WO2020012921A1 - 熱交換器 - Google Patents

熱交換器 Download PDF

Info

Publication number
WO2020012921A1
WO2020012921A1 PCT/JP2019/024756 JP2019024756W WO2020012921A1 WO 2020012921 A1 WO2020012921 A1 WO 2020012921A1 JP 2019024756 W JP2019024756 W JP 2019024756W WO 2020012921 A1 WO2020012921 A1 WO 2020012921A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
heat medium
along
width direction
flow
Prior art date
Application number
PCT/JP2019/024756
Other languages
English (en)
French (fr)
Inventor
雄太 松田
浜田 浩
中村 友彦
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019050140A external-priority patent/JP2020016428A/ja
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2020012921A1 publication Critical patent/WO2020012921A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates

Definitions

  • the present disclosure relates to a heat exchanger that performs heat exchange between air and a heat medium.
  • Examples of the heat exchanger that performs heat exchange between the air and the heat medium include a radiator provided in a vehicle and a heater core provided in an air conditioner.
  • a heat exchanger has a configuration in which an inlet-side tank and an outlet-side tank are connected by a plurality of tubes. In each tube, heat exchange is performed between the heat medium passing through the inner flow path and the air passing through the outer space.
  • the heat medium is uniformly flowed into each tube from the inlet-side tank so that the heat exchange is performed uniformly as a whole.
  • a tube arranged near the inlet for receiving a heat medium from the outside tends to receive more heat medium than the tube arranged farther from the inlet.
  • the present disclosure has an object to provide a heat exchanger that can sufficiently suppress the variation in the flow rate of the heat medium flowing into each tube.
  • the heat exchanger according to the present disclosure is a heat exchanger that performs heat exchange between air and a heat medium, and is a tubular member in which a flow path through which the heat medium passes is formed, along a stacking direction. It comprises a plurality of tubes arranged in a line, an inlet tank for supplying a heat medium to each tube, and an outlet tank for receiving the heat medium passing through each tube.
  • each tube has at least a first flow path and a second flow path as flow paths through which the heat medium passes.
  • the two flow paths are formed so as to be arranged in the width direction.
  • the heat exchanger is provided with a suppression unit that suppresses the flow of the heat medium in at least one of the first flow path and the second flow path in a certain range along the width direction.
  • the center position of the certain range in the width direction is different from the overall center position of the first channel and the second channel in the width direction.
  • the flow of the heat medium in each of the first flow path and the second flow path formed in the tube is not evenly suppressed by the suppression unit, and the flow in one side is in the other side. Is greatly suppressed as compared with the flow in.
  • the flow rate of the heat medium flowing into one entire tube is greatly suppressed as compared with the case where the respective flows are uniformly suppressed in the same fixed range. As a result, it is possible to sufficiently suppress the variation in the flow rate of the heat medium flowing into each tube.
  • Another heat exchanger is a heat exchanger that performs heat exchange between air and a heat medium, and is a tubular member in which a flow path through which the heat medium passes is formed.
  • a plurality of tubes arranged so as to line up along with each other, an inlet-side tank for supplying a heat medium to each of the tubes, and an outlet-side tank for receiving the heat medium passing through each of the tubes.
  • each tube has at least a first flow path and a second flow path as flow paths through which the heat medium passes.
  • the two flow paths are formed so as to be arranged in the width direction.
  • a suppression unit that suppresses the flow of the heat medium in at least one of the first flow path and the second flow path in a certain range along the width direction is provided.
  • the ratio of the dimension along the width direction of the portion of the flow path in which the flow of the heat medium is suppressed by the suppression unit was defined as the suppression rate of the flow path.
  • the suppression unit is provided such that the suppression rate of the first flow path and the suppression rate of the second flow path are different from each other.
  • the flow of the heat medium in each of the first flow path and the second flow path formed in the tube is controlled by the suppression unit. Instead of being evenly suppressed, the flow on one side is greatly suppressed compared to the flow on the other. As a result, it is possible to sufficiently suppress the variation in the flow rate of the heat medium flowing into each tube.
  • a heat exchanger that can sufficiently suppress the variation in the flow rate of the heat medium flowing into each tube.
  • FIG. 1 is a diagram illustrating the overall configuration of the heat exchanger according to the first embodiment.
  • FIG. 2 is a diagram showing a configuration of a tube provided in the heat exchanger of FIG.
  • FIG. 3 is a diagram showing a configuration inside the inlet tank in the heat exchanger of FIG. 1.
  • FIG. 4 is a diagram showing a configuration inside the inlet tank in the heat exchanger of FIG. 1.
  • FIG. 5 is a diagram for describing a configuration for bringing the plate-shaped member into contact with the distal end surface of the tube.
  • FIG. 6 is a diagram illustrating a configuration and an arrangement of a suppression unit provided in the heat exchanger of FIG. 1.
  • FIG. 1 is a diagram illustrating the overall configuration of the heat exchanger according to the first embodiment.
  • FIG. 2 is a diagram showing a configuration of a tube provided in the heat exchanger of FIG.
  • FIG. 3 is a diagram showing a configuration inside the inlet tank in the heat exchanger of FIG. 1.
  • FIG. 4 is
  • FIG. 7 is a diagram showing the relationship between the width of the opening in the flow path of the tube and the flow resistance of the heat medium flowing through the flow path.
  • FIG. 8 is a diagram showing the distribution of the flow rate of the heat medium flowing through each tube.
  • FIG. 9 is a diagram showing a temperature distribution of air passing through each part of the heat exchanger.
  • FIG. 10 is a diagram showing a temperature distribution of air passing through each part of the heat exchanger.
  • FIG. 11 is a diagram illustrating a configuration and an arrangement of a suppression unit provided in the heat exchanger of FIG. 1.
  • FIG. 12 is a diagram illustrating a configuration of a heat exchanger according to a modification of the first embodiment.
  • FIG. 13 is a diagram illustrating a configuration and an arrangement of a suppression unit provided in a heat exchanger according to another modification of the first embodiment.
  • Drawing 14 is a figure showing composition and arrangement of a control part provided in a heat exchanger concerning a 2nd embodiment.
  • FIG. 15 is a diagram illustrating a configuration and an arrangement of a suppression unit provided in the heat exchanger according to the third embodiment.
  • FIG. 16 is a diagram illustrating the configuration and arrangement of the suppression unit provided in the heat exchanger according to the fourth embodiment.
  • the heat exchanger 10 is a heat exchanger for exchanging heat between air and a heat medium, and is configured as a so-called “heater core” provided in a vehicle air conditioner.
  • the heat exchanger 10 high-temperature cooling water supplied from the outside is used as a heat medium, and air is heated by heat exchange with the heat medium.
  • the heat exchanger 10 includes an inlet-side tank 100, an outlet-side tank 200, a tube 300, and fins 400.
  • the inlet-side tank 100 is a container for receiving a heat medium supplied from the outside, distributing the heat medium to the tubes 300, and supplying the tubes.
  • the inlet-side tank 100 is formed as an elongated container having a substantially columnar shape, and is arranged in a state where the longitudinal direction thereof is along the horizontal direction.
  • the inlet-side tank 100 has a header plate 110, a tank plate 120, and a joint 130.
  • the header plate 110 is a substantially flat plate-shaped member.
  • the header plate 110 is formed of metal. As shown in FIG. 3, a plurality of through holes are formed in the header plate 110, and the lower end of each tube 300 is inserted into each through hole from above. The portion between the edge of the through hole of the header plate 110 and the outer peripheral surface of the tube 300 is brazed to the entire surface in a watertight manner.
  • the tank plate 120 is a member for defining a space for storing the heat medium.
  • the tank plate 120 is disposed so as to cover the header plate 110 from below, that is, from the side opposite to the tubes 300.
  • the tank plate 120 is formed of a resin.
  • the tank plate 120 is fixed to the header plate 110 by caulking a part of the header plate 110.
  • a sealing member (not shown) is sandwiched between the header plate 110 and the tank plate 120. This prevents the heat medium from leaking out from between the two.
  • the joint 130 receives a heat medium supplied from the outside and guides the heat medium to a space inside the inlet tank 100.
  • a pipe (not shown) for supplying a heat medium to the heat exchanger 10 is connected to the joint 130.
  • the joint part 130 is provided at a position of an end along the longitudinal direction in the inlet-side tank 100.
  • the heat medium supplied to the joint portion 130 is distributed to the respective tubes 300 while flowing along the inside of the inlet-side tank 100 in the longitudinal direction.
  • the outlet tank 200 is a container for receiving the heat medium that has passed through each tube 300 and discharging the heat medium to the outside.
  • the outlet side tank 200 is disposed at a position vertically below the inlet side tank 100.
  • the outlet tank 200 has a header plate 210, a tank plate 220, and a joint 230.
  • the header plate 210 is a substantially flat plate-shaped member. Header plate 210 is formed of metal. The shape of the header plate 210 is substantially the same as the shape of the header plate 110 shown in FIG. A plurality of through holes are formed in the header plate 210, and the upper end of each tube 300 is inserted into each through hole from below. The portion between the edge of the through hole of the header plate 210 and the outer peripheral surface of the tube 300 is brazed to the entire surface in a watertight manner.
  • the tank plate 220 is a member for defining a space for storing the heat medium.
  • the tank plate 220 is arranged so as to cover the header plate 210 from the upper side, that is, from the side opposite to the tube 300.
  • the tank plate 220 is formed of a resin.
  • the tank plate 220 is fixed to the header plate 210 by caulking a part of the header plate 210.
  • a sealing member (not shown) is sandwiched between the header plate 210 and the tank plate 220. This prevents the heat medium from leaking out from between the two.
  • the joint 230 is a portion configured as an outlet for discharging the heat medium stored inside the outlet tank 200 to the outside.
  • a pipe (not shown) for discharging the heat medium from the heat exchanger 10 is connected to the joint 230.
  • the joint portion 230 is provided at a position of an end portion along the longitudinal direction in the outlet side tank 200.
  • the end on which the joint 230 is provided is the end on the same side as the joint 130 on the inlet-side tank 100.
  • the heat medium supplied to the inside of the outlet side tank 200 through each tube 300 flows inside the outlet side tank 200 along the above-described longitudinal direction, and is then discharged to the outside from the joint 230.
  • the tube 300 is a tubular member having a flow path through which the heat medium passes.
  • a plurality of tubes 300 are provided in the heat exchanger 10.
  • Each of the tubes 300 is arranged at a position between the inlet-side tank 100 and the outlet-side tank 200 in a state where the longitudinal direction thereof is along the vertical direction.
  • the tubes 300 are stacked together with the fins 400 described below, and are arranged so as to be arranged along the longitudinal direction of the inlet-side tank 100 and the outlet-side tank 200. Therefore, the direction in which the stacked tubes 300 are arranged is also referred to as a “stacking direction” below.
  • the laminating direction is the left-right direction in FIG.
  • the lower end of the tube 300 is connected to the header plate 110 of the inlet-side tank 100, and the upper end of the tube 300 is connected to the header plate 210 of the outlet-side tank 200.
  • the internal space of the inlet-side tank 100 and the internal space of the outlet-side tank 200 are connected by a flow path formed in the tube 300. The specific configuration of the tube 300 will be described later.
  • the fin 400 is a corrugated fin formed by bending a metal plate into a wave shape.
  • a plurality of fins 400 are provided in the heat exchanger 10, and are arranged between the tubes 300.
  • the fin 400 is in contact with each of a pair of tubes 300 arranged on both left and right sides thereof and is brazed.
  • the portion of the heat exchanger 10 where the tubes 300 and the fins 400 are alternately stacked is a portion where the heat exchange between the heat medium passing through the inside of the tube 300 and the air passing outside the tube 300 is performed. Is performed, and is a so-called “heat exchange core part”. Side plates 11 and 12 are arranged in the end portions of the heat exchange core portion on both left and right sides.
  • the side plates 11 and 12 are plate-like members formed by bending a metal plate, and are arranged so as to extend along the same direction as the longitudinal direction of the tube 300.
  • the side plate 11 is arranged at a position which is the end of the heat exchange core portion closest to the joint portion 130 along the stacking direction.
  • the side plate 12 is arranged at a position which is the end of the heat exchange core portion that is closest to the joint portion 130 in the stacking direction.
  • the side plates 11 and 12 sandwich the heat exchange core from both sides along the stacking direction. Thereby, the rigidity of the heat exchange core portion is increased.
  • a high-temperature heat medium that has passed through an internal combustion engine (not shown) is supplied from the joint 130 to the inside of the inlet-side tank 100.
  • the heat medium is supplied to each tube 300 while flowing inside the inlet-side tank 100 along the laminating direction.
  • the heat medium flows upward in each of the tubes 300 and is supplied to the inside of the outlet tank 200.
  • a fan (not shown) that sends out air so as to pass through the heat exchange core is provided near the heat exchanger 10.
  • the direction in which air is sent out by the fan is a direction from the near side to the far side in FIG.
  • the heat medium is cooled by the air when flowing through the flow path formed in the tube 300 as described above.
  • the air that is, the air sent out by the fan, is heated by the heat medium when passing around the tube 300 to increase the temperature.
  • the air is blown into the vehicle interior as, for example, air-conditioning air for heating.
  • the direction that is horizontal and goes from the near side to the far side of the paper is the x direction, and the x axis is set along the direction.
  • the x direction is a direction in which air passes through the heat exchanger 10 as described above.
  • the direction that is horizontal and goes from the joint 130 to the inside of the inlet-side tank 100 is the y direction, and the y axis is set along the direction.
  • the lamination direction is a direction along the y-axis.
  • a direction perpendicular to both the x direction and the z direction and from the inlet-side tank 100 to the outlet-side tank 200 is defined as the z direction.
  • the z direction a direction perpendicular to both the x direction and the z direction and from the inlet-side tank 100 to the outlet-side tank 200.
  • the configuration of the heat exchanger 10 will be described using the x-direction, y-direction, z-direction, x-axis, y-axis, and z-axis defined above.
  • FIG. 2 is a perspective view showing a portion of the tube 300 near the end on the ⁇ z direction side.
  • two flow paths including a first flow path FP1 and a second flow path FP2 are formed as flow paths for the heat medium. These are all formed so as to extend linearly along the longitudinal direction of the tube 300.
  • the tube 300 in the present embodiment is formed by bending a single metal plate.
  • the tube 300 has a flat cross section perpendicular to the longitudinal direction.
  • the first flow path FP1 is formed in a portion on the ⁇ x direction side of the tube 300.
  • the second flow path FP2 is formed in a portion on the x direction side of the tube 300. The two are separated by a partition formed by bending the metal plate. The portion where the partition and the end of the metal plate overlap is water-tightly brazed.
  • the x direction in which the first flow path FP1 and the second flow path FP2 are arranged is a direction in which air passes along the tube 300 as described above, and is a direction perpendicular to the laminating direction. Since the direction is a direction along the width of the tube 300, the direction is hereinafter also referred to as a "width direction".
  • a first flow path FP1 and a second flow path FP2, which are flow paths through which the heat medium passes, are formed so as to be arranged along the width direction.
  • the above-mentioned partition is formed at a position in the center of the tube 300 along the width direction. Therefore, the dimension of the first flow path FP1 along the width direction is equal to the dimension of the second flow path FP2 along the width direction.
  • the cross-sectional shape of the first flow path FP1 and the cross-sectional shape of the second flow path FP2 are symmetric with each other.
  • the mode of the tube 300 having the first flow path FP1 and the second flow path FP2 may be different from the above.
  • the tube 300 may be formed by extruding a metal.
  • the tube 300 having the first flow path FP1 and the second flow path FP2 may be configured by arranging two independent tubular members along the width direction. In this case, the entire two tubular members correspond to one “tube 300”.
  • a flow path different from the first flow path FP1 and the second flow path FP2 is formed in the tube 300, and the flow path is formed along the width direction together with the first flow path FP1 and the second flow path FP2. It is also possible to adopt a mode where they are arranged side by side.
  • FIG. 3 and 4 show the internal configuration of the inlet-side tank 100 in the vicinity of the joint 130.
  • FIG. Although a plate-shaped member PL is arranged inside the inlet-side tank 100 as shown in FIG. 4, it is not shown in FIG.
  • the tip of the tube 300 projects from the header plate 110 along the z-axis.
  • the amount of protrusion is the same for all tubes 300.
  • the distal end surfaces of the tubes 300 are arranged on the same plane. Note that this arrangement is only for design. In practice, some or all of the tip surfaces may be slightly displaced from the plane due to dimensional variations of components and the like.
  • a plate-shaped member PL is disposed inside the inlet-side tank 100.
  • the plate-like member PL is a flat plate-like member, and a rectangular shape when viewed along the z-axis.
  • the plate-like member PL is arranged with its long side extending along the y direction. That is, the plate members PL are arranged to extend along the laminating direction.
  • the plate-shaped member PL is fixed in a state where its main surface is in contact with the ends of all the tubes 300. An opening that is an end of the first flow path FP1 or the second flow path FP2 is formed on the distal end surface of the tube 300. In the portion covered by the plate member PL, each flow path is formed. Is suppressed from flowing into the heat medium.
  • the plate-shaped member PL is provided to suppress the flow of the heat medium in at least one of the first flow path FP1 and the second flow path FP2 within a certain range along the width direction. Such a plate-like member PL corresponds to the “suppression part” in the present embodiment.
  • the plate-shaped member PL covers the entire entrance of the second flow path FP2 and a part of the entrance of the first flow path FP1.
  • the term “suppression” means that the inflow of the heat medium into the portion is completely shut off. Note that a slight gap is formed between the plate member PL and the end of the tube 300 due to bending of the surface of the plate member PL or the like, and a small amount of the heat medium flows through the gap. It may flow into the road FP2 or the like. However, in order to sufficiently suppress the flow of the heat medium by the plate-shaped member PL and to suppress the variation in the flow rate of the heat medium flowing into each tube 300, the size of the gap is at most 1 mm. Is preferred.
  • FIG. 5 (A) An example of a specific configuration for bringing the plate member PL into contact with the distal end surface of the tube 300 will be described with reference to FIG.
  • the plate-shaped member PL is formed of metal
  • the plate-shaped member PL is fixed to the distal end surface of the tube 300 by brazing.
  • a plurality of legs 710 and 720 are formed on the plate-shaped member PL.
  • Each of the legs 710 and 720 protrudes toward the inner surface of the tank plate 120, and the tip thereof contacts the inner surface of the tank plate 120.
  • the plate-shaped member PL is pressed against the distal end surface of the tube 300 by receiving the force from the legs 710 and 720.
  • a configuration of such a leg for example, a configuration similar to that described in Japanese Patent No. 4830918 can be adopted.
  • the entire plate member PL including the legs 710 and 720 can be formed of resin.
  • the plate member PL is formed of a plate member having elasticity.
  • the member has a column 730 and a contact portion 740 in addition to the plate-like member PL, and the whole is bent.
  • the column portion 730 extends from the end on the ⁇ x direction side of the plate-shaped member PL in the ⁇ z direction, and the tip thereof contacts the inner surface of the tank plate 120.
  • the contact portion 740 extends from the end of the support portion 730 in the ⁇ z direction toward the ⁇ x direction. Almost the entire surface of the contact portion 740 on the ⁇ z direction side is in contact with the inner surface of the tank plate 120.
  • the plate-shaped member PL is pressed against the distal end surface of the tube 300 by receiving a force from the column 730.
  • FIG. 5 (C) shows a state where the member including the plate-shaped member PL is bent when the member is inserted into the inlet-side tank 100. After the member is inserted into the inlet-side tank 100, the member is deformed in the direction of the arrow by the elastic force, and the contact portion 740 comes into contact with the inner surface of the tank plate 120 as described above.
  • the entirety of the plate-like member PL, the support portion 730, and the contact portion 740 in this example can also be formed of resin.
  • a range W1 shown in FIG. 6 is a range along the width direction of the entire flow path including the first flow path FP1 and the second flow path FP2.
  • the position indicated by the arrow AR1 is the center position of the range W1 along the width direction.
  • a range W2 shown in FIG. 6 is a range along the width direction of a portion of the entire flow passage where the flow of the heat medium is suppressed by the plate-like member PL.
  • the position indicated by the arrow AR2 is the center position of the range W2 along the width direction.
  • the plate member PL is arranged at a position closer to the x direction along the width direction. Therefore, the center position indicated by the arrow AR2 is different from the entire center position indicated by the arrow AR1.
  • the plate-shaped member PL serving as a suppression unit is provided to increase the flow resistance of the heat medium flowing through the tubes 300, thereby suppressing the flow rate variation of the heat medium flowing into each tube 300.
  • the two center positions are not made coincident with each other, but are made different from each other, thereby further increasing the flow path resistance.
  • FIG. 7 shows the relationship between the width of the opening along the width direction of one flow path and the flow path resistance of the flow path.
  • the width of the opening along the horizontal axis may be referred to as the opening area of a portion of the flow channel that is not closed by the plate-like member PL.
  • the relationship between the width of the opening and the flow path resistance is not a linear relationship.
  • the width of the opening is reduced to some extent and the width is further reduced, the flow path resistance tends to increase rapidly.
  • the width of the opening is increased to some extent and the width is further increased, the flow path resistance is slightly reduced.
  • the flow path resistance in each tube 300 is increased by shifting the position of the plate member PL to the x direction side as described above. As a result, even if a pressure difference of the heat medium occurs inside the inlet-side tank 100, it is possible to suppress a variation in the flow rate of the heat medium flowing into each tube 300.
  • FIG 8A is a graph showing the distribution of the flow rate of the heat medium flowing into each tube 300 in the first comparative example when the plate-shaped member PL is not provided.
  • the abscissa of the figure indicates the y coordinate of each tube 300, and the ordinate of the figure indicates the flow rate of the heat medium flowing into the tubes 300.
  • the line L1 when the plate-shaped member PL is not provided, the flow rate is large in the tube 300 on the ⁇ y direction side close to the joint portion 130, and the y direction side far from the joint portion 130. In the tube 300, the flow rate is small.
  • a line L2 shown on the left side of FIG. 8B indicates a flow rate of the heat medium flowing into each tube 300 in the second comparative example in the case where the plate-shaped member PL is provided at the center in the width direction. It is a graph which shows distribution. The same line L1 as in FIG. 8A is shown on the left side of FIG. 8B for comparison.
  • the plate-shaped member PL is provided at the center position in the width direction, that is, the center position indicated by the arrow AR2 in FIG. 6 is changed to the entire center position indicated by the arrow AR1.
  • the variation in the flow rate of the heat medium flowing into each tube 300 is smaller than that in the first comparative example indicated by the line L1.
  • the flow rate is still high in the tube 300 on the ⁇ y direction side close to the joint part 130, and the flow rate is low in the tube 300 on the y direction side far from the joint part 130. Therefore, there is room for further improvement from the viewpoint of suppressing variations in the flow rate.
  • a line L3 shown on the left side of FIG. 8C is a graph showing the distribution of the flow rate of the heat medium flowing into each tube 300 in the present embodiment.
  • the same line L2 as in FIG. 8B is shown on the left side of FIG. 8C for comparison.
  • the flow rate of the heat medium in the tube 300 on the ⁇ y direction side near the joint portion 130 and the flow rate of the heat medium in the tube 300 on the y direction side far from the joint portion 130 are substantially equal.
  • the table shown on the left side of FIG. 9A shows the temperature distribution of the air passing through each part of the heat exchange core in the first comparative example of FIG. 8A. Further, the table shown on the left side of FIG. 10A shows the value of each cell in the table of FIG. 9A as an increase from the average value of the row to which the cell belongs.
  • the flow rate of the heat medium is large in the tube 300 on the ⁇ y direction side near the joint portion 130. For this reason, the temperature of the air passing through the portion on the ⁇ y direction side tends to be higher than the temperature of the air passing through the other portions. That is, in the first comparative example in which the plate-shaped member PL is not provided, the heat exchange in the heat exchanger 10 is not uniformly performed as a whole, but is performed in a portion close to the joint 130. As a result, the efficiency of heat exchange is reduced.
  • the table shown on the left side of FIG. 9B shows the temperature distribution of the air passing through each part of the heat exchange core in the second comparative example of FIG. 8B.
  • the table shown on the left side of FIG. 10B shows the value of each cell in the table of FIG. 9B as an increase from the average value of the row to which the cell belongs.
  • the air is larger than in the first comparative example. Is suppressed. However, the temperature of the air passing through the portion on the ⁇ y direction side of the heat exchange core portion still tends to be higher than the temperature of the air passing through the other portions.
  • the table shown on the left side of FIG. 9 (C) shows the temperature distribution of air passing through each part of the heat exchange core in the present embodiment of FIG. 8 (C).
  • the table on the left side of FIG. 10C shows the value of each cell in the table of FIG. 9C as an increase from the average value of the row to which the cell belongs.
  • the plate-shaped member PL serving as the suppression unit is disposed at a position so as to block the entrance of each tube 300.
  • a mode in which the plate-shaped member PL is disposed at a position that closes the outlet portion of each tube 300 may be adopted.
  • the plate-shaped member PL is disposed inside the outlet-side tank 200 instead of the inlet-side tank 100.
  • the plate-like member PL serving as the suppression unit may be arranged at a position that blocks both the inlet and the outlet of each tube 300.
  • two plate-shaped members PL are provided, and are disposed both inside the inlet-side tank 100 and inside the outlet-side tank 200.
  • the plate-shaped member PL arranged inside the inlet-side tank 100 and the plate-shaped member PL arranged inside the outlet-side tank 200 are arranged at positions that completely overlap when viewed along the z direction. Alternatively, they may be arranged at positions shifted from each other when viewed along the z direction.
  • one plate member PL may be arranged at a position closer to the x direction side, while the other plate member PL may be arranged at a position closer to the ⁇ x direction side. Further, the positional relationship between the two along the y direction may be shifted from each other.
  • the suppressing portions in this embodiment that is, the arrangement of the plate member PL will be described again with reference to FIG.
  • "W11” indicates a dimension along the width direction of the first flow path FP1.
  • “W21” is a dimension along the width direction of a portion of the first flow path FP1 where the flow of the heat medium is suppressed by the suppression unit.
  • the ratio of the dimension along the width direction of the portion of the flow channel in which the flow of the heat medium is suppressed by the suppression unit to the dimension along the width direction of the flow channel is referred to as the “flow channel” Suppression rate ".
  • the suppression rate of the first flow path FP1 is “W21 / W11 ⁇ 100 (%)”.
  • “W12” indicates a dimension along the width direction of the second flow path FP2.
  • “W22” is a dimension along the width direction of a portion of the second flow path FP2 where the flow of the heat medium is suppressed by the suppression unit. Therefore, in the example of FIG. 11, the suppression rate of the second flow path FP2 is “W22 / W12 ⁇ 100 (%)”.
  • the plate-like member PL which is the suppressing portion, is disposed at a position closer to the x direction, the suppression rate of the first flow path FP1 and the suppression rate of the second flow path FP2 are different from each other.
  • the suppression rate of the second flow path FP2 is larger.
  • the flow path resistance in the tube 300 is higher than in the second comparative example as shown in FIG. 8B.
  • the configuration of the heat exchanger 10 according to the present embodiment has a configuration in which the suppression unit is provided such that the suppression rate of the first flow path FP1 and the suppression rate of the second flow path FP2 are different from each other. Can also be called.
  • a modified example of the first embodiment will be described with reference to FIG.
  • FIG. 12A shows the configuration in the first embodiment described above for reference.
  • reference numeral 301 denotes a partition formed between the first flow path FP1 and the second flow path FP2.
  • the partition is also referred to as a “partition 301”.
  • FIG. 12B shows the configuration of the first comparative example.
  • the partition 301 is provided at a position closer to the ⁇ x direction side than the center position of the tube 300 along the x direction. Therefore, the dimension of the first flow path FP1 along the width direction is smaller than the dimension of the second flow path FP2 along the width direction.
  • the center position along the width direction of the plate member PL is the center position along the width direction of the entire flow path including the first flow path FP1 and the second flow path FP2, that is, x of the tube 300. Coincides with the center position along the direction.
  • the partition 301 is disposed at a position closer to the ⁇ x direction side as described above. Therefore, also in the first comparative example, the suppression rate of the first flow path FP1 and the suppression rate of the second flow path FP2 are different from each other, and the suppression rate of the second flow path FP2 is larger. Also in such a configuration, the flow path resistance in the tube 300 can be increased.
  • FIG. 12C shows the configuration of the second comparative example.
  • a third flow path FP3 is formed in the tube 300 in addition to the first flow path FP1 and the second flow path FP2.
  • the third flow path FP3 is also formed as a flow path through which the heat medium passes, like the first flow path FP1 and the like.
  • reference numeral 302 denotes a partition formed between the second flow path FP2 and the third flow path FP3.
  • the dimension along the width direction of the first flow path FP1, the dimension along the width direction of the second flow path FP2, and the dimension along the width direction of the third flow path FP3 are mutually different. Are equal.
  • the center position along the width direction of the plate member PL is the center along the width direction of the entire flow path including the first flow path FP1, the second flow path FP2, and the third flow path FP3.
  • the position corresponds to the center position of the tube 300 along the x direction.
  • the plate-like member PL serving as the suppression unit is so arranged as to partially overlap the first flow path FP1, the entire second flow path FP2, and the third flow path FP3. Are located. Therefore, also in the second comparative example, the suppression rate of the first flow path FP1 and the suppression rate of the second flow path FP2 are different from each other, and the suppression rate of the second flow path FP2 is larger. Also in such a configuration, the flow path resistance in the tube 300 can be increased.
  • the plate member PL in this modification covers a part of the entrance of the second flow path FP2 and a part of the entrance of the first flow path FP1. That is, the portion of the second flow path FP2 near the end in the x direction is not covered with the plate-shaped member PL and is open.
  • the plate member PL is arranged at a position shifted toward the x direction.
  • the center position indicated by the arrow AR2 is different from the entire center position indicated by the arrow AR1.
  • the suppression rate of the first flow path FP1 and the suppression rate of the second flow path FP2 are different from each other, and the suppression rate of the second flow path FP2 is larger. Even in such a mode, the same effects as those described in the first embodiment can be obtained.
  • the range W2 in which the flow path is closed by the plate-like member PL is a range that extends over both the first flow path FP1 and the second flow path FP2 as in the first embodiment and the above-described modification. Alternatively, it may be a range that covers a part or all of only one flow path.
  • the inventors have confirmed that, of the first flow path FP1 and the second flow path FP2, the suppression rate of the one in which the flow of the heat medium is largely suppressed by the suppression unit is 70% or less. Then, it has been found that the pressure loss in the flow path does not become sufficiently large, and the above-described effects cannot be sufficiently obtained.
  • a ratio occupied along the width direction by a range in which the flow of the heat medium is suppressed by the suppression unit that is, Preferably, the suppression rate exceeds 70%. This is the same for other embodiments such as the second embodiment described below.
  • a second embodiment will be described with reference to FIG.
  • points different from the first embodiment will be mainly described, and description of points common to the first embodiment will be appropriately omitted.
  • the plate member PL is not provided, and the cap 500 is provided instead.
  • the same number of caps 500 as the plurality of tubes 300 are provided, and the caps 500 are individually attached to the ends of the tubes 300.
  • the cap 500 has a flange portion 510 and an insertion portion 520.
  • Flange portion 510 is a plate-like portion that covers a part of the distal end surface of tube 300. In the portion covered by the flange portion 510, the inflow of the heat medium toward the inside of the tube 300 is suppressed. Note that “suppression” in the above also means that in the present embodiment, the flow of the heat medium into the relevant portion is completely shut off.
  • the flange portion 510 in the present embodiment covers the entire entrance of the second flow path FP2 and a part of the entrance of the first flow path FP1.
  • the cap 500 having such a flange portion 510 corresponds to the “suppression portion” in the present embodiment. Note that even if a small gap is formed between the flange portion 510 and the tube 300 due to dimensional variation of the components, or a small amount of heat medium flows into the second flow path FP2 from the gap. Good.
  • the insertion portion 520 is a plate-shaped portion formed to protrude from the surface of the flange portion 510 on the z-direction side toward the z-direction side.
  • the dimension of the insertion section 520 along the y-axis is substantially equal to the inner dimension of the second flow path FP2 along the same direction.
  • the dimension of the insertion portion 520 along the x-axis is slightly smaller than the inner size of the second flow path FP2 along the same direction.
  • Such an insertion portion 520 is a portion for fixing the flange portion 510 by being inserted and fitted inside the second flow path FP2.
  • a range W1 shown in FIG. 14 is a range along the width direction of the entire flow path including the first flow path FP1 and the second flow path FP2.
  • the position indicated by the arrow AR1 is the center position of the range W1 along the width direction.
  • the range W2 shown in FIG. 14 is a range along the width direction of a portion of the entire flow channel where the flow of the heat medium is suppressed by the flange portion 510 of the cap 500.
  • the position indicated by the arrow AR2 is the center position of the range W2 along the width direction.
  • the cap 500 that is the suppression unit is disposed at a position closer to the x direction along the width direction. Therefore, the center position indicated by the arrow AR2 is different from the entire center position indicated by the arrow AR1. Also in the present embodiment, the suppression rate of the first flow path FP1 and the suppression rate of the second flow path FP2 are different from each other, and the suppression rate of the second flow path FP2 is larger. Even in such a mode, the same effects as those described in the first embodiment can be obtained.
  • a third embodiment will be described with reference to FIG. In the following, points different from the first embodiment will be mainly described, and description of points common to the first embodiment will be appropriately omitted.
  • the plate-shaped member PL is not provided, and the padding 600 is provided instead.
  • the fillings 600 are arranged at positions inside the respective tubes 300. In a portion of the inside of the tube 300 where the filling 600 is arranged, the flow of the heat medium passing through the portion is suppressed. Note that “suppression” in the above description also means to completely shut off the flow of the heat medium in the relevant portion in the present embodiment.
  • the padding 600 corresponds to the “suppression unit” in the present embodiment.
  • the padding 600 is arranged so as to cover the entire inlet-side end of the second flow path FP2.
  • a material such as resin or rubber can be used. Note that a small gap may be formed between the filling 600 and the tube 300 due to dimensional variations of the components, or a small amount of heat medium may flow into the second flow path FP2 from the gap. .
  • a range W1 shown in FIG. 15 is a range along the width direction of the entire flow path including the first flow path FP1 and the second flow path FP2.
  • the position indicated by the arrow AR1 is the center position of the range W1 along the width direction.
  • a range W2 shown in FIG. 15 is a range along the width direction of a portion of the entire flow channel where the flow of the heat medium is suppressed by the filler 600.
  • the position indicated by the arrow AR2 is the center position of the range W2 along the width direction.
  • the padding 600 that is the suppression unit is arranged at a position closer to the x direction along the width direction. Therefore, the center position indicated by the arrow AR2 is different from the entire center position indicated by the arrow AR1. Also in the present embodiment, the suppression rate of the first flow path FP1 and the suppression rate of the second flow path FP2 are different from each other, and the suppression rate of the second flow path FP2 is larger. Even in such a mode, the same effects as those described in the first embodiment can be obtained.
  • the range in which the padding 600 is arranged may be the entirety in the width direction of the second flow path FP2 as in the present embodiment, but is only a part in the width direction of the second flow path FP2. Is also good. Moreover, the range in which the filling 600 is arranged may be such that it covers a part of the first flow path FP1.
  • a fourth embodiment will be described with reference to FIG.
  • points different from the first embodiment will be mainly described, and description of points common to the first embodiment will be appropriately omitted.
  • each tube 300 is changed instead.
  • a part of each tube 300 that defines the second flow path FP ⁇ b> 2 is deformed such that the dimension along the stacking direction is reduced. That is, it is deformed so that the width along the y direction becomes smaller.
  • the deformed portion is shown as a deformed portion 300A. In the deformed portion 300A of the inlet-side end of the second flow path FP2, the flow of the heat medium passing through the portion is suppressed.
  • compression in the above description does not completely shut off the flow of the heat medium in the relevant portion, but means to reduce the flow rate of the heat medium as compared with the portion other than the deformed portion 300A.
  • the deformation unit 300A corresponds to the “suppression unit” in the present embodiment.
  • the suppressing portion in the present embodiment is formed by making the size of each tube 300 along the laminating direction smaller at some portions along the width direction than at other portions.
  • a range W1 shown in FIG. 16 is a range along the width direction of the entire flow path including the first flow path FP1 and the second flow path FP2.
  • the position indicated by the arrow AR1 is the center position of the range W1 along the width direction.
  • the range W2 shown in FIG. 16 is a range along the width direction of the deformed portion 300A in the entire flow path.
  • the position indicated by the arrow AR2 in FIG. 16 is the center position of the range W2 along the width direction.
  • the deformed portion 300A which is a suppressing portion, is arranged at a position closer to the x direction along the width direction. Therefore, the center position indicated by the arrow AR2 is different from the entire center position indicated by the arrow AR1. Also in the present embodiment, the suppression rate of the first flow path FP1 and the suppression rate of the second flow path FP2 are different from each other, and the suppression rate of the second flow path FP2 is larger. Even in such a mode, the same effects as those described in the first embodiment can be obtained.
  • the flow path may not be completely blocked as in the present embodiment, but may be in a mode in which the flow path in the deformed portion 300A is completely blocked.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

熱交換器(10)は、積層方向に沿って並ぶように配置された複数のチューブ(300)を備える。前記積層方向に対して垂直な方向であって、前記チューブに沿って空気が通過する方向を幅方向としたときに、それぞれの前記チューブには、熱媒体の通る流路として、少なくとも第1流路(FP1)及び第2流路(FP2)が、前記幅方向に沿って並ぶように形成されている。熱交換器(10)には、前記第1流路及び前記第2流路のうち少なくとも一方における熱媒体の流れを、前記幅方向に沿った一定範囲において抑制する抑制部(PL,500,600,300A)が設けられており、前記幅方向における前記一定範囲の中心位置が、前記幅方向における前記第1流路及び前記第2流路の全体の中心位置とは異なっている。

Description

熱交換器 関連出願の相互参照
 本出願は、2018年7月12日に出願された日本国特許出願2018-132477号と、2019年3月18日に出願された日本国特許出願2019-050140号と、に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。
 本開示は、空気と熱媒体との間で熱交換を行う熱交換器に関する。
 空気と熱媒体との間で熱交換を行う熱交換器としては、例えば、車両に設けられるラジエータや、空調装置に設けられるヒータコア等が挙げられる。このような熱交換器は、入口側タンクと出口側タンクとの間が、複数のチューブによって接続された構成となっている。それぞれのチューブでは、内側の流路を通る熱媒体と、外側の空間を通る空気との間で熱交換が行われる。
 このような構成の熱交換器においては、全体で均等に熱交換が行われるように、入口側タンクから、それぞれのチューブに対して均等に熱媒体を流入させることが好ましい。しかしながら、入口側タンクのうち、外部からの熱媒体を受け入れる流入口の近傍に配置されたチューブには、流入口から遠い位置に配置されたチューブに比べて、より多くの熱媒体が流入する傾向がある。
 そこで、下記特許文献1に記載されている熱交換器では、それぞれのチューブの端部を板状の部材によって一部塞ぐことにより、各チューブに流入する熱媒体の流量のばらつきを抑制している。
特許第4830918号公報
 上記特許文献に記載されている熱交換器では、チューブに形成された流路の入口のうち、チューブの幅方向、すなわち空気が通過する方向における中央となる部分が板状の部材によって塞がれている。本発明者らが行った実験によれば、このような構成においては、板状の部材を配置したことによるばらつき抑制の効果が十分ではなく、流入口の近傍に配置されたチューブには依然として大きな流量の熱媒体が流入することが判明している。
 本開示は、それぞれのチューブに流入する熱媒体の流量のばらつきを十分に抑制することのできる熱交換器、を提供することを目的とする。
 本開示に係る熱交換器は、空気と熱媒体との間で熱交換を行う熱交換器であって、熱媒体の通る流路が形成された管状の部材であって、積層方向に沿って並ぶように配置された複数のチューブと、それぞれのチューブに熱媒体を供給する入口側タンクと、それぞれのチューブを通った熱媒体を受け入れる出口側タンクと、を備える。積層方向に対して垂直な方向であって、チューブに沿って空気が通過する方向を幅方向としたときに、それぞれのチューブには、熱媒体の通る流路として、少なくとも第1流路及び第2流路が、幅方向に沿って並ぶように形成されている。この熱交換器には、第1流路及び第2流路のうち少なくとも一方における熱媒体の流れを、幅方向に沿った一定範囲において抑制する抑制部が設けられている。幅方向における上記一定範囲の中心位置は、幅方向における第1流路及び第2流路の全体の中心位置とは異なっている。
 このような構成の熱交換器では、チューブに形成された第1流路及び第2流路のそれぞれにおける熱媒体の流れが、抑制部によって均等に抑制されるのではなく、一方における流れが他方における流れに比べて大きく抑制される。この場合、それぞれの流れが同じ一定範囲において均等に抑制される場合に比べると、1本のチューブ全体に流入する熱媒体の流量は大きく抑制されることとなる。その結果、それぞれのチューブに流入する熱媒体の流量のばらつきを十分に抑制することが可能となる。
 本開示に係るもう一つの熱交換器は、空気と熱媒体との間で熱交換を行う熱交換器であって、熱媒体の通る流路が形成された管状の部材であって、積層方向に沿って並ぶように配置された複数のチューブと、それぞれのチューブに熱媒体を供給する入口側タンクと、それぞれのチューブを通った熱媒体を受け入れる出口側タンクと、を備える。積層方向に対して垂直な方向であって、チューブに沿って空気が通過する方向を幅方向としたときに、それぞれのチューブには、熱媒体の通る流路として、少なくとも第1流路及び第2流路が、幅方向に沿って並ぶように形成されている。第1流路及び第2流路のうち少なくとも一方における熱媒体の流れを、幅方向に沿った一定範囲において抑制する抑制部が設けられている。流路の幅方向に沿った寸法に対する、当該流路のうち抑制部によって熱媒体の流れが抑制されている部分の幅方向に沿った寸法の割合のことを、当該流路の抑制率としたときに、抑制部は、第1流路の抑制率と、第2流路の抑制率と、が互いに異なるように設けられている。
 このような構成の熱交換器においても、先に述べた構成の熱交換器と同様に、チューブに形成された第1流路及び第2流路のそれぞれにおける熱媒体の流れが、抑制部によって均等に抑制されるのではなく、一方における流れが他方における流れに比べて大きく抑制される。その結果、それぞれのチューブに流入する熱媒体の流量のばらつきを十分に抑制することが可能となる。
 本開示によれば、それぞれのチューブに流入する熱媒体の流量のばらつきを十分に抑制することのできる熱交換器、が提供される。
図1は、第1実施形態に係る熱交換器の全体構成を示す図である。 図2は、図1の熱交換器が備えるチューブの構成を示す図である。 図3は、図1の熱交換器のうち、入口タンクの内側の構成を示す図である。 図4は、図1の熱交換器のうち、入口タンクの内側の構成を示す図である。 図5は、板状部材をチューブの先端面に当接させるための構成について説明するための図である。 図6は、図1の熱交換器に設けられた抑制部の構成及び配置を示す図である。 図7は、チューブの流路における開口の幅と、当該流路を流れる熱媒体の流路抵抗と、の関係を示す図である。 図8は、各チューブを流れる熱媒体の流量の分布を示す図である。 図9は、熱交換器の各部を通った空気の温度分布を示す図である。 図10は、熱交換器の各部を通った空気の温度分布を示す図である。 図11は、図1の熱交換器に設けられた抑制部の構成及び配置を示す図である。 図12は、第1実施形態の変形例に係る熱交換器の構成を示す図である。 図13は、第1実施形態の他の変形例に係る熱交換器に設けられた、抑制部の構成及び配置を示す図である。 図14は、第2実施形態に係る熱交換器に設けられた、抑制部の構成及び配置を示す図である。 図15は、第3実施形態に係る熱交換器に設けられた、抑制部の構成及び配置を示す図である。 図16は、第4実施形態に係る熱交換器に設けられた、抑制部の構成及び配置を示す図である。
 以下、添付図面を参照しながら本実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。
 第1実施形態について説明する。本実施形態に係る熱交換器10は、空気と熱媒体との間で熱交換を行うための熱交換器であって、車両用空調装置に設けられる所謂「ヒータコア」として構成されている。熱交換器10では、外部から供給される高温の冷却水が熱媒体として用いられ、当該熱媒体との熱交換によって空気の加熱が行われる。図1に示されるように、熱交換器10は、入口側タンク100と、出口側タンク200と、チューブ300と、フィン400と、を備えている。
 入口側タンク100は、外部から供給される熱媒体を受け入れて、これをそれぞれのチューブ300に分配し供給するための容器である。入口側タンク100は、略円柱形状の細長い容器として形成されており、その長手方向を水平方向に沿わせた状態で配置されている。入口側タンク100は、ヘッダプレート110と、タンクプレート120と、ジョイント部130と、を有している。
 ヘッダプレート110は、概ね平坦な板状の部材である。ヘッダプレート110は金属によって形成されている。図3に示されるように、ヘッダプレート110には複数の貫通穴が形成されており、それぞれの貫通穴に、それぞれのチューブ300の下端部が上方側から挿通されている。ヘッダプレート110のうち上記貫通穴の縁の部分と、チューブ300の外周面との間は、全周に亘って水密にろう接されている。
 タンクプレート120は、熱媒体を貯える空間を区画するための部材である。タンクプレート120は、ヘッダプレート110を下方側、すなわちチューブ300とは反対側から覆うように配置されている。タンクプレート120は樹脂によって形成されている。タンクプレート120は、ヘッダプレート110の一部を加締めることにより、ヘッダプレート110に対して固定されている。ヘッダプレート110とタンクプレート120との間には、不図示のシール部材が挟み込まれている。これにより、両者の間から熱媒体が外部に漏出することが防止されている。
 ジョイント部130は、外部から供給される熱媒体を受け入れて、これを入口側タンク100の内側の空間へと導くものである。ジョイント部130には、熱交換器10に熱媒体を供給するための不図示の配管が接続される。ジョイント部130は、入口側タンク100のうち、長手方向に沿った端部となる位置に設けられている。ジョイント部130に供給された熱媒体は、入口側タンク100の内側を上記長手方向に沿って流れながら、それぞれのチューブ300へと分配されていく。
 出口側タンク200は、それぞれのチューブ300を通った熱媒体を受け入れて、これを外部へと排出するための容器である。出口側タンク200は、入口側タンク100の鉛直下方となる位置に配置されている。出口側タンク200は、ヘッダプレート210と、タンクプレート220と、ジョイント部230と、を有している。
 ヘッダプレート210は、概ね平坦な板状の部材である。ヘッダプレート210は金属によって形成されている。ヘッダプレート210の形状は、図3に示されるヘッダプレート110の形状と概ね同一である。ヘッダプレート210には複数の貫通穴が形成されており、それぞれの貫通穴に、それぞれのチューブ300の上端部が下方側から挿通されている。ヘッダプレート210のうち上記貫通穴の縁の部分と、チューブ300の外周面との間は、全周に亘って水密にろう接されている。
 タンクプレート220は、熱媒体を貯える空間を区画するための部材である。タンクプレート220は、ヘッダプレート210を上方側、すなわちチューブ300とは反対側から覆うように配置されている。タンクプレート220は樹脂によって形成されている。タンクプレート220は、ヘッダプレート210の一部を加締めることにより、ヘッダプレート210に対して固定されている。ヘッダプレート210とタンクプレート220との間には、不図示のシール部材が挟み込まれている。これにより、両者の間から熱媒体が外部に漏出することが防止されている。
 ジョイント部230は、出口側タンク200の内部に貯えられた熱媒体を、外部へと排出するための出口として構成された部分である。ジョイント部230には、熱交換器10から熱媒体を排出するための不図示の配管が接続される。ジョイント部230は、出口側タンク200のうち、長手方向に沿った端部となる位置に設けられている。ジョイント部230が設けられている端部は、入口側タンク100においてジョイント部130が設けられているのと同じ側の端部である。それぞれのチューブ300を通って出口側タンク200の内部へと供給された熱媒体は、出口側タンク200の内側を上記長手方向に沿って流れた後、ジョイント部230から外部へと排出される。
 チューブ300は、熱媒体の通る流路が形成された管状の部材である。チューブ300は、熱交換器10において複数備えられている。それぞれのチューブ300は、その長手方向を上下方向に沿わせた状態で、入口側タンク100と出口側タンク200との間となる位置に配置されている。それぞれのチューブ300は、後述のフィン400と共に積層されており、入口側タンク100や出口側タンク200の長手方向に沿って並ぶように配置されている。このため、積層された複数のチューブ300が並んでいる方向のことを、以下では「積層方向」とも称する。積層方向は、図1における左右方向となっている。
 既に述べたように、チューブ300の下端は入口側タンク100のヘッダプレート110に接続されており、チューブ300の上端は出口側タンク200のヘッダプレート210に接続されている。入口側タンク100の内部空間と、出口側タンク200の内部空間とは、チューブ300に形成された流路によって連通されている。チューブ300の具体的な構成については後に説明する。
 フィン400は、金属板を波状に折り曲げることによって形成されたコルゲートフィンである。フィン400は、熱交換器10において複数備えられおり、それぞれのチューブ300の間に配置されている。フィン400は、その左右両側に配置された一対のチューブ300のそれぞれに対して当接しており、且つろう接されている。
 熱交換器10のうち、上記のようにチューブ300とフィン400とが交互に積層されている部分は、チューブ300の内部を通る熱媒体と、チューブ300の外部を通る空気との間で熱交換が行われる部分であって、所謂「熱交換コア部」と称される部分である。熱交換コア部のうち左右両側の端部となる部分には、サイドプレート11、12が配置されている。
 サイドプレート11、12は、金属板を曲げ加工することによって形成された板状部材であって、チューブ300の長手方向と同じ方向に沿って伸びるように配置されている。サイドプレート11は、熱交換コア部のうち、積層方向に沿って最もジョイント部130側の端部となる位置に配置されている。サイドプレート12は、熱交換コア部のうち、積層方向に沿って最もジョイント部130とは反対側の端部となる位置に配置されている。サイドプレート11、12は、熱交換コア部を積層方向に沿った両側から挟み込んでいる。これにより、熱交換コア部の剛性が高められている。
 熱交換器10による熱交換が行われる際には、不図示の内燃機関を通り高温となった熱媒体が、ジョイント部130から入口側タンク100の内部へと供給される。当該熱媒体は、入口側タンク100の内部を上記積層方向に沿って流れながら、それぞれのチューブ300へと供給される。熱媒体は、それぞれのチューブ300の内部を上方側に向かって流れて、出口側タンク200の内部へと供給される。
 熱交換器10の近傍には、熱交換コア部を通過するように空気を送り出す不図示のファンが設けられている。ファンによって空気が送り出される方向は、図1において紙面手前側から奥側へと向かう方向である。
 熱媒体は、チューブ300に形成された流路を上記のように流れる際において、空気によって冷却される。当該空気、すなわちファンによって送り出された空気は、チューブ300の周囲を通過する際において熱媒体によって加熱され、その温度を上昇させる。当該空気は、例えば暖房用の空調風として車室内に向けて吹き出される。
 図1においては、水平方向であり且つ紙面手前側から奥側に向かう方向をx方向としており、同方向に沿ってx軸を設定している。x方向は、上記のように熱交換器10を空気が通過する方向となっている。
 また、図1においては、水平方向であり且つジョイント部130から入口側タンク100の内側へと向かう方向をy方向としており、同方向に沿ってy軸を設定している。上記の積層方向は、このy軸に沿った方向となっている。
 更に、図1においては、上記のx方向及びz方向のいずれに対しても垂直な方向であって、入口側タンク100から出口側タンク200へと向かう方向をz方向としており、同方向に沿ってz軸を設定している。
 以降においては、以上のように定義されたx方向、y方向、z方向、x軸、y軸、及びz軸を用いながら、熱交換器10の構成を説明する。
 チューブ300の具体的な構成について、図2を参照しながら説明する。図2には、チューブ300のうち-z方向側の端部近傍の部分が斜視図によって示されている。同図に示されるように、チューブ300の内側には、熱媒体の流れる流路として、第1流路FP1及び第2流路FP2からなる2つの流路が形成されている。これらは、いずれもチューブ300の長手方向に沿って直線状に伸びるように形成されている。
 本実施形態におけるチューブ300は、一枚の金属板を折り曲げることによって形成されている。チューブ300は、その長手方向に対し垂直な断面の形状が扁平形状となっている。第1流路FP1は、チューブ300のうち-x方向側の部分に形成されている。第2流路FP2は、チューブ300のうちx方向側の部分に形成されている。両者の間は、上記金属板を折り曲げることによって形成された仕切りにより分けられている。当該仕切りと、金属板の端部とが重ねられている部分は水密にろう接されている。
 第1流路FP1と第2流路FP2とが並ぶx方向は、既に述べたようにチューブ300に沿って空気が通過する方向であって、積層方向に対して垂直な方向である。当該方向はチューブ300の幅に沿った方向であるから、以下では当該方向のことを「幅方向」とも称する。それぞれのチューブ300では、熱媒体の通る流路である第1流路FP1及び第2流路FP2が、幅方向に沿って並ぶように形成されている。
 本実施形態では、上記の仕切りが、チューブ300のうち幅方向に沿った中央となる位置において形成されている。このため、幅方向に沿った第1流路FP1の寸法と、幅方向に沿った第2流路FP2の寸法とは互いに等しい。本実施形態では、第1流路FP1の断面形状と、第2流路FP2の断面形状とが互いに対称となっている。
 尚、このような第1流路FP1と第2流路FP2とを有するチューブ300の態様は、上記とは異なる態様であってもよい。例えば、金属の押し出し成型によってチューブ300が形成されてもよい。また、互いに独立の管状部材を幅方向に沿って2つ並べることにより、第1流路FP1と第2流路FP2とを有するチューブ300が構成されていてもよい。この場合、2つ並んだ管状部材の全体が1つの「チューブ300」に該当することになる。更に、第1流路FP1及び第2流路FP2とは更に別の流路が、チューブ300に形成されており、当該流路が、1流路FP1及び第2流路FP2と共に幅方向に沿って並んでいるような態様であってもよい。
 図3、4には、ジョイント部130の近傍における入口側タンク100の内部構成が示されている。尚、入口側タンク100の内側には、図4に示されるように板状部材PLが配置されているのであるが、図3においてはその図示が省略されている。
 図3に示されるように、入口側タンク100の内側においては、ヘッダプレート110からチューブ300の先端部分がz軸に沿って突出している。その突出量は全てのチューブ300について互いに等しい。このため、それぞれのチューブ300の先端面は同一の平面上に配置されている。尚、当該配置はあくまで設計上のものである。実際には、部品の寸法ばらつき等に伴って、一部又は全部の先端面が上記平面上から僅かにずれていてもよい。
 図4に示されるように、入口側タンク100の内側には板状部材PLが配置されている。板状部材PLは平坦な板状の部材であって、z軸に沿って見た場合の形状が矩形の部材である。板状部材PLは、その長辺をy方向に沿わせた状態で配置されている。つまり、板状部材PLは積層方向に沿って伸びるように配置されている。
 板状部材PLは、その主面を全てのチューブ300の端部に対して当接させた状態で固定されている。チューブ300の先端面には、第1流路FP1や第2流路FP2の端部である開口が形成されているのであるが、板状部材PLによって覆われている部分においては、各流路に対する熱媒体の流入が抑制される。板状部材PLは、第1流路FP1及び第2流路FP2のうち少なくとも一方における熱媒体の流れを、幅方向に沿った一定範囲において抑制するものとして設けられている。このような板状部材PLは、本実施形態における「抑制部」に該当する。
 本実施形態では、板状部材PLは、第2流路FP2の入口の全部と、第1流路FP1の入口の一部とを覆っている。尚、上記における「抑制」とは、本実施形態においては、当該部分における熱媒体の流入を完全に遮断することを意味する。尚、板状部材PLの表面の撓み等に起因して、板状部材PLとチューブ300の端部との間に僅かな隙間が形成されていたり、当該隙間から少量の熱媒体が第2流路FP2等に流入したりしていてもよい。ただし、板状部材PLによって熱媒体の流れを抑制し、各チューブ300に流入する熱媒体の流量のばらつきを抑制するという効果を十分に奏するためには、隙間の大きさは最大でも1mm以内とすることが好ましい。
 板状部材PLをチューブ300の先端面に対して当接させるための具体的な構成の例について、図5を参照しながら説明する。図5(A)に示される例では、板状部材PLを金属によって形成した上で、板状部材PLをチューブ300の先端面に対しろう接することにより固定している。
 図5(B)に示される例では、板状部材PLに複数の脚部710、720が形成されている。脚部710、720はいずれも、タンクプレート120の内面に向かって突出しており、その先端がタンクプレート120の内面に当接している。板状部材PLは、脚部710、720からの力を受けてチューブ300の先端面に押し付けられている。このような脚部の構成としては、例えば特許第4830918号公報に記載されているものと同様の構成を採用することができる。図5(B)に示される例の場合には、脚部710、720を含む板状部材PLの全体を樹脂により形成することができる。
 図5(C)に示される例では、板状部材PLが、弾性を有する板状の部材により形成されている。当該部材は、板状部材PLの他に支柱部730と当接部740とを有しており、その全体が折り曲げられている。支柱部730は、板状部材PLのうち-x方向側の端部から-z方向に向かって伸びており、その先端がタンクプレート120の内面に当接している。当接部740は、支柱部730のうち-z方向の端部から-x方向に向かって伸びている。当接部740のうち-z方向側の面は、略全体がタンクプレート120の内面に当接している。板状部材PLは、支柱部730からの力を受けてチューブ300の先端面に押し付けられている。
 図5(C)において点線で示されているのは、板状部材PLを含む部材が入口側タンク100に挿入される際において、当該部材が折り曲げられた状態を示している。当該部材が入口側タンク100に挿入された後は、弾性力によって当該部材が矢印の方向に変形し、上記のように当接部740がタンクプレート120の内面に当接した状態となる。この例における板状部材PL、支柱部730、及び当接部740の全体も、樹脂により形成することができる。
 図6を参照しながら、抑制部である板状部材PLの配置について説明する。図6に示される範囲W1は、第1流路FP1及び第2流路FP2からなる流路全体の、幅方向に沿った範囲である。図6において矢印AR1で示される位置は、幅方向に沿った範囲W1の中心位置である。
 また、図6に示される範囲W2は、上記の流路全体のうち、板状部材PLによって熱媒体の流れが抑制される部分の、幅方向に沿った範囲である。図6において矢印AR2で示される位置は、幅方向に沿った範囲W2の中心位置である。
 本実施形態では、板状部材PLが、幅方向に沿ってx方向寄りとなる位置に配置されている。このため、矢印AR2で示される中心位置は、矢印AR1で示される全体の中心位置とは異なっている。
 抑制部である板状部材PLは、チューブ300を流れる熱媒体の流路抵抗を大きくし、これにより各チューブ300に流入する熱媒体の流量ばらつきを抑制するためのものとして設けられている。本実施形態では、上記2つの中心位置を互いに一致させるのではなく、互いに異ならせることで、上記の流路抵抗をより大きくしている。
 流路抵抗が大きくなることに理由について、図7を参照しながら説明する。図7には、一つの流路のうち幅方向に沿った開口の幅と、当該流路の流路抵抗との関係が示されている。横軸に沿った開口の幅は、流路のうち板状部材PLによって塞がれていない部分の開口面積といってもよい。
 同図に示されるように、開口の幅と流路抵抗との関係は、直線状の関係とはなっていない。開口の幅がある程度狭くなっている状態から、当該幅が更に狭くなると、流路抵抗は急速に大きくなる傾向がある。一方、開口の幅がある程度広くなっている状態から、当該幅が更に広くなっても、流路抵抗は僅かにしか低下しない。
 このため、図6において矢印AR2で示される中心位置が、矢印AR1で示される全体の中心位置に一致するような場合、つまり図8(B)の右側に示されるような構成の場合に比べると、本実施形態では、第1流路FP1における流路抵抗が僅かに低下している一方で、第2流路FP2における流路抵抗は大きく増加している。このため、1本のチューブ300全体における流路抵抗は、板状部材PLの位置をx方向側にずらすことにより、ずらさない場合に比べると大きくなっている。
 入口側タンク100の内側においては、ジョイント部130に近い-y方向側の部分と、ジョイント部130から遠いy方向側の部分との間で、熱媒体の圧力に差が生じる傾向がある。このため、各チューブ300における流路抵抗が小さい場合には、上記の圧力差に起因して、各チューブ300に流入する熱媒体の流量が、チューブ300毎に大きくばらついてしまう傾向がある。具体的には、ジョイント部130に近いチューブ300における熱媒体の流量は大きくなり、ジョイント部130から遠いチューブ300における熱媒体の流量は小さくなる傾向がある。
 これに対し、本実施形態に係る熱交換器10では、上記のように板状部材PLの位置をx方向側にずらすことで、各チューブ300における流路抵抗が高められている。その結果、入口側タンク100の内側において熱媒体の圧力差が生じても、各チューブ300に流入する熱媒体の流量のばらつきを抑制することができる。
 図8(A)の左側に示される線L1は、板状部材PLが設けられていない場合の第1比較例における、各チューブ300に流入する熱媒体の流量の分布を示すグラフである。同図の横軸は各チューブ300のy座標を示しており、同図の縦軸はチューブ300に流入する熱媒体の流量を示している。線L1に示されるように、板状部材PLが設けられていない場合には、ジョイント部130に近い-y方向側のチューブ300においては流量が大きくなっており、ジョイント部130から遠いy方向側のチューブ300においては流量が小さくなっている。
 図8(B)の左側に示される線L2は、板状部材PLが幅方向の中央となる位置に設けられている場合の第2比較例における、各チューブ300に流入する熱媒体の流量の分布を示すグラフである。図8(B)の左側には、比較のために、図8(A)と同じ線L1が示されている。
 第2比較例のように、板状部材PLが幅方向の中央となる位置に設けられている場合、すなわち、図6において矢印AR2で示される中心位置が、矢印AR1で示される全体の中心位置に一致するような場合には、線L1で示される第1比較例に比べると、各チューブ300に流入する熱媒体の流量のばらつきは小さくなっている。しかしながら、依然として、ジョイント部130に近い-y方向側のチューブ300においては流量が大きくなっており、ジョイント部130から遠いy方向側のチューブ300においては流量が小さくなっている。このため、流量のばらつきを抑制するという観点からは更なる改良の余地がある。
 図8(C)の左側に示される線L3は、本実施形態における、各チューブ300に流入する熱媒体の流量の分布を示すグラフである。図8(C)の左側には、比較のために、図8(B)と同じ線L2が示されている。
 本実施形態では、上記のように各チューブ300における流路抵抗が高められた結果、各チューブ300に流入する熱媒体の流量のばらつきが抑制されている。このため、ジョイント部130に近い-y方向側のチューブ300における熱媒体の流量と、ジョイント部130から遠いy方向側のチューブ300における熱媒体の流量とが、概ね等しくなっている。
 図9(A)の左側に示される表は、図8(A)の第1比較例において、熱交換コア部の各部を通った空気の温度分布を示すものである。また、図10(A)の左側に示される表は、図9(A)の表における各セルの値を、当該セルが属する行の平均値からの増加分として示したものである。
 既に述べたように、第1比較例においては、ジョイント部130に近い-y方向側のチューブ300においては熱媒体の流量が大きくなる。このため、-y方向側の部分を通過した空気の温度は、他の部分を通過した空気の温度に比べると高くなる傾向がある。つまり、板状部材PLが設けられていない第1比較例においては、熱交換器10における熱交換が全体で均等には行われず、ジョイント部130に近い部分に偏って行われる。その結果、熱交換の効率が低下してしまう。
 図9(B)の左側に示される表は、図8(B)の第2比較例において、熱交換コア部の各部を通った空気の温度分布を示すものである。また、図10(B)の左側に示される表は、図9(B)の表における各セルの値を、当該セルが属する行の平均値からの増加分として示したものである。
 図10(A)と図10(B)を比較すると明らかなように、板状部材PLが幅方向の中央となる位置に配置された第2比較例においては、第1比較例に比べて空気の温度ばらつきが抑制されている。ただし、熱交換コア部のうち-y方向側の部分を通過した空気の温度は、他の部分を通過した空気の温度に比べると依然として高くなる傾向がある。
 図9(C)の左側に示される表は、図8(C)の本実施形態において、熱交換コア部の各部を通った空気の温度分布を示すものである。また、図10(C)の左側に示される表は、図9(C)の表における各セルの値を、当該セルが属する行の平均値からの増加分として示したものである。
 図10(B)と図10(C)を比較すると明らかなように、板状部材PLの位置がx方向側にずれている本実施形態においては、第2比較例に比べて空気の温度ばらつきが更に抑制されている。その結果、熱交換コア部のうち-y方向側の部分を通過した空気の温度と、他の部分を通過した空気の温度との差は殆ど無くなっている。つまり、熱交換器10における熱交換が全体で均等に行われるので、第1比較例や第2比較例に比べて熱交換の効率が高くなっている。
 本実施形態では、抑制部である板状部材PLが、各チューブ300の入口部分を塞ぐような位置に配置されている。このような態様に替えて、板状部材PLが、各チューブ300の出口部分を塞ぐような位置に配置されているような態様としてもよい。この場合、板状部材PLは、入口側タンク100ではなく出口側タンク200の内側に配置されることとなる。
 また、抑制部である板状部材PLが、各チューブ300の入口部分及び出口部分の両方を塞ぐような位置に配置されているような態様としてもよい。この場合、板状部材PLは2つ設けられ、入口側タンク100の内側と出口側タンク200の内側との両方に配置されることとなる。入口側タンク100の内側に配置される板状部材PLと、出口側タンク200の内側に配置される板状部材PLとは、z方向に沿って見た場合において完全に重なる位置に配置されてもよいのであるが、z方向に沿って見た場合において互いにずれた位置に配置されていてもよい。例えば、一方の板状部材PLはx方向側寄りとなる位置に配置される一方で、他方の板状部材PLは-x方向側寄りとなる位置に配置されることとしてもよい。また、y方向に沿った両者の位置関係が互いにずれていてもよい。
 以上に述べたような抑制部の配置は、本実施形態のみならず後述の他の実施形態についても採用することができる。
 本実施形態における抑制部の配置、すなわち板状部材PLの配置について、図11を参照しながら改めて説明する。図11において、「W11」と示されているのは、第1流路FP1の幅方向に沿った寸法である。また、「W21」と示されているのは、第1流路FP1のうち抑制部によって熱媒体の流れが抑制されている部分の、幅方向に沿った寸法である。以下では、流路の幅方向に沿った寸法に対する、当該流路のうち抑制部によって熱媒体の流れが抑制されている部分の幅方向に沿った寸法の割合のことを、当該流路の「抑制率」と定義する。図11の例では、第1流路FP1の抑制率は「W21/W11×100(%)」ということになる。
 図11において、「W12」と示されているのは、第2流路FP2の幅方向に沿った寸法である。また、「W22」と示されているのは、第2流路FP2のうち抑制部によって熱媒体の流れが抑制されている部分の、幅方向に沿った寸法である。従って、図11の例では、第2流路FP2の抑制率は「W22/W12×100(%)」ということになる。
 本実施形態では、抑制部である板状部材PLがx方向側寄りとなる位置に配置されているので、第1流路FP1の抑制率と第2流路FP2の抑制率とが互いに異なっており、第2流路FP2の抑制率の方が大きくなっている。その結果として、図8(B)に示されるような第2比較例に比べると、チューブ300における流路抵抗が高められている。
 このように、本実施形態に係る熱交換器10の構成は、第1流路FP1の抑制率と、第2流路FP2の前記抑制率と、が互いに異なるように抑制部が設けられた構成、ともいうことができる。このような構成の別の例として、図12を参照しながら第1実施形態の変形例について説明する。
 図12の各図においては、抑制部である板状部材PLの配置されている範囲が、ハッチングを付された矩形領域によって模式的に示されている。図12(A)は、これまでに説明した第1実施形態における構成を参考のために示すものである。同図において符号301が付されているのは、第1流路FP1と第2流路FP2との間に形成された仕切りである。以下では、当該仕切りのことを「仕切り301」とも称する。
 図12(B)は、第1比較例の構成を示すものである。この第1比較例においては、仕切り301が、チューブ300のx方向に沿った中心位置よりも-x方向側寄りとなる位置に設けられている。このため、第1流路FP1の幅方向に沿った寸法は、第2流路FP2の幅方向に沿った寸法に比べて小さくなっている。
 第1比較例では、板状部材PLの幅方向に沿った中心位置が、第1流路FP1及び第2流路FP2からなる流路全体の幅方向に沿った中心位置、つまりチューブ300のx方向に沿った中心位置に一致している。しかしながら、第1比較例では上記のように仕切り301が-x方向側寄りとなる位置に配置されている。このため、第1比較例においても、第1流路FP1の抑制率と第2流路FP2の抑制率とが互いに異なっており、第2流路FP2の抑制率の方が大きくなっている。このような構成においても、チューブ300における流路抵抗を高めることができる。
 図12(C)は、第2比較例の構成を示すものである。この第2比較例においては、チューブ300に、第1流路FP1及び第2流路FP2に加えて第3流路FP3が形成されている。第3流路FP3も第1流路FP1等と同様に、熱媒体の通る流路として形成されている。同図において符号302が付されているのは、第2流路FP2と第3流路FP3との間に形成された仕切りである。第2比較例では、第1流路FP1の幅方向に沿った寸法と、第2流路FP2の幅方向に沿った寸法と、第3流路FP3の幅方向に沿った寸法と、が互いに等しくなっている。
 第2比較例では、板状部材PLの幅方向に沿った中心位置が、第1流路FP1、第2流路FP2、及び第3流路FP3からなる流路全体の幅方向に沿った中心位置、つまりチューブ300のx方向に沿った中心位置に一致している。第2比較例では、第1流路FP1の一部と、第2流路FP2の全体と、第3流路FP3の一部と、に夫々重なるように、抑制部である板状部材PLが配置されている。このため、第2比較例においても、第1流路FP1の抑制率と第2流路FP2の抑制率とが互いに異なっており、第2流路FP2の抑制率の方が大きくなっている。このような構成においても、チューブ300における流路抵抗を高めることができる。
 第1実施形態の他の変形例について、図13を参照しながら説明する。この変形例では、板状部材PLが配置された位置においてのみ、図6の第1実施形態と異なっている。
 この変形例における板状部材PLは、第2流路FP2の入口の一部と、第1流路FP1の入口の一部とを覆っている。つまり、第2流路FP2のうちx方向側の端部近傍の部分は、板状部材PLによって覆われておらず開放されている。ただし、この変形例においても第1実施形態と同様に、板状部材PLはx方向側にずれた位置に配置されている。その結果、矢印AR2で示される中心位置は、矢印AR1で示される全体の中心位置とは異なっている。また、この変形例においても、第1流路FP1の抑制率と第2流路FP2の抑制率とが互いに異なっており、第2流路FP2の抑制率の方が大きくなっている。このような態様であっても、第1実施形態で説明したものと同様の効果を奏する。
 尚、板状部材PLによって流路が塞がれる範囲W2は、第1実施形態や上記変形例のように、第1流路FP1及び第2流路FP2の両方に亘るような範囲であってもよく、一方のみの流路の一部又は全部に亘るような範囲であってもよい。
 発明者らが実験などによって確認したところによれば、第1流路FP1及び第2流路FP2のうち、抑制部によって熱媒体の流れが大きく抑制されている方の抑制率が70%以下になると、当該流路における圧力損失が十分には大きくならず、上記で説明した効果が十分には得られないことが判明している。効果を十分に発揮させるためには、第1流路FP1又は第2流路FP2の一方においては、幅方向に沿って、抑制部により熱媒体の流れが抑制されている範囲が占める割合、つまり抑制率が70%を超えていることが好ましい。このことは、以下に説明する第2実施形態等、他の実施形態についても同様である。
 第2実施形態について、図14を参照しながら説明する。以下では、第1実施形態と異なる点について主に説明し、第1実施形態と共通する点については適宜説明を省略する。
 本実施形態では、板状部材PLが設けられておらず、代わりにキャップ500が設けられている。キャップ500は、複数のチューブ300と同じ数だけ設けられており、それぞれのチューブ300の端部に個別に取り付けられている。キャップ500は、フランジ部510と、挿入部520と、を有している。
 フランジ部510は、チューブ300の先端面の一部を覆う板状の部分である。フランジ部510によって覆われた部分においては、チューブ300の内側に向けた熱媒体の流入が抑制される。尚、上記における「抑制」とは、本実施形態においても、当該部分における熱媒体の流入を完全に遮断することを意味する。本実施形態におけるフランジ部510は、第2流路FP2の入口の全部と、第1流路FP1の入口の一部とを覆っている。このようなフランジ部510を有するキャップ500は、本実施形態における「抑制部」に該当する。尚、フランジ部510とチューブ300との間に、部品の寸法ばらつきに起因した僅かな隙間が形成されていたり、当該隙間から少量の熱媒体が第2流路FP2に流入したりしていてもよい。
 挿入部520は、フランジ部510のうちz方向側の面から、z方向側に向かって突出するように形成された板状の部分である。y軸に沿った挿入部520の寸法は、同方向に沿った第2流路FP2の内寸と概ね等しい。また、x軸に沿った挿入部520の寸法は、同方向に沿った第2流路FP2の内寸よりも僅かに小さい。このような挿入部520は、第2流路FP2の内側に挿入され嵌め込まれることにより、フランジ部510を固定するための部分となっている。
 図14に示される範囲W1は、第1流路FP1及び第2流路FP2からなる流路全体の、幅方向に沿った範囲である。図14において矢印AR1で示される位置は、幅方向に沿った範囲W1の中心位置である。
 また、図14に示される範囲W2は、上記の流路全体のうち、キャップ500のフランジ部510によって熱媒体の流れが抑制される部分の、幅方向に沿った範囲である。図14において矢印AR2で示される位置は、幅方向に沿った範囲W2の中心位置である。
 本実施形態でも、抑制部であるキャップ500が、幅方向に沿ってx方向寄りとなる位置に配置されている。このため、矢印AR2で示される中心位置は、矢印AR1で示される全体の中心位置とは異なっている。また、本実施形態においても、第1流路FP1の抑制率と第2流路FP2の抑制率とが互いに異なっており、第2流路FP2の抑制率の方が大きくなっている。このような態様でも、第1実施形態で説明したものと同様の効果を奏する。
 第3実施形態について、図15を参照しながら説明する。以下では、第1実施形態と異なる点について主に説明し、第1実施形態と共通する点については適宜説明を省略する。
 本実施形態では、板状部材PLが設けられておらず、代わりに詰め物600が設けられている。詰め物600は、それぞれのチューブ300内側となる位置に配置されている。チューブ300内側のうち、詰め物600が配置されている部分においては、当該部分を通る熱媒体の流れが抑制される。尚、上記における「抑制」とは、本実施形態においても、当該部分における熱媒体の流れを完全に遮断することを意味する。詰め物600は、本実施形態における「抑制部」に該当する。
 本実施形態では、第2流路FP2のうち入口側端部の全体を塞ぐように、詰め物600が配置されている。詰め物600としては、樹脂やゴムなどの材料を用いることができる。尚、詰め物600とチューブ300との間に、部品の寸法ばらつきに起因した僅かな隙間が形成されていたり、当該隙間から少量の熱媒体が第2流路FP2に流入したりしていてもよい。
 図15に示される範囲W1は、第1流路FP1及び第2流路FP2からなる流路全体の、幅方向に沿った範囲である。図12において矢印AR1で示される位置は、幅方向に沿った範囲W1の中心位置である。
 また、図15に示される範囲W2は、上記の流路全体のうち、詰め物600によって熱媒体の流れが抑制される部分の、幅方向に沿った範囲である。図15において矢印AR2で示される位置は、幅方向に沿った範囲W2の中心位置である。
 本実施形態でも、抑制部である詰め物600が、幅方向に沿ってx方向寄りとなる位置に配置されている。このため、矢印AR2で示される中心位置は、矢印AR1で示される全体の中心位置とは異なっている。また、本実施形態においても、第1流路FP1の抑制率と第2流路FP2の抑制率とが互いに異なっており、第2流路FP2の抑制率の方が大きくなっている。このような態様でも、第1実施形態で説明したものと同様の効果を奏する。
 尚、詰め物600が配置されている範囲は、本実施形態のように第2流路FP2の幅方向における全体であってもよいが、第2流路FP2の幅方向における一部のみであってもよい。また、詰め物600が配置されている範囲が、第1流路FP1の一部に亘るような態様であってもよい。
 第4実施形態について、図16を参照しながら説明する。以下では、第1実施形態と異なる点について主に説明し、第1実施形態と共通する点については適宜説明を省略する。
 本実施形態では、板状部材PLが設けられておらず、代わりに各チューブ300の形状が変更されている。図16に示されるように、各チューブ300のうち第2流路FP2を区画する部分の一部は、その積層方向に沿った寸法が小さくなるように変形している。つまり、y方向に沿った幅が小さくなるように変形している。図16においては、このように変形した部分が変形部300Aとして示されている。第2流路FP2の入口側端部のうち、変形部300Aにおいては、当該部分を通る熱媒体の流れが抑制される。尚、上記における「抑制」とは、当該部分における熱媒体の流れを完全に遮断するのではなく、変形部300A以外の部分に比べて熱媒体の流量を小さくすることを意味する。変形部300Aは、本実施形態における「抑制部」に該当する。
 このように、本実施形態における抑制部は、それぞれのチューブ300の積層方向に沿った寸法を、幅方向に沿った一部において他部よりも小さくすることにより形成されている。
 図16に示される範囲W1は、第1流路FP1及び第2流路FP2からなる流路全体の、幅方向に沿った範囲である。図16において矢印AR1で示される位置は、幅方向に沿った範囲W1の中心位置である。
 また、図16に示される範囲W2は、上記の流路全体のうち、変形部300Aの幅方向に沿った範囲である。図16において矢印AR2で示される位置は、幅方向に沿った範囲W2の中心位置である。
 本実施形態でも、抑制部である変形部300Aが、幅方向に沿ってx方向寄りとなる位置に配置されている。このため、矢印AR2で示される中心位置は、矢印AR1で示される全体の中心位置とは異なっている。また、本実施形態においても、第1流路FP1の抑制率と第2流路FP2の抑制率とが互いに異なっており、第2流路FP2の抑制率の方が大きくなっている。このような態様でも、第1実施形態で説明したものと同様の効果を奏する。
 尚、変形部300Aにおいては、本実施形態のように流路が完全には遮断されていない態様としてもよいが、変形部300Aにおける流路が完全に遮断されているような態様としてもよい。
 以上、具体例を参照しつつ本実施形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。これら具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素およびその配置、条件、形状などは、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。

Claims (7)

  1.  空気と熱媒体との間で熱交換を行う熱交換器(10)であって、
     熱媒体の通る流路が形成された管状の部材であって、積層方向に沿って並ぶように配置された複数のチューブ(300)と、
     それぞれの前記チューブに熱媒体を供給する入口側タンク(100)と、
     それぞれの前記チューブを通った熱媒体を受け入れる出口側タンク(200)と、を備え、
     前記積層方向に対して垂直な方向であって、前記チューブに沿って空気が通過する方向を幅方向としたときに、
     それぞれの前記チューブには、熱媒体の通る流路として、少なくとも第1流路(FP1)及び第2流路(FP2)が、前記幅方向に沿って並ぶように形成されており、
     前記第1流路及び前記第2流路のうち少なくとも一方における熱媒体の流れを、前記幅方向に沿った一定範囲において抑制する抑制部(PL,500,600,300A)が設けられており、
     前記幅方向における前記一定範囲の中心位置が、前記幅方向における前記第1流路及び前記第2流路の全体の中心位置とは異なっている熱交換器。
  2.  前記抑制部は、
     前記積層方向に沿って伸びるように配置された板状部材(PL)であって、それぞれの前記チューブの端部に当接している、請求項1に記載の熱交換器。
  3.  前記抑制部は、
     それぞれの前記チューブの端部に個別に取り付けられたキャップ(500)である、請求項1に記載の熱交換器。
  4.  前記抑制部は、
     第1流路又は第2流路の内側に配置された詰め物(600)である、請求項1に記載の熱交換器。
  5.  前記抑制部は、
     それぞれのチューブの前記積層方向に沿った寸法を、前記幅方向に沿った一部(300A)において他部よりも小さくすることにより形成されている、請求項1に記載の熱交換器。
  6.  前記第1流路又は前記第2流路の一方においては、
     前記幅方向に沿って、前記抑制部により熱媒体の流れが抑制されている範囲が占める割合が70%を超えている、請求項1乃至5のいずれか1項に記載の熱交換器。
  7.  空気と熱媒体との間で熱交換を行う熱交換器(10)であって、
     熱媒体の通る流路が形成された管状の部材であって、積層方向に沿って並ぶように配置された複数のチューブ(300)と、
     それぞれの前記チューブに熱媒体を供給する入口側タンク(100)と、
     それぞれの前記チューブを通った熱媒体を受け入れる出口側タンク(200)と、を備え、
     前記積層方向に対して垂直な方向であって、前記チューブに沿って空気が通過する方向を幅方向としたときに、
     それぞれの前記チューブには、熱媒体の通る流路として、少なくとも第1流路(FP1)及び第2流路(FP2)が、前記幅方向に沿って並ぶように形成されており、
     前記第1流路及び前記第2流路のうち少なくとも一方における熱媒体の流れを、前記幅方向に沿った一定範囲において抑制する抑制部(PL,500,600,300A)が設けられており、
     流路の前記幅方向に沿った寸法に対する、当該流路のうち前記抑制部によって熱媒体の流れが抑制されている部分の前記幅方向に沿った寸法の割合のことを、当該流路の抑制率としたときに、
     前記抑制部は、
     前記第1流路の前記抑制率と、前記第2流路の前記抑制率と、が互いに異なるように設けられている熱交換器。
PCT/JP2019/024756 2018-07-12 2019-06-21 熱交換器 WO2020012921A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018132477 2018-07-12
JP2018-132477 2018-07-12
JP2019-050140 2019-03-18
JP2019050140A JP2020016428A (ja) 2018-07-12 2019-03-18 熱交換器

Publications (1)

Publication Number Publication Date
WO2020012921A1 true WO2020012921A1 (ja) 2020-01-16

Family

ID=69141829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024756 WO2020012921A1 (ja) 2018-07-12 2019-06-21 熱交換器

Country Status (1)

Country Link
WO (1) WO2020012921A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021149462A1 (ja) * 2020-01-20 2021-07-29 株式会社デンソー 熱交換器
WO2021153249A1 (ja) * 2020-01-28 2021-08-05 株式会社デンソー 熱交換器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004163036A (ja) * 2002-11-14 2004-06-10 Japan Climate Systems Corp 複列型熱交換器
JP2010060274A (ja) * 2008-08-28 2010-03-18 Johnson Controls Technol Co 相違する流れを有するマルチチャネル熱交換器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004163036A (ja) * 2002-11-14 2004-06-10 Japan Climate Systems Corp 複列型熱交換器
JP2010060274A (ja) * 2008-08-28 2010-03-18 Johnson Controls Technol Co 相違する流れを有するマルチチャネル熱交換器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021149462A1 (ja) * 2020-01-20 2021-07-29 株式会社デンソー 熱交換器
JP7467927B2 (ja) 2020-01-20 2024-04-16 株式会社デンソー 熱交換器
WO2021153249A1 (ja) * 2020-01-28 2021-08-05 株式会社デンソー 熱交換器
JP2021116979A (ja) * 2020-01-28 2021-08-10 株式会社デンソー 熱交換器
JP7404892B2 (ja) 2020-01-28 2023-12-26 株式会社デンソー 熱交換器

Similar Documents

Publication Publication Date Title
US7984753B2 (en) Heat exchanger
US7077190B2 (en) Exhaust gas heat exchanger
US20070193732A1 (en) Heat exchanger
JP6520681B2 (ja) 熱交換器
JP6276054B2 (ja) 熱交換器
JP6040853B2 (ja) 熱交換器
JP3829499B2 (ja) 熱交換器
WO2020012921A1 (ja) 熱交換器
US5373895A (en) Heat exchanger
US11603790B2 (en) Heat exchanger
JP6414504B2 (ja) 熱交換器
JP2020016428A (ja) 熱交換器
JP2020091056A (ja) 熱交換器
JP2000180087A (ja) 熱交換器
JP2000193393A (ja) 並設一体型熱交換器
US20220333875A1 (en) Heat exchanger
JP7456801B2 (ja) 積層型熱交換器
JP2000304489A (ja) 熱交換器及び放熱器
JP7121551B2 (ja) 熱交換器
JP2008089188A (ja) 熱交換器
WO2021149462A1 (ja) 熱交換器
JP5525805B2 (ja) 熱交換器
JP2002048490A (ja) 冷却器/凝縮器一体型熱交換器
WO2021039302A1 (ja) 熱交換器
JP2017172863A (ja) 熱交換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19834390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19834390

Country of ref document: EP

Kind code of ref document: A1