JP5435063B2 - Method for producing composition for forming electrode of solar cell and method for forming the electrode - Google Patents
Method for producing composition for forming electrode of solar cell and method for forming the electrode Download PDFInfo
- Publication number
- JP5435063B2 JP5435063B2 JP2012083491A JP2012083491A JP5435063B2 JP 5435063 B2 JP5435063 B2 JP 5435063B2 JP 2012083491 A JP2012083491 A JP 2012083491A JP 2012083491 A JP2012083491 A JP 2012083491A JP 5435063 B2 JP5435063 B2 JP 5435063B2
- Authority
- JP
- Japan
- Prior art keywords
- dispersion
- weight
- nanoparticles
- silver
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
- Conductive Materials (AREA)
- Powder Metallurgy (AREA)
- Electrodes Of Semiconductors (AREA)
Description
本発明は、太陽電池の電極を形成するための組成物の製造方法と、この組成物を用いて太陽電池の電極を形成する方法に関するものである。 The present invention includes a method for producing a composition for forming an electrode of a solar cell, in which relates to how to form the electrodes of solar cell by using this composition.
従来、この種の電極の形成方法として、0.03μm以下の粒径の金属超微粒子を100〜200程度の低分子量の有機溶媒に分散させた溶液を光電変換半導体層に塗布・焼成することにより下層電極層を形成し、金属超微粒子の含有重量濃度が下層電極層の形成に用いた溶液と同じか或いは下層電極層の形成に用いた溶液より高い濃度の溶液を光電変換半導体層に塗布・焼成することにより上層電極層を形成する太陽電池の金属電極形成方法が開示されている(例えば、特許文献1参照。)。この金属電極形成方法では、金属超微粒子を分散させかつ粘度を10000cps程度に調整した溶液をスクリーン印刷法等により光電変換半導体層に塗布した後に、100〜250℃、好ましくは250℃の温度に30分以上保持して焼成することにより、金属電極(下層電極層又は上層電極層)を形成する。
このように構成された太陽電池の金属電極形成方法では、金属超微粒子を有機溶媒に分散させた溶液を光電変換半導体層に塗布した後に、100〜250℃の低温で焼結することにより、高真空プロセスを用いずに、高い反射率及び導電率を有しかつ大きな面積の金属電極を得られるようになっている。
Conventionally, as a method for forming this type of electrode, a solution obtained by dispersing ultrafine metal particles having a particle size of 0.03 μm or less in an organic solvent having a low molecular weight of about 100 to 200 is applied to a photoelectric conversion semiconductor layer and fired. Form a lower electrode layer, and apply a solution with a concentration of ultrafine metal particles equal to or higher than the solution used for forming the lower electrode layer to the photoelectric conversion semiconductor layer. A method for forming a metal electrode of a solar cell that forms an upper electrode layer by firing is disclosed (for example, see Patent Document 1). In this metal electrode forming method, a solution in which ultrafine metal particles are dispersed and the viscosity is adjusted to about 10,000 cps is applied to the photoelectric conversion semiconductor layer by a screen printing method or the like, and then the temperature is set to 100 to 250 ° C., preferably 250 ° C. A metal electrode (lower electrode layer or upper electrode layer) is formed by holding and baking for at least a minute.
In the method for forming a metal electrode of a solar cell configured in this way, after applying a solution in which metal ultrafine particles are dispersed in an organic solvent to a photoelectric conversion semiconductor layer, sintering is performed at a low temperature of 100 to 250 ° C. Without using a vacuum process, a metal electrode having a high reflectance and conductivity and a large area can be obtained.
上記従来の特許文献1に示された太陽電池の金属電極形成方法では、焼成後の金属電極中の金属超微粒子を安定化させるために、所定の導電性を確保しながら金属超微粒子を100〜200程度の低分子量の有機物で保護する必要がある。一方、有機溶媒に分散させた金属超微粒子を低温で焼結化させるために、この金属超微粒子のサイズを小さくすると、金属超微粒子の比表面積が増大し、上記有機物の占める割合が大きくなる。このため、上記従来の特許文献1に示された太陽電池の金属電極形成方法では、有機溶媒に分散させた金属超微粒子の低温焼結化は、上記有機物を熱により脱離、或いは分解(分離・燃焼)させなければ実現できず、特に有機溶媒に分散させた金属超微粒子を220℃以下で焼成して得られた金属電極について耐候性試験を行うと、具体的には、温度を100℃に保ちかつ湿度を50%に保った恒温恒湿槽に金属電極を1000時間収容すると、上記有機物が変質又は劣化して、導電性及び反射率が低下してしまう問題点があった。
本発明の目的は、長年使用しても高導電率及び高反射率を維持することができ、経年安定性に優れた電極を得ることができる、太陽電池の電極形成用組成物の製造方法並びに該組成物を用いた太陽電池用電極の形成方法を提供することにある。
本発明の別の目的は、130〜400℃という低温の焼成プロセスにより、長年使用しても高導電率及び高反射率を維持することができ、経年安定性に優れた電極を得ることができる、太陽電池の電極の形成方法を提供することにある。
In the conventional method for forming a metal electrode of a solar cell shown in Patent Document 1, in order to stabilize the metal ultrafine particles in the fired metal electrode, the metal ultrafine particles are added in an amount of 100 to 100 while ensuring predetermined conductivity. It is necessary to protect with an organic substance having a low molecular weight of about 200. On the other hand, if the size of the metal ultrafine particles is reduced in order to sinter the metal ultrafine particles dispersed in the organic solvent at a low temperature, the specific surface area of the metal ultrafine particles increases and the proportion of the organic matter increases. For this reason, in the conventional metal electrode forming method for solar cells shown in Patent Document 1, low-temperature sintering of metal ultrafine particles dispersed in an organic solvent is performed by desorbing or decomposing (separating) the organic matter by heat. If the weather resistance test is performed on a metal electrode obtained by firing metal ultrafine particles dispersed in an organic solvent at 220 ° C. or lower, specifically, the temperature is set to 100 ° C. When the metal electrode is housed in a constant temperature and humidity chamber maintained at 50% and humidity of 50% for 1000 hours, the organic matter is altered or deteriorated, resulting in a decrease in conductivity and reflectance.
An object of the present invention, even when used for many years can maintain a high conductivity and a high reflectance, it is possible to obtain an excellent electrode aging stability, a manufacturing method of an electrode forming composition for a solar cell as well as It is providing the formation method of the electrode for solar cells using this composition.
Another object of the present invention is that a high-conductivity and high reflectivity can be maintained even when used for many years by a low-temperature baking process of 130 to 400 ° C., and an electrode having excellent aging stability can be obtained. to provide a form how a solar cell electrode.
請求項1に係る発明は、金属ナノ粒子が76〜99重量%の銀ナノ粒子と1〜24重量%のNi、Sn、In、Zn、Cr又はMnからなる金属ナノ粒子を含有し、前記金属ナノ粒子はカルボニル基(-C=O)又はカルボニル基(-C=O)と水酸基(-OH)のいずれかを含む炭素骨格が炭素数3の有機分子主鎖の保護剤で化学修飾され、前記金属ナノ粒子が一次粒径10〜50nmの範囲内の金属ナノ粒子を数平均で71〜75%含有し、前記分散媒は前記電極形成用組成物を100重量%とするとき2〜10重量%の水と2〜63重量%のエタノールとを含有する太陽電池の電極形成用組成物の製造方法であって、硝酸銀を水に溶解して第1金属塩水溶液を調製する工程と、濃度10〜40%のクエン酸ナトリウムの水溶液に不活性ガスの気流中で粒状又は粉状の硫酸第一鉄を加えて溶解させて還元剤水溶液を調製する工程と、前記不活性ガス気流中で前記還元剤水溶液を撹拌しながら、前記還元剤水溶液の量の1/10以下の割合で反応温度が30〜60℃に保持されるように室温の前記第1金属塩水溶液を前記還元剤水溶液に滴下して混合して第1混合液を調製する工程と、前記第1混合液の撹拌を更に10〜300分間続けて銀コロイドからなる第1分散液を調製する工程と、前記第1分散液を室温で放置することにより沈降した銀ナノ粒子の凝集物をデカンテーション又は遠心分離法により分離する工程と、前記第1分散液から分離した固形分に水を加えて第1分散体の前駆体を得る工程と、前記第1分散体の前駆体を限外ろ過により脱塩処理する工程と、前記脱塩処理した第1分散体の前駆体をエタノールで置換洗浄して銀の含有量を2.5〜50重量%に調整する工程と、前記エタノールで置換洗浄した第1分散体の前駆体を遠心分離機を用いこの遠心分離機の遠心力を調整して粗粒子を分離することにより全ての銀粒子100%に対する一次粒径10〜50nmの範囲内の銀ナノ粒子を数平均で70%以上含有する第1分散体を得る工程と、塩化ニッケル、二塩化錫、硝酸インジウム、塩化亜鉛、硫酸クロム又は硫酸マンガンを水に溶解して第2金属塩水溶液を調製する工程と、前記不活性ガス気流中で前記還元剤水溶液を撹拌しながら、前記還元剤水溶液の量の1/10以下の割合で反応温度が30〜60℃に保持されるように室温の前記第2金属塩水溶液を前記還元剤水溶液に滴下して混合して第2混合液を調製する工程と、前記第2混合液の撹拌を更に10〜300分間続けてNi、Sn、In、Zn、Cr又はMnの金属コロイドからなる第2分散液を調製する工程と、前記第2分散液を室温で放置することにより沈降したNi、Sn、In、Zn、Cr又はMnの金属ナノ粒子の凝集物をデカンテーション又は遠心分離法により分離する工程と、前記第2分散液から分離した固形分に水を加えて第2分散体の前駆体を得る工程と、前記第2分散体の前駆体を限外ろ過により脱塩処理する工程と、前記脱塩処理した前記第2分散体の前駆体をエタノールで置換洗浄してNi、Sn、In、Zn、Cr又はMnの含有量を2.5〜50重量%に調整する工程と、前記エタノールで置換洗浄した第2分散体の前駆体を遠心分離機を用いこの遠心分離機の遠心力を調整して粗粒子を分離することにより全てのNi、Sn、In、Zn、Cr又はMnの金属ナノ粒子100%に対する一次粒径10〜50nmの範囲内のNi、Sn、In、Zn、Cr又はMnの金属ナノ粒子を数平均で70%以上含有する第2分散体を得る工程と、76〜99重量%の前記第1分散体と1〜24重量%の前記第2分散体とを前記第1及び第2分散体の合計含有量が100重量%となるように混合することにより太陽電池の電極形成用組成物を得る工程とを含むことを特徴とする。
この請求項1に記載された組成物では、一次粒径10〜50nmとサイズの比較的大きな金属ナノ粒子を多く含むため、金属ナノ粒子の比表面積が減少し、保護剤の占める割合が小さくなるため、この組成物を用いて太陽電池の電極を形成すると、上記保護剤中の有機分子が焼成時の熱により脱離し又は分解し、或いは離脱しかつ分解することにより、実質的に有機物を含有しない銀を主成分とする電極が得られる。
The invention according to claim 1, containing metal nanoparticles metallic nanoparticles consist 76-99 wt% of silver nanoparticles and 1 to 24 wt% of Ni, Sn, In, Zn, Cr or Mn, the metal The nanoparticles are chemically modified with a protective agent for the organic molecular main chain having 3 carbon atoms, the carbon skeleton containing either a carbonyl group (—C═O) or a carbonyl group (—C═O) and a hydroxyl group (—OH) , 2 to 10 parts by weight when the metal nanoparticles contained 71 to 75% by number average metal nanoparticles in the range of primary particle diameter of 10 to 50 nm, the dispersion medium to 100 wt% of the electrode forming composition % of water and 2-63 a method of manufacturing a weight% of ethanol and the electrode forming composition to that solar cell containing comprising the steps of preparing a first aqueous metal salt solution and silver nitrate was dissolved in water, granular or in a stream of inert gas to an aqueous solution of a concentration 10-40% of sodium citrate A step of preparing a reducing agent aqueous solution by adding and dissolving a shaped ferrous sulfate, and a ratio of 1/10 or less of the amount of the reducing agent aqueous solution while stirring the reducing agent aqueous solution in the inert gas stream preparing a first mixture was mixed dropwise with the first metal salt aqueous solution at room temperature to the reducing agent aqueous solution so that the reaction temperature is held at 30 to 60 ° C. in, of the first mixture Stirring is further continued for 10 to 300 minutes to prepare a first dispersion composed of silver colloid, and agglomeration of silver nanoparticles precipitated by leaving the first dispersion at room temperature is decanted or centrifuged. And a step of adding water to the solid content separated from the first dispersion to obtain a precursor of the first dispersion, and desalting the precursor of the first dispersion by ultrafiltration. And before the desalted first dispersion And adjusting the content of silver in the 2.5 to 50% by weight substituted washed precursor with ethanol, the centrifuge using a centrifugal separator a precursor of the first dispersion was replaced washed with the ethanol The process of obtaining the 1st dispersion which contains 70% or more of silver nanoparticles in the range of the primary particle diameter of 10-50 nm with respect to 100% of all the silver particles by adjusting the centrifugal force of this, and isolate | separating coarse particles And preparing a second metal salt aqueous solution by dissolving nickel chloride, tin dichloride, indium nitrate, zinc chloride, chromium sulfate or manganese sulfate in water, and stirring the reducing agent aqueous solution in the inert gas stream Meanwhile, the second metal salt aqueous solution at room temperature was added dropwise to the reducing agent aqueous solution and mixed so that the reaction temperature was maintained at 30 to 60 ° C. at a ratio of 1/10 or less of the amount of the reducing agent aqueous solution. Work to prepare the second mixture Stirring the second mixed solution for another 10 to 300 minutes to prepare a second dispersion composed of a metal colloid of Ni, Sn, In, Zn, Cr or Mn, and the second dispersion at room temperature Separating agglomerates of Ni, Sn, In, Zn, Cr, or Mn metal nanoparticles that have settled by standing at decantation or centrifuging, and water in the solid content separated from the second dispersion To obtain a precursor of the second dispersion, a step of desalting the precursor of the second dispersion by ultrafiltration, and a precursor of the second dispersion subjected to the desalting treatment to ethanol And a step of adjusting the content of Ni, Sn, In, Zn, Cr or Mn to 2.5 to 50% by weight, and a precursor of the second dispersion that has been subjected to substitution washing with ethanol. The centrifugal force of this centrifuge By adjusting and separating coarse particles, Ni, Sn, In, Zn, Cr or Ni within a range of primary particle size of 10 to 50 nm with respect to 100% of all Ni, Sn, In, Zn, Cr or Mn metal nanoparticles A step of obtaining a second dispersion containing 70% or more of Mn metal nanoparticles, and 76 to 99% by weight of the first dispersion and 1 to 24% by weight of the second dispersion. And a step of obtaining a composition for forming an electrode of a solar cell by mixing so that the total content of the first and second dispersions is 100% by weight .
In the composition described in claim 1, since it contains a large amount of metal nanoparticles having a primary particle size of 10 to 50 nm and a relatively large size, the specific surface area of the metal nanoparticles is reduced and the proportion of the protective agent is reduced. Therefore, when an electrode of a solar cell is formed using this composition, the organic molecules in the protective agent are desorbed or decomposed by the heat at the time of baking, or are separated and decomposed to substantially contain organic matter. An electrode mainly composed of silver is obtained.
請求項2に係る発明は、請求項1記載の方法により製造された電極形成用組成物をシリコン、ガラス、ポリイミド又はPETフィルムのいずれかの基材上にスプレーコーティング法、ディスペンサコーティング法又はオフセット印刷法のいずれかの湿式塗工法で塗工して太陽電池用電極を形成する方法である。 Invention, a spray coating method on any substrate of claim 1 Symbol placement silicon electrodes forming composition prepared by the method of, glass, polyimide or PET film, dispenser coating or offset according to claim 2 It is a method of forming an electrode for a solar cell by coating by any wet coating method of the printing method .
請求項3に係る発明は、請求項1記載の方法により製造された電極形成用組成物をシリコン、ガラス、ポリイミド又はPETフィルムのいずれかの基材上にスプレーコーティング法、ディスペンサコーティング法又はオフセット印刷法のいずれかの基材上に湿式塗工法で塗工して焼成後の厚さが0.3〜1.7μmの範囲内となるように成膜する工程と、上面に成膜された基材を150〜200℃で焼成する工程とを含む太陽電池の電極の形成方法である。
この請求項3に記載された太陽電池の電極の形成方法では、150〜200℃という低温での焼成により、金属ナノ粒子の表面を保護していた保護剤中の有機分子が脱離し又は分解し、或いは離脱しかつ分解することにより、実質的に有機物を含有しない銀を主成分とする電極が得られる。
Invention, a spray coating method on any substrate of claim 1 Symbol placement silicon electrodes forming composition prepared by the method of, glass, polyimide or PET film, dispenser coating or offset according to claim 3 A step of coating on any substrate of the printing method by a wet coating method so that the thickness after firing is in the range of 0.3 to 1.7 μm; And a step of firing the base material at 150 to 200 ° C.
In the method for forming an electrode of a solar cell according to claim 3 , organic molecules in the protective agent that protected the surface of the metal nanoparticles were detached or decomposed by firing at a low temperature of 150 to 200 ° C. Alternatively, by separating and decomposing, an electrode containing silver as a main component and containing substantially no organic substance can be obtained.
以上述べたように、本発明によれば、分散媒に分散された金属ナノ粒子が76〜99重量%の銀ナノ粒子と1〜24重量%のNi、Sn、In、Zn、Cr又はMnからなる金属ナノ粒子を含有し、前記金属ナノ粒子はカルボニル基(-C=O)又はカルボニル基(-C=O)と水酸基(-OH)のいずれかを含む炭素骨格が炭素数3の有機分子主鎖の保護剤で化学修飾され、前記金属ナノ粒子が一次粒径10〜50nmの範囲内の金属ナノ粒子を数平均で71〜75%含有し、前記分散媒は前記電極形成用組成物を100重量%とするとき2〜10重量%の水と2〜63重量%のエタノールとを含有するので、この組成物中の金属ナノ粒子の比表面積が比較的減少し、保護剤の占める割合が小さくなる。この結果、この組成物を用いて太陽電池の電極を形成すると、上記保護剤中の有機分子が焼成時の熱により脱離し又は分解し、或いは離脱しかつ分解することにより、実質的に有機物を含有しない銀を主成分とする電極が得られる。従って、上記電極の形成された太陽電池を長年使用しても、有機物が変質又は劣化するということがなく、導電率及び反射率が高い状態に維持されるので、経年安定性に優れた電極を得ることができる。
また上記電極形成用組成物をシリコン、ガラス、ポリイミド又はPETフィルムのいずれかの基材上にスプレーコーティング法、ディスペンサコーティング法又はオフセット印刷法のいずれかの基材上に湿式塗工法で塗工して焼成後の厚さが0.3〜1.7μmの範囲内となるように成膜する工程と、上面に成膜された基材を150〜200℃で焼成すれば、金属ナノ粒子の表面を保護していた保護剤中の有機分子が脱離し又は分解し、或いは離脱しかつ分解することにより、実質的に有機物を含有しない銀を主成分とする電極が得られる。この結果、上記と同様に、電極の形成された太陽電池を長年使用しても、導電率及び反射率が高い状態に維持されるので、経年安定性に優れた電極を得ることができる。
As described above, according to the present invention, the metal nanoparticles dispersed in the dispersion medium are composed of 76 to 99% by weight of silver nanoparticles and 1 to 24% by weight of Ni, Sn, In, Zn, Cr, or Mn. comprising metal nanoparticles containing the metal nanoparticles organic molecules carbon skeleton of 3 carbons containing either a carbonyl group (-C = O), or carbonyl group (-C = O) and hydroxyl group (-OH) is chemically modified in the main chain of the protective agent, the metal nanoparticles contained 71 to 75% by number average metal nanoparticles in the range of primary particle diameter of 10 to 50 nm, the dispersion medium is the electrode forming composition When it is 100% by weight , it contains 2 to 10% by weight of water and 2 to 63% by weight of ethanol , so that the specific surface area of the metal nanoparticles in this composition is relatively reduced, and the proportion of the protective agent is Get smaller. As a result, when an electrode of a solar cell is formed using this composition, the organic molecules in the protective agent are desorbed or decomposed by the heat at the time of firing, or desorbed and decomposed, thereby substantially reducing the organic matter. An electrode composed mainly of silver not containing is obtained. Therefore, even if the solar cell on which the electrode is formed is used for many years, the organic matter is not deteriorated or deteriorated, and the electrical conductivity and the reflectance are maintained in a high state. Can be obtained.
In addition, the electrode-forming composition is applied on a substrate of any one of silicon, glass, polyimide, or PET film by a wet coating method on any substrate of a spray coating method, a dispenser coating method, or an offset printing method. If the step of forming the film so that the thickness after baking is within the range of 0.3 to 1.7 μm and the base material formed on the upper surface is baked at 150 to 200 ° C., the metal nanoparticles When the organic molecules in the protective agent protecting the surface are detached or decomposed, or separated and decomposed, an electrode mainly containing silver that does not substantially contain an organic substance is obtained. As a result, similarly to the above, even if the solar cell on which the electrode is formed is used for many years, the conductivity and the reflectance are maintained at a high level, so that an electrode having excellent aging stability can be obtained.
次に本発明を実施するための最良の形態を説明する。
本発明の組成物は、金属ナノ粒子が分散媒に分散した太陽電池の電極形成用組成物である。上記金属ナノ粒子は76〜99重量%の銀ナノ粒子を含有する。また金属ナノ粒子はカルボニル基(−C=O)又はカルボニル基(−C=O)と水酸基(−OH)のいずれかを含む炭素骨格が炭素数3の有機分子主鎖の保護剤で化学修飾される。更に金属ナノ粒子は一次粒径10〜50nmの範囲内の金属ナノ粒子を数平均で71〜75%含有する。ここで、銀ナノ粒子の含有量を全ての金属ナノ粒子100重量%に対して76〜99重量%の範囲に限定したのは、76重量%未満ではこの組成物を用いて形成された太陽電池の電極の反射率が低下してしまうからである。また金属ナノ粒子を化学修飾する保護剤の有機分子主鎖の炭素骨格の炭素数を3の範囲に限定したのは、炭素数が4以上であると焼成時の熱により保護剤が脱離或いは分解(分離・燃焼)し難く、上記電極内に有機残渣が多く残り、変質又は劣化して電極の導電性及び反射率が低下してしまうからである。また一次粒径10〜50nmの範囲内の金属ナノ粒子の含有量を、数平均で全ての金属ナノ粒子100%に対して71〜75%の範囲に限定したのは、71%未満では金属ナノ粒子の比表面積が増大して有機物の占める割合が大きくなり、焼成時の熱により脱離或いは分解(分離・燃焼)し易い有機分子であっても、この有機分子の占める割合が多いため、電極内に有機残渣が多く残り、この残渣が変質又は劣化して電極の導電性及び反射率が低下したり、或いは金属ナノ粒子の粒度分布が広くなり電極の密度が低下し易くなって、電極の導電性及び反射率が低下してしまうからである。更に上記金属ナノ粒子の一次粒径を10〜50nmの範囲内に限定したのは、統計的手法より一次粒径が10〜50nmの範囲内にある金属ナノ粒子が経時安定性(経年安定性)と相関しているからである。
Next, the best mode for carrying out the present invention will be described.
The composition of the present invention is a composition for forming an electrode of a solar cell in which metal nanoparticles are dispersed in a dispersion medium. The metal nanoparticles contain 76 to 99% by weight of silver nanoparticles. In addition, the metal nanoparticles are chemically modified with a protective agent for a skeleton of an organic molecule having a carbon skeleton containing 3 carbon atoms containing either a carbonyl group (—C═O) or a carbonyl group (—C═O) and a hydroxyl group (—OH). Is done. Further, the metal nanoparticles contain 71 to 75% of metal nanoparticles having a primary particle size in the range of 10 to 50 nm in number average. Here, the content of silver nanoparticles was limited to the range of 76 to 99 % by weight with respect to 100% by weight of all metal nanoparticles, and the solar cell formed using this composition is less than 76 % by weight. This is because the reflectance of the electrode decreases. Moreover, the carbon number of the carbon skeleton of the organic molecule main chain of the protective agent for chemically modifying the metal nanoparticles is limited to the range of 3 if the carbon number is 4 or more. This is because decomposition (separation / combustion) is difficult, and a large amount of organic residue remains in the electrode, resulting in alteration or deterioration, resulting in a decrease in conductivity and reflectance of the electrode. In addition, the content of the metal nanoparticles in the range of the primary particle size of 10 to 50 nm is limited to the range of 71 to 75% with respect to 100% of all metal nanoparticles on the number average. The specific surface area of the particles increases and the proportion of organic matter increases, and even if the organic molecule is easily desorbed or decomposed (separated or burned) by the heat during firing, the proportion of this organic molecule is large. A large amount of organic residue remains inside, and the residue is altered or deteriorated to reduce the conductivity and reflectance of the electrode, or the particle size distribution of the metal nanoparticles is widened and the density of the electrode is likely to be reduced. This is because conductivity and reflectivity are reduced. Furthermore, the primary particle size of the metal nanoparticles was limited to the range of 10 to 50 nm because the metal nanoparticles having a primary particle size within the range of 10 to 50 nm are stable over time (statistical stability). It is because it correlates.
一方、銀ナノ粒子を含む金属ナノ粒子の含有量は、金属ナノ粒子及び分散媒からなる組成物100重量%に対して35〜75重量%含有する。また分散媒は、前記電極形成用組成物を100重量%とするとき2〜10重量%の水と2〜63重量%のエタノールとを含有する。更に保護剤、即ち金属ナノ粒子表面に化学修飾している保護分子は、カルボニル基(−C=O)又はカルボニル基(−C=O)と水酸基(−OH)のいずれかを含有する。ここで、銀ナノ粒子を含む金属ナノ粒子の含有量を金属ナノ粒子及び分散媒からなる組成物100重量%に対して35〜75重量%の範囲に限定したのは、35重量%未満では特に焼成後の電極の特性には影響はないけれども、必要な厚さの電極を得ることが難しく、75重量%を越えると組成物の湿式塗工時にインク或いはペーストとしての必要な流動性を失ってしまうからである。また前記電極形成用組成物を100重量%とするとき2〜10重量%の範囲に限定したのは、2重量%未満では、組成物を湿式塗工法により塗工して得られた膜を低温で焼結し難く、また焼成後の電極の導電性と反射率が低下してしまい、エタノールの含有量を電極形成用組成物に対して2〜63重量%の範囲に限定したのは、2重量%未満では、上記と同様に組成物を湿式塗工法により塗工して得られた膜を低温で焼結し難く、また焼成後の電極の導電性と反射率が低下してしまうからである。なお、水酸基(−OH)が銀ナノ粒子等の金属ナノ粒子を化学修飾する保護剤に含有されると、組成物の分散安定性に優れ、塗膜の低温焼結にも効果的な作用があり、カルボニル基(−C=O)が銀ナノ粒子等の金属ナノ粒子を化学修飾する保護剤に含有されると、上記と同様に組成物の分散安定性に優れ、塗膜の低温焼結にも効果的な作用がある。 On the other hand, the content of the metal nanoparticles comprising silver nanoparticles has 35 to 75% by weight containing the composition 100% by weight consisting of metal nanoparticles and a dispersion medium. The dispersion medium contains 2 to 10% by weight of water and 2 to 63% by weight of ethanol when the electrode forming composition is 100% by weight . Additional protection agents, i.e. the protective molecules that chemically modified metal nanoparticle surface containing either a carbonyl group (-C = O), or carbonyl group (-C = O) and hydroxyl group (-OH). Here, the content of the metal nanoparticles comprising silver nanoparticles was limited to the range of 35 to 75% by weight of the composition 100% by weight consisting of metal nanoparticles and dispersion medium, especially less than 35 wt% Although there is no effect on the characteristics of the electrode after firing, it is difficult to obtain an electrode having a necessary thickness. If it exceeds 75 % by weight, the fluidity required as an ink or paste is lost when the composition is wet-coated. Because it ends up. Further, when the composition for forming an electrode is 100% by weight , the range is limited to 2 to 10% by weight. When the composition is less than 2 % by weight, a film obtained by applying the composition by a wet coating method is used at a low temperature. It was difficult to sinter, and the conductivity and reflectivity of the electrode after firing were lowered, and the ethanol content was limited to the range of 2 to 63% by weight with respect to the electrode forming composition. If it is less than% by weight, it is difficult to sinter the film obtained by applying the composition by the wet coating method at a low temperature as described above, and the conductivity and reflectance of the electrode after firing are reduced. is there. In addition, when a hydroxyl group (—OH) is contained in a protective agent that chemically modifies metal nanoparticles such as silver nanoparticles, the composition has excellent dispersion stability and has an effective effect on low-temperature sintering of the coating film. Yes, when a carbonyl group (—C═O) is contained in a protective agent that chemically modifies metal nanoparticles such as silver nanoparticles, the composition has excellent dispersion stability as described above, and the coating film is sintered at low temperature. Also has an effective action.
一方、銀ナノ粒子以外の金属ナノ粒子は、Ni、Sn、In、Zn、Cr及びMnからなる金属ナノ粒子であり、この銀ナノ粒子以外の金属ナノ粒子は全ての金属ナノ粒子100重量%に対して1〜24重量%含有する。ここで、銀ナノ粒子以外の金属ナノ粒子の含有量を全ての金属ナノ粒子100重量%に対して1〜24重量%の範囲に限定したのは、1重量%未満では特に大きな問題はないけれども、1〜24重量%の範囲内においては、耐候性試験(温度100℃かつ湿度50%の恒温恒湿槽に1000時間保持する試験)後の電極の導電性及び反射率が耐候性試験前より悪化しないという特徴があり、24重量%を越えると焼成直後の電極の導電性及び反射率が低下し、しかも耐候性試験後の電極が耐候性試験前の電極より導電性及び反射率が低下してしまうからである。 On the other hand, the metal nanoparticles other than silver nanoparticles, N i, S n, In , Zn, a C r 及 beauty M n or Ranaru metal nanoparticles, the metal nanoparticles other than silver nanoparticles is any metal 1 to 24% by weight is contained with respect to 100% by weight of nanoparticles . In here, was limited to the range of 1 to 24 wt% and the content relative to 100 wt% of all metal nanoparticles of the metal nanoparticles other than silver nanoparticles is not particularly big problem is less than 1 wt% However, within the range of 1 to 24% by weight , the conductivity and reflectance of the electrode after the weather resistance test (the test kept in a constant temperature and humidity chamber at a temperature of 100 ° C. and a humidity of 50% for 1000 hours) are the same as before the weather resistance test. There is a feature that it does not worsen, and if it exceeds 24 % by weight, the conductivity and reflectivity of the electrode immediately after firing are reduced, and the conductivity and reflectivity of the electrode after the weather resistance test are lower than the electrode before the weather resistance test Because it will do.
このように構成された太陽電池の電極形成用組成物の製造方法を説明する。
(a) 銀ナノ粒子を化学修飾する保護剤の有機分子主鎖の炭素骨格の炭素数を3とする場合
先ず硝酸銀を脱イオン水等の水に溶解して第1金属塩水溶液を調製する。一方、クエン酸ナトリウムを脱イオン水等の水に溶解させて得られた濃度10〜40%のクエン酸ナトリウム水溶液に、窒素ガス等の不活性ガスの気流中で粒状又は粉状の硫酸第一鉄を直接加えて溶解させ、クエン酸イオンと第一鉄イオンを3:2のモル比で含有する還元剤水溶液を調製する。次に上記不活性ガス気流中で上記還元剤水溶液を撹拌しながら、この還元剤水溶液に上記第1金属塩水溶液を滴下して混合する。ここで、第1金属塩水溶液の添加量は還元剤水溶液の量の1/10以下になるように、各溶液の濃度を調整することで、室温の第1金属塩水溶液を滴下しても反応温度が30〜60℃に保持されるようにする。また上記両水溶液の混合比は、第1金属塩水溶液中の金属イオンの総原子価数に対する、還元剤水溶液中のクエン酸イオンと第一鉄イオンのモル比がいずれも3倍モルとなるようにする。第1金属塩水溶液の滴下が終了した後、混合液の撹拌を更に10〜300分間続けて金属コロイドからなる第1分散液を調製する。この分散液を室温で放置し、沈降した金属ナノ粒子の凝集物をデカンテーションや遠心分離法等により分離した後、この分離物に脱イオン水等の水を加えて第1分散体の前駆体とし、限外ろ過により脱塩処理し、更に引き続いて第1分散体の前駆体をエタノールで置換洗浄して、金属(銀)の含有量を2.5〜50重量%にする。その後、第1分散体の前駆体を遠心分離機を用いこの遠心分離機の遠心力を調整して粗粒子を分離することにより、金属ナノ粒子が一次粒径10〜50nmの範囲内の金属ナノ粒子を数平均で71〜75%含有するように調製する、即ち数平均で全ての金属ナノ粒子100%に対する一次粒径10〜50nmの範囲内の金属ナノ粒子の占める割合が71〜75%の範囲になるように調整する。なお、金属ナノ粒子と記載したが、この(a)の場合では、数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの範囲内の銀ナノ粒子の占める割合が71〜75%の範囲になるように調整している。
The manufacturing method of the composition for electrode formation of the solar cell comprised in this way is demonstrated.
(a) When the carbon number of the carbon skeleton of the organic molecular main chain of the protective agent for chemically modifying the silver nanoparticles is set to 3 First, silver nitrate is dissolved in water such as deionized water to prepare a first metal salt aqueous solution. On the other hand, the aqueous solution of sodium citrate having a concentration of 10 to 40% obtained by dissolving sodium citrate in deionized water or the like is mixed with granular or powdered sulfuric acid in a stream of inert gas such as nitrogen gas. Iron is directly added and dissolved to prepare an aqueous reducing agent solution containing citrate ions and ferrous ions in a molar ratio of 3: 2. Next, the first metal salt aqueous solution is dropped into and mixed with the reducing agent aqueous solution while stirring the reducing agent aqueous solution in the inert gas stream. Here, by adjusting the concentration of each solution so that the amount of the first metal salt aqueous solution added is 1/10 or less of the amount of the reducing agent aqueous solution, the reaction can be performed even when the first metal salt aqueous solution at room temperature is dropped. The temperature is kept at 30-60 ° C. The mixing ratio of the two aqueous solutions is such that the molar ratio of the citrate ion and the ferrous ion in the reducing agent aqueous solution is 3 times as much as the total valence of the metal ions in the first metal salt aqueous solution. To. After the dropping of the first metal salt aqueous solution is completed, stirring of the mixed solution is further continued for 10 to 300 minutes to prepare a first dispersion composed of metal colloid. The dispersion is allowed to stand at room temperature, and the aggregates of the precipitated metal nanoparticles are separated by decantation, centrifugation, or the like, and then water such as deionized water is added to the separated material to form a precursor of the first dispersion. And desalting by ultrafiltration, and then, the precursor of the first dispersion is replaced and washed with ethanol to make the metal (silver) content 2.5 to 50% by weight. Thereafter, the precursor of the first dispersion is adjusted using a centrifuge to adjust the centrifugal force of the centrifuge to separate the coarse particles, whereby the metal nanoparticles having a primary particle size in the range of 10 to 50 nm are obtained. The particles are prepared so as to contain 71 to 75% of the number average, that is, the ratio of the metal nanoparticles in the range of the primary particle size of 10 to 50 nm with respect to 100% of all the metal nanoparticles is 71 to 75%. Adjust to be within range . In addition, although described as metal nanoparticles, in the case of (a), the proportion of silver nanoparticles in the range of the primary particle size of 10 to 50 nm with respect to 100% of all silver nanoparticles is 71 to 75%. It is adjusted to be in the range .
数平均の測定方法は、先ず、得られた金属ナノ粒子をTEM(Transmission Electron Microscope、透過型電子顕微鏡)により約50万倍程度の倍率で撮影する。次いで、得られた画像から金属ナノ粒子200個について一次粒径を測定し、この測定結果をもとに粒径分布を作成する。次に、作成した粒径分布から、一次粒径10〜50nmの範囲内の金属ナノ粒子が全金属ナノ粒子で占める個数割合を求める。 In the number average measurement method, first, the obtained metal nanoparticles are photographed with a TEM (Transmission Electron Microscope) at a magnification of about 500,000 times. Next, a primary particle size is measured for 200 metal nanoparticles from the obtained image, and a particle size distribution is created based on the measurement result. Next, from the created particle size distribution, the ratio of the number of metal nanoparticles within the range of the primary particle size of 10 to 50 nm occupied by all metal nanoparticles is determined.
これにより銀ナノ粒子を化学修飾する保護剤の有機分子主鎖の炭素骨格の炭素数が3である第1分散体(太陽電池の電極形成用組成物)が得られる。なお、この分散体100重量%に対する最終的な金属含有量(銀含有量)は33〜70重量%とするとともに、溶媒の水及びエタノールを電極形成用組成物に対してそれぞれ2〜10重量%及び2〜63重量%に調整する。 Thereby, the 1st dispersion | distribution (composition for electrode formation of a solar cell) whose carbon number of the carbon skeleton of the organic molecular principal chain of the protective agent which chemically modifies silver nanoparticles is 3 is obtained. The final metal content (silver content) with respect to 100% by weight of the dispersion is 33 to 70 % by weight, and the solvent water and ethanol are respectively 2 to 10% by weight with respect to the electrode-forming composition. And 2 to 63% by weight .
(b) 銀ナノ粒子以外の金属ナノ粒子を化学修飾する保護剤の有機分子主鎖の炭素骨格の炭素数を3とする場合
銀ナノ粒子以外の金属ナノ粒子を構成する金属としては、Ni、Sn、In、Zn、Cr及びMnが挙げられる。第1金属塩水溶液を調製するときに用いた硝酸銀を、塩化ニッケル、二塩化錫、硝酸インジウム、塩化亜鉛、硫酸クロム又は硫酸マンガンに替えること以外は上記(a)と同様にして第2分散体を調製する。これにより銀ナノ粒子以外の金属ナノ粒子を化学修飾する保護剤の有機分子主鎖の炭素骨格の炭素数が3である第2分散体(太陽電池の電極形成用組成物)が得られる。
(b) Examples of the metal constituting the metal nanoparticles other than silver nanoparticles case of the three carbon atoms of the carbon skeleton of the organic molecular main chain of the protective agent chemically modifying the metal nanoparticles other than silver nanoparticles, N i , S n, In, Zn, include C r及 beauty M n. The second dispersion is the same as (a) above except that the silver nitrate used in preparing the first metal salt aqueous solution is replaced with nickel chloride, tin dichloride, indium nitrate, zinc chloride, chromium sulfate or manganese sulfate. To prepare. Thus second dispersions carbon number of the carbon skeleton of the organic molecular main chain of the protective agent chemically modifying the metal nanoparticles other than silver nanoparticles is 3 (electrode-forming composition of the solar cell) is Ru obtained.
金属ナノ粒子として、銀ナノ粒子とともに、銀ナノ粒子以外の金属ナノ粒子を含有させる場合には、76〜99重量%の第1分散体と1〜24重量%の第2分散体とを第1及び第2分散体の合計含有量が100重量%となるように混合する。 When metal nanoparticles other than silver nanoparticles are contained as the metal nanoparticles, the first dispersion of 76 to 99% by weight and the second dispersion of 1 to 24% by weight are first added . and the total content of the second dispersion you mixed so that 100% by weight.
このように製造された分散体(太陽電池の電極形成用組成物)を用いて電極を形成する方法を説明する。
先ず太陽電池の電極形成用組成物である上記第1分散体又は第1分散体と第2分散体の混合物(以下、単に「分散体」という。)を基材上に湿式塗工法で塗工する。この湿式塗工法での塗工は、焼成後の厚さが0.3〜1.7μmの範囲内となるように成膜する。上記基材は、シリコン、ガラス、ポリイミド又はPETフィルムのいずれかである。また基材は太陽電池素子又は透明電極付き太陽電池素子のいずれかであることが好ましい。透明電極としては、インジウム錫酸化物(Indium Tin Oxide:ITO)、アンチモンドープ酸化錫(Antimony Tin Oxide:ATO)、ネサ(酸化錫SnO2)、IZO(Indium Zic Oxide)、AZO(アルミドープZnO)等などが挙げられる。上記分散体は太陽電池素子の光電変換半導体層の表面や、透明電極付き太陽電池素子の透明電極の表面に塗布される。更に上記湿式塗工法は、スプレーコーティング法、ディスペンサコーティング法又はオフセット印刷法のいずれかであることが好ましい。スプレーコーティング法は分散体を圧縮エアにより霧状にして基材に塗布したり、或いは分散体自体を加圧し霧状にして基材に塗布する方法であり、ディスペンサコーティング法は例えば分散体を注射器に入れこの注射器のピストンを押すことにより注射器先端の微細ノズルから分散体を吐出させて基材に塗布する方法である。オフセット印刷法は、版に付けた分散体を直接基材に付着させず、版から一度ゴムシートに転写させ、ゴムシートから改めて基材に転移させる、インクの撥水性を利用した印刷方法である。
A method for forming an electrode using the dispersion (a composition for forming an electrode of a solar cell) thus manufactured will be described.
First, the first dispersion or the mixture of the first dispersion and the second dispersion (hereinafter simply referred to as “dispersion”), which is a composition for forming an electrode for a solar cell, is applied onto a substrate by a wet coating method. To do. In this wet coating method, the film is formed such that the thickness after firing is in the range of 0.3 to 1.7 μm. The base material is any of silicon, glass, polyimide, or PET film. Moreover, it is preferable that a base material is either a solar cell element or a solar cell element with a transparent electrode. Transparent electrodes include indium tin oxide (ITO), antimony-doped tin oxide (ATO), nesa (tin oxide SnO 2 ), IZO (Indium Zic Oxide), and AZO (aluminum-doped ZnO). Etc. The said dispersion is apply | coated to the surface of the photoelectric conversion semiconductor layer of a solar cell element, or the surface of the transparent electrode of a solar cell element with a transparent electrode. Furthermore the wet coating method, the spray coating method, it is not better good which is either a dispenser coating method or offset printing method. The spray coating method is a method in which the dispersion is atomized by compressed air and applied to the substrate, or the dispersion itself is pressurized and atomized to apply to the substrate. The dispenser coating method is, for example, a method in which the dispersion is injected into a syringe. The dispersion is discharged from the fine nozzle at the tip of the syringe and applied to the substrate by pushing the piston of the syringe . Offset printing method, without attaching the dispersion attached to the plate directly to the substrate, once is transferred to the rubber sheet from the plate, to transfer the newly substrate from a rubber sheet, a printing method using the water repellency of ink There is .
次に上面に成膜された基材を大気中で150〜200℃の温度に、10分間〜1時間、好ましくは15〜40分間保持して焼成する。ここで、基材上に形成された分散体の膜厚を、焼成後の厚さが0.3〜1.7μmの範囲内となるように限定したのは、0.3μm未満では太陽電池に必要な電極の表面抵抗値が不十分となり、1.7μmを越えると特性上の不具合はないけれども、材料の使用量が必要以上に多くなって材料が無駄になるからである。また基材上に形成された分散体の膜の焼成温度を150〜200℃の範囲に限定したのは、150℃未満では金属ナノ粒子同士の焼結が不十分になるとともに保護剤の焼成時の熱により脱離或いは分解(分離・燃焼)し難いため、焼成後の電極内に有機残渣が多く残り、この残渣が変質又は劣化して導電性及び反射率が低下してしまい、200℃を越えると低温プロセスという生産上のメリットを生かせない、即ち製造コストが増大し生産性が低下してしまうからである。更に基材上に形成された分散体の膜の焼成時間を10分間〜1時間の範囲に限定したのは、10分間未満では金属ナノ粒子同士の焼結が不十分になるとともに保護剤の焼成時の熱により脱離或いは分解(分離・燃焼)し難いため、焼成後の電極内に有機残渣が多く残り、この残渣が変質又は劣化して電極の導電性及び反射率が低下してしまい、1時間を越えると特性には影響しないけれども、必要以上に製造コストが増大して生産性が低下してしまうからである。 Next, the base material formed on the upper surface is fired in the atmosphere at a temperature of 150 to 200 ° C. for 10 minutes to 1 hour, preferably 15 to 40 minutes. Here, the film thickness of the dispersion formed on a substrate, thickness after firing is limited to be within the range of 0.3 to 1.7 [mu] m, the sun is less than 0.3 [mu] m This is because the surface resistance value of the electrode necessary for the battery becomes insufficient, and if it exceeds 1.7 μm, there is no problem in characteristics, but the amount of material used is more than necessary and the material is wasted. In addition, the firing temperature of the dispersion film formed on the substrate was limited to the range of 150 to 200 ° C. When the temperature was lower than 150 ° C., the sintering of the metal nanoparticles was insufficient and the protective agent was fired. elimination or degradation by heat since it is difficult (separation and combustion), and the remaining organic residue number in the electrode after firing, will be reduced conductivity and reflectance residue is altered or deteriorated, the 200 ° C. This is because the production advantage of the low-temperature process cannot be utilized, that is, the manufacturing cost increases and the productivity decreases. Furthermore, the firing time of the dispersion film formed on the base material was limited to the range of 10 minutes to 1 hour because the sintering of the metal nanoparticles became insufficient and the firing of the protective agent in less than 10 minutes. Due to the difficulty of desorption or decomposition (separation / combustion) due to the heat of the time, a lot of organic residue remains in the electrode after firing, the residue is altered or deteriorated, and the conductivity and reflectivity of the electrode decrease, This is because, if the time exceeds 1 hour, the characteristics are not affected, but the manufacturing cost is increased more than necessary and the productivity is lowered.
上記太陽電池の電極形成用組成物では、一次粒径10〜50nmとサイズの比較的大きい金属ナノ粒子を多く含むため、金属ナノ粒子の比表面積が減少し、保護剤の占める割合が小さくなる。この結果、上記組成物を用いて太陽電池の電極を形成すると、上記保護剤中の有機分子が焼成時の熱により脱離し又は分解し、或いは離脱しかつ分解することにより、実質的に有機物を含有しない銀を主成分とする電極が得られる。従って、上記電極の形成された太陽電池を長年使用しても、有機物が変質又は劣化するということがなく、電極の導電率及び反射率が高い状態に維持されるので、経年安定性に優れた電極を得ることができる。具体的には、上記電極を、温度を100℃に保ちかつ湿度を50%に保った恒温恒湿槽に1000時間収容した後であっても、波長750〜1500nmの電磁波、即ち可視光領域から赤外線領域までの電磁波を80%以上電極により反射できるとともに、電極の導電性、即ち電極の体積抵抗率を2×10-5Ω・cm(20×10-6Ω・cm)未満と極めて低い値に維持できる。このようにして形成された電極を用いた太陽電池は、長年使用しても高導電率及び高反射率を維持することができ、経年安定性に優れる。 Since the composition for forming an electrode of the solar cell contains a large amount of metal nanoparticles having a primary particle size of 10 to 50 nm and a relatively large size, the specific surface area of the metal nanoparticles is reduced and the proportion of the protective agent is reduced. As a result, when an electrode of a solar cell is formed using the composition, the organic molecules in the protective agent are desorbed or decomposed by the heat at the time of firing, or desorbed and decomposed, thereby substantially reducing the organic matter. An electrode composed mainly of silver not containing is obtained. Therefore, even if the solar cell on which the electrode is formed is used for many years, the organic matter is not deteriorated or deteriorated, and the conductivity and reflectivity of the electrode are maintained in a high state, so that the aging stability is excellent. An electrode can be obtained. Specifically, even after the electrode is accommodated for 1000 hours in a constant temperature and humidity chamber maintained at a temperature of 100 ° C. and a humidity of 50%, the electromagnetic wave having a wavelength of 750 to 1500 nm, that is, from the visible light region. Electromagnetic waves up to the infrared region can be reflected by 80% or more by the electrode, and the conductivity of the electrode, that is, the volume resistivity of the electrode is extremely low, less than 2 × 10 −5 Ω · cm (20 × 10 −6 Ω · cm). Can be maintained. The solar cell using the electrode formed in this way can maintain high conductivity and high reflectance even when used for many years, and is excellent in aging stability.
次に本発明の実施例と参考例を比較例とともに詳しく説明する。以下に示す実施例1〜8、実施例10、実施例16〜24、実施例26、実施例31及び実施例32は、実施例ではなく参考例である。
<実施例1>
先ず硝酸銀を脱イオン水に溶解して金属塩水溶液を調製した。一方、クエン酸ナトリウムを脱イオン水に溶解させて得られた濃度26%のクエン酸ナトリウム水溶液に、温度35℃の窒素ガス気流中で粒状の硫酸第一鉄を直接加えて溶解させ、クエン酸イオンと第一鉄イオンを3:2のモル比で含有する還元剤水溶液を調製した。次に上記窒素ガス気流を温度35℃に保った状態で、マグネチックスターラーの撹拌子を100rpmの回転速度で回転させて上記還元剤水溶液を撹拌しながら、この還元剤水溶液に上記金属塩水溶液を滴下して混合した。ここで、金属塩水溶液の添加量は還元剤水溶液の量の1/10以下になるように、各溶液の濃度を調整することで、室温の金属塩水溶液を滴下しても反応温度が40℃に保持されるようにした。また上記両水溶液の混合比は、金属塩水溶液中の金属イオンの総原子価数に対する、還元剤水溶液中のクエン酸イオンと第一鉄イオンのモル比がいずれも3倍モルとなるようにした。金属塩水溶液の滴下が終了した後、混合液の撹拌を更に15分間続けて金属コロイドからなる分散液を得た。この分散液のpHは5.5であり、分散液中の金属粒子の化学量論的生成量は5g/リットルであった。この得られた分散液を室温で放置し、沈降した金属ナノ粒子の凝集物をデカンテーションにより分離した。この分離物に脱イオン水を加えて分散体とし、限外ろ過により脱塩処理した後、更に引き続いてメタノールで置換洗浄して、金属(銀)の含有量を50重量%にした。その後、遠心分離機を用いこの遠心分離機の遠心力を調整して粗粒子を分離することにより、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で71%含有するように調製した、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの範囲内の銀ナノ粒子の占める割合が71%になるように調整した。この分散体を実施例1とした。なお、分散体100重量%に対する最終的な金属(銀)、水、メタノール及び溶媒Aの混合割合を50.0重量%、2.5重量%、5.0重量%及び42.5重量%にそれぞれ調整した。ここで、溶媒Aとは、アセトンとイソプロピルグリコールとを重量比で1:1の割合で混合した混合液である。また分散体中の銀ナノ粒子は炭素骨格が炭素数3の有機分子主鎖の保護剤で化学修飾された。更に銀ナノ粒子を化学修飾している保護剤は水酸基(−OH)を含有しなかったけれども、カルボニル基(−C=O)を含有した。なお、硫酸第一鉄中の鉄はメタノールによる置換洗浄時等に除去された。
Next, examples and reference examples of the present invention will be described in detail together with comparative examples. Examples 1 to 8, Example 10, Examples 16 to 24, Example 26, Example 31 and Example 32 described below are reference examples, not examples.
<Example 1>
First, silver nitrate was dissolved in deionized water to prepare an aqueous metal salt solution. On the other hand, granular ferrous sulfate was directly added and dissolved in a 26% concentration sodium citrate aqueous solution obtained by dissolving sodium citrate in deionized water in a nitrogen gas stream at a temperature of 35 ° C. A reducing agent aqueous solution containing ions and ferrous ions in a molar ratio of 3: 2 was prepared. Next, with the nitrogen gas stream maintained at a temperature of 35 ° C., the magnetic salt stirrer is rotated at a rotational speed of 100 rpm to stir the reducing agent aqueous solution, and the metal salt aqueous solution is added to the reducing agent aqueous solution. Dropped and mixed. Here, by adjusting the concentration of each solution so that the amount of the metal salt aqueous solution added is 1/10 or less of the amount of the reducing agent aqueous solution, the reaction temperature is 40 ° C. even when the metal salt aqueous solution at room temperature is dropped. To be retained. The mixing ratio of the two aqueous solutions was such that the molar ratio of the citrate ion and ferrous ion in the reducing agent aqueous solution to the total valence of the metal ions in the metal salt aqueous solution was 3 times as much as each other. . After the dropping of the aqueous metal salt solution was completed, the mixture was further stirred for 15 minutes to obtain a dispersion composed of metal colloid. The pH of this dispersion was 5.5, and the stoichiometric amount of metal particles in the dispersion was 5 g / liter. The obtained dispersion was allowed to stand at room temperature, and the aggregates of the precipitated metal nanoparticles were separated by decantation. Deionized water was added to the separated product to form a dispersion, which was desalted by ultrafiltration, and then further washed by displacement with methanol to make the metal (silver) content 50% by weight. Thereafter, the centrifugal force of the centrifuge is adjusted using a centrifuge to separate coarse particles so that the silver nanoparticles contain 71% of silver nanoparticles with a primary particle size of 10 to 50 nm in number average. Adjustment was made so that the proportion of silver nanoparticles in the range of primary particle diameter of 10 to 50 nm with respect to 100% of all prepared silver nanoparticles was 71%. This dispersion was designated as Example 1. The final mixing ratio of metal (silver), water, methanol and solvent A with respect to 100% by weight of the dispersion is 50.0% by weight, 2.5% by weight, 5.0% by weight and 42.5% by weight. Each was adjusted. Here, the solvent A is a mixed solution in which acetone and isopropyl glycol are mixed at a weight ratio of 1: 1. The silver nanoparticles in the dispersion were chemically modified with a protective agent for an organic molecular main chain having a carbon skeleton of 3 carbon atoms. Furthermore, the protective agent chemically modifying the silver nanoparticles did not contain a hydroxyl group (—OH) but contained a carbonyl group (—C═O). In addition, iron in ferrous sulfate was removed at the time of displacement washing with methanol.
<実施例2>
実施例1と同様にして得られた分散液を室温で放置し、沈降した金属ナノ粒子の凝集物をデカンテーションにより分離した。この分離物に脱イオン水を加えて分散体とし、限外ろ過により脱塩処理した後、更に引き続いてエタノールで置換洗浄して、金属の含有量を50重量%にした。その後、遠心分離機を用いこの遠心分離機の遠心力を調整して粗粒子を分離することにより、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で72%含有するように調製した、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が72%になるように調整した。この分散体を実施例2とした。なお、分散体100重量%に対する最終的な金属(銀)、水、エタノール及び溶媒Aの混合割合を50.0重量%、4.0重量%、5.0重量%及び41.0重量%にそれぞれ調整した。また分散体中の銀ナノ粒子は炭素骨格が炭素数3の有機分子主鎖の保護剤で化学修飾された。更に銀ナノ粒子を化学修飾している保護剤は水酸基(−OH)を含有しなかったけれども、カルボニル基(−C=O)を含有した。
<実施例3>
実施例2と同様にしてエタノールで置換洗浄された分散体を、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で73%含有するように、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が73%になるように遠心分離機により調整した。この分散体を実施例3とした。なお、分散体100重量%に対する最終的な金属(銀)、水、エタノール及び溶媒Bの混合割合を50.0重量%、1.0重量%、5.0重量%及び44.0重量%にそれぞれ調整した。ここで、溶媒Bとは、シクロヘキサンとメチルエチルケトンとを重量比で1:1になるように混合した混合液である。また分散体中の銀ナノ粒子は炭素骨格が炭素数3の有機分子主鎖の保護剤で化学修飾された。更に銀ナノ粒子を化学修飾している保護剤は水酸基(−OH)を含有しなかったけれども、カルボニル基(−C=O)を含有した。
<実施例4>
実施例2と同様にしてエタノールで置換洗浄された分散体を、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で75%含有するように、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が75%になるように、遠心分離機により調整した。この分散体を実施例4とした。なお、分散体100重量%に対する最終的な金属(銀)、水及びエタノールの混合割合を50.0重量%、48.0重量%及び2.0重量%にそれぞれ調整した。また分散体中の銀ナノ粒子は炭素骨格が炭素数3の有機分子主鎖の保護剤で化学修飾された。更に銀ナノ粒子を化学修飾している保護剤は水酸基(−OH)を含有しなかったけれども、カルボニル基(−C=O)を含有した。
<Example 2>
The dispersion obtained in the same manner as in Example 1 was allowed to stand at room temperature, and the aggregates of the precipitated metal nanoparticles were separated by decantation. Deionized water was added to this separated product to form a dispersion, which was desalted by ultrafiltration, and then further washed by displacement with ethanol to make the metal content 50% by weight. Thereafter, the centrifugal force of this centrifuge is adjusted using a centrifuge to separate coarse particles so that the silver nanoparticles contain 72% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average. Adjustment was made so that the proportion of silver nanoparticles having a primary particle size of 10 to 50 nm with respect to 100% of all prepared silver nanoparticles was 72%. This dispersion was designated as Example 2. The final mixing ratio of metal (silver), water, ethanol and solvent A with respect to 100% by weight of the dispersion was 50.0% by weight, 4.0% by weight, 5.0% by weight and 41.0% by weight. Each was adjusted. The silver nanoparticles in the dispersion were chemically modified with a protective agent for an organic molecular main chain having a carbon skeleton of 3 carbon atoms. Furthermore, the protective agent chemically modifying the silver nanoparticles did not contain a hydroxyl group (—OH) but contained a carbonyl group (—C═O).
<Example 3>
The dispersion substituted and washed with ethanol in the same manner as in Example 2 was prepared so that the silver nanoparticles contained 73% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average, that is, all silver nanoparticles in number average. It adjusted with the centrifuge so that the ratio for which the silver nanoparticle with a primary particle diameter of 10-50 nm with respect to 100% of particles might be 73%. This dispersion was designated as Example 3. The final mixing ratio of metal (silver), water, ethanol and solvent B to 100% by weight of the dispersion is 50.0% by weight, 1.0% by weight, 5.0% by weight and 44.0% by weight. Each was adjusted. Here, the solvent B is a mixed solution in which cyclohexane and methyl ethyl ketone are mixed at a weight ratio of 1: 1. The silver nanoparticles in the dispersion were chemically modified with a protective agent for an organic molecular main chain having a carbon skeleton of 3 carbon atoms. Furthermore, the protective agent chemically modifying the silver nanoparticles did not contain a hydroxyl group (—OH) but contained a carbonyl group (—C═O).
<Example 4>
The dispersion substituted and washed with ethanol in the same manner as in Example 2 was used so that the silver nanoparticles contained 75% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average, that is, all silver nanoparticles in number average. It adjusted with the centrifuge so that the ratio for which silver nanoparticles with a primary particle diameter of 10-50 nm accounted for 100% of particles might be 75%. This dispersion was designated as Example 4. The final mixing ratio of metal (silver), water and ethanol to 100% by weight of the dispersion was adjusted to 50.0% by weight, 48.0% by weight and 2.0% by weight, respectively. The silver nanoparticles in the dispersion were chemically modified with a protective agent for an organic molecular main chain having a carbon skeleton of 3 carbon atoms. Furthermore, the protective agent chemically modifying the silver nanoparticles did not contain a hydroxyl group (—OH) but contained a carbonyl group (—C═O).
<実施例5>
実施例2と同様にしてエタノールで置換洗浄された分散体を、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で75%含有するように、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が75%になるように、遠心分離機により調整して第1分散体を得た。一方、実施例2の硝酸銀を塩化金酸に替え、実施例2と同様にしてエタノールで置換洗浄された分散体を、金ナノ粒子が一次粒径10〜50nmの金ナノ粒子を数平均で75%含有するように、即ち数平均で全ての金ナノ粒子100%に対する一次粒径10〜50nmの金ナノ粒子の占める割合が75%になるように、遠心分離機により調整して第2分散体を得た。次に第1分散体95重量%と第2分散体5重量%とを混合した。この分散体を実施例5とした。なお、分散体100重量%に対する最終的な金属(銀及び金の合計)、水及びエタノールの混合割合を50.0重量%、3.5重量%及び46.5重量%にそれぞれ調整した。また分散体中の銀ナノ粒子及び金ナノ粒子は炭素骨格が炭素数3の有機分子主鎖の保護剤でそれぞれ化学修飾された。更に銀ナノ粒子及び金ナノ粒子を化学修飾している保護剤は水酸基(−OH)を含有しなかったけれども、カルボニル基(−C=O)を含有した。
<実施例6>
実施例2と同様にして銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で71%含有するように、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が71%になるように、遠心分離機により調整して第1分散体を得た。一方、実施例2の硝酸銀を塩化白金酸に替え、実施例2と同様にして白金ナノ粒子が一次粒径10〜50nmの白金ナノ粒子を数平均で75%含有するように、即ち数平均で全ての白金ナノ粒子100%に対する一次粒径10〜50nmの白金ナノ粒子の占める割合が75%になるように、遠心分離機により調整して第2分散体を得た。次に第1分散体95重量%と第2分散体5重量%とを混合した。この分散体を実施例6とした。なお、分散体100重量%に対する最終的な金属(銀及び白金の合計)、水、エタノール及び溶媒Aの混合割合を50.0重量%、3.5重量%、2.5重量%及び44.0重量%にそれぞれ調整した。また分散体中の銀ナノ粒子及び白金ナノ粒子は炭素骨格が炭素数3の有機分子主鎖の保護剤でそれぞれ化学修飾された。更に銀ナノ粒子及び白金ナノ粒子を化学修飾している保護剤は水酸基(−OH)及びカルボニル基(−C=O)を含有した。
<Example 5>
The dispersion substituted and washed with ethanol in the same manner as in Example 2 was used so that the silver nanoparticles contained 75% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average, that is, all silver nanoparticles in number average. A first dispersion was obtained by adjusting with a centrifuge so that the proportion of silver nanoparticles having a primary particle diameter of 10 to 50 nm with respect to 100% of the particles was 75%. On the other hand, the silver nitrate of Example 2 was replaced with chloroauric acid, and the dispersion which was substituted and washed with ethanol in the same manner as in Example 2 was used. The gold nanoparticles with a primary particle diameter of 10 to 50 nm were 75 in average number. The second dispersion is adjusted by a centrifuge so that the proportion of gold nanoparticles having a primary particle size of 10 to 50 nm is 75% with respect to 100% of all gold nanoparticles in terms of number average. Got. Next, 95% by weight of the first dispersion and 5% by weight of the second dispersion were mixed. This dispersion was designated as Example 5. The mixing ratio of final metal (total of silver and gold), water, and ethanol to 100% by weight of the dispersion was adjusted to 50.0% by weight, 3.5% by weight, and 46.5% by weight, respectively. The silver nanoparticles and gold nanoparticles in the dispersion were chemically modified with an organic molecular main chain protecting agent having a carbon skeleton of 3 carbon atoms. Furthermore, the protective agent chemically modifying silver nanoparticles and gold nanoparticles did not contain a hydroxyl group (—OH) but contained a carbonyl group (—C═O).
<Example 6>
In the same manner as in Example 2, the silver nanoparticles contain 71% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average, that is, the primary particle size of 10 to 50 nm with respect to 100% of all silver nanoparticles in number average. The first dispersion was obtained by adjusting with a centrifuge so that the silver nanoparticle occupies 71%. On the other hand, the silver nitrate of Example 2 was replaced with chloroplatinic acid, and the platinum nanoparticles contained 75% of the average number of platinum nanoparticles having a primary particle size of 10 to 50 nm as in Example 2, that is, the number average. A second dispersion was obtained by adjusting with a centrifuge so that the ratio of platinum nanoparticles having a primary particle size of 10 to 50 nm to 75% of all platinum nanoparticles was 75%. Next, 95% by weight of the first dispersion and 5% by weight of the second dispersion were mixed. This dispersion was designated as Example 6. The mixing ratio of the final metal (total of silver and platinum), water, ethanol and solvent A with respect to 100% by weight of the dispersion was 50.0% by weight, 3.5% by weight, 2.5% by weight and 44.%. It adjusted to 0 weight%, respectively. The silver nanoparticles and platinum nanoparticles in the dispersion were chemically modified with an organic molecular main chain protecting agent having a carbon skeleton of 3 carbon atoms. Furthermore, the protective agent chemically modifying silver nanoparticles and platinum nanoparticles contained a hydroxyl group (—OH) and a carbonyl group (—C═O).
<実施例7>
実施例2と同様にしてエタノールで置換洗浄された分散体を、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で72%含有するように、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が72%になるように、遠心分離機により調整して第1分散体を得た。一方、実施例2の硝酸銀を硝酸パラジウムに替え、実施例2と同様にしてエタノールで置換洗浄された分散体を、パラジウムナノ粒子が一次粒径10〜50nmのパラジウムナノ粒子を数平均で72%含有するように、即ち数平均で全てのパラジウムナノ粒子100%に対する一次粒径10〜50nmのパラジウムナノ粒子の占める割合が72%になるように、遠心分離機により調整して第2分散体を得た。次に第1分散体77重量%と第2分散体23重量%とを混合した。この分散体を実施例7とした。なお、分散体100重量%に対する最終的な金属(銀及びパラジウムの合計)、水、エタノール及び溶媒Aの混合割合を50.0重量%、1.5重量%、2.5重量%及び46.0重量%にそれぞれ調整した。また分散体中の銀ナノ粒子及びパラジウムナノ粒子は炭素骨格が炭素数3の有機分子主鎖の保護剤でそれぞれ化学修飾された。更に銀ナノ粒子及びパラジウムナノ粒子を化学修飾している保護剤は水酸基(−OH)及びカルボニル基(−C=O)を含有した。
<実施例8>
実施例2と同様にしてエタノールで置換洗浄された分散体を、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で72%含有するように、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が72%になるように、遠心分離機により調整して第1分散体を得た。一方、実施例2の硝酸銀を三塩化ルテニウムに替え、実施例2と同様にしてエタノールで置換洗浄された分散体を、ルテニウムナノ粒子が一次粒径10〜50nmのルテニウムナノ粒子を数平均で72%含有するように、即ち数平均で全てのルテニウムナノ粒子100%に対する一次粒径10〜50nmのルテニウムナノ粒子の占める割合が72%になるように、遠心分離機により調整して第2分散体を得た。次に上記第1分散体76重量%と上記第2分散体24重量%とを混合した。この分散体を実施例8とした。なお、分散体100重量%に対する最終的な金属(銀及びルテニウムの合計)、水、エタノール及び溶媒Aの混合割合を75.0重量%、1.5重量%、2.0重量%及び21.5重量%にそれぞれ調整した。また分散体中の銀ナノ粒子及びルテニウムナノ粒子は炭素骨格が炭素数3の有機分子主鎖の保護剤でそれぞれ化学修飾された。更に銀ナノ粒子及びルテニウムナノ粒子を化学修飾している保護剤は水酸基(−OH)を含有しなかったけれども、カルボニル基(−C=O)を含有した。
<Example 7>
The dispersion substituted and washed with ethanol in the same manner as in Example 2 was prepared so that the silver nanoparticles contained 72% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average, that is, all silver nanoparticles in number average. A first dispersion was obtained by adjusting with a centrifuge so that the proportion of silver nanoparticles having a primary particle diameter of 10 to 50 nm with respect to 100% of the particles was 72%. On the other hand, the silver nitrate of Example 2 was replaced with palladium nitrate, and the dispersion subjected to substitution washing with ethanol in the same manner as in Example 2 was used. The number of palladium nanoparticles having a primary particle diameter of 10 to 50 nm was 72% on average. The second dispersion is adjusted by a centrifuge so that the proportion of palladium nanoparticles having a primary particle diameter of 10 to 50 nm to 72% is contained in the number average of 100% of all palladium nanoparticles. Obtained. Next, 77% by weight of the first dispersion and 23% by weight of the second dispersion were mixed. This dispersion was designated as Example 7. The mixing ratio of final metal (total of silver and palladium), water, ethanol and solvent A with respect to 100% by weight of the dispersion was 50.0% by weight, 1.5% by weight, 2.5% by weight and 46.%. It adjusted to 0 weight%, respectively. The silver nanoparticles and palladium nanoparticles in the dispersion were each chemically modified with a protective agent having an organic molecular main chain having a carbon skeleton of 3 carbon skeletons. Furthermore, the protective agent chemically modifying silver nanoparticles and palladium nanoparticles contained a hydroxyl group (—OH) and a carbonyl group (—C═O).
<Example 8>
The dispersion substituted and washed with ethanol in the same manner as in Example 2 was prepared so that the silver nanoparticles contained 72% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average, that is, all silver nanoparticles in number average. A first dispersion was obtained by adjusting with a centrifuge so that the proportion of silver nanoparticles having a primary particle diameter of 10 to 50 nm with respect to 100% of the particles was 72%. On the other hand, the silver nitrate of Example 2 was replaced with ruthenium trichloride, and the dispersion subjected to substitution washing with ethanol in the same manner as in Example 2 was used. The ruthenium nanoparticles with ruthenium nanoparticles having a primary particle size of 10 to 50 nm had a number average of 72 The second dispersion is adjusted by a centrifuge so that the proportion of ruthenium nanoparticles having a primary particle size of 10 to 50 nm is 72% with respect to 100% of all ruthenium nanoparticles in terms of number average. Got. Next, 76% by weight of the first dispersion and 24% by weight of the second dispersion were mixed. This dispersion was designated as Example 8. In addition, the final metal (total of silver and ruthenium), water, ethanol and solvent A are mixed at a ratio of 75.0 wt%, 1.5 wt%, 2.0 wt% and 21. Each was adjusted to 5% by weight. The silver nanoparticles and ruthenium nanoparticles in the dispersion were each chemically modified with an organic molecular main chain protective agent having a carbon skeleton of 3 carbon atoms. Furthermore, the protective agent chemically modifying silver nanoparticles and ruthenium nanoparticles did not contain a hydroxyl group (—OH) but contained a carbonyl group (—C═O).
<実施例9>
実施例2と同様にしてエタノールで置換洗浄された分散体を、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で73%含有するように、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が73%になるように、遠心分離機により調整して第1分散体を得た。一方、実施例2の硝酸銀を塩化ニッケルに替え、実施例2と同様にしてエタノールで置換洗浄された分散体を、ニッケルナノ粒子が一次粒径10〜50nmのニッケルナノ粒子を数平均で73%含有するように、即ち数平均で全てのニッケルナノ粒子100%に対する一次粒径10〜50nmのニッケルナノ粒子の占める割合が73%になるように、遠心分離機により調整して第2分散体を得た。次に第1分散体76重量%と第2分散体24重量%とを混合した。この分散体を実施例9とした。なお、分散体100重量%に対する最終的な金属(銀及びニッケルの合計)、水、エタノール及び溶媒Aの混合割合を75.0重量%、2.2重量%、2.0重量%及び20.8重量%にそれぞれ調整した。また分散体中の銀ナノ粒子は炭素骨格が炭素数3の有機分子主鎖の保護剤で化学修飾された。更に銀ナノ粒子及びニッケルナノ粒子を化学修飾している保護剤は水酸基(−OH)を含有しなかったけれども、カルボニル基(−C=O)を含有した。
<実施例10>
実施例2と同様にしてエタノールで置換洗浄された分散体を、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で72%含有するように、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が72%になるように、遠心分離機により調整して第1分散体を得た。一方、実施例2の硝酸銀を硝酸第一銅に替え、実施例2と同様にしてエタノールで置換洗浄された分散体を、銅ナノ粒子が一次粒径10〜50nmの銅ナノ粒子を数平均で72%含有するように、即ち数平均で全ての銅ナノ粒子100%に対する一次粒径10〜50nmの銅ナノ粒子の占める割合が72%になるように、遠心分離機により調整して第2分散体を得た。次に第1分散体76重量%と第2分散体24重量%とを混合した。この分散体を実施例10とした。なお、分散体100重量%に対する最終的な金属(銀及び銅の合計)、水、エタノール及び溶媒Bの混合割合を75.0重量%、4.0重量%、5.0重量%及び16.0重量%にそれぞれ調整した。また分散体中の銀ナノ粒子及び銅ナノ粒子は炭素骨格が炭素数3の有機分子主鎖の保護剤でそれぞれ化学修飾された。更に銀ナノ粒子及び銅ナノ粒子を化学修飾している保護剤は水酸基(−OH)を含有しなかったけれども、カルボニル基(−C=O)を含有した。
<Example 9>
The dispersion substituted and washed with ethanol in the same manner as in Example 2 was prepared so that the silver nanoparticles contained 73% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average, that is, all silver nanoparticles in number average. A first dispersion was obtained by adjusting with a centrifuge so that the ratio of silver nanoparticles having a primary particle diameter of 10 to 50 nm to 100% of the particles was 73%. On the other hand, the silver nitrate of Example 2 was replaced with nickel chloride, and the dispersion subjected to substitution washing with ethanol in the same manner as in Example 2 was used. The number of nickel nanoparticles having a primary particle diameter of 10 to 50 nm was 73% on average. The second dispersion is adjusted by a centrifuge so that the proportion of nickel nanoparticles having a primary particle size of 10 to 50 nm is 73% with respect to 100% of all nickel nanoparticles in terms of number average. Obtained. Next, 76% by weight of the first dispersion and 24% by weight of the second dispersion were mixed. This dispersion was designated as Example 9. In addition, the final metal (total of silver and nickel), water, ethanol, and solvent A are mixed at a ratio of 75.0 wt%, 2.2 wt%, 2.0 wt%, and 20 wt% with respect to 100 wt% of the dispersion. Each was adjusted to 8% by weight. The silver nanoparticles in the dispersion were chemically modified with a protective agent for an organic molecular main chain having a carbon skeleton of 3 carbon atoms. Furthermore, the protective agent chemically modifying silver nanoparticles and nickel nanoparticles did not contain a hydroxyl group (—OH) but contained a carbonyl group (—C═O).
<Example 10>
The dispersion substituted and washed with ethanol in the same manner as in Example 2 was prepared so that the silver nanoparticles contained 72% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average, that is, all silver nanoparticles in number average. A first dispersion was obtained by adjusting with a centrifuge so that the proportion of silver nanoparticles having a primary particle diameter of 10 to 50 nm with respect to 100% of the particles was 72%. On the other hand, the silver nitrate of Example 2 was replaced with cuprous nitrate, and the dispersion subjected to substitution washing with ethanol in the same manner as in Example 2 was compared with the number average of copper nanoparticles having a primary particle size of 10 to 50 nm. The second dispersion is adjusted by a centrifuge so that it contains 72%, that is, the ratio of the copper nanoparticles having a primary particle diameter of 10 to 50 nm to 72% in terms of the number average of 100% of all copper nanoparticles. Got the body. Next, 76% by weight of the first dispersion and 24% by weight of the second dispersion were mixed. This dispersion was designated as Example 10. In addition, the final metal (total of silver and copper), water, ethanol, and solvent B with respect to 100 wt% of the dispersion were mixed at 75.0 wt%, 4.0 wt%, 5.0 wt%, and 16. It adjusted to 0 weight%, respectively. The silver nanoparticles and copper nanoparticles in the dispersion were each chemically modified with an organic molecular main chain protective agent having a carbon skeleton of 3 carbon atoms. Furthermore, the protective agent chemically modifying silver nanoparticles and copper nanoparticles did not contain a hydroxyl group (—OH) but contained a carbonyl group (—C═O).
<実施例11>
実施例2と同様にしてエタノールで置換洗浄された分散体を、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で72%含有するように、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が72%になるように、遠心分離機により調整して第1分散体を得た。一方、実施例2の硝酸銀を二塩化錫に替え、実施例2と同様にしてエタノールで置換洗浄された分散体を、錫ナノ粒子が一次粒径10〜50nmの錫ナノ粒子を数平均で72%含有するように、即ち数平均で全ての錫ナノ粒子100%に対する一次粒径10〜50nmの錫ナノ粒子の占める割合が72%になるように、遠心分離機により調整して第2分散体を得た。次に第1分散体76重量%と第2分散体24重量%とを混合した。この分散体を実施例11とした。なお、分散体100重量%に対する最終的な金属(銀及び錫の合計)、水、エタノール及び溶媒Bの混合割合を75.0重量%、4.0重量%、5.0重量%及び16.0重量%にそれぞれ調整した。また分散体中の銀ナノ粒子及び錫ナノ粒子は炭素骨格が炭素数3の有機分子主鎖の保護剤でそれぞれ化学修飾された。更に銀ナノ粒子及び錫ナノ粒子を化学修飾している保護剤は水酸基(−OH)を含有しなかったけれども、カルボニル基(−C=O)を含有した。
<実施例12>
実施例2と同様にしてエタノールで置換洗浄された分散体を、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で72%含有するように、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が72%になるように、遠心分離機により調整して第1分散体を得た。一方、実施例2の硝酸銀を硝酸インジウムに替え、実施例2と同様にしてエタノールで置換洗浄された分散体を、インジウムナノ粒子が一次粒径10〜50nmのインジウムナノ粒子を数平均で72%含有するように、即ち数平均で全てのインジウムナノ粒子100%に対する一次粒径10〜50nmのインジウムナノ粒子の占める割合が72%になるように、遠心分離機により調整して第2分散体を得た。次に第1分散体80重量%と第2分散体20重量%とを混合した。この分散体を実施例12とした。なお、分散体100重量%に対する最終的な金属(銀及びインジウムの合計)、水、エタノール及び溶媒Cの混合割合を75.0重量%、5.0重量%、5.0重量%及び15.0重量%にそれぞれ調整した。ここで、溶媒Cとは、トルエンとヘキサンとを重量比で1:1になるように混合した混合液である。また分散体中の銀ナノ粒子及びインジウムナノ粒子は炭素骨格が炭素数3の有機分子主鎖の保護剤でそれぞれ化学修飾された。更に銀ナノ粒子及びインジウムナノ粒子を化学修飾している保護剤は水酸基(−OH)を含有しなかったけれども、カルボニル基(−C=O)を含有した。
<Example 11>
The dispersion substituted and washed with ethanol in the same manner as in Example 2 was prepared so that the silver nanoparticles contained 72% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average, that is, all silver nanoparticles in number average. A first dispersion was obtained by adjusting with a centrifuge so that the proportion of silver nanoparticles having a primary particle diameter of 10 to 50 nm with respect to 100% of the particles was 72%. On the other hand, the silver nitrate of Example 2 was replaced with tin dichloride, and the dispersion subjected to substitution washing with ethanol in the same manner as in Example 2 was used. The second dispersion is adjusted by a centrifuge so that the proportion of tin nanoparticles having a primary particle size of 10 to 50 nm is 72% with respect to 100% of all tin nanoparticles. Got. Next, 76% by weight of the first dispersion and 24% by weight of the second dispersion were mixed. This dispersion was designated as Example 11. The final metal (total of silver and tin), water, ethanol, and solvent B with respect to 100% by weight of the dispersion were mixed at 75.0% by weight, 4.0% by weight, 5.0% by weight and 16.% by weight. It adjusted to 0 weight%, respectively. The silver nanoparticles and tin nanoparticles in the dispersion were each chemically modified with an organic molecular main chain protecting agent having a carbon skeleton of 3 carbon atoms. Furthermore, the protective agent chemically modifying the silver nanoparticles and tin nanoparticles did not contain a hydroxyl group (—OH) but contained a carbonyl group (—C═O).
<Example 12>
The dispersion substituted and washed with ethanol in the same manner as in Example 2 was prepared so that the silver nanoparticles contained 72% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average, that is, all silver nanoparticles in number average. A first dispersion was obtained by adjusting with a centrifuge so that the proportion of silver nanoparticles having a primary particle diameter of 10 to 50 nm with respect to 100% of the particles was 72%. On the other hand, the silver nitrate of Example 2 was replaced with indium nitrate, and the dispersion subjected to substitution washing with ethanol in the same manner as in Example 2 was used. The second dispersion is adjusted by a centrifuge so that the proportion of indium nanoparticles having a primary particle size of 10 to 50 nm is 72% so as to contain, that is, the number average of 100% of all indium nanoparticles. Obtained. Next, 80% by weight of the first dispersion and 20% by weight of the second dispersion were mixed. This dispersion was designated as Example 12. In addition, the final metal (total of silver and indium), water, ethanol, and solvent C with respect to 100% by weight of the dispersion were mixed at 75.0%, 5.0%, 5.0%, and 15. It adjusted to 0 weight%, respectively. Here, the solvent C is a mixed solution in which toluene and hexane are mixed at a weight ratio of 1: 1. The silver nanoparticles and indium nanoparticles in the dispersion were each chemically modified with an organic molecular main chain protective agent having a carbon skeleton of 3 carbon atoms. Furthermore, the protective agent chemically modifying silver nanoparticles and indium nanoparticles did not contain a hydroxyl group (—OH) but contained a carbonyl group (—C═O).
<実施例13>
実施例2と同様にしてエタノールで置換洗浄された分散体を、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で74%含有するように、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が74%になるように、遠心分離機により調整して第1分散体を得た。一方、実施例2の硝酸銀を塩化亜鉛に替え、実施例2と同様にしてエタノールで置換洗浄された分散体を、亜鉛ナノ粒子が一次粒径10〜50nmの亜鉛ナノ粒子を数平均で74%含有するように、即ち数平均で全ての亜鉛ナノ粒子100%に対する一次粒径10〜50nmの亜鉛ナノ粒子の占める割合が74%になるように、遠心分離機により調整して第2分散体を得た。次に第1分散体80重量%と第2分散体20重量%とを混合した。この分散体を実施例13とした。なお、分散体100重量%に対する最終的な金属(銀及び亜鉛の合計)、水及びエタノールの混合割合を75.0重量%、10.0重量%及び15.0重量%にそれぞれ調整した。また分散体中の銀ナノ粒子及び亜鉛ナノ粒子は炭素骨格が炭素数3の有機分子主鎖の保護剤でそれぞれ化学修飾された。更に銀ナノ粒子及び亜鉛ナノ粒子を化学修飾している保護剤は水酸基(−OH)を含有しなかったけれども、カルボニル基(−C=O)を含有した。
<実施例14>
実施例2と同様にしてエタノールで置換洗浄された分散体を、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で75%含有するように、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が75%になるように、遠心分離機により調整して第1分散体を得た。一方、実施例2の硝酸銀を硫酸クロムに替え、実施例2と同様にしてエタノールで置換洗浄された分散体を、クロムナノ粒子が一次粒径10〜50nmのクロムナノ粒子を数平均で75%含有するように、即ち数平均で全てのクロムナノ粒子100%に対する一次粒径10〜50nmのクロムナノ粒子の占める割合が75%になるように、遠心分離機により調整して第2分散体を得た。次に第1分散体95重量%と第2分散体5重量%とを混合した。この分散体を実施例14とした。なお、分散体100重量%に対する最終的な金属(銀及びクロムの合計)、水及びエタノールの混合割合を75.0重量%、5.0重量%及び20.0重量%にそれぞれ調整した。また分散体中の銀ナノ粒子及びクロムナノ粒子は炭素骨格が炭素数3の有機分子主鎖の保護剤でそれぞれ化学修飾された。更に銀ナノ粒子及びクロムナノ粒子を化学修飾している保護剤は水酸基(−OH)を含有しなかったけれども、カルボニル基(−C=O)を含有した。
<Example 13>
In the same manner as in Example 2, the dispersion washed with ethanol was washed so that the silver nanoparticles contained 74% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average, that is, all silver nanoparticles in number average. A first dispersion was obtained by adjusting with a centrifuge so that the proportion of silver nanoparticles having a primary particle diameter of 10 to 50 nm with respect to 100% of the particles was 74%. On the other hand, the silver nitrate of Example 2 was replaced with zinc chloride, and the dispersion subjected to substitution washing with ethanol in the same manner as in Example 2 was used. The number of zinc nanoparticles having a primary particle diameter of 10 to 50 nm was 74% on average. The second dispersion is adjusted by a centrifuge so that the ratio of the zinc nanoparticles having a primary particle size of 10 to 50 nm to 74% is contained on the average, that is, the average number of all zinc nanoparticles is 100%. Obtained. Next, 80% by weight of the first dispersion and 20% by weight of the second dispersion were mixed. This dispersion was designated as Example 13. The mixing ratio of final metal (total of silver and zinc), water and ethanol to 100% by weight of the dispersion was adjusted to 75.0% by weight, 10.0% by weight and 15.0% by weight, respectively. The silver nanoparticles and zinc nanoparticles in the dispersion were chemically modified with an organic molecular main chain protecting agent having a carbon skeleton of 3 carbon atoms. Furthermore, the protective agent chemically modifying silver nanoparticles and zinc nanoparticles did not contain a hydroxyl group (—OH) but contained a carbonyl group (—C═O).
<Example 14>
The dispersion substituted and washed with ethanol in the same manner as in Example 2 was used so that the silver nanoparticles contained 75% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average, that is, all silver nanoparticles in number average. A first dispersion was obtained by adjusting with a centrifuge so that the proportion of silver nanoparticles having a primary particle diameter of 10 to 50 nm with respect to 100% of the particles was 75%. On the other hand, the silver nitrate of Example 2 was replaced with chromium sulfate, and the dispersion substituted and washed with ethanol in the same manner as in Example 2 contains 75% of chromium nanoparticles with a primary particle size of 10 to 50 nm in terms of number average. In other words, the second dispersion was obtained by adjusting with a centrifuge so that the ratio of the chromium nanoparticles having a primary particle size of 10 to 50 nm to the chromium particles of 100% in terms of number average was 75%. Next, 95% by weight of the first dispersion and 5% by weight of the second dispersion were mixed. This dispersion was designated as Example 14. The mixing ratio of final metal (total of silver and chromium), water, and ethanol with respect to 100% by weight of the dispersion was adjusted to 75.0% by weight, 5.0% by weight, and 20.0% by weight, respectively. The silver nanoparticles and chromium nanoparticles in the dispersion were each chemically modified with a protective agent having an organic molecular main chain having a carbon skeleton of 3 carbon atoms. Furthermore, the protective agent chemically modifying silver nanoparticles and chromium nanoparticles did not contain a hydroxyl group (—OH) but contained a carbonyl group (—C═O).
<実施例15>
実施例2と同様にしてエタノールで置換洗浄された分散体を、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で72%含有するように、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が72%になるように、遠心分離機により調整して第1分散体を得た。一方、実施例2の硝酸銀を硫酸マンガンに替え、実施例2と同様にしてエタノールで置換洗浄された分散体を、マンガンナノ粒子が一次粒径10〜50nmのマンガンナノ粒子を数平均で72%含有するように、即ち数平均で全てのマンガンナノ粒子100%に対する一次粒径10〜50nmのマンガンナノ粒子の占める割合が72%になるように、遠心分離機により調整して第2分散体を得た。次に第1分散体95重量%と第2分散体5重量%とを混合した。この分散体を実施例15とした。なお、分散体100重量%に対する最終的な金属(銀及びマンガンの合計)、水及びエタノールの混合割合を75.0重量%、3.0重量%及び22.0重量%にそれぞれ調整した。また分散体中の銀ナノ粒子及びマンガンナノ粒子は炭素骨格が炭素数3の有機分子主鎖の保護剤でそれぞれ化学修飾された。更に銀ナノ粒子及びマンガンナノ粒子を化学修飾している保護剤は水酸基(−OH)を含有しなかったけれども、カルボニル基(−C=O)を含有した。
<実施例16>
実施例1と同様にして得られた分散液を室温で放置し、沈降した金属ナノ粒子の凝集物をデカンテーションにより分離した。この分離物に脱イオン水を加えて分散体とし、限外ろ過により脱塩処理した後、更に引き続いてエチレングリコール及びエタノールで置換洗浄して、金属の含有量を50重量%にした。その後、遠心分離機を用いこの遠心分離機の遠心力を調整して粗粒子を分離することにより、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で71%含有するように調製した、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が71%になるように調整した。この分散体を実施例16とした。なお、分散体100%に対する最終的な金属(銀)、水、エチレングリコール及びエタノールの混合割合を35.0重量%、2.0重量%、1.0重量%及び53.0重量%にそれぞれ調整した。また分散体中の銀ナノ粒子は炭素骨格が炭素数3の有機分子主鎖の保護剤で化学修飾された。更に銀ナノ粒子を化学修飾している保護剤は水酸基(−OH)及びカルボニル基(−C=O)を含有しなかった。
<Example 15>
The dispersion substituted and washed with ethanol in the same manner as in Example 2 was prepared so that the silver nanoparticles contained 72% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average, that is, all silver nanoparticles in number average. A first dispersion was obtained by adjusting with a centrifuge so that the proportion of silver nanoparticles having a primary particle diameter of 10 to 50 nm with respect to 100% of the particles was 72%. On the other hand, the silver nitrate of Example 2 was replaced with manganese sulfate, and the dispersion subjected to substitution washing with ethanol in the same manner as in Example 2 was used. The manganese nanoparticles with manganese nanoparticles having a primary particle size of 10 to 50 nm had a number average of 72%. The second dispersion is adjusted by a centrifuge so that the proportion of manganese nanoparticles having a primary particle size of 10 to 50 nm is 72% so that it is contained, that is, the number average of 100% of all manganese nanoparticles. Obtained. Next, 95% by weight of the first dispersion and 5% by weight of the second dispersion were mixed. This dispersion was designated as Example 15. The mixing ratio of final metal (total of silver and manganese), water, and ethanol to 100% by weight of the dispersion was adjusted to 75.0% by weight, 3.0% by weight, and 22.0% by weight, respectively. The silver nanoparticles and manganese nanoparticles in the dispersion were each chemically modified with an organic molecular main chain protective agent having a carbon skeleton of 3 carbon atoms. Furthermore, the protective agent chemically modifying silver nanoparticles and manganese nanoparticles did not contain a hydroxyl group (—OH) but contained a carbonyl group (—C═O).
<Example 16>
The dispersion obtained in the same manner as in Example 1 was allowed to stand at room temperature, and the aggregates of the precipitated metal nanoparticles were separated by decantation. Deionized water was added to the separated product to form a dispersion, which was desalted by ultrafiltration, and then further subjected to substitution washing with ethylene glycol and ethanol to make the metal content 50% by weight. Thereafter, the centrifugal force of the centrifuge is adjusted using a centrifuge to separate coarse particles so that the silver nanoparticles contain 71% of silver nanoparticles with a primary particle size of 10 to 50 nm in number average. The proportion of silver nanoparticles having a primary particle diameter of 10 to 50 nm with respect to 100% of all prepared silver nanoparticles was adjusted to 71%. This dispersion was designated as Example 16. The final mixing ratio of metal (silver), water, ethylene glycol and ethanol with respect to 100% of the dispersion was 35.0 wt%, 2.0 wt%, 1.0 wt% and 53.0 wt%, respectively. It was adjusted. The silver nanoparticles in the dispersion were chemically modified with a protective agent for an organic molecular main chain having a carbon skeleton of 3 carbon atoms. Furthermore, the protective agent chemically modifying the silver nanoparticles did not contain a hydroxyl group (—OH) and a carbonyl group (—C═O).
<実施例17>
実施例1と同様にして得られた分散液を室温で放置し、沈降した金属ナノ粒子の凝集物をデカンテーションにより分離した。この分離物に脱イオン水を加えて分散体とし、限外ろ過により脱塩処理した後、更に引き続いてブタノールで置換洗浄して、金属の含有量を50重量%にした。その後、遠心分離機を用いこの遠心分離機の遠心力を調整して粗粒子を分離することにより、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で73%含有するように調製した、即ち数平均で全ての銀ナノ粒子100重量%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が73%になるように調整した。この分散体を実施例17とした。なお、分散体100%に対する最終的な金属(銀)、水、ブタノール及び溶媒Aの混合割合を35.0重量%、1.5重量%、50.0重量%及び13.5重量%にそれぞれ調整した。また分散体中の銀ナノ粒子は炭素骨格が炭素数3の有機分子主鎖の保護剤で化学修飾された。更に銀ナノ粒子を化学修飾している保護剤は水酸基(−OH)を含有したけれども、カルボニル基(−C=O)を含有しなかった。
<実施例18>
実施例1と同様にして得られた分散液を室温で放置し、沈降した金属ナノ粒子の凝集物をデカンテーションにより分離した。この分離物に脱イオン水を加えて分散体とし、限外ろ過により脱塩処理した後、更に引き続いてプロピレングリコール及びエタノールで置換洗浄して、金属の含有量を50重量%にした。その後、遠心分離機を用いこの遠心分離機の遠心力を調整して粗粒子を分離することにより、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で72%含有するように調製した、即ち数平均で全ての銀ナノ粒子100重量%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が72%になるように調整した。この分散体を実施例18とした。なお、分散体100%に対する最終的な金属(銀)、水、プロピレングリコール及びエタノールの混合割合を35.0重量%、2.0重量%、1.0重量%及び62.0重量%にそれぞれ調整した。また分散体中の銀ナノ粒子は炭素骨格が炭素数3の有機分子主鎖の保護剤で化学修飾された。更に銀ナノ粒子を化学修飾している保護剤は水酸基(−OH)を含有したけれども、カルボニル基(−C=O)を含有しなかった。
<Example 17>
The dispersion obtained in the same manner as in Example 1 was allowed to stand at room temperature, and the aggregates of the precipitated metal nanoparticles were separated by decantation. Deionized water was added to this separated product to form a dispersion, which was desalted by ultrafiltration, and then further subjected to displacement washing with butanol to make the metal content 50% by weight. Thereafter, the centrifugal force of the centrifuge is adjusted using a centrifuge to separate coarse particles so that the silver nanoparticles contain 73% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average. The ratio of the prepared silver nanoparticles having a primary particle diameter of 10 to 50 nm to the weight average of 100% by weight of all silver nanoparticles was adjusted to 73%. This dispersion was designated as Example 17. The final mixing ratio of metal (silver), water, butanol and solvent A to 100% of the dispersion was 35.0% by weight, 1.5% by weight, 50.0% by weight and 13.5% by weight, respectively. It was adjusted. The silver nanoparticles in the dispersion were chemically modified with a protective agent for an organic molecular main chain having a carbon skeleton of 3 carbon atoms. Furthermore, the protective agent chemically modifying the silver nanoparticles contained a hydroxyl group (—OH) but no carbonyl group (—C═O).
<Example 18>
The dispersion obtained in the same manner as in Example 1 was allowed to stand at room temperature, and the aggregates of the precipitated metal nanoparticles were separated by decantation. Deionized water was added to this separated product to form a dispersion, which was desalted by ultrafiltration, and then further subjected to displacement washing with propylene glycol and ethanol to make the metal content 50% by weight. Thereafter, the centrifugal force of this centrifuge is adjusted using a centrifuge to separate coarse particles so that the silver nanoparticles contain 72% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average. The ratio of the prepared silver nanoparticles having a primary particle diameter of 10 to 50 nm to 100% by weight of all silver nanoparticles was adjusted to 72%. This dispersion was designated as Example 18. The final mixing ratio of metal (silver), water, propylene glycol and ethanol to 100% of the dispersion was 35.0% by weight, 2.0% by weight, 1.0% by weight and 62.0% by weight, respectively. It was adjusted. The silver nanoparticles in the dispersion were chemically modified with a protective agent for an organic molecular main chain having a carbon skeleton of 3 carbon atoms. Furthermore, the protective agent chemically modifying the silver nanoparticles contained a hydroxyl group (—OH) but no carbonyl group (—C═O).
<実施例19>
還元剤水溶液の調製時にクエン酸ナトリウムに替えてりんご酸ナトリウムを用いたこと以外は実施例1と同様にして得られた分散液を室温で放置し、沈降した金属ナノ粒子の凝集物をデカンテーションにより分離した。この分離物に脱イオン水を加えて分散体とし、限外ろ過により脱塩処理した後、更に引き続いてジエチレングリコール及びエタノールで置換洗浄して、金属の含有量を50重量%にした。その後、遠心分離機を用いこの遠心分離機の遠心力を調整して粗粒子を分離することにより、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で72%含有するように調製した、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が72%になるように調整した。この分散体を実施例19とした。なお、分散体100重量%に対する最終的な金属(銀)、水、ジエチレングリコール及びエタノールの混合割合を35.0重量%、5.0重量%、1.0重量%及び59.0重量%にそれぞれ調整した。また分散体中の銀ナノ粒子は炭素骨格が炭素数2の有機分子主鎖の保護剤で化学修飾された。更に銀ナノ粒子を化学修飾している保護剤は水酸基(−OH)及びカルボニル基(−C=O)を含有した。
<実施例20>
還元剤水溶液の調製時にクエン酸ナトリウムに替えてりんご酸ナトリウムを用いたこと以外は実施例1と同様にして得られた分散液を室温で放置し、沈降した金属ナノ粒子の凝集物をデカンテーションにより分離した。この分離物に脱イオン水を加えて分散体とし、限外ろ過により脱塩処理した後、更に引き続いてグリコール及びエタノールで置換洗浄して、金属の含有量を50重量%にした。その後、遠心分離機を用いこの遠心分離機の遠心力を調整して粗粒子を分離することにより、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で72%含有するように調製した、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が72%になるように調整した。この分散体を実施例20とした。なお、分散体100重量%に対する最終的な金属(銀)、水、グリセロール及びエタノールの混合割合を35.0重量%、35.0重量%、1.0重量%及び29.0重量%にそれぞれ調整した。また分散体中の銀ナノ粒子は炭素骨格が炭素数2の有機分子主鎖の保護剤で化学修飾された。更に銀ナノ粒子を化学修飾している保護剤は水酸基(−OH)及びカルボニル基(−C=O)を含有した。
<Example 19>
The dispersion obtained in the same manner as in Example 1 except that sodium malate was used in place of sodium citrate when preparing the reducing agent aqueous solution was allowed to stand at room temperature, and the aggregates of the precipitated metal nanoparticles were decanted. Separated by. Deionized water was added to this separated product to form a dispersion, which was desalted by ultrafiltration, and then further subjected to displacement washing with diethylene glycol and ethanol to make the metal content 50% by weight. Thereafter, the centrifugal force of this centrifuge is adjusted using a centrifuge to separate coarse particles so that the silver nanoparticles contain 72% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average. Adjustment was made so that the proportion of silver nanoparticles having a primary particle size of 10 to 50 nm with respect to 100% of all prepared silver nanoparticles was 72%. This dispersion was designated as Example 19. The final mixing ratio of metal (silver), water, diethylene glycol and ethanol to 100% by weight of the dispersion was 35.0% by weight, 5.0% by weight, 1.0% by weight and 59.0% by weight, respectively. It was adjusted. The silver nanoparticles in the dispersion were chemically modified with an organic molecular main chain protective agent having a carbon skeleton of 2 carbon atoms. Furthermore, the protective agent chemically modifying the silver nanoparticles contained a hydroxyl group (—OH) and a carbonyl group (—C═O).
<Example 20>
The dispersion obtained in the same manner as in Example 1 except that sodium malate was used in place of sodium citrate when preparing the reducing agent aqueous solution was allowed to stand at room temperature, and the aggregates of the precipitated metal nanoparticles were decanted. Separated by. Deionized water was added to this separated product to form a dispersion, which was desalted by ultrafiltration, and then further subjected to substitution washing with glycol and ethanol to make the metal content 50% by weight. Thereafter, the centrifugal force of this centrifuge is adjusted using a centrifuge to separate coarse particles so that the silver nanoparticles contain 72% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average. Adjustment was made so that the proportion of silver nanoparticles having a primary particle size of 10 to 50 nm with respect to 100% of all prepared silver nanoparticles was 72%. This dispersion was designated as Example 20. Note that the final mixing ratio of metal (silver), water, glycerol and ethanol to 100% by weight of the dispersion was 35.0% by weight, 35.0% by weight, 1.0% by weight and 29.0% by weight, respectively. It was adjusted. The silver nanoparticles in the dispersion were chemically modified with an organic molecular main chain protective agent having a carbon skeleton of 2 carbon atoms. Furthermore, the protective agent chemically modifying the silver nanoparticles contained a hydroxyl group (—OH) and a carbonyl group (—C═O).
<実施例21>
還元剤水溶液の調製時にクエン酸ナトリウムに替えてグリコール酸ナトリウムを用いたこと以外は実施例1と同様にして得られた分散液を室温で放置し、沈降した金属ナノ粒子の凝集物をデカンテーションにより分離した。この分離物に脱イオン水を加えて分散体とし、限外ろ過により脱塩処理した後、更に引き続いてジエチレングリコール及びエタノールで置換洗浄して、金属の含有量を50重量%にした。その後、遠心分離機を用いこの遠心分離機の遠心力を調整して粗粒子を分離することにより、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で73%含有するように調製した、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が73%になるように調整した。この分散体を実施例21とした。なお、分散体100重量%に対する最終的な金属(銀)、水及びエタノールの混合割合を35.0重量%、10.0重量%及び55.0重量%にそれぞれ調整した。また分散体中の銀ナノ粒子は炭素骨格が炭素数1の有機分子主鎖の保護剤で化学修飾された。更に銀ナノ粒子を化学修飾している保護剤は水酸基(−OH)を含有しなかったけれども、カルボニル基(−C=O)を含有した。
<実施例22>
還元剤水溶液の調製時に実施例1と同様にして得られた分散液を室温で放置し、沈降した金属ナノ粒子の凝集物をデカンテーションにより分離した。この分離物に脱イオン水を加えて分散体とし、限外ろ過により脱塩処理した後、更に引き続いてエリトリトール及びエタノールで置換洗浄して、金属の含有量を50重量%にした。その後、遠心分離機を用いこの遠心分離機の遠心力を調整して粗粒子を分離することにより、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で73%含有するように調製した、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が73%になるように調整した。この分散体を実施例22とした。なお、分散体100重量%に対する最終的な金属(銀)、水、エリトリトール、エタノール及び溶媒Bの混合割合を35.0重量%、5.0重量%、1.0重量%、24.0重量%及び35.0重量%にそれぞれ調整した。また分散体中の銀ナノ粒子は炭素骨格が炭素数2の有機分子主鎖の保護剤で化学修飾された。更に銀ナノ粒子を化学修飾している保護剤は水酸基(−OH)及びカルボニル基(−C=O)を含有した。
<Example 21>
The dispersion obtained in the same manner as in Example 1 except that sodium glycolate was used instead of sodium citrate when preparing the reducing agent aqueous solution was allowed to stand at room temperature, and the aggregates of the precipitated metal nanoparticles were decanted. Separated by. Deionized water was added to this separated product to form a dispersion, which was desalted by ultrafiltration, and then further subjected to displacement washing with diethylene glycol and ethanol to make the metal content 50% by weight. Thereafter, the centrifugal force of the centrifuge is adjusted using a centrifuge to separate coarse particles so that the silver nanoparticles contain 73% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average. The proportion of silver nanoparticles having a primary particle size of 10 to 50 nm with respect to 100% of all prepared silver nanoparticles was adjusted to 73%. This dispersion was designated as Example 21. The final mixing ratio of metal (silver), water and ethanol with respect to 100% by weight of the dispersion was adjusted to 35.0% by weight, 10.0% by weight and 55.0% by weight, respectively. The silver nanoparticles in the dispersion were chemically modified with a protective agent for the organic molecular main chain having a carbon skeleton of 1 carbon. Furthermore, the protective agent chemically modifying the silver nanoparticles did not contain a hydroxyl group (—OH) but contained a carbonyl group (—C═O).
<Example 22>
The dispersion obtained in the same manner as in Example 1 during the preparation of the reducing agent aqueous solution was allowed to stand at room temperature, and the aggregates of the precipitated metal nanoparticles were separated by decantation. Deionized water was added to the separated product to form a dispersion, which was desalted by ultrafiltration, and then further washed by substitution with erythritol and ethanol to make the metal content 50% by weight. Thereafter, the centrifugal force of the centrifuge is adjusted using a centrifuge to separate coarse particles so that the silver nanoparticles contain 73% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average. The proportion of silver nanoparticles having a primary particle size of 10 to 50 nm with respect to 100% of all prepared silver nanoparticles was adjusted to 73%. This dispersion was designated as Example 22. The final mixing ratio of metal (silver), water, erythritol, ethanol and solvent B with respect to 100% by weight of the dispersion was 35.0% by weight, 5.0% by weight, 1.0% by weight and 24.0% by weight. % And 35.0% by weight, respectively. The silver nanoparticles in the dispersion were chemically modified with an organic molecular main chain protective agent having a carbon skeleton of 2 carbon atoms. Furthermore, the protective agent chemically modifying the silver nanoparticles contained a hydroxyl group (—OH) and a carbonyl group (—C═O).
<実施例23>
還元剤水溶液の調製時にクエン酸ナトリウムに替えてりんご酸ナトリウムを用いたこと以外は実施例1と同様にして得られた分散液を室温で放置し、沈降した金属ナノ粒子の凝集物をデカンテーションにより分離した。この分離物に脱イオン水を加えて分散体とし、限外ろ過により脱塩処理した後、更に引き続いてイソボニルヘキサノール及びエタノールで置換洗浄して、金属の含有量を50重量%にした。その後、遠心分離機を用いこの遠心分離機の遠心力を調整して粗粒子を分離することにより、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で75%含有するように調整した、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が75%になるように調整した。この分散体を実施例23とした。なお、分散体100重量%に対する最終的な金属(銀)、水、イソボニルヘキサノール及びエタノールの混合割合を35.0重量%、1.0重量%、1.0重量%及び63.0重量%にそれぞれ調整した。また分散体中の銀ナノ粒子は炭素骨格が炭素数2の有機分子主鎖の保護剤で化学修飾された。更に銀ナノ粒子を化学修飾している保護剤は水酸基(−OH)及びカルボニル基(−C=O)を含有した。
<実施例24>
還元剤水溶液の調製時にクエン酸ナトリウムに替えてりんご酸ナトリウムを用いたこと以外は実施例1と同様にして得られた分散液を室温で放置し、沈降した金属ナノ粒子の凝集物をデカンテーションにより分離した。この分離物に脱イオン水を加えて分散体とし、限外ろ過により脱塩処理した後、更に引き続いてメタノールで置換洗浄して、金属の含有量を50重量%にした。その後、遠心分離機を用いこの遠心分離機の遠心力を調整して粗粒子を分離することにより、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で75%含有するように調製した、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が75%になるように調整した。この分散体を実施例24とした。なお、分散体100重量%に対する最終的な金属(銀)、水及びメタノールの混合割合を35.0重量%、30.0重量%及び35.0重量%にそれぞれ調整した。また分散体中の銀ナノ粒子は炭素骨格が炭素数2の有機分子主鎖の保護剤で化学修飾された。更に銀ナノ粒子を化学修飾している保護剤は水酸基(−OH)及びカルボニル基(−C=O)を含有した。
<Example 23>
The dispersion obtained in the same manner as in Example 1 except that sodium malate was used in place of sodium citrate when preparing the reducing agent aqueous solution was allowed to stand at room temperature, and the aggregates of the precipitated metal nanoparticles were decanted. Separated by. Deionized water was added to the separated product to form a dispersion, which was desalted by ultrafiltration, and then further subjected to displacement washing with isobornyl hexanol and ethanol to make the metal content 50% by weight. Thereafter, the centrifugal force of the centrifuge is adjusted using a centrifuge to separate coarse particles so that the silver nanoparticles contain 75% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average. It adjusted so that the ratio for which the silver nanoparticle with a primary particle diameter of 10-50 nm might occupy 75% with respect to 100% of all the silver nanoparticles on the number average. This dispersion was designated as Example 23. The final mixing ratio of metal (silver), water, isobornyl hexanol and ethanol with respect to 100% by weight of the dispersion was 35.0% by weight, 1.0% by weight, 1.0% by weight and 63.0% by weight. Respectively. The silver nanoparticles in the dispersion were chemically modified with an organic molecular main chain protective agent having a carbon skeleton of 2 carbon atoms. Furthermore, the protective agent chemically modifying the silver nanoparticles contained a hydroxyl group (—OH) and a carbonyl group (—C═O).
<Example 24>
The dispersion obtained in the same manner as in Example 1 except that sodium malate was used in place of sodium citrate when preparing the reducing agent aqueous solution was allowed to stand at room temperature, and the aggregates of the precipitated metal nanoparticles were decanted. Separated by. Deionized water was added to this separated product to form a dispersion, which was desalted by ultrafiltration, and then further subjected to displacement washing with methanol to make the metal content 50% by weight. Thereafter, the centrifugal force of the centrifuge is adjusted using a centrifuge to separate coarse particles so that the silver nanoparticles contain 75% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average. The ratio of the prepared silver nanoparticles having a primary particle diameter of 10 to 50 nm to 75% of all silver nanoparticles was adjusted to 75%. This dispersion was designated as Example 24. The final mixing ratio of metal (silver), water and methanol with respect to 100% by weight of the dispersion was adjusted to 35.0% by weight, 30.0% by weight and 35.0% by weight, respectively. The silver nanoparticles in the dispersion were chemically modified with an organic molecular main chain protective agent having a carbon skeleton of 2 carbon atoms. Furthermore, the protective agent chemically modifying the silver nanoparticles contained a hydroxyl group (—OH) and a carbonyl group (—C═O).
<実施例25>
実施例2と同様にしてエタノールで置換洗浄された分散体を、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で71%含有するように、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が71%になるように、遠心分離機により調整して第1分散体を得た。一方、実施例2の硝酸銀を塩化ニッケルに替え、実施例2と同様にしてエタノールで置換洗浄された分散体を、ニッケルナノ粒子が一次粒径10〜50nmのニッケルナノ粒子を数平均で71%含有するように、即ち数平均で全てのニッケルナノ粒子100%に対する一次粒径10〜50nmのニッケルナノ粒子の占める割合が71%になるように、遠心分離機により調整して第2分散体を得た。次に第1分散体98重量%と第2分散体2重量%とを混合した。この分散体を実施例25とした。なお、分散体100重量%に対する最終的な金属(銀及びニッケルの合計)、水及びエタノールの混合割合を35.0重量%、5.0重量%及び60.0重量%にそれぞれ調整した。また分散体中の銀ナノ粒子及びニッケルナノ粒子は炭素骨格が炭素数3の有機分子主鎖の保護剤でそれぞれ化学修飾された。更に銀ナノ粒子及びニッケルナノ粒子を化学修飾している保護剤は水酸基(−OH)及びカルボニル基(−C=O)を含有した。
<実施例26>
実施例2と同様にしてエタノールで置換洗浄された分散体を、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で71%含有するように、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が71%になるように、遠心分離機により調整して第1分散体を得た。一方、実施例2の硝酸銀を硝酸第一銅に替え、実施例2と同様にしてエタノールで置換洗浄された分散体を、銅ナノ粒子が一次粒径10〜50nmの銅ナノ粒子を数平均で71%含有するように、即ち数平均で全ての銅ナノ粒子100%に対する一次粒径10〜50nmの銅ナノ粒子の占める割合が71%になるように、遠心分離機により調整して第2分散体を得た。次に第1分散体98重量%と第2分散体2重量%とを混合した。この分散体を実施例26とした。なお、分散体100重量%に対する最終的な金属(銀及び銅の合計)、水及びエタノールの混合割合を35.0重量%、5.0重量%及び60.0重量%にそれぞれ調整した。また分散体中の銀ナノ粒子及び銅ナノ粒子は炭素骨格が炭素数3の有機分子主鎖の保護剤でそれぞれ化学修飾された。更に銀ナノ粒子及び銅ナノ粒子を化学修飾している保護剤は水酸基(−OH)及びカルボニル基(−C=O)を含有した。
<Example 25>
The dispersion substituted and washed with ethanol in the same manner as in Example 2 was prepared so that the silver nanoparticles contained 71% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average, that is, all silver nanoparticles in number average. A first dispersion was obtained by adjusting with a centrifuge so that the ratio of silver nanoparticles having a primary particle diameter of 10 to 50 nm to 100% of the particles was 71%. On the other hand, the silver nitrate of Example 2 was replaced with nickel chloride, and the dispersion which was substituted and washed with ethanol in the same manner as in Example 2 was used. The nickel nanoparticles with a primary particle diameter of 10 to 50 nm were 71% in average number. The second dispersion is adjusted by a centrifuge so that the proportion of nickel nanoparticles having a primary particle size of 10 to 50 nm is 71% with respect to 100% of all nickel nanoparticles in terms of number average. Obtained. Next, 98% by weight of the first dispersion and 2% by weight of the second dispersion were mixed. This dispersion was designated as Example 25. The mixing ratio of final metal (total of silver and nickel), water and ethanol with respect to 100% by weight of the dispersion was adjusted to 35.0% by weight, 5.0% by weight and 60.0% by weight, respectively. The silver nanoparticles and nickel nanoparticles in the dispersion were chemically modified with an organic molecular main chain protecting agent having a carbon skeleton of 3 carbon atoms, respectively. Furthermore, the protective agent chemically modifying silver nanoparticles and nickel nanoparticles contained a hydroxyl group (—OH) and a carbonyl group (—C═O).
<Example 26>
The dispersion substituted and washed with ethanol in the same manner as in Example 2 was prepared so that the silver nanoparticles contained 71% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average, that is, all silver nanoparticles in number average. A first dispersion was obtained by adjusting with a centrifuge so that the ratio of silver nanoparticles having a primary particle diameter of 10 to 50 nm to 100% of the particles was 71%. On the other hand, the silver nitrate of Example 2 was replaced with cuprous nitrate, and the dispersion subjected to substitution washing with ethanol in the same manner as in Example 2 was compared with the number average of copper nanoparticles having a primary particle size of 10 to 50 nm. The second dispersion is adjusted by a centrifuge so that the content is 71%, that is, the ratio of the copper nanoparticles having a primary particle size of 10 to 50 nm to the copper particles of 100% is 71%. Got the body. Next, 98% by weight of the first dispersion and 2% by weight of the second dispersion were mixed. This dispersion was designated as Example 26. The mixing ratio of final metal (total of silver and copper), water and ethanol with respect to 100% by weight of the dispersion was adjusted to 35.0% by weight, 5.0% by weight and 60.0% by weight, respectively. The silver nanoparticles and copper nanoparticles in the dispersion were each chemically modified with an organic molecular main chain protective agent having a carbon skeleton of 3 carbon atoms. Furthermore, the protective agent chemically modifying silver nanoparticles and copper nanoparticles contained a hydroxyl group (—OH) and a carbonyl group (—C═O).
<実施例27>
実施例2と同様にしてエタノールで置換洗浄された分散体を、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で72%含有するように、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が72%になるように、遠心分離機により調整して第1分散体を得た。一方、実施例2の硝酸銀を二塩化錫に替え、実施例2と同様にしてエタノールで置換洗浄された分散体を、錫ナノ粒子が一次粒径10〜50nmの錫ナノ粒子を数平均で72%含有するように、即ち数平均で全ての錫ナノ粒子100%に対する一次粒径10〜50nmの錫ナノ粒子の占める割合が72重量%になるように、遠心分離機により調整して第2分散体を得た。次に第1分散体98重量%と第2分散体2重量%とを混合した。この分散体を実施例27とした。なお、分散体100重量%に対する最終的な金属(銀及び錫の合計)、水及びエタノールの混合割合を35.0重量%、2.0重量%及び63.0重量%にそれぞれ調整した。また分散体中の銀ナノ粒子及び錫ナノ粒子は炭素骨格が炭素数3の有機分子主鎖の保護剤でそれぞれ化学修飾された。更に銀ナノ粒子及び錫ナノ粒子を化学修飾している保護剤は水酸基(−OH)及びカルボニル基(−C=O)を含有した。
<実施例28>
実施例2と同様にしてエタノールで置換洗浄された分散体を、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で72%含有するように、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が72%になるように、遠心分離機により調整して第1分散体を得た。一方、実施例2の硝酸銀を塩化亜鉛に替え、実施例2と同様にしてエタノールで置換洗浄された分散体を、亜鉛ナノ粒子が一次粒径10〜50nmの亜鉛ナノ粒子を数平均で72%含有するように、即ち数平均で全ての亜鉛ナノ粒子100%に対する一次粒径10〜50nmの亜鉛ナノ粒子の占める割合が72%になるように、遠心分離機により調整して第2分散体を得た。次に第1分散体98重量%と第2分散体2重量%とを混合した。この分散体を実施例28とした。なお、分散体100重量%に対する最終的な金属(銀及び亜鉛の合計)、水及びメタノールの混合割合を35.0重量%、2.0重量%及び63.0重量%にそれぞれ調整した。また分散体中の銀ナノ粒子及び亜鉛ナノ粒子は炭素骨格が炭素数3の有機分子主鎖の保護剤でそれぞれ化学修飾された。更に銀ナノ粒子及び亜鉛ナノ粒子を化学修飾している保護剤は水酸基(−OH)及びカルボニル基(−C=O)を含有した。
<Example 27>
The dispersion substituted and washed with ethanol in the same manner as in Example 2 was prepared so that the silver nanoparticles contained 72% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average, that is, all silver nanoparticles in number average. A first dispersion was obtained by adjusting with a centrifuge so that the proportion of silver nanoparticles having a primary particle diameter of 10 to 50 nm with respect to 100% of the particles was 72%. On the other hand, the silver nitrate of Example 2 was replaced with tin dichloride, and the dispersion subjected to substitution washing with ethanol in the same manner as in Example 2 was used. The number of tin nanoparticles having a primary particle size of 10 to 50 nm was 72 on average. The second dispersion is adjusted by a centrifuge so that the ratio of the tin nanoparticles having a primary particle diameter of 10 to 50 nm to 72% by weight with respect to 100% of all tin nanoparticles is 72% by weight. Got the body. Next, 98% by weight of the first dispersion and 2% by weight of the second dispersion were mixed. This dispersion was designated as Example 27. The mixing ratio of final metal (total of silver and tin), water and ethanol to 100% by weight of the dispersion was adjusted to 35.0% by weight, 2.0% by weight and 63.0% by weight, respectively. The silver nanoparticles and tin nanoparticles in the dispersion were each chemically modified with an organic molecular main chain protecting agent having a carbon skeleton of 3 carbon atoms. Furthermore, the protective agent chemically modifying silver nanoparticles and tin nanoparticles contained a hydroxyl group (—OH) and a carbonyl group (—C═O).
<Example 28>
The dispersion substituted and washed with ethanol in the same manner as in Example 2 was prepared so that the silver nanoparticles contained 72% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average, that is, all silver nanoparticles in number average. A first dispersion was obtained by adjusting with a centrifuge so that the proportion of silver nanoparticles having a primary particle diameter of 10 to 50 nm with respect to 100% of the particles was 72%. On the other hand, the silver nitrate of Example 2 was replaced with zinc chloride, and the dispersion subjected to substitution washing with ethanol in the same manner as in Example 2 was used. The number of zinc nanoparticles having a primary particle diameter of 10 to 50 nm was 72% on average. The second dispersion is adjusted by a centrifuge so that the ratio of the zinc nanoparticles having a primary particle diameter of 10 to 50 nm to 72% is contained in the average number average of 100% of all zinc nanoparticles. Obtained. Next, 98% by weight of the first dispersion and 2% by weight of the second dispersion were mixed. This dispersion was designated as Example 28. The mixing ratio of final metal (total of silver and zinc), water and methanol to 100% by weight of the dispersion was adjusted to 35.0% by weight, 2.0% by weight and 63.0% by weight, respectively. The silver nanoparticles and zinc nanoparticles in the dispersion were chemically modified with an organic molecular main chain protecting agent having a carbon skeleton of 3 carbon atoms. Furthermore, the protective agent chemically modifying silver nanoparticles and zinc nanoparticles contained a hydroxyl group (—OH) and a carbonyl group (—C═O).
<実施例29>
実施例2と同様にしてエタノールで置換洗浄された分散体を、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で72%含有するように、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が72%になるように、遠心分離機により調整して第1分散体を得た。一方、実施例2の硝酸銀を硫酸クロムに替え、実施例2と同様にしてエタノールで置換洗浄された分散体を、クロムナノ粒子が一次粒径10〜50nmのクロムナノ粒子を数平均で72%含有するように、即ち数平均で全てのクロムナノ粒子100%に対する一次粒径10〜50nmのクロムナノ粒子の占める割合が72%になるように、遠心分離機により調整して第2分散体を得た。次に第1分散体99重量%と第2分散体1重量%とを混合した。この分散体を実施例29とした。なお、分散体100重量%に対する最終的な金属(銀及びクロムの合計)、水及びエタノールの混合割合を35.0重量%、2.0重量%及び63.0重量%にそれぞれ調整した。また分散体中の銀ナノ粒子及びクロムナノ粒子は炭素骨格が炭素数3の有機分子主鎖の保護剤でそれぞれ化学修飾された。更に銀ナノ粒子及びクロムナノ粒子を化学修飾している保護剤は水酸基(−OH)及びカルボニル基(−C=O)を含有した。
<実施例30>
実施例2と同様にしてエタノールで置換洗浄された分散体を、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で72%含有するように、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が72%になるように、遠心分離機により調整して第1分散体を得た。一方、実施例2の硝酸銀を硫酸マンガンに替え、実施例2と同様にしてエタノールで置換洗浄された分散体を、マンガンナノ粒子が一次粒径10〜50nmのマンガンナノ粒子を数平均で72%含有するように、即ち数平均で全てのマンガンナノ粒子100%に対する一次粒径10〜50nmのマンガンナノ粒子の占める割合が72%になるように、遠心分離機により調整して第2分散体を得た。次に第1分散体99重量%と第2分散体1重量%とを混合した。この分散体を実施例30とした。なお、分散体100重量%に対する最終的な金属(銀及びマンガンの合計)、水及びエタノールの混合割合を35.0重量%、2.0重量%及び63.0重量%にそれぞれ調整した。また分散体中の銀ナノ粒子及びマンガンナノ粒子は炭素骨格が炭素数3の有機分子主鎖の保護剤でそれぞれ化学修飾された。更に銀ナノ粒子及びマンガンナノ粒子を化学修飾している保護剤は水酸基(−OH)及びカルボニル基(−C=O)を含有した。
<Example 29>
The dispersion substituted and washed with ethanol in the same manner as in Example 2 was prepared so that the silver nanoparticles contained 72% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average, that is, all silver nanoparticles in number average. A first dispersion was obtained by adjusting with a centrifuge so that the proportion of silver nanoparticles having a primary particle diameter of 10 to 50 nm with respect to 100% of the particles was 72%. On the other hand, the silver nitrate of Example 2 was replaced with chromium sulfate, and the dispersion which was substituted and washed with ethanol in the same manner as in Example 2 contained 72% of chromium nanoparticles having a primary particle size of 10 to 50 nm in terms of number average. In other words, the second dispersion was obtained by adjusting with a centrifuge so that the ratio of the chromium nanoparticles having a primary particle size of 10 to 50 nm to the chromium particles having a number average of 100% was 72%. Next, 99% by weight of the first dispersion and 1% by weight of the second dispersion were mixed. This dispersion was determined as Example 29. The mixing ratio of final metal (total of silver and chromium), water and ethanol to 100% by weight of the dispersion was adjusted to 35.0% by weight, 2.0% by weight and 63.0% by weight, respectively. The silver nanoparticles and chromium nanoparticles in the dispersion were each chemically modified with a protective agent having an organic molecular main chain having a carbon skeleton of 3 carbon atoms. Furthermore, the protective agent chemically modifying silver nanoparticles and chromium nanoparticles contained a hydroxyl group (—OH) and a carbonyl group (—C═O).
<Example 30>
The dispersion substituted and washed with ethanol in the same manner as in Example 2 was prepared so that the silver nanoparticles contained 72% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average, that is, all silver nanoparticles in number average. A first dispersion was obtained by adjusting with a centrifuge so that the proportion of silver nanoparticles having a primary particle diameter of 10 to 50 nm with respect to 100% of the particles was 72%. On the other hand, the silver nitrate of Example 2 was replaced with manganese sulfate, and the dispersion subjected to substitution washing with ethanol in the same manner as in Example 2 was used. The manganese nanoparticles with manganese nanoparticles having a primary particle size of 10 to 50 nm had a number average of 72%. The second dispersion is adjusted by a centrifuge so that the proportion of manganese nanoparticles having a primary particle size of 10 to 50 nm is 72% so that it is contained, that is, the number average of 100% of all manganese nanoparticles. Obtained. Next, 99% by weight of the first dispersion and 1% by weight of the second dispersion were mixed. This dispersion was designated as Example 30. The mixing ratio of final metal (total of silver and manganese), water and ethanol to 100% by weight of the dispersion was adjusted to 35.0% by weight, 2.0% by weight and 63.0% by weight, respectively. The silver nanoparticles and manganese nanoparticles in the dispersion were each chemically modified with an organic molecular main chain protective agent having a carbon skeleton of 3 carbon atoms. Furthermore, the protective agent chemically modifying silver nanoparticles and manganese nanoparticles contained a hydroxyl group (—OH) and a carbonyl group (—C═O).
<実施例31>
実施例1と同様にしてメタノールで置換洗浄された分散体を、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で100%含有するように、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が100%になるように、遠心分離機により調整して分散体を得た。この分散体を実施例31とした。なお、分散体100重量%に対する最終的な金属(銀)、水及びメタノールの混合割合を3.5重量%、1.0重量%及び95.5重量%にそれぞれ調整した。また分散体中の銀ナノ粒子は炭素骨格が炭素数3の有機分子主鎖の保護剤でそれぞれ化学修飾された。更に銀ナノ粒子を化学修飾している保護剤は水酸基(−OH)及びカルボニル基(−C=O)を含有した。
<Example 31>
In the same manner as in Example 1, the dispersion washed with methanol was washed so that the silver nanoparticles contained 100% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average, that is, all silver nanoparticles in number average. A dispersion was obtained by adjusting with a centrifuge so that the ratio of the silver nanoparticles having a primary particle diameter of 10 to 50 nm to 100% of the particles was 100%. This dispersion was designated as Example 31. The final mixing ratio of metal (silver), water and methanol to 100% by weight of the dispersion was adjusted to 3.5% by weight, 1.0% by weight and 95.5% by weight, respectively. The silver nanoparticles in the dispersion were each chemically modified with a protective agent for an organic molecular main chain having a carbon skeleton of 3 carbon atoms. Furthermore, the protective agent chemically modifying the silver nanoparticles contained a hydroxyl group (—OH) and a carbonyl group (—C═O).
<実施例32>
実施例1と同様にしてメタノールで置換洗浄された分散体を、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で100%含有するように、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が100%になるように、遠心分離機により調整して分散体を得た。この分散体を実施例32とした。なお、分散体100重量%に対する最終的な金属(銀)、水及びメタノールの混合割合を90.0重量%、9.8重量%及び0.2重量%にそれぞれ調整した。また分散体中の銀ナノ粒子は炭素骨格が炭素数3の有機分子主鎖の保護剤でそれぞれ化学修飾された。更に銀ナノ粒子を化学修飾している保護剤は水酸基(−OH)及びカルボニル基(−C=O)を含有した。
<Example 32>
In the same manner as in Example 1, the dispersion washed with methanol was washed so that the silver nanoparticles contained 100% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average, that is, all silver nanoparticles in number average. A dispersion was obtained by adjusting with a centrifuge so that the ratio of the silver nanoparticles having a primary particle diameter of 10 to 50 nm to 100% of the particles was 100%. This dispersion was designated as Example 32. The final mixing ratio of metal (silver), water and methanol with respect to 100% by weight of the dispersion was adjusted to 90.0% by weight, 9.8% by weight and 0.2% by weight, respectively. The silver nanoparticles in the dispersion were each chemically modified with a protective agent for an organic molecular main chain having a carbon skeleton of 3 carbon atoms. Furthermore, the protective agent chemically modifying the silver nanoparticles contained a hydroxyl group (—OH) and a carbonyl group (—C═O).
<比較例1>
メタノールで置換洗浄された分散体を、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で68%含有するように、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が68%になるように、遠心分離機により調整した。また分散体100重量%に対する最終的な金属(銀)、水及びメタノールの混合割合を50.0重量%、2.5重量%及び47.5重量%にそれぞれ調整した。上記以外は実施例1と同様にして分散体を調製した。この分散体を比較例1とした。
<比較例2>
還元剤水溶液の調製時にクエン酸ナトリウムに替えてメバロン酸ナトリウムを用い、分散体100重量%に対する最終的な金属(銀)、水及びエタノールの混合割合を50.0重量%、4.0重量%及び46.0重量%にそれぞれ調整したこと以外は実施例2と同様にして分散体を調製した。この分散体を比較例2とした。なお、分散体中の銀ナノ粒子は炭素骨格が炭素数4の有機分子主鎖の保護剤で化学修飾された。
<比較例3>
分散体100重量%に対する最終的な金属(銀)、水、エタノール及び溶媒Aの混合割合を50.0重量%、0.7重量%、30.0重量%及び19.3重量%にそれぞれ調整したこと以外は、実施例3と同様にして分散体を調製した。この分散体を比較例3とした。
<比較例4>
分散体100重量%に対する最終的な金属(銀)、水、エタノール及び溶媒Bの混合割合を50.0重量%、40.0重量%、1.0重量%及び9.0重量%にそれぞれ調整したこと以外は、実施例4と同様にして分散体を調製した。この分散体を比較例4とした。
<比較例5>
プロパノールで置換洗浄し、第1分散体73重量%と第2分散体27重量%とを混合し、更に分散体100重量%に対する最終的な金属(銀及び金)、水、プロパノール及び溶媒Cの混合割合を50.0重量%、3.5重量%、30.0重量%及び16.5重量%にそれぞれ調整したこと以外は、実施例5と同様にして分散体を調製した。この分散体を比較例5とした。
<Comparative Example 1>
Dispersion-washed dispersion with methanol is such that the silver nanoparticles contain 68% of silver nanoparticles with a primary particle size of 10-50 nm on average, that is, the primary particle size with respect to 100% of all silver nanoparticles on average. It adjusted with the centrifuge so that the ratio for which 10-50 nm silver nanoparticles occupied might be 68%. Further, the final mixing ratio of metal (silver), water and methanol with respect to 100% by weight of the dispersion was adjusted to 50.0% by weight, 2.5% by weight and 47.5% by weight, respectively. A dispersion was prepared in the same manner as in Example 1 except for the above. This dispersion was designated as Comparative Example 1.
<Comparative example 2>
When preparing the reducing agent aqueous solution, sodium mevalonate was used instead of sodium citrate, and the final mixing ratio of metal (silver), water and ethanol with respect to 100% by weight of the dispersion was 50.0% by weight, 4.0% by weight. And a dispersion was prepared in the same manner as in Example 2 except that the amount was adjusted to 46.0% by weight. This dispersion was designated as Comparative Example 2. The silver nanoparticles in the dispersion were chemically modified with an organic molecular main chain protective agent having a carbon skeleton of 4 carbon atoms.
<Comparative Example 3>
The final metal (silver), water, ethanol and solvent A mixing ratio with respect to 100% by weight of the dispersion was adjusted to 50.0%, 0.7%, 30.0% and 19.3% by weight, respectively. A dispersion was prepared in the same manner as in Example 3 except that. This dispersion was designated as Comparative Example 3.
<Comparative Example 4>
Adjust the final metal (silver), water, ethanol and solvent B mixing ratios to 50.0 wt%, 40.0 wt%, 1.0 wt% and 9.0 wt% with respect to 100 wt% of the dispersion, respectively. A dispersion was prepared in the same manner as in Example 4 except that. This dispersion was designated as Comparative Example 4.
<Comparative Example 5>
Substitution washing with propanol, mixing 73% by weight of the first dispersion and 27% by weight of the second dispersion and further adding the final metals (silver and gold), water, propanol and solvent C to 100% by weight of the dispersion. A dispersion was prepared in the same manner as in Example 5 except that the mixing ratio was adjusted to 50.0 wt%, 3.5 wt%, 30.0 wt% and 16.5 wt%, respectively. This dispersion was designated as Comparative Example 5.
<比較例6>
第1分散体74重量%と第2分散体26重量%とを混合し、分散体100重量%に対する最終的な金属(銀及び白金)、水及びエタノールの混合割合を75.0重量%、3.5重量%及び21.5重量%にそれぞれ調整したこと以外は、実施例6と同様にして分散体を調製した。この分散体を比較例6とした。
<比較例7>
第1分散体73重量%と第2分散体27重量%とを混合し、分散体100重量%に対する最終的な金属(銀及びパラジウム)、水及びエタノールの混合割合を75.0重量%、2.2重量%及び22.8重量%にそれぞれ調整したこと以外は、実施例7と同様にして分散体を調製した。この分散体を比較例7とした。
<比較例8>
第1分散体74重量%と第2分散体26重量%とを混合し、分散体100重量%に対する最終的な金属(銀及びルテニウム)、エタノール及び溶媒Aの混合割合を75.0重量%、15.0重量%及び10.0重量%にそれぞれ調整したこと以外は、実施例8と同様にして分散体を調製した。この分散体を比較例8とした。
<比較例9>
第1分散体74重量%と第2分散体26重量%とを混合し、分散体100重量%に対する最終的な金属(銀及びニッケル)、水、エタノール及び溶媒Bの混合割合を75.0重量%、2.2重量%、12.8重量%及び10.0重量%にそれぞれ調整したこと以外は、実施例9と同様にして分散体を調製した。この分散体を比較例9とした。
<比較例10>
第1分散体72重量%と第2分散体28重量%とを混合し、分散体100重量%に対する最終的な金属(銀及び銅)、水、エタノール及び溶媒Cの混合割合を75.0重量%、4.0重量%、11.0重量%及び10.0重量%にそれぞれ調整したこと以外は、実施例10と同様にして分散体を調製した。この分散体を比較例10とした。
<Comparative Example 6>
74% by weight of the first dispersion and 26% by weight of the second dispersion were mixed, and the final metal (silver and platinum), water and ethanol mixing ratio was 75.0% by weight, 3% with respect to 100% by weight of the dispersion. A dispersion was prepared in the same manner as in Example 6 except that the amount was adjusted to 5% by weight and 21.5% by weight, respectively. This dispersion was designated as Comparative Example 6.
<Comparative Example 7>
73 wt% of the first dispersion and 27 wt% of the second dispersion were mixed, and the final mixing ratio of metal (silver and palladium), water and ethanol with respect to 100 wt% of the dispersion was 75.0 wt%, 2 A dispersion was prepared in the same manner as in Example 7, except that the amount was adjusted to 2% by weight and 22.8% by weight, respectively. This dispersion was designated as Comparative Example 7.
<Comparative Example 8>
74 wt% of the first dispersion and 26 wt% of the second dispersion were mixed, and the final metal (silver and ruthenium), ethanol and solvent A mixing ratio with respect to 100 wt% of the dispersion was 75.0 wt%, A dispersion was prepared in the same manner as in Example 8, except that the amount was adjusted to 15.0% by weight and 10.0% by weight, respectively. This dispersion was designated as Comparative Example 8.
<Comparative Example 9>
74 wt% of the first dispersion and 26 wt% of the second dispersion were mixed, and the final mixing ratio of metal (silver and nickel), water, ethanol and solvent B with respect to 100 wt% of the dispersion was 75.0 wt%. A dispersion was prepared in the same manner as in Example 9, except that the content was adjusted to%, 2.2% by weight, 12.8% by weight, and 10.0% by weight, respectively. This dispersion was designated as Comparative Example 9.
<Comparative Example 10>
72 wt% of the first dispersion and 28 wt% of the second dispersion were mixed, and the final mixing ratio of metal (silver and copper), water, ethanol and solvent C with respect to 100 wt% of the dispersion was 75.0 wt%. %, 4.0 wt%, 11.0 wt%, and 10.0 wt%, respectively, except that the dispersion was prepared in the same manner as in Example 10. This dispersion was designated as Comparative Example 10.
<比較例11>
第1分散体73重量%と第2分散体27重量%とを混合し、分散体100重量%に対する最終的な金属(銀及び錫)、水及びメタノールの混合割合を35.0重量%、4.0重量%及び61.0重量%にそれぞれ調整したこと以外は、実施例11と同様にして分散体を調製した。この分散体を比較例11とした。
<比較例12>
第1分散体74重量%と第2分散体26重量%とを混合し、分散体100重量%に対する最終的な金属(銀及びインジウム)、水及びエタノールの混合割合を35.0重量%、30.0重量%及び35.0重量%にそれぞれ調整したこと以外は、実施例12と同様にして分散体を調製した。この分散体を比較例12とした。
<比較例13>
第1分散体74重量%と第2分散体26重量%とを混合し、分散体100重量%に対する最終的な金属(銀及び亜鉛)、水、エタノール及び溶媒Aの混合割合を35.0重量%、10.0重量%、20.0重量%及び35.0重量%にそれぞれ調整したこと以外は、実施例13と同様にして分散体を調製した。この分散体を比較例13とした。
<比較例14>
第1分散体73重量%と第2分散体27重量%とを混合し、分散体100重量%に対する最終的な金属(銀及びクロム)、水、エタノール及び溶媒Bの混合割合を35.0重量%、5.0重量%、20.0重量%及び40.0重量%にそれぞれ調整したこと以外は、実施例14と同様にして分散体を調製した。この分散体を比較例14とした。
<比較例15>
第1分散体74重量%と第2分散体26重量%とを混合し、分散体100重量%に対する最終的な金属(銀及びマンガン)、水、エタノール及び溶媒Cの混合割合を35.0重量%、3.0重量%、20.0重量%及び42.0重量%にそれぞれ調整したこと以外は、実施例15と同様にして分散体を調製した。この分散体を比較例15とした。
<Comparative Example 11>
73 wt% of the first dispersion and 27 wt% of the second dispersion were mixed, and the final mixing ratio of metal (silver and tin), water and methanol with respect to 100 wt% of the dispersion was 35.0 wt%, A dispersion was prepared in the same manner as in Example 11 except that the content was adjusted to 0.0% by weight and 61.0% by weight, respectively. This dispersion was designated as Comparative Example 11.
<Comparative Example 12>
74 wt% of the first dispersion and 26 wt% of the second dispersion were mixed, and the final metal (silver and indium), water and ethanol mixing ratio with respect to 100 wt% of the dispersion was 35.0 wt%, 30 A dispersion was prepared in the same manner as in Example 12 except that the content was adjusted to 0.0% by weight and 35.0% by weight, respectively. This dispersion was designated as Comparative Example 12.
<Comparative Example 13>
74 wt% of the first dispersion and 26 wt% of the second dispersion were mixed, and the final mixing ratio of metal (silver and zinc), water, ethanol and solvent A to 35.0 wt% with respect to 100 wt% of the dispersion %, 10.0 wt%, 20.0 wt%, and 35.0 wt%, respectively, except that the dispersion was prepared in the same manner as in Example 13. This dispersion was designated as Comparative Example 13.
<Comparative example 14>
73 wt% of the first dispersion and 27 wt% of the second dispersion were mixed, and the final mixing ratio of metal (silver and chromium), water, ethanol and solvent B with respect to 100 wt% of the dispersion was 35.0 wt%. A dispersion was prepared in the same manner as in Example 14 except that the content was adjusted to%, 5.0% by weight, 20.0% by weight, and 40.0% by weight, respectively. This dispersion was designated as Comparative Example 14.
<Comparative Example 15>
74 wt% of the first dispersion and 26 wt% of the second dispersion are mixed, and the final mixing ratio of metal (silver and manganese), water, ethanol and solvent C to 35.0 wt% with respect to 100 wt% of the dispersion A dispersion was prepared in the same manner as in Example 15 except that the content was adjusted to%, 3.0% by weight, 20.0% by weight, and 42.0% by weight, respectively. This dispersion was designated as Comparative Example 15.
<比較試験1及び評価>
実施例1〜32及び比較例1〜15の分散体を基材上に、焼成後の厚さが次の表3及び表4に示される膜厚となるように塗布した後に、次の表3及び表4に示される温度で焼成することにより、基材上に電極を形成した。基材としては、ITO膜付き太陽電池、ITO膜なし太陽電池、シリコン基板、ガラス板、ポリイミド板、PETフィルム又はITO膜付きガラス板を用いた。これらの電極を形成した基材について、耐候性試験を行う前に、各基材に形成された電極の反射率及び導電性を測定するとともに、耐候性試験を行った後に、各基材に形成された電極の反射率及び導電性を測定した。その結果を、表3及び表4に示す。
なお、耐候性試験は、電極の形成された基材を、温度を100℃に保ち湿度を50%に保った恒温恒湿槽に1000時間収容することにより行った。
また、反射率は、波長750〜1500nmの電磁波(赤外線及び可視光線)を電極に照射し、反射した電磁波を紫外可視分光光度計(V−570:日本分光社製)を用いて測定し、全照射量に対する反射量の割合(%)を算出して求めた。
また、金属ナノ粒子の一次粒径は、FE−TEM(電界放出型透過電子顕微鏡:日本電子社製)を用いて計測し、一次粒径10〜50nmの銀ナノ粒子の占める割合は、上記FE−TEMを用いて撮影した金属ナノ粒子の一次粒径の写真から画像処理により粒子径の数を計測して評価した。
また導電性は、四端子法により測定し算出した体積抵抗率(Ω・cm)として求めた。具体的には、電極の体積抵抗率は、先ず焼成後の電極の厚さをSEM(電子顕微鏡S800:日立製作所社製)を用いて電極断面から電極の厚さを直接計測し、次に四端子法による比抵抗測定器(ロレスタ:三菱化学社製)を用い、この測定器に上記実測した電極の厚さを入力して測定した。
更に水酸基(−OH)、カルボニル基(−C=O)の有無は、XPS(Quantum 2000:PHI社製のX線光電子分光分析装置)、TOF−SIMS(TOF-SIMS IV:ION-TOF社製の飛行時間型二次イオン質量分析装置)、FTIR(NEXUS 670:Nicolet社製のフーリエ変換赤外分光光度計)及びTPD−MS(5973N:Agilent社製の昇温熱脱離・質量分析装置)を用いた機器分析を併用して存在を確認した。
<Comparative test 1 and evaluation>
After coating the dispersions of Examples 1 to 32 and Comparative Examples 1 to 15 on the base material so that the thickness after firing would be the film thicknesses shown in the following Table 3 and Table 4, the following Table 3 And the electrode was formed on the base material by baking at the temperature shown in Table 4. As the substrate, a solar cell with an ITO film, a solar cell without an ITO film, a silicon substrate, a glass plate, a polyimide plate, a PET film, or a glass plate with an ITO film was used. Before performing the weather resistance test on the base material on which these electrodes are formed, the reflectance and conductivity of the electrode formed on each base material are measured, and after the weather resistance test is performed, each electrode is formed on each base material. The reflectivity and conductivity of the prepared electrodes were measured. The results are shown in Tables 3 and 4.
In addition, the weather resistance test was performed by accommodating the substrate on which the electrode was formed in a constant temperature and humidity chamber having a temperature of 100 ° C. and a humidity of 50% for 1000 hours.
The reflectance was measured by irradiating an electrode with electromagnetic waves (infrared rays and visible rays) having a wavelength of 750 to 1500 nm, and measuring the reflected electromagnetic waves using an ultraviolet-visible spectrophotometer (V-570: manufactured by JASCO Corporation). The ratio (%) of the reflection amount with respect to the irradiation amount was calculated and obtained.
The primary particle size of the metal nanoparticles is measured using FE-TEM (field emission transmission electron microscope: manufactured by JEOL Ltd.), and the proportion of silver nanoparticles having a primary particle size of 10 to 50 nm is determined by the above FE. -From the photograph of the primary particle diameter of the metal nanoparticles photographed using TEM, the number of particle diameters was measured and evaluated.
The conductivity was determined as a volume resistivity (Ω · cm) measured and calculated by the four probe method. Specifically, the volume resistivity of the electrode is determined by first measuring the thickness of the electrode after firing directly from the electrode cross section using an SEM (Electron Microscope S800: manufactured by Hitachi, Ltd.), Using a specific resistance measuring instrument (Loresta: manufactured by Mitsubishi Chemical Corporation) by the terminal method, the measured thickness of the electrode was input to this measuring instrument.
Furthermore, the presence or absence of a hydroxyl group (—OH) and a carbonyl group (—C═O) is determined by XPS (Quantum 2000: X-ray photoelectron spectrometer manufactured by PHI), TOF-SIMS (TOF-SIMS IV: manufactured by ION-TOF). Time-of-flight secondary ion mass spectrometer), FTIR (NEXUS 670: Fourier transform infrared spectrophotometer manufactured by Nicolet) and TPD-MS (5973N: temperature-programmed thermal desorption / mass spectrometer manufactured by Agilent) Presence was confirmed using the instrumental analysis used together.
一方、表1及び表2に、実施例1〜32及び比較例1〜15の分散体における一次粒径10〜50nmの金属ナノ粒子の占める割合と、有機分子主鎖の炭素数と、水酸基(−OH)の有無と、カルボニル基(−C=O)の有無と、分散体(組成物)の種類及び混合割合と、異種金属(銀以外の金属)の種類及び含有率(銀と銀以外の金属の合計を100重量%としたときの異種金属の含有率)とを示した。また表3及び表4には、反射率、導電性(体積抵抗率)及び耐候性とともに、基材の種類、膜厚及び焼成温度を示した。更に表3及び表4の耐候性の欄において、『良好』とは、反射率が80%以上でありかつ体積抵抗率が20×10-6Ω・cm未満であった場合を示し、『不良』とは反射率が80%未満でありかつ体積抵抗率が20×10-6Ω・cm未満であるか、又は反射率が80%以上でありかつ体積抵抗率が20×10-6Ω・cmを越えるか、或いは反射率が80%未満でありかつ体積抵抗率が20×10-6Ω・cmを越えた場合を示す。
なお、表1及び表2のアルコール類の欄において、『ME』はメタノールを示し、『ET』はエタノールを示し、『EG』はエチレングリコールを示し、『BU』はブタノールを示し、『PG』はプロピレングリコールを示し、『DEG』はジエチレングリコールを示し、『GL』はグリセロースを示し、『ER』はエリトリトールを示し、『IH』はイソボニルヘキサノールを示し、『PR』はプロパノールを示す。
また、表1及び表2の他の溶媒の欄において、『A』はアセトンとイソプロピルグリコールとを重量比で1:1に混合した混合液を示し、『B』はシクロヘキサンとメチルエチルケトンとを重量比で1:1に混合した混合液を示し、『C』はトルエンとヘキサンとを重量比で1:1に混合した混合液を示す。
On the other hand, in Tables 1 and 2, the ratio of the metal nanoparticles having a primary particle size of 10 to 50 nm in the dispersions of Examples 1 to 32 and Comparative Examples 1 to 15, the number of carbon atoms in the organic molecular main chain, and the hydroxyl group ( -OH), presence / absence of carbonyl group (-C = O), type and mixing ratio of dispersion (composition), type and content of different metals (metals other than silver) (except silver and silver) The content of dissimilar metals when the total amount of metals is 100% by weight). Tables 3 and 4 show the substrate type, film thickness, and firing temperature, as well as reflectance, conductivity (volume resistivity), and weather resistance. Furthermore, in the weather resistance column of Tables 3 and 4, “good” indicates a case where the reflectance is 80% or more and the volume resistivity is less than 20 × 10 −6 Ω · cm. or "a less than 80% reflectivity and the volume resistivity is less than 20 × 10 -6 Ω · cm, or reflectance is not less than 80% and a volume resistivity of 20 × 10 -6 Ω · It shows a case where it exceeds cm, or the reflectance is less than 80% and the volume resistivity exceeds 20 × 10 −6 Ω · cm.
In the column of alcohols in Tables 1 and 2, “ME” indicates methanol, “ET” indicates ethanol, “EG” indicates ethylene glycol, “BU” indicates butanol, and “PG”. Represents propylene glycol, “DEG” represents diethylene glycol, “GL” represents glycerose, “ER” represents erythritol, “IH” represents isobornyl hexanol, and “PR” represents propanol.
In the column of other solvents in Tables 1 and 2, “A” indicates a mixed solution of acetone and isopropyl glycol mixed at a weight ratio of 1: 1, and “B” indicates a weight ratio of cyclohexane and methyl ethyl ketone. Indicates a mixed solution of 1: 1 mixed, and “C” indicates a mixed solution of toluene and hexane mixed at a weight ratio of 1: 1.
Claims (3)
前記分散媒は前記電極形成用組成物を100重量%とするとき2〜10重量%の水と2〜63重量%のエタノールとを含有する太陽電池の電極形成用組成物の製造方法であって、
硝酸銀を水に溶解して第1金属塩水溶液を調製する工程と、
濃度10〜40%のクエン酸ナトリウムの水溶液に不活性ガスの気流中で粒状又は粉状の硫酸第一鉄を加えて溶解させて還元剤水溶液を調製する工程と、
前記不活性ガス気流中で前記還元剤水溶液を撹拌しながら、前記還元剤水溶液の量の1/10以下の割合で反応温度が30〜60℃に保持されるように室温の前記第1金属塩水溶液を前記還元剤水溶液に滴下して混合して第1混合液を調製する工程と、
前記第1混合液の撹拌を更に10〜300分間続けて銀コロイドからなる第1分散液を調製する工程と、
前記第1分散液を室温で放置することにより沈降した銀ナノ粒子の凝集物をデカンテーション又は遠心分離法により分離する工程と、
前記第1分散液から分離した固形分に水を加えて第1分散体の前駆体を得る工程と、
前記第1分散体の前駆体を限外ろ過により脱塩処理する工程と、
前記脱塩処理した第1分散体の前駆体をエタノールで置換洗浄して銀の含有量を2.5〜50重量%に調整する工程と、
前記エタノールで置換洗浄した第1分散体の前駆体を遠心分離機を用いこの遠心分離機の遠心力を調整して粗粒子を分離することにより全ての銀粒子100%に対する一次粒径10〜50nmの範囲内の銀ナノ粒子を数平均で70%以上含有する第1分散体を得る工程と、
塩化ニッケル、二塩化錫、硝酸インジウム、塩化亜鉛、硫酸クロム又は硫酸マンガンを水に溶解して第2金属塩水溶液を調製する工程と、
前記不活性ガス気流中で前記還元剤水溶液を撹拌しながら、前記還元剤水溶液の量の1/10以下の割合で反応温度が30〜60℃に保持されるように室温の前記第2金属塩水溶液を前記還元剤水溶液に滴下して混合して第2混合液を調製する工程と、
前記第2混合液の撹拌を更に10〜300分間続けてNi、Sn、In、Zn、Cr又はMnの金属コロイドからなる第2分散液を調製する工程と、
前記第2分散液を室温で放置することにより沈降したNi、Sn、In、Zn、Cr又はMnの金属ナノ粒子の凝集物をデカンテーション又は遠心分離法により分離する工程と、
前記第2分散液から分離した固形分に水を加えて第2分散体の前駆体を得る工程と、
前記第2分散体の前駆体を限外ろ過により脱塩処理する工程と、
前記脱塩処理した前記第2分散体の前駆体をエタノールで置換洗浄してNi、Sn、In、Zn、Cr又はMnの含有量を2.5〜50重量%に調整する工程と、
前記エタノールで置換洗浄した第2分散体の前駆体を遠心分離機を用いこの遠心分離機の遠心力を調整して粗粒子を分離することにより全てのNi、Sn、In、Zn、Cr又はMnの金属ナノ粒子100%に対する一次粒径10〜50nmの範囲内のNi、Sn、In、Zn、Cr又はMnの金属ナノ粒子を数平均で70%以上含有する第2分散体を得る工程と、
76〜99重量%の前記第1分散体と1〜24重量%の前記第2分散体とを前記第1及び第2分散体の合計含有量が100重量%となるように混合することにより太陽電池の電極形成用組成物を得る工程と
を含むことを特徴とする太陽電池の電極形成用組成物を製造する方法。 Containing metal nanoparticles metallic nanoparticles consist 76-99 wt% of silver nanoparticles and 1 to 24 wt% of Ni, Sn, In, Zn, Cr or Mn, the metal nanoparticles are a carbonyl group (-C = O) or a carbon skeleton containing either a carbonyl group (-C = O) or a hydroxyl group (-OH) is chemically modified with a protective agent for an organic molecular main chain having 3 carbon atoms, and the metal nanoparticles have a primary particle size. Containing 71 to 75% of metal nanoparticles within a range of 10 to 50 nm in number average,
In the method of preparing the dispersion medium electrode forming composition for solar cell you containing a 2 to 10 wt% water and 2-63% by weight of ethanol when 100 wt% of the electrode forming composition There,
Preparing a first metal salt aqueous solution by dissolving silver nitrate in water;
Preparing a reducing agent aqueous solution was added and dissolved to prepare a concentration 10-40% of granular or powdery ferrous sulfate in an air stream of the aqueous solution to an inert gas sodium citrate,
While stirring the reducing agent aqueous solution in the inert gas stream, the first metal salt at room temperature so that the reaction temperature is maintained at 30 to 60 ° C. at a rate of 1/10 or less of the amount of the reducing agent aqueous solution. A step of dropping an aqueous solution into the reducing agent aqueous solution and mixing to prepare a first mixed solution ;
A step of preparing the first dispersion composed of colloidal silver by further stirring the first mixed solution for 10 to 300 minutes;
Separating the aggregate of silver nanoparticles precipitated by allowing the first dispersion to stand at room temperature by decantation or centrifugation; and
Adding water to the solid content separated from the first dispersion to obtain a precursor of the first dispersion;
Desalting the precursor of the first dispersion by ultrafiltration;
Replacing the desalted first dispersion precursor with ethanol to adjust the silver content to 2.5 to 50% by weight; and
A primary dispersion particle size of 10 to 50 nm with respect to 100% of all silver particles is obtained by separating the coarse particles by adjusting the centrifugal force of the centrifuge using the centrifuge for the precursor of the first dispersion that has been washed by displacement with the ethanol. A step of obtaining a first dispersion containing 70% or more of silver nanoparticles within the range of
Preparing a second metal salt aqueous solution by dissolving nickel chloride, tin dichloride, indium nitrate, zinc chloride, chromium sulfate or manganese sulfate in water;
While stirring the reducing agent aqueous solution in the inert gas stream, the second metal salt at room temperature so that the reaction temperature is maintained at 30 to 60 ° C. at a ratio of 1/10 or less of the amount of the reducing agent aqueous solution. A step of dropping an aqueous solution into the reducing agent aqueous solution and mixing to prepare a second mixed solution;
Stirring the second mixture for another 10 to 300 minutes to prepare a second dispersion composed of a metal colloid of Ni, Sn, In, Zn, Cr or Mn;
Separating the aggregate of metal nanoparticles of Ni, Sn, In, Zn, Cr or Mn precipitated by allowing the second dispersion to stand at room temperature by decantation or centrifugation;
Adding water to the solid content separated from the second dispersion to obtain a precursor of the second dispersion;
Desalting the precursor of the second dispersion by ultrafiltration;
Replacing the desalted precursor of the second dispersion with ethanol to adjust the content of Ni, Sn, In, Zn, Cr or Mn to 2.5 to 50% by weight; and
All the Ni, Sn, In, Zn, Cr, or Mn are prepared by separating the coarse particles by adjusting the centrifugal force of the centrifuge using the centrifuge for the precursor of the second dispersion that has been washed by displacement with the ethanol. Obtaining a second dispersion containing 70% or more of the average number of metal nanoparticles of Ni, Sn, In, Zn, Cr or Mn within a primary particle size range of 10 to 50 nm with respect to 100% of the metal nanoparticles;
By mixing 76 to 99% by weight of the first dispersion and 1 to 24% by weight of the second dispersion so that the total content of the first and second dispersions is 100% by weight, A method for producing a composition for forming an electrode for a solar cell, comprising: obtaining a composition for forming an electrode for a battery.
前記上面に成膜された基材を150〜200℃で焼成する工程と
を含む太陽電池の電極の形成方法。 Silicon claim 1 Symbol placement electrode-forming composition manufactured by the method of the glass, a spray coating method on any substrate of polyimide or PET film, either a wet coating dispenser coating method or an offset printing method Coating with a construction method and forming a film so that the thickness after firing is within a range of 0.3 to 1.7 μm;
And a step of firing the base material formed on the upper surface at 150 to 200 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012083491A JP5435063B2 (en) | 2005-11-11 | 2012-04-02 | Method for producing composition for forming electrode of solar cell and method for forming the electrode |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005327150 | 2005-11-11 | ||
JP2005327150 | 2005-11-11 | ||
JP2006288528 | 2006-10-24 | ||
JP2006288528 | 2006-10-24 | ||
JP2012083491A JP5435063B2 (en) | 2005-11-11 | 2012-04-02 | Method for producing composition for forming electrode of solar cell and method for forming the electrode |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006305409A Division JP5070808B2 (en) | 2005-11-11 | 2006-11-10 | Composition for forming electrode of solar cell, method for forming the electrode, and solar cell using the electrode obtained by the forming method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012147014A JP2012147014A (en) | 2012-08-02 |
JP5435063B2 true JP5435063B2 (en) | 2014-03-05 |
Family
ID=46790202
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012083491A Expired - Fee Related JP5435063B2 (en) | 2005-11-11 | 2012-04-02 | Method for producing composition for forming electrode of solar cell and method for forming the electrode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5435063B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101584114B1 (en) | 2012-11-26 | 2016-01-13 | 주식회사 엘지화학 | Precursor for Electrode Active Material Coated with Metal and Method of Preparing the Same |
KR20140097981A (en) * | 2013-01-29 | 2014-08-07 | 주식회사 엘지화학 | Method for Manufacturing Metal Nano Particle for Solar Cell, Ink Composition Comprising the Metal Nano Particle and Method for Manufacturing Thin Film Solar Cell Using the Same |
EP2800146A1 (en) * | 2013-05-03 | 2014-11-05 | Saint-Gobain Glass France | Back contact substrate for a photovoltaic cell or module |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3935513B2 (en) * | 1994-06-09 | 2007-06-27 | 三菱マテリアル株式会社 | Method for producing conductive fine powder dispersion |
JP3429958B2 (en) * | 1996-08-28 | 2003-07-28 | 三井金属鉱業株式会社 | Method for producing silver colloid liquid |
JP3402215B2 (en) * | 1998-09-16 | 2003-05-06 | 三菱マテリアル株式会社 | Coating liquid for conductive film formation and conductive film |
JP2001325831A (en) * | 2000-05-12 | 2001-11-22 | Bando Chem Ind Ltd | Metal colloid solution, conductive ink, conductive coating and conductive coating forming base film |
JP2002237214A (en) * | 2001-12-03 | 2002-08-23 | Mitsubishi Materials Corp | Conductive coating material composition |
JP3796476B2 (en) * | 2002-10-25 | 2006-07-12 | バンドー化学株式会社 | Conductive ink |
-
2012
- 2012-04-02 JP JP2012083491A patent/JP5435063B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2012147014A (en) | 2012-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9620668B2 (en) | Composition for manufacturing electrode of solar cell, method of manufacturing same electrode, and solar cell using electrode obtained by same method | |
JP5309440B2 (en) | Composition for forming electrode of solar cell, method for forming the electrode, and method for producing solar cell using the electrode obtained by the forming method | |
JP5453813B2 (en) | Metal nanoparticle dispersion and method for producing the same | |
JP4756163B2 (en) | Dispersion and paste of composite particle powder and method for producing silver particle powder used therefor | |
JP5332624B2 (en) | Metal nanoparticle dispersion and method for producing the same | |
KR20090063265A (en) | Composition for electrode formation and method for forming electrode by using the composition | |
KR20090115854A (en) | Dispersion solution of metal nanoparticle, method for production thereof, and method for synthesis of metal nanoparticle | |
JP5326647B2 (en) | Method for producing composition for forming electrode of solar cell | |
JP6782409B2 (en) | Capacitors and their manufacturing methods | |
JP5070808B2 (en) | Composition for forming electrode of solar cell, method for forming the electrode, and solar cell using the electrode obtained by the forming method | |
JP5248006B2 (en) | Method for forming electrode of solar cell | |
JP5868284B2 (en) | Electromagnetic wave shielding composition, method for producing the same, and method for forming electromagnetic wave shielding material using the composition | |
TW201424887A (en) | Silver hybrid copper powder, method for producing same, conductive paste containing silver hybrid copper powder, conductive adhesive, conductive film and electrical circuit | |
JPWO2006062186A1 (en) | Nickel powder, method for producing the same, and conductive paste | |
JP5435063B2 (en) | Method for producing composition for forming electrode of solar cell and method for forming the electrode | |
JP5417900B2 (en) | Method for forming conductive coating film | |
TWI637403B (en) | Electrically conductive paste,method for producing the same,and method for producing solar cell | |
JP5151229B2 (en) | Composition for forming electrode of solar cell, method for forming the electrode, and method for producing solar cell using the electrode obtained by the forming method | |
JP2012180563A (en) | Copper particle | |
JP5435088B2 (en) | Method for forming solar cell electrodes | |
KR100856681B1 (en) | Conductive paste for electrode in plasma disdlay panel | |
TWI791829B (en) | Photosintering composition and method of forming conductive film using the same | |
JP5760912B2 (en) | Organic electroluminescence device and method for producing the same | |
JP5760913B2 (en) | Organic electroluminescence device and method for producing the same | |
JP2013077415A (en) | Conductive reflection film composition and manufacturing method of conductive reflection film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130730 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130731 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130902 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130917 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131024 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131112 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131125 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |