WO2020011272A1 - 数据传输控制方法、装置和接入网设备 - Google Patents

数据传输控制方法、装置和接入网设备 Download PDF

Info

Publication number
WO2020011272A1
WO2020011272A1 PCT/CN2019/095999 CN2019095999W WO2020011272A1 WO 2020011272 A1 WO2020011272 A1 WO 2020011272A1 CN 2019095999 W CN2019095999 W CN 2019095999W WO 2020011272 A1 WO2020011272 A1 WO 2020011272A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
signal
radio frequency
partial
signals
Prior art date
Application number
PCT/CN2019/095999
Other languages
English (en)
French (fr)
Inventor
高全中
胥恒
徐明涛
鲍坤超
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19835027.4A priority Critical patent/EP3809649B1/en
Priority to BR112021000487-4A priority patent/BR112021000487A2/pt
Priority to JP2021524094A priority patent/JP7177266B2/ja
Publication of WO2020011272A1 publication Critical patent/WO2020011272A1/zh
Priority to US17/147,002 priority patent/US11889486B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • Embodiments of the present application relate to the field of communications, and in particular, to a data transmission method, apparatus, and access network device.
  • C-RAN centralized processing, collaborative radiation, real-time cloud infrastructure, clean system-radio access network; centralized processing, collaborative radio, real-time cloud computing architecture, green wireless access network system
  • BBU baseband unit
  • remote RRU radio remote unit
  • This architecture has fast network deployment, saves space, facilitates operation and maintenance, and is easy to combine.
  • the advantages of inter-station cooperation and easy carrier expansion can significantly improve network performance.
  • the CPRI common public radio interface
  • the CPRI bandwidth between BBU and RRU under large bandwidth and large-scale array antennas has become the limitation of C-RAN scale deployment.
  • the position of the interface between the baseband processing function and the remote RF processing function in the 4.5G / 5G wireless network master device can redefine the functions of the BBU and RRU, thereby achieving the functional division of the BBU and RRU, and how to use different functional switching Data transmission in different ways has become an urgent problem.
  • the embodiments of the present application provide a data transmission method, device, and access network device, which can implement data transmission by using a plurality of function splitting modes for the first communication device and the second communication device.
  • a data transmission control method is provided.
  • the data transmission control method is applied to a first communication device or a chip in the first communication device.
  • the first communication device is a radio remote unit RRU or a radio remote system RRS or Distributed unit DU.
  • the data transmission control method provided in the embodiment of the present application is: a first communication device acquires a radio frequency signal received by an antenna; and the first communication device processes at least two signals in the radio frequency signal through at least two function division modes.
  • each part of the RF signal is processed by a functional segmentation method, and different parts of the RF signal have different functional segmentation methods; the functional segmentation method is used to determine the first communication
  • the device and the second communication device perform function division when processing a part of the signals in the radio frequency signal; the first communication device sends at least two partial transmission signals to the second communication device.
  • the first function splitting method such as option.
  • the first communication device directly processes the first part of the radio frequency signal and sends it to the second communication device, and the second communication device performs the first part
  • the signal is processed by the channel estimation module and other functional modules thereafter; according to the second function splitting method, such as option.7-new splitting method, the first communication device still needs to channel the second part of the radio frequency signal.
  • the processing of the estimation module and the equalization module are then sent to the second communication device for processing by the frequency-time conversion module and other functional modules thereafter; in this way, the first communication device and the second communication device are divided into multiple functions. Data transfer.
  • the data transmission control method further includes: the first communication device divides the radio frequency signal into at least two partial signals.
  • the first communication device may directly divide the radio frequency signal into at least two partial signals, or the first communication device performs the first processing on the radio frequency signal; and then the first communication device divides the first processed radio frequency signal into At least two partial signals; the first process includes at least an analog-to-digital conversion process.
  • the first process may include an analog-to-digital conversion process, or the first process may include an analog-to-digital conversion process and time-frequency conversion process, or the first process may include an analog-to-digital conversion process, time-frequency conversion process, and beamforming. Processing and the like, of course, according to different function division methods, the first processing may also include more functions in the uplink direction (that is, the data transmission direction from the first communication device to the second communication device).
  • the first communication device dividing the radio frequency signal into at least two parts of the signal may be specifically implemented by referring to the following manner:
  • the first communication device divides the radio frequency signal into at least two partial signals, including: the first communication device divides the radio frequency signal into at least two partial signals according to a transmission bandwidth between the first communication device and the second communication device, so that The sum of the data amounts of the at least two partial transmission signals is less than or equal to the transmission bandwidth between the first communication device and the second communication device.
  • the radio frequency signal is carried on at least two resource blocks RB.
  • the first communication device divides the radio frequency signal into at least two partial signals, including: the first communication device acquires the number of user data streams carried by each RB; the first communication device The radio frequency signal carried by at least one RB whose number of user data streams is greater than or equal to the stream number threshold is divided into a first partial signal; the first communication device divides the radio frequency signal carried by at least one RB whose number of user data streams is less than the stream number threshold into first Two-part signal.
  • the first part of the signal is processed using the first function segmentation method
  • the first function of the segmentation method includes option.7-2a segmentation method
  • the second part of the signal is processed by the second function segmentation method
  • the second function segmentation method includes option.7-new segmentation method.
  • the first communication device divides the radio frequency signal into at least two signals, including: the first communication device is based on any one or more of the following: the user data stream carried by the resource block RB in the first signal Characteristics of the air interface, the evolved protocol version used by the user data stream, and the type of receiver used by the user data stream, the predetermined processed RF signal is divided into at least two signals.
  • Method 4 The radio frequency signal is carried on at least two channels, and the first communication device divides the radio frequency signal into at least two partial signals, including: the first communication device carries the radio frequency on the first channel. The signal is divided into a first partial signal; the first communication device divides the radio frequency signal carried by a second channel into a second partial signal.
  • the radio frequency signal includes signals of M users and signals of N users, and the first communication device divides the radio frequency signals into the at least two partial signals, including: the first communication device divides the radio frequency signals into The signals of the M users in the radio frequency signal are divided into a first partial signal; the first communication device divides the signals of the N users in the radio frequency signal into a second partial signal.
  • the radio frequency signal includes a signal of a first bandwidth of a first user and a signal of a second bandwidth of the first user; the first communication device divides the radio frequency signal into the at least two partial signals Including: the first communication device dividing the first bandwidth signal of the first user in the radio frequency signal into a first partial signal; the first communication device dividing the first user's signal in the radio frequency signal by the first user The signal of the second bandwidth is divided into a second part of the signal.
  • At least two functional segmentation modes include option.7-2a segmentation mode and option.7-new segmentation mode.
  • a first communication device is provided, where the first communication device is an RRU or RRS or DU; or the first communication device is a chip in the RRU or RRS or DU.
  • the first communication device includes an obtaining unit, a processing unit, and a sending unit.
  • each unit module provided in this application are as follows: an acquisition unit for acquiring a radio frequency signal received by an antenna; a processing unit for passing at least two signals of the radio frequency signal acquired by the acquisition unit through at least The two function splitting methods are processed to generate at least two parts of the transmission signal; wherein each part of the radio frequency signal is processed by a function splitting method, and the function splitting method of different part signals in the radio frequency signal is different.
  • the function segmentation method is used to determine the function segmentation of the first communication device and the second communication device when processing a part of the radio frequency signals; the sending unit is configured to send to the second communication device The at least two parts of the transmission signal generated by the processing unit.
  • the processing unit is further configured to divide the radio frequency signal acquired by the acquisition unit into the at least two partial signals.
  • the processing unit is further configured to perform first processing on the radio frequency signal acquired by the acquiring unit;
  • the processing unit is specifically configured to divide the radio frequency signal after the first processing into the at least two partial signals; the first processing includes at least an analog-to-digital conversion processing.
  • the processing unit is specifically configured to divide the radio frequency signal into the at least two partial signals according to a transmission bandwidth between the first communication device and the second communication device, so that the at least two The sum of the data amounts of the partial transmission signals is less than or equal to the transmission bandwidth between the first communication device and the second communication device.
  • the radio frequency signal is carried on at least two resource blocks RB, and the processing unit is specifically configured to obtain the number of user data streams carried by each RB;
  • the radio frequency signal carried by at least one RB is divided into a first partial signal;
  • the radio frequency signal carried by at least one RB where the number of user data streams is less than a stream number threshold is divided into a second partial signal.
  • the first part of the signal is processed by the first function segmentation method, and the first function of the segmentation method includes option. 7-2a; the second part of the signal is processed by the second function segmentation method.
  • the second function segmentation manner includes an option.7-new segmentation manner.
  • the processing unit is specifically configured to be based on any one or more of the following: the air interface characteristics of the user data stream carried by the resource block RB in the first signal, the user data stream used by the user data stream, The evolved protocol version and the type of receiver used by the user data stream divide the radio frequency signal after the predetermined processing into the at least two partial signals.
  • the radio frequency signal is carried on at least two channels, and the processing unit is specifically configured to divide the radio frequency signal carried on the first channel into a first partial signal; divide the radio frequency signal carried on the second channel into Is the second part of the signal.
  • the radio frequency signal includes signals of M users and signals of N users
  • the processing unit is specifically configured to divide the signals of the M users in the radio frequency signal into a first part of signals;
  • the signals of the N users in the radio frequency signal are divided into second part signals.
  • the radio frequency signal includes a signal of a first bandwidth of a first user and a signal of a second bandwidth of the first user; and the processing unit is specifically configured to convert the radio frequency signal to the first user
  • the signal of the first bandwidth is divided into a first partial signal; the signal of the second bandwidth of the first user in the radio frequency signal is divided into a second partial signal.
  • the at least two functional segmentation modes include an option.7-2a segmentation mode and an option.7-new segmentation mode.
  • the first communication device includes: one or more processors and a communication interface.
  • the communication interface is coupled to one or more processors.
  • the first communication device communicates with other devices through the communication interface.
  • the processor is configured to execute computer program code in the memory.
  • the computer program code includes instructions, so that the first communication device executes as described above.
  • the communication interface includes a first interface with a second communication device, and the first interface is used to transmit the at least two parts of the transmission signals.
  • the communication interface includes a second interface with the antenna feed system. Two interfaces are used to transmit the above-mentioned radio frequency signals.
  • a computer-readable storage medium stores instructions; when the computer-readable storage medium is run on the first communication device, the first communication device is caused to execute the first aspect and the first aspect thereof.
  • a computer program product including instructions, which when executed on the first communication device, causes the data transmission device to execute the data transmission control according to the first aspect and various possible implementation manners thereof. method.
  • the name of the first communication device does not constitute a limitation on the device or the functional module itself. In actual implementation, these devices or functional modules may appear under other names. As long as the function of each device or functional module is similar to this application, it is within the scope of the claims of this application and its equivalent technology.
  • a data transmission control method is provided.
  • the data transmission control method is applied to a second communication device or a chip in a second communication device.
  • the first communication device is a baseband unit BBU or a wireless cloud center RRC or a centralized unit.
  • CU centralized unit
  • the data transmission control method provided in the embodiment of the present application is: the second communication device receives at least two partial transmission signals sent by the first communication device; wherein the at least two partial transmission signals are transmitted from the antenna by the first communication device At least two partial signals in the received radio frequency signal are processed and generated by at least two functional division methods, wherein each partial signal of the radio frequency signal is processed by one functional division method, and different portions of the radio frequency signal are different.
  • the functional division of signals is different; the functional division is used to determine the functional division of the first communication device and the second communication device when processing a part of the radio frequency signals; the second communication device Perform at least two functional segmentation methods on the at least two parts of the transmission signal, wherein each part of the transmission signal is processed by one functional segmentation method, and the function of the part of the transmission signal is different in different parts .
  • the beneficial effects of the data transmission control method provided by the second aspect reference may be made to the beneficial effects analysis of the first aspect, and details are not described herein again.
  • the at least two functional segmentation modes include an option.7-2a segmentation mode and an option.7-new segmentation mode.
  • a second communication device is provided, where the second communication device is a BBU or RRC or CU; or the first communication device is a chip in an RRU or RRS or DU.
  • the first communication device includes a receiving unit and a processing unit.
  • the functions implemented by each unit module provided in this application are as follows: a receiving unit, configured to receive at least two parts of the transmission signal sent by the first communication device; wherein the at least two parts of the transmission signal are transmitted from the antenna by the first communication device At least two partial signals in the received radio frequency signal are processed and generated by at least two functional division methods, wherein each partial signal of the radio frequency signal is processed by one functional division method, and different portions of the radio frequency signal are different.
  • the function splitting method of the signals is different; the function splitting method is used to determine the function splitting of the first communication device and the second communication device when processing a part of the radio frequency signals; a processing unit is used to separate Perform at least two functional division methods on the at least two parts of the transmission signals received by the receiving unit, wherein each part of the transmission signals correspondingly is processed by using a function division method, and the transmission signals of different parts of the Functional division is different.
  • the at least two functional segmentation modes include an option.7-2a segmentation mode and an option.7-new segmentation mode.
  • the second communication device includes: one or more processors and a communication interface.
  • the communication interface is coupled to one or more processors.
  • the second communication device communicates with other devices through the communication interface.
  • the processor is configured to execute computer program code in the memory.
  • the computer program code includes instructions, so that the second communication device executes as described above.
  • the data transmission control method according to the sixth aspect and various possible implementations thereof.
  • the communication interface is used to transmit the at least two parts of the transmission signals.
  • a computer-readable storage medium is also provided, where the computer-readable storage medium stores instructions; and when the computer-readable storage medium runs on the second communication device, the second communication device is caused to execute the fifth aspect and each of the foregoing aspects.
  • a computer program product including instructions, which when executed on the second communication device, causes the data transmission device to execute the data transmission control according to the fifth aspect and various possible implementation manners thereof. method.
  • the name of the second communication device does not constitute a limitation on the device or the functional module itself. In actual implementation, these devices or functional modules may appear under other names. As long as the function of each device or functional module is similar to this application, it is within the scope of the claims of this application and its equivalent technology.
  • an access network device which includes the foregoing first communication device and the foregoing second communication device.
  • the access network device includes a base station.
  • FIG. 1 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • FIG. 2 is a schematic functional division diagram of a first communication device and a second communication device according to an embodiment of the present application;
  • FIG. 3 is a schematic functional division diagram of a first communication device and a second communication device according to another embodiment of the present application;
  • FIG. 4 is a schematic structural diagram of a first communication device according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a second communication device according to an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a data transmission control method according to an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a data transmission control method according to another embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a first communication device according to another embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a second communication device according to another embodiment of the present application.
  • module used in this application is intended to refer to a device or entity that can perform digital signal or analog signal processing, and can also refer to a computer-related entity.
  • the device or entity can be hardware, firmware, a combination of hardware and software, Software or running software.
  • an embodiment of the present application provides an access network device, such as a base station.
  • the base station includes a first communication device 11, a second communication device 12, and an antenna feed system 13 (antenna).
  • the first communication device 11 is connected to the second communication device 12.
  • the first communication device 11 may be connected to the second communication device 12 through a CPRI interface; the first communication device 11 is connected to the antenna feed system 13.
  • the second communication device 12 has a baseband processing function, and the first communication device 11 has a remote radio frequency processing function.
  • the base station shown in FIG. 1 may be a distributed base station, and the base station may be used to communicate with one or more user equipments, and may also be used to communicate with one or more base stations with some user equipment functions (such as a macro base station and Micro base station, such as communication between access points); base stations can also be called access points, nodes, node B, evolved node B (eNB) or some other network entity, and can include the functions of the above network entities Some or all of the features. In systems using different radio access technologies, the name of the base station may be different.
  • the name of the base station is evolved NodeB (eNB or eNodeB); in 3G systems, the name of the base station is NodeB; in next-generation wireless communications In a system (such as a 5G system), the name of the base station is DgNB. This name may change as communication technology evolves. In addition, where possible, the base station may be other devices that provide wireless communication functions for terminal equipment.
  • eNB evolved NodeB
  • eNodeB in 3G systems
  • next-generation wireless communications In a system (such as a 5G system), the name of the base station is DgNB. This name may change as communication technology evolves.
  • the base station may be other devices that provide wireless communication functions for terminal equipment.
  • the base station shown in FIG. 1 may be a 4G base station
  • the second communication device 12 may be a BBU
  • the first communication device 11 may be an RRU.
  • the base station shown in FIG. 1 may be a base station that appears during the evolution from a 4G base station to a 5G base station.
  • the base station may have the functions of a 4G base station and some of the functions of a 5G base station.
  • the base station may be referred to as a 4.5G base station.
  • the base station shown in FIG. 1 may be a 5G base station.
  • the second communication device 12 may be a CU (centralized unit) that is responsible for centralized wireless resource and connection management control, and the first communication device 11 may be A DU (distributed unit) that implements a distributed user plane processing function.
  • the functions of the first communication device 11 and the second communication device 12 may be redefined, for example, a processing function of a part of the second communication device 12 is moved to the first communication device. 11.
  • the second communication device 12 may be called RCC (radio cloud center, wireless cloud center), and the first communication device 11 may be called RRS (Radio Remote System, radio remote system).
  • FIG. 2 shows a function division method of the first communication device 11 and the second communication device 12, and the division method can be described as option. 7-2a.
  • the following description is given in the upper row direction (that is, the data transmission direction from the first communication device 11 to the second communication device 12) as an example:
  • the first communication device 11 includes a radio frequency (RF) module, a time-frequency conversion module (usually a Fast Fourier Transform (FFT) module), and a digital beamforming (BF) module; wherein, RF module for analog-to-digital conversion of radio frequency signals (analog signals) received from antennas to digital signals in the time domain; time-frequency conversion module for time-frequency conversion of digital signals in the time domain to generate the frequency domain
  • RF module for analog-to-digital conversion of radio frequency signals (analog signals) received from antennas to digital signals in the time domain
  • time-frequency conversion module for time-frequency conversion of digital signals in the time domain to generate the frequency domain
  • FFT algorithm is used for time-frequency conversion.
  • the cyclic prefix can be removed.
  • the time-frequency conversion module can include video conversion FFT module and CP removal module with cyclic prefix; Digital BF module is used to beamform digital signals in the frequency domain to generate digital signals in the beam domain.
  • FIG. 2 only shows an implementation manner of the first communication device 11.
  • the time-frequency conversion module and the digital BF module can also exchange positions, that is, the digital BF module first beams the digital signal in the time domain. Shaping, generating a time-domain digital signal in the beam domain; and a time-frequency conversion module performing frequency-time conversion on the frequency-domain digital signal in the beam domain to generate a frequency-domain digital signal in the beam domain.
  • the second communication device 12 includes: a de-mapping module, a channel estimation module, an equalization module, and a frequency-time conversion module (usually an inverse discrete Fourier transform IDFT (inverse discrete fourier transform) ) Module), a demodulation module, a bit-level processing module, and a media access control (MAC) entity; among them, a demapping module is used for the output of the first communication device 11
  • a demapping module is used for the output of the first communication device 11
  • the digital signals in the beam domain are de-mapped; the channel estimation module is used to perform channel estimation on the signals output by the de-mapping module; the equalization module is used to perform equalization processing on the signals output by the channel estimation module.
  • the frequency-time conversion module is used to perform frequency-time conversion on the signal output by the equalization module, and the generated signal is a user-level signal in the time domain
  • the demodulation module Used to perform constellation mapping processing on the signal output by the frequency-time conversion module
  • bit-level processing module is used to demodulate The signal output from the block is processed by de-screambling, rate-de-matching, and de-coding to generate a user's bit data stream.
  • the bit-level processing module can also implement other bit-levels.
  • Processing functions can be centralized in the bit-level processing module, or can be implemented as a separate function module; MAC entity, used to stream the bit data output by the bit-level processing module Submit to high-level MAC for processing.
  • the channel estimation module and the equalization module of the second communication device 12 can be moved to the first communication device 11 as shown in the figure.
  • the segmentation method can be described as option.7-new.
  • option.7-new For the description of each unit of the first communication device 11 and each unit of the second communication device 12 under option.7-new, refer to option.7 in FIG. 2. -2a related description.
  • division methods such as moving the channel estimation module, equalization module, and frequency-time conversion module to the first communication device 11; moving the channel estimation module, equalization module, frequency-time conversion module, and demodulation module to the first communication Device 11; moving the channel estimation module, equalization module, frequency-time conversion module, demodulation module, and bit-level processing module to the first communication device 11 or the like, or the time-frequency conversion module and digital beamforming of the first communication device 11
  • the module is moved to the second communication device 12, etc.
  • the upper direction (that is, the transmission direction of data from the first communication device 11 to the second communication device 12) is taken as an example.
  • the first communication device 11 and the second communication device 12 pair the antenna feed system 13
  • the received RF signal sequentially performs the processing of the following functional modules, analog to digital conversion module, time-to-frequency conversion module (can include FFT module and CP removal module, specific functions refer to the above description will not repeat), and demapping ( RE (de-mapping) module, channel estimation (preestimation) module or filtering (prefilering) module (you can choose one of the channel estimation module and filtering module to perform channel estimation on the data in the uplink direction), equalization module, frequency-time conversion Modules (usually inverse discrete Fourier transform IDFT (inverse discrete four transform) modules), demodulation modules, de-screambling modules, rate de-matching modules, and decoding (de) -coding) module and media access control (MAC) entity.
  • analog to digital conversion module can include FFT module and CP removal module, specific functions
  • the difference from the LTE solution is that data in the uplink direction does not need to be processed by a frequency-time conversion module.
  • the descrambling module is configured to perform descrambling processing on a signal output from the demodulation module
  • the rate matching module is configured to perform rate matching processing on a signal output from the descrambling module
  • the decoding module is used to perform processing on a signal output from the rate matching module. Perform decoding processing.
  • the segmentation method is usually recorded as option.7-1; if the first communication device The functions of 11 and the second communication device 12 are divided before the equalization and frequency-time conversion module, and the division method is usually recorded as option. 7-2; if the first communication device 11 and the second communication device 12 are divided The function is divided before the descrambling module, and the division method is usually recorded as option. 7-3. If the functions of the first communication device 11 and the second communication device 12 are divided before the MAC entity, the division is performed. The division method is usually recorded as option.7-6; the above are just some examples. It can be understood that in some solutions, other functional modules can be added between adjacent modules, or some functional modules can be removed in actual use. They are not listed one by one in the embodiments of the present application.
  • the signal obtained by the first communication device 11 adopts a fixed function division mode for data transmission.
  • the position of the CPRI interface is different in different functional segmentation methods. Since the bandwidth of the CPRI interface is usually fixed, the transmission bandwidth that the CPRI interface can provide when the location of the CPRI interface is different between the first communication device 11 and the second communication device 12 The data transmission is limited, and in addition, when there are too many functional modules in the first communication device 11, the processing complexity of the first communication device 11 is greatly increased. For example, using the option 7-2a segmentation method, the data traffic transmitted on the CPRI interface between the first communication device 11 and the second communication device 12 is related to the number of antennas.
  • Massive MIMO massive multiple-input multiple-output, large In the case of large-scale input-multiple-output
  • the first communication device 11 reduces the data flow in the antenna domain to the frequency domain data flow in the beam domain and transmits it to the second communication device.
  • CPRI interface traffic reaches 100Gbps. Under the typical 25G transmission bandwidth of the CPRI interface, it can only support 16-beam transmission. The transmission bandwidth of the CPRI interface is limited by the number of demodulated beams, and the performance is lost in the case of upstream multi-stream.
  • the data traffic transmitted on the CPRI interface between the first communication device 11 and the second communication device 12 and the resource block RB ( resource block)
  • the number of demodulation layers (that is, the number of user data streams carried by each RB) is related.
  • the general number of demodulation layers is much smaller than the number of antennas and beams. Therefore, the first communication device 11 and the second communication device can be greatly reduced.
  • the data traffic transmitted between the communication devices 12 supports more antennas and demodulation of the number of beams.
  • the processing complexity of the first communication device 11 is greatly increased. Under the constraints of power consumption and volume of the first communication device 11, the demodulation cannot be effectively improved. Antenna and number of beams.
  • the present application provides a method capable of realizing data transmission between the first communication device and the second communication device using multiple function splitting methods, which can take into account the processing complexity of the first communication device 11 and reduce the transmission of the CPRI interface. Bandwidth limits the number of demodulated antennas and beams.
  • the basic principle of the data transmission control method is: a first communication device acquires a radio frequency signal received by an antenna; the first communication device processes at least two signals in the radio frequency signal through at least two function division methods to generate at least Two parts of the transmission signal; wherein each part of the radio frequency signal is processed by a functional segmentation method, and different parts of the radio frequency signal have different functional segmentation methods; the functional segmentation method is used to determine the first communication device and Function division of the second communication device when processing part of the radio frequency signals; the first communication device sends at least two partial transmission signals to the second communication device.
  • At least two partial signals in the radio frequency signal include a first partial signal and a second partial signal, wherein the first communication device and the second communication device process the first partial signal by using a first function splitting method; the first communication device and The second communication device uses a second function segmentation method to process the second part of the signal.
  • the first function splitting method may be option.7-2a splitting method
  • the second function splitting method may be option.7-new splitting method.
  • the first communication device may split the first part of the signal.
  • the radio frequency module After being processed by the radio frequency module, the time-frequency conversion module, and the digital beamforming module, it is sent to the second communication device, and the second communication device performs processing of the first part of the signal by the demapping module and other functional modules thereafter;
  • the first communication device can send the second communication device to the second communication device after processing by the radio frequency module, time-frequency conversion module, digital beamforming module, demapping module, channel estimation module, and equalization module.
  • the second communication device performs processing of the frequency-time conversion module and other functional modules thereafter; in this way, the first communication device and the second communication device are implemented to perform data transmission by using multiple function division modes.
  • the second communication device compared with the first part of the signal, it is sent to the second communication device after being processed by option.7-2a, and the second part of the signal is sent to the second communication device after being processed by option.7-new.
  • option.7-2a the interface bandwidth between the first communication device and the second communication device cannot meet the demand.
  • the first communication device only passes the second part of the signal through option.7-
  • the new segmentation processing is transmitted to the second communication device, which avoids the problem of high complexity of the first communication device caused by processing all RF signals in the first communication device through the option.7-new segmentation processing.
  • an embodiment of the present application provides a schematic composition diagram of a first communication device.
  • the first communication device may include at least one processor 41 and a communication interface 42.
  • the communication interface 42 is coupled to one or more processors 41.
  • the first communication device communicates with other devices through the communication interface, and the processor is configured to execute the computer program code in the memory, so that the first communication device executes the implementation of the present application.
  • the example provides a data transmission control method.
  • the processor 4 is a control center of the first communication device, and may be a processor or a collective name of a plurality of processing elements.
  • the processor 41 is a CPU, or may be a specific integrated circuit ASIC, or one or more integrated circuits configured to implement the embodiments of the present application, such as one or more microprocessor DSPs, or, one or Multiple field programmable gate array FPGAs.
  • the RN may further include a memory 43.
  • the processor 41 may independently perform the functions of the first communication device in the present application, and may also execute each of the first communication device by running or executing a software program stored in the memory 43 and calling data stored in the memory 43. Kind of function.
  • the processor 41 may include one or more CPUs, such as CPU0 and CPU1 shown in the figure.
  • the first communication device may include multiple processors, such as the processor 41 and the processor 45 shown in FIG. 4.
  • processors can be a single-core processor (single-CPU) or a multi-core processor (multi-CPU).
  • a processor herein may refer to one or more devices, circuits, and / or processing cores for processing data (such as computer program instructions).
  • the memory 43 may be a read-only memory ROM or other type of static storage device that can store static information and instructions, a random access memory RAM or other type of dynamic storage device that can store information and instructions, or it can be electrically erasable and programmable Read-only memory EEPROM, read-only CD-ROM or other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used for Any other medium that carries or stores the desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
  • the memory 43 may exist independently, and is connected to the processor 41 through the bus 44.
  • the memory 43 may also be integrated with the processor 41.
  • the memory 43 is configured to store a software program that executes the solution of the present application, and is controlled and executed by the processor 41.
  • the communication interface 42 is configured to communicate with other devices or a communication network.
  • the communication interface 42 may include a first interface that communicates with a second communication device, and a second interface that communicates with the antenna feed system.
  • the first interface is used to transmit at least two parts of the transmission signals described above, and the second interface is used to transmit the antenna feed. Radio frequency signals of the system.
  • the bus 44 may be an industry standard architecture ISA bus, an external device interconnection PCI bus, or an extended industry standard architecture EISA bus.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only a thick line is used in FIG. 4, but it does not mean that there is only one bus or one type of bus.
  • the device structure shown in FIG. 4 does not constitute a limitation on the first communication device.
  • the first communication device may include more or fewer components than shown, or some components may be combined, or different components may be arranged.
  • FIG. 5 shows a hardware structure of the second communication device.
  • the second communication device may include at least one processor 51 and a communication interface 52.
  • the communication interface 52 is coupled to one or more processors 51; the second communication device communicates with other devices through the communication interface 52, and the processor 51 is configured to execute computer program code in a memory, so that the second communication device executes the application of this application.
  • the embodiment provides a data transmission control method.
  • the processor 51 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 5.
  • the second communication apparatus may include multiple processors, such as the processor 51 and the processor 55 in FIG. 5.
  • the second communication device may further include a memory 53.
  • the processor can execute various functions of the second communication device by running or executing a software program stored in the memory 53 and calling data stored in the memory 53.
  • a bus 54 that connects the processor 51 with the communication interface 52 and the memory 53 is also included.
  • the device structure shown in FIG. 5 does not constitute a limitation on the second communication device, and the second communication device may include more or less components than shown, or some components may be combined, or different components may be arranged.
  • an embodiment of the present application provides a data transmission control method, as shown in FIG. 6, including the following steps:
  • a first communication device acquires a radio frequency signal received by an antenna.
  • the first communication device processes at least two partial signals in the radio frequency signal by using at least two function division modes to generate at least two partial transmission signals.
  • each part of the radio frequency signal is processed by a function splitting method, and different parts of the radio frequency signal have different function splitting methods; the function splitting method is used to determine whether the first communication device and the second communication device Functional segmentation when processing some of the RF signals.
  • the at least two function division modes may include a first function division mode and a second function division mode.
  • the first function split mode can be option.7-1, option.7-2 split mode, option.7-3 split mode, option.7-6 split mode, option7-2a split mode, and option7- Any of the new splitting methods.
  • the second functional splitting method can be option.7-1, option.7-2 splitting method, option.7-3 splitting method, and option.7-6 splitting method. , Option7-2a segmentation method, and option7-new segmentation method.
  • the first function segmentation method and the second function segmentation method need to adopt different function segmentation methods.
  • other functional division methods derived in the art should also be included in the first functional division mode and the second functional division mode.
  • the first communication device processes at least two signals in the radio frequency signal by using at least two function division methods to generate at least two transmission signals. It can be understood that the first communication device divides a part of the signals in the radio frequency signal by one function. The mode processing generates a part of the transmission signal. The first communication device processes a part of the signals in the radio frequency signal by using a functional segmentation method to generate a part of the transmission signal. It can be understood that the first communication device processes a part of the signals in the radio frequency signal according to a functional segmentation method by the first communication device. The functions that the device needs to complete are processed. For example, the first function segmentation method is the option 7-2a segmentation method. The first communication device needs to complete the processing of the RF module, the FFT module, and the BF module for a part of the signals in the radio frequency signal, and then generates a part of the transmission signal.
  • the first communication device sends at least two partial transmission signals to the second communication device.
  • the second communication device receives at least two partial transmission signals sent by the first communication device.
  • the second communication device processes at least two functional division modes for at least two partial transmission signals, respectively.
  • Each part of the transmission signal corresponds to a functional segmentation method, and different parts of the transmission signal have different function segmentation methods; the function segmentation method is used to determine that the first communication device and the second communication device are processing the Functional segmentation when transmitting signals.
  • the second communication device processes at least two transmission signals in the radio frequency signal by using at least two function division methods. It can be understood that the second communication device processes a part of the transmission signals by using one function division method. The second communication device processes a part of the transmission signals in the radio frequency signal by using a function segmentation method. It can be understood that the second communication device performs part of the transmission signals according to the functions that the second communication device needs to complete in a function segmentation method. deal with. For example, the function division mode is option7-2a division mode. The second communication device needs to complete a demapping module, a channel estimation module, an equalization module, a frequency-time conversion module, a demodulation module, a bit-level processing module, and a MAC for a part of the transmission signals. Processing of modules.
  • the first function splitting method is option. 7-2a splitting method.
  • the first communication device directly sends the first part of the RF signal to the RF module, the time-frequency conversion module, and the digital beamforming module and then sends it to
  • the second communication device processes the first part of the signal by the second communication device with the channel estimation module and other functional modules thereafter; for example, the second function segmentation method is the option.7-new segmentation method, and the first communication device still
  • the second part of the RF signal needs to be processed by the RF module, time-frequency conversion module, digital beamforming module, demapping module, channel estimation module, and equalization module in order, and then sent to the second communication device for frequency-time The processing of the conversion module and other functional modules thereafter; in this way, the first communication device and the second communication device are implemented to perform data transmission by using multiple function division methods.
  • the data transmission control method further includes: the first communication device divides the radio frequency signal into at least two partial signals. It should be noted that the first communication device may divide the radio frequency signal into at least two signals after receiving the radio frequency signal, or the first communication device performs the first processing on the radio frequency signal; and then the first communication device performs the first processing on the radio frequency signal.
  • the RF signal is divided into at least two parts of the signal.
  • the first process includes at least an analog-to-digital conversion process; or the first process may include an analog-to-digital conversion process, or the first process may include an analog-to-digital conversion process and time-frequency conversion process, or the first process may include an analog-to-digital conversion process, time Frequency conversion processing, beamforming processing, and the like.
  • the first processing may also include more functions in the uplink direction (that is, the data transmission direction from the first communication device to the second communication device).
  • the first process may be a process common to at least two splitting methods.
  • the first functional splitting method is option.7-2a splitting method
  • the second functional splitting method is option.7-new splitting.
  • the first process may be a function of a radio frequency module, or the first process may include functions of a radio frequency module and a time-frequency conversion module, or the first process may include functions of a radio frequency module, a time-frequency conversion module, and a digital beamforming module.
  • the first function splitting method is option7-2a splitting method
  • the second function splitting method is option7-new splitting method.
  • the first process includes a radio frequency module, a time-frequency conversion module, and a digital beamforming module.
  • a data transmission control method is provided, including the following steps:
  • the first communication device receives a radio frequency signal sent by user equipment.
  • the first communication device performs analog-to-digital conversion processing on the radio frequency signal to generate a digital signal in the time domain.
  • the first communication device performs time-frequency conversion processing on the digital signal in the time domain to generate a digital signal in the frequency domain.
  • the first communication device performs beamforming processing on a digital signal in the frequency domain to generate a digital signal in the beam domain.
  • the first communication device divides the digital signal in the beam domain into at least two partial signals, where the at least two partial signals include a first partial signal and a second partial signal.
  • the digital signal in the beam domain is divided into at least two signals in step 205 as an example for description.
  • the radio frequency signal may be divided into two signals after step 201, where The first part of the signal undergoes analog-to-digital conversion processing, time-frequency conversion processing, and beamforming processing in order to generate the first part of the transmission signal. The second part of the signal undergoes analog-to-digital conversion processing, time-frequency conversion processing, beamforming processing, demapping processing, channel estimation processing, and equalization processing in order to generate the second part of the transmission signal.
  • the radio frequency signal may be divided into two parts after being processed in any one of steps 202, 203, and 204.
  • the first communication device sends the first partial signal as a first partial transmission signal to the second communication device.
  • the first part of the transmission signal is directly sent by the first communication device to the second communication device, and the second communication device performs processing after beamforming, that is, for the first part of the radio frequency signal, the first communication device and the first communication device
  • the two communication devices process according to option 7-2a. Since the first part of the signal is processed only by the radio frequency RF module, the time-frequency conversion module, and the digital beamforming BF module on the first communication device, the processing of the first part of the signal requires less computational complexity for the first communication device.
  • the first communication device performs a demapping process on the second part of the signal.
  • the first communication device performs channel estimation on the second part of the signal after the demapping process and performs equalization processing to generate a second part of the transmission signal, where the second part of the transmission signal is a user-layer signal in the frequency domain.
  • the first communication device sends the second part of the transmission signal to the second communication device.
  • the radio frequency signal is divided into a first part signal and a second part signal by the first communication device through an analog-to-digital conversion process, a time-frequency conversion process, and a beam forming process.
  • the second part signal is subjected to demapping processing, channel estimation processing, and After the equalization process, a second part of the transmission signal is generated and sent to the second communication device. That is, for the second part of the signal, the first communication device and the second communication device are processed according to the option7-new segmentation method.
  • the data traffic transmitted on the interface between the first communication device and the second communication device is related to the number of pairing layers (that is, the number of user data streams carried by each RB on the second signal).
  • the general number of pairing layers is far.
  • the data amount of the second part of the transmitted signal is less than the data amount of the second part of the signal, which can greatly reduce the transmission traffic between the first communication device and the second communication device, and support more antennas or beams Number demodulation.
  • the second communication device receives the first part of the transmission signal sent by the first communication device, and performs processing corresponding to the demapping module and other functional modules thereafter.
  • the second communication device may sequentially perform corresponding functions such as a demapping module, a channel estimation module, an equalization module, a frequency-time conversion module, a demodulation module, a bit-level processing module, and a medium access control MAC entity on the first part of the transmission signal. deal with.
  • the second communication device receives the second part of the transmission signal sent by the first communication device; and performs processing corresponding to the frequency-time conversion module and other functional modules thereafter for the second part of the transmission signal.
  • the second communication device may sequentially perform processing corresponding to functional modules such as a frequency-time conversion module, a demodulation module, a bit-level processing module, and a medium access control MAC entity on the second part of the transmission signal.
  • functional modules such as a frequency-time conversion module, a demodulation module, a bit-level processing module, and a medium access control MAC entity on the second part of the transmission signal.
  • the first processed radio frequency signal is divided into two signals by 205, thereby realizing the first communication device and the second communication device in the data transmission control process.
  • Option.7-2a split method and option7-new split method that is, part of the RF signal is processed by option7-2a split method, and the other part of the RF signal is processed by option7-new split method.
  • Option 7-2a partly using option 7-new, can effectively balance the forward traffic of the CPRI interface, and at the same time can share the processing complexity of the first communication device and the second communication device.
  • the above is only described by taking the mixed division of the option7-2a division method and the option7-new division method as an example.
  • this application is not limited to the mixture of the option.7-2a division method and the option.7-new division method. It also includes a mix of multiple splitting methods after simply modifying the option.7-2a splitting method or option.7-new splitting method.
  • the first processed RF signal may also be divided into three parts.
  • the first part signal and the second part signal are processed by referring to the methods provided in steps 201-210, and the third part signal is converted by the time-frequency conversion module.
  • the subsequent division mode is performed, that is, the first communication device of the third part signal is sent to the second communication device after being processed by the functions corresponding to the channel estimation module, the equalization module, and the frequency-time conversion module.
  • the first communication device divides the radio frequency signal into at least two parts of signals, and processes them by using different function segmentation methods, which can be implemented by referring to the following methods:
  • the radio frequency signal may include signals of different users.
  • the first communication device may divide the signals of the different users into at least two parts of signals.
  • the first communication device and the second communication device may use different functions when processing each part of the signal.
  • the radio frequency signal may include signals of M + N users, and the first communication device may divide the signals of M + N users into at least two parts of signals, for example, the signals of M users are divided into the first part of signals; N
  • the user's signal is divided into a second part of the signal.
  • the first communication device and the second communication device can process the signals of the M users by using the first function splitting method.
  • the first communication device and the second communication device are processing the N signals.
  • the user's signal can be split in the second function.
  • the first communication device specifically divides the signals of the M users in the radio frequency signal subjected to the first process into the first part of the signal.
  • the signals of N users are divided into the second part of signals.
  • the first communication device may store configuration information to determine how to divide the radio frequency signal into at least two partial signals and a processing manner of each partial signal.
  • the configuration information it can be configured that the first communication device and the second communication device process the M user signals corresponding to the M user IDs using the option. 7-2a segmentation method, and the first communication device and the second communication device are processing N numbers.
  • the N user signals corresponding to the user ID use the option.7-new segmentation method.
  • the configuration information may include a mapping relationship between M user IDs and the option.7-2a segmentation method, and the N user IDs and option.7- The mapping relationship of the new segmentation method.
  • the configuration information may be configured in the first communication device in a static manner, or may be sent by a radio resource management (radio resource management (RRM)) entity of the base station to the first communication device through a layer 2 (L2, data link layer) message.
  • RRM radio resource management
  • the radio frequency signal includes a signal of the first bandwidth of the first user and a signal of the second bandwidth of the first user.
  • the first communication device separates the signals of the first bandwidth and the second bandwidth of the first user with different functional division methods. For example, the first communication device divides the signals of the first bandwidth of the first user into the first part in the radio frequency signal. Signal; the first communication device divides the second bandwidth signal of the first user in the radio frequency signal into a second partial signal.
  • the first communication device and the second communication device may process signals of the first bandwidth of the first user by using a first function segmentation method. The first communication device and the second communication device are processing the second bandwidth of the first user.
  • the signal can be split in the second function.
  • the first communication device specifically divides the first bandwidth signal of the first user in the radio frequency signal after the first processing. Is the first partial signal, and the second bandwidth signal of the first user is divided into the second partial signal.
  • the first communication device may store configuration information to determine how to divide the radio frequency signal into at least two partial signals and a processing manner of each partial signal.
  • the configuration information may be configured that the first communication device and the second communication device use the option. 7-2a segmentation method when processing the first bandwidth signal corresponding to the first user identifier, and the first communication device and the second communication device are processing.
  • the option.7-new segmentation method is adopted.
  • the configuration information may include the user identifier of user A and the bandwidth of the user. A uses the option.7-new bandwidth.
  • the configuration information may be configured in the first communication device in a static manner, or may be sent by the radio resource management entity of the base station to the first communication device through a layer 2 (L2, data link layer) message.
  • the radio frequency signal can be carried on different channels.
  • the radio frequency signal is carried on at least two channels (the first channel and the second channel).
  • the first communication device separates the signals carried on the first channel and the second channel with different functional division methods, for example: the first communication device divides the radio frequency signal carried on the first channel into a first partial signal; the first communication device divides The radio frequency signal carried by the second channel is divided into a second part signal.
  • the first communication device and the second communication device may use the first function splitting method when processing the radio frequency signal carried by the first channel, and the first communication device and the second communication device may process the radio frequency signal carried by the second channel. Use the second function segmentation method.
  • the first communication device specifically divides the first processed radio frequency signal carried by the first channel into the first part of the signal.
  • the first processed radio frequency signal carried by the two channels is divided into a second partial signal.
  • the first communication device may store configuration information to determine how to divide the radio frequency signal into at least two partial signals and a processing manner of each partial signal.
  • the configuration information may be configured that the first communication device and the second communication device use the option. 7-2a segmentation method when processing the radio frequency signal carried by the first channel, and the first communication device and the second communication device are processing the first channel bearer.
  • Option.7-new segmentation is used when the radio frequency signal is transmitted.
  • the configuration information may include the mapping relationship between the first channel identifier and option.7-2a segmentation method, and the first channel identifier and option.7-new segmentation Way of mapping.
  • the configuration information may be configured in the first communication device in a static manner, or may be sent by the radio resource management entity of the base station to the first communication device through a layer 2 (L2, data link layer) message.
  • the first communication device may divide the radio frequency signal into at least two partial signals according to the transmission bandwidth between the first communication device and the second communication device, so that the sum of the data amounts of the at least two transmission signals is less than or equal to the first communication
  • the transmission bandwidth between the device and the second communication device is 25G, (where the transmission bandwidth may be the maximum bandwidth that the interface or communication cable between the first communication device and the second communication device can withstand), Supports 5G 100M bandwidth uplink 4 layer 32 antenna reception.
  • the option 7-2a segmentation method the amount of data transmitted between the first communication device and the second communication device needs to reach 47 Gbps; if the option 7-new segmentation method is used, the transmission between the first communication device and the second communication device
  • the data volume requirement is only 5.45Gbps, but the first communication device completes complex processing such as channel estimation and equalization, the processing overhead increases, and the power consumption of the first communication device increases.
  • 60% of the data amount in 47Gbps adopts the option7-new split method, and 40% of the data amount uses the Option7-2a split method.
  • the transmission traffic between the first communication device and the second communication device It can be significantly reduced to 22.07Gbps, which meets the 25G bandwidth constraint.
  • the first communication device and the second communication device each complete one channel estimation and equalization, the processing complexity of the first communication device decreases, and the power consumption of the first communication device decreases. . If the transmission bandwidth between the second communication device and the first communication device is limited to 20G, the corresponding amount of data by adjusting the option7-2a segmentation method and the option7-new segmentation method is 35%: 65%. Bandwidth constraints.
  • the radio frequency signal is carried on at least two resource blocks RB, and each resource block RB carries a predetermined number of user data streams; the first communication device may be different according to the number of user data streams on each RB in the radio frequency signal.
  • Radio frequency signals carried by RBs with different data streams are divided into different functions, for example: after the first communication device obtains the number of user data streams carried by each RB; the first communication device determines that the number of users is greater than or equal to the number of streams
  • the radio frequency signal carried by at least one RB with a threshold is divided into a first partial signal; the first communication device divides the radio frequency signal carried by at least one RB with a number of user data streams smaller than the stream number threshold into a second partial signal.
  • the first communication device and the second communication device may use a first function segmentation method when processing a radio frequency signal carried by at least one RB whose number of data streams is greater than or equal to the number of streams threshold.
  • the first communication device and the second communication device are processing When the number of users and the number of data streams is less than the threshold of the number of streams of radio frequency signals carried by at least one RB, a second function segmentation manner may be adopted.
  • the first communication device performs the first processing on the radio frequency signal and is divided into two parts of the signal, the first communication device is specifically the first processing carried by at least one RB bearer whose number of users is equal to or greater than a threshold of the number of streams.
  • the subsequent radio frequency signal is divided into a first part signal, and the first processed radio frequency signal carried by at least one RB whose number of users is less than the stream number threshold is divided into a second part signal.
  • the first communication device may store configuration information to determine how to divide the radio frequency signal into at least two partial signals and a processing manner of each partial signal.
  • the configuration information may include the foregoing stream number threshold and the number of user data streams on each resource block.
  • the number of paired layers on the RB increases, the corresponding number of user data streams increases, and the processing complexity increases.
  • the number of paired layers is 2
  • the RB that uses the option.7-new segmentation method is preferred; for an RB with a large number of pairing layers, for example, the number of pairing layers on a certain RB is 8 layers, the RB preferentially uses the option.7-2a segmentation method.
  • the first communication device is based on any one or more of the following: the air interface characteristics of the user data stream carried by the resource block RB in the first signal, the evolution protocol version used by the user data stream, and the use of the user data stream Receiver type, the predetermined processed RF signal is divided into at least two partial signals.
  • the air interface characteristics include MCS (modulation and coding rate, modulation and coding rate), speed status, and whether or not a cell edge user.
  • MCS modulation and coding rate
  • speed status whether or not a cell edge user.
  • JIRC CoMP joint interference, coordinated multipoint, joint anti-interference combined multi-point coordinated transmission
  • the user needs to combine the beam domain received signals of the serving cell and the coordinated cell into the equalization module for joint equalization.
  • the option.7-new segmentation method the first communication device has equalized the digital signals in the beam domain in the serving cell and the cooperative cell respectively. Therefore, the option.7-new segmentation method does not support JIRC CoMP.
  • the radio resource management entity of the base station may send configuration information to the first communication device to configure the user data stream of the cell edge users in the radio frequency signal into the first part of the signal.
  • the configuration divides the user data stream of users with high MCS and fast motion in the first signal into the first part of the signal, that is, using the option.7-2a segmentation method; configures the MCS in the first signal to be low, and the motion The signal of the slow user is divided into the second part of the signal, which is the option.7-new segmentation method.
  • the symbol level for example, the channel estimation module, the equalization module to the demodulation module is symbol-level processing
  • the bit-level processing flow after the demodulation module is: Bit-level processing
  • the iterative receiver needs the decoded soft information output by the bit-level processing module to reconstruct the information and feed it back to the channel estimation module for processing, so option.7-new is not good for supporting the need for symbol-level and bit-level information Interactive iterative receiver.
  • the wireless resource management entity of the base station may send configuration information to the first communication device to configure the user data stream of the beneficiary user of the iterative receiver in the radio frequency signal into the first part of the signal. That is, the option.7-2a segmentation method is used.
  • the version of the evolved protocol used by user data streams, the performance of iterative NoMA (none orthogonal multi-aceess, non-orthogonal multiple access) receivers is linear NoMA receivers, so option.7-new is not conducive to supporting iterative receivers
  • the user data stream of the used evolution protocol version NoMA can send configuration information to the first communication device through the radio resource management entity of the base station, and configure the first communication device to divide it into the first part of the signal, that is, use Option.7-2a to divide the way.
  • the radio resource management entity of the base station can send configuration information to the first communication device, and configure the first communication device to divide it into a second part of the signal, that is, Use option.7-new segmentation.
  • the first communication device specifically includes the first processed radio frequency signal according to the user data stream carried by the resource block RB in the first signal. Any one or more of the characteristics of the air interface, the evolution protocol version used by the user data stream, and the type of receiver used by the user data stream are divided into at least two parts of the signal.
  • An embodiment of the present application provides a first communication device.
  • the first communication device is any one of the following: a radio remote unit RRU, a radio remote system RRS, a distributed unit DU, or a chip in any of the foregoing.
  • the first communication device is configured to perform the steps performed by the first communication device in the above data transmission control method.
  • the first communication device provided in the embodiment of the present application may include a module corresponding to a corresponding step.
  • the first communication device may be divided into functional modules according to the foregoing method example.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or software functional modules.
  • the division of the modules in the embodiments of the present application is schematic, and is only a logical function division. In actual implementation, there may be another division manner.
  • a method for dividing a functional module by a first communication device including: an obtaining unit 81, a processing unit 82, and a sending unit 83;
  • An acquiring unit 81 configured to acquire a radio frequency signal received by an antenna
  • a processing unit 82 configured to process at least two parts of the radio frequency signals acquired by the obtaining unit 81 through at least two functional division methods to generate at least two parts of transmission signals; wherein each part of the radio frequency signals The signal is processed by a function splitting method, and the function splitting method of different signals in the radio frequency signal is different; the function splitting method is used to determine whether the first communication device and the second communication device are processing the The functional division of some signals in the RF signal;
  • the sending unit 83 is configured to send the at least two partial transmission signals generated by the processing unit 82 to the second communication device.
  • the processing unit 82 is further configured to divide the radio frequency signal acquired by the acquiring unit 81 into the at least two partial signals.
  • the processing unit 82 is further configured to perform the first processing on the radio frequency signal acquired by the acquiring unit 81; the processing unit 82 is specifically configured to divide the radio frequency signal after the first processing into the at least Two-part signal; the first process includes at least an analog-to-digital conversion process.
  • the processing unit 82 is specifically configured to divide the radio frequency signal into the at least two partial signals according to a transmission bandwidth between the first communication device and the second communication device, So that the sum of the data amounts of the at least two partial transmission signals is less than or equal to the transmission bandwidth between the first communication device and the second communication device.
  • the radio frequency signal is carried on at least two resource blocks RB, and the processing unit 82 is specifically configured to obtain the number of user data streams carried by each RB;
  • the radio frequency signal carried by at least one RB greater than or equal to the stream number threshold is divided into a first partial signal; and the radio frequency signal carried by at least one RB where the number of user data streams is less than the stream number threshold is divided into a second partial signal.
  • the first part of the signal is processed by the first function segmentation method, the first function of the segmentation method includes option.7-2a segmentation method; the second part of the signal is processed by the second function segmentation method, the first The two function segmentation modes include option.7-new segmentation mode.
  • the processing unit 82 is specifically configured to: according to any one or more of the following: an air interface characteristic, an air interface characteristic, and a user data stream carried by the resource block RB in the first signal; The evolved protocol version used by the user data stream and the type of receiver used by the user data stream are described, and the radio frequency signal after the predetermined processing is divided into the at least two partial signals.
  • the radio frequency signal is carried on at least two channels, and the processing unit 82 is specifically configured to divide the radio frequency signal carried on the first channel into a first partial signal; and bear the second channel The radio frequency signal is divided into a second part signal.
  • the radio frequency signal includes signals of M users and signals of N users
  • the processing unit 82 is specifically configured to divide the signals of the M users in the radio frequency signal into The first part of the signal; the signals of the N users in the radio frequency signal are divided into the second part of the signal.
  • the radio frequency signal includes a signal of a first bandwidth of a first user and a signal of a second bandwidth of the first user; and the processing unit 82 is specifically configured to convert the radio frequency signal
  • the signal of the first bandwidth of the first user is divided into a first partial signal; and the signal of the second bandwidth of the first user in the radio frequency signal is divided into a second partial signal.
  • the at least two functional segmentation modes include an option.7-2a segmentation mode and an option.7-new segmentation mode.
  • the first communication device provided in the embodiment of the present application includes, but is not limited to, the foregoing modules.
  • the first communication device may further include a storage unit.
  • the storage unit may be configured to store a program code of the first communication device.
  • the foregoing obtaining unit 81 and processing unit 82 may be the processor 41 in FIG. 4; and the sending unit 83 may be Communication interface 42 in FIG. 4.
  • the data first communication device performs the steps of the first communication device in the data transmission method of the above embodiment.
  • Another embodiment of the present application further provides a computer-readable storage medium.
  • the computer-readable storage medium stores instructions.
  • the instructions run on the first communication device the first communication device executes the data of the foregoing embodiment. Steps of the first communication device in the transmission method.
  • a computer program product includes computer-executable instructions stored in a computer-readable storage medium. At least one processor of the first communication device may The computer-executable instructions are read from a computer-readable storage medium, and at least one processor executes the computer-executable instructions to cause the first communication device to perform the steps of the first communication device in the data transmission method of the foregoing embodiment.
  • An embodiment of the present application provides a second communication device.
  • the second communication device is any one of the following: a baseband unit BBU, a wireless cloud center RCC, and a centralized unit CU; or a chip in any of the above.
  • the second communication device is configured to execute the steps performed by the second communication device in the above data transmission control method.
  • the second communication device provided in the embodiment of the present application may include a module corresponding to a corresponding step.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or software functional modules.
  • the division of the modules in the embodiments of the present application is schematic, and is only a logical function division. In actual implementation, there may be another division manner.
  • a method for dividing a functional module by a second communication device including: a receiving unit 91 and a processing unit 92;
  • the receiving unit 91 is configured to receive at least two partial transmission signals sent by a first communication device; wherein the at least two partial transmission signals pass at least two partial signals of a radio frequency signal received from an antenna by the first communication device through at least two A functional segmentation method is used for processing and generation, wherein each part of the radio frequency signal is processed by a functional segmentation method, and different parts of the radio frequency signal have different functional segmentation methods; the functional segmentation A manner for determining a function split between the first communication device and the second communication device when processing a part of the radio frequency signals;
  • a processing unit 92 configured to separately process the at least two functional splitting manners on the at least two partial transmission signals received by the receiving unit 91, wherein each part of the transmission signals is correspondingly processed using one functional splitting manner, and Functional divisions of the transmission signals are different in different parts; the functional divisions are used to determine the functional division of the first communication device and the second communication device when processing the transmission signal.
  • the at least two functional segmentation modes include an option.7-2a segmentation mode and an option.7-new segmentation mode.
  • the second communication device provided in the embodiment of the present application includes, but is not limited to, the foregoing modules.
  • the second communication device may further include a storage unit.
  • the storage unit may be configured to store a program code of the second communication device.
  • the processing unit 82 may be the processor 51 in FIG. 5; the receiving unit 81 may be the communication interface 52 in FIG. 5. .
  • the data second communication device performs the steps of the second communication device in the data transmission method of the above embodiment.
  • Another embodiment of the present application further provides a computer-readable storage medium.
  • the computer-readable storage medium stores instructions.
  • the second communication device executes the data of the foregoing embodiment. Steps of the second communication device in the transmission method.
  • a computer program product in another embodiment of the present application, includes computer-executable instructions stored in a computer-readable storage medium; at least one processor of the second communication device may The computer-executable instructions are read from a computer-readable storage medium, and at least one processor executes the computer-executable instructions to cause the second communication device to perform the steps of the second communication device in the data transmission method of the foregoing embodiment.
  • all or part can be implemented by software, hardware, firmware, or any combination thereof.
  • a software program When implemented using a software program, it may appear in whole or in part in the form of a computer program product.
  • a computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, the processes or functions according to the embodiments of the present application are generated in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a web site, computer, server, or data center via a wired (e.g., Coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) transmission to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data terminal device such as a server, a data center, or the like that includes one or more available mediums integrated.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the disclosed apparatus and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the modules or units is only a logical function division.
  • multiple units or components may The combination can either be integrated into another device, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the unit described as a separate component may or may not be physically separated, and the component displayed as a unit may be a physical unit or multiple physical units, that is, may be located in one place, or may be distributed to multiple different places. . Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware or in the form of software functional unit.
  • the integrated unit When the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a readable storage medium.
  • the technical solutions of the embodiments of the present application essentially or partly contribute to the existing technology or all or part of the technical solutions may be embodied in the form of a software product, which is stored in a storage medium
  • the instructions include a number of instructions for causing a device (which can be a single-chip microcomputer, a chip, or the like) or a processor to execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disks, mobile hard disks, read-only memories (ROM), random access memories (RAM), magnetic disks or optical disks, and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请的实施例提供一种数据传输控制方法、装置和接入网设备,涉及通信领域,能够实现第一通信装置与第二通信装置采用多种功能切分方式进行数据传输。该方法包括:第一通信装置获取天线接收的射频信号;所述第一通信装置将所述射频信号中的至少两部分信号通过至少两种功能切分方式处理生成至少两部分传输信号;其中,所述射频信号中的每部分信号通过一种功能切分方式处理,且所述射频信号中的不同部分信号的功能切分方式不同;所述功能切分方式用于确定所述第一通信装置与第二通信装置在处理所述射频信号中的部分信号时的功能切分;所述第一通信装置向所述第二通信装置发送所述至少两部分传输信号。

Description

数据传输控制方法、装置和接入网设备
本申请要求于2018年07月13日提交国家知识产权局、申请号为201810771020.7、申请名称为“数据传输控制方法、装置和接入网设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请的实施例涉及通信领域,尤其涉及一种数据传输方法、装置和接入网设备。
背景技术
C-RAN(centralized processing,collaborative radio,real-time cloud infrastructure,clean system-radio access network;集中化处理,协作式无线电,实时云计算架构,绿色无线接入网系统)架构下具有基带处理功能的BBU(baseband unit,基带单元)集中化部署,拉远具有远端射频处理功能的RRU(radio remote unit,射频拉远单元),这种架构具有快速网络部署、节省空间、方便运维、易结合站间协作、易载波扩充等优势,从而显著提升网络性能。传统的BBU以及RRU的功能切分中,CPRI(common public radio interface,通用公共无线电接口)传输RRU从各天线收到的时域数据给BBU。在大带宽和大规模阵列天线下BBU与RRU之间的CPRI的带宽成为了C-RAN规模部署的限制。而通过BBU以及RRU的功能重新切分是解决网络大带宽、Massive MIMO等新技术对CPRI传输高带宽需求的解决方案。其次,面向低时延和高带宽的上层业务需求,业务下沉和核心网功能边缘化趋势明显。在这种情况下,高带宽、低时延的CPRI是满足上层业务需求的基础。
4.5G/5G无线网络主设备中基带处理功能与远端射频处理功能之间的接口位置可以重新定义了BBU和RRU的功能,从而实现BBU和RRU的功能切分,而如何采用不同的功能切分方式进行数据传输成为急需解决的问题。
发明内容
本申请的实施例提供一种数据传输方法、装置和接入网设备,能够实现第一通信装置与第二通信装置采用多种功能切分方式进行数据传输。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,提供一种数据传输控制方法,该数据传输控制方法,应用于第一通信装置或第一通信装置中的芯片,第一通信装置为射频拉远单元RRU或者射频拉远系统RRS或者分布式单元DU。具体的,本申请实施例提供的数据传输控制方法为:第一通信装置获取天线接收的射频信号;第一通信装置将所述射频信号中的至少两部分信号通过至少两种功能切分方式处理生成至少两部分传输信号;其中,射频信号中的每部分信号通过一种功能切分方式处理,且射频信号中的不同部分信号的功能切分方式不同;功能切分方式用于确定第一通信装置与第二通信装置在处理射频信号中的部分信号时的功能切分;第一通信装置向第二通信装置发送至少两部分传输信号。这样,根据第一功能切分方式,例如option.7-2a切分方式,第一通信装置直接将射频信号中的第一部分信号处理后发送至第二通信装置,由第二通信装置对第一部分信号进行信道估计模块及其之后的其他功能模块的处理;根据第二功能切分方式,例如 option.7-new切分方式,第一通信装置仍然需要对射频信号中的第二部分信号进行信道估计模块、均衡模块部分的处理,然后发送至第二通信装置进行频时转换模块及其之后的其他功能模块的处理;这样,实现第一通信装置与第二通信装置采用多种功能切分方式进行数据传输。
可选的,数据传输控制方法还包括:第一通信装置将射频信号分为至少两部分信号。需要说明的是,第一通信装置可以直接将射频信号分为至少两部分信号,或者,第一通信装置对射频信号进行第一处理;然后第一通信装置将第一处理后的射频信号分为至少两部分信号;第一处理至少包括模数转换处理。在本申请中,第一处理可以包括模数转换处理,或者第一处理可以包括模数转换处理以及时频转换处理,或者第一处理可以包括模数转换处理、时频转换处理以及波束赋形处理等等,当然根据功能切分方式的不同,第一处理还可以包括更多上行方向(即数据从第一通信装置到第二通信装置的传输方向)的功能。
可选的,第一通信装置将射频信号分为至少两部分信号具体可以参照如下方式实施:
方式一:第一通信装置将射频信号分为至少两部分信号,包括:第一通信装置根据第一通信装置与第二通信装置之间的传输带宽将射频信号分为至少两部分信号,以使至少两部分传输信号的数据量之和小于或等于第一通信装置与第二通信装置之间的传输带宽。
方式二:射频信号承载在至少两个资源块RB上,第一通信装置将射频信号分为至少两部分信号,包括:第一通信装置获取每个RB承载的用户数据流数;第一通信装置将用户数数据流数大于等于流数阈值的至少一个RB承载的射频信号分为第一部分信号;第一通信装置将用户数数据流数小于流数阈值的至少一个RB承载的射频信号分为第二部分信号。其中,第一部分信号采用第一功能切分方式处理,第一功能切分方式包括option.7-2a切分方式;第二部分信号采用第二功能切分方式处理,第二功能切分方式包括option.7-new切分方式。
方式三:第一通信装置将所述射频信号分为至少两部分信号,包括:第一通信装置根据以下各项中的任意一项或多项:第一信号中资源块RB承载的用户数据流的空中接口特征、用户数据流使用的演进协议版本、用户数据流使用的接收机类型,将预定处理后的射频信号分为至少两部分信号。
方式四:所述射频信号承载在至少两个信道上,所述第一通信装置将所述射频信号分为至少两部分信号,包括:所述第一通信装置将第一信道承载的所述射频信号分为第一部分信号;所述第一通信装置将第二信道承载的所述射频信号分为第二部分信号。
方式五:所述射频信号包括M个用户的信号和N个用户的信号,所述第一通信装置将所述射频信号分为所述至少两部分信号,包括:所述第一通信装置将所述射频信号中的所述M个用户的信号分为第一部分信号;所述第一通信装置将所述射频信号中的所述N个用户的信号分为第二部分信号。
方式六:所述射频信号中包括第一用户的第一带宽的信号和所述第一用户的第二带宽的信号;所述第一通信装置将所述射频信号分为所述至少两部分信号,包括:所 述第一通信装置将所述射频信号中所述第一用户的第一带宽的信号分为第一部分信号;所述第一通信装置将所述射频信号中所述第一用户的第二带宽的信号分为第二部分信号。
可选的,至少两种功能切分方式包括option.7-2a切分方式和option.7-new切分方式。
第二方面,提供一种第一通信装置,该第一通信装置为RRU或者RRS或者DU;或者第一通信装置为RRU或者RRS或者DU中的芯片。具体的,第一通信装置包括获取单元、处理单元和发送单元。本申请提供的各个单元模块所实现的功能具体如下:获取单元,用于获取天线接收的射频信号;处理单元,用于将所述获取单元获取的所述射频信号中的至少两部分信号通过至少两种功能切分方式处理生成至少两部分传输信号;其中,所述射频信号中的每部分信号通过一种功能切分方式处理,且所述射频信号中的不同部分信号的功能切分方式不同;所述功能切分方式用于确定所述第一通信装置与第二通信装置在处理所述射频信号中的部分信号时的功能切分;发送单元,用于向所述第二通信装置发送所述处理单元生成的所述至少两部分传输信号。
可选的,所述处理单元还用于将所述获取单元获取的所述射频信号分为所述至少两部分信号。
可选的,所述处理单元还用于所述对所述获取单元获取的所述射频信号进行第一处理;
所述处理单元具体用于将所述第一处理后的所述射频信号分为所述至少两部分信号;所述第一处理至少包括模数转换处理。
可选的,所述处理单元具体用于根据所述第一通信装置与所述第二通信装置之间的传输带宽将所述射频信号分为所述至少两部分信号,以使所述至少两部分传输信号的数据量之和小于或等于所述第一通信装置与所述第二通信装置之间的传输带宽。
可选的,所述射频信号承载在至少两个资源块RB上,所述处理单元具体用于获取每个RB承载的用户数据流数;将所述用户数数据流数大于等于流数阈值的至少一个RB承载的所述射频信号分为第一部分信号;将所述用户数数据流数小于流数阈值的至少一个RB承载的所述射频信号分为第二部分信号。
可选的,所述第一部分信号采用第一功能切分方式处理,所述第一功能切分方式包括option.7-2a切分方式;所述第二部分信号采用第二功能切分方式处理,所述第二功能切分方式包括option.7-new切分方式。
可选的,所述处理单元具体用于根据以下各项中的任意一项或多项:所述第一信号中资源块RB承载的用户数据流的空中接口特征、所述用户数据流使用的演进协议版本、所述用户数据流使用的接收机类型,将所述预定处理后的所述射频信号分为所述至少两部分信号。
可选的,所述射频信号承载在至少两个信道上,所述处理单元具体用于将第一信道承载的所述射频信号分为第一部分信号;将第二信道承载的所述射频信号分为第二部分信号。
可选的,所述射频信号包括M个用户的信号和N个用户的信号,所述处理单元具体用于将所述射频信号中的所述M个用户的信号分为第一部分信号;将所述射频信号 中的所述N个用户的信号分为第二部分信号。
可选的,所述射频信号中包括第一用户的第一带宽的信号和所述第一用户的第二带宽的信号;所述处理单元具体用于将所述射频信号中所述第一用户的第一带宽的信号分为第一部分信号;将所述射频信号中所述第一用户的第二带宽的信号分为第二部分信号。
可选的,所述至少两种功能切分方式包括option.7-2a切分方式和option.7-new切分方式。
可选的,该第一通信装置包括:一个或多个处理器、通信接口。其中,通信接口与一个或多个处理器耦合;第一通信装置通过通信接口与其他设备通信,处理器用于执行存储器中的计算机程序代码,计算机程序代码包括指令,使得第一通信装置执行如上述第一方面及其各种可能的实现方式所述的数据传输控制方法。其中通信接口包括与第二通信装置之间的第一接口,该第一接口用于传输上述的至少两部分传输信号,此外通信接口还包括与天馈系统之间的第二接口,其中该第二接口用于传输上述的射频信号。
第三方面,还提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令;当其在第一通信装置上运行时,使得第一通信装置执行如上述第一方面及其各种可能的实现方式所述的数据传输控制方法。
第四方面,还提供一种包括指令的计算机程序产品,当其在第一通信装置上运行时,使得数据传输装置执行如上述第一方面及其各种可能的实现方式所述的数据传输控制方法。
在本申请中,上述第一通信装置的名字对设备或功能模块本身不构成限定,在实际实现中,这些设备或功能模块可以以其他名称出现。只要各个设备或功能模块的功能和本申请类似,属于本申请权利要求及其等同技术的范围之内。
本申请中第二方面、第三方面、第四方面及其各种实现方式的具体描述,可以参考第一方面及其各种实现方式中的详细描述;并且,第二方面、第三方面、第四方面及其各种实现方式的有益效果,可以参考第一方面及其各种实现方式中的有益效果分析,此处不再赘述。
第五方面,提供一种数据传输控制方法,该数据传输控制方法,应用于第二通信装置或第二通信装置中的芯片,第一通信装置为基带单元BBU或者无线云中心RRC或者集中式单元CU。具体的,本申请实施例提供的数据传输控制方法为:第二通信装置接收第一通信装置发送的至少两部分传输信号;其中所述至少两部分传输信号由所述第一通信装置将自天线接收的射频信号中的至少两部分信号通过至少两种功能切分方式处理生成,其中,所述射频信号中的每部分信号通过一种功能切分方式处理,且所述射频信号中的不同部分信号的功能切分方式不同;所述功能切分方式用于确定所述第一通信装置与第二通信装置在处理所述射频信号中的部分信号时的功能切分;所述第二通信装置分别对所述至少两部分传输信号进行至少两种功能切分方式处理,其中每部分所述传输信号对应采用一种功能切分方式处理,且不同部分的所述传输信号的功能切分方式不同。其中,该第二方面提供的数据传输控制方法的有益效果,可以参考第一方面的有益效果分析,此处不再赘述。
可选的,所述至少两种功能切分方式包括option.7-2a切分方式和option.7-new切分方式。
第六方面,提供一种第二通信装置,该第二通信装置为BBU或者RRC或者CU;或者第一通信装置为RRU或者RRS或者DU中的芯片。具体的,第一通信装置包括接收单元和处理单元。本申请提供的各个单元模块所实现的功能具体如下:接收单元,用于接收第一通信装置发送的至少两部分传输信号;其中所述至少两部分传输信号由所述第一通信装置将自天线接收的射频信号中的至少两部分信号通过至少两种功能切分方式处理生成,其中,所述射频信号中的每部分信号通过一种功能切分方式处理,且所述射频信号中的不同部分信号的功能切分方式不同;所述功能切分方式用于确定所述第一通信装置与第二通信装置在处理所述射频信号中的部分信号时的功能切分;处理单元,用于分别对所述接收单元接收的所述至少两部分传输信号进行至少两种功能切分方式处理,其中每部分所述传输信号对应采用一种功能切分方式处理,且不同部分的所述传输信号的功能切分方式不同。
可选的,所述至少两种功能切分方式包括option.7-2a切分方式和option.7-new切分方式。
可选的,该第二通信装置包括:一个或多个处理器、通信接口。其中,通信接口与一个或多个处理器耦合;第二通信装置通过通信接口与其他设备通信,处理器用于执行存储器中的计算机程序代码,计算机程序代码包括指令,使得第二通信装置执行如上述第六方面及其各种可能的实现方式所述的数据传输控制方法。其中通信接口用于传输上述的至少两部分传输信号。
第七方面,还提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令;当其在第二通信装置上运行时,使得第二通信装置执行如上述第五方面及其各种可能的实现方式所述的数据传输控制方法。
第八方面,还提供一种包括指令的计算机程序产品,当其在第二通信装置上运行时,使得数据传输装置执行如上述第五方面及其各种可能的实现方式所述的数据传输控制方法。
在本申请中,上述第二通信装置的名字对设备或功能模块本身不构成限定,在实际实现中,这些设备或功能模块可以以其他名称出现。只要各个设备或功能模块的功能和本申请类似,属于本申请权利要求及其等同技术的范围之内。
本申请中第六方面、第七方面、第八方面及其各种实现方式的具体描述,可以参考第六方面及其各种实现方式中的详细描述;并且,第六方面、第七方面、第八方面及其各种实现方式的有益效果,可以参考第六方面及其各种实现方式中的有益效果分析,此处不再赘述。
第九方面,还提供一种接入网设备,包括上述的第一通信装置,以及上述的第二通信装置。示例性的,接入网设备包括基站。
本申请的这些方面或其他方面在以下的描述中会更加简明易懂。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。
图1为本申请的实施例提供的一种基站的结构示意图;
图2为本申请的实施例提供的一种第一通信装置和第二通信装置的功能切分示意图;
图3为本申请的另一实施例提供的一种第一通信装置和第二通信装置的功能切分示意图;
图4为本申请的实施例提供的一种第一通信装置的结构示意图;
图5为本申请的实施例提供的一种第二通信装置的结构示意图;
图6为本申请的实施例提供的一种数据传输控制方法的流程示意图;
图7为本申请的另一实施例提供的一种数据传输控制方法的流程示意图;
图8为本申请的另一实施例提供的一种第一通信装置的结构示意图;
图9为本申请的另一实施例提供的一种第二通信装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
在本申请的实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。本文中字符“/”,一般表示前后关联对象是一种“或”的关系。此外本申请中的“第一”和“第二”等等并不表示重要性或先后顺序,仅表示一种区别。
在本申请实施例中,“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。本申请所使用的术语“模块”旨在指代可以进行数字信号或者模拟信号处理的器件或者实体,也可以指代计算机相关实体,该器件或者实体可以是硬件、固件、硬件和软件的结合、软件或者运行中的软件。
参照图1所示,本申请的实施例提供一种接入网设备,例如基站,该基站包括第一通信装置11、第二通信装置12以及天馈系统13(天线)。其中,第一通信装置11与第二通信装置12连接,可选的,第一通信装置11可以通过CPRI接口与第二通信装置12连接;第一通信装置11与天馈系统13连接。第二通信装置12具有基带处理功能,第一通信装置11具有远端射频处理功能。
图1示出的基站可以为分布式的基站,基站可以用于与一个或多个用户设备进行通信,也可以用于与一个或多个具有部分用户设备功能的基站进行通信(比如宏基站与微基站,如接入点,之间的通信);基站还可以称为接入点、节点、节点B、演进节点B(eNB)或某种其它网络实体,并且可以包括以上网络实体的功能中的一些或所有功能。在采用不同的无线接入技术的系统中,基站的名称可能会有所不同。例如:在LTE网络(或称为4G系统)中,基站的名称为演进的基站(evolved NodeB,eNB或eNodeB);在3G系统中,基站的名称为基站(Node B);在下一代无线通信系统(如5G系统)中,基站的名称为DgNB。随着通信技术的演进,这一名称可能会变化。此 外,在其它可能的情况下,基站可以是其它为终端设备提供无线通信功能的装置。
可选的,图1所示的基站可以是4G基站,第二通信装置12可以为BBU,第一通信装置11可以为RRU。
可选的,图1所示的基站可以是4G基站向5G基站演进过程中出现的基站,该基站可以具备4G基站的功能和部分5G基站的功能,该基站可以称为4.5G基站。
可选的,图1所示的基站可以是5G基站。
当图1所示的基站是4.5G基站或者5G基站时,第二通信装置12可以为负责集中式无线资源和连接管理控制的CU(centralized unit,集中式单元),第一通信装置11可以为实现分布式用户面处理功能的DU(distributed unit,分布式单元)。
当图1所示的基站是4.5G基站或者5G基站时,可以重新定义第一通信装置11和第二通信装置12的功能,例如将部分第二通信装置12的处理功能移至第一通信装置11,重构后第二通信装置12可以称为RCC(radio cloud center,无线云中心),第一通信装置11可以称为RRS(Radio Remote System,射频拉远系统)。
其中图2示出一种第一通信装置11以及第二通信装置12的功能切分方式,该切分方式可以记为option.7-2a。参照图2所示,下面以上行方向(即数据从第一通信装置11到第二通信装置12的传输方向)为例进行介绍:
第一通信装置11包括:射频RF(radio frequency)模块、时频转换模块(通常为快速傅里叶变换FFT(fast fourier transformation)模块)、以及数字波束赋形BF(digital beamforming)模块;其中,RF模块,用于将接收自天线的射频信号(模拟信号)进行模数转换,转换为时域的数字信号;时频转换模块,用于将时域的数字信号进行时频转换,生成频域的数字信号,例如采用FFT算法进行时频转换,在一种方案中进行时频转换之前还可以去除循环前缀(cyclic prefix removal,简称CP removal),这样时频转换模块可以包括用作视频转换的FFT模块和去循环前缀的CP removal模块;数字BF模块,用于将对频域的数字信号进行波束赋形,生成波束域的数字信号。其中图2中只是示出了一种第一通信装置11的实现方式,通常,时频转换模块与数字BF模块还可以交换一下位置,即,首先由数字BF模块将时域的数字信号进行波束赋形,生成波束域的时域数字信号;再由时频转换模块对于波束域的频域数字信号进行频时转换,生成波束域的频域数字信号。
第二通信装置12包括:解映射(RE de-mapping)模块、信道估计(channel estimation)模块、均衡(equalization)模块、频时转换模块(通常为离散傅里叶逆变换IDFT(inverse discrete fourier transform)模块)、解调(demodulation)模块、比特级处理(bit-level processing)模块、以及介质访问控制MAC(media access control)实体;其中,解映射模块,用于对第一通信装置11输出的波束域的数字信号进行解映射;信道估计模块用于将对解映射模块输出的信号进行信道估计;均衡模块用于对信道估计模块输出的信号进行均衡处理,通过将多个不同波束的用户信号合路,使得均衡处理后的信号为频域的用户层信号;频时转换模块,用于将均衡模块输出的信号进行频时转换,生成的信号为时域的用户层信号;解调模块,用于对频时转换模块输出的信号进行解星座映射处理;比特级处理模块,用于对解调模块输出的信号进行去扰码(de-screambling)、速率匹配(rate de-matching)、解码(de-coding)等处理后生成用户的比特数据流, 其中比特级处理模块还可以实现其他比特级的处理功能,当然,去扰码、速率匹配、解码等处理可以集中在比特级处理模块中实现,也可以以单独的功能模块实现;MAC实体,用于将比特级处理模块输出的比特数据流提交至高层MAC处理。
在图2的基础上,可以将第一通信装置11以及第二通信装置12的功能重新定义时,可以将第二通信装置12的信道估计模块、均衡模块移至第一通信装置11,如图3所示,该切分方式可以记为option.7-new,option.7-new下第一通信装置11的各个单元和第二通信装置12的各个单元的描述可以参考图2中option.7-2a的相关描述。
还可以包括其他切分方式,诸如将信道估计模块、均衡模块、频时转换模块移至第一通信装置11;将信道估计模块、均衡模块、频时转换模块、解调模块移至第一通信装置11;将信道估计模块、均衡模块、频时转换模块、解调模块、比特级处理模块移至第一通信装置11等,或者将第一通信装置11的时频转换模块以及数字波束赋形模块移至第二通信装置12等,以上只是列举的部分示例,可以理解的是在一些方案中也可以在相邻的模块之间添加其他功能模块,或者在实际使用中去除部分功能模块,例如在一些方案中可以取消数字波束赋形BF模块,在本申请的实施例中不再一一列举。
此外,在另一种方案中,以上行方向(即数据从第一通信装置11到第二通信装置12的传输方向)为例,第一通信装置11和第二通信装置12对天馈系统13接收到的射频信号依次执行以下功能模块的处理,模数转换(analog to digital)模块,时频转换模块(可以包含FFT模块以及CP removal模块,具体功能参照上述描述不再赘述),解映射(RE de-mapping)模块,信道估计(channel estimation)模块或者滤波(prefilering)模块(在上行方向可以选择信道估计模块和滤波模块之一对数据进行信道估计),均衡(equalization)模块,频时转换模块(通常为离散傅里叶逆变换IDFT(inverse discrete fourier transform)模块),解调(demodulation)模块,去扰码(de-screambling)模块,速率匹配(rate de-matching)模块,解码(de-coding)模块,以及介质访问控制MAC(media access control)实体。在NR(new radio,新空口)/5G方案中,与LTE方案的区别为上行方向的数据无需进行频时转换模块的处理。其中,去扰码模块用于对解调模块输出的信号进行去扰码处理,速率匹配模块用于对去扰码模块输出的信号进行速率匹配处理,解码模块用于对速率匹配模块输出的信号进行解码处理。其他各模块的功能参考上述示例的描述,此处不再赘述。通常若将第一通信装置11与第二通信装置12的功能在解映射(RE de-mapping)模块之前切分,则该切分方式通常记为option.7-1;若将第一通信装置11与第二通信装置12的功能在均衡(equalization)和频时转换模块之前切分,则该切分方式通常记为option.7-2;若将第一通信装置11与第二通信装置12的功能在去扰码模块之前切分,则该切分方式通常记为option.7-3;若将第一通信装置11与第二通信装置12的功能在MAC实体之前切分,则该切分方式通常记为option.7-6;以上只是列举的部分示例,可以理解的是在一些方案中也可以在相邻的模块之间添加其他功能模块,或者在实际使用中去除部分功能模块,在本申请的实施例中不再一一列举。
通常在,在确定第一通信装置11与第二通信装置12的功能切分方式后,对于第一通信装置11获取的信号,便采用某种固定的功能切分方式进行数据传输。但是,不 同的功能切分方式,CPRI接口的位置不同,由于CPRI接口的带宽通常固定,CPRI接口的位置不同时其能提供的传输带宽会对第一通信装置11与第二通信装置12之间的数据传输造成限制,此外,第一通信装置11的功能模块过多时,会造成第一通信装置11处理复杂度大幅提升。例如,采用option.7-2a切分方式,第一通信装置11与第二通信装置12之间CPRI接口上传输的数据流量与天线数相关,在Massive MIMO(massive multiple-input multiple-output,大规模多数输入多输出)系统大带宽情况下,如64TR(64射频天线)x 100M带宽,第一通信装置11将天线域的数据流降维到波束域的频域数据流传输给第二通信装置12。CPRI接口流量达到100Gbps。在CPRI接口典型的25G传输带宽下,仅可以支持16波束传输,CPRI接口的传输带宽限制解调波束数无法提升,上行多流等情况下回损失性能。而采用option.7-new切分方式,或者功能切分点在IDFT之后的其他切分方式,第一通信装置11与第二通信装置12之间CPRI接口上传输的数据流量与资源块RB(resource block)配对的解调层数(即每个RB承载的用户数据流数)相关,一般的解调层数远小于天线数以及波束数,因此,可以大幅降低第一通信装置11与第二通信装置12之间传输的数据流量,从而支持更多天线以及波束数的解调。但由于信道估计和均衡等功能的大量算法都在第一通信装置11完成,第一通信装置11处理复杂度大幅提升,在第一通信装置11功耗和体积约束下,无法有效提升解调的天线以及波束数。
因此,本申请提供了一种能够实现第一通信装置与第二通信装置采用多种功能切分方式进行数据传输的方法,能够兼顾第一通信装置11处理复杂度的同时降低了CPRI接口的传输带宽对解调的天线以及波束数的限制。
本申请的实施例提供的数据传输控制方法基本原理为:第一通信装置获取天线接收的射频信号;第一通信装置将射频信号中的至少两部分信号通过至少两种功能切分方式处理生成至少两部分传输信号;其中,射频信号中的每部分信号通过一种功能切分方式处理,且射频信号中的不同部分信号的功能切分方式不同;功能切分方式用于确定第一通信装置与第二通信装置在处理射频信号中的部分信号时的功能切分;第一通信装置向第二通信装置发送至少两部分传输信号。例如,射频信号中的至少两部分信号包括第一部分信号和第二部分信号,其中,第一通信装置和第二通信装置采用第一功能切分方式对第一部分信号进行处理;第一通信装置和第二通信装置采用第二功能切分方式对第二部分信号进行处理。例如,第一功能切分方式可以是option.7-2a切分方式,第二功能切分方式可以是option.7-new切分方式,对于第一部分信号,第一通信装置可以将第一部分信号经过射频模块、时频转换模块、以及数字波束赋形模块的处理后,发送至第二通信装置,由第二通信装置对第一部分信号进行解映射模块及其之后的其他功能模块的处理;对于第二部分信号,第一通信装置可以对第二部分经过射频模块、时频转换模块、数字波束赋形模块、解映射模块、信道估计模块以及均衡模块部分的处理后发送第二通信装置,由第二通信装置进行频时转换模块及其之后的其他功能模块的处理;这样,实现第一通信装置与第二通信装置采用多种功能切分方式进行数据传输。这样相对于第一部分信号通过option.7-2a切分方式处理后发送至第二通信装置,第二部分信号通过option.7-new切分方式处理后发送至第二通信装置,能够使得避免全部射频信号均通过option.7-2a切分方式处理时,第一通信装置与第二 通信装置之间的接口带宽不能满足需求,同时,第一通信装置仅将第二部分信号通过option.7-new切分方式处理发送至第二通信装置,避免了将全部射频信号均在第一通信装置通过option.7-new切分方式处理造成的第一通信装置复杂度较高的问题。
结合图1示出的基站,本申请的实施例提供了第一通信装置的组成示意图,如图4所示,第一通信装置可以包括至少一个处理器41、通信接口42。其中,通信接口42与一个或多个处理器41耦合;第一通信装置通过所述通信接口与其他设备通信,处理器用于执行存储器中的计算机程序代码,使得第一通信装置执行本申请的实施例提供的数据传输控制方法。
下面结合图4对第一通信装置的各个构成部件进行具体的介绍:
处理器4是第一通信装置的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器41是一个CPU,也可以是特定集成电路ASIC,或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个微处理器DSP,或,一个或者多个现场可编程门阵列FPGA。当然,该RN还可以包括存储器43。
其中,处理器41可以独立执行本申请中第一通信装置的功能,也可以通过运行或执行存储在存储器43内的软件程序,以及调用存储在存储器43内的数据,执行第一通信装置的各种功能。
在具体的实现中,作为一种实施例,处理器41可以包括一个或多个CPU,例如图中所示的CPU 0和CPU 1。
在具体实现中,作为一种实施例,第一通信装置可以包括多个处理器,例如图4中所示的处理器41和处理器45。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
存储器43可以是只读存储器ROM或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器RAM或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器EEPROM、只读光盘CD-ROM或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器43可以是独立存在,通过总线44与处理器41相连接。存储器43也可以和处理器41集成在一起。
其中,存储器43用于存储执行本申请方案的软件程序,并由处理器41来控制执行。
通信接口42,用于与其他设备或通信网络通信。例如通信接口42可以包括与第二通信装置通信的第一接口,以及与天馈系统通信的第二接口,第一接口用于传输上述的至少两部分传输信号,第二接口用于传输天馈系统的射频信号。
总线44,可以是工业标准体系结构ISA总线、外部设备互连PCI总线或扩展工业标准体系结构EISA总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图4中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
图4中示出的设备结构并不构成对第一通信装置的限定,第一通信装置可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
图5示出了该第二通信装置的硬件结构。如图5所示,第二通信装置可以包括至少一个处理器51和通信接口52。其中,通信接口52与一个或多个处理器51耦合;第二通信装置通过通信接口52与其他设备通信,处理器51用于执行存储器中的计算机程序代码,使得第二通信装置执行本申请的实施例提供数据传输控制方法。
在具体实现中,作为一种实施例,处理器51可以包括一个或多个CPU,例如图5中的CPU0和CPU1。
在具体实现中,作为一种实施例,该第二通信装置可以包括多个处理器,例如图5中的处理器51和处理器55。当然,该第二通信装置还可以包括存储器53。这样处理器可以通过运行或执行存储在存储器53内的软件程序,以及调用存储在存储器53内的数据,执行第二通信装置的各种功能。此外,还包括将处理器51和通信接口52以及存储器53连接的总线54。
图5中所示的各个器件的作用以及其他说明可以示例性的参见上文。
此外,图5中示出的设备结构并不构成对第二通信装置的限定,第二通信装置可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
基于上述的基站以及硬件,本申请的实施例提供一种数据传输控制方法,参照图6所示,包括如下步骤:
101、第一通信装置获取天线接收的射频信号。
102、第一通信装置将射频信号中的至少两部分信号通过至少两种功能切分方式处理生成至少两部分传输信号。
其中,射频信号中的每部分信号通过一种功能切分方式处理,且射频信号中的不同部分信号的功能切分方式不同;功能切分方式用于确定第一通信装置与第二通信装置在处理射频信号中的部分信号时的功能切分。
这里至少两种功能切分方式可以包括第一功能切分方式和第二功能切分方式。
第一功能切分方式可以是option.7-1、option.7-2切分方式、option.7-3切分方式、option.7-6切分方式、option7-2a切分方式以及option7-new切分方式中的任意一种,第二功能切分方式可以是option.7-1、option.7-2切分方式、option.7-3切分方式、option.7-6切分方式、option7-2a切分方式以及option7-new切分方式中的任意一种,当然,第一功能切分方式和第二功能切分方式需要采用不同的功能切分方式。另外在本领域衍生的其他功能切分方式也应该包含在第一功能切分方式以及第二功能切分方式内。
第一通信装置将射频信号中的至少两部分信号通过至少两种功能切分方式处理生成至少两部分传输信号,可以理解为第一通信装置分别将射频信号中的一部分信号通过一种功能切分方式处理生成一部分传输信号。第一通信装置将射频信号中的一部分信号通过一种功能切分方式处理生成一部分传输信号,可以理解为第一通信装置对射频信号中的一部分信号按照一种功能切分方式中由第一通信装置需要完成的功能进行处理。例如,第一功能切分方式为option7-2a切分方式,第一通信装置对射频信号中的一部分信号需要完成RF模块、FFT模块以及BF模块的处理,然后生成一部分传输信号。
103、第一通信装置向第二通信装置发送至少两部分传输信号。
相应地,第二通信装置接收第一通信装置发送的至少两部分传输信号。
104、第二通信装置分别对至少两部分传输信号进行至少两种功能切分方式处理。
其中每部分传输信号对应采用一种功能切分方式处理,且不同部分的传输信号的功能切分方式不同;功能切分方式用于确定所述第一通信装置与第二通信装置在处理所述传输信号时的功能切分。
第二通信装置将射频信号中的至少两部分传输信号通过至少两种功能切分方式处理,可以理解为第二通信装置分别将一部分传输信号通过一种功能切分方式处理。第二通信装置将射频信号中的一部分传输信号通过一种功能切分方式处理,可以理解为第二通信装置对一部分传输信号按照一种功能切分方式中由第二通信装置需要完成的功能进行处理。例如,功能切分方式为option7-2a切分方式,第二通信装置对一部分传输信号需要完成解映射模块、信道估计模块、均衡模块、频时转换模块、解调模块、比特级处理模块以及MAC模块的处理。
例如,第一功能切分方式是option.7-2a切分方式,第一通信装置直接将射频信号中的第一部分信号经过射频模块、时频转换模块以及数字波束赋形模块的处理后发送至第二通信装置,由第二通信装置对第一部分信号进行信道估计模块及其之后的其他功能模块的处理;例如第二功能切分方式是option.7-new切分方式,第一通信装置仍然需要对射频信号中的第二部分信号依次经过射频模块、时频转换模块以及数字波束赋形模块、解映射模块、信道估计模块以及均衡模块的的处理,然后发送至第二通信装置进行频时转换模块及其之后的其他功能模块的处理;这样,实现第一通信装置与第二通信装置采用多种功能切分方式进行数据传输。
其中,该数据传输控制方法还包括:第一通信装置将射频信号分为至少两部分信号。需要说明的是,第一通信装置可以在接收到射频信号后将射频信号分为至少两部分信号,或者,第一通信装置对射频信号进行第一处理;然后第一通信装置将第一处理后的射频信号分为至少两部分信号。第一处理至少包括模数转换处理;或者,第一处理可以包括模数转换处理,或者第一处理可以包括模数转换处理以及时频转换处理,或者第一处理可以包括模数转换处理、时频转换处理以及波束赋形处理等等,当然根据功能切分方式的不同,第一处理还可以包括更多上行方向(即数据从第一通信装置到第二通信装置的传输方向)的功能。可选的,第一处理可以是至少两种切分方式共有的处理,例如,第一功能切分方式是option.7-2a切分方式,第二功能切分方式是option.7-new切分方式时,第一处理可以为射频模块的功能,或者第一处理可以包括射频模块以及时频转换模块的功能,或者第一处理可以包括射频模块、时频转换模块以及数字波束赋形模块的功能。
以下示例中,以第一功能切分方式为option7-2a切分方式,第二功能切分方式为option7-new切分方式,第一处理包括射频模块、时频转换模块以及数字波束赋形模块的功能为例,参照图7所示,提供一种数据传输控制方法,包括如下步骤:
201、第一通信装置接收用户设备发送的射频信号。
202、第一通信装置对射频信号进行模数转换处理,生成时域的数字信号。
203、第一通信装置对时域的数字信号进行时频转换处理,生成频域的数字信号。
204、第一通信装置对频域的数字信号进行波束赋形处理生成波束域的数字信号。
205、第一通信装置将波束域的数字信号分为至少两部分信号,其中该至少两部分 信号包括第一部分信号和第二部分信号。
当然,该方案中只是以在步骤205中将波束域的数字信号分为至少两部分信号为例进行说明,在其他方案中,也可以是在步骤201后将射频信号分为两部分信号,其中第一部分信号依次经过模数转换处理、时频转换处理以及波束赋形处理生成第一部分传输信号。第二部分信号依次经过模数转换处理、时频转换处理、波束赋形处理、解映射处理、信道估计处理以及均衡处理,生成第二部分传输信号。此外,也可以是在射频信号经过步骤202、203、204任意一步的处理之后分为两部分信号。
206、第一通信装置将第一部分信号作为第一部分传输信号发送至第二通信装置。
其中,由于第一部分传输信号由第一通信装置直接发送至第二通信装置并由第二通信装置对其执行波束赋形之后的处理,即对于射频信号中的第一部分信号第一通信装置和第二通信装置按照option7-2a切分方式处理。由于第一部分信号在第一通信装置上仅经过射频RF模块、时频转换模块、以及数字波束赋形BF模块的处理,因此第一部分信号的处理对第一通信装置的计算复杂度要求较低。
207、第一通信装置将第二部分信号进行解映射处理。
208、第一通信装置将解映射处理后的第二部分信号进行信道估计后进行均衡处理,生成第二部分传输信号,其中第二部分传输信号为频域的用户层信号。
209、第一通信装置将第二部分传输信号发送至第二通信装置。
其中,射频信号由第一通信装置依次经过模数转换处理、时频转换处理以及波束赋形处理分为第一部分信号和第二部分信号,第二部分信号又经解映射处理、信道估计处理以及均衡处理,然后生成第二部分传输信号发送至第二通信装置。即对于第二部分信号第一通信装置和第二通信装置按照option7-new切分方式处理。此时,第一通信装置和第二通信装置之间接口上传输的数据流量与配对层数(即第二信号上每个RB承载的用户数据流的流数)相关,一般的配对层数远小于天线数或波束数,因此,第二部分传输信号的数据量小于第二部分信号的数据量,这样可以大幅降低第一通信装置和第二通信装置之间传输流量,支持更多天线或波束数解调。
210、第二通信装置接收第一通信装置发送的第一部分传输信号,对第一部分传输信号进行解映射模块及其之后其他功能模块对应的处理。
例如,第二通信装置可以对第一部分传输信号依次进行解映射模块、信道估计模块、均衡模块、频时转换模块、解调模块、比特级处理模块、以及介质访问控制MAC实体等功能模块对应的处理。
211、第二通信装置接收第一通信装置发送的第二部分传输信号;对第二部分传输信号进行频时转换模块及其之后其他功能模块对应的处理。
例如,第二通信装置可以对第二部分传输信号依次进行频时转换模块、解调模块、比特级处理模块、以及介质访问控制MAC实体等功能模块对应的处理。
上述方案中,对第一通信装置接收的射频数据的处理过程中,通过205第一处理后的射频信号分成两部分信号,实现了数据传输控制过程中对第一通信装置和第二通信装置的option.7-2a切分方式和option7-new切分方式的混合,即将射频信号中的一部分信号通过option7-2a切分方式处理,将射频信号中的另一部分信号通过option7-new切分方式处理,这样相比全部采用option7-2a切分方式,本申请的技术方 案可以降低在第一通信装置和第二通信装置传输带宽受限、第一通信装置处理复杂度受限情况下,部分带宽采用Option7-2a,部分采用option7-new,可以有效平衡CPRI接口前传流量,同时能分担第一通信装置和第二通信装置的处理复杂度。以上仅是以option7-2a切分方式和option7-new切分方式的混合切分为例进行说明,当然本申请不限于option.7-2a切分方式和option.7-new切分方式的混合,还包括将option.7-2a切分方式或option.7-new切分方式简单变型后多种切分方式的混合。例如,在步骤205还可以将第一处理后的射频信号分为三部分,第一部分信号和第二部分信号分别参考步骤201-210中提供的方式处理,第三部分信号以在频时转换模块之后的切分方式进行,即对第三部分信号第一通信装置经过信道估计模块、均衡模块、频时转换模块对应的功能处理后发送至第二通信装置。
针对上述实施例中步骤102以及205,第一通信装置将射频信号分成至少两部分信号,并分别采用不同的功能切分方式进行处理,具体可以参照如下方式实施:
方式一:射频信号可以包括不同用户的信号,第一通信装置可以将该不同用户的信号分成至少两部分信号,第一通信装置和第二通信装置在处理每部分信号时可以采用不同的功能切分方式,例如,射频信号可以包括M+N个用户的信号,第一通信装置可以将M+N个用户的信号分成至少两部分信号,例如M个用户的信号分为第一部分信号;N个用户的信号分为第二部分信号,第一通信装置和第二通信装置在处理该M个用户的信号可以采用第一功能切分方式,第一通信装置和第二通信装置在处理该N个用户的信号可以采用第二功能切分方式。当然若第一通信装置在对射频信号进行第一处理后,分为两部分信号,则第一通信装置具体为将进行第一处理后的射频信号中的M个用户的信号分为第一部分信号,N个用户的信号分为第二部分信号。
其中,第一通信装置可以存储有配置信息以确定如何将射频信号分成至少两部分信号以及每部分信号的处理方式。该配置信息中可以配置第一通信装置和第二通信装置在处理M个用户标识对应的M个用户信号采用option.7-2a切分方式,第一通信装置和第二通信装置在处理N个用户标识对应的N个用户信号采用option.7-new切分方式,例如该配置信息可以包括M个用户标识和option.7-2a切分方式的映射关系,N个用户标识和option.7-new切分方式的映射关系。其中该配置信息可以采用静态方式配置在第一通信装置中,或者可以由基站的无线资源管理(radio resource management,RRM)实体通过层2(L2,数据链接层)消息发送给第一通信装置。
方式二:射频信号中包括第一用户的第一带宽的信号和第一用户的第二带宽的信号。第一通信装置将第一用户的第一带宽和第二带宽的信号分别采用不同的功能切分方式,例如:第一通信装置将射频信号中第一用户的第一带宽的信号分为第一部分信号;第一通信装置将射频信号中第一用户的第二带宽的信号分为第二部分信号。第一通信装置和第二通信装置在处理该第一用户的第一带宽的信号可以采用第一功能切分方式,第一通信装置和第二通信装置在处理该第一用户的第二带宽的信号可以采用第二功能切分方式。当然若第一通信装置在对射频信号进行第一处理后,分为两部分信号,则第一通信装置具体为将进行第一处理后的射频信号中的第一用户的第一带宽的信号分为第一部分信号,第一用户的第二带宽的信号分为第二部分信号。
其中,第一通信装置可以存储有配置信息以确定如何将射频信号分成至少两部分 信号以及每部分信号的处理方式。该配置信息中可以配置第一通信装置和第二通信装置在处理第一用户标识对应的第一带宽的信号时采用option.7-2a切分方式,第一通信装置和第二通信装置在处理第一用户标识对应的第二带宽的信号时采用option.7-new切分方式,例如该配置信息可以包括用户A的用户标识以及用户A采用option.7-2a切分方式的带宽,以及用户A采用option.7-new切分方式的带宽。其中该配置信息可以采用静态方式配置在第一通信装置中,或者可以由基站的无线资源管理实体通过层2(L2,数据链接层)消息发送给第一通信装置。
方式三:射频信号可以承载在不同的信道上,例如射频信号至少承载在两个信道(第一信道和第二信道上)上。第一通信装置将第一信道和第二信道上承载的信号分别采用不同的功能切分方式,例如:第一通信装置将第一信道承载的射频信号分为第一部分信号;第一通信装置将第二信道承载的射频信号分为第二部分信号。第一通信装置和第二通信装置在处理该第一信道承载的射频信号时可以采用第一功能切分方式,第一通信装置和第二通信装置在处理该第二信道承载的射频信号时可以采用第二功能切分方式。当然若第一通信装置在对射频信号进行第一处理后,分为两部分信号,则第一通信装置具体为将进行第一信道承载的第一处理后的射频信号分为第一部分信号,第二信道承载的第一处理后的射频信号分为第二部分信号。
其中,第一通信装置可以存储有配置信息以确定如何将射频信号分成至少两部分信号以及每部分信号的处理方式。该配置信息中可以配置第一通信装置和第二通信装置在处理第一信道承载的射频信号时采用option.7-2a切分方式,第一通信装置和第二通信装置在处理第一信道承载的射频信号时采用option.7-new切分方式,例如该配置信息可以包括第一信道标识和option.7-2a切分方式的映射关系,以及第一信道标识和option.7-new切分方式的映射关系。其中该配置信息可以采用静态方式配置在第一通信装置中,或者可以由基站的无线资源管理实体通过层2(L2,数据链接层)消息发送给第一通信装置。
方式四:第一通信装置可以根据第一通信装置与第二通信装置之间的传输带宽将射频信号分成至少两部分信号,以使至少两部分传输信号的数据量之和小于或等于第一通信装置与第二通信装置之间的传输带宽。例如:第一通信装置和第二通信装置之间传输带宽为25G,(其中该传输带宽可以为第一通信装置和第二通信装置之间的接口或通信线缆能够承受的最大带宽),需要支持5G 100M带宽上行4层32天线接收。如果采用option7-2a切分方式,第一通信装置和第二通信装置之间传输的数据量需求达到47Gbps;如果采用option7-new切分方式,第一通信装置和第二通信装置之间的传输的数据量需求仅有5.45Gbps,但第一通信装置完成了信道估计、均衡等复杂的处理,处理开销增加,第一通信装置功耗增加。采用本本申请的技术方案,假设47Gbps中60%的数据量采用option7-new切分方式,40%的数据量采用Option7-2a切分方式,第一通信装置和第二通信装置之间的传输流量可以大幅下降到22.07Gbps,满足了25G带宽约束,同时,第一通信装置和第二通信装置各完成一部的信道估计和均衡,第一通信装置处理复杂度下降,第一通信装置功耗下降。如果第二通信装置和第一通信装置之间传输带宽限制为20G,相应的通过调整option7-2a切分方式与option7-new切分方式的数据量的比例为35%:65%,即可以满足带宽约束。
方式五:射频信号承载在至少两个资源块RB上,每个资源块RB上承载预定数量的用户数据流数;可以根据射频信号中各RB上的用户数据流数,第一通信装置对不同数据流数的RB承载的射频信号分别采用不同的功能切分方式,例如:第一通信装置获取每个RB承载的用户数据流数后;第一通信装置将用户数数据流数大于等于流数阈值的至少一个RB承载的射频信号分为第一部分信号;第一通信装置将用户数数据流数小于流数阈值的至少一个RB承载的射频信号分为第二部分信号。第一通信装置和第二通信装置在处理用户数数据流数大于等于流数阈值的至少一个RB承载的射频信号时可以采用第一功能切分方式,第一通信装置和第二通信装置在处理该用户数数据流数小于流数阈值的至少一个RB承载的射频信号时可以采用第二功能切分方式。当然若第一通信装置在对射频信号进行第一处理后,分为两部分信号,则第一通信装置具体为将用户数数据流数大于等于流数阈值的至少一个RB承载承载的第一处理后的射频信号分为第一部分信号,用户数数据流数小于流数阈值的至少一个RB承载的第一处理后的射频信号分为第二部分信号。
其中,第一通信装置可以存储有配置信息以确定如何将射频信号分成至少两部分信号以及每部分信号的处理方式。该配置信息中可以包含上述的流数阈值以及每个资源块上的用户数据流数。由于RB上的配对层数越多对应的用户数据流数越多,则处理复杂度越高,为降低第一通信装置的处理复杂度,对于配对层数小的RB,例如配对层数为2的RB优先采用option.7-new切分方式;对于配对层数大的RB,例如某一RB上配对层数8层,该RB优先采用option.7-2a切分方式。
方式六:第一通信装置根据以下各项中的任意一项或多项:第一信号中资源块RB承载的用户数据流的空中接口特征、用户数据流使用的演进协议版本、用户数据流使用的接收机类型,将预定处理后的射频信号分为至少两部分信号。
其中,空中接口特征包括MCS(modulation and coding scheme,调制与编码速率)、速度状态以及是否小区边缘用户。例如,对于JIRC CoMP(joint interference rejection combining coordinate multi point,联合抗干扰组合多点协作传输)方案中,需要用户在服务小区与协作小区的波束域接收信号合并后送入均衡模块进行联合均衡,若采用option.7-new切分方式,则第一通信装置已经将波束域的数字信号分别在服务小区和协作小区分别均衡,因此option.7-new切分方式不支持JIRC CoMP。因此对于小区边缘用户,可以通过基站的无线资源管理实体向第一通信装置发送配置信息,以配置将射频信号中的小区边缘用户的用户数据流,分为第一部分信号。此外,配置将第一信号中的MCS高、运动速度快的用户的用户数据流,分为第一部分信号,即采用option.7-2a切分方式;配置将第一信号中的MCS低、运动速度慢的用户的信号,分为第二部分信号,即采用option.7-new切分方式。
此外,信道估计模块和均衡模块等配置在第一通信装置中时,割裂了符号级(例如信道估计模块、均衡模块到解调模块为符号级处理)和比特级处理流程(解调模块之后为比特级处理),由于迭代接收机需要比特级处理模块输出的译码软信息进行信息重构后反馈回信道估计模块重新进行处理,因此option.7-new不利于支持需要符号级和比特级信息交互的迭代接收机。因此对于迭代接收机的受益用户,可以通过基站的无线资源管理实体向第一通信装置发送配置信息,以配置将射频信号中的迭代接收 机的受益用户的用户数据流,分为第一部分信号,即采用option.7-2a切分方式。
此外,用户数据流使用的演进协议版本,迭代NoMA(none orthogonal multi aceess,非正交多址)接收机的性能由于线性NoMA接收机,因此option.7-new不利于支持迭代接收机,因此对于使用的演进协议版本NoMA的用户数据流,可以通过基站的无线资源管理实体向第一通信装置发送配置信息,配置第一通信装置将其分为第一部分信号,即采用option.7-2a切分方式。对于使用的演进协议版本OFDM(orthogonal frequency division multiplexing)的用户数据流,可以通过基站的无线资源管理实体向第一通信装置发送配置信息,配置第一通信装置将其分为第二部分信号,即采用option.7-new切分方式。
当然若第一通信装置在对射频信号进行第一处理后,分为两部分信号,则第一通信装置具体为将第一处理后的射频信号根据第一信号中资源块RB承载的用户数据流的空中接口特征、用户数据流使用的演进协议版本、用户数据流使用的接收机类型中的任意一项或多项分为至少两部分信号。
本申请实施例提供一种第一通信装置,该第一通信装置为以下任意一项:射频拉远单元RRU、射频拉远系统RRS,分布式单元DU;或者为上述任一一项中的芯片。该第一通信装置用于执行以上数据传输控制方法中的第一通信装置所执行的步骤。本申请实施例提供的第一通信装置可以包括相应步骤所对应的模块。
本申请实施例可以根据上述方法示例对第一通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,参照图8所示,提供一种第一通信装置进行功能模块划分的方式,包括:获取单元81、处理单元82和发送单元83;
获取单元81,用于获取天线接收的射频信号;
处理单元82,用于将所述获取单元81获取的所述射频信号中的至少两部分信号通过至少两种功能切分方式处理生成至少两部分传输信号;其中,所述射频信号中的每部分信号通过一种功能切分方式处理,且所述射频信号中的不同部分信号的功能切分方式不同;所述功能切分方式用于确定所述第一通信装置与第二通信装置在处理所述射频信号中的部分信号时的功能切分;
发送单元83,用于向所述第二通信装置发送所述处理单元82生成的所述至少两部分传输信号。
在一种示例性的方案中,处理单元82还用于将所述获取单元81获取的所述射频信号分为所述至少两部分信号。此外,处理单元82还用于所述对所述获取单元81获取的所述射频信号进行第一处理;处理单元82具体用于将所述第一处理后的所述射频信号分为所述至少两部分信号;所述第一处理至少包括模数转换处理。
在一种示例性的方案中,所述处理单元82具体用于根据所述第一通信装置与所述第二通信装置之间的传输带宽将所述射频信号分为所述至少两部分信号,以使所述至少两部分传输信号的数据量之和小于或等于所述第一通信装置与所述第二通信装置之 间的传输带宽。
在一种示例性的方案中,所述射频信号承载在至少两个资源块RB上,所述处理单元82具体用于获取每个RB承载的用户数据流数;将所述用户数数据流数大于等于流数阈值的至少一个RB承载的所述射频信号分为第一部分信号;将所述用户数数据流数小于流数阈值的至少一个RB承载的所述射频信号分为第二部分信号。其中,第一部分信号采用第一功能切分方式处理,所述第一功能切分方式包括option.7-2a切分方式;所述第二部分信号采用第二功能切分方式处理,所述第二功能切分方式包括option.7-new切分方式。
在一种示例性的方案中,所述处理单元82具体用于根据以下各项中的任意一项或多项:所述第一信号中资源块RB承载的用户数据流的空中接口特征、所述用户数据流使用的演进协议版本、所述用户数据流使用的接收机类型,将所述预定处理后的所述射频信号分为所述至少两部分信号。
在一种示例性的方案中,所述射频信号承载在至少两个信道上,所述处理单元82具体用于将第一信道承载的所述射频信号分为第一部分信号;将第二信道承载的所述射频信号分为第二部分信号。
在一种示例性的方案中,所述射频信号包括M个用户的信号和N个用户的信号,所述处理单元82具体用于将所述射频信号中的所述M个用户的信号分为第一部分信号;将所述射频信号中的所述N个用户的信号分为第二部分信号。
在一种示例性的方案中,所述射频信号中包括第一用户的第一带宽的信号和所述第一用户的第二带宽的信号;所述处理单元82具体用于将所述射频信号中所述第一用户的第一带宽的信号分为第一部分信号;将所述射频信号中所述第一用户的第二带宽的信号分为第二部分信号。
在一种示例性的方案中,所述至少两种功能切分方式包括option.7-2a切分方式和option.7-new切分方式。
当然,本申请实施例提供的第一通信装置包括但不限于上述模块,例如第一通信装置还可以包括存储单元。存储单元可以用于存储第一通信装置的程序代码。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
当第一通信装置为射频拉远单元RRU或射频拉远系统RRS或分布式单元DU上的芯片时,上述获取单元81以及处理单元82可以是图4中的处理器41;发送单元83可以是图4中的通信接口42。当第一通信装置运行时,该数据第一通信装置执行上述实施例的数据传输方法中第一通信装置的步骤。
本申请另一实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当指令在第一通信装置上运行时,该第一通信装置执行上述的实施例的数据传输方法中第一通信装置的步骤。
在本申请的另一实施例中,还提供一种计算机程序产品,该计算机程序产品包括计算机执行指令,该计算机执行指令存储在计算机可读存储介质中;第一通信装置的至少一个处理器可以从计算机可读存储介质读取该计算机执行指令,至少一个处理器执行该计算机执行指令使得第一通信装置实施执行上述的实施例的数据传输方法中的 第一通信装置的步骤。
本申请实施例提供一种第二通信装置,该第二通信装置为以下任意一项:基带单元BBU、无线云中心RCC和集中式单元CU;或者为上述任一一项中的芯片。该第二通信装置用于执行以上数据传输控制方法中的第二通信装置所执行的步骤。本申请实施例提供的第二通信装置可以包括相应步骤所对应的模块。
本申请实施例可以根据上述方法示例对第二通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,参照图9所示,提供一种第二通信装置进行功能模块划分的方式,包括:接收单元91、处理单元92;
接收单元91,用于接收第一通信装置发送的至少两部分传输信号;其中所述至少两部分传输信号由所述第一通信装置将自天线接收的射频信号中的至少两部分信号通过至少两种功能切分方式处理生成,其中,所述射频信号中的每部分信号通过一种功能切分方式处理,且所述射频信号中的不同部分信号的功能切分方式不同;所述功能切分方式用于确定所述第一通信装置与第二通信装置在处理所述射频信号中的部分信号时的功能切分;
处理单元92,用于分别对所述接收单元91接收的所述至少两部分传输信号进行至少两种功能切分方式处理,其中每部分所述传输信号对应采用一种功能切分方式处理,且不同部分的所述传输信号的功能切分方式不同;所述功能切分方式用于确定所述第一通信装置与第二通信装置在处理所述传输信号时的功能切分。
在一种示例性的方案中,所述至少两种功能切分方式包括option.7-2a切分方式和option.7-new切分方式。
当然,本申请实施例提供的第二通信装置包括但不限于上述模块,例如第二通信装置还可以包括存储单元。存储单元可以用于存储第二通信装置的程序代码。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
当第二通信装置为基带单元BBU、无线云中心RCC和集中式单元CU上的芯片时,上述处理单元82可以是图5中的处理器51;接收单元81可以是图5中的通信接口52。当第二通信装置运行时,该数据第二通信装置执行上述实施例的数据传输方法中第二通信装置的步骤。
本申请另一实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当指令在第二通信装置上运行时,该第二通信装置执行上述的实施例的数据传输方法中第二通信装置的步骤。
在本申请的另一实施例中,还提供一种计算机程序产品,该计算机程序产品包括计算机执行指令,该计算机执行指令存储在计算机可读存储介质中;第二通信装置的至少一个处理器可以从计算机可读存储介质读取该计算机执行指令,至少一个处理器执行该计算机执行指令使得第二通信装置实施执行上述的实施例的数据传输方法中的 第二通信装置的步骤。
在上述实施例中,可以全部或部分的通过软件,硬件,固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式出现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据终端设备。该可用介质可以是磁性介质,(例如,软盘,硬盘、磁带)、光介质(例如,DVD)或者半导体介质(例如固态硬盘solid state disk(SSD))等。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任 何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (27)

  1. 一种数据传输控制方法,其特征在于,包括:
    第一通信装置接收射频信号;
    所述第一通信装置将所述射频信号通过至少两种功能切分方式处理生成至少两部分传输信号;
    所述第一通信装置向第二通信装置发送所述至少两部分传输信号;
    其中,所述至少两种功能切分方式中的每种功能切分方式用于确定所述第一通信装置与第二通信装置在处理所述射频信号时的功能切分。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置从无线资源管理实体接收配置信息,所述配置信息用于配置所述第一通信装置将所述射频信号通过所述至少两种功能切分方式处理生成所述至少两部分传输信号。
  3. 根据权利要求2所述的方法,其特征在于,所述第一通信装置通过层2消息从所述无线资源管理实体接收所述配置信息。
  4. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置通过静态方式配置所述配置信息,所述配置信息用于配置所述第一通信装置将所述射频信号通过所述至少两种功能切分方式处理生成所述至少两部分传输信号。
  5. 根据权利要求1-4任一项所述的数据传输控制方法,其特征在于,
    所述射频信号是经过模数转换处理的。
  6. 根据权利要求1-5任一项所述的数据传输控制方法,其特征在于,所述方法还包括:
    所述第一通信装置将所述射频信号分为至少两部分信号,所述至少两部分信号通过至少两种功能切分方式处理生成至少两部分传输信号,其中,所述至少两部分信号中的每部分信号通过所述至少两种功能切分方式中的一种功能切分方式处理生成所述至少两部分传输信号中一部分传输信号。
  7. 根据权利要求6所述的数据传输控制方法,其特征在于,所述第一通信装置将所述射频信号分为所述至少两部分信号,包括:
    所述第一通信装置根据所述第一通信装置与所述第二通信装置之间的传输带宽将所述射频信号分为所述至少两部分信号,以使所述至少两部分传输信号的数据量之和小于或等于所述第一通信装置与所述第二通信装置之间的传输带宽。
  8. 根据权利要求7所述的数据传输控制方法,其特征在于,所述至少两部分信号包括第一部分信号和第二部分信号,所述第一部分信号通过第一功能切分方式处理,所述第二部分信号通过第二功能切分方式处理;
    所述方法还包括:所述第一通信装置确定仅采用所述第一功能切分方式时,第一通信装置和第二通信装置之间的传输的数据量需求;
    所述第一通信装置确定仅采用所述第二功能切分方式时,第一通信装置和第二通信装置之间的传输的数据量需求;
    所述第一通信装置根据所述第一通信装置与所述第二通信装置之间的传输带宽将 所述射频信号分为所述至少两部分信号,包括:
    所述第一通信装置根据所述第一通信装置与所述第二通信装置之间的所述传输带宽、仅采用所述第一功能切分方式时第一通信装置和第二通信装置之间的传输的数据量需求、以及仅采用所述第二功能切分方式时第一通信装置和第二通信装置之间的传输的数据量需求,确定所述第一部分信号的数据量与所述第二部分信号的数据量的比例;
    所述第一通信装置根据所述比例,将所述射频信号分为所述第一部分信号和所述第二部分信号。
  9. 根据权利要求8所述的数据传输控制方法,其特征在于,所述第一功能切分方式为option.7-2a切分方式,所述第二功能切分方式为option.7-new切分方式。
  10. 根据权利要求6所述的数据传输控制方法,其特征在于,所述射频信号承载在至少两个资源块RB上,所述至少两部分信号包括第一部分信号和第二部分信号,所述第一通信装置将所述射频信号分为所述至少两部分信号,包括:
    所述第一通信装置获取每个RB承载的用户数据流数;
    所述第一通信装置将所述用户数据流数大于等于流数阈值的至少一个RB承载的所述射频信号分为第一部分信号;
    所述第一通信装置将所述用户数据流数小于流数阈值的至少一个RB承载的所述射频信号分为第二部分信号。
  11. 根据权利要求10所述的数据传输控制方法,其特征在于,所述第一部分信号采用option.7-2a切分方式处理;所述第二部分信号采用option.7-new切分方式处理。
  12. 根据权利要求6所述的数据传输控制方法,其特征在于,所述第一通信装置将所述射频信号分为所述至少两部分信号,包括:
    所述第一通信装置根据以下各项中的任意一项或多项:第一信号中资源块RB承载的用户数据流的空中接口特征、所述用户数据流使用的演进协议版本、所述用户数据流使用的接收机类型,将预定处理后的所述射频信号分为所述至少两部分信号。
  13. 根据权利要求6所述的数据传输控制方法,其特征在于,所述射频信号承载在第一信道承载和第二信道承载上,所述至少两部分信号包括第一部分信号和第二部分信号,所述第一通信装置将所述射频信号分为至少两部分信号,包括:
    所述第一通信装置将第一信道承载的所述射频信号分为第一部分信号;
    所述第一通信装置将第二信道承载的所述射频信号分为第二部分信号。
  14. 根据权利要求6所述的数据传输控制方法,其特征在于,所述射频信号包括M个用户的信号和N个用户的信号,所述至少两部分信号包括第一部分信号和第二部分信号,所述第一通信装置将所述射频信号分为所述至少两部分信号,包括:
    所述第一通信装置将所述射频信号中的所述M个用户的信号分为第一部分信号;
    所述第一通信装置将所述射频信号中的所述N个用户的信号分为第二部分信号。
  15. 根据权利要求6所述的数据传输控制方法,其特征在于,所述射频信号中包括第一用户的第一带宽的信号和所述第一用户的第二带宽的信号,所述至少两部分信号包括第一部分信号和第二部分信号,所述第一通信装置将所述射频信号分为所述至少两部分信号,包括:
    所述第一通信装置将所述射频信号中所述第一用户的第一带宽的信号分为第一部分信号;
    所述第一通信装置将所述射频信号中所述第一用户的第二带宽的信号分为第二部分信号。
  16. 根据权利要求13-15任一项所述的数据传输控制方法,其特征在于,所述第一部分信号采用option.7-2a切分方式处理;所述第二部分信号采用option.7-new切分方式处理。
  17. 一种数据传输控制方法,其特征在于,包括:
    第二通信装置从第一通信装置接收至少两部分传输信号,所述至少两部分传输信号由所述第一通信装置将接收的射频信号通过至少两种功能切分方式处理生成,所述功能切分方式中的每种功能切分方式用于确定所述第一通信装置与所述第二通信装置在处理所述射频信号时的功能切分;
    所述第二通信装置对所述至少两部分传输信号通过所述至少两种功能切分方式处理。
  18. 根据权利要求17所述的数据传输控制方法,其特征在于,所述至少两种功能切分方式包括option.7-2a切分方式和option.7-new切分方式。
  19. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合,所述存储器用于存储计算机程序或指令,所述处理器用于执行存储器中的所述计算机程序或指令,使得权利要求1至16任一项所述的方法被执行。
  20. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合,所述存储器用于存储计算机程序或指令,所述处理器用于执行存储器中的所述计算机程序或指令,使得权利要求17或者18所述的方法被执行。
  21. 一种芯片,其特征在于,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行计算机程序或指令,使得权利要求1至16任一项所述的方法被执行。
  22. 一种芯片,其特征在于,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行计算机程序或指令,使得权利要求17或者18所述的方法被执行。
  23. 一种装置,所述装置用于执行权利要求1-16任一项所述的方法。
  24. 一种装置,所述装置用于执行权利要求17或者18所述的方法。
  25. 一种计算机存储介质,其特征在于,用于存储计算机软件指令,当所述计算机软件指令被执行时实现权利要求1-18任一项所述的方法。
  26. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机执行指令,当所述计算机执行指令被执行时实现权利要求1-18任一项所述的方法。
  27. 一种接入网设备,其特征在于,所述接入网设备包括权利要求19或者23所述的通信装置,以及权利要求20或者24所述的通信装置。
PCT/CN2019/095999 2018-07-13 2019-07-15 数据传输控制方法、装置和接入网设备 WO2020011272A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19835027.4A EP3809649B1 (en) 2018-07-13 2019-07-15 Data transmission control method and apparatus, and access network device
BR112021000487-4A BR112021000487A2 (pt) 2018-07-13 2019-07-15 Método de controle de transmissão de dados, aparelho de comunicações, chip, aparelho, meio de armazenamento de computador, produto de programa de computador e dispositivo de rede de acesso
JP2021524094A JP7177266B2 (ja) 2018-07-13 2019-07-15 データ伝送制御方法、装置、およびアクセスネットワークデバイス
US17/147,002 US11889486B2 (en) 2018-07-13 2021-01-12 Data transmission control method, apparatus, and access network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810771020.7A CN110719238B (zh) 2018-07-13 2018-07-13 数据传输控制方法、装置和接入网设备
CN201810771020.7 2018-07-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/147,002 Continuation US11889486B2 (en) 2018-07-13 2021-01-12 Data transmission control method, apparatus, and access network device

Publications (1)

Publication Number Publication Date
WO2020011272A1 true WO2020011272A1 (zh) 2020-01-16

Family

ID=69142088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095999 WO2020011272A1 (zh) 2018-07-13 2019-07-15 数据传输控制方法、装置和接入网设备

Country Status (6)

Country Link
US (1) US11889486B2 (zh)
EP (1) EP3809649B1 (zh)
JP (1) JP7177266B2 (zh)
CN (1) CN110719238B (zh)
BR (1) BR112021000487A2 (zh)
WO (1) WO2020011272A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018216163A1 (ja) * 2017-05-25 2018-11-29 富士通株式会社 基地局装置、端末装置、無線通信システム、及び無線リソース情報通知方法
CN114466470A (zh) * 2021-12-27 2022-05-10 华为技术有限公司 信号处理设备及数据传输方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102098071A (zh) * 2010-12-13 2011-06-15 华为技术有限公司 通信信号传输方法、装置及系统
CN107027153A (zh) * 2017-03-16 2017-08-08 上海华为技术有限公司 业务的切换方法、上下文迁移方法及相关设备
CN107872876A (zh) * 2016-09-23 2018-04-03 华为技术有限公司 消息的发送方法和装置
CN107995656A (zh) * 2017-12-13 2018-05-04 中国联合网络通信集团有限公司 一种基带功能配置方法及设备

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI943196A (fi) * 1994-07-04 1996-01-05 Nokia Telecommunications Oy Vastaanottomenetelmä
CN101365188B (zh) * 2007-08-07 2012-12-05 中兴通讯股份有限公司 基带数字处理单元和射频单元之间信息传递的方法
CN101557375B (zh) * 2008-04-09 2015-04-01 展讯通信(上海)有限公司 基于子带的无线传输方法及其装置
JP5304545B2 (ja) * 2009-08-28 2013-10-02 富士通株式会社 基地局装置及び通信方法
WO2011127855A2 (zh) * 2011-05-17 2011-10-20 华为技术有限公司 通信系统及其管理方法
WO2013044492A1 (zh) * 2011-09-30 2013-04-04 华为技术有限公司 上行基带信号压缩方法、解压缩方法、装置和系统
CN103546402B (zh) * 2012-07-11 2017-04-26 华为技术有限公司 一种发送信号的方法、装置和系统
JP5980654B2 (ja) * 2012-10-31 2016-08-31 日本電信電話株式会社 分散型無線通信基地局システム、信号処理装置、無線装置、及び分散型無線通信基地局システムの動作方法
CN104066196B (zh) * 2014-06-30 2018-07-13 华为技术有限公司 确定拉选射频单元rru的方法与设备
WO2016145371A2 (en) * 2015-03-11 2016-09-15 Phluido, Inc. Distributed radio access network with adaptive fronthaul
JPWO2018029853A1 (ja) * 2016-08-12 2019-04-04 富士通株式会社 無線基地局、無線装置、無線制御装置、無線通信システム、通信方法および無線端末
WO2018029854A1 (ja) * 2016-08-12 2018-02-15 富士通株式会社 無線基地局、無線装置、無線制御装置、無線通信システム、通信方法および無線端末
CN107872461B (zh) * 2017-11-20 2020-08-25 上海交通大学 一种大规模天线阵列cpri压缩方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102098071A (zh) * 2010-12-13 2011-06-15 华为技术有限公司 通信信号传输方法、装置及系统
CN107872876A (zh) * 2016-09-23 2018-04-03 华为技术有限公司 消息的发送方法和装置
CN107027153A (zh) * 2017-03-16 2017-08-08 上海华为技术有限公司 业务的切换方法、上下文迁移方法及相关设备
CN107995656A (zh) * 2017-12-13 2018-05-04 中国联合网络通信集团有限公司 一种基带功能配置方法及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3809649A4

Also Published As

Publication number Publication date
EP3809649A1 (en) 2021-04-21
US20210136765A1 (en) 2021-05-06
EP3809649A4 (en) 2021-08-25
CN110719238B (zh) 2021-07-09
EP3809649B1 (en) 2023-11-22
JP2021530942A (ja) 2021-11-11
CN110719238A (zh) 2020-01-21
JP7177266B2 (ja) 2022-11-22
US11889486B2 (en) 2024-01-30
BR112021000487A2 (pt) 2021-04-06

Similar Documents

Publication Publication Date Title
US11974300B2 (en) Method and apparatus for transmitting control message in wireless communication system
EP3955678A1 (en) Data receiving and transmitting method and apparatus
CN111567018B (zh) 无线通信系统中用于分离物理层功能的方法
WO2020200114A1 (zh) Dmrs端口的指示方法及装置
US20130279452A1 (en) Frequency domain transmission method and apparatus
CN112134664B (zh) 资源确定方法及装置
US11012210B2 (en) System and method for demodulation reference signal overhead reduction
WO2018228573A1 (zh) 信号传输方法、相关装置及系统
JP2022553031A (ja) 無線通信システムにおける基地局のラジオユニットのリソースを管理するための装置及び方法
CN116158016A (zh) 用于mimo系统的传输方法和装置
US11889486B2 (en) Data transmission control method, apparatus, and access network device
AU2017394052A1 (en) Data transmission method and apparatus
CN108934073B (zh) 一种数据传输的方法、基带单元和拉远射频单元
WO2018127158A1 (zh) 一种数据传输的方法、网络侧设备及终端设备
CN114465981B (zh) 数据传输方法以及通信装置
WO2020211767A1 (zh) 用于数据传输的方法和装置
WO2018201830A1 (zh) 资源配置方法、装置、存储介质及处理器
WO2020030255A1 (en) Reducing dmrs overhead
WO2018064842A1 (zh) 信号资源配置方法、终端及接入网设备
JP2016527772A (ja) データ・スケジューリング方法、装置、基地局、およびシステム
CN110289892B (zh) 一种数据传输方法及通信基站
WO2023206569A1 (zh) 多天线面板协作传输的解调参考信号端口分配方法及装置
WO2023206568A1 (zh) 多天线面板协作传输的解调参考信号端口分配方法及装置
WO2024114418A1 (zh) 参考信号的传输方法及装置
WO2023125761A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19835027

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021524094

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021000487

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019835027

Country of ref document: EP

Effective date: 20210118

ENP Entry into the national phase

Ref document number: 112021000487

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210112