Ag is used, the durability is good, but there is also a problem that the work function connection with the electron transport layer is poor and the efficiency is lowered. Furthermore, an invention of a thin film solar cell in which an alloy layer containing Ag as a main component and an easily oxidizable metal element is laminated to form a conductive reflective film is disclosed (for example, see Patent Document 2). In this invention, it adds in order to increase the adhesiveness with a transparent conductive layer by oxidizing an oxidizable metal intentionally in oxygen presence.

しかし、この技術では、耐久性に優れ、電子輸送層との電気的なオーミックな接合を満足した金属電極を得るという課題を解決することができなかった。
米国特許第5331183号明細書 特開2004−335991号公報
However, this technique cannot solve the problem of obtaining a metal electrode that is excellent in durability and satisfies an electrical ohmic junction with the electron transport layer.
US Pat. No. 5,331,183 JP 2004-335991 A

本発明の目的は、耐久性に優れ、電子輸送層との電気的な接合が良好な第二の電極を提供することであり、更に、光電変換効率及び耐久性に優れた有機光電変換素子を提供することにある。   An object of the present invention is to provide a second electrode that is excellent in durability and excellent in electrical bonding with an electron transport layer, and further provides an organic photoelectric conversion element excellent in photoelectric conversion efficiency and durability. It is to provide.

本発明の上記目的は、以下の構成により達成することができる。   The above object of the present invention can be achieved by the following configuration.

1.第一の電極と第二の電極の間に、少なくとも光電変換層を有し構成される有機光電変換素子において、
前記第二の電極が仕事関数の大きい金属と仕事関数の小さい金属との組み合わせにより形成され、その組み合わせがAu−Al、Au−Ca、Ag−Al、Ag−Mg、Ag−Liから選ばれる1種であり、
前記仕事関数の小さい金属と前記仕事関数の大きい金属との混合比(質量%)が0.1:99.9から3:7の範囲であることを特徴とする有機光電変換素子。
1. In the organic photoelectric conversion element configured to have at least a photoelectric conversion layer between the first electrode and the second electrode,
The second electrode is formed of a combination of a metal having a high work function and a metal having a low work function, and the combination is selected from Au—Al, Au—Ca, Ag—Al, Ag—Mg, and Ag—Li 1 Tanedea is,
An organic photoelectric conversion element , wherein a mixing ratio (% by mass) of the metal having a low work function and the metal having a high work function is in a range of 0.1: 99.9 to 3: 7 .

本発明により、耐久性を改善できるばかりでなく、光電変換効率も高い有機光電変換素子を提供することができた。   According to the present invention, not only can durability be improved, but also an organic photoelectric conversion element having high photoelectric conversion efficiency can be provided.

以下、本発明について詳述する。   Hereinafter, the present invention will be described in detail.

本発明は、有機光電変換素子の第二の電極(陰極)が少なくとも二種以上の金属元素を含み形成されていることを特徴とする。更に好ましくは、第二の電極が仕事関数の異なる金属の二種類以上組み合わせにより形成されているものである。   The present invention is characterized in that the second electrode (cathode) of the organic photoelectric conversion element is formed to contain at least two kinds of metal elements. More preferably, the second electrode is formed of a combination of two or more metals having different work functions.

本発明の第二の電極(陰極)は主に陰極に用いられる。陰極とは光電変換層あるいは電子輸送層から電子を受け取り外部回路へ流す役割を果たす電極である。対して陽極とは陰極の逆で正孔を外部回路へ流す役割を果たす電極を指す。   The second electrode (cathode) of the present invention is mainly used as a cathode. The cathode is an electrode that plays a role of receiving electrons from the photoelectric conversion layer or the electron transport layer and flowing them to an external circuit. On the other hand, the anode refers to an electrode that plays the role of flowing holes to an external circuit opposite to the cathode.

第二の電極(陰極)は、光電変換層あるいは電子輸送層との電気的な接合を得るため、一般的に仕事関数の小さい(4.5eV未満)金属が用いられるが、こういった金属は大気中の水分の影響で酸化されやすく、水分ゲッターを梱包した高度な封止技術が必要であり、水分に対して耐久性が高い第二の電極が求められていた。   As the second electrode (cathode), a metal having a small work function (less than 4.5 eV) is generally used in order to obtain an electrical junction with the photoelectric conversion layer or the electron transport layer. There is a need for a second electrode that is easily oxidized due to the influence of moisture in the atmosphere, requires a high sealing technology in which a moisture getter is packed, and has high durability against moisture.

対して、第二の電極に仕事関数の大きい金属を用いると、耐久性は良いが電子輸送層との接続が悪く変換効率が低くなるという問題があり、耐久性と変換効率を両立することは困難であった。それに対し本発明者等は、第二の電極(陰極)が少なくとも二種以上の金属元素を含み形成されていることを特徴とし、更に好ましくは、仕事関数の異なる2種類の金属を組み合わせて第二の電極を形成させることにより、耐久性が良く変換効率にも優れた有機光電変換素子を形成させることが出来ることを見出し本発明に至った。   On the other hand, if a metal having a large work function is used for the second electrode, durability is good, but there is a problem that the connection with the electron transport layer is bad and conversion efficiency is low, and both durability and conversion efficiency are compatible. It was difficult. On the other hand, the inventors of the present invention are characterized in that the second electrode (cathode) includes at least two kinds of metal elements, and more preferably, the second electrode (cathode) is formed by combining two kinds of metals having different work functions. It has been found that by forming the second electrode, an organic photoelectric conversion element having excellent durability and conversion efficiency can be formed, and the present invention has been achieved.

具体的には、不活性ガス下又は真空下での塗布又は真空蒸着法により、酸化されやすい金属と酸化されにくい金属を混合することにより、酸化されやすい金属の酸化が進行した場合でも、酸化されにくい金属が電極内に存在することにより電極の導電性が保たれ、結果として耐久性が向上するという効果が得られるというのを特徴としている。また、電極全体の仕事関数への寄与は、酸化されやすい金属の方が大きいと考えられるので、電子輸送層との接続は良好であると考えられる。   Specifically, even when oxidation of a metal that is easily oxidized progresses by mixing a metal that is easily oxidized and a metal that is not easily oxidized by coating under an inert gas or in a vacuum or by a vacuum deposition method, the metal is easily oxidized. The present invention is characterized in that the presence of a difficult metal in the electrode maintains the conductivity of the electrode, and as a result, the durability is improved. Further, since the metal that is easily oxidized contributes to the work function of the whole electrode, it is considered that the connection with the electron transport layer is good.

本発明において、仕事関数の大きい金属としては、仕事関数が4.5eV以上であることが好ましく、5.0eV以上であることがより好ましい。仕事関数とは、物質の表面から1個の電子を表面のすぐ外側に取り出すのに必要な最小のエネルギーと定義され、一般的に仕事関数の大きい金属は酸化されにくく、仕事関数の小さい金属は酸化されやすい。具体的には、仕事関数の大きい金属として、Au、Ag、Ptなどの金属類を挙げることができる。仕事関数の小さい金属としては、仕事関数が4.5eV未満であることが好ましい。具体的な金属としてはAl、Mg、In、Pb、Zn、Li、K、Na、Ce、Ca、Sr、Ba、Snなどを挙げることができ、それぞれ仕事関数の大きい金属と小さい金属の組み合わせで用いることが好ましく、さらには、仕事関数が大きく酸化されにくい金属としてAg、仕事関数の小さく酸化されやすい金属としてLi、Mg、Ca、Alを用いることが特に好ましい。   In the present invention, the metal having a high work function preferably has a work function of 4.5 eV or more, and more preferably 5.0 eV or more. The work function is defined as the minimum energy required to extract one electron from the surface of a substance just outside the surface. Generally, a metal having a high work function is difficult to oxidize, and a metal having a low work function is It is easily oxidized. Specifically, metals such as Au, Ag, and Pt can be cited as metals having a high work function. As a metal having a small work function, the work function is preferably less than 4.5 eV. Specific metals include Al, Mg, In, Pb, Zn, Li, K, Na, Ce, Ca, Sr, Ba, Sn, etc., each of which is a combination of a high work function metal and a small metal. It is preferable to use Ag, and it is particularly preferable to use Ag as a metal having a large work function and hardly oxidized, and Li, Mg, Ca, and Al as metals having a small work function and easily oxidized.

本発明の好ましい金属の組み合わせは、仕事関数の大きい金属と仕事関数の小さい金属の組み合わせであり、具体的にはAu−Al、Au−Mg、Au−In、Au−Pb、Au−Zn、Au−Li、Au−K、Au−Na、Au−Ce、Au−Ca、Au−Sr、Au−Ba、Au−Sn、Ag−Al、Ag−Mg、Ag−In、Ag−Pb、Ag−Zn、Ag−Li、Ag−K、Ag−Na、Ag−Ce、Ag−Ca、Ag−Sr、Ag−Ba、Ag−Sn、Pt−Al、Pt−Mg、Pt−In、Pt−Pb、Pt−Zn、Pt−Li、Pt−K、Pt−Na、Pt−Ce、Pt−Ca、Pt−Sr、Pt−Ba、Pt−Snなどが考えられる。その中でもAg−Al、Ag−Mg、Ag−Li、Ag−Caの構成が最も好ましい。   A preferable metal combination of the present invention is a combination of a metal having a high work function and a metal having a low work function. Specifically, Au—Al, Au—Mg, Au—In, Au—Pb, Au—Zn, Au -Li, Au-K, Au-Na, Au-Ce, Au-Ca, Au-Sr, Au-Ba, Au-Sn, Ag-Al, Ag-Mg, Ag-In, Ag-Pb, Ag-Zn , Ag-Li, Ag-K, Ag-Na, Ag-Ce, Ag-Ca, Ag-Sr, Ag-Ba, Ag-Sn, Pt-Al, Pt-Mg, Pt-In, Pt-Pb, Pt -Zn, Pt-Li, Pt-K, Pt-Na, Pt-Ce, Pt-Ca, Pt-Sr, Pt-Ba, Pt-Sn, etc. are conceivable. Among these, the structures of Ag—Al, Ag—Mg, Ag—Li, and Ag—Ca are most preferable.

第二の電極を形成する仕事関数の小さい金属と仕事関数の大きい金属の好ましい混合比は、0.1:99.9から3:7の範囲であり、中でも0.1:99.9から1:9の範囲が特に好ましい。   A preferable mixing ratio of the metal having a low work function and the metal having a high work function forming the second electrode is in the range of 0.1: 99.9 to 3: 7, and in particular, 0.1: 99.9 to 1 : 9 is particularly preferable.

第二の電極はこれらの電極物質を蒸着やスパッタリング等の方法または金属インクや金属ペーストを塗布することにより薄膜を形成させ、作製することができる。本発明に係る第二の電極の形成方法としては、蒸着法が主に用いられる。2種以上の金属からなる電極を形成させる場合、それぞれの金属を共蒸着させても良いし、合金を蒸着させても良い。融点の大きく異なる合金を蒸着させる場合は、融点の低い金属から優先的に蒸着されていくため、自動的に二層構造の電極が形成されることがある。   The second electrode can be produced by forming a thin film by applying these electrode materials by a method such as vapor deposition or sputtering, or by applying a metal ink or a metal paste. As a method of forming the second electrode according to the present invention, a vapor deposition method is mainly used. When forming the electrode which consists of 2 or more types of metals, each metal may be vapor-deposited and an alloy may be vapor-deposited. In the case of depositing alloys having greatly different melting points, a metal having a low melting point is preferentially deposited, so that an electrode having a two-layer structure may be formed automatically.

また、陰極としての体積抵抗率は1×10−1Ωcm以下が好ましく、1×10−3Ωcm以下が更に好ましく、1×10−5Ωcm以下が最も好ましい。好ましい膜厚は通常10nm〜5μm、好ましくは50〜200nmの範囲で選ばれる。 The volume resistivity as the cathode is preferably 1 × 10 −1 Ωcm or less, more preferably 1 × 10 −3 Ωcm or less, and most preferably 1 × 10 −5 Ωcm or less. The preferred film thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 to 200 nm.

以下、本発明において好ましく用いることができる構成について、詳細に説明する。   Hereinafter, configurations that can be preferably used in the present invention will be described in detail.

〔有機光電変換素子〕
本発明の光電変換素子について、図1を用いて詳細に説明する。図1は、本発明に係るバルクヘテロジャンクション型の有機光電変換素子の基本構造を示す概略断面図である。
[Organic photoelectric conversion element]
The photoelectric conversion element of the present invention will be described in detail with reference to FIG. FIG. 1 is a schematic cross-sectional view showing the basic structure of a bulk heterojunction organic photoelectric conversion device according to the present invention.

図1において、バルクヘテロジャンクション型有機光電変換素子は、基板11の一方面上に、第一の電極12、バルクヘテロジャンクション構造(p型半導体層およびn型半導体層)を有する光電変換層13(以下、バルクヘテロジャンクション層とも呼ぶ)、及び第二の電極14が図1に示すように順次積層された構造からなる。さらには、第一の電極12と光電変換層13の間、及び/又は光電変換層13と第二の電極14との間に中間層を有しても良い。好ましい中間層の形態としては、光電変換層13と第一の電極12の間に正孔輸送層が積層されており、光電変換層13と第二の電極14の間に電子輸送層が積層されていることが好ましい。本発明は、第二の電極に金属が少なくとも2種以上含まれて形成されることを特徴としている。   In FIG. 1, a bulk heterojunction organic photoelectric conversion element includes a first electrode 12 and a photoelectric conversion layer 13 having a bulk heterojunction structure (a p-type semiconductor layer and an n-type semiconductor layer) on one surface of a substrate 11 (hereinafter, referred to as “a heterostructure”). 1) and the second electrode 14 are sequentially stacked as shown in FIG. Furthermore, an intermediate layer may be provided between the first electrode 12 and the photoelectric conversion layer 13 and / or between the photoelectric conversion layer 13 and the second electrode 14. As a preferable form of the intermediate layer, a hole transport layer is laminated between the photoelectric conversion layer 13 and the first electrode 12, and an electron transport layer is laminated between the photoelectric conversion layer 13 and the second electrode 14. It is preferable. The present invention is characterized in that the second electrode is formed to contain at least two kinds of metals.

本発明に係る有機光電変換素子の製造方法としては、図2を用いて詳細に説明する。基板21の第一の電極22を形成させ、その上に正孔輸送層23、p型半導体とn型半導体材料含む光電変換層24、電子輸送層25を順次積層し、さらに、その上に第2の電極26を形成させることにより、有機導電変換素子を作製することが好ましい。また、正孔輸送層23と電子輸送層25は逆構成であっても本発明で好ましく用いることができる。   The method for producing the organic photoelectric conversion device according to the present invention will be described in detail with reference to FIG. A first electrode 22 of the substrate 21 is formed, and a hole transport layer 23, a photoelectric conversion layer 24 including a p-type semiconductor and an n-type semiconductor material, and an electron transport layer 25 are sequentially stacked thereon, and further a first electrode 22 is formed thereon. It is preferable to produce an organic conductive conversion element by forming the second electrode 26. The hole transport layer 23 and the electron transport layer 25 can be preferably used in the present invention even if they have opposite configurations.

〔基板〕
基板は、順次積層された第一の電極、光電変換層及び第二の電極を保持する部材である。本実施形態では、少なくとも第一の電極から光電変換される光が入射することが可能なように、光電変換すべき光の波長に対して透明な基板であることが望ましい。例えば、ガラス基板や樹脂基板等が好適に挙げられるが、軽量性と柔軟性の観点から透明樹脂フィルムを用いることが望ましい。本発明で透明基板として好ましく用いることができる透明樹脂フィルムには特に制限がなく、その材料、形状、構造、厚み等については公知のものの中から適宜選択することができる。例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)変性ポリエステル等のポリエステル系樹脂フィルム、ポリエチレン(PE)樹脂フィルム、ポリプロピレン(PP)樹脂フィルム、ポリスチレン樹脂フィルム、環状オレフィン系樹脂等のポリオレフィン類樹脂フィルム、ポリ塩化ビニル、ポリ塩化ビニリデン等のビニル系樹脂フィルム、ポリエーテルエーテルケトン(PEEK)樹脂フィルム、ポリサルホン(PSF)樹脂フィルム、ポリエーテルサルホン(PES)樹脂フィルム、ポリカーボネート(PC)樹脂フィルム、ポリアミド樹脂フィルム、ポリイミド樹脂フィルム、アクリル樹脂フィルム、トリアセチルセルロース(TAC)樹脂フィルム等を挙げることができるが、可視域の波長(380〜780nm)における透過率が80%以上である樹脂フィルムであれば、本発明に係る透明樹脂フィルムに好ましく適用することができる。中でも透明性、耐熱性、取り扱いやすさ、強度及びコストの点から、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルム、ポリエーテルサルホンフィルム、ポリカーボネートフィルムであることが好ましく、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルムであることがより好ましい。
〔substrate〕
The substrate is a member that holds the first electrode, the photoelectric conversion layer, and the second electrode that are sequentially stacked. In the present embodiment, it is desirable that the substrate be transparent with respect to the wavelength of light to be photoelectrically converted so that light that is photoelectrically converted from at least the first electrode can enter. For example, a glass substrate, a resin substrate, and the like are preferably used, but it is desirable to use a transparent resin film from the viewpoint of lightness and flexibility. There is no restriction | limiting in particular in the transparent resin film which can be preferably used as a transparent substrate by this invention, The material, a shape, a structure, thickness, etc. can be suitably selected from well-known things. For example, polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) modified polyester, polyethylene (PE) resin film, polypropylene (PP) resin film, polystyrene resin film, polyolefin resins such as cyclic olefin resin Film, vinyl resin film such as polyvinyl chloride, polyvinylidene chloride, polyether ether ketone (PEEK) resin film, polysulfone (PSF) resin film, polyether sulfone (PES) resin film, polycarbonate (PC) resin film, A polyamide resin film, a polyimide resin film, an acrylic resin film, a triacetyl cellulose (TAC) resin film, and the like can be given. If the resin film transmittance of 80% or more at ~780nm), can be preferably applied to a transparent resin film according to the present invention. Among these, from the viewpoint of transparency, heat resistance, ease of handling, strength and cost, it is preferably a biaxially stretched polyethylene terephthalate film, a biaxially stretched polyethylene naphthalate film, a polyethersulfone film, or a polycarbonate film, and biaxially stretched. More preferred are polyethylene terephthalate films and biaxially stretched polyethylene naphthalate films.

本発明に用いられる透明基材には、塗布液の濡れ性や接着性を確保するために、表面処理を施すことや易接着層を設けることができる。表面処理や易接着層については従来公知の技術を使用できる。例えば、表面処理としては、コロナ放電処理、火炎処理、紫外線処理、高周波処理、グロー放電処理、活性プラズマ処理、レーザー処理等の表面活性化処理を挙げることができる。また、易接着層としては、ポリエステル、ポリアミド、ポリウレタン、ビニル系共重合体、ブタジエン系共重合体、アクリル系共重合体、ビニリデン系共重合体、エポキシ系共重合体等を挙げることができる。透明樹脂フィルムが二軸延伸ポリエチレンテレフタレートフィルムである場合は、フィルムに隣接する易接着層の屈折率を1.57〜1.63とすることで、フィルム基材と易接着層との界面反射を低減して透過率を向上させることができるのでより好ましい。屈折率を調整する方法としては、酸化スズゾルや酸化セリウムゾル等の比較的屈折率の高い酸化物ゾルとバインダー樹脂との比率を適宜調整して塗設することで実施できる。易接着層は単層でもよいが、接着性を向上させるためには2層以上の構成にしてもよい。また、透明基材にはバリアコート層が予め形成されていてもよいし、透明導電層を転写する反対側にはハードコート層が予め形成されていてもよい。   The transparent substrate used in the present invention can be subjected to a surface treatment or an easy-adhesion layer in order to ensure the wettability and adhesion of the coating solution. A conventionally well-known technique can be used about a surface treatment or an easily bonding layer. For example, the surface treatment includes surface activation treatment such as corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment. Examples of the easy adhesion layer include polyester, polyamide, polyurethane, vinyl copolymer, butadiene copolymer, acrylic copolymer, vinylidene copolymer, and epoxy copolymer. When the transparent resin film is a biaxially stretched polyethylene terephthalate film, by making the refractive index of the easy adhesion layer adjacent to the film 1.57-1.63, the interface reflection between the film substrate and the easy adhesion layer can be achieved. Since it can reduce and can improve the transmittance | permeability, it is more preferable. The method for adjusting the refractive index can be carried out by appropriately adjusting the ratio of the oxide sol having a relatively high refractive index such as tin oxide sol or cerium oxide sol and the binder resin. The easy adhesion layer may be a single layer, but may be composed of two or more layers in order to improve adhesion. Moreover, the barrier coat layer may be formed in advance on the transparent substrate, or the hard coat layer may be formed in advance on the opposite side to which the transparent conductive layer is transferred.

〔第一の電極〕
第一の電極は、陰極、陽極は特に限定せず、素子構成により選択することができるが、本願では陽極となる。陽極として用いる場合、第一の電極12は、好ましくは300〜800nmの光を透過する電極である。材料としては、例えば、インジウムチンオキシド(ITO)、SnO、ZnO等の透明導電性金属酸化物、金、銀、白金等の金属薄膜、金属ナノワイヤ、カーボンナノチューブ、導電性高分子を用いることができる。
[First electrode]
The first electrode is not particularly limited to a cathode and an anode, and can be selected depending on the element configuration, but in the present application, it is an anode. When used as an anode, the first electrode 12 is preferably an electrode that transmits light of 300 to 800 nm. As the material, for example, transparent conductive metal oxides such as indium tin oxide (ITO), SnO 2 , ZnO, metal thin films such as gold, silver, and platinum, metal nanowires, carbon nanotubes, and conductive polymers are used. it can.

なお、図1に示すバルクヘテロ接合型の有機光電変換素子10では、光電変換層13が第一の電極12と第二の電極13とでサンドイッチされているが、一対の櫛歯状電極を光電変換層13の片面に配置するといった、バックコンタクト型の有機光電変換素子10が構成されてもよい。   In the bulk heterojunction type organic photoelectric conversion element 10 shown in FIG. 1, the photoelectric conversion layer 13 is sandwiched between the first electrode 12 and the second electrode 13. The back contact type organic photoelectric conversion element 10 may be configured such that it is disposed on one side of the layer 13.

〔光電変換層〕
光電変換層13は、光エネルギーを電気エネルギーに変換する層であって、p型半導体材料とn型半導体材料とを一様に混合したバルクヘテロジャンクション層を有して構成される。p型半導体材料は、相対的に電子供与体(ドナー)として機能し、n型半導体材料は、相対的に電子受容体(アクセプタ)として機能する。ここで、電子供与体及び電子受容体は、“光を吸収した際に、電子供与体から電子受容体に電子が移動し、正孔と電子のペア(電荷分離状態)を形成する電子供与体及び電子受容体”であり、電極のように単に電子を供与あるいは受容するものではなく、光反応によって、電子を供与あるいは受容するものである。
[Photoelectric conversion layer]
The photoelectric conversion layer 13 is a layer that converts light energy into electric energy, and includes a bulk heterojunction layer in which a p-type semiconductor material and an n-type semiconductor material are uniformly mixed. The p-type semiconductor material functions relatively as an electron donor (donor), and the n-type semiconductor material functions relatively as an electron acceptor (acceptor). Here, the electron donor and the electron acceptor are “an electron donor in which, when light is absorbed, electrons move from the electron donor to the electron acceptor to form a hole-electron pair (charge separation state)”. And an electron acceptor ”, which does not simply donate or accept electrons like an electrode, but donates or accepts electrons by a photoreaction.

本発明に用いられるp型半導体材料としては、種々の縮合多環芳香族化合物や共役系化合物が挙げられる。   Examples of the p-type semiconductor material used in the present invention include various condensed polycyclic aromatic compounds and conjugated compounds.

縮合多環芳香族化合物としては、例えば、アントラセン、テトラセン、ペンタセン、ヘキサセン、ヘプタセン、クリセン、ピセン、フルミネン、ピレン、ペロピレン、ペリレン、テリレン、クオテリレン、コロネン、オバレン、サーカムアントラセン、ビスアンテン、ゼスレン、ヘプタゼスレン、ピランスレン、ビオランテン、イソビオランテン、サーコビフェニル、アントラジチオフェン等の化合物、及びこれらの誘導体や前駆体が挙げられる。   As the condensed polycyclic aromatic compound, for example, anthracene, tetracene, pentacene, hexacene, heptacene, chrysene, picene, fluorene, pyrene, peropyrene, perylene, terylene, quaterylene, coronene, ovalene, sarkham anthracene, bisanthene, zestrene, heptazelene, Examples thereof include compounds such as pyranthrene, violanthene, isoviolanthene, cacobiphenyl, anthradithiophene, and derivatives and precursors thereof.

共役系化合物としては、例えば、ポリチオフェン及びそのオリゴマー、ポリピロール及びそのオリゴマー、ポリアニリン、ポリフェニレン及びそのオリゴマー、ポリフェニレンビニレン及びそのオリゴマー、ポリチエニレンビニレン及びそのオリゴマー、ポリアセチレン、ポリジアセチレン、テトラチアフルバレン化合物、キノン化合物、テトラシアノキノジメタン等のシアノ化合物、フラーレン及びこれらの誘導体あるいは混合物を挙げることができる。   Examples of the conjugated compound include polythiophene and its oligomer, polypyrrole and its oligomer, polyaniline, polyphenylene and its oligomer, polyphenylene vinylene and its oligomer, polythienylene vinylene and its oligomer, polyacetylene, polydiacetylene, tetrathiafulvalene compound, quinone Compounds, cyano compounds such as tetracyanoquinodimethane, fullerenes and derivatives or mixtures thereof.

また、特にポリチオフェン及びそのオリゴマーのうち、チオフェン6量体であるα−セクシチオフェンα,ω−ジヘキシル−α−セクシチオフェン、α,ω−ジヘキシル−α−キンケチオフェン、α,ω−ビス(3−ブトキシプロピル)−α−セクシチオフェン、等のオリゴマーが好適に用いることができる。   In particular, among polythiophene and oligomers thereof, thiophene hexamer, α-seccithiophene α, ω-dihexyl-α-sexualthiophene, α, ω-dihexyl-α-kinkethiophene, α, ω-bis (3- An oligomer such as butoxypropyl) -α-sexithiophene can be preferably used.

その他、高分子p型半導体の例としては、ポリアセチレン、ポリパラフェニレン、ポリピロール、ポリパラフェニレンスルフィド、ポリチオフェン、ポリフェニレンビニレン、ポリカルバゾール、ポリイソチアナフテン、ポリヘプタジイン、ポリキノリン、ポリアニリンなどが挙げられ、更には特開2006−36755号公報などの置換−無置換交互共重合ポリチオフェン、特開2007−51289号公報、特開2005−76030号公報、J.Amer.Chem.Soc.,2007,p4112、J.Amer.Chem.Soc.,2007,p7246などの縮環チオフェン構造を有するポリマー、WO2008/000664、Adv.Mater.,2007,p4160、Macromolecules,2007,Vol.40,p1981などのチオフェン共重合体などを挙げることができる。   Other examples of the polymer p-type semiconductor include polyacetylene, polyparaphenylene, polypyrrole, polyparaphenylene sulfide, polythiophene, polyphenylene vinylene, polycarbazole, polyisothianaphthene, polyheptadiyne, polyquinoline, polyaniline, and the like. Substituted-unsubstituted alternating copolymer polythiophenes such as JP-A-2006-36755, JP-A-2007-51289, JP-A-2005-76030, J. Org. Amer. Chem. Soc. , 2007, p4112, J.A. Amer. Chem. Soc. , 2007, p7246, etc., polymers having a condensed ring thiophene structure, WO2008 / 000664, Adv. Mater. , 2007, p4160, Macromolecules, 2007, Vol. Examples thereof include thiophene copolymers such as 40 and p1981.

さらに、ポルフィリンや銅フタロシアニン、テトラチアフルバレン(TTF)−テトラシアノキノジメタン(TCNQ)錯体、ビスエチレンテトラチアフルバレン(BEDTTTF)−過塩素酸錯体、BEDTTTF−ヨウ素錯体、TCNQ−ヨウ素錯体、等の有機分子錯体、C60、C70、C76、C78、C84等のフラーレン類、SWNT等のカーボンナノチューブ、メロシアニン色素類、ヘミシアニン色素類等の色素等、さらにポリシラン、ポリゲルマン等のσ共役系ポリマーや特開2000−260999号に記載の有機・無機混成材料も用いることができる。   Furthermore, porphyrin, copper phthalocyanine, tetrathiafulvalene (TTF) -tetracyanoquinodimethane (TCNQ) complex, bisethylenetetrathiafulvalene (BEDTTTTF) -perchloric acid complex, BEDTTTF-iodine complex, TCNQ-iodine complex, etc. Organic molecular complexes, fullerenes such as C60, C70, C76, C78 and C84, carbon nanotubes such as SWNT, dyes such as merocyanine dyes and hemicyanine dyes, σ-conjugated polymers such as polysilane and polygerman, and Organic / inorganic hybrid materials described in 2000-260999 can also be used.

これらのπ共役系材料のうちでも、ペンタセン等の縮合多環芳香族化合物、フラーレン類、縮合環テトラカルボン酸ジイミド類、金属フタロシアニン、金属ポルフィリンよりなる群から選ばれた少なくとも1種が好ましい。また、ペンタセン類がより好ましい。   Among these π-conjugated materials, at least one selected from the group consisting of condensed polycyclic aromatic compounds such as pentacene, fullerenes, condensed ring tetracarboxylic acid diimides, metal phthalocyanines, and metal porphyrins is preferable. Further, pentacenes are more preferable.

ペンタセン類の例としては、国際公開第03/16599号パンフレット、国際公開第03/28125号パンフレット、米国特許第6,690,029号明細書、特開2004−107216号公報等に記載の置換基をもったペンタセン誘導体、米国特許出願公開第2003/136964号明細書等に記載のペンタセンプレカーサ、J.Amer.Chem.Soc.,Vol.127.No.14.4986等に記載の置換アセン類及びその誘導体等が挙げられる。   Examples of pentacenes include substituents described in International Publication No. 03/16599, International Publication No. 03/28125, US Pat. No. 6,690,029, Japanese Patent Application Laid-Open No. 2004-107216, and the like. A pentacene derivative described in U.S. Patent Application Publication No. 2003/136964 and the like; Amer. Chem. Soc. , Vol. 127. No. And substituted acenes described in 14.4986 and the like and derivatives thereof.

これらの化合物の中でも、溶液プロセスが可能な程度に有機溶剤への溶解性が高く、かつ乾燥後は結晶性薄膜を形成し、高い移動度を達成することが可能な化合物が好ましい。そのような化合物としては、J.Amer.Chem.Soc.,Vol.123、p9482、J.Amer.Chem.Soc.,Vol.130(2008)、No.9、2706等に記載のトリアルキルシリルエチニル基で置換されたアセン系化合物、及び米国特許出願公開第2003/136964号明細書等に記載のペンタセンプレカーサ、特開2007−224019号公報等に記載のポルフィリンプレカーサー等のような、プレカーサータイプの化合物(前駆体)が挙げられる。これらの中でも、後者のプリカーサータイプの方が好ましく用いることができる。これは、プリカーサータイプの方が、変換後に不溶化するため、バルクヘテロジャンクション層の上に正孔輸送層・電子輸送層・正孔ブロック層・電子ブロック層等を溶液プロセスで形成する際に、バルクヘテロジャンクション層が溶解してしまうことがなくなるため、前記の層を構成する材料とバルクヘテロジャンクション層を形成する材料とが混合することがなくなり、一層の効率向上・寿命向上を達成することができるためである。   Among these compounds, compounds that have high solubility in organic solvents to the extent that solution processing is possible, can form a crystalline thin film after drying, and can achieve high mobility are preferable. Such compounds include those described in J. Org. Amer. Chem. Soc. , Vol. 123, p9482; Amer. Chem. Soc. , Vol. 130 (2008), no. No. 9, 2706 and the like, acene-based compounds substituted with a trialkylsilylethynyl group, a pentacene precursor described in U.S. Patent Application Publication No. 2003/136964, etc., and Japanese Patent Application Laid-Open No. 2007-224019 Examples include precursor type compounds (precursors) such as porphyrin precursors. Among these, the latter precursor type can be preferably used. This is because the precursor type is insolubilized after conversion, so when forming the hole transport layer, electron transport layer, hole block layer, electron block layer, etc. on the bulk hetero junction layer by solution process, bulk hetero junction This is because the layer does not dissolve and the material constituting the layer and the material forming the bulk heterojunction layer are not mixed, and further improvement in efficiency and life can be achieved. .

本発明の有機光電変換素子のp型半導体材料としては、p型半導体材料前駆体に熱・光・放射線・化学反応を引き起こす化合物の蒸気に晒す、等の方法によって化学構造変化を起こし、p型半導体材料に変換された化合物であることが好ましい。中でも熱によって科学構造変化を起こす化合物が好ましい。   As a p-type semiconductor material of the organic photoelectric conversion element of the present invention, a chemical structure change is caused by a method such as exposing a precursor of a p-type semiconductor material to a vapor of a compound that causes heat, light, radiation, or a chemical reaction. A compound converted into a semiconductor material is preferred. Among them, compounds that cause a scientific structural change by heat are preferred.

n型半導体材料の例としては、フラーレン、オクタアザポルフィリン、p型半導体のパーフルオロ体(パーフルオロペンタセンやパーフルオロフタロシアニン等)、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等の芳香族カルボン酸無水物やそのイミド化物を骨格として含む、高分子化合物が挙げられる。   Examples of n-type semiconductor materials include fullerene, octaazaporphyrin, p-type semiconductor perfluoro compounds (perfluoropentacene, perfluorophthalocyanine, etc.), naphthalenetetracarboxylic anhydride, naphthalenetetracarboxylic diimide, perylenetetracarboxylic acid Examples thereof include polymer compounds containing an anhydride, an aromatic carboxylic acid anhydride such as perylenetetracarboxylic acid diimide, or an imidized product thereof as a skeleton.

中でも、フラーレン含有高分子化合物が好ましい。フラーレン含有高分子化合物としては、フラーレンC60、フラーレンC70、フラーレンC76、フラーレンC78、フラーレンC84、フラーレンC240、フラーレンC540、ミックスドフラーレン、フラーレンナノチューブ、多層ナノチューブ、単層ナノチューブ、ナノホーン(円錐型)等を骨格に持つ高分子化合物が挙げられる。フラーレン含有高分子化合物では、フラーレンC60を骨格に持つ高分子化合物(誘導体)が好ましい。   Among these, fullerene-containing polymer compounds are preferable. Fullerene-containing polymer compounds include fullerene C60, fullerene C70, fullerene C76, fullerene C78, fullerene C84, fullerene C240, fullerene C540, mixed fullerene, fullerene nanotubes, multi-walled nanotubes, single-walled nanotubes, nanohorns (conical type), etc. Examples thereof include a polymer compound having a skeleton. As the fullerene-containing polymer compound, a polymer compound (derivative) having fullerene C60 as a skeleton is preferable.

フラーレン含有ポリマーとしては、大別してフラーレンが高分子主鎖からペンダントされたポリマーと、フラーレンが高分子主鎖に含有されるポリマーとに大別されるが、フラーレンがポリマーの主鎖に含有されている化合物が好ましい。これは、フラーレンが主鎖に含有されているポリマーは、ポリマーが分岐構造を有さないため、固体化した際に高密度なパッキングができ、結果として高い移動度を得ることができるためではないかと推定される。   The fullerene-containing polymers are roughly classified into polymers in which fullerene is pendant from a polymer main chain and polymers in which fullerene is contained in the polymer main chain. Fullerene is contained in the polymer main chain. Are preferred. This is not because fullerene is contained in the main chain because the polymer does not have a branched structure, so that it can be packed with high density when solidified, resulting in high mobility. It is estimated that.

電子受容体と電子供与体とが混合されたバルクヘテロジャンクション層の形成方法としては、蒸着法、塗布法(キャスト法、スピンコート法を含む)等を例示することができる。この中で、特に塗布法が好ましい。   Examples of a method for forming a bulk heterojunction layer in which an electron acceptor and an electron donor are mixed include a vapor deposition method and a coating method (including a casting method and a spin coating method). Among these, a coating method is particularly preferable.

そして、光電変換部のバルクヘテロジャンクション層は、光電変換率を向上すべく、製造工程中において所定の温度でアニール処理され、微視的に一部結晶化されている。   Then, the bulk heterojunction layer of the photoelectric conversion part is annealed at a predetermined temperature during the manufacturing process in order to improve the photoelectric conversion rate, and is partially crystallized microscopically.

光電変換素子では、基板を介して第一の電極から入射された光は、光電変換部のバルクヘテロジャンクション層における電子受容体あるいは電子供与体で吸収され、電子供与体から電子受容体に電子が移動し、正孔と電子のペア(電荷分離状態)が形成される。発生した電荷は、内部電界、例えば、第一の電極と第二の電極の仕事関数が異なる場合では第一の電極と第二の電極との電位差によって、電子は、電子受容体間を通り、また正孔は、電子供与体間を通り、それぞれ異なる電極へ運ばれ、光電流が検出される。例えば、第一の電極の仕事関数が第二の電極の仕事関数よりも大きい場合では、電子は、第一の電極へ、正孔は、第二の電極へ輸送される。なお、仕事関数の大小が逆転すれば電子と正孔は、これとは逆方向に輸送される。また、第一の電極と第二の電極との間に電位をかけることにより、電子と正孔の輸送方向を制御することもできる。   In the photoelectric conversion element, light incident from the first electrode through the substrate is absorbed by the electron acceptor or electron donor in the bulk heterojunction layer of the photoelectric conversion unit, and electrons move from the electron donor to the electron acceptor. Thus, a hole-electron pair (charge separation state) is formed. The generated charge is caused by an internal electric field, for example, in the case where the work functions of the first electrode and the second electrode are different, due to the potential difference between the first electrode and the second electrode, the electrons pass between the electron acceptors, The holes pass between the electron donors and are carried to different electrodes, and a photocurrent is detected. For example, when the work function of the first electrode is greater than the work function of the second electrode, electrons are transported to the first electrode and holes are transported to the second electrode. If the magnitude of the work function is reversed, electrons and holes are transported in the opposite direction. In addition, the transport direction of electrons and holes can be controlled by applying a potential between the first electrode and the second electrode.

光電変換部は、電子受容体と電子供与体とが均一に混在された単一層で構成してもよいが、電子受容体と電子供与体との混合比を変えた複数層で構成してもよい。   The photoelectric conversion unit may be composed of a single layer in which an electron acceptor and an electron donor are uniformly mixed, or may be composed of a plurality of layers in which the mixing ratio of the electron acceptor and the electron donor is changed. Good.

電子受容体と電子供与体とが混合されたバルクヘテロジャンクション層の形成方法としては、蒸着法、塗布法(キャスト法、スピンコート法を含む)等を例示することができる。このうち、前述の正孔と電子が電荷分離する界面の面積を増大させ、高い光電変換効率を有する素子を作製するためには、塗布法が好ましい。塗布後は残留溶媒及び水分、ガスの除去、及び前述のような半導体材料の化学反応を引き起こすために加熱を行うことが好ましい。   Examples of a method for forming a bulk heterojunction layer in which an electron acceptor and an electron donor are mixed include a vapor deposition method and a coating method (including a casting method and a spin coating method). Among these, the coating method is preferable in order to increase the area of the interface where charges and electrons are separated from each other as described above and to produce a device having high photoelectric conversion efficiency. After application, it is preferable to perform heating in order to cause removal of residual solvent, moisture and gas, and chemical reaction of the semiconductor material as described above.

〔中間層〕
また、上述のバルクヘテロ接合型の有機光電変換素子は、順次に基板上に積層された第一の電極、バルクヘテロジャンクション層の光電変換部及び第二の電極で構成されたが、これに限られず、例えば第一の電極や第二の電極と光電変換部との間に正孔輸送層、電子輸送層、正孔ブロック層、電子ブロック層、あるいは平滑化層等の他の層を有してバルクヘテロ接合型の有機光電変換素子が構成されてもよい。これらの中でも、バルクヘテロジャンクション層と陽極(通常、第一の電極側)との中間には正孔輸送層または電子ブロック層を、陰極(通常、第二の電極側)との中間には電子輸送層または正孔ブロック層を形成することで、バルクヘテロジャンクション層で発生した電荷をより効率的に取り出すことが可能となるため、これらの層を有していることが好ましい。
[Middle layer]
In addition, the above-described bulk heterojunction type organic photoelectric conversion element is composed of the first electrode, the photoelectric conversion part of the bulk heterojunction layer, and the second electrode sequentially stacked on the substrate, but is not limited thereto. For example, there are other layers such as a hole transport layer, an electron transport layer, a hole block layer, an electron block layer, or a smoothing layer between the first electrode or the second electrode and the photoelectric conversion portion, A junction-type organic photoelectric conversion element may be configured. Among these, a hole transport layer or an electron blocking layer is intermediate between the bulk heterojunction layer and the anode (usually the first electrode side), and electron transport is intermediate between the cathode (usually the second electrode side). By forming the layer or the hole blocking layer, it is possible to more efficiently extract charges generated in the bulk heterojunction layer. Therefore, it is preferable to include these layers.

〔正孔輸送層〕
正孔輸送層(電子ブロック層)として好ましく用いられる材料としては、スタルクヴイテック社製、商品名BaytronP等のPEDOT、ポリアニリン及びそのドープ材料、特開平5−271166号公報等に記載のトリアリールアミン系化合物、WO2006/019270号パンフレット等に記載のシアン化合物、また酸化モリブデン、酸化ニッケル、酸化タングステン等の金属酸化物等を用いることができる。また、バルクヘテロジャンクション層に用いたp型半導体材料単体からなる層を用いることもできる。これらの層を形成する手段としては、溶液塗布法で形成することが好ましい。
(Hole transport layer)
Examples of the material preferably used as the hole transport layer (electron block layer) include PEDOT such as trade name BaytronP, polyaniline and its doped material, triarylamine described in JP-A-5-271166, etc. Further, cyanide compounds described in WO 2006/019270 pamphlet and the like, metal oxides such as molybdenum oxide, nickel oxide, and tungsten oxide can be used. A layer made of a single p-type semiconductor material used for the bulk heterojunction layer can also be used. The means for forming these layers is preferably formed by a solution coating method.

〔電子輸送層〕
また電子輸送層(正孔ブロック層)としては、オクタアザポルフィリン、p型半導体のパーフルオロ体(パーフルオロペンタセンやパーフルオロフタロシアニン等)、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等のn型半導体材料、及び酸化チタン、酸化亜鉛、酸化ガリウム等のn型無機酸化物及びフッ化リチウム、フッ化ナトリウム、フッ化セシウム等のアルカリ金属化合物等を用いることができる。また、バルクヘテロジャンクション層に用いたn型半導体材料単体からなる層を用いることもできる。これらの層を形成する手段としては、真空蒸着法、溶液塗布法のいずれであってもよいが、好ましくは溶液塗布法である。
(Electron transport layer)
As the electron transport layer (hole blocking layer), octaazaporphyrin, p-type semiconductor perfluoro (perfluoropentacene, perfluorophthalocyanine, etc.), naphthalenetetracarboxylic anhydride, naphthalenetetracarboxylic diimide, perylenetetra N-type semiconductor materials such as carboxylic acid anhydrides and perylenetetracarboxylic acid diimides, and n-type inorganic oxides such as titanium oxide, zinc oxide and gallium oxide, and alkali metal compounds such as lithium fluoride, sodium fluoride and cesium fluoride Etc. can be used. A layer made of a single n-type semiconductor material used for the bulk heterojunction layer can also be used. The means for forming these layers may be either a vacuum deposition method or a solution coating method, but is preferably a solution coating method.

〔タンデム型構成〕
太陽光利用率(光電変換効率)の向上を目的として、光電変換素子を積層した、タンデム型の構成としてもよい。タンデム型構成の場合、基板上に、順次第一の電極、第一の光電変換部を積層した後、電荷再結合層を積層した後、第二の光電変換部、次いで第二の電極を積層することで、タンデム型の構成とすることができる。第二の光電変換部は、第一の光電変換部の吸収スペクトルと同じスペクトルを吸収する層でもよいし、異なるスペクトルを吸収する層でもよいが、好ましくは異なるスペクトルを吸収する層である。また、電荷再結合層の材料としては、透明性と導電性を併せ持つ化合物を用いた層であることが好ましく、ITO、AZO、FTO、酸化チタン等の透明金属酸化物、Ag、Al、Au等の非常に薄い金属層、PEDOT:PSS、ポリアニリン等の導電性高分子材料等が好ましい。
[Tandem configuration]
For the purpose of improving the sunlight utilization rate (photoelectric conversion efficiency), a tandem configuration in which photoelectric conversion elements are stacked may be employed. In the case of the tandem configuration, the first electrode and the first photoelectric conversion unit are sequentially stacked on the substrate, the charge recombination layer is stacked, and then the second photoelectric conversion unit and then the second electrode are stacked. By doing so, a tandem configuration can be obtained. The second photoelectric conversion unit may be a layer that absorbs the same spectrum as the absorption spectrum of the first photoelectric conversion unit, or may be a layer that absorbs a different spectrum, but is preferably a layer that absorbs a different spectrum. The material of the charge recombination layer is preferably a layer using a compound having both transparency and conductivity, such as transparent metal oxides such as ITO, AZO, FTO, and titanium oxide, Ag, Al, Au, etc. A very thin metal layer, a conductive polymer material such as PEDOT: PSS, polyaniline, and the like are preferable.

〔封止〕
また、作製した有機光電変換素子が環境中の酸素、水分等で劣化しないために、公知の手法によって封止することが好ましい。例えば、アルミまたはガラスでできたキャップを接着剤によって接着することによって封止する手法、アルミニウム、酸化ケイ素、酸化アルミニウム等のガスバリア層が形成されたプラスチックフィルムと有機光電変換素子上10を接着剤で貼合する手法、ガスバリア性の高い有機高分子材料(ポリビニルアルコール等)をスピンコートする方法、ガスバリア性の高い無機薄膜(酸化ケイ素、酸化アルミニウム等)を直接堆積する方法、及びこれらを複合的に積層する方法等を挙げることができる。
[Sealing]
Moreover, it is preferable to seal by the well-known method so that the produced organic photoelectric conversion element may not deteriorate with oxygen, moisture, etc. in the environment. For example, a method of sealing a cap made of aluminum or glass by bonding with an adhesive, a plastic film on which a gas barrier layer such as aluminum, silicon oxide, or aluminum oxide is formed and the organic photoelectric conversion element top 10 with an adhesive A method of bonding, a method of spin-coating an organic polymer material with high gas barrier properties (polyvinyl alcohol, etc.), a method of directly depositing an inorganic thin film with high gas barrier properties (silicon oxide, aluminum oxide, etc.), and a combination of these The method of laminating can be mentioned.

更には、バリア層を透過した水分に対し、ゲッターを梱包した形で封止する構成も本発明において好ましく用いることができる。   Furthermore, the structure which seals with the form which packed the getter with respect to the water | moisture content which permeate | transmitted the barrier layer can also be used preferably in this invention.

実施例1
(有機光電変換素子SC−101の作製)
ガラス基板上に、インジウム・スズ酸化物(ITO)透明導電膜を110nm堆積したもの(シート抵抗13Ω/□)を、通常のフォトリソグラフィ技術と塩酸エッチングとを用いて1cm幅にパターニングして、第一の電極を形成した。
Example 1
(Preparation of organic photoelectric conversion element SC-101)
An indium tin oxide (ITO) transparent conductive film deposited on a glass substrate with a thickness of 110 nm (sheet resistance 13 Ω / □) is patterned to a width of 1 cm using a normal photolithography technique and hydrochloric acid etching. One electrode was formed.

パターン形成した第一の電極を、界面活性剤と超純水による超音波洗浄、超純水による超音波洗浄の順で洗浄後、窒素による乾燥を行い、最後に紫外線オゾン洗浄を行った。   The patterned first electrode was cleaned in the order of ultrasonic cleaning with a surfactant and ultrapure water, followed by ultrasonic cleaning with ultrapure water, dried with nitrogen, and finally with ultraviolet ozone cleaning.

この透明基板上に、導電性高分子であるBaytron P4083(H.C.スタルク社製)を膜厚50nmになるように塗布した後、乾燥させ正孔輸送層を成膜した。   On this transparent substrate, Baytron P4083 (manufactured by HC Starck), which is a conductive polymer, was applied to a film thickness of 50 nm and then dried to form a hole transport layer.

これ以降は、基板をグローブボックス中に持ち込み、窒素雰囲気下で作業した。   After this, the substrate was brought into the glove box and worked under a nitrogen atmosphere.

次に、クロロベンゼンにP3HT(プレクストロニクス社製:レジオレギュラーポリ−3−ヘキシルチオフェン)(Mw=52000、高分子p型半導体材料)とPCBM(フロンティアカーボン:6,6−フェニル−C61−ブチリックアシッドメチルエステル)(Mw=911、低分子n型半導体材料)を3.0質量%になるように1:1で混合した液を調製し、フィルターでろ過しながら膜厚200nmになるように塗布を行い、室温で放置して光電変換層を成膜した。 Next, P3HT (manufactured by Plextronics: regioregular poly-3-hexylthiophene) (Mw = 52000, high molecular p-type semiconductor material) and PCBM (frontier carbon: 6,6-phenyl-C 61 -butylic) were added to chlorobenzene. (Acid methyl ester) (Mw = 911, low molecular weight n-type semiconductor material) prepared in a ratio of 1: 1 so as to be 3.0% by mass, and applied to a film thickness of 200 nm while filtering through a filter. And allowed to stand at room temperature to form a photoelectric conversion layer.

Figure 0005359255
Figure 0005359255

次に、エタノールにTi−イソプロポキシドを0.05mol/lになるように溶解した液を調製し、マスキングした後、膜厚20nmになるように塗布を行い、水蒸気量を調節した大気中放置して電子輸送層を成膜した。   Next, a solution in which Ti-isopropoxide is dissolved in ethanol so as to have a concentration of 0.05 mol / l is prepared, masked, and then coated so as to have a film thickness of 20 nm, and left in the atmosphere in which the amount of water vapor is adjusted. Then, an electron transport layer was formed.

次に、作製した素子を真空蒸着装置内に設置して、1cm幅のシャドウマスクをセットし、1×10−3Pa以下にまで真空蒸着機内を減圧した後、アルミニウムと銀を1:9質量%の割合で合計膜厚が100nmになるように共蒸着し、第二の電極を形成させた。 Next, the fabricated element was placed in a vacuum deposition apparatus, a 1 cm wide shadow mask was set, the inside of the vacuum deposition apparatus was depressurized to 1 × 10 −3 Pa or less, and aluminum and silver were added at 1: 9 mass. The second electrode was formed by co-evaporation so that the total film thickness was 100 nm at a rate of%.

得られた有機光電変換素子SC−101は、窒素雰囲気下でガラスの封止缶とUV硬化樹脂を用いて封止を行った。   The obtained organic photoelectric conversion element SC-101 was sealed using a glass sealing can and a UV curable resin in a nitrogen atmosphere.

(有機光電変換素子SC−102の作製)
有機光電変換素子SC−101の作製において、アルミニウムと金を1:9質量%の割合で合計膜厚が100nmになるように共蒸着し、第二の電極を形成させた以外は有機光電変換素子SC−101と同様にして、有機光電変換素子SC−102を得た。
(Preparation of organic photoelectric conversion element SC-102)
In the production of the organic photoelectric conversion element SC-101, an organic photoelectric conversion element was formed except that aluminum and gold were co-deposited at a ratio of 1: 9% by mass so that the total film thickness was 100 nm and a second electrode was formed. Organic photoelectric conversion element SC-102 was obtained in the same manner as SC-101.

得られた有機光電変換素子SC−102は、窒素雰囲気下でガラスの封止缶とUV硬化樹脂を用いて封止を行った。   The obtained organic photoelectric conversion element SC-102 was sealed using a glass sealing can and a UV curable resin in a nitrogen atmosphere.

(有機光電変換素子SC−103の作製)
有機光電変換素子SC−101の作製において、カルシウムと銀を1:9質量%の割合で合計膜厚が100nmになるように共蒸着し、第二の電極を形成させた以外は有機光電変換素子SC−101と同様にして、有機光電変換素子SC−103を得た。
(Preparation of organic photoelectric conversion element SC-103)
In the production of the organic photoelectric conversion element SC-101, the organic photoelectric conversion element was formed except that the second electrode was formed by co-evaporating calcium and silver at a ratio of 1: 9% by mass so that the total film thickness was 100 nm. Organic photoelectric conversion element SC-103 was obtained in the same manner as SC-101.

得られた有機光電変換素子SC−103は、窒素雰囲気下でガラスの封止缶とUV硬化樹脂を用いて封止を行った。   The obtained organic photoelectric conversion element SC-103 was sealed using a glass sealing can and a UV curable resin in a nitrogen atmosphere.

(有機光電変換素子SC−104の作製)
有機光電変換素子SC−101の作製において、カルシウムと金を1:9質量%の割合で合計膜厚が100nmになるように共蒸着し、第二の電極を形成させた以外は有機光電変換素子SC−101と同様にして、有機光電変換素子SC−104を得た。
(Preparation of organic photoelectric conversion element SC-104)
In the production of the organic photoelectric conversion element SC-101, the organic photoelectric conversion element is formed except that calcium and gold are co-deposited at a ratio of 1: 9% by mass so that the total film thickness becomes 100 nm and the second electrode is formed. Organic photoelectric conversion element SC-104 was obtained in the same manner as SC-101.

得られた有機光電変換素子SC−104は、窒素雰囲気下でガラスの封止缶とUV硬化樹脂を用いて封止を行った。   The obtained organic photoelectric conversion element SC-104 was sealed using a glass sealing can and a UV curable resin in a nitrogen atmosphere.

(有機光電変換素子SC−105の作製)
有機光電変換素子SC−101の作製において、マグネシウムと銀を1:9質量%の割合で合計膜厚が100nmになるように共蒸着し、第二の電極を形成させた以外は有機光電変換素子SC−101と同様にして、有機光電変換素子SC−105を得た。
(Preparation of organic photoelectric conversion element SC-105)
In the production of the organic photoelectric conversion element SC-101, the organic photoelectric conversion element is formed except that magnesium and silver are co-deposited at a ratio of 1: 9% by mass so that the total film thickness becomes 100 nm and the second electrode is formed. Organic photoelectric conversion element SC-105 was obtained in the same manner as SC-101.

得られた有機光電変換素子SC−105は、窒素雰囲気下でガラスの封止缶とUV硬化樹脂を用いて封止を行った。   The obtained organic photoelectric conversion element SC-105 was sealed using a glass sealing can and a UV curable resin in a nitrogen atmosphere.

(有機光電変換素子SC−106の作製)
有機光電変換素子SC−101の作製において、リチウムと銀を1:9質量%の割合で合計膜厚が100nmになるように共蒸着し、第二の電極を形成させた以外は有機光電変換素子SC−101と同様にして、有機光電変換素子SC−106を得た。
(Preparation of organic photoelectric conversion element SC-106)
In the production of the organic photoelectric conversion element SC-101, an organic photoelectric conversion element was formed except that lithium and silver were co-deposited at a ratio of 1: 9% by mass so that the total film thickness was 100 nm to form a second electrode. Organic photoelectric conversion element SC-106 was obtained in the same manner as SC-101.

得られた有機光電変換素子SC−106は、窒素雰囲気下でガラスの封止缶とUV硬化樹脂を用いて封止を行った。   The obtained organic photoelectric conversion element SC-106 was sealed using a glass sealing can and a UV curable resin in a nitrogen atmosphere.

(有機光電変換素子SC−107の作製)
有機光電変換素子SC−101の作製において、アルミニウムを膜厚が5nmになるように蒸着してから、さらに、その上に銀を膜厚が75nmになるように蒸着することにより膜厚100nmの第二の電極を形成させた以外はSC−101の同様にして、有機光電変換素子SC−107を得た。
(Preparation of organic photoelectric conversion element SC-107)
In the production of the organic photoelectric conversion element SC-101, after depositing aluminum so that the film thickness is 5 nm, and further depositing silver so that the film thickness is 75 nm, a 100 nm-thick film is formed. Organic photoelectric conversion element SC-107 was obtained in the same manner as SC-101 except that the second electrode was formed.

得られた有機光電変換素子SC−107は、窒素雰囲気下でガラスの封止缶とUV硬化樹脂を用いて封止を行った。   The obtained organic photoelectric conversion element SC-107 was sealed using a glass sealing can and a UV curable resin in a nitrogen atmosphere.

(有機光電変換素子SC−108の作製)
有機光電変換素子SC−101の作製において、アルミニウムと銀を素子に近い部分はアルミニウムが多くなるように、素子から遠い部分は銀が多くなるように電流を調節しながら共蒸着することにより膜厚100nmの第二の電極を形成させた以外は有機光電変換素子SC−101と同様にして、有機光電変換素子SC−108を得た。
(Preparation of organic photoelectric conversion element SC-108)
In the production of the organic photoelectric conversion device SC-101, the film thickness is obtained by co-evaporating aluminum and silver so that the portion close to the device has a large amount of aluminum and the portion far from the device so that the amount of silver is increased while adjusting current. Organic photoelectric conversion element SC-108 was obtained in the same manner as organic photoelectric conversion element SC-101 except that a 100 nm second electrode was formed.

得られた有機光電変換素子SC−108は、窒素雰囲気下でガラスの封止缶とUV硬化樹脂を用いて封止を行った。   The obtained organic photoelectric conversion element SC-108 was sealed using a glass sealing can and a UV curable resin in a nitrogen atmosphere.

(有機光電変換素子SC−109の作製)
有機光電変換素子SC−101の作製において、アルミニウムを膜厚が100nmになるように蒸着し、第二の電極を形成させた以外は有機光電変換素子SC−101と同様にして、有機光電変換素子SC−109を得た。
(Preparation of organic photoelectric conversion element SC-109)
In the production of the organic photoelectric conversion element SC-101, an organic photoelectric conversion element was obtained in the same manner as the organic photoelectric conversion element SC-101 except that aluminum was deposited to a film thickness of 100 nm and a second electrode was formed. SC-109 was obtained.

得られた有機光電変換素子SC−109は、窒素雰囲気下でガラスの封止缶とUV硬化樹脂を用いて封止を行った。   The obtained organic photoelectric conversion element SC-109 was sealed using a glass sealing can and a UV curable resin in a nitrogen atmosphere.

(有機光電変換素子SC−110の作製)
有機光電変換素子SC−101の作製において、銀が100nmになるように蒸着し、第二の電極を形成させた以外は有機光電変換素子SC−101と同様にして、有機光電変換素子SC−110を得た。
(Preparation of organic photoelectric conversion element SC-110)
In the production of the organic photoelectric conversion element SC-101, an organic photoelectric conversion element SC-110 was formed in the same manner as the organic photoelectric conversion element SC-101 except that silver was deposited to 100 nm and a second electrode was formed. Got.

得られた有機光電変換素子SC−110は、窒素雰囲気下でガラスの封止缶とUV硬化樹脂を用いて封止を行った。   The obtained organic photoelectric conversion element SC-110 was sealed using a glass sealing can and a UV curable resin in a nitrogen atmosphere.

〔変換効率の評価〕
上述したように封止を行った有機光電変換素子に、1cm角のマスクを使用し、ソーラーシミュレーター(AM1.5Gフィルタ)の100mW/cmの強度の光を第一電極側から照射し、I−V特性を測定し、短絡電流密度Jsc(mA/cm)及び開放電圧Voc(V)、フィルファクターFFを測定した。またJsc、Voc、FFから式1に従ってエネルギー変換効率η(%)を求め、SC−110のエネルギー変換効率を100としたときの相対値を表1に示した。
[Evaluation of conversion efficiency]
A 1 cm square mask is used for the organic photoelectric conversion element that has been sealed as described above, and the solar simulator (AM1.5G filter) is irradiated with light having an intensity of 100 mW / cm 2 from the first electrode side. The -V characteristic was measured, and the short-circuit current density Jsc (mA / cm 2 ), the open circuit voltage Voc (V), and the fill factor FF were measured. Further, the energy conversion efficiency η (%) was obtained from Jsc, Voc, and FF according to Equation 1, and the relative values when the energy conversion efficiency of SC-110 is 100 are shown in Table 1.

式1 Jsc(mA/cm)×Voc(V)×FF=η(%)
〔温湿度テスト〕
上記で得られた有機光電変換素子の各々を、60℃、90%の温湿度環境に500時間置いた前後のエネルギー変換効率η(%)を上述の方法により求めた。温湿度テスト実施前のエネルギー変換効率に対する温湿度テスト実施後のエネルギー変換効率を測定し、保持率を式2に従って求め、表1に示した。
Formula 1 Jsc (mA / cm 2 ) × Voc (V) × FF = η (%)
[Temperature and humidity test]
The energy conversion efficiency η (%) before and after placing each of the organic photoelectric conversion elements obtained above in a temperature and humidity environment of 60 ° C. and 90% for 500 hours was determined by the method described above. The energy conversion efficiency after the temperature / humidity test was performed with respect to the energy conversion efficiency before the temperature / humidity test was measured, and the retention rate was determined according to Equation 2 and shown in Table 1.

式2 保持率(%)=温湿度テスト後のη/温湿度テスト前のη×100   Formula 2 Retention rate (%) = η after temperature / humidity test / η × 100 before temperature / humidity test

Figure 0005359255
Figure 0005359255

表1より、本発明の有機光電変換素子は、比較の有機光電変換素子に対して明らかに光電変換効率及び耐久性に優れていることがわかる。   From Table 1, it can be seen that the organic photoelectric conversion element of the present invention is clearly superior in photoelectric conversion efficiency and durability to the comparative organic photoelectric conversion element.

本発明に係るバルクヘテロジャンクション型の有機光電変換素子の基本構造を示す概略断面図である。It is a schematic sectional drawing which shows the basic structure of the bulk heterojunction type organic photoelectric conversion element which concerns on this invention. 本発明に係るバルクヘテロジャンクション型の有機光電変換素子の断面図である。It is sectional drawing of the bulk hetero junction type organic photoelectric conversion element which concerns on this invention.

符号の説明Explanation of symbols

11 基板
12 第一の電極
13 光電変換層
14 第二の電極
21 基板
22 第一の電極
23 正孔輸送層
24 光電変換層
25 電子輸送層
26 第二の電極
11 Substrate 12 First Electrode 13 Photoelectric Conversion Layer 14 Second Electrode 21 Substrate 22 First Electrode 23 Hole Transport Layer 24 Photoelectric Conversion Layer 25 Electron Transport Layer 26 Second Electrode

Claims (1)

第一の電極と第二の電極の間に、少なくとも光電変換層を有し構成される有機光電変換素子において、
前記第二の電極が仕事関数の大きい金属と仕事関数の小さい金属との組み合わせにより形成され、その組み合わせがAu−Al、Au−Ca、Ag−Al、Ag−Mg、Ag−Liから選ばれる1種であり、
前記仕事関数の小さい金属と前記仕事関数の大きい金属との混合比(質量%)が0.1:99.9から3:7の範囲であることを特徴とする有機光電変換素子。
In the organic photoelectric conversion element configured to have at least a photoelectric conversion layer between the first electrode and the second electrode,
The second electrode is formed of a combination of a metal having a high work function and a metal having a low work function, and the combination is selected from Au—Al, Au—Ca, Ag—Al, Ag—Mg, and Ag—Li 1 Tanedea is,
An organic photoelectric conversion element , wherein a mixing ratio (% by mass) of the metal having a low work function and the metal having a high work function is in a range of 0.1: 99.9 to 3: 7 .
JP2008323545A 2008-12-19 2008-12-19 Organic photoelectric conversion element Expired - Fee Related JP5359255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008323545A JP5359255B2 (en) 2008-12-19 2008-12-19 Organic photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008323545A JP5359255B2 (en) 2008-12-19 2008-12-19 Organic photoelectric conversion element

Publications (2)

Publication Number Publication Date
JP2010147276A JP2010147276A (en) 2010-07-01
JP5359255B2 true JP5359255B2 (en) 2013-12-04

Family

ID=42567377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008323545A Expired - Fee Related JP5359255B2 (en) 2008-12-19 2008-12-19 Organic photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP5359255B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104485422A (en) * 2014-11-21 2015-04-01 广西智通节能环保科技有限公司 Single-layer solar battery and preparing method of single-layer solar battery

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5636531B2 (en) * 2010-02-18 2014-12-10 リプレックス株式会社 Service system
JP5700044B2 (en) * 2010-07-06 2015-04-15 コニカミノルタ株式会社 Organic photoelectric conversion element and manufacturing method thereof
CN102315389A (en) * 2010-07-08 2012-01-11 海洋王照明科技股份有限公司 Single-layer organic solar cell and making method thereof
CN106469784B (en) * 2015-08-20 2019-04-02 清华大学 A kind of photodiode and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10340711A1 (en) * 2003-09-04 2005-04-07 Covion Organic Semiconductors Gmbh Electronic device containing organic semiconductors
US7985490B2 (en) * 2005-02-14 2011-07-26 Samsung Mobile Display Co., Ltd. Composition of conducting polymer and organic opto-electronic device employing the same
JP4875469B2 (en) * 2006-11-22 2012-02-15 独立行政法人科学技術振興機構 Photoelectric conversion element and solar cell using the element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104485422A (en) * 2014-11-21 2015-04-01 广西智通节能环保科技有限公司 Single-layer solar battery and preparing method of single-layer solar battery

Also Published As

Publication number Publication date
JP2010147276A (en) 2010-07-01

Similar Documents

Publication Publication Date Title
JP5397379B2 (en) Organic photoelectric conversion element and manufacturing method thereof
JP5488595B2 (en) Organic photoelectric conversion element
JP5447521B2 (en) Organic photoelectric conversion element, solar cell using the same, and optical sensor array
JP5682571B2 (en) Organic photoelectric conversion element
JPWO2010041687A1 (en) Organic photoelectric conversion element, solar cell, and optical sensor array
JP5098957B2 (en) Organic photoelectric conversion element
JP5515598B2 (en) Method for producing organic photoelectric conversion element and organic photoelectric conversion element
JP5673343B2 (en) Organic photoelectric conversion element and manufacturing method thereof
JP5862189B2 (en) Organic photoelectric conversion device and solar cell using the same
JP5444743B2 (en) Organic photoelectric conversion element
JP5699524B2 (en) Organic photoelectric conversion element and solar cell
JP5287137B2 (en) Manufacturing method of organic photoelectric conversion element
JP5493496B2 (en) Organic photoelectric conversion element, solar cell, and optical sensor array
JP5359255B2 (en) Organic photoelectric conversion element
JP5585066B2 (en) Organic thin film solar cell and method for manufacturing the same
JP2010251592A (en) Organic photoelectric conversion element and manufacturing method thereof
JP5447513B2 (en) Organic photoelectric conversion element, solar cell using the same, and optical sensor array
JP5375066B2 (en) Method for producing organic photoelectric conversion element, and organic photoelectric conversion element
JP5304448B2 (en) Organic photoelectric conversion element
JP5298961B2 (en) Manufacturing method of organic photoelectric conversion element
JP5098956B2 (en) Manufacturing method of organic photoelectric conversion element
JP5310230B2 (en) Organic photoelectric conversion element
JP5691449B2 (en) Organic photoelectric conversion element, solar cell using the same, and optical sensor array
JP5413055B2 (en) Organic photoelectric conversion element, solar cell using the same, and optical sensor array
JP2011124469A (en) Organic photoelectric conversion element, solar cell and optical sensor array using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111020

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130819

R150 Certificate of patent or registration of utility model

Ref document number: 5359255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees