WO2020012991A1 - 間葉系幹細胞及び神経障害治療剤 - Google Patents

間葉系幹細胞及び神経障害治療剤 Download PDF

Info

Publication number
WO2020012991A1
WO2020012991A1 PCT/JP2019/025928 JP2019025928W WO2020012991A1 WO 2020012991 A1 WO2020012991 A1 WO 2020012991A1 JP 2019025928 W JP2019025928 W JP 2019025928W WO 2020012991 A1 WO2020012991 A1 WO 2020012991A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
mesenchymal stem
medium
stem cells
cell
Prior art date
Application number
PCT/JP2019/025928
Other languages
English (en)
French (fr)
Inventor
格靖 石川
陽子 堀内
崇史 瀧尻
輝 黒木
真代 湯本
Original Assignee
ロート製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ロート製薬株式会社 filed Critical ロート製薬株式会社
Priority to JP2020530111A priority Critical patent/JPWO2020012991A1/ja
Priority to CN201980045457.5A priority patent/CN112368370A/zh
Publication of WO2020012991A1 publication Critical patent/WO2020012991A1/ja
Priority to JP2023215423A priority patent/JP2024023760A/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/48Reproductive organs
    • A61K35/51Umbilical cord; Umbilical cord blood; Umbilical stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system

Definitions

  • the present invention relates to a mesenchymal stem cell and a therapeutic agent for neuropathy.
  • neurodegenerative diseases which are disorders of brain neurons, are increasing year by year.
  • neurodegenerative diseases include Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis (ALS), and spinocerebellar degeneration.
  • ALS amyotrophic lateral sclerosis
  • spinocerebellar degeneration nerve cells in places such as the cerebral cortex and the hippocampus fall off, and memory ability declines.
  • nerve cells in a location called the substantia nigra fall out and impair motor function.
  • cerebral infarction and cerebral hemorrhage due to stroke are known as diseases caused by damage to brain nerve cells, in addition to neurodegenerative diseases.
  • perinatal neonatal encephalopathy occurs in 1 to 2 out of 1,000 births and causes cerebral palsy for the rest of life.
  • Perinatal encephalopathy that causes such cerebral palsy includes hypoxic-ischemic encephalopathy, cerebral hemorrhage, periventricular leukomalacia, etc.
  • the main pathological condition of these is elevated active oxygen resulting from mitochondrial dysfunction This is an inflammatory condition called macrophage activation and associated hypercytokinemia.
  • the above-mentioned neurodegenerative diseases, strokes and cerebral palsy have different causes and symptoms of the diseases, but can be said to be common in one point that the number of nerve cells decreases.
  • Drugs such as donepezil for Alzheimer's disease and levodopa for Parkinson's disease are used, but these drugs restore the information processing function of the neural network due to the decrease in nerve cells by replenishing chemical messenger signals The purpose of this is to reduce the number of nerve cells, and it cannot be suppressed.
  • none of the existing treatments for neurodegenerative diseases and stroke have a protective effect on nerve cells. Therefore, development of a novel therapeutic agent having an effect of protecting nerve cells has been desired.
  • Mesenchymal stem cells are multipotent progenitor cells isolated from bone marrow for the first time by Friedenstein in 1982 (see Non-Patent Document 1). Mesenchymal stem cells have been shown to be present in various tissues such as bone marrow, umbilical cord, and fat, and mesenchymal stem cell transplantation is expected as a new treatment method for various intractable diseases ( Patent Documents 1 and 2). Recently, it has been known that stromal cells such as adipose tissue, placenta, umbilical cord, and egg membrane have cells having equivalent functions. Therefore, mesenchymal stem cells may be referred to as stromal cells (Mesenchymal Stromal Cell).
  • An object of the present invention is to provide a novel therapeutic agent for a neurological disorder in the above-described situation.
  • the present inventors found that HGF, SHH, OLIG2, VEGFA, NEUROG1, GRPR, IL1R1, CRHR2, CCKAR, APOE, PAX3, PAX5, EGF, CXCL1, GDNF, NRCAM, Mesenchymal stem cells (mesenchymal stem (stromal) cell;) MSC), in which one or more of DLL1, HEYL, BMP2, NTN1, ASCL1, and NRP2, are highly expressed, are effective in treating neurological disorders And completed the present invention.
  • a therapeutic agent effective for treating a neurological disorder can be provided. That is, the gist of the present invention is as follows.
  • the present invention relates to the following: [1] One of HGF, SHH, OLIG2, VEGFA, NEUROG1, GRPR, IL1R1, CRHR2, CCKAR, APOE, PAX3, PAX5, EGF, CXCL1, GDNF, NRCAM, DLL1, HEYL, BMP2, NTN1, ASCL1, NRP2 A mesenchymal stem cell, wherein one or two or more cells are highly expressed. [2] The mesenchymal stem cell according to [1], which is derived from another family. [3] The mesenchymal stem cell according to [1] or [2], which is derived from an umbilical cord tissue or an adipose tissue.
  • a novel therapeutic agent for neuropathy can be provided.
  • FIG. 1 is a diagram showing the results of comparing the mRNA expression levels of various factors in mesenchymal stem cells obtained by culturing in various media.
  • FIG. 2 is a diagram showing the results of comparing the mRNA expression levels of various factors in planar cultured cells (ADH) and suspension cultured cells (SUS) for mesenchymal stem cells. It is a figure which shows the administration effect of the mesenchymal stem cell obtained by culture by various culture methods to a rat transient cerebral ischemia model (body weight). It is a figure which shows the administration effect of the mesenchymal stem cell obtained by culture by various culture methods to a rat transient cerebral ischemia model (neuropathy score).
  • FIG. 6 is a time-lapse image showing a state of an interaction between nerve cells and mesenchymal stem cells. It is a figure which shows the nerve cell death inhibitory effect of the mesenchymal stem cell obtained by culture
  • FIG. 3 is a diagram showing a dose-dependent neuronal activation effect of mesenchymal stem cells obtained by culturing in a serum-free medium (Rohto). It is a figure which shows the nerve cell activation effect of the mesenchymal stem cell obtained by the flat (ADH) or suspension (SUS) culture using the serum-free medium (Rohto) (comparison with a fibroblast).
  • FIG. 4 is a diagram showing a neuronal activation effect of mesenchymal stem cells obtained by culturing in a serum-free medium (Rohto) (comparison with cells cultured in another medium).
  • FIG. 1 is a photograph of cells showing the neuronal cell death inhibitory effect of mesenchymal stem cells obtained by culture in a serum-free medium (Rohto) (comparison with cells cultured in another medium).
  • FIG. 4 is a diagram showing the neuronal cell death inhibitory effect of mesenchymal stem cells obtained by culturing in a serum-free medium (Rohto) (comparison with cells cultured in another medium).
  • mesenchymal stem cells and the therapeutic agent for neuropathy of the present invention will be described in detail.
  • HGF hepatocyte growth factor
  • SHH sonic hedgehog
  • OLIG2 oligodendrocyte transcription factor 2
  • VEGFA vascular endothelial growth factor A
  • NEUROG1 neurogenin 1
  • GRPR gastrin releasing peptide receptor
  • IL1R1 interleukin-1 receptor 1
  • CRHR2 corticotropin releasing hormone receptor 2
  • CCKAR cholecystokinin A receptor
  • PAX3 paired box 3
  • PAX5 paired box 5
  • EGF epidermal growth factor
  • CXCL1 CXC motif chemokine ligand 1
  • GDNF glial cell derived neurotrophic factor
  • NRCAM neurovascular cell adhesion molecule
  • DLL1 delta like canonical Notch ligand 1
  • HEYL hes related family bHLH transcription factor with High expression of one
  • HGF is a kind of growth factor and is known to have a neuroprotective effect.
  • SHH is a gene belonging to the hedgehog family, and is known to be involved in protection of nerve cells against oxidative stress.
  • VEGFA is a type of growth factor, and is known to be involved in protection of nerve cells by inducing angiogenesis.
  • IL1R1 is a receptor for IL1, a type of inflammatory cytokine, and is known to be involved in the inflammatory response.
  • DLL1 belongs to the DSL family of Notch ligands and is known to be involved in the regulation of Notch signals.
  • HGF, SHH, OLIG2, VEGFA, NEUROG1, GRPR, IL1R1, CRHR2, CCKAR, APOE, PAX3, PAX5, EGF, CXCL1, GDNF, NRCAM, DLL1, HEYL, BMP2, NTN1, and ASRP1, NRP2 are high in NCL1 and NRP2.
  • the expression includes that each mRNA expression is highly expressed, or that each protein is highly expressed, or that both are highly expressed.
  • the mesenchymal stem cells of the present invention need only express the above-described factors at a higher level than other cells.
  • the mesenchymal stem cells of the present invention are prepared under conventional culture conditions (for example, Culturing in a MEM- ⁇ medium containing 10% FBS) as long as the above-mentioned factor is highly expressed as compared with mesenchymal stem cells. It is preferably expressed twice or more, more preferably five times or more, still more preferably ten times or more, particularly preferably 100 times or more, as compared to mesenchymal stem cells obtained under conventional culture conditions.
  • Mesenchymal stem cells of the present invention compared to fibroblasts, HGF, SHH, OLIG2, VEGFA, NEUROG1, GRPR, IL1R1, CRHR2, CCKAR, APOE, PAX3, PAX5, EGF, CXCL1, GDNF, NRCAM, DLL1, HEYL, ⁇ BMP2, ⁇ NTN1, ⁇ ASCL1, ⁇ NRP2 only needs to be highly expressed. It is preferably expressed at least 2 times, more preferably at least 5 times, more preferably at least 10 times, particularly preferably at least 100 times, relative to skin fibroblasts.
  • the mesenchymal stem cells have a differentiation ability to one or more cells belonging to the mesenchymal system (bone cells, cardiomyocytes, chondrocytes, tendon cells, adipocytes, etc.) and maintain the ability.
  • the term mesenchymal stem cell used in the present invention means the same cell as the stromal cell, and does not particularly distinguish between the two. In some cases, the cells are simply referred to as mesenchymal cells.
  • tissues containing mesenchymal stem cells include, for example, adipose tissue, umbilical cord, bone marrow, umbilical cord blood, endometrium, placenta, amniotic membrane, chorion, decidua, dermis, skeletal muscle, periosteum, tooth follicle, periodontal ligament, Pulp, tooth germ and the like.
  • adipose tissue-derived mesenchymal stem cells refer to mesenchymal stem cells contained in adipose tissue, and may be referred to as adipose tissue-derived stromal cells.
  • adipose tissue-derived mesenchymal stem cells from the viewpoints of efficacy for the treatment of neurological disorders, availability, etc., from the viewpoint of adipose tissue-derived mesenchymal stem cells, umbilical cord-derived mesenchymal stem cells, bone marrow-derived mesenchymal stem cells, placenta-derived mesenchymal stem cells Stem cells and mesenchymal stem cells derived from dental pulp are preferred, mesenchymal stem cells derived from adipose tissue and mesenchymal stem cells derived from umbilical cord are more preferred, and mesenchymal stem cells derived from umbilical cord are most preferred.
  • the mesenchymal stem cells in the present invention may be derived from the same species as the subject to be treated (subject) or from different species.
  • Examples of the species of the mesenchymal stem cells in the present invention include humans, horses, cows, sheep, pigs, dogs, cats, rabbits, mice, and rats, and are preferably cells derived from the same species as the subject (subject) to be treated.
  • the mesenchymal stem cells in the present invention may be derived from a subject (subject) to be treated, ie, autologous cells, or may be derived from another subject of the same species, ie, allogeneic cells. Preferably, they are allogeneic cells.
  • the mesenchymal stem cells obtained by expanding and cryopreserving previously prepared donor cells are used in the medicament for treating a disease of the present invention. It can be used as a stem cell. Therefore, as compared with the case of preparing and using self-mesenchymal stem cells, the mesenchymal stem cells in the present invention are easily commercialized, and from the viewpoint of easily obtaining a certain effect stably, More preferably, it is allogeneic.
  • the mesenchymal stem cells mean any cell population including mesenchymal stem cells.
  • the cell population is at least 20% or more, preferably 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 93%, 96%, 97%, 98% % Or more than 99% are mesenchymal stem cells.
  • the umbilical cord is a white tubular tissue connecting the fetus and the placenta, and is composed of umbilical vein, umbilical artery, glue-like tissue (Wharton's Jelly), umbilical cord matrix itself, and many other mesenchymal stem cells. Including.
  • the umbilical cord is preferably obtained from an animal of the same species as the subject (administration subject) using the therapeutic agent for a disease of the present invention. In consideration of administering the therapeutic agent for a disease of the present invention to a human, the umbilical cord is more preferably human. The umbilical cord.
  • the adipose tissue means a tissue containing stromal cells including fat cells and microvascular cells, and is, for example, a tissue obtained by surgically removing or aspirating subcutaneous fat of a mammal.
  • Adipose tissue can be obtained from subcutaneous fat. It is preferably obtained from an animal of the same species as the subject to which the adipose tissue-derived mesenchymal stem cells described below are administered, and more preferably human subcutaneous fat in consideration of administration to humans.
  • the individual supplying the subcutaneous fat may be alive or dead, but the adipose tissue used in the present invention is preferably a tissue collected from a living individual.
  • liposuction When collected from an individual, liposuction is exemplified by PAL (power assist) liposuction, Erconia laser liposuction, or body jet liposuction, and from the viewpoint of maintaining the state of cells, ultrasound is used. Is preferably not used.
  • the bone marrow refers to a parenchyma filling the lumen of bone, and is a hematopoietic organ.
  • Bone marrow contains bone marrow fluid, and the cells present therein are called bone marrow cells.
  • the bone marrow cells include mesenchymal stem cells, hematopoietic stem cells, vascular endothelial progenitor cells, and the like, in addition to erythrocytes, granulocytes, megakaryocytes, lymphocytes, adipocytes, and the like.
  • Bone marrow cells can be obtained, for example, from human iliac, long bone, or other bone.
  • adipose tissue-derived mesenchymal stem cells, umbilical cord-derived mesenchymal stem cells, each tissue-derived mesenchymal stem cells such as bone marrow-derived mesenchymal stem cells are adipose tissue-derived mesenchymal stem cells and umbilical cord-derived mesenchymal stem cells, respectively. It means any cell population including mesenchymal stem cells derived from each tissue, such as stem cells and bone marrow-derived mesenchymal stem cells.
  • the cell population is at least 20% or more, preferably 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 93%, 96%, 97%, 98% % Or 99% or more of each tissue-derived mesenchymal stem cell that is an adipose tissue-derived mesenchymal stem cell, an umbilical cord-derived mesenchymal stem cell, or a bone marrow-derived mesenchymal stem cell.
  • Mesenchymal stem cells in the present invention HGF, SHH, OLIG2, VEGFA, NEUROG1, GRPR, IL1R1, CRHR2, CCKAR, APOE, PAX3, PAX5, EGF, CXCL1, GDNF, NRCAM, DLL1, HEYL, BMP2,1NTN1, , NRP2, in addition to high expression of, for example, growth characteristics (eg, population doubling ability from passage to senescence, doubling time), karyotyping (eg, normal Karyotype, maternal or neonatal strain, surface marker expression by flow cytometry (eg, FACS analysis), immunohistochemistry and / or immunocytochemistry (eg, epitope detection), gene expression profiling (eg, gene chip array; Reverse transcription PCR, real-time PCR, polymerase chain reaction such as conventional PCR), miRNA expression profiling, protein array, secretion of proteins such as cytokines (eg, plasma coagulation analysis, ELISA, Ito Cain
  • HGF HGF, SHH, OLIG2, VEGFA, NEUROG1, GRPR, IL1R1, CRHR2, CCKAR, APOE, PAX3, PAX5, EGF, CXCL1, GDNF, NRCAM, DLL1, HEYL, BMP2, NTN1, ASCL1, NRP2, or
  • the method for preparing mesenchymal stem cells in which two or more cells are highly expressed is not particularly limited, and can be prepared, for example, as follows.
  • mesenchymal stem cells are separated and cultured, and HGF, SHH, OLIG2, VEGFA, NEUROG1, GRPR, IL1R1, CRHR2, CCKAR, APOE, Using antibodies that specifically bind to PAX3, PAX5, EGF, CXCL1, GDNF, NRCAM, DLL1, HEYL, BMP2, NTN1, ASCL1 or NRP2, HGF, SHH, OLIG2, VEGFA, NEUROG1, GRPR, IL1R1, CRHR2, CCKAR, APOE, PAX3, PAX5, EGF, CXCL1, GDNF, NRCAM, DLL1, HEYL, BMP2, NTN1, ASCL1, or NRP2 high-expressing cells can be obtained by separating the cells with a cell sorter, magnetic beads, or the like.
  • HGF, SHH, OLIG2, VEGFA, NEUROG1, GRPR, IL1R1, CRHR2, CCKAR, APOE, PAX3, PAX5, EGF, CXCL1, GDNF, NRCAM, DLL1, in mesenchymal stem cells By inducing the expression of HEYL, BMP2, NTN1, ASCL1 or NRP2, HGF, SHH, OLIG2, VEGFA, NEUROG1, GRPR, IL1R1, CRHR2, CCKAR, APOE, PAX3, PAX5, EGF, CXCL1, GDNF, NRCAM, DLL1 , HEYL, BMP2, NTN1, ASCL1 or NRP2 high-expressing mesenchymal stem cells can also be obtained.
  • HGF HGF, SHH, OLIG2, VEGFA, NEUROG1, GRPR, IL1R1, CRHR2, CCKAR, APOE, PAX3, PAX5, EGF, CXCL1, GDNF, NRCAM, DLL1, HEYL, BMP2, NTN1, ASCL1 or NRP2 is preferably highly expressed, and 70% or more of HGF, SHH, OLIG2, VEGFA, NEUROG1, GRPR, IL1R1, CRHR2, CCKAR, APOE, PAX3, PAX5, EGF, CXCL1, More preferably, GDNF, NRCAM, DLL1, HEYL, BMP2, NTN1, ASCL1 or NRP2 are highly expressed, and 80% or more of HGF, SHH, OLIG2, VEGFA, NEUROG1, GRPR, IL1R1, CRHR2, CCKAR, APOE, PAX3 , PAX5, EGF,
  • Mesenchymal stem cells can be prepared by methods well known to those skilled in the art. Hereinafter, as an example, a method for preparing umbilical cord tissue-derived mesenchymal stem cells and adipose tissue-derived mesenchymal stem cells will be described.
  • the umbilical cord can be collected by removing the placenta as appropriate from the placenta delivered by vaginal delivery and cesarean section and the postpartum tissue including the umbilical cord. After removing cord blood from the collected umbilical cord, sterilization or bacteriostatic treatment may be performed. Removal of cord blood is performed by rinsing with an anticoagulant solution, such as a solution containing heparin.
  • the aseptic or bacteriostatic treatment is not particularly limited, but is not limited to a medium coated with povidone-iodine or one or more antibiotics and / or antifungals such as penicillin, streptomycin, amphotericin B, gentamicin, and nystatin. Alternatively, it may be immersed in a buffer.
  • a step of selectively lysing red blood cells may be included.
  • a method for selectively lysing erythrocytes a method well known in the art can be used, for example, incubation in a hypertonic or hypotonic medium by lysis with ammonium chloride.
  • the umbilical cord-derived cell of the present invention means a cell population prepared from the umbilical cord as a raw material, and may be obtained by a known production method.
  • the umbilical cord-derived cell may be produced by a method including the following steps (i) to (iii). can do: (I) cutting the umbilical cord; (Ii) culturing the umbilical cord obtained in the step (i); and (iii) subculturing.
  • another method for preparing the cells may include (i ′) a step of dissociating a tissue by enzymatic treatment of the umbilical cord, instead of (i) a step of cutting the umbilical cord. Further, in addition to (i) the step of cutting the umbilical cord, the method may further comprise the step of (i ′) dissociating the tissue by treating the umbilical cord with an enzyme.
  • the umbilical cord obtained by the above-described method is cut by a mechanical force (shredding or shearing force) in a state containing the amniotic membrane, blood vessels, perivascular tissue and Walton jelly.
  • a mechanical force shredding or shearing force
  • the umbilical cord section obtained by cutting has a size of 1 to 10 mm 3 , 1 to 5 mm 3 , 1 to 4 mm 3 , 1 to 3 mm 3 or 1 to 2 mm 3 .
  • the umbilical cord obtained by the above-described method is subjected to enzymatic treatment in a state containing amniotic membrane, blood vessels, perivascular tissues and Walton jelly. It can be performed in the step of dissociating the tissue.
  • the enzyme treatment include an enzyme treatment using one or more enzymes such as collagenase, dispase, and hyaluronidase.
  • the umbilical cord obtained in the step (ii) (i) of the present invention is cultured on a solid surface using an appropriate cell medium. Culture under density and culture conditions.
  • the medium used in this step is not particularly limited as long as the medium is capable of culturing mesenchymal stem cells.
  • a medium is prepared by adding serum to a basal medium, and / or albumin, transferrin, fatty acid, insulin, and the like. , Sodium selenite, cholesterol, collagen precursors, trace elements, 2-mercaptoethanol, 3'-thiol glycerol and the like.
  • these media may be further supplemented with substances such as lipids, amino acids, proteins, polysaccharides, vitamins, growth factors, low molecular weight compounds, antibiotics, antioxidants, pyruvic acid, buffers, and inorganic salts. You may.
  • IMDM medium for example, IMDM medium, Medium ⁇ ⁇ 199 medium, Eagle's Minimum Essential Medium (EMEM) medium, MEM- ⁇ medium, Dulbecco's modified Eagle's Medium (DMEM) medium, Ham's F12 medium, RPMI 1640 medium, Fischer's medium, MCDB201 And a mixed medium thereof.
  • EMEM Eagle's Minimum Essential Medium
  • MEM- ⁇ MEM- ⁇
  • DMEM Dulbecco's modified Eagle's Medium
  • Ham's F12 medium for example, RPMI 1640 medium, Fischer's medium, MCDB201 And a mixed medium thereof.
  • the serum examples include, but are not limited to, human serum, fetal bovine serum (FBS), bovine serum, calf serum, goat serum, horse serum, pig serum, sheep serum, rabbit serum, rat serum, and the like.
  • FBS fetal bovine serum
  • bovine serum bovine serum
  • calf serum goat serum
  • horse serum horse serum
  • pig serum sheep serum
  • rabbit serum rat serum
  • 5 v / v% to 15 v / v% preferably 10 v / v%, may be added to the basal medium.
  • fatty acid examples include, but are not limited to, linoleic acid, oleic acid, linoleic acid, arachidonic acid, myristic acid, palmitoyl acid, palmitic acid, and stearic acid.
  • lipid examples include, but are not limited to, phosphatidylserine, phosphatidylethanolamine, and phosphatidylcholine.
  • Amino acids include, but are not limited to, for example, L-alanine, L-arginine, L-aspartic acid, L-asparagine, L-cysteine, L-cystine, L-glutamic acid, L-glutamine, L-glycine, and the like. .
  • Examples of the protein include, but are not limited to, ecotin, reduced glutathione, fibronectin, ⁇ 2-microglobulin, and the like.
  • the polysaccharide is exemplified by glycosaminoglycan, and among glycosaminoglycans, hyaluronic acid and heparan sulfate are exemplified, but are not limited thereto.
  • Growth factors include, for example, platelet-derived growth factor (PDGF), basic fibroblast growth factor (bFGF), transforming growth factor beta (TGF- ⁇ ), hepatocyte growth factor (HGF), epidermal growth factor (EGF) , Connective tissue growth factor (CTGF), vascular endothelial cell growth factor (VEGF) and the like, but are not limited thereto.
  • PDGF platelet-derived growth factor
  • bFGF basic fibroblast growth factor
  • TGF- ⁇ transforming growth factor beta
  • HGF hepatocyte growth factor
  • EGF epidermal growth factor
  • CTGF Connective tissue growth factor
  • VEGF vascular endothelial cell growth factor
  • Such a medium is provided as a medium prepared in advance for mesenchymal stem cells (stromal cells) from, for example, PromoCell, Lonza, Biological Industries, Veritas, R & D Systems, Corning, and Rohto. Have been.
  • mesenchymal stem cells stromal cells
  • the “solid surface” means any material that enables the adipose tissue-derived mesenchymal stem cells to bind / adhere in the present invention.
  • such a material is a plastic material that has been treated to promote the binding and adhesion of mammalian cells to its surface.
  • the shape of the culture vessel having a solid surface is not particularly limited, but a petri dish or a flask is preferably used. The cells are washed after incubation to remove unbound cells and cell debris.
  • cells that ultimately remain bound and adhered to the solid surface can be selected as a cell population of umbilical cord tissue-derived mesenchymal stem cells.
  • the umbilical cord tissue-derived mesenchymal stem cells of the present invention can also be produced using a suspension culture production method.
  • the suspension culture production method includes a method of aggregating cells and agitating and culturing them as a cell mass on a sphere, and a method of adhering cells to microcarriers and culturing by stirring the microcarriers.
  • the stirring may be performed by rotating a stirring blade in a container with a stirrer, or by suspending the culture solution by placing the bag containing the culture solution and cells on a shaker and shaking the bag.
  • the medium used in the suspension culture production method is not particularly limited as long as it can culture mesenchymal stem cells, and examples thereof include the above-described medium.
  • the microcarrier is not particularly limited as long as it can be used in suspension culture, and examples thereof include polyester, polystyrene, glass, and dextran.
  • the adipose tissue-derived mesenchymal stem cells may be obtained, for example, by the production method described in US Pat. No. 6,777,231.
  • they can be produced by a method comprising the following steps (i) to (iii). it can: (I) obtaining a cell suspension by digesting adipose tissue with an enzyme; (Ii) sedimenting the cells and resuspending the cells in a suitable medium; and (iii) culturing the cells on a solid surface and removing cells that do not show binding to the solid surface.
  • washing can be accomplished by vigorous stirring and sedimentation using a physiologically compatible saline solution (eg, phosphate buffered saline (PBS)).
  • PBS physiologically compatible saline solution
  • contaminants also referred to as debris, for example, damaged tissue, blood, red blood cells, etc.
  • washing and sedimentation are generally repeated until the supernatant is totally free of debris.
  • the remaining cells are present as clumps of various sizes, in order to dissociate them while minimizing damage to the cells themselves, enzymes that weaken or destroy intercellular bonds in the washed clumps (for example, Treatment with collagenase, dispase or trypsin).
  • the amount of such enzymes and the duration of the treatment will vary depending on the conditions used, but are known in the art.
  • the cell mass can be broken down by other treatment methods such as mechanical agitation, ultrasonic energy, heat energy, but with minimal cell damage. In order to suppress this, it is preferable to carry out only by enzyme treatment.
  • an enzyme it is desirable to inactivate the enzyme using a medium or the like after an appropriate period in order to minimize harmful effects on cells.
  • the cell suspension obtained in step (i) includes a slurry or suspension of aggregated cells, and various contaminating cells such as erythrocytes, smooth muscle cells, endothelial cells, and fibroblasts. Therefore, the cells in the aggregated state and these contaminating cells may be subsequently separated and removed. However, since the cells can be removed by adhesion and washing in step (iii) described later, the separation and removal are omitted. You may. Separating and removing contaminating cells can be accomplished by centrifugation, which forces the cells into a supernatant and a precipitate. The resulting precipitate containing contaminating cells is suspended in a physiologically compatible solvent.
  • the cells in suspension may contain erythrocytes, but erythrocytes are excluded by the selection by adhesion to the surface of the individual, which will be described later, and thus a lysing step is not necessarily required.
  • erythrocytes are excluded by the selection by adhesion to the surface of the individual, which will be described later, and thus a lysing step is not necessarily required.
  • a method for selectively lysing erythrocytes a method known in the art such as incubation in a hypertonic or hypotonic medium by lysis with ammonium chloride can be used. After lysis, the lysate may be separated from the desired cells, for example, by filtration, centrifugation, or density fractionation.
  • the cells in suspension may be washed once or continuously multiple times, centrifuged, and resuspended in a medium in order to increase the purity of the mesenchymal stem cells.
  • cells may be separated based on cell surface marker profiles or based on cell size and granularity.
  • the medium used in the resuspension is not particularly limited as long as it can culture mesenchymal stem cells.
  • a medium is prepared by adding serum to a basal medium, and / or albumin, transferrin, fatty acid, It may be made by adding one or more serum substitutes such as insulin, sodium selenite, cholesterol, collagen precursor, trace elements, 2-mercaptoethanol, 3'-thiolglycerol. If necessary, these media may be further supplemented with substances such as lipids, amino acids, proteins, polysaccharides, vitamins, growth factors, low molecular weight compounds, antibiotics, antioxidants, pyruvic acid, buffers, and inorganic salts. You may.
  • IMDM medium for example, IMDM medium, Medium ⁇ ⁇ 199 medium, Eagle's Minimum Essential Medium (EMEM) medium, MEM- ⁇ medium, Dulbecco's modified Eagle's Medium (DMEM) medium, Ham's F12 medium, RPMI 1640 medium, Fischer's medium, MCDB201 And a mixed medium thereof.
  • EMEM Eagle's Minimum Essential Medium
  • MEM- ⁇ MEM- ⁇
  • DMEM Dulbecco's modified Eagle's Medium
  • Ham's F12 medium for example, RPMI 1640 medium, Fischer's medium, MCDB201 And a mixed medium thereof.
  • the serum examples include, but are not limited to, human serum, fetal bovine serum (FBS), bovine serum, calf serum, goat serum, horse serum, pig serum, sheep serum, rabbit serum, rat serum, and the like.
  • FBS fetal bovine serum
  • bovine serum bovine serum
  • calf serum goat serum
  • horse serum horse serum
  • pig serum sheep serum
  • rabbit serum rat serum
  • 5 v / v% to 15 v / v% preferably 10 v / v%, may be added to the basal medium.
  • fatty acid examples include, but are not limited to, linoleic acid, oleic acid, linoleic acid, arachidonic acid, myristic acid, palmitoyl acid, palmitic acid, and stearic acid.
  • lipid examples include, but are not limited to, phosphatidylserine, phosphatidylethanolamine, and phosphatidylcholine.
  • Amino acids include, but are not limited to, for example, L-alanine, L-arginine, L-aspartic acid, L-asparagine, L-cysteine, L-cystine, L-glutamic acid, L-glutamine, L-glycine, and the like.
  • Examples of the protein include, but are not limited to, ecotin, reduced glutathione, fibronectin, ⁇ 2-microglobulin, and the like.
  • the polysaccharide is exemplified by glycosaminoglycan, and among glycosaminoglycans, hyaluronic acid and heparan sulfate are exemplified, but are not limited thereto.
  • Growth factors include, for example, platelet-derived growth factor (PDGF), basic fibroblast growth factor (bFGF), transforming growth factor beta (TGF- ⁇ ), hepatocyte growth factor (HGF), epidermal growth factor (EGF) , Connective tissue growth factor (CTGF), vascular endothelial cell growth factor (VEGF) and the like, but are not limited thereto.
  • PDGF platelet-derived growth factor
  • bFGF basic fibroblast growth factor
  • TGF- ⁇ transforming growth factor beta
  • HGF hepatocyte growth factor
  • EGF epidermal growth factor
  • CTGF Connective tissue growth factor
  • VEGF vascular endothelial cell growth factor
  • Such a medium is provided as a medium prepared in advance for mesenchymal stem cells (stromal cells) from, for example, PromoCell, Lonza, Biological Industries, Veritas, R & D Systems, Corning, and Rohto. Have been.
  • mesenchymal stem cells stromal cells
  • the cells in the cell suspension obtained in the step (ii) are differentiated on a solid surface using the appropriate cell culture medium as described above with the appropriate cell density and Culture under culture conditions.
  • the “solid surface” means any material capable of binding and adhering adipose tissue-derived mesenchymal stem cells in the present invention.
  • such a material is a plastic material that has been treated to promote the binding and adhesion of mammalian cells to its surface.
  • the shape of the culture vessel having a solid surface is not particularly limited, but a petri dish or a flask is preferably used. The cells are washed after incubation to remove unbound cells and cell debris.
  • cells that ultimately remain bound and adhered to a solid surface can be selected as a cell population of adipose tissue-derived mesenchymal stem cells.
  • surface antigens may be analyzed by a conventional method using flow cytometry or the like.
  • the ability to differentiate into each cell lineage may be tested, and such differentiation can be performed in a conventional manner.
  • the mesenchymal stem cells of the present invention can be prepared as described above, but may be defined as cells having the following characteristics; (1) shows adhesion to plastic under culture conditions in a standard medium; (2) surface antigens CD73 and CD90 are positive, CD45 is negative, and (3) they can be differentiated into bone cells, adipocytes, and chondrocytes under culture conditions.
  • HGF, SHH, OLIG2, VEGFA, NEUROG1, GRPR, IL1R1, CRHR2, CCKAR, APOE PAX3, PAX5, EGF, CXCL1, GDNF, NRCAM, DLL1, HEYL, Induces BMP2, NTN1, ASCL1 or NRP2 expression, efficiently induces HGF, SHH, OLIG2, VEGFA, NEUROG1, GRPR, IL1R1, CRHR2, CCKAR, APOE, PAX3, PAX5, EGF, CXCL1, GDNF, NRCAM, APOE, PAX3,
  • the cell suspension obtained by treating the prepared mesenchymal stem cells with a trypsin / EDTA solution or the like is centrifuged (room temperature, 400 G, 5 minutes) to remove the supernatant.
  • Staining Buffer 1% BSA-PBS
  • the cell suspension concentration is made uniform by pipetting.
  • 50 ⁇ L is added to a new 1.5 mL microtube. Dispense each.
  • a primary antibody (Mouse anti human TFPI, manufactured by Sekisui diagnostics, ADG4903) is added to the dispensed cell suspension at a concentration of 5 to 20 ⁇ g / mL, suspended, and then shielded from light and refrigerated for 30 minutes to 1 hour. Let react. After washing three times with 1 mL of Staining Buffer, add Staining Buffer to 50 ⁇ L, add a secondary antibody (Anti Mouse IgG alexar488, manufactured by Thermofisher scientific, A21202) at a concentration of 1 to 10 ⁇ g / mL and suspend. The reaction is carried out for 30 minutes to 1 hour under light shielding and refrigeration.
  • a secondary antibody Anti Mouse IgG alexar488, manufactured by Thermofisher scientific, A21202
  • PI Buffer prepared by adding 28.8 ⁇ L of Propidium iodide solution (manufactured by SIGMA, P4864) to 14.4 mL of Staining buffer) was added, and the cells were suspended well. Separation can be carried out by fluorescence activated cell sorting (FACS) through a tube with a filter.
  • FACS fluorescence activated cell sorting
  • the mesenchymal stem cells in the present invention may be cells that have been repeatedly cryopreserved and thawed as long as they have a therapeutic effect on disease.
  • cryopreservation can be performed by suspending mesenchymal stem cells in a cryopreservation solution well known to those skilled in the art and cooling. Suspension can be carried out by detaching the cells with a detaching agent such as trypsin if necessary, transferring the cells to a cryopreservation container, treating them appropriately, and then adding a cryopreservation solution.
  • the cryopreservation solution may contain DMSO (Dimethyl Sulfoxide) as a cryoprotectant.
  • DMSO Dimethyl Sulfoxide
  • Glycerol, propylene glycol or polysaccharides are exemplified as alternatives to DMSO.
  • DMSO When DMSO is used, it contains a concentration of 5% to 20%, preferably 5% to 10%, more preferably 10%.
  • additives described in WO2007 / 058308 may be included.
  • cryopreservation solution for example, cryopreservation provided by BioVerde, Japan Genetics Co., Ltd., Reprocell, Xenoac, Cosmo Bio, Kojin Bio, Thermo Fisher Scientific, etc.
  • a liquid may be used.
  • the cells When the above-mentioned suspended cells are cryopreserved, the cells may be frozen at a temperature between ⁇ 80 ° C. and ⁇ 100 ° C. (for example, ⁇ 80 ° C.), using any freezer that can achieve the temperature. obtain.
  • a cooling rate may be appropriately controlled using a program freezer in order to avoid a rapid temperature change. The cooling rate may be appropriately selected depending on the components of the cryopreservation solution, and may be performed according to the manufacturer's instructions of the cryopreservation solution.
  • the storage period is not particularly limited as long as the cells cryopreserved under the above conditions are thawed and retained properties equivalent to those before freezing, but for example, one week or more, two weeks or more, three weeks or more, 4 weeks or more, 2 months or more, 3 months or more, 4 months or more, 5 months or more, 6 months or more, 1 year or more, or more. Since cell damage can be suppressed by storing at a lower temperature, it may be transferred to and stored in a gas phase on liquid nitrogen (from about -150 ° C. or less to about ⁇ 180 ° C. or more). When storing in a gaseous phase over liquid nitrogen, it can be performed using a storage container known to those skilled in the art. Although not particularly limited, for example, when storing for 2 weeks or more, it is preferable to store in a gas phase on liquid nitrogen.
  • the thawed mesenchymal stem cells may be appropriately cultured before the next cryopreservation.
  • Culture of the mesenchymal stem cells is performed using a medium capable of culturing the above-described mesenchymal stem cells, and is not particularly limited. However, at a culture temperature of about 30 to 40 ° C., preferably about 37 ° C., the CO 2 -containing air It may be performed under an atmosphere. The CO 2 concentration is about 2-10%, preferably about 5-10%.
  • the cells are detached with a release agent such as trypsin after reaching a suitable confluency for the culture vessel (for example, the cells occupy 50% to 80% of the culture vessel).
  • the cells may be seeded at an appropriate cell density in a separately prepared culture vessel and culture may be continued.
  • typical cell densities are 100 cells / cm 2 to 100,000 cells / cm 2 , 500 cells / cm 2 to 50,000 cells / cm 2 , 1,000 to 10,000 cells / Cm 2 , 2,000 to 10,000 cells / cm 2 and the like.
  • the cell density is between 2,000 and 10,000 cells / cm 2 . It is preferable to adjust the period for reaching appropriate confluency to be 3 to 7 days. During the culture, the medium may be changed as needed.
  • Thawing of the cryopreserved cells can be performed by a method well known to those skilled in the art. For example, a method in which the method is carried out by standing or shaking in a thermostat at 37 ° C. or in a hot water bath is exemplified.
  • the mesenchymal stem cells of the present invention may be cells in any state, for example, cells recovered by exfoliating cells in culture or cells frozen in a cryopreservation solution. Good. It is preferable to use cells obtained by subdividing and cryopreserving cells of the same lot obtained by expansion culture, since the same action and effect can be obtained stably, and the handleability is excellent.
  • the mesenchymal stem cells in the cryopreserved state may be thawed immediately before use, and may be directly mixed with a solution such as an infusion or a medium while being suspended in the cryopreservation solution. Alternatively, the cryopreservation solution may be removed by a method such as centrifugation and then suspended in a solution such as an infusion or a medium.
  • the “infusion” in the present invention refers to a solution used in the treatment of a human, and is not particularly limited.
  • physiological saline Japanese Pharmacopoeia, 5% glucose solution, Japanese Pharmacopoeia Dextrose injection, Ringer's solution, JP Ringer's solution, Ringer's lactate, Ringer's acetate, 1st solution (starting solution), 2nd solution (dehydration replenishing solution), 3rd solution (maintenance solution), 4th solution (postoperative recovery solution) And the like.
  • the therapeutic agent for neuropathy of the present invention is the aforementioned HGF, SHH, OLIG2, VEGFA, NEUROG1, GRPR, IL1R1, CRHR2, CCKAR, APOE, PAX3, PAX5, EGF, CXCL1, GDNF, NRCAM, DLL1, HEYL of the present invention. , BMP2, NTN1, ASCL1, and NRP2. According to the therapeutic agent for neuropathy of the present invention, neuropathy can be effectively protected.
  • the description in the section of the above-mentioned mesenchymal stem cells can be applied.
  • the therapeutic agent for neuropathy of the present invention is not limited to the mesenchymal stem cells as long as the effect of the present invention is not impaired. May be contained.
  • carriers and additives include isotonic agents, thickeners, sugars, sugar alcohols, preservatives (preservatives), bactericides or antibacterial agents, pH regulators, stabilizers, and chelating agents.
  • Oily base Oily base, gel base, surfactant, suspending agent, binder, excipient, lubricant, disintegrant, foaming agent, flow agent, dispersant, emulsifier, buffer, dissolution aid , An antioxidant, a sweetening agent, a sour agent, a coloring agent, a flavoring agent, a flavoring agent, a refreshing agent, and the like, but are not limited thereto.
  • Representative components include, for example, the following carriers and additives.
  • Examples of the carrier include aqueous carriers such as water and aqueous ethanol; examples of the tonicity agent (inorganic salt) include sodium chloride, potassium chloride, calcium chloride, and magnesium chloride; Glycerin, propylene glycol, polyethylene glycol and the like; examples of the thickener include carboxyvinyl polymer, hydroxyethylcellulose, hydroxypropylmethylcellulose, methylcellulose, alginic acid, polyvinyl alcohol (completely or partially saponified), polyvinylpyrrolidone, macrogol Sugars such as cyclodextrin, glucose and the like; sugar alcohols such as xylitol, sorbitol and mannitol (these may be d-form, l-form or dl-form) As preservatives, bactericides or antibacterials, for example, dibutylhydroxytoluene, butylhydroxyanisole, alkyldiaminoethylglycine hydrochloride,
  • aqueous base examples include Macrogol 400.
  • Gel bases include, for example, carboxyvinyl polymers and gums;
  • surfactants include, for example, polysorbate 80, hydrogenated castor oil, glycerin fatty acid esters, sorbitan sesquioleate; Examples thereof include beeswax and various surfactants, gum arabic, gum arabic powder, xanthan gum, soy lecithin, and the like;
  • examples of the binder include hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, and carboxymethyl cellulose nato.
  • Excipients for example, sucrose, lactose, starch, corn starch, crystalline cellulose, light anhydrous silicic acid, etc .
  • lubricants for example, sucrose fatty acid esters
  • Disintegrators include, for example, low-substituted hydroxypropylcellulose, crospovidone, croscarmellose sodium, and the like
  • disintegrating agents include, for example, sodium hydrogencarbonate; Examples thereof include sodium metasilicate aluminate and light anhydrous silicic acid.
  • the therapeutic agent for neuropathy of the present invention can be provided in various forms depending on the purpose, for example, in various dosage forms such as a solid preparation, a semi-solid preparation, and a liquid preparation.
  • solids tablets, powders, powders, granules, capsules, etc.
  • semi-solids ointments (hard ointments, ointments, etc.), creams, etc.
  • liquids [lotions, extracts, suspensions]
  • the therapeutic agent for neuropathy of the present invention can also be used in the form of a solution or an emulsion in an oily or aqueous vehicle. Furthermore, the therapeutic agent for neuropathy of the present invention can also be applied to an affected part by spraying, and the therapeutic agent for neuropathy of the present invention can also be used in a form of gel or sheet at the affected part after spraying. The therapeutic agent for neuropathy of the present invention can also be applied to an affected area after the mesenchymal stem cells are formed into a sheet or a three-dimensional structure.
  • the therapeutic agent for neuropathy of the present invention includes physiological saline, JP physiological saline, 5% glucose solution, JP glucose injection solution, Ringer solution, JP ringer solution, lactated Ringer solution, acetate Ringer solution, bicarbonate Ringer solution, 1st solution ( Suspension or dilution using an infusion such as a starting solution), a second solution (a dehydration replenisher), a third solution (a maintenance solution), a fourth solution (a postoperative recovery solution), or a cell culture medium such as DMEM. It is preferably used after being suspended or diluted with physiological saline, 5% glucose solution, first solution (starting solution), more preferably 5% glucose solution, first solution (starting solution). be able to.
  • the pH of the therapeutic agent for neuropathy of the present invention is not particularly limited as long as it is within a pharmaceutically, pharmacologically (pharmaceutically) or physiologically acceptable range.
  • a pharmaceutically pharmacologically (pharmaceutically) or physiologically acceptable range.
  • the osmotic pressure of the therapeutic agent for neuropathy is not particularly limited as long as it is within a range acceptable for a living body.
  • One example of the osmotic pressure ratio of the composition of the present invention is preferably in the range of 0.7 to 5.0, more preferably 0.8 to 3.0, and still more preferably 0.9 to 1.4.
  • the osmotic pressure can be adjusted by a method known in the art using an inorganic salt, a polyhydric alcohol, a sugar alcohol, a saccharide, or the like.
  • the osmotic pressure ratio is the ratio of the osmotic pressure of the sample to the osmotic pressure of 286 mOsm (0.9 w / v% aqueous sodium chloride solution) based on the 15th revised Japanese Pharmacopoeia. (Freezing point descent method).
  • the standard solution for osmotic pressure ratio measurement (0.9 w / v% aqueous sodium chloride solution) is prepared by drying sodium chloride (Japanese Pharmacopoeia standard reagent) at 500 to 650 ° C. for 40 to 50 minutes and then in a desiccator (silica gel). Allow to cool, weigh accurately 0.900 g, dissolve in purified water to make exactly 100 mL, or use a commercially available standard solution for osmotic pressure ratio measurement (0.9 w / v% aqueous sodium chloride solution).
  • the route of administration of the therapeutic agent for neuropathy of the present invention to a subject is oral, subcutaneous, intramuscular, intravenous, intraarterial, intraventricular, intrathecal, intraperitoneal, sublingual, Examples include rectal administration, vaginal administration, intraocular administration, nasal administration, inhalation, transdermal administration, implants, direct administration by spraying on the surface of an organ and sticking a sheet or the like, and the therapeutic agent for neuropathy of the present invention.
  • intraarterial administration preferably, intraarterial administration, intravenous administration, intraventricular administration and intrathecal administration
  • intravenous administration preferably intraarterial administration, intravenous administration, intraventricular administration and intrathecal administration
  • intravenous administration preferably intramuscular administration, nasal cavity
  • intravenous administration and intrathecal administration are preferred from the viewpoint of effects.
  • the dose (dose) of the therapeutic agent for neuropathy of the present invention may vary depending on the condition (body weight, age, symptoms, physical condition, etc.) of the patient and the dosage form of the therapeutic agent for neuropathy of the present invention. From the viewpoint of exhibiting the therapeutic effect of the therapeutic agent for transfusion disorders, the larger amount tends to be more preferable, while the lower amount tends to be preferable from the viewpoint of suppressing the occurrence of side effects.
  • the number of cells is 1 ⁇ 10 3 to 1 ⁇ 10 12 cells / time, preferably 1 ⁇ 10 4 to 1 ⁇ 10 11 cells / time, more preferably 1 ⁇ 10 5 cells / time.
  • the number is 1 ⁇ 10 10 / time, more preferably 5 ⁇ 10 6 to 1 ⁇ 10 9 / time.
  • the dose per patient's body weight is 1 ⁇ 10 to 5 ⁇ 10 10 cells / kg, preferably 1 ⁇ 10 2 to 5 ⁇ 10 9 cells / kg, and more preferably 1 ⁇ 10 3 to 5 ⁇ 10 10 cells / kg.
  • the number is 8 / kg, more preferably 1 ⁇ 10 4 to 5 ⁇ 10 7 / kg.
  • the number of cells is 1 ⁇ 10 3 to 1 ⁇ 10 11 cells / time, preferably 1 ⁇ 10 4 to 1 ⁇ 10 10 cells / time, more preferably 1 ⁇ 10 5 to 1 ⁇ .
  • the number is 10 9 / times, more preferably 5 ⁇ 10 5 to 5 ⁇ 10 8 / times.
  • the dose per patient's body weight is 1 ⁇ 10 to 5 ⁇ 10 10 cells / kg, preferably 1 ⁇ 10 2 to 5 ⁇ 10 9 cells / kg, more preferably 1 ⁇ 10 3 to 5 ⁇ 10 10 cells / kg.
  • the number is 8 / kg, more preferably 1 ⁇ 10 4 to 5 ⁇ 10 7 / kg.
  • the present dose may be administered as a single dose and administered multiple times, or the present dose may be administered in multiple doses.
  • the therapeutic agent for neuropathy of the present invention may be administered together with one or more other drugs.
  • Other drugs include any drug that can be used as a therapeutic drug for neuropathy, for example, antiparkinson drugs such as levodopa, amantadine, carbidopa, dopaminergic drugs such as bromocriptine, prugolide, ropinirole, and pramipexole.
  • Drugs selective B-type monoamine oxidase inhibitors (MAO-B) such as selegiline and lasalidine; catechol-O-methyltransferase (COMT) inhibitors such as entacapone and tolcapone; anticholinergic drugs such as benztropone and trihexyphenidyl; Antihistamines such as diphenhydramine and orphenadrine; cholinesterase inhibitors such as donepezil, rivastigmine, galantamine and tacrine; N-methyl-D-aspartate receptor antagonists such as memantine; haloperidol, thioridazine, thiotiki Antipsychotics, such as propane, olanzapine, risperidone, quetiapine, clozapine, beta-blockers, such as propranolol, sedatives, such as benzodiazepine, anticoagulants, such as heparin, low molecular weight heparin, war
  • Anticonvulsants such as lamotrigine, tricyclics, antidepressants such as venlafaxine, bupropion, amitriptyline, desipramine, paroxetine, central ⁇ -2 adrenergic drugs such as clonidine, tizanidine, corticosteroids such as dexamethasone and prednisolone.
  • NMDA receptor antagonists such as steroids, amantadine, dextrimetrophan, etc., local anesthetics such as lidocaine, mexiletine, capsaicin, etodolac, indomethacin, surin, tolmetatin, nabumetone, pyro Xicam, acetaminophen, fenobipron, flurbipron, ibuprofen, ketoprofen, naproxen, naproxen sodium, oxaprosin, aspirin, choline magnesium trisalicylic acid, diflunisal, meclofenamate, mefenamic acid, phenylbutazone, ketorolac, celecoxib, codeine, hydrocodeine, Propoxyphene, fentanyl, hydromorphone, levophanol, meperidine, methadone, morphine, oxycodone, oxymorphone, analgesics such as buprenorphin
  • mesenchymal stem cells of the present invention can be used for various neuropathies, specific diseases include autonomic nervous system disorders, Horner's syndrome, multisystem atrophy, autonomic nervous system disorders such as pure autonomic dysfunction, chronic pain Pain such as neuropathic pain, complex regional pain syndrome, ischemic stroke, transient ischemic attack, hypoxia-ischemia, intracranial hemorrhage such as intracerebral hemorrhage and intraventricular hemorrhage, subarachnoid hemorrhage, etc.
  • Stroke (cerebrovascular accident), Alzheimer's disease, cerebrovascular dementia, Lewy body dementia, HIV-related dementia, dementia such as frontotemporal dementia, spastic syndrome, athetosis or dyskinetic syndrome and ataxia syndrome Cerebral palsy syndrome, hypoglycemia, hypernatremia, hyponatremia, hypomagnesemia, congenital metabolic disorders, etc., neonatal convulsive disorders, demyelinating diseases such as multiple sclerosis, Kiran-Barre syndrome Hereditary neuropathy, motor neuron disease including amyotrophic lateral sclerosis (ALS), myasthenia gravis, peripheral nervous system disorders such as mononeuropathy, polyneuropathy, plexus disorder, acute transverse myelitis, arteriovenous malformation And spinal cord disorders such as spinal cord infarction (ischemic spinal cord disorder), cerebellar disorders such as spinocerebellar ataxia and spinocerebellar degeneration, brain tumors, encephalitis, meningitis, Parkinson's
  • ischemic stroke transient ischemic attack, hypoxia-ischemia, intracranial hemorrhage such as intracerebral hemorrhage and intraventricular hemorrhage, stroke (cerebrovascular accident) such as subarachnoid hemorrhage, perinatal brain Disorders, neonatal encephalopathy and cerebral palsy are preferred.
  • Umbilical cord-derived mesenchymal stem cells were collected by the method described in Cytotherapy, 18, 229-241, 2016. Briefly, after obtaining the approval of the ethics committee of the Institute of Medical Science, University of Tokyo, chopped the umbilical cord that has been taken with the consent of the provider from 1 to fragments of 2mm 3, seeded onto the culture dish And cultivation in 10% fetal bovine serum (FBS) and ⁇ -minimal essential medium (MEM- ⁇ ) supplemented with antibiotics.
  • Leaf stem cells (hereinafter referred to as “UCMSC”) were obtained.
  • the cells obtained from the umbilical cord tissue by the above-mentioned improved explant method are referred to as first passage cells (P1), and the number of passages is increased by performing passage, and the cells are described as second passage cells (P2). I do.
  • UCMSC obtained UCMSC was detached using trypsin (TrypLE Select (1X)), transferred to a centrifuge tube, and centrifuged at 400 ⁇ g for 5 minutes to obtain a cell precipitate. After removing the supernatant, an appropriate amount of a cell cryopreservation solution (STEM-CELLBANKER (Xenoac)) was added and suspended. The cell suspension was dispensed into a cryotube and stored at ⁇ 80 ° C. in a freezer. Thereafter, the solution was transferred to the gas phase on liquid nitrogen, and the storage was continued.
  • trypsin Trypsin
  • X Trypsin
  • Xenoac cell cryopreservation solution
  • RNA expression of HGF, SHH, OLIG2, VEGFA, NEUROG1, GRPR, IL1R1, CRHR2, CCKAR, APOE was detected using quantitative PCR, respectively.
  • Cells cultured in serum-free medium showed significantly higher mRNA expression of HGF, SHH, OLIG2, VEGFA, NEUROG1, GRPR, IL1R1, CRHR2, CCKAR, and APOE compared to MEM- ⁇ medium.
  • the cells cultured in the PromoCell medium had significantly higher ⁇ mRNA expression levels of ⁇ VEGFA, ⁇ NEUROG1, ⁇ GRPR, ⁇ CRHR2, and ⁇ CCKAR than the cells cultured in the MEM- ⁇ medium (FIG. 1).
  • the aforementioned umbilical cord tissue-derived frozen cells were awakened, seeded in a cell culture flask, and cultured using a serum-free medium for mesenchymal stem cells (Rohto). Subculture was performed once every 3 or 4 days, and the cells were cultured for a total of 2 weeks to obtain planar cultured cells (hereinafter, referred to as "ADH").
  • RNA was recovered from the frozen stock of the flat culture cells (ADH) or the suspension culture cells (SUS) obtained by the above method.
  • the mRNA expression of PAX3, PAX5, EGF, CXCL1, GDNF, NRCAM, DLL1, HEYL, BMP2, NTN1, ASCL1, NRP2, VEGFA and APOE was detected using quantitative PCR, respectively.
  • a serum-free medium for mesenchymal stem cells (Rohto) And seeded the cells in the flask.
  • Cells were cultured for several days at 37 ° C., 5% CO 2 . After several days, the culture is washed with PBS to remove residual blood cells and adipose tissue contained in the culture solution, and mesenchymal stem cells adhered to a plastic container (hereinafter referred to as "ADMSC").
  • the rat's trunk, hind limb and right forelimb were held and lifted, and only the left forelimb touched the bench, and a step test was performed in which the horizontal plane was moved 30 cm in the opposite hand direction in about 5 seconds. did. At that time, the number of steps of the left forelimb was recorded. The measurement was repeated three times, and the average value of the number of steps was used as a measured value (step test).
  • neurological symptoms were observed with reference to the report of Kizen et al. (Pharmacology and Treatment, 1991; 19: 4491-4503).
  • the tape peeling test was performed based on the measurement method reported by Leong et al. (Leong et al. Stem Cells Translational Medicine, 2012; 1: 177-187). A 15 mm 2 tape was stuck on the back of the right (paralysis side) forelimb, and the time until the tape was put into the cage and the tape was to be peeled was measured (Cut off: 120 seconds, tape peeling test).
  • the cells in each well are washed twice with D-PBS ( ⁇ ), and are cultured in DMEM containing no Pen-Strep, no glucose (Thermo Fisher, # 11966025) at 37 ° C., N 2 : 95%, The cells were cultured for 2 hours under the condition of O 2 : 5%. Thereafter, UCMSC prepared in the same manner as described above, cultured in a serum-free medium for mesenchymal stem cells (Rohto), and stained with DiO fluorescence was added to a 12-well plate, and 10% FBS (Thermo Fisher, # 10437-) was added.
  • SH-SY5Y human-derived neuroblastoma; ECACC, Lot.16E028, Acc Nc: 94030304
  • ECACC human-derived neuroblastoma
  • Acc Nc Acc Nc
  • 94030304 ECACC, Lot.16E028, Acc Nc: 94030304
  • FBS Thermo Fisher, # 10437-028, Lot.1658423
  • the cells were cultured in a DMEM / F12 (Thermo Fisher, # 11320-033, Lot. 1930023) medium containing Pen and St-Strep at 37 ° C. under conditions of O 2 : 20% and CO 2 : 5%.
  • the medium was removed in Well, DMEM containing Pen-Strep, No glucose (Thermo Fisher, # 11966025) in a culture medium, 37 °C, N 2: 95 %, O 2: 5% conditions (hereinafter, OGD (OGD-treated group) for 24 hours.
  • OGD OGD-treated group
  • the medium in the well in which the SH-SY5Y cells are cultured is removed, and the umbilical cord-derived mesenchymal stem cells prepared by the above-described method are used in a serum-free medium for mesenchymal stem cells (Rohto).
  • the cultured UCMSC was added at 1,000 cells / well and cultured for 24 hours under OGD conditions (MSC group).
  • SH-SY5Y human-derived neuroblastoma; ECACC, Lot.16E028, Acc Nc: 94030304
  • ECACC human-derived neuroblastoma
  • ECACC human-derived neuroblastoma
  • Acc Nc Acc Nc
  • 94030304 was seeded in a 12-well plate at 0.038 ⁇ 10 6 cells / well, and 10% FBS ( Thermo Fisher, # 10437-028, Lot.1658423) and DMEM / F12 (Thermo Fisher, # 11320-033, Lot.1930023) medium containing Pen-Strep, 37 ° C., O 2 : 20%, CO 2 : Cultured under 5% condition.
  • the cells in each well were washed twice with D-PBS (-), and then cultured for 2 hours under the same OGD condition as described above (cell-untreated group).
  • the medium in Well was removed, and the suspension culture cells (SUS) prepared by the above method were replaced with half of the seeded SH-SY5Y cells (half group), the same amount (half group) and The transwell insert inoculated in a double volume (double volume group) was placed and cultured for 2 hours under OGD conditions (MSC group). Thereafter, a DMEM / F12 (Thermo Fisher, # 11320-033, Lot.1930023) medium containing 10% FBS (Thermo Fisher, # 10437-028, Lot.1658423) and Pen-Strep was used at 37 ° C. and O 2. : 20% and CO 2 : 5% for 48 hours.
  • SUS suspension culture cells
  • SH-SY5Y human-derived neuroblastoma; ECACC, Lot. 16E028, Acc Nc: 94030304
  • ECACC human-derived neuroblastoma
  • Acc Nc Acc Nc: 94030304
  • FBS Thermo Fisher
  • DMEM / F12 Thermo Fisher, # 11320-033, Lot.1930023
  • the cells were cultured under the conditions.
  • the cells in each well were washed twice with D-PBS (-), and then cultured for 2 hours under the same OGD condition as described above (cell-untreated group).
  • the medium in the well was removed, and the suspension culture cells (SUS, SUS group), the plane culture cells (ADH, ADH group), and the fibroblasts (Fibroblast, Fibroblast group) prepared by the above-described method were similarly prepared.
  • SUS, SUS group suspension culture cells
  • ADH, ADH group plane culture cells
  • fibroblasts Fibroblast, Fibroblast group
  • SH-SY5Y human-derived neuroblastoma; ECACC, Lot. 16E028, Acc Nc: 94030304
  • ECACC human-derived neuroblastoma
  • Acc Nc Acc Nc: 94030304
  • FBS Thermo Fisher
  • DMEM / F12 Thermo Fisher, # 11320-033, Lot.1930023
  • the cells were cultured under the conditions.
  • the cells in each well were washed twice with D-PBS (-), and then cultured for 2 hours under the same OGD condition as described above (cell-untreated group).
  • the medium in Well was removed, and the umbilical cord-derived mesenchymal stem cells (PromoCell) were separated from serum-free medium for mesenchymal stem cells (Rohto, serum-free group), PromoCell medium (Mesenchymal Stem Cell).
  • SH-SY5Y human-derived neuroblastoma; ECACC, Lot. 16E028, Acc Nc: 94030304
  • ECACC human-derived neuroblastoma
  • Acc Nc Acc Nc: 94030304
  • FBS Thermo Fisher
  • DMEM / F12 Thermo Fisher, # 11320-033, Lot.1930023
  • the cells were cultured under the conditions.
  • the cells in each well were washed twice with D-PBS (-), and then cultured for 2 hours under the same OGD condition as described above (cell-untreated group).
  • the medium in Well was removed, and the umbilical cord-derived mesenchymal stem cells (PromoCell, C-12971, Lot.427Z021) were replaced with a serum-free medium for mesenchymal stem cells (Rohto, serum-free group).
  • PromoCell medium Mesenchymal Stem Cell Growth Medium 2 (PromoCell, C-28009, Lot.435M415), PromoCell group) and MEM- ⁇ (Thermo Fisher Co., # 12571-063, Lot.18997009, MEM- ⁇ group)
  • PromoCell medium Mesenchymal Stem Cell Growth Medium 2 (PromoCell, C-28009, Lot.435M415), PromoCell group
  • MEM- ⁇ Thermo Fisher Co., # 12571-063, Lot.18997009, MEM- ⁇ group
  • UCMSCs and fibroblasts (Fibroblasts, fibroblasts group) cultured respectively were placed on a transwell insert cultured in the same amount as SH-SY5Y. And cultured for 2 hours under OGD conditions.
  • a novel therapeutic agent for neuropathy can be provided.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cell Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Virology (AREA)
  • Epidemiology (AREA)
  • Hematology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Reproductive Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本発明は、神経障害の新規治療剤を提供することを目的とする。 上記課題を解決するための本発明は、HGF, SHH, OLIG2, VEGFA, NEUROG1, GRPR, IL1R1, CRHR2, CCKAR, APOE, PAX3, PAX5, EGF, CXCL1, GDNF, NRCAM, DLL1, HEYL, BMP2, NTN1, ASCL1, NRP2のいずれか一つ、または二つ以上が高発現であることを特徴とする、間葉系幹細胞である。

Description

間葉系幹細胞及び神経障害治療剤
 本発明は、間葉系幹細胞及び神経障害治療剤に関する。
 高齢化社会の進行に伴い、脳の神経細胞の障害である神経変性疾患が年々増加を続けている。神経変性疾患としては、アルツハイマー病、パーキンソン病、筋萎縮性側索硬化症(ALS)や脊髄小脳変性症などが挙げられる。アルツハイマー病では、大脳皮質や海馬といった場所の神経細胞が脱落し、記憶能力が減退していく。また、パーキンソン病では、黒質と呼ばれる場所にある神経細胞が脱落し、運動機能に障害が出る。さらに、脳の神経細胞の障害によっておこる疾患としては、神経変性疾患の他にも脳卒中による脳梗塞や脳出血が知られている。
 また、周産期の新生児脳障害は出生1,000人に1~2人の頻度で発症し、その後の生涯にわたる脳性麻痺の原因となる。このような脳性麻痺の原因となる周産期脳障害には、低酸素性虚血性脳症、脳出血、脳室周囲白質軟化症などがあり、これらの主病態はミトコンドリア機能不全から生じる活性酸素の上昇、マクロファージの活性化とそれに伴う高サイトカイン血症という炎症病態である。上述の神経変性疾患や脳卒中、脳性麻痺は、疾患の原因及び症状は異なっているが、神経細胞の数が減るという一点においては共通していると言える。
 アルツハイマー病にはドネペジル、パーキンソン病にはレボドパなどの治療薬が用いられているが、これらの治療薬は神経細胞が減少したことによる神経ネットワークの情報処理機能を、化学伝達物質シグナルの補充によって回復させることを目的としたものであり、神経細胞の減少自身を抑えることはできない。また、神経変性疾患や脳卒中に対する既存の治療薬の中で、神経細胞を保護する作用を示すものはない。そのため神経細胞を保護する作用を有する新規治療薬の開発が望まれている。
 間葉系幹細胞は、1982年にFriedensteinによって初めて骨髄から単離された多分化能を有する前駆細胞である(非特許文献1参照)。間葉系幹細胞は、骨髄、臍帯、脂肪等の様々な組織に存在することが明らかにされており、間葉系幹細胞移植は、様々な難治性疾患に対する新しい治療方法として、期待されている(特許文献1~2参照)。最近では、脂肪組織、胎盤、臍帯、卵膜等の間質細胞に同等の機能を有する細胞が存在することが知られている。従って、間葉系幹細胞を間質細胞(Mesenchymal Stromal Cell)と称することもある。
特開2012-157263号公報 特表2012-508733号公報
Pittenger F.M.et al.Science ,(1999),284,pp.143-147
 本発明は、上述のような状況の中、神経障害の新規治療剤を提供することを目的とする。
 上記課題を解決するために鋭意研究した結果、本発明者らは、HGF, SHH, OLIG2, VEGFA, NEUROG1, GRPR, IL1R1, CRHR2, CCKAR, APOE, PAX3, PAX5, EGF, CXCL1, GDNF, NRCAM, DLL1, HEYL, BMP2, NTN1, ASCL1, NRP2のいずれか一つ、または二つ以上が高発現する間葉系幹細胞(mesenchymal stem(stromal) cell; MSC)が、神経障害の治療に有効であることを見出し、本発明を完成させた。本発明によれば、神経障害の治療のために有効な治療剤を提供できる。すなわち本発明の要旨は、以下の通りである。
 すなわち、本発明は、下記に関するものである:
[1]HGF, SHH, OLIG2, VEGFA, NEUROG1, GRPR, IL1R1, CRHR2, CCKAR, APOE, PAX3, PAX5, EGF, CXCL1, GDNF, NRCAM, DLL1, HEYL, BMP2, NTN1, ASCL1, NRP2のいずれか一つ、または二つ以上が高発現であることを特徴とする、間葉系幹細胞。
[2]他家由来である、[1]に記載の間葉系幹細胞。
[3]臍帯組織もしくは脂肪組織由来である、[1]又は[2]に記載の間葉系幹細胞。
[4]浮遊培養法により調製される[1]から[3]のいずれかに記載の間葉系幹細胞。
[5][1]から[4]のいずれかに記載の間葉系幹細胞を含有する神経障害治療剤。
 本発明によると、神経障害の新規治療剤を提供することができる。
図1は、各種培地による培養で得られた間葉系幹細胞における、各種因子のmRNA発現量を比較した結果を示す図である。 図2は、間葉系幹細胞について、平面培養細胞(ADH)と浮遊培養細胞(SUS)における各種因子のmRNA発現量を比較した結果を示す図である。 各種培養法による培養で得られた間葉系幹細胞の、ラット一過性脳虚血モデルへの投与効果を示す図である(体重)。 各種培養法による培養で得られた間葉系幹細胞の、ラット一過性脳虚血モデルへの投与効果を示す図である(神経症状スコア)。 各種培養法による培養で得られた間葉系幹細胞の、ラット一過性脳虚血モデルへの投与効果を示す図である(ステップ回数)。 各種培養法による培養で得られた間葉系幹細胞の、ラット一過性脳虚血モデルへの投与効果を示す図である(テープ剥がしテスト)。 神経細胞と間葉系幹細胞の細胞間相互作用の様子を示すタイムラプス画像である。 無血清培地(Rohto社)による培養で得られた間葉系幹細胞の、神経細胞死抑制効果を示す図である。 無血清培地(Rohto社)による培養で得られた間葉系幹細胞の、用量依存的な神経細胞賦活効果を示す図である。 無血清培地(Rohto社)を用いて平面(ADH)もしくは浮遊(SUS)培養で得られた間葉系幹細胞の、神経細胞賦活効果を示す図である(線維芽細胞との比較)。 無血清培地(Rohto社)による培養で得られた間葉系幹細胞の、神経細胞賦活効果を示す図である(他の培地で培養された細胞との比較)。 無血清培地(Rohto社)による培養で得られた間葉系幹細胞の、神経細胞死抑制効果を示す細胞写真である(他の培地で培養された細胞との比較)。 無血清培地(Rohto社)による培養で得られた間葉系幹細胞の、神経細胞死抑制効果を示す図である(他の培地で培養された細胞との比較)。
 以下、本発明の間葉系幹細胞、神経障害治療剤について詳細に説明する。
[間葉系幹細胞]
 本発明の間葉系幹細胞は、HGF(hepatocyte growth factor), SHH(sonic hedgehog), OLIG2(oligodendrocyte transcription factor 2), VEGFA(vascular endothelial growth factor A), NEUROG1(neurogenin 1), GRPR(gastrin releasing peptide receptor), IL1R1(interleukin-1 receptor 1), CRHR2(corticotropin releasing hormone receptor 2), CCKAR(cholecystokinin A receptor), APOE(apolipoprotein E), PAX3(paired box 3), PAX5(paired box 5), EGF(epidermal growth factor), CXCL1(C-X-C motif chemokine ligand 1), GDNF(glial cell derived neurotrophic factor), NRCAM(neuronal cell adhesion molecule), DLL1(delta like canonical Notch ligand 1), HEYL(hes related family bHLH transcription factor with YRPW motif-like), BMP2(bone morphogenetic protein 2), NTN1(netrin 1), ASCL1(achaete-scute family bHLH transcription factor 1), NRP2(neuropilin 2)のいずれか一つ、または二つ以上が高発現であることを特徴とする。
 HGFは成長因子の一種であり、神経保護作用を有することが知られている。SHHはヘッジホッグファミリーに属する遺伝子であり、酸化ストレスに対する神経細胞の保護に関与することが知られている。VEGFAは成長因子の一種であり、血管新生を誘導することで神経細胞の保護に関与することが知られている。IL1R1は炎症性サイトカインの一種であるIL1の受容体であり、炎症応答に関与することが知られている。DLL1はNotchリガンドであるDSLファミリーに属し、Notchシグナルの調節に関与することが知られている。
 なお、上記HGF, SHH, OLIG2, VEGFA, NEUROG1, GRPR, IL1R1, CRHR2, CCKAR, APOE, PAX3, PAX5, EGF, CXCL1, GDNF, NRCAM, DLL1, HEYL, BMP2, NTN1, ASCL1, NRP2が高発現であるとは、それぞれのmRNA発現が高発現であること、若しくはそれぞれのタンパク質が高発現であること、又はその両方が高発現であることを含む。
 また、本発明の間葉系幹細胞は、他の細胞に比べ、上記因子を高発現していればよいが、具体的には、本発明の間葉系幹細胞は、従来の培養条件下(例えば、10%FBS含有MEM-α培地による培養)で得られる間葉系幹細胞に比べて、上記因子を高発現していればよい。好ましくは従来の培養条件下で得られる間葉系幹細胞に比べ2倍以上、より好ましくは5倍以上、さらに好ましくは10倍以上、特に好ましくは100倍以上発現している。
 本発明の間葉系幹細胞は、線維芽細胞に比べて、HGF, SHH, OLIG2, VEGFA, NEUROG1, GRPR, IL1R1, CRHR2, CCKAR, APOE, PAX3, PAX5, EGF, CXCL1, GDNF, NRCAM, DLL1, HEYL, BMP2, NTN1, ASCL1, NRP2のいずれか一つ、または二つ以上を高発現していればよい。好ましくは皮膚線維芽細胞に対して2倍以上、より好ましくは5倍以上、さらに好ましくは10倍以上、特に好ましくは100倍以上発現している。
 本発明において間葉系幹細胞とは、間葉系に属する一種以上の細胞(骨細胞、心筋細胞、軟骨細胞、腱細胞、脂肪細胞など)への分化能を有し、当該能力を維持したまま増殖できる細胞を意味する。本発明において用いる間葉系幹細胞なる用語は、間質細胞と同じ細胞を意味し、両者を特に区別するものではない。また、単に間葉系細胞と表記される場合もある。間葉系幹細胞を含む組織としては、例えば、脂肪組織、臍帯、骨髄、臍帯血、子宮内膜、胎盤、羊膜、絨毛膜、脱落膜、真皮、骨格筋、骨膜、歯小嚢、歯根膜、歯髄、歯胚等が挙げられる。例えば脂肪組織由来間葉系幹細胞とは、脂肪組織に含有される間葉系幹細胞を意味し、脂肪組織由来間質細胞と称してもよい。これらのうち、神経障害疾患の治療に対する有効性の観点、入手容易性の観点等から、脂肪組織由来間葉系幹細胞、臍帯由来間葉系幹細胞、骨髄由来間葉系幹細胞、胎盤由来間葉系幹細胞、歯髄由来間葉系幹細胞が好ましく、脂肪組織由来間葉系幹細胞、臍帯由来間葉系幹細胞がより好ましく、臍帯由来間葉系幹細胞が最も好ましい。
 本発明における間葉系幹細胞は、処置される対象(被検体)と同種由来であってもよいし、異種由来であってもよい。本発明における間葉系幹細胞の種として、ヒト、ウマ、ウシ、ヒツジ、ブタ、イヌ、ネコ、ラビット、マウス、ラットが挙げられ、好ましくは処置される対象(被検体)と同種由来細胞である。本発明における間葉系幹細胞は、処置される対象(被検体)に由来、すなわち自家細胞であってもよいし、同種の別の対象に由来、すなわち他家細胞であってもよい。好ましくは他家細胞である。
 間葉系幹細胞は同種異系の被験体に対しても拒絶反応を起こしにくいため、あらかじめ調製されたドナーの細胞を拡大培養して凍結保存したものを、本発明の疾患治療剤における間葉系幹細胞として使用することができる。そのため、自己の間葉系幹細胞を調製して用いる場合と比較して、商品化も容易であり、かつ安定して一定の効果を得られ易いという観点から、本発明における間葉系幹細胞は、同種異系であることがより好ましい。
 本発明において間葉系幹細胞とは、間葉系幹細胞を含む任意の細胞集団を意味する。当該細胞集団は、少なくとも20%以上、好ましくは、30%、40%、50%、60%、70%、75%、80%、85%、90%、93%、96%、97%、98%又は99%以上が間葉系幹細胞である。
 本発明において臍帯とは、胎児と胎盤を結ぶ白い管状の組織であり、臍帯静脈、臍帯動脈、膠様組織(ウォートンジェリー;Wharton's Jelly)、臍帯基質自体等から構成され、間葉系幹細胞を多く含む。臍帯は、本発明の疾患治療剤を使用する被験体(投与対象)と同種動物から入手されることが好ましく、本発明の疾患治療剤をヒトへ投与することを考慮すると、より好ましくは、ヒトの臍帯である。
 本発明において脂肪組織とは、脂肪細胞、及び微小血管細胞等を含む間質細胞を含有する組織を意味し、例えば、哺乳動物の皮下脂肪を外科的切除又は吸引して得られる組織である。脂肪組織は、皮下脂肪より入手され得る。後述する脂肪組織由来間葉系幹細胞の投与対象と同種動物から入手されることが好ましく、ヒトへ投与することを考慮すると、より好ましくは、ヒトの皮下脂肪である。皮下脂肪の供給個体は、生存していても死亡していてもよいが、本発明において用いる脂肪組織は、好ましくは、生存個体から採取された組織である。個体から採取する場合、脂肪吸引は、例えば、PAL(パワーアシスト)脂肪吸引、エルコーニアレーザー脂肪吸引、又は、ボディジェット脂肪吸引などが例示され、細胞の状態を維持するという観点から、超音波を用いないことが好ましい。
 本発明において骨髄とは、骨の内腔を満たしている柔組織のことをいい、造血器官である。骨髄中には骨髄液が存在し、その中に存在する細胞を骨髄細胞と呼ぶ。骨髄細胞には、赤血球、顆粒球、巨核球、リンパ球、脂肪細胞等の他、間葉系幹細胞、造血幹細胞、血管内皮前駆細胞等が含まれている。骨髄細胞は、例えば、ヒト腸骨、長管骨、又はその他の骨から採取することができる。
 本発明において、脂肪組織由来間葉系幹細胞、臍帯由来間葉系幹細胞、骨髄由来間葉系幹細胞といった各組織由来間葉系幹細胞とは、それぞれ脂肪組織由来間葉系幹細胞、臍帯由来間葉系幹細胞、骨髄由来間葉系幹細胞といった各組織由来間葉系幹細胞を含む任意の細胞集団を意味する。当該細胞集団は、少なくとも20%以上、好ましくは、30%、40%、50%、60%、70%、75%、80%、85%、90%、93%、96%、97%、98%又は99%以上が、脂肪組織由来間葉系幹細胞、臍帯由来間葉系幹細胞、骨髄由来間葉系幹細胞である各組織由来間葉系幹細胞である。
 本発明における間葉系幹細胞は、HGF, SHH, OLIG2, VEGFA, NEUROG1, GRPR, IL1R1, CRHR2, CCKAR, APOE, PAX3, PAX5, EGF, CXCL1, GDNF, NRCAM, DLL1, HEYL, BMP2, NTN1, ASCL1, NRP2のいずれか一つ、または二つ以上を高発現することに加えて、例えば、成長特徴(例えば、継代から老化までの集団倍加能力、倍加時間)、核型分析(例えば、正常な核型、母体系統又は新生児系統)、フローサイトメトリー(例えば、FACS分析)による表面マーカー発現、免疫組織化学及び/又は免疫細胞化学(例えば、エピトープ検出)、遺伝子発現プロファイリング(例えば、遺伝子チップアレイ;逆転写PCR、リアルタイムPCR、従来型PCR等のポリメラーゼ連鎖反応)、miRNA発現プロファイリング、タンパク質アレイ、サイトカイン等のタンパク質分泌(例えば、血漿凝固解析、ELISA、サイトカインアレイ)、代謝産物(メタボローム解析)、本分野で知られている他の方法等によって、特徴付けられてもよい。
(間葉系幹細胞の調製方法)
 HGF, SHH, OLIG2, VEGFA, NEUROG1, GRPR, IL1R1, CRHR2, CCKAR, APOE, PAX3, PAX5, EGF, CXCL1, GDNF, NRCAM, DLL1, HEYL, BMP2, NTN1, ASCL1, NRP2のいずれか一つ、または二つ以上が高発現の間葉系幹細胞の調製方法は特に限定されないが、例えば以下のようにして調製することができる。すなわち、脂肪、臍帯、骨髄等の組織から、当業者に公知の方法に従って、間葉系幹細胞を分離、培養し、HGF, SHH, OLIG2, VEGFA, NEUROG1, GRPR, IL1R1, CRHR2, CCKAR, APOE, PAX3, PAX5, EGF, CXCL1, GDNF, NRCAM, DLL1, HEYL, BMP2, NTN1, ASCL1もしくはNRP2に特異的に結合する抗体を用いて、HGF, SHH, OLIG2, VEGFA, NEUROG1, GRPR, IL1R1, CRHR2, CCKAR, APOE, PAX3, PAX5, EGF, CXCL1, GDNF, NRCAM, DLL1, HEYL, BMP2, NTN1, ASCL1もしくはNRP2高発現細胞をセルソーター、磁気ビーズ等で分離することにより取得することができる。また、特定の培地を用いた培養により、間葉系幹細胞におけるHGF, SHH, OLIG2, VEGFA, NEUROG1, GRPR, IL1R1, CRHR2, CCKAR, APOE, PAX3, PAX5, EGF, CXCL1, GDNF, NRCAM, DLL1, HEYL, BMP2, NTN1, ASCL1もしくはNRP2の発現を誘導することで、HGF, SHH, OLIG2, VEGFA, NEUROG1, GRPR, IL1R1, CRHR2, CCKAR, APOE, PAX3, PAX5, EGF, CXCL1, GDNF, NRCAM, DLL1, HEYL, BMP2, NTN1, ASCL1もしくはNRP2高発現の間葉系幹細胞を取得することもできる。この誘導によって得られる細胞集団において、細胞集団の50%以上がHGF, SHH, OLIG2, VEGFA, NEUROG1, GRPR, IL1R1, CRHR2, CCKAR, APOE, PAX3, PAX5, EGF, CXCL1, GDNF, NRCAM, DLL1, HEYL, BMP2, NTN1, ASCL1もしくはNRP2が高発現であることが好ましく、70%以上がHGF, SHH, OLIG2, VEGFA, NEUROG1, GRPR, IL1R1, CRHR2, CCKAR, APOE, PAX3, PAX5, EGF, CXCL1, GDNF, NRCAM, DLL1, HEYL, BMP2, NTN1, ASCL1もしくはNRP2が高発現であることがより好ましく、80%以上がHGF, SHH, OLIG2, VEGFA, NEUROG1, GRPR, IL1R1, CRHR2, CCKAR, APOE, PAX3, PAX5, EGF, CXCL1, GDNF, NRCAM, DLL1, HEYL, BMP2, NTN1, ASCL1もしくはNRP2を高発現であることがさらに好ましく、90%以上がHGF, SHH, OLIG2, VEGFA, NEUROG1, GRPR, IL1R1, CRHR2, CCKAR, APOE, PAX3, PAX5, EGF, CXCL1, GDNF, NRCAM, DLL1, HEYL, BMP2, NTN1, ASCL1もしくはNRP2を高発現であることが特に好ましく、実質的にHGF, SHH, OLIG2, VEGFA, NEUROG1, GRPR, IL1R1, CRHR2, CCKAR, APOE, PAX3, PAX5, EGF, CXCL1, GDNF, NRCAM, DLL1, HEYL, BMP2, NTN1, ASCL1もしくはNRP2の高発現の均一な細胞集団であることが最も好ましい。以下に、HGF, SHH, OLIG2, VEGFA, NEUROG1, GRPR, IL1R1, CRHR2, CCKAR, APOE, PAX3, PAX5, EGF, CXCL1, GDNF, NRCAM, DLL1, HEYL, BMP2, NTN1, ASCL1もしくはNRP2高発現の間葉系幹細胞の調製方法を具体的に説明する。
 間葉系幹細胞は、当業者に周知の方法により調製することができる。以下に、例として、臍帯組織由来間葉系幹細胞及び脂肪組織由来間葉系幹細胞の調製方法を説明する。
 臍帯は、経膣分娩および帝王切開にて娩出された胎盤および臍帯を含む産褥組織から適宜胎盤を取り除き回収することができる。回収した臍帯から臍帯血を除去した後、無菌または制菌処理を行っても良い。臍帯血の除去は、ヘパリン含有溶液などの抗凝固溶液ですすぐことによって行われる。無菌または制菌処理は、特に限定されるものではないが、ポピドンヨードの塗布、またはペニシリン、ストレプトマイシン、アムホテリシンB、ゲンタマイシン、およびナイスタチンなどの1種類以上の抗生剤および/または抗真菌剤を添加した培地またはバッファー中に浸漬してもよい。また、必要に応じて、赤血球を選択的に溶解する工程を含んでも良い。赤血球を選択的に溶解する方法として、例えば、塩化アンモニウムによる溶解による高張培地または低張培地中でのインキュベーションなど、当技術分野で周知の方法を使用することができる。
 本発明の臍帯由来細胞とは、臍帯を原材料として、調製された細胞集団を意味し、公知の製造方法によって得られれば良く、例えば、以下の工程(i)~(iii)を含む方法で製造することができる:
(i)臍帯を切断する工程;
(ii)(i)の工程で得られた臍帯を培養する工程;ならびに
(iii)継代する工程。
 また、他の当該細胞の調製方法として、(i)臍帯を切断する工程の代わりに、(i')臍帯を酵素処理することにより組織を解離させる工程を含んでもよい。さらに、(i)臍帯を切断する工程に加えて、(i')臍帯を酵素処理することにより組織を解離させる工程を含んでもよい。
 本発明の(i)臍帯を切断する工程では、上述の方法で入手した臍帯を、羊膜、血管、血管周囲組織およびワルトンジェリーを含む状態にて機械力(細断力または剪断力)によって切断することによって行い得る。特に限定されないが、切断により得られた臍帯切片は、1から10mm、1から5mm、1から4mm、1から3mmまたは1から2mmの大きさが例示される。本発明の(i')臍帯を酵素処理することにより組織を解離させる工程では、上述の方法で入手した臍帯を、羊膜、血管、血管周囲組織およびワルトンジェリーを含む状態にて酵素処理にて、組織を解離させる工程にて行い得る。特に限定されないが、酵素処理には、コラゲナーゼ、ディスパーゼ及びヒアルロニダーゼなどの1種又は2種以上の酵素を用いた酵素処理が例示される。
 本発明の(ii)(i)の工程で得られた臍帯を培養する工程は、固体表面上で、適切な細胞培地を使用して、(i)の工程で得られた臍帯を適切な細胞密度及び培養条件で培養する。
 本工程で用いる培地は、間葉系幹細胞を培養できる培地であれば、特に限定されないが、このような培地は、基礎培地に、血清を添加する、及び/又は、アルブミン、トランスフェリン、脂肪酸、インスリン、亜セレン酸ナトリウム、コレステロール、コラーゲン前駆体、微量元素、2-メルカプトエタノール、3’-チオールグリセロール等の1つ以上の血清代替物を添加して作製してもよい。これらの培地には、必要に応じて、さらに脂質、アミノ酸、タンパク質、多糖、ビタミン、増殖因子、低分子化合物、抗生物質、抗酸化剤、ピルビン酸、緩衝剤、無機塩類等の物質を添加してもよい。
 上記基礎培地としては、例えば、IMDM培地、Medium 199培地、Eagle's Minimum Essential Medium(EMEM)培地、MEM-α培地、Dulbecco's modified Eagle's Medium(DMEM)培地、Ham's F12培地、RPMI 1640培地、Fischer's培地、MCDB201培地及びこれらの混合培地等が挙げられる。
 上記血清としては、例えば、ヒト血清、ウシ胎児血清(FBS)、ウシ血清、仔ウシ血清、ヤギ血清、ウマ血清、ブタ血清、ヒツジ血清、ウサギ血清、ラット血清等が挙げられるがこれらに限定されない。血清を用いる場合、基礎培地に対して、5v/v%から15v/v%、好ましくは、10v/v%を添加してもよい。
 上記脂肪酸としては、リノール酸、オレイン酸、リノレイン酸、アラキドン酸、ミリスチン酸、パルミトイル酸、パルミチン酸、及びステアリン酸等が例示されるが、これらに限定されない。脂質は、フォスファチジルセリン、フォスファチジルエタノールアミン、フォスファチジルコリン等が例示されるが、これらに限定されない。アミノ酸は、例えば、L-アラニン、L-アルギニン、L-アスパラギン酸、L-アスパラギン、L-システイン、L-シスチン、L-グルタミン酸、L-グルタミン、L-グリシンなどを含むが、これらに限定されない。タンパク質は、例えば、エコチン、還元型グルタチオン、フィブロネクチン及びβ2-ミクログロブリン等が例示されるが、これらに限定されない。多糖は、グリコサミノグリカンが例示され、グリコサミノグリカンのうち特に、ヒアルロン酸、ヘパラン硫酸等が例示されるが、これらに限定されない。増殖因子は、例えば、血小板由来増殖因子(PDGF)、塩基性線維芽細胞成長因子(bFGF)、トランスフォーミング増殖因子ベータ(TGF-β)、肝細胞増殖因子(HGF)、上皮成長因子(EGF)、結合組織増殖因子(CTGF)、血管内皮細胞増殖因子(VEGF)等が例示されるが、これらに限定されない。本発明において得られる臍帯由来間葉系幹細胞を細胞移植に用いるという観点から、血清等の異種由来成分を含まない(ゼノフリー)培地を用いることが好ましい。このような培地は、例えば、PromoCell社、Lonza社、Biological Industries社、Veritas社、R&D Systems社、Corning社及びRohto社などから間葉系幹細胞(間質細胞)用として予め調製された培地として提供されている。
 本発明において、「固体表面」とは、本発明における脂肪組織由来間葉系幹細胞の結合・接着を可能とする任意の材料を意味する。特定の態様では、このような材料は、その表面への哺乳類細胞の結合・接着を促すように処理されたプラスチック材料である。固体表面を有する培養容器の形状は特に限定されないが、シャーレやフラスコなどが好適に用いられる。非結合状態の細胞及び細胞の破片を除去するために、インキュベーション後に細胞を洗浄する。
 本発明では、最終的に固体表面に結合・接着した状態で留まる細胞を、臍帯組織由来間葉系幹細胞の細胞集団として選択することができる。
 本発明の臍帯組織由来間葉系幹細胞は、浮遊培養製造法を用いても、製造することができる。浮遊培養製造法として、細胞を凝集させてスフェア上の細胞塊として撹拌培養する方法、マイクロキャリア上に細胞を接着させてマイクロキャリアを撹拌することにより培養する方法などがある。なお、撹拌は容器内の撹拌翼をスターラーで回転させる方法、培養液と細胞の入ったバッグを振盪機に乗せてバッグごと揺らすことで培養液を懸濁する方法などがある。また、浮遊培養製造法で用いる培地は、間葉系幹細胞を培養できる培地であれば、特に限定されず、上記のような培地が例示される。マイクロキャリアとしては、浮遊培養で用いることができるものであれば、特に限定されないが、ポリエステル、ポリスチレン、ガラス、デキストラン等が例示される。
 脂肪組織由来間葉系幹細胞は、例えば米国特許第6,777,231号に記載の製造方法によって得られれば良く、例えば、以下の工程(i)~(iii)を含む方法で製造することができる:
(i) 脂肪組織を酵素による消化により細胞懸濁物を得る工程;
(ii) 細胞を沈降させ、細胞を適切な培地に再懸濁する工程;ならびに
(iii) 細胞を固体表面で培養し、固体表面への結合を示さない細胞を除去する工程。
 工程(i)において用いる脂肪組織は、洗浄されたものを用いることが好ましい。洗浄は、生理学的に適合する生理食塩水溶液(例えばリン酸緩衝食塩水(PBS))を用いて、激しく攪拌して沈降させることによって行い得る。これは、脂肪組織に含まれる夾雑物(デブリとも言い、例えば損傷組織、血液、赤血球など)を組織から除去するためである。したがって、洗浄及び沈降は一般に、上清からデブリが総体的に除去されるまで繰り返される。残存する細胞は、さまざまなサイズの塊として存在するので、細胞そのものの損傷を最小限に抑えながら解離させるため、洗浄後の細胞塊を、細胞間結合を弱めるか、又は破壊する酵素(例えば、コラゲナーゼ、ディスパーゼ又はトリプシンなど)で処理することが好ましい。このような酵素の量及び処理期間は、使用される条件に依存して変わるが、当技術分野で既知である。このような酵素処理に代えて、又は併用して、細胞塊を、機械的な攪拌、超音波エネルギー、熱エネルギーなどの他の処理法で分解することができるが、細胞の損傷を最小限に抑えるため、酵素処理のみで行うことが好ましい。酵素を用いた場合、細胞に対する有害な作用を最小限に抑えるために、適切な期間をおいた後に培地等を用いて酵素を失活させることが望ましい。
 工程(i)により得られる細胞懸濁物は、凝集状の細胞のスラリー又は懸濁物、ならびに各種夾雑細胞、例えば赤血球、平滑筋細胞、内皮細胞、及び線維芽細胞を含む。従って、続いて凝集状態の細胞とこれらの夾雑細胞を分離、除去してもよいが、後述する工程(iii)での接着及び洗浄により、除去可能であることから、当該分離、除去は割愛してもよい。夾雑細胞を分離、除去する場合、細胞を上清と沈殿に強制的に分ける遠心分離によって達成しえる。得られた夾雑細胞を含む沈殿は、生理学的に適合する溶媒に懸濁させる。懸濁状の細胞には、赤血球を含む恐れがあるが、後述する個体表面への接着による選択により、赤血球は除外されるため、溶解する工程は必ずしも必要ではない。赤血球を選択的に溶解する方法として、例えば、塩化アンモニウムによる溶解による高張培地又は低張培地中でのインキュベーションなど、当技術分野で周知の方法を使用することができる。溶解後、例えば濾過、遠心沈降、又は密度分画によって溶解物を所望の細胞から分離してもよい。
 工程(ii)において、懸濁状の細胞において、間葉系幹細胞の純度を高めるために、1回もしくは連続して複数回洗浄し、遠心分離し、培地に再懸濁してもよい。この他にも、細胞を、細胞表面マーカープロファイルを基に、又は細胞のサイズ及び顆粒性を基に分離してもよい。
 再懸濁において用いる培地は、間葉系幹細胞を培養できる培地であれば、特に限定されないが、このような培地は、基礎培地に、血清を添加する、及び/又は、アルブミン、トランスフェリン、脂肪酸、インスリン、亜セレン酸ナトリウム、コレステロール、コラーゲン前駆体、微量元素、2-メルカプトエタノール、3’-チオールグリセロール等の1つ以上の血清代替物を添加して作製してもよい。これらの培地には、必要に応じて、さらに脂質、アミノ酸、タンパク質、多糖、ビタミン、増殖因子、低分子化合物、抗生物質、抗酸化剤、ピルビン酸、緩衝剤、無機塩類等の物質を添加してもよい。
 上記基礎培地としては、例えば、IMDM培地、Medium 199培地、Eagle's Minimum Essential Medium(EMEM)培地、MEM-α培地、Dulbecco's modified Eagle’s Medium(DMEM)培地、Ham's F12培地、RPMI 1640培地、Fischer's培地、MCDB201培地及びこれらの混合培地等が挙げられる。
 上記血清としては、例えば、ヒト血清、ウシ胎児血清(FBS)、ウシ血清、仔ウシ血清、ヤギ血清、ウマ血清、ブタ血清、ヒツジ血清、ウサギ血清、ラット血清等が挙げられるがこれらに限定されない。血清を用いる場合、基礎培地に対して、5v/v%から15v/v%、好ましくは、10v/v%を添加してもよい。
 上記脂肪酸としては、リノール酸、オレイン酸、リノレイン酸、アラキドン酸、ミリスチン酸、パルミトイル酸、パルミチン酸、及びステアリン酸等が例示されるが、これらに限定されない。脂質は、フォスファチジルセリン、フォスファチジルエタノールアミン、フォスファチジルコリン等が例示されるが、これらに限定されない。アミノ酸は、例えば、L-アラニン、L-アルギニン、L-アスパラギン酸、L-アスパラギン、L-システイン、L-シスチン、L-グルタミン酸、L-グルタミン、L-グリシンなどを含むがこれらに限定されない。タンパク質は、例えば、エコチン、還元型グルタチオン、フィブロネクチン及びβ2-ミクログロブリン等が例示されるが、これらに限定されない。多糖は、グリコサミノグリカンが例示され、グリコサミノグリカンのうち特に、ヒアルロン酸、ヘパラン硫酸等が例示されるが、これらに限定されない。増殖因子は、例えば、血小板由来増殖因子(PDGF)、塩基性線維芽細胞成長因子(bFGF)、トランスフォーミング増殖因子ベータ(TGF-β)、肝細胞増殖因子(HGF)、上皮成長因子(EGF)、結合組織増殖因子(CTGF)、血管内皮細胞増殖因子(VEGF)等が例示されるが、これらに限定されない。本発明において得られる脂肪由来間葉系幹細胞を細胞移植に用いるという観点から、血清等の異種由来成分を含まない(ゼノフリー)培地を用いることが好ましい。このような培地は、例えば、PromoCell社、Lonza社、Biological Industries社、Veritas社、R&D Systems社、Corning社及びRohto社などから間葉系幹細胞(間質細胞)用として予め調製された培地として提供されている。
 続いて、工程(iii)では、工程(ii)で得られた細胞懸濁液中の細胞を分化させずに固体表面上で、上述の適切な細胞培地を使用して、適切な細胞密度及び培養条件で培養する。本発明において、「固体表面」とは、本発明における脂肪組織由来間葉系幹細胞の結合・接着を可能とする任意の材料を意味する。特定の態様では、このような材料は、その表面への哺乳類細胞の結合・接着を促すように処理されたプラスチック材料である。固体表面を有する培養容器の形状は特に限定されないが、シャーレやフラスコなどが好適に用いられる。非結合状態の細胞及び細胞の破片を除去するために、インキュベーション後に細胞を洗浄する。
 本発明では、最終的に固体表面に結合・接着した状態で留まる細胞を、脂肪組織由来間葉系幹細胞の細胞集団として選択することができる。
 選択された細胞について、本発明における間葉系幹細胞であることを確認するために、表面抗原についてフローサイトメトリー等を用いて従来の方法で解析してもよい。さらに、各細胞系列に分化する能力について検査してもよく、このような分化は、従来の方法で行うことができる。
 本発明における間葉系幹細胞は、上述の通り調製することができるが、次の特性を持つ細胞として定義してもよい;
(1)標準培地での培養条件で、プラスチックに接着性を示す、
(2)表面抗原CD73、CD90が陽性であり、CD45が陰性であり、及び
(3)培養条件にて骨細胞、脂肪細胞、軟骨細胞に分化可能。
 上記工程によって得られた間葉系幹細胞から、HGF, SHH, OLIG2, VEGFA, NEUROG1, GRPR, IL1R1, CRHR2, CCKAR, APOE, PAX3, PAX5, EGF, CXCL1, GDNF, NRCAM, DLL1, HEYL, BMP2, NTN1, ASCL1もしくはNRP2タンパクを高発現している細胞を、セルソータ―、磁気ビーズ等を用いた免疫学的手法により選択的に分離することで、HGF, SHH, OLIG2, VEGFA, NEUROG1, GRPR, IL1R1, CRHR2, CCKAR, APOE, PAX3, PAX5, EGF, CXCL1, GDNF, NRCAM, DLL1, HEYL, BMP2, NTN1, ASCL1もしくはNRP2タンパクを高発現している間葉系幹細胞を取得することができる。またHGF, SHH, OLIG2, VEGFA, NEUROG1, GRPR, IL1R1, CRHR2, CCKAR, APOE, PAX3, PAX5, EGF, CXCL1, GDNF, NRCAM, DLL1, HEYL, BMP2, NTN1, ASCL1もしくはNRP2の発現を誘導できる特定の培地による培養を行うことにより、間葉系幹細胞におけるHGF, SHH, OLIG2, VEGFA, NEUROG1, GRPR, IL1R1, CRHR2, CCKAR, APOE, PAX3, PAX5, EGF, CXCL1, GDNF, NRCAM, DLL1, HEYL, BMP2, NTN1, ASCL1もしくはNRP2発現を誘導し、効率的にHGF, SHH, OLIG2, VEGFA, NEUROG1, GRPR, IL1R1, CRHR2, CCKAR, APOE, PAX3, PAX5, EGF, CXCL1, GDNF, NRCAM, DLL1, HEYL, BMP2, NTN1, ASCL1もしくはNRP2高発現の間葉系幹細胞を取得することもできる。一例として、セルソータ―を用いた免疫学的手法による選択的分離の具体的方法を以下に説明する。
 上記調製した間葉系幹細胞をトリプシン・EDTA溶液等により処理して得られた細胞懸濁液を遠心(室温、400G、5分)して上清を除去する。細胞にStaining Buffer(1%BSA-PBS)を加え、1×10cells/500μLとなるように調製し、ピペッティングにより細胞懸濁液濃度を均一にした後、新しい1.5mLマイクロチューブに50μLずつ分注する。分注した細胞懸濁液に1次抗体(Mouse anti human TFPI、Sekisui diagnostics社製、ADG4903)を5~20μg/mLの濃度で添加し懸濁した後に、遮光・冷蔵下で30分間~1時間反応させる。Staining Buffer 1mLで3回洗浄を行った後に、Staining Bufferを加え50μLとし、2次抗体(Anti Mouse IgG alexar488、Thermofisher scientific社製、A21202)を1~10μg/mLの濃度で添加し懸濁した後に、遮光・冷蔵下で30分間~1時間反応させる。Staining Buffer 1mLで3回洗浄を行った後に、PI Buffer(Staining buffer 14.4mLにPropidium iodide solution(SIGMA社製、P4864)28.8μLを添加して調製)300μLを加えてよく懸濁し、セルストレーナ付チューブに通し、fluorescence activated cell sorting(FACS)で分離を行うことができる。
(間葉系幹細胞の凍結保存)
 本発明における間葉系幹細胞は、疾患治療効果を備えていれば、適宜、凍結保存及び融解を繰り返した細胞であってもよい。本発明において、凍結保存は、当業者に周知の凍結保存液へ間葉系幹細胞を懸濁し、冷却することによって行い得る。懸濁は、必要に応じて細胞をトリプシンなどの剥離剤によって剥離し、凍結保存容器に移し、適宜、処理した後、凍結保存液を加えることによって行い得る。
 凍結保存液は、凍害防御剤として、DMSO(Dimethyl sulfoxide)を含有していてもよいが、DMSOは、細胞毒性に加えて、間葉系幹細胞を分化誘導する特性を有することから、DMSO含有量を減らすことが好ましい。DMSOの代替物として、グリセロール、プロピレングリコール又は多糖類が例示される。DMSOを用いる場合、5%~20%の濃度、好ましくは5%~10%の濃度、より好ましくは10%の濃度を含有する。この他にも、WO2007/058308に記載の添加剤を含んでもよい。このような凍結保存液として、例えば、バイオベルデ社、日本ジェネティクス株式会社、リプロセル社、ゼノアック社、コスモ・バイオ社、コージンバイオ株式会社、サーモフィッシャーサイエンティフィック社などから提供されている凍結保存液を用いてもよい。
 上述の懸濁した細胞を凍結保存する場合、-80℃~-100℃の間の温度(例えば、-80℃)で凍結することで良く、当該温度に達成しえる任意のフリーザーを用いて行い得る。特に限定されないが、急激な温度変化を回避するため、プログラムフリーザーを用いて、冷却速度を適宜制御してもよい。冷却速度は、凍結保存液の成分によって適宜選択しても良く、凍結保存液の製造者指示に従って行われ得る。
 保存期間は、上記条件で凍結保存した細胞が融解した後、凍結前と同等の性質を保持している限り、特に上限は限定されないが、例えば、1週間以上、2週間以上、3週間以上、4週間以上、2か月以上、3か月以上、4か月以上、5か月以上、6か月以上、1年以上、又はそれ以上が挙げられる。より低い温度で保存することで細胞障害を抑制することができるため、液体窒素上の気相(約-150℃以下から-180℃以上)へ移して保存してもよい。液体窒素上の気相で保存する場合、当業者に周知の保存容器を用いて行うことができる。特に限定されないが、例えば、2週間以上保存する場合、液体窒素上の気相で保存することが好ましい。
 融解した間葉系幹細胞は、次の凍結保存までに適宜、培養してもよい。間葉系幹細胞の培養は、上述した間葉系幹細胞を培養できる培地を用いて行われ、特に限定されないが、約30~40℃、好ましくは約37℃の培養温度で、CO含有空気の雰囲気下で行われてもよい。CO濃度は、約2~10%、好ましくは約5~10%である。培養において、培養容器に対して適切なコンフルエンシー(例えば、培養容器に対して、50%から80%を細胞が占有することが挙げられる)に達した後に、細胞をトリプシンなどの剥離剤によって剥離し、別途用意した培養容器に適切な細胞密度で播種して培養を継続してもよい。細胞を播種する際において、典型的な細胞密度として、100細胞/cm~100,000細胞/cm、500細胞/cm~50,000細胞/cm、1,000~10,000細胞/cm、2,000~10,000細胞/cmなどが例示される。特定の態様では、細胞密度は2,000~10,000細胞/cmである。適切なコンフルエンシーに達するまでの期間が、3日間から7日間となるように調整することが好ましい。培養中、必要に応じて、適宜、培地を交換してもよい。
 凍結保存した細胞の融解は、当業者に周知の方法によって行い得る。例えば、37℃の恒温槽内又は湯浴中にて静置又は振とうすることによって行う方法が例示される。
 本発明の間葉系幹細胞は、いずれの状態の細胞であってもよいが、例えば培養中の細胞を剥離して回収された細胞でもよいし、凍結保存液中に凍結された状態の細胞でもよい。拡大培養して得られる同ロットの細胞を小分けして凍結保存したものを使用すると、安定して同様の作用効果が得られる点、取扱い性に優れる点等において好ましい。凍結保存状態の間葉系幹細胞は、使用直前に融解し、凍結保存液に懸濁したまま輸液もしくは培地等の溶液に直接混合してもよい。また、遠心分離等の方法により凍結保存液を除去してから輸液もしくは培地等の溶液に懸濁してもよい。ここで、本発明における「輸液」とは、ヒトの治療の際に用いられる溶液のことをいい、特に限定されないが、例えば、生理食塩水、日局生理食塩液、5%ブドウ糖液、日局ブドウ糖注射液、リンゲル液、日局リンゲル液、乳酸リンゲル液、酢酸リンゲル液、1号液(開始液)、2号液(脱水補給液)、3号液(維持液)、4号液(術後回復液)等が挙げられる。
[神経障害治療剤]
 本発明の神経障害治療剤は、上述した本発明の、HGF, SHH, OLIG2, VEGFA, NEUROG1, GRPR, IL1R1, CRHR2, CCKAR, APOE, PAX3, PAX5, EGF, CXCL1, GDNF, NRCAM, DLL1, HEYL, BMP2, NTN1, ASCL1, NRP2のいずれか一つ、または二つ以上を高発現する間葉系幹細胞を含有する。本発明の神経障害治療剤によると、神経障害を効果的に保護することができる。本発明の神経障害治療剤を含む間葉系幹細胞については、上記間葉系幹細胞の項の説明を適用できる。
 本発明の神経障害治療剤は、本発明の効果を損なわない範囲であれば、上記間葉系幹細胞以外に、その用途や形態に応じて、常法に従い、薬学的に許容される担体や添加物を含有させてもよい。このような担体や添加物としては、例えば、等張化剤、増粘剤、糖類、糖アルコール類、防腐剤(保存剤)、殺菌剤又は抗菌剤、pH調節剤、安定化剤、キレート剤、油性基剤、ゲル基剤、界面活性剤、懸濁化剤、結合剤、賦形剤、滑沢剤、崩壊剤、発泡剤、流動化剤、分散剤、乳化剤、緩衝剤、溶解補助剤、抗酸化剤、甘味剤、酸味剤、着色剤、呈味剤、香料又は清涼化剤等が挙げられるが、これらに限定されない。代表的な成分として例えば次の担体、添加物等が挙げられる。
 担体としては、例えば、水、含水エタノール等の水性担体が;等張化剤(無機塩)としては、例えば、塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化マグネシウム等が;多価アルコールとしては、例えば、グリセリン、プロピレングリコール、ポリエチレングリコール等が;増粘剤としては、例えば、カルボキシビニルポリマー、ヒドロキシエチルセルロース、ヒドロキシプロピルメチルセルロース、メチルセルロース、アルギン酸、ポリビニルアルコール(完全、又は部分ケン化物)、ポリビニルピロリドン、マクロゴール等が;糖類としては、例えば、シクロデキストリン、ブドウ糖等が;糖アルコール類としては、例えば、キシリトール、ソルビトール、マンニトール等(これらはd体、l体又はdl体のいずれでもよい)が;防腐剤、殺菌剤又は抗菌剤としては、例えば、ジブチルヒドロキシトルエン、ブチルヒドロキシアニソール、塩酸アルキルジアミノエチルグリシン、安息香酸ナトリウム、エタノール、塩化ベンザルコニウム、塩化ベンゼトニウム、グルコン酸クロルヘキシジン、クロロブタノール、ソルビン酸、ソルビン酸カリウム、トロメタモール、デヒドロ酢酸ナトリウム、パラオキシ安息香酸メチル、パラオキシ安息香酸エチル、パラオキシ安息香酸プロピル、パラオキシ安息香酸ブチル、硫酸オキシキノリン、フェネチルアルコール、ベンジルアルコール、ビグアニド化合物(具体的には、塩酸ポリヘキサニド(ポリヘキサメチレンビグアニド)等)、グローキル(ローディア社製商品名)等が;pH調節剤としては、例えば、塩酸、ホウ酸、アミノエチルスルホン酸、イプシロン-アミノカプロン酸、クエン酸、酢酸、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム、炭酸水素ナトリウム、炭酸ナトリウム、ホウ砂、トリエタノールアミン、モノエタノールアミン、ジイソプロパノールアミン、硫酸、硫酸マグネシウム、リン酸、ポリリン酸、プロピオン酸、シュウ酸、グルコン酸、フマル酸、乳酸、酒石酸、リンゴ酸、コハク酸、グルコノラクトン、酢酸アンモニウム等が;安定化剤としては、例えば、ジブチルヒドロキシトルエン、トロメタモール、ナトリウムホルムアルデヒドスルホキシレート(ロンガリット)、トコフェロール、ピロ亜硫酸ナトリウム、モノエタノールアミン、モノステアリン酸アルミニウム、モノステアリン酸グリセリン、亜硫酸水素ナトリウム、亜硫酸ナトリウム等が;油性基剤としては、例えば、オリーブ油、トウモロコシ油、大豆油、ゴマ油、綿実油等の植物油、中鎖脂肪酸トリグリセリド等が;水性基剤としては、例えば、マクロゴール400等が;ゲル基剤としては、例えば、カルボキシビニルポリマー、ガム質等が;界面活性剤としては、例えば、ポリソルベート80、硬化ヒマシ油、グリセリン脂肪酸エステル、セスキオレイン酸ソルビタン等が;懸濁化剤としては、例えば、サラシミツロウや各種界面活性剤、アラビアゴム、アラビアゴム末、キサンタンガム、大豆レシチン等が;結合剤としては、例えば、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロースナトリウム、ポリビニルピロリドン、ポリビニルアルコール等が;賦形剤としては、例えば、ショ糖、乳糖、デンプン、コーンスターチ、結晶セルロース、軽質無水ケイ酸等が;滑沢剤としては、例えば、ショ糖脂肪酸エステル、ステアリン酸マグネシウム、タルク等が;崩壊剤としては、例えば、低置換度ヒドロキシプロピルセルロース、クロスポビドン、クロスカルメロースナトリウム等が;発泡剤としては、例えば、炭酸水素ナトリウム等が;流動化剤としては、例えば、メタケイ酸アルミン酸ナトリウム、軽質無水ケイ酸等が、それぞれ挙げられる。
 本発明の神経障害治療剤は、目的に応じて種々の形態、例えば、固形剤、半固形剤、液剤等の様々な剤形で提供することができる。例えば、固形剤(錠剤、粉末、散剤、顆粒剤、カプセル剤等)、半固形剤[軟膏剤(硬軟膏剤、軟軟膏剤等)、クリーム剤等]、液剤[ローション剤、エキス剤、懸濁剤、乳剤、シロップ剤、注射剤(輸液剤、埋め込み注射剤、持続性注射、用時調製型の注射剤を含む)、透析用剤、エアゾール剤、軟カプセル剤、ドリンク剤等]、貼付剤、パップ剤等の形態で利用できる。また、本発明の神経障害治療剤は、油性又は水性のビヒクル中の溶液又は乳液等の形態でも利用できる。さらに、本発明の神経障害治療剤は噴霧により、患部に適用することもでき、本発明の神経障害治療剤は噴霧した後に患部でゲル化もしくはシート化される形態でも利用できる。本発明の神経障害患治療剤は上記間葉系幹細胞をシート状または立体構造体とした後に、患部に適用することもできる。
 本発明の神経障害治療剤は、生理食塩水、日局生理食塩液、5%ブドウ糖液、日局ブドウ糖注射液、リンゲル液、日局リンゲル液、乳酸リンゲル液、酢酸リンゲル液、重炭酸リンゲル液、1号液(開始液)、2号液(脱水補給液)、3号液(維持液)、4号液(術後回復液)等の輸液、又は、DMEM等の細胞培養培地を用いて、懸濁もしくは希釈して用いることができ、好ましくは生理食塩液、5%ブドウ糖液、1号液(開始液)で、より好ましくは5%ブドウ糖液、1号液(開始液)で懸濁もしくは希釈して用いることができる。
 本発明の神経障害治療剤が液剤である場合、神経障害治療剤のpHは、医薬上、薬理学的に(製薬上)又は生理学的に許容される範囲内であれば特に限定されるものではないが、一例として、2.5~9.0、好ましくは3.0~8.5、より好ましくは3.5~8.0となる範囲が挙げられる。
 本発明の神経障害治療剤が液剤である場合、神経障害治療剤の浸透圧については、生体に許容される範囲内であれば、特に制限されない。本発明の組成物の浸透圧比の一例として、好ましくは0.7~5.0、より好ましくは0.8~3.0、さらに好ましくは0.9~1.4となる範囲が挙げられる。浸透圧の調整は無機塩、多価アルコール、糖アルコール、糖類等を用いて、当該技術分野で既知の方法で行うことができる。浸透圧比は、第十五改正日本薬局方に基づき286mOsm(0.9w/v%塩化ナトリウム水溶液)の浸透圧に対する試料の浸透圧の比とし、浸透圧は日本薬局方記載の浸透圧測定法(氷点降下法)を参考にして測定する。なお、浸透圧比測定用標準液(0.9w/v%塩化ナトリウム水溶液)は、塩化ナトリウム(日本薬局方標準試薬)を500~650℃で40~50分間乾燥した後、デシケーター(シリカゲル)中で放冷し、その0.900gを正確に量り、精製水に溶かし正確に100mLとして調製するか、市販の浸透圧比測定用標準液(0.9w/v%塩化ナトリウム水溶液)を用いる。
 本発明の神経障害治療剤の対象への投与経路は、経口投与、皮下投与、筋肉内投与、静脈内投与、動脈内投与、脳室内投与、髄腔内投与、腹腔内投与、舌下投与、経直腸投与、経腟投与、眼内投与、経鼻投与、吸入、経皮投与、インプラント、臓器表面への噴霧及びシート等の貼付による直接投与等が挙げられるが、本発明の神経障害治療剤の有効性の観点から、好ましくは動脈内投与、静脈内投与、脳室内投与及び髄腔内投与であり、対象者の負担の軽減の観点から、より好ましくは静脈内投与、筋肉内投与、鼻腔内投与であり、効果の観点からは脳室内投与及び髄腔内投与が好ましい。
 本発明の神経障害治療剤において、その用量(投与量)は、患者の状態(体重、年齢、症状、体調等)、及び本発明の神経障害治療剤の剤形等によって異なりうるが、十分な経障害治療剤の治療効果を奏する観点からは、その量は多い方が好ましい傾向にあり、一方、副作用の発現を抑制する観点からはその量は少ない方が好ましい傾向にある。通常、成人に投与する場合には、細胞数として、1×10~1×1012個/回、好ましくは1×10~1×1011個/回、より好ましくは1×10~1×1010個/回、さらに好ましくは5×10~1×10個/回である。また、患者の体重あたりの投与量としては、1×10~5×1010個/kg、好ましくは1×10~5×10個/kg、より好ましくは1×10~5×10個/kg、さらに好ましくは1×10~5×10個/kgである。新生児に投与する場合には、細胞数として、1×10~1×1011個/回、好ましくは1×10~1×1010個/回、より好ましくは1×10~1×10個/回、さらに好ましくは5×10~5×10個/回である。また、患者の体重あたりの投与量としては、1×10~5×1010個/kg、好ましくは1×10~5×10個/kg、より好ましくは1×10~5×10個/kg、さらに好ましくは1×10~5×10個/kgである。なお、本用量を1回量として、複数回投与してもよく、本用量を複数回に分けて投与してもよい。
 本発明の神経障害治療剤は、一又は二以上の他の薬剤と共に投与してもよい。他の薬剤としては、神経障害の治療薬として用いることができる任意の剤を薬剤が挙げられ、たとえば、レボドパ、アマンタジン、カルビドパ等の抗パーキンソン病薬、ブロモクリプチン、プルゴリド、ロピニロール、プラミペキソール等のドパミン作動薬、セレギリン、ラサリジン等の選択的B型モノアミン酸化酵素阻害剤(MAO-B)、エンタカポン、トルカポン等のカテコール-O-メチルトランスフェラーゼ(COMT)阻害薬ベンズトロポン、トリヘキシフェニジル等の抗コリン薬、ジフェンヒドラミン、オルフェナドリン等の抗ヒスタミン薬、ドネペジル、リバスチグミン、ガランタミン、タクリン等のコリンエステラーゼ阻害薬、メマンチン等のN-メチル-D-アスパラギン酸受容体拮抗薬、ハロペリドール、チオリダジン、チオチキセン、オランザピン、リスペリドン、クエチアピン、クロザピン等の抗精神薬、プロプラノロール等のβ遮断薬、ベンゾジアゼピン等の鎮静薬、ヘパリン、低分子ヘパリン、ワルファリン等の抗凝固剤、カルバマゼピン、ガバペンチン、フェニトイン、プレガバリン、バルプロサン、ラモトリジン等の抗痙攣薬、三環系、ベンラファキシン、ブプロピオン、アミトリプチリン、デシプラミン、パロキセチン等の抗うつ薬、クロニジン、チザニジン等の中枢性α-2アドレナリン作用薬、デキサメタゾン、プレドニゾロン等のコルチコステロイド、アマンタジン、デキストリメトロファン等のNMDA受容体拮抗薬、リドカイン、メキシレチン、カプサイシン等の局所麻酔薬、エトドラク、インドメタシン、スリン諾、トルメタチン、ナブメトン、ピロキシカム、アセトアミノフェン、フェノビプロン、フルルビプロン、イブプロフェン、ケトプロフェン、ナプロキセン、ナプロキセンナトリウム、オキサプロシン、アスピリン、コリンマグネシウム三サリチル酸、ジフルニサル、メクロフェナム酸塩、メフェナム酸、フェニルブタゾン、ケトロラク、セレコキシブ、コデイン、ヒドロコデイン、プロポキシフェン、フェンタニル、ヒドロモルホン、レボファノール、メペリジン、メサドン、モルヒネ、オキシコドン、オキシモルホン、ブプレノルフィン、ブトルファノール、ナルブフィン、ペンタゾシン等の鎮痛剤、プロポフォール等のラジカルスカベンジャー、抗炎症剤、セロトニン、ノルエピネフリン、NSAID、イチョウ葉エキス等が挙げられる。また、本発明の神経障害治療剤の投与とともに、低体温療法、脳低温療法、脳低体温療法等の低温療法を合わせて行う事もできる。
 本発明の間葉系幹細胞は様々な神経障害に用いることができるが、具体的疾患としては、自律神経障害、ホルネル症候群、多系統委縮症、純粋自律神経不全等の自律神経系障害、慢性疼痛、神経障害性疼痛、複合性局所疼痛症候群等の疼痛、虚血性脳卒中、一過性脳虚血発作、低酸素-虚血、脳内出血・脳室内出血などの頭蓋内出血、クモ膜下出血等の脳卒中(脳血管事故)、アルツハイマー病、脳血管性認知症、レーヴィ体認知症、HIV関連認知症、前頭側頭型認知症等の認知症、痙攣性症候群、アテトーゼまたは運動異常症候群及び失調性症候群等の脳性麻痺症候群、低血糖、高ナトリウム血症、低ナトリウム血症、低マグネシウム血症、先天代謝異常等による、新生児痙攣性疾患、多発性硬化症等の脱髄性疾患、キランーバレー症候群、遺伝性ニューロパシー、筋萎縮性側索硬化症(ALS)を含む運動ニューロン疾患、重症筋無力症、モノニューロパシー、多発ニューロパシー、神経叢障害等の末梢神経系障害、急性横断性脊髄炎、動静脈奇形、脊髄梗塞(虚血性脊髄障害)等の脊髄障害、脊髄小脳失調症、脊髄小脳変性症等の小脳疾患、脳腫瘍、脳炎、髄膜炎、パーキンソン病等が挙げられる。また、新生児を対象とした、周産期脳障害、新生児脳症及び脳性麻痺等に用いることもできる。これらのうち、虚血性脳卒中、一過性脳虚血発作、低酸素-虚血、脳内出血・脳室内出血などの頭蓋内出血、クモ膜下出血等の脳卒中(脳血管事故)、周産期脳障害、新生児脳症及び脳性麻痺等が好ましい。
 以下に、実施例及び試験例を挙げて本発明を詳細に説明するが、本発明はこれらの実施例等によって限定されるものではない。
[臍帯由来間葉系幹細胞の調製及び培養]
 臍帯由来細胞は、Cytotherapy, 18, 229-241, 2016に記載の方法で採取した。簡潔には、東京大学医科学研究所の倫理委員会の承認を得た上で、提供者の同意を得て採取された臍帯を1から2mmの断片に細断し、培養皿上へ播種し、セルアミーゴ(株式会社 椿本チエイン)を被せ、10% fetal bovine serum(FBS)と抗生物質を添加したα-minimal essential medium(MEM-α)中で培養する改良エクスプラント法により、臍帯由来間葉系幹細胞(以下「UCMSC」という)を得た。なお、臍帯組織から前述の改良エクスプラント法により得られた細胞を第一継代細胞(P1)とし、継代を行う事により継代数が進み、第二継代細胞(P2)のように記載する。
 得られたUCMSCを、トリプシン(TrypLE Select (1X))を用いて剥離し、遠沈管に移し、400×gで5分間、遠心分離し細胞の沈殿を得た。上清を除去した後、細胞凍結保存液(STEM-CELLBANKER(ゼノアック社))を適量加え懸濁した。当該細胞懸濁溶液を、クライオチューブに分注し、フリーザー内で-80℃にて保存した。その後、液体窒素上の気相に移し、保存を継続した。
[mRNA発現]
 UCMSCをP2からP4までそれぞれ間葉系幹細胞用無血清培地(Rohto社、無血清培地)、PromoCell培地(Mesenchymal Stem Cell Growth Medium 2(PromoCell社製、C-28009, Lot.435M415)にSupplement mix(PromoCell社製, C-39809, Lot.435M126 )を添加)及びMEM-α培地(Thermo Fisher社製、#12571-063、Lot.18997009に血清を10%となるよう添加)でそれぞれ培養し、凍結ストックを作製した。線維芽細胞はMEM-α培地で培養後、凍結ストックを作製した。それぞれのP4細胞と、線維芽細胞(Fibroblast)を起眠し、6ウェルプレートに15,000cells/cmで播種し、3種類それぞれの培地で1日間培養した後、Total RNAを回収した。HGF, SHH, OLIG2, VEGFA, NEUROG1, GRPR, IL1R1, CRHR2, CCKAR, APOEのmRNA発現を、それぞれ定量PCRを用いて検出した。
 MEM-α培地に比べ、無血清培地で培養した細胞は、HGF, SHH, OLIG2, VEGFA, NEUROG1, GRPR, IL1R1, CRHR2, CCKAR, APOEのmRNA発現が有意に高いことが分かった。また、PromoCell培地で培養した細胞は、MEM-α培地で培養した細胞に比べ、有意に VEGFA, NEUROG1, GRPR, CRHR2, CCKARの mRNA発現量が高いことがわかった(図1)。
[浮遊培養細胞(SUS)と平面培養細胞(ADH)の調製]
 前述の臍帯組織由来凍結細胞を起眠し、細胞培養フラスコに播種して間葉系幹細胞用無血清培地(Rohto社)を用いて培養した。培養4日目の細胞を回収して、必要細胞数を含んだ細胞懸濁液とマイクロキャリアを混合し、培養槽に添加、攪拌培養を開始した。3もしくは4日目に細胞/マイクロキャリア浮遊液を一部分取し、新しいマイクロキャリアを加えて3もしくは4日間培養する継代培養を2週間行い、浮遊培養細胞(以下、「SUS」と言う)を得た。前述の臍帯組織由来凍結細胞を起眠し、細胞培養フラスコにて播種して間葉系幹細胞用無血清培地(Rohto社)を用いて培養した。3もしくは4日に一度継代を行い、合計で2週間培養し、平面培養細胞(以下、「ADH」と言う)を得た。
[平面培養細胞(ADH)と浮遊培養細胞(SUS)の比較]
 上記方法により得られた平面培養細胞(ADH)、または浮遊培養細胞(SUS)の凍結ストックからTotal RNAを回収した。PAX3, PAX5, EGF, CXCL1, GDNF, NRCAM, DLL1, HEYL, BMP2, NTN1, ASCL1, NRP2, VEGFA, APOEのmRNA発現を、それぞれ定量PCRを用いて検出した。
 平面培養細胞(ADH)に比べ、浮遊培養細胞(SUS)で、有意にPAX3, PAX5, EGF, CXCL1, GDNF, NRCAM, DLL1, HEYL, BMP2, NTN1, ASCL1, NRP2, VEGFA, APOEのmRNA発現量が高いことがわかった(図2)。
[脂肪由来間葉系幹細胞の調製]
 ヒトドナーから同意を得た後、脂肪吸引法で得た皮下脂肪組織を生理食塩液で洗浄した。細胞外基質の破壊、及び細胞の単離を達成するために、コラゲナーゼ(溶媒は生理食塩液)を添加し、37℃で90分間振倒し、分散した。続いて、この上記懸濁液を800gで5分間、遠心分離して間質血管細胞群の沈殿を得た。上記細胞の沈殿に間葉系幹細胞用無血清培地(Rohto社)を加え、当該細胞懸濁液を400gで5分間遠心分離し、上清除去後に間葉系幹細胞用無血清培地(Rohto社)に再懸濁し、フラスコに細胞を播種した。細胞を37℃、5%CO中で数日間培養した。数日後に培養物をPBSで洗浄して、培養液中に含まれていた血球や脂肪組織の残存等を除去し、プラスチック容器に接着している間葉系幹細胞(以下「ADMSC」と言う)を得た。
[脂肪組織由来間葉系幹細胞の凍結保存]
 得られたADMSCを、トリプシンを用いて剥離し、遠沈管に移し、400×gで5分間、遠心分離し細胞の沈殿を得た。上清を除去した後、細胞凍結保存液(STEM-CELLBANKER(ゼノアック社))を適量加え懸濁した。当該細胞懸濁溶液を、クライオチューブに分注し、フリーザー内で-80℃にて保存した。その後、液体窒素上の気相に移し、保存を継続した。
[ラット一過性脳虚血モデル(小泉モデル)を用いた治療効果の確認]
 ラット(Wistar、日本チャールズリバー社)の中大脳動脈(MCA)閉塞して、23.3~27.8時間後にADMSC、ADH及びSUSを、HBSS(Hank's Balanced Salt solution)に懸濁して、尾静脈内から投与した(8×10cells/kg)。なお、比較対象として、細胞を投与せずHBSSのみを投与した動物を設けた。手術前、及び手術14日後に、体重、及び神経症状の観察と、ステップテスト、及びテープ剥がしテストを行った。
 手術前および手術14日後にラットの体幹、後肢および右前肢を保定して持ち上げ、左前肢のみが実験台に触れるようにして、水平面を逆手方向に約5秒間で30cm移動させるステップテストを実施した。その際の左前肢の歩数を記録した。3回繰り返して行い、歩数の平均値を測定値とした(ステップテスト)。また、木全らの報告(薬理と治療,1991;19:4491-4503)を参考に神経症状の観察を行った。
 Leongらによって報告された測定方法(Leong et al. Stem Cells Translational Medicine、2012;1:177-187)に基づきテープ剥がしテストを行った。右(麻痺側)前肢の裏面に15mmのテープをはり、ケージ内に入れテープを剥がそうとするまでの時間を計測した(Cut offは120秒、テープ剥がしテスト)。
 ADMSC、ADH及びSUSを投与することにより体重の減少度が軽減することが明らかとなった(図3)。また、ADMSC、ADH及びSUSを投与することにより神経症状スコアが減少することが明らかとなった(図4)。ADMSC、ADH、及びSUSを投与することによりステップ回数が上昇することが明らかとなった(図5)。ADMSC、ADH、及びSUSを投与することによりテープを剥がすまでの時間が短縮されることが明らかとなった(図6)。
 以上の結果より、脳血管障害後の神経傷害に対する改善効果が示された。
[神経細胞と間葉系幹細胞の相互作用]
 Vybrant DiO Cell-labeling solution (Thermo Fisher社製、#V22886)でDiD 蛍光染色を行ったSH-SY5Y(ヒト由来神経芽細胞腫;ECACC製、Lot.16E028、Acc Nc:94030304)を12 well plateに播種して、10% FBS(Thermo Fisher社製、#10437-028、Lot.1658423)及びPen-Strepを含むDMEM/F12(Thermo Fisher、#11320-033、Lot.1930023)培地で、37℃、O:20%、CO:5%条件下にて培養した。培養1日後、各well内の細胞をD-PBS(-)で2回洗浄し、Pen-Strepを含むDMEM, no glucose(Thermo Fisher, # 11966025)培地で、37℃、N:95%、O:5%条件下で2時間培養した。その後、上記と同様に調製して間葉系幹細胞用無血清培地(Rohto社)で培養してDiO 蛍光染色したUCMSCを12 well plateに添加し、10% FBS (Thermo Fisher社製、#10437-028、Lot.1658423)及びPen-Strepを含むDMEM/F12(Thermo Fisher、#11320-033、Lot.1930023)培地で、37℃、O:20%、CO:5%条件下で培養して、各時間経過後、タイムラプス画像を撮影した。なお、それぞれの写真においては、緑色はUCMSC(左下向きの矢印(柄の部分は点線)で指し示した細胞)を示し、赤色はSH-SY5Y(右上向きの矢印で指し示した細胞)を示している(図7)。
 UCMSC及びSH-SY5Yが相互に突起を伸長して、細胞間相互作用することが観測された。
 SH-SY5Y(ヒト由来神経芽細胞腫;ECACC製、Lot.16E028、Acc Nc:94030304)を96 well plateに播種して、5% FBS(Thermo Fisher社製、#10437-028、Lot.1658423)及びPen-Strepを含むDMEM/F12(Thermo Fisher、#11320-033、Lot.1930023)培地で、37℃、O:20%、CO:5%条件下にて培養した。培養1日後、Well内の培地を除去し、Pen-Strepを含むDMEM, No glucose(Thermo Fisher, # 11966025)培地で、37℃、N:95%、O:5%条件(以下、OGD条件)下で24時間培養した(OGD処理群)。同様に、培養1日後、SH-SY5Y細胞を培養しているWell内の培地を除去し、前述の方法で調整した臍帯由来間葉系幹細胞を間葉系幹細胞用無血清培地(Rohto社)で培養したUCMSCを1,000cells/wellで添加して、OGD条件下で24時間培養した(MSC群)。なお、比較対象として、同様に、培養1日後、Well内の培地を除去し、新たな5% FBS(Thermo Fisher社製、#10437-028、Lot.1658423)及びPen-Strepを含むDMEM/F12(Thermo Fisher、#11320-033、Lot.1930023)培地で、37℃、O:20%、CO:5%条件下にて24時間培養したものを対照群(Control群)とした。培養後、各培養上清中の乳酸脱水素酵素(LDH)活性を測定した(図8)。
 OGD(Oxygen and glucose deprivation)条件下で培養することにより、SH-SY5Y細胞のLDH活性が上昇するが、UCMSCと共培養することにより、LDH活性の上昇が抑制され、虚血による神経細胞死が抑制されることが確認された。
 SH-SY5Y(ヒト由来神経芽細胞腫;ECACC製、Lot.16E028、Acc Nc:94030304)を12 well plateにぞれぞれ0.038×10cells/wellずつ播種して、10% FBS(Thermo Fisher社製、#10437-028、Lot.1658423)及びPen-Strepを含むDMEM/F12(Thermo Fisher、#11320-033、Lot.1930023)培地で、37℃、O:20%、CO:5%条件下にて培養した。培養1日後、各well内の細胞をD-PBS(-)で2回洗浄後、前述と同様のOGD条件下で2時間培養した(細胞無投与群)。同様に、培養1日後、Well内の培地を除去し、前述の方法で調整した浮遊培養細胞(SUS)を、播種済みSH-SY5Y細胞の半量(半量群)、同量(同量群)及び2倍量(倍量群)播種したtranswell insertを載せ、OGD条件下で2時間培養した(MSC群)。その後、10% FBS(Thermo Fisher社製、#10437-028、Lot.1658423)及びPen-Strepを含むDMEM/F12(Thermo Fisher、#11320-033、Lot.1930023)培地で、37℃、O:20%、CO:5%条件下にて48時間培養した。なお、比較対象として、同様に、培養1日後、各well内の細胞をD-PBS(-)で2回洗浄後、新たな10% FBS (Thermo Fisher社製、#10437-028、Lot.1658423)及びPen-Strepを含むDMEM/F12(Thermo Fisher、#11320-033、Lot.1930023)培地で、37℃、O:20%、CO:5%条件下にて48時間培養した(Control群)。培養後、各SH-SY5Yの細胞活性をWST-8(Cell Counting Kit-8)にて評価した(図9)。
 OGD条件下で培養することにより、神経細胞の細胞活性は有意に下がるが、MSCと共培養することにより、細胞活性の低下を抑制できることが明らかとなった。
 SH-SY5Y(ヒト由来神経芽細胞腫;ECACC製、Lot.16E028、Acc Nc:94030304)を12 well plateにそれぞれ0.038×10cells/wellずつ播種して、10% FBS(Thermo Fisher社製、#10437-028、Lot.1658423)及びPen-Strepを含むDMEM/F12(Thermo Fisher、#11320-033、Lot.1930023)培地で、37℃、O:20%、CO:5%条件下にて培養した。培養1日後、各well内の細胞をD-PBS(-)で2回洗浄後、前述と同様のOGD条件下で2時間培養した(細胞無投与群)。同様に、培養1日後、Well内の培地を除去し、前述の方法で調整した浮遊培養細胞(SUS、SUS群)、平面培養細胞(ADH、ADH群)及び線維芽細胞(Fibroblast、Fibroblast群)をSH-SY5Yと同量播種したtranswell insertを載せ、OGD条件下で2時間培養した。その後、10% FBS (Thermo Fisher社製、#10437-028、Lot.1658423)及びPen-Strepを含むDMEM/F12(Thermo Fisher、#11320-033、Lot.1930023)培地で、37℃、O:20%、CO:5%条件下にて48時間培養した。なお、比較対象として、同様に、培養1日後、各well内の細胞をD-PBS(-)で2回洗浄後、新たな10% FBS (Thermo Fisher社製、#10437-028、Lot.1658423)及びPen-Strepを含むDMEM/F12(Thermo Fisher、#11320-033、Lot.1930023)培地で、37℃、O:20%、CO:5%%条件下にて48時間培養した(Control群)。培養後、各SH-SY5Yの細胞活性をWST-8(Cell Counting Kit-8)にて評価した(図10)。
 MSCと共培養することにより、OGD条件下で培養することによる神経細胞の細胞活性低下を抑制できるが、線維芽細胞(Fibroblast)によってはこの効果がなく、MSC特異的な効果であることが明らかとなった。
 SH-SY5Y(ヒト由来神経芽細胞腫;ECACC製、Lot.16E028、Acc Nc:94030304)を12 well plateにそれぞれ0.038×10cells/wellずつ播種して、10% FBS (Thermo Fisher社製、#10437-028、Lot.1658423)及びPen-Strepを含むDMEM/F12(Thermo Fisher、#11320-033、Lot.1930023)培地で、37℃、O:20%、CO:5%条件下にて培養した。培養1日後、各well内の細胞をD-PBS(-)で2回洗浄後、前述と同様のOGD条件下で2時間培養した(細胞無投与群)。同様に、培養1日後、Well内の培地を除去し、臍帯由来間葉系幹細胞(PromoCell社製)を間葉系幹細胞用無血清培地(Rohto社、無血清群)、PromoCell培地(Mesenchymal Stem Cell Growth Medium 2(PromoCell社製、C-28009、Lot.435M415)にSupplement mix(PromoCell社製、C-39809、Lot.435M126)を添加)、PromoCell群)及びMEM-α(Thermo Fisher社製、#12571-063、Lot.18997009、MEM-α群)でそれぞれ培養したUCMSC及び線維芽細胞(Fibroblast、Fibroblast群)をSH-SY5Yと同量培養したtranswell insertを載せ、OGD条件下で2時間培養した。その後、10% FBS (Thermo Fisher社製、#10437-028、Lot.1658423)及びPen-Strepを含むDMEM/F12(Thermo Fisher、#11320-033、Lot.1930023)培地で、37℃、O:20%、CO:5%条件下にて48時間培養した。なお、比較対象として、同様に、培養1日後、各well内の細胞をD-PBS(-)で2回洗浄後、新たな10% FBS (Thermo Fisher社製、#10437-028、Lot.1658423)及びPen-Strepを含むDMEM/F12(Thermo Fisher、#11320-033、Lot.1930023)培地で、37℃、O:20%、CO:5%条件下にて48時間培養した(Control群)。培養後、各SH-SY5Yの細胞活性をWST-8(Cell Counting Kit-8)にて評価した(図11)。
 MSCと共培養することにより、OGD条件下で培養することによる神経細胞の細胞活性低下を抑制できるが、無血清培地で培養したMSCでその効果がより顕著であることが明らかとなった。
 SH-SY5Y(ヒト由来神経芽細胞腫;ECACC製、Lot.16E028、Acc Nc:94030304)を12 well plateにそれぞれ0.038×10cells/wellずつ播種して、10% FBS(Thermo Fisher社製、#10437-028、Lot.1658423)及びPen-Strepを含むDMEM/F12(Thermo Fisher、#11320-033、Lot.1930023)培地で、37℃、O:20%、CO:5%条件下にて培養した。培養1日後、各well内の細胞をD-PBS(-)で2回洗浄後、前述と同様のOGD条件下で2時間培養した(細胞無投与群)。同様に、培養1日後、Well内の培地を除去し、臍帯由来間葉系幹細胞(PromoCell社製、C-12971、Lot.427Z021)を間葉系幹細胞用無血清培地(Rohto社、無血清群)、PromoCell培地(Mesenchymal Stem Cell Growth Medium 2(PromoCell社製、C-28009, Lot.435M415)にSupplement mix(PromoCell社製、C-39809、Lot.435M126)を添加、PromoCell群)及びMEM-α(Thermo Fisher社製、#12571-063、Lot.18997009、MEM-α群)でそれぞれ培養したUCMSC及び線維芽細胞(Fibroblast、線維芽細胞群)をSH-SY5Yと同量培養したtranswell insertを載せ、OGD条件下で2時間培養した。その後、10% FBS(Thermo Fisher社製、#10437-028、Lot.1658423)及びPen-Strepを含むDMEM/F12(Thermo Fisher、#11320-033、Lot.1930023)培地で、37℃、O:20%、CO:5%条件下にて24~48時間培養した。48H培養後、細胞画像を取得した(図12)。なお、死細胞の染色はEthD-IIIを使用した。各画像の死細胞の数を計測後、死細胞率を「死細胞数/WST-8の吸光度」にて算出した(図13)。
 無血清群では、細胞無投与群、線維芽細胞群、PromoCell群及びMEM-α群に比べ、細胞増殖活性が高いことが明らかとなった。また、無血清群では、細胞無投与群、PromoCell群群及びMEM-α群に比べ、全細胞数に対する、死細胞数が少ないことが明らかとなった。
 本発明によると、神経障害の新規治療剤を提供することができる。

Claims (5)

  1.  HGF, SHH, OLIG2, VEGFA, NEUROG1, GRPR, IL1R1, CRHR2, CCKAR, APOE, PAX3, PAX5, EGF, CXCL1, GDNF, NRCAM, DLL1, HEYL, BMP2, NTN1, ASCL1, NRP2のいずれか一つ、または二つ以上が高発現であることを特徴とする、間葉系幹細胞。
  2.  他家由来である、請求項1に記載の間葉系幹細胞。
  3.  臍帯組織もしくは脂肪組織由来である、請求項1又は2に記載の間葉系幹細胞。
  4.  浮遊培養法により調製される、請求項1から3のいずれか1項に記載の間葉系幹細胞。
  5.  請求項1から4のいずれか1項に記載の間葉系幹細胞を含有する神経障害治療剤。
PCT/JP2019/025928 2018-07-09 2019-06-28 間葉系幹細胞及び神経障害治療剤 WO2020012991A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020530111A JPWO2020012991A1 (ja) 2018-07-09 2019-06-28 間葉系幹細胞及び神経障害治療剤
CN201980045457.5A CN112368370A (zh) 2018-07-09 2019-06-28 间充质干细胞和神经病变治疗剂
JP2023215423A JP2024023760A (ja) 2018-07-09 2023-12-21 間葉系幹細胞及び神経障害治療剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-130205 2018-07-09
JP2018130205 2018-07-09

Publications (1)

Publication Number Publication Date
WO2020012991A1 true WO2020012991A1 (ja) 2020-01-16

Family

ID=69142832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025928 WO2020012991A1 (ja) 2018-07-09 2019-06-28 間葉系幹細胞及び神経障害治療剤

Country Status (3)

Country Link
JP (2) JPWO2020012991A1 (ja)
CN (1) CN112368370A (ja)
WO (1) WO2020012991A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112608892A (zh) * 2020-12-25 2021-04-06 深圳博雅感知药业有限公司 血小板裂解物用于无血清分离和传代培养脐带间充质干细胞的方法
WO2021192670A1 (ja) * 2020-03-27 2021-09-30 ロート製薬株式会社 間葉系幹細胞及び間葉系幹細胞用培地

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100098739A1 (en) * 2008-10-20 2010-04-22 University Of Virginia Patent Foundation Compositions and methods for modular soft tissue repair
WO2017141831A1 (ja) * 2016-02-16 2017-08-24 ロート製薬株式会社 脂肪組織由来間質細胞を含む虚血性疾患治療剤およびその製造方法
WO2018074381A1 (ja) * 2016-10-18 2018-04-26 国立大学法人大阪大学 疾患治療剤調製用キット、疾患治療剤及び疾患治療剤の調製方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013172793A1 (en) * 2012-05-18 2013-11-21 Agency For Science, Technology & Research Umbilical cord mesenchymal stem cell exosomes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100098739A1 (en) * 2008-10-20 2010-04-22 University Of Virginia Patent Foundation Compositions and methods for modular soft tissue repair
WO2017141831A1 (ja) * 2016-02-16 2017-08-24 ロート製薬株式会社 脂肪組織由来間質細胞を含む虚血性疾患治療剤およびその製造方法
WO2018074381A1 (ja) * 2016-10-18 2018-04-26 国立大学法人大阪大学 疾患治療剤調製用キット、疾患治療剤及び疾患治療剤の調製方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKIKAWA, SACHIKO ET AL.: "Human umbilical cord- derived mesenchymal stromal cells promote sensory recovery in a spinal cord injury rat model", STEM CELL DISCOVERY, vol. 3, no. 3, 2013, pages 155 - 163, XP055674649 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021192670A1 (ja) * 2020-03-27 2021-09-30 ロート製薬株式会社 間葉系幹細胞及び間葉系幹細胞用培地
CN112608892A (zh) * 2020-12-25 2021-04-06 深圳博雅感知药业有限公司 血小板裂解物用于无血清分离和传代培养脐带间充质干细胞的方法
CN112608892B (zh) * 2020-12-25 2023-11-14 深圳博雅感知药业有限公司 血小板裂解物用于无血清分离和传代培养脐带间充质干细胞的方法

Also Published As

Publication number Publication date
JPWO2020012991A1 (ja) 2021-07-15
JP2024023760A (ja) 2024-02-21
CN112368370A (zh) 2021-02-12

Similar Documents

Publication Publication Date Title
US20220016110A1 (en) Compositions for the mobilization, homing, expansion and differentiation of stem cells and methods of using the same
JP6371286B2 (ja) 子癇前症の予防及び治療方法
JP7082372B2 (ja) 肺線維症治療剤、ptprr発現促進剤及び肺線維症治療用キット
JP2024023760A (ja) 間葉系幹細胞及び神経障害治療剤
WO2018159432A1 (ja) 間葉系幹細胞及び医薬組成物
JP6960120B2 (ja) 肝疾患治療剤及び肝疾患を治療する方法
JP2023103416A (ja) 拡張型心筋症治療剤
WO2018116732A1 (ja) 非アルコール性脂肪肝炎治療剤及び非アルコール性脂肪肝炎治療用キット
JP2019156739A (ja) 間葉系幹細胞、疾患治療剤及び微小粒子
JP2023024665A (ja) 間葉系幹細胞及び肝疾患治療剤
JP7136700B2 (ja) 細胞医薬組成物、疾患治療用キット及び細胞懸濁用溶液
JP2019011288A (ja) 疾患治療用の細胞医薬組成物、疾患治療用キット、細胞医薬組成物の調製方法
WO2018123628A1 (ja) 細胞医薬組成物、疾患治療用キット及び細胞懸濁用溶液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19833567

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020530111

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19833567

Country of ref document: EP

Kind code of ref document: A1