WO2020011219A1 - 天线装置及移动终端 - Google Patents

天线装置及移动终端 Download PDF

Info

Publication number
WO2020011219A1
WO2020011219A1 PCT/CN2019/095515 CN2019095515W WO2020011219A1 WO 2020011219 A1 WO2020011219 A1 WO 2020011219A1 CN 2019095515 W CN2019095515 W CN 2019095515W WO 2020011219 A1 WO2020011219 A1 WO 2020011219A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna device
frequency band
ground
gap
series
Prior art date
Application number
PCT/CN2019/095515
Other languages
English (en)
French (fr)
Inventor
孙乔
李堃
卢亮
龙向华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US17/259,027 priority Critical patent/US11404790B2/en
Priority to CN201980044539.8A priority patent/CN112352350B/zh
Priority to EP19834327.9A priority patent/EP3809527A4/en
Publication of WO2020011219A1 publication Critical patent/WO2020011219A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/245Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with means for shaping the antenna pattern, e.g. in order to protect user against rf exposure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/28Arrangements for establishing polarisation or beam width over two or more different wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/328Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors between a radiating element and ground

Definitions

  • the present invention relates to the technical field of antennas, and particularly to an antenna device applied to a mobile terminal.
  • the method of tuning the frequency through the antenna tuning switch is flexible, the insertion loss of the switch is introduced, and the switching device is easily damaged. Moreover, the switching devices are bulky and increase the antenna headroom. For the current large-screen mobile phones, simply increasing the number of tuning switches cannot completely solve the problem of antenna performance.
  • An embodiment of the present invention provides an antenna device capable of achieving multi-band coverage without adding a switching device.
  • the present application provides an antenna device, which may include a radiator, a first ground branch, and a second ground branch.
  • the radiator may include a feeding point, a first radiating section, and a second radiating section.
  • a first gap is provided between the first radiating section and the feeding point, and a first radiating section is provided between the second radiating section and the feeding point.
  • Two gaps are provided.
  • a first ground end is provided at an end of the first radiating section remote from the gap, and a second ground end is provided at an end of the second radiating section remote from the gap.
  • the first ground branch may include a third ground end and a first connection end, where the first connection end is located at the intersection of the first ground branch and the first radiation section, and the third ground end and the first connection end are connected in series.
  • Matching circuit may be an antenna tuning switch.
  • the second ground branch may include a fourth ground end and a second connection end, where the second connection end is located at the intersection of the second ground branch and the second radiation section, and the fourth ground end and the second connection end are connected in series.
  • First high-frequency filter may be an antenna tuning switch.
  • the application does not limit the specific shapes of the first radiating section and the second radiating section.
  • the first radiating section may extend in a straight line
  • the second radiating section may extend in an arc.
  • the first radiation segment and the second radiation segment can be set near the corners of the mobile terminal (such as a mobile phone).
  • the first radiation segment can be consistent with the short side extension direction of the mobile terminal and close to the short Side
  • the second radiating section can be set at the position where the long and short sides of the mobile terminal meet (such as the corner position). Using this position arrangement is helpful to reduce the impact of the internal components of the mobile terminal on the antenna device and improve the antenna. Radiation performance of the device.
  • the first radiating section may be wavy or extend in an irregular shape
  • the second radiating section may be extended in a straight line or other shapes.
  • the implementation of the antenna device provided in the first aspect can support simultaneous coverage of two low-frequency bands, such as LTE B5 and LTE B8, and two high-frequency bands, such as LTE B3 and LTE B4. And by adding an adjustable device (that is, a matching circuit) at the third ground terminal to support switching to the LTE B28 frequency band, that is, when the matching circuit is open, the radiator can radiate signals in the LTE B28 frequency band.
  • the SAR value of the antenna device provided by this application is 0.2-0.3 lower than that of the conventional antenna device. That is to say, compared with the conventional antenna, the antenna device provided by the present application can reduce the electromagnetic wave absorption rate of the user, and can prevent the transmitted electric wave from being too strong to harm the human body.
  • the antenna device can generate resonance in two low-frequency bands at the same time.
  • the radiator between the first gap and the first connection terminal can radiate the signal in the first low frequency band, that is, generate resonance 1 .
  • the first radiation section can be used to radiate a signal in the first low frequency band.
  • the matching circuit can be used for frequency-modulating the signal in the first low-frequency band.
  • the radiator between the second gap and the second ground terminal can radiate the signal in the second low frequency band, that is, generate resonance 2 . That is to say, when the series matching circuit is in a combined state, the second radiating section can be used to radiate the signal of the second low frequency band.
  • the antenna device when the matching circuit is in a combined state, can simultaneously radiate signals in two frequency bands at a low frequency, can support low-frequency 2 carrier aggregation (2CA), and saves tuning switches.
  • 2CA low-frequency 2 carrier aggregation
  • the first low-frequency band may be, but is not limited to, LTE B5, and the second low-frequency band may be, but is not limited to, LTE B8. At this time, the first radiation band is longer than the second radiation band.
  • the first low-frequency band may be, but is not limited to, LTE B8, and the second low-frequency band may be, but is not limited to, LTE B5. At this time, the second radiation band is longer than the first radiation band.
  • the antenna device may also generate resonance in another low-frequency band.
  • the radiator between the first gap and the first ground terminal can radiate a signal in the third low frequency band, that is, generate resonance 5. That is to say, when the series matching circuit is in an open circuit state, the first radiation section can be used to radiate a signal in the third low frequency band.
  • the third low-frequency band may be, but is not limited to, LTE B28.
  • the antenna device may also generate resonance in two high-frequency bands.
  • the radiator between the second gap and the second connection end can radiate signals in the first high-frequency band, that is, generate resonance.
  • the first high-frequency band is a frequency band allowed by the first high-frequency filter.
  • the first high-frequency filter may be a band-pass filter of LTE B3, and is configured to radiate a high-frequency signal of LTE B3 in a radiation section between the second gap and the second connection end.
  • the first high-frequency band may be, but is not limited to, LTE B3.
  • the first radiation segment can radiate a signal in the second high-frequency band, that is, generate resonance 4.
  • the second high-frequency band may be, but is not limited to, LTE B4.
  • the antenna device may further include: a series capacitor between the feeding point and the power supply side.
  • the capacitance value of the capacitor is within a preset range and can cover three low-frequency bands at the same time, such as LTE B5, LTE B8, and LTE B28.
  • LTE B5 low-frequency bands
  • LTE B8 low-frequency band
  • the radiator between the first connection terminal and the second ground terminal can radiate the signal in the third low frequency band, such as LTE B28 .
  • a current zero appears on the radiator between the first connection end and the second ground end, and the signal radiation in the third low-frequency band is a half-wavelength mode of the radiator between the first connection end and the second ground end.
  • the antenna device may further include a third ground branch.
  • the third grounding branch may include a fifth grounding end and a third connecting end.
  • the third connecting end is located at the intersection of the third grounding branch and the first radiating section, and the third connecting end is connected in series with the fifth grounding end.
  • the second high-frequency filter may be further included.
  • the radiator between the first gap and the first connection end may radiate a signal in the second high-frequency band.
  • the second high-frequency band is a frequency band allowed by the second high-frequency filter.
  • the second high-frequency filter may be a band-pass filter of LTE B4, which is used for radiating the high-frequency signal of LTE B4 in a radiation section between the first gap and the first connection end. That is, the second high-frequency band may be, but is not limited to, LTE B4.
  • the antenna device can cover two low-frequency bands and two high-frequency bands at the same time, and specifically can simultaneously cover LTE B5, LTE B8, and all high-frequency bands.
  • a lumped capacitor may be connected in series between the first gap, the feeding point and the first radiating segment; in the second gap, a feeding point and the second radiating segment may be connected in series.
  • Lumped capacitance That is to say, the gap between the feeding point and the first radiating section and the second radiating section can be replaced by a lumped capacitor.
  • a variable capacitor may be connected in series between the feeding point and the first radiating section in the first gap; and between the feeding point and the second radiating section in the second gap, Variable capacitor in series. That is to say, the gap between the feed point and the first radiating section and the second radiating section can be replaced by a variable capacitor.
  • a tuning switch may be connected in series between the feed point and the first radiating section in the first gap; and a series connection between the feed point and the second radiating section in the second gap.
  • Tuning switch That is to say, the gap between the feed point and the first radiating section and the second radiating section can be replaced by a tuning switch.
  • the antenna device may further include a third ground branch.
  • the third grounding branch may include a fifth grounding end and a third connecting end.
  • the third connecting end is located at the intersection of the third grounding branch and the first radiating section, and the third connecting end is connected in series with the fifth grounding end.
  • the second high-frequency filter is provided on an end of the first radiating section near the first gap, and the first radiating section can radiate a signal in a first frequency band.
  • the second radiation segment can be used to detect a specific absorption ratio SAR of a signal in the second frequency band.
  • the second frequency band is much higher than the first frequency band, and the difference between the second frequency band and the first frequency band is greater than a first preset threshold.
  • the application does not specifically limit the value of the first preset threshold.
  • the second feeding point may be a near field communication NFC feeding point
  • the signal in the first frequency band is an NFC signal.
  • the frequency of the NFC signal is about 13.56 MHz, which is far lower than the high-frequency bands of mobile communications such as LTE B3 and LTE B4.
  • the first radiating section can be used as the common radiator of the NFC antenna
  • the second radiating section can be used as the common radiator of the SAR sensor, which can be used to detect SAR of high-frequency signals. This can achieve a compatible design of the NFC antenna and the SAR sensor.
  • the present application provides a mobile terminal, which may include a metal case and the antenna device described in the first aspect.
  • the radiator of the antenna device provided in the present application may be a part of the metal casing. There is no limitation on how to use the metal casing to form the radiator of the antenna device provided in the present application.
  • the radiator of the antenna device provided in the present application may be disposed inside the metal casing. There is no limitation on how to arrange the radiator of the antenna device provided in the application inside the metal casing.
  • FIG. 1 is a schematic diagram of a conventional antenna device
  • FIG. 2 is a schematic diagram of an antenna device according to an embodiment of the present application.
  • FIG. 3 is a schematic simulation diagram of 5 resonances generated by the antenna device shown in FIG. 2;
  • 4A is a schematic diagram of a current distribution of resonance in the first low-frequency band generated by the antenna device shown in FIG. 2;
  • 4B is a schematic diagram of a current distribution of resonance in the second low-frequency band generated by the antenna device shown in FIG. 2;
  • 4C is a schematic diagram of a current distribution of resonance in the first high-frequency band generated by the antenna device shown in FIG. 2;
  • 4D is a schematic diagram of a current distribution of resonance in the second high-frequency band generated by the antenna device shown in FIG. 2;
  • 4E is a schematic diagram of a current distribution of resonance in the third low-frequency band generated by the antenna device shown in FIG. 2;
  • FIG. 5 is a simulation diagram of the efficiency of the antenna device shown in FIG. 2 radiating LTE B5 and LTE B8 signals;
  • FIG. 6 is a simulation diagram of the efficiency of the antenna device shown in FIG. 2 radiating signals of LTE B3 and LTE B4;
  • FIG. 7 is a simulation diagram of the efficiency of the antenna device shown in FIG. 2 radiating the signal of LTE B28;
  • FIG. 8 is a schematic diagram of an antenna device according to another embodiment of the present application.
  • FIG. 9 is a simulation diagram of the antenna device shown in FIG. 8 covering three low-frequency bands at the same time;
  • FIG. 10 is a schematic diagram of a current distribution of a signal in a third low-frequency band generated by the antenna device shown in FIG. 8;
  • FIG. 11 is a simulation diagram of the efficiency of the antenna device shown in FIG. 8 radiating LTE B5, LTE B8, and LTE B28 signals;
  • FIG. 12 is a schematic diagram of an antenna device according to another embodiment of the present application.
  • FIGS. 13A-13C are schematic diagrams of several alternative ways of gaps on both sides of a feeding point in an antenna device provided in the present application;
  • FIG. 14 is a schematic diagram of an antenna device according to another embodiment of the present application.
  • the antenna device may include a radiator 10, a first ground branch 30, and a second ground branch 20. among them:
  • the radiator 10 may include a feeding point 13, a first radiating section 12, and a second radiating section 11.
  • a first gap 61 is provided between the first radiating section 12 and the feeding point 13, and the second radiating section 11 and the feeding point.
  • a second gap 62 is provided between 13.
  • a first ground end 40 (G2) is provided at an end of the first radiating section 12 away from the gap 61
  • a second ground end 50 is provided at an end of the second radiating section 11 away from the gap 62. That is to say, the antenna device shown in FIG. 2 is provided with two radiators on both sides of the feeding point 13, and these two radiators are not directly connected to the feeding point 13, but are connected through a gap coupling.
  • the length of the feeding point 13 is much shorter than the length of the first radiating section 12 or the second radiating section 11.
  • the length of the feeding point 13 is much shorter than the quarter wavelength of the LTE B7 frequency band.
  • Unlimited length The range of LTE B7 frequency band is: 2500-2570MHz uplink, 2620-2690MHz downlink.
  • the first ground branch 30 may include a third ground terminal 32 (G1) and a first connection terminal 33, where the first connection terminal 33 is located at the intersection of the first ground branch 30 and the first radiation section 12, and the third ground A matching circuit 31 is connected in series between the terminal 32 (G1) and the first connection terminal 33.
  • the matching circuit 31 may be an antenna tuning switch.
  • the second ground branch 20 may include a fourth ground end 22 (G4) and a second connection end 23, wherein the second connection end 23 is located at the intersection of the second ground branch 20 and the second radiating section 11, and the fourth ground A first high-frequency filter 21 (M) is connected in series between the terminal 22 (G4) and the second connection terminal 23.
  • the specific shapes of the first radiation section 12 and the second radiation section 11 are not limited in the present application.
  • the first radiating section 12 may extend in a straight line, and the second radiating section 11 may extend in an arc.
  • the first radiating section 12 and the second radiating section 11 may be set near the corners of a mobile terminal (such as a mobile phone).
  • the first radiating section 12 may extend with the short side of the mobile terminal.
  • the second radiating section 11 can be set at the position where the long and short sides of the mobile terminal meet (such as the corner position). Using this position arrangement is helpful to reduce the internal components of the mobile terminal to the antenna device. Influence the radiation performance of the antenna device.
  • the first radiating section 12 may be wavy or extend in an irregular shape, and the second radiating section 11 may also be extended in a straight line or other shapes.
  • the antenna device can generate resonances 1 and 2 in two low-frequency bands at the same time.
  • the radiator between the first gap 61 and the first connection terminal 33 can radiate the first low frequency.
  • Signals in the frequency band generate resonance1. That is to say, when the series matching circuit 31 is in a combined state, the first radiating section 12 can be used to radiate signals in the first low frequency band.
  • the matching circuit 31 when the matching circuit 31 is in the combined state means that the switch 34 in the matching circuit 31 is in the closed state.
  • the matching circuit 31 may be configured to perform frequency modulation on a signal in a first low-frequency band.
  • the figure exemplarily shows three devices that can be connected to the switch 34 in the matching circuit 31.
  • the switch 34 When the switch 34 is in the closed state, it means that the switch 34 is connected to any one of the devices.
  • the switch 34 is connected to different devices for different degrees of frequency modulation.
  • the matching circuit 31 may have more or fewer such devices for the switch 34 to be connected.
  • the series matching circuit 31 when the series matching circuit 31 is connected between the third ground terminal 32 (G1) and the first connection terminal 33, the radiator between the second gap 62 and the second ground terminal 50 (G3) can radiate.
  • the signal in the second low frequency band generates resonance 2. That is to say, when the series matching circuit 31 is in a combined state, the second radiating section 11 can be used to radiate signals in the second low frequency band.
  • the antenna device when the matching circuit 31 is in a combined state, can simultaneously radiate signals in two frequency bands at a low frequency, can support low-frequency 2 carrier aggregation (2CA), and saves tuning switches.
  • 2CA low-frequency 2 carrier aggregation
  • the first low-frequency band may be, but is not limited to, LTE B5, and the second low-frequency band may be, but not limited to, LTE B8. At this time, the first radiating segment 12 is longer than the second radiating segment 11.
  • the first low-frequency band may be, but is not limited to, LTE B8, and the second low-frequency band may be, but not limited to, LTE B5. At this time, the second radiating segment 11 is longer than the first radiating segment 12.
  • the range of LTE B5 frequency band is: 824-849MHz uplink, 869-894MHz downlink.
  • the range of the LTE B8 frequency band is: uplink 880-915MHz, downlink 925-960MHz.
  • the antenna device when the series matching circuit 31 is in an open circuit state between the third ground terminal 32 (G1) and the first connection terminal 33, the antenna device can also generate resonance at a low frequency. Specifically, when the series matching circuit 31 is in an open state between the third ground terminal 32 (G1) and the first connection terminal 33, the radiator between the first gap 61 to the first ground terminal 40 (G2) can radiate the first The signals in the three low frequency bands generate resonance 5. That is to say, when the series matching circuit 31 is in an open circuit state, the first radiation section 11 can be used to radiate a signal in the third low-frequency band.
  • the third low-frequency band may be, but is not limited to, LTE B28.
  • the range of LTE B28 frequency band is: 703-748MHz uplink, 758-803MHz downlink.
  • the matching circuit 31 when the matching circuit 31 is in the open state means that the switch 34 in the matching circuit 31 is in the off state.
  • the antenna device can also generate resonances 3 and 4 in two high-frequency bands.
  • the radiator between the second gap 62 and the second connection end 23 can radiate a signal in the first high-frequency band, that is, generate resonance 3.
  • the first high-frequency band is a frequency band allowed by the first high-frequency filter 21.
  • the first high-frequency filter 21 (M) may be a band-pass filter of LTE B3, which is used to radiate the LTE B3 from the radiation section between the second gap 62 to the second connection end 23 High-frequency signals.
  • the first high-frequency band may be, but is not limited to, LTE B3.
  • the range of the LTE B3 frequency band is: uplink 1710-15785 MHz and downlink 1805-1880 MHz.
  • the first radiating section 12 can radiate a signal in the second high-frequency band, that is, generate resonance 4.
  • the second high-frequency band may be, but is not limited to, LTE B4.
  • the range of the LTE B4 frequency band is: 1710-1733 MHz uplink and 2110-2133 MHz downlink.
  • the current zero point refers to a position where the current is zero, and may also be referred to as an inversion point.
  • Fig. 3 shows a simulation of the radiated signals of the antenna device.
  • the antenna device can initially generate 4 resonances, namely 1, 2, 3, 4.
  • the matching circuit 31 When the matching circuit 31 is in an open circuit state, the antenna device can generate resonance 5.
  • the current distribution of the resonance 1 can be as shown in FIG. 4A, and the resonance 1 can be a composite left-right (CRLH) mode from the first gap 61 to the third ground terminal 32 (G1).
  • the current distribution of the resonance 2 may be as shown in FIG. 4B, and the resonance 2 may be a left-right composite (CRLH) mode from the second gap 62 to the second ground terminal 50 (G3).
  • the current distribution of resonance 3 may be as shown in FIG. 4C, and resonance 3 may be a left-right handed compound (CRLH) mode from the second gap 62 to the fourth ground terminal 22.
  • the current distribution of resonance 4 may be as shown in FIG.
  • resonance 4 may be a half-wavelength mode from the first gap 61 to the third ground terminal 32 (G1) or to the first ground terminal 40 (G2).
  • resonance 5 is generated.
  • the current distribution of resonance 5 can be as shown in FIG. 4E, and resonance 5 can be a left-handed compound (CRLH) from the first gap 61 to the first ground terminal 40 (G2). mode.
  • the antenna device shown in FIG. 2 can simultaneously cover two low-frequency bands, such as LTE B5 and LTE B8, and two high-frequency bands, such as LTE B3 and LTE B4.
  • an adjustable device ie, matching circuit 31
  • G1 third ground terminal 32
  • Fig. 5 shows the simulation of the system efficiency and radiation efficiency of the antenna device in LTE B5 and LTE B8, and Fig. 6 shows the system of the antenna device in the high-frequency band 1710MHz-2690MHz (including LTEB3 and LTEB4). Simulation of efficiency and radiation efficiency.
  • Fig. 7 shows a simulation of the system efficiency and radiation efficiency of the antenna device in LTE B28. It can be seen that the antenna device has high radiation efficiency at low and high frequencies, and has no obvious efficiency pits.
  • Table 1 shows the specific absorption ratio (SAP) of the antenna device (dual CRLH scheme, refer to FIG. 2) and the conventional antenna device (single CRLH scheme, as shown in FIG. 1) provided in this application. Compare.
  • the SAR value of the antenna device (dual CRLH scheme, refer to FIG. 2) provided by this application is 0.2 lower than that of the conventional antenna device (single CRLH scheme, as shown in FIG. 1). -0.3. That is to say, compared with the conventional antenna, the antenna device provided by the present application can reduce the electromagnetic wave absorption rate of the user, and can prevent the transmitted electric wave from being too strong to harm the human body.
  • 830MHz is in the LTE B5 frequency band and is a CRLH resonance mode (ie resonance 1) generated by the first radiating segment 12;
  • 900MHz is in LTE B8 frequency band and is the CRLH resonance mode generated by the second radiating segment 11 (Ie resonance 2). Because the currents in these two low-frequency bands are dispersed in the first radiating section 12 and the second radiating section 11 instead of being concentrated in one area, the antenna device shown in FIG. 2 can reduce the SAR value.
  • FIG. 8 illustrates an antenna device according to another embodiment of the present application. Different from the antenna device shown in FIG. 2, the antenna device shown in FIG. 8 further includes: a capacitor 70 connected in series between the feeding point 13 and the power supply side. The capacitance value of the capacitor 70 is within a preset range and can cover three low-frequency bands at the same time, such as LTE B5, LTE B8, and LTE B28.
  • the antenna device shown in FIG. 8 can cover two low-frequency bands at the same time. Specifically, when the series matching circuit 31 is connected between the third ground terminal 32 (G1) and the first connection terminal 33, the radiator between the first gap 61 and the first connection terminal 33 radiates the first low-frequency band. signal of. Specifically, when the series matching circuit 31 is in a combined state between the third ground terminal 32 (G1) and the first connection terminal 33, the radiator between the second gap 62 and the second ground terminal 50 (G3) radiates the first Two low-frequency band signals.
  • the radiator between the first connection terminal 33 and the second ground terminal 50 (G3) can radiate.
  • Signals in the third low frequency band such as LTE B28.
  • the antenna device when the matching circuit 31 is in a combined state, the antenna device can simultaneously radiate signals in three frequency bands at a low frequency, and can support low-frequency 3 carrier aggregation (3CA).
  • FIG. 9 shows a simulation in which the antenna device simultaneously radiates signals in three low-frequency bands (LTE B5, LTE B8, and LTE B28).
  • FIG. 10 shows a current distribution of the antenna device shown in FIG. 8 radiating a signal in a third low-frequency band.
  • the signal in the third low frequency band (such as LTE B28) is radiated by the radiator between the first connection terminal 33 and the second ground terminal 50 (G3), and the first connection terminal 33 to the second ground terminal
  • the signal radiation of the third low frequency band (such as LTE B28) is bisected by the radiator between the first connection terminal 33 and the second ground terminal 50 (G3).
  • FIG. 11 shows an efficiency simulation of the antenna device shown in FIG. 8 radiating signals in three low-frequency bands (LTE B5, LTE B8, and LTE B28) at the same time. It can be seen that the antenna device shown in FIG. 8 radiates 3 simultaneously The efficiency of all low frequency bands is high, and there are no obvious efficiency pits.
  • LTE B5, LTE B8, and LTE B28 low-frequency bands
  • FIG. 12 illustrates an antenna device according to another embodiment of the present application. Different from the antenna device shown in FIG. 2, the antenna device shown in FIG. 12 may further include a third ground branch 80.
  • the third grounding branch 80 may include a fifth grounding terminal 83 (G5) and a third connecting end 82.
  • the third connecting end 82 is located at the intersection of the third grounding branch 80 and the first radiating section 12, and the third connection A second high-frequency filter 81 (M2) is connected in series between the terminal 82 and the fifth ground terminal 83. That is, a ground point G5 is added to the first radiating section 12, and M1 and M2 are bandpass filters of different high frequency bands respectively, so that one more CRLH mode can be generated at high frequencies.
  • the antenna device shown in FIG. 12 can cover two low-frequency bands at the same time. Specifically, when the series matching circuit 31 is connected between the third ground terminal 32 (G1) and the first connection terminal 33, the radiator between the first gap 61 and the first connection terminal 33 radiates the first low-frequency band. signal of. Specifically, when the series matching circuit 31 is in a combined state between the third ground terminal 32 (G1) and the first connection terminal 33, the radiator between the second gap 62 and the second ground terminal 50 (G3) radiates the first Two low-frequency band signals.
  • the antenna device shown in FIG. 12 can also cover two high-frequency bands at the same time. Described below:
  • the radiator between the second gap 62 and the second connection end 23 may radiate a signal in a first high-frequency band.
  • the first high-frequency band is a frequency band allowed by the first high-frequency filter 21 (M1).
  • the first high-frequency filter 21 (M1) may be a band-pass filter of LTE B3, which is used to radiate the LTE B3 from the radiation section between the second gap 62 to the second connection end 23 High-frequency signals. That is, the first high-frequency band may be, but is not limited to, LTE B3.
  • the radiator between the first gap 61 and the first connection end 33 can radiate a signal in the second high-frequency band.
  • the second high-frequency band is a frequency band allowed by the second high-frequency filter 81 (M2).
  • the second high-frequency filter 81 (M2) may be a band-pass filter of LTE B4, which is used to radiate the LTE B4 from the radiation section between the first gap 61 to the first connection end 33.
  • the antenna device shown in FIG. 12 has two radiating sections on both sides of the feeding point. These two radiating sections are not directly connected to the feeding point, but are connected through gap coupling. M1 and M2 are bands of different high-frequency bands, respectively.
  • the pass filter, G1 / G2 / G3 / G4 are the four ground points of the antenna, respectively, and a switch is added to the G1 ground point to switch the low frequency band. It can be seen that the antenna device shown in FIG. 12 can cover two low-frequency bands and two high-frequency bands at the same time, and specifically can simultaneously cover LTE B5, LTE B8, and all high-frequency bands.
  • a lumped capacitor C1 may be connected in series between the feeding point 13 and the first radiating section 12; in the second gap 62, the feeding point 13 A lumped capacitor C2 may be connected in series with the second radiating section 11. That is, the gap between the feeding point 13 and the first radiating section 12 and the second radiating section 11 may be replaced by a lumped capacitor.
  • variable capacitor C3 may be connected in series between the first gap 61, the feeding point 13 and the first radiating section 12; in the second gap 62, the feeding point 13 A variable capacitor C4 may be connected in series with the second radiation section 11. That is, the gap between the feeding point 13 and the first radiating section 12 and the second radiating section 11 may be replaced by a variable capacitor.
  • a tuning switch S1 may be connected in series between the first gap 61, the feeding point 13 and the first radiating section 12, and in the second gap 62, the feeding point 13 and A tuning switch S2 may be connected in series between the second radiating sections 11. That is, the gap between the feeding point 13 and the first radiating section 12 and the second radiating section 11 may be replaced by a tuning switch.
  • the gap between the feeding point 13 and the first radiating section 12 and the second radiating section 11 may also be replaced by other forms of devices, which are not limited in this application.
  • the gap in the antenna device shown in FIG. 2 or FIG. 8 may also be replaced by a lumped capacitor, a variable capacitor, or a tuning switch.
  • FIG. 14 illustrates an antenna device according to another embodiment of the present application.
  • the antenna device shown in FIG. 14 may further include a third ground branch 80.
  • the third grounding branch 80 may include a fifth grounding terminal 83 (G5) and a third connecting end 82.
  • the third connecting end 82 is located at the intersection of the third grounding branch 80 and the first radiating section 12, and the third connection
  • a second high-frequency filter 81 (M2) is connected in series between the terminal 82 and the fifth ground terminal 83.
  • a second feeding point is provided on an end of the first radiating section 12 near the first gap 61, and the first radiating section 12 can radiate signals in the first frequency band.
  • the second radiation section 11 may be used to detect a specific absorption ratio SAR of a signal in a second frequency band.
  • the second frequency band is much higher than the first frequency band, and the difference between the second frequency band and the first frequency band is greater than a first preset threshold.
  • the application does not specifically limit the value of the first preset threshold.
  • the first frequency band is a concept independent of the aforementioned first low frequency band.
  • the second frequency band is independent of the aforementioned second low-frequency band concept.
  • the second feeding point may be a near field communication NFC feeding point, and the signal in the first frequency band is an NFC signal.
  • the frequency of the NFC signal is about 13.56 MHz, which is far lower than the high-frequency bands of mobile communications such as LTE B3 and LTE B4.
  • the first radiating section 12 can be used as a common radiator of the NFC antenna, and the second radiating section 11 can be used as a common radiator of the SAR sensor, which can be used to detect high-frequency signals. SAR. This can achieve a compatible design of the NFC antenna and the SAR sensor.
  • the second feed point can also be the feed point of other low-frequency signals.
  • the antenna device shown in FIG. 14 can also be implemented as compatible with other two antennas with widely different operating frequency bands. design.
  • the antenna device provided in this application is applied to a mobile terminal.
  • the mobile terminal may be a smart phone.
  • the mobile terminal may include a metal casing.
  • the radiator of the antenna device provided in this application may be a part of the metal casing.
  • the casing constitutes the radiator of the antenna device provided in the present application, which is not limited herein.
  • the radiator of the antenna device provided in the present application may be provided inside the metal casing. There is no limitation on how to arrange the radiator of the antenna device provided in the application inside the metal casing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)
  • Support Of Aerials (AREA)

Abstract

一种天线装置包括辐射体、第一接地支路和第二接地支路,辐射体包括馈电点、第一辐射段和第二辐射段,第一辐射段和第二辐射段设在馈电点的两侧,第一辐射段、第二辐射段与馈电点之间分别设有第一间隙、第二间隙;第一辐射段远离第一间隙的一端设有第一接地端,第二辐射段远离第二间隙的一端设有第二接地端;第一接地支路包括第三接地端和第一连接端,第一连接端位于第一接地支路与第一辐射段的交点位置,第一连接端与第一接地端之间串联匹配电路;第二接地支路包括第四接地端和第二连接端,第二连接端位于第二接地支路与第二辐射段的交点位置,第二连接端与第二接地端之间串联第一高频滤波器。本申请能实现低频双谐振,节省了调谐开关。

Description

天线装置及移动终端 技术领域
本发明涉及天线技术领域,特别涉及应用在移动终端中的天线装置。
背景技术
全球市场范围内手机使用频段较多,例如:低频699MHz~960MHz,中高频1710MHz~2690MHz,超高频3400MHz~3600MHz。目前,大部分的手机天线方案是通过天线调谐开关进行口径或是阻抗调谐,覆盖更多的频段。例如,如图1所示,现有的天线辐射体通过在馈电点和接地点上的两个开关来切换不同的频段,低频模式主要是左手模式,高频模式主要是倒置F天线(inverted F antenna,IFA)模式。
通过天线调谐开关进行调频的方法虽然灵活,但是引入了开关插损,开关器件容易损坏。而且,开关器件体积大、增加了天线净空。对于当前大屏占比手机来说,单纯通过增加调谐开关的数量,并不能完全解决天线的性能问题。
如果设计一种天线装置,在不增加开关器件的情况下,能实现多频段范围的覆盖,为业界研究的方向。
发明内容
本发明实施例提供了一种天线装置,能够在不增加开关器件的情况下实现多频段范围的覆盖。
第一方面,本申请提供了一种天线装置,该天线装置可包括:辐射体、第一接地支路和第二接地支路。其中:该辐射体可包括馈电点、第一辐射段和第二辐射段,第一辐射段与馈电点之间设有第一间隙,第二辐射段与馈电点之间设有第二间隙。另外,第一辐射段远离间隙的一端设有第一接地端,第二辐射段远离间隙的一端设有第二接地端。第一接地支路可包括第三接地端和第一连接端,其中,第一连接端位于第一接地支路与第一辐射段的交点位置,第三接地端和第一连接端之间串联匹配电路。这里,匹配电路可以是天线调谐开关。第二接地支路可包括第四接地端和第二连接端,其中,第二连接端位于第二接地支路与第二辐射段的交点位置,第四接地端和第二连接端之间串联第一高频滤波器。
本申请对第一辐射段和第二辐射段的具体的形状不作限制。一种实施方式中,第一辐射段可以呈直线状延伸,第二辐射段可以呈弧线状延伸。在设计辐射体时,可以将第一辐射段和第二辐射段靠近移动终端(如手机)的边角位置设置,具体的,第一辐射段可以与移动终端的短边延伸方向一致且靠近短边,第二辐射段可以设置在移动终端的长边与短边交汇的位置(如边角位置)处,采用这样的位置排布有利于减少移动终端内部元器件对天线装置的影响,提升天线装置的辐射性能。其他实施方式中,第一辐射段也可以呈波浪状,或不规则形状延伸,第二辐射段也可以呈直线状或其他的形状延伸。
实施第一方面提供的天线装置,可支持同时覆盖两个低频频段,如LTE B5和LTE B8,以及两个高频频段,如LTE B3和LTE B4。并通过在第三接地端处加可调器件(即匹配电路)支持切换至LTE B28频段,即当匹配电路开路时辐射体可辐射LTE B28频段的信号。而且,本申请提供的天线装置的SAR值比传统天线装置的SAR值低0.2-0.3。 也即是说,相比传统天线,本申请提供的天线装置能够降低用户的电磁波吸收率,可防止发射电波太强而伤害人体。
结合第一方面,在一些可选实施例中,该天线装置可以同时在两个低频频段产生谐振。具体的,在第三接地端和第一连接端之间串联匹配电路处于合路状态下,第一间隙到第一连接端之间的辐射体可辐射第一低频频段的信号,即产生谐振①。也即是说,在串联匹配电路处于合路状态下,第一辐射段可用于辐射第一低频频段的信号。匹配电路可用于对第一低频频段的信号进行调频。具体的,在第三接地端和第一连接端之间串联匹配电路处于合路状态下,第二间隙到第二接地端之间的辐射体可辐射第二低频频段的信号,即产生谐振②。也即是说,在串联匹配电路处于合路状态下,第二辐射段可用于辐射第二低频频段的信号。
可以看出,在匹配电路处于合路状态下,该天线装置可以在低频同时辐射2个频段段的信号,能够支持低频2载波聚合(2CA),节约了调谐开关。
一种可选的实施方式中,第一低频频段可以但不限于是LTE B5,第二低频频段可以但不限于是LTE B8,此时第一辐射段比第二辐射段更长。另一种可选的实施方式中,第一低频频段可以但不限于是LTE B8,第二低频频段可以但不限于是LTE B5,此时第二辐射段比第一辐射段更长。
结合第一方面,在一些可选实施例中,该天线装置还可以在另一个低频频段产生谐振。具体的,在第三接地端和第一连接端之间串联匹配电路处于开路状态下,第一间隙到第一接地端之间的辐射体可辐射第三低频频段的信号,即产生谐振⑤。也即是说,在串联匹配电路处于开路状态下,第一辐射段可用于辐射第三低频频段的信号。可选的,第三低频频段可以但不限于是LTE B28。
结合第一方面,在一些可选实施例中,该天线装置还可以在两个高频频段产生谐振。具体的,第二间隙到第二连接端之间的辐射体可辐射第一高频频段的信号,即产生谐振③这里,第一高频频段为第一高频滤波器允许通过的频段。一种可选的实施方式中,第一高频滤波器可以是LTE B3的带通滤波器,用于第二间隙到第二连接端之间的辐射段辐射LTE B3的高频信号。第一高频频段可以但不限于是LTE B3。具体的,在第一辐射段上出现电流零点的状态下,第一辐射段可以辐射第二高频频段的信号,即产生谐振④。一种可选的实施方式中,第二高频频段可以但不限于是LTE B4。
结合第一方面,在一些可选实施例中,该天线装置还可包括:馈电点与供电侧之间串联电容。该电容的电容值在预设范围内,能够同时覆盖3个低频频段,如LTE B5、LTE B8、LTE B28。具体的,在第三接地端和第一连接端之间串联匹配电路处于合路状态下,第一连接端到第二接地端之间的辐射体可以辐射第三低频频段的信号,如LTE B28。第一连接端到第二接地端之间的辐射体上出现了电流零点,第三低频频段的信号辐射为第一连接端到第二接地端之间的辐射体的二分之一波长模式。
结合第一方面,在一些可选实施例中,该天线装置还可包括:第三接地支路。其中,第三接地支路可包括第五接地端和第三连接端,第三连接端位于第三接地支路与第一辐射段的交点位置,第三连接端与第五接地端之间串联第二高频滤波器。
具体的,第一间隙到第一连接端之间的辐射体可辐射第二高频频段的信号。这里,第二高频频段为第二高频滤波器允许通过的频段。一种可选的实施方式中,第二高频滤波器可以是LTE B4的带通滤波器,用于第一间隙到第一连接端之间的辐射段辐射LTE B4 的高频信号。即第二高频频段可以但不限于是LTE B4。这样,该天线装置可以同时覆盖两个低频频段以及两个高频频段,具体可以同时覆盖LTE B5、LTE B8以及全高频频段。
结合第一方面,在一些可选实施例中,第一间隙,馈电点与第一辐射段之间可以串联集总电容;在第二间隙,馈电点与第二辐射段之间可以串联集总电容。也即是说,馈电点与第一辐射段、第二辐射段之间的间隙可以用集总电容代替。
结合第一方面,在一些可选实施例中,在第一间隙,馈电点与第一辐射段之间可以串联可变电容;在第二间隙,馈电点与第二辐射段之间可以串联可变电容。也即是说,馈电点与第一辐射段、第二辐射段之间的间隙可以用可变电容代替。
结合第一方面,在一些可选实施例中,在第一间隙,馈电点与第一辐射段之间可以串联调谐开关;在第二间隙,馈电点与第二辐射段之间可以串联调谐开关。也即是说,馈电点与第一辐射段、第二辐射段之间的间隙可以用调谐开关代替。
结合第一方面,在一些可选实施例中,该天线装置还可包括:第三接地支路。其中,第三接地支路可包括第五接地端和第三连接端,第三连接端位于第三接地支路与第一辐射段的交点位置,第三连接端与第五接地端之间串联第二高频滤波器。另外,第一辐射段上靠近第一间隙的一端设有第二馈电点,第一辐射段可以辐射第一频段的信号。这里,第二辐射段可用于检测第二频段的信号的特定吸收比SAR。第二频段远远高于第一频段,第二频段与第一频段之间的差值大于第一预设阈值。本申请对第一预设阈值的取值不作特别限制。
可选的,第二馈电点可以为近场通信NFC馈电点,第一频段的信号为NFC信号。NFC信号的频率约为13.56MHz,远远低于LTE B3、LTE B4等移动通信的高频频段。这样,第一辐射段可以作为NFC天线的共体辐射体,第二辐射段可以作为SAR传感器的共体辐射体,可用于检测高频信号的SAR。这样可以实现NFC天线和SAR传感器的兼容设计。
第二方面,本申请提供了一种移动终端,该移动终端可包括金属外壳和第一方面描述的天线装置。一种可选的实施方式中,本申请提供的天线装置的辐射体可以为该金属外壳的一部分,关于如何利用金属外壳构成本申请提供的天线装置的辐射体,这里不作限制。另一种可选的实施方式中,本申请提供的天线装置的辐射体可以设于该金属外壳的内部,关于如何在金属外壳的内部布局本申请提供的天线装置的辐射体,这里不作限制。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对本申请实施例中所需要使用的附图进行说明。
图1是一种传统天线装置的示意图;
图2是本申请的一个实施例提供的天线装置的示意图;
图3是图2所示天线装置产生5个谐振的仿真示意图;
图4A是图2所示天线装置产生第一低频频段的谐振的电流分布示意图;
图4B是图2所示天线装置产生第二低频频段的谐振的电流分布示意图;
图4C是图2所示天线装置产生第一高频频段的谐振的电流分布示意图;
图4D是图2所示天线装置产生第二高频频段的谐振的电流分布示意图;
图4E是图2所示天线装置产生第三低频频段的谐振的电流分布示意图;
图5是图2所示天线装置辐射LTE B5和LTE B8信号的效率仿真图;
图6是图2所示天线装置辐射LTE B3和LTE B4的信号的效率仿真图;
图7是图2所示天线装置辐射LTE B28的信号的效率仿真图;
图8是本申请的另一个实施例提供的天线装置的示意图;
图9是图8所示天线装置同时覆盖3个低频频段的仿真示意图;
图10是图8所示天线装置产生第三低频频段的信号的电流分布的示意图;
图11是图8所示天线装置辐射LTE B5、LTE B8和LTE B28信号的效率仿真图;
图12是本申请的再一个实施例提供的天线装置的示意图;
图13A-13C是本申请提供的天线装置中馈电点两侧的间隙的几种替代方式的示意图;
图14是本申请的再一个实施例提供的天线装置的示意图。
具体实施方式
下面结合本发明实施例中的附图对本发明实施例进行描述。
请参阅图2,图2中G代表接地点。如图2所示,本申请的一个实施例提供的天线装置可包括辐射体10、第一接地支路30和第二接地支路20。其中:
辐射体10可包括馈电点13、第一辐射段12和第二辐射段11,第一辐射段12与馈电点13之间设有第一间隙61,第二辐射段11与馈电点13之间设有第二间隙62。另外,第一辐射段12远离间隙61的一端设有第一接地端40(G2),第二辐射段11远离间隙62的一端设有第二接地端50(G3)。也即是说,图2所示的天线装置在馈电点13的两侧设有两个辐射体,这两个辐射体与馈电点13不直接连接,而是通过间隙耦合连接。馈电点13的长度远远小于第一辐射段12或第二辐射段11的长度,例如馈电点13的长度远小于LTE B7频段四分之一波长,本申请对馈电点13的具体长度不作限制。LTE B7频段的范围为:上行2500-2570MHz,下行2620-2690MHz。
第一接地支路30可包括第三接地端32(G1)和第一连接端33,其中,第一连接端33位于第一接地支路30与第一辐射段12的交点位置,第三接地端32(G1)和第一连接端33之间串联匹配电路31。这里,匹配电路31可以是天线调谐开关。
第二接地支路20可包括第四接地端22(G4)和第二连接端23,其中,第二连接端23位于第二接地支路20与第二辐射段11的交点位置,第四接地端22(G4)和第二连接端23之间串联第一高频滤波器21(M)。
本申请对第一辐射段12和第二辐射段11的具体的形状不作限制。一种实施方式中,第一辐射段12可以呈直线状延伸,第二辐射段11可以呈弧线状延伸。在设计辐射体10时,可以将第一辐射段12和第二辐射段11靠近移动终端(如手机)的边角位置设置,具体的,第一辐射段12可以与移动终端的短边延伸方向一致且靠近短边,第二辐射段11可以设置在移动终端的长边与短边交汇的位置(如边角位置)处,采用这样的位置排布有利于减少移动终端内部元器件对天线装置的影响,提升天线装置的辐射性能。其他实施方式中,第一辐射段12也可以呈波浪状,或不规则形状延伸,第二辐射段11也可以呈直线状或其他的形状延伸。
下面来说明图2所示的天线装置可以产生的谐振模式。
请参阅图2,图2中的①、②、③、④、⑤代表不同的谐振。该天线装置可以同时在两个低频频段产生谐振①和②。
具体的,在第三接地端32(G1)和第一连接端33之间串联匹配电路31处于合路状态下,第一间隙61到第一连接端33之间的辐射体可辐射第一低频频段的信号,即产生谐振①。也即是说,在串联匹配电路31处于合路状态下,第一辐射段12可用于辐射第一低频频段的信号。这里,匹配电路31处于合路状态是指匹配电路31中的开关34处于闭合状态。匹配电路31可用于对第一低频频段的信号进行调频。附图中示例性示出了匹配电路31中开关34可连接的3个器件,开关34处于闭合状态是指开关34连接到其中任意一个器件。开关34连接到不同的器件用于进行不同程度的调频。不限于附图所示,匹配电路31可以有更多或更少这样的供开关34连接的器件。具体的,在第三接地端32(G1)和第一连接端33之间串联匹配电路31处于合路状态下,第二间隙62到第二接地端50(G3)之间的辐射体可辐射第二低频频段的信号,即产生谐振②。也即是说,在串联匹配电路31处于合路状态下,第二辐射段11可用于辐射第二低频频段的信号。
也即是说,在匹配电路31处于合路状态下,该天线装置可以在低频同时辐射2个频段段的信号,能够支持低频2载波聚合(2carrier aggregation,2CA),节约了调谐开关。
一种可选的实施方式中,第一低频频段可以但不限于是LTE B5,第二低频频段可以但不限于是LTE B8,此时第一辐射段12比第二辐射段11更长。另一种可选的实施方式中,第一低频频段可以但不限于是LTE B8,第二低频频段可以但不限于是LTE B5,此时第二辐射段11比第一辐射段12更长。LTE B5频段的范围为:上行824-849MHz,下行869-894MHz。LTE B8频段的范围为:上行880-915MHz,下行925-960MHz。
具体的,在第三接地端32(G1)和第一连接端33之间串联匹配电路31处于开路状态下,该天线装置还可以在低频产生谐振⑤。具体的,在第三接地端32(G1)和第一连接端33之间串联匹配电路31处于开路状态下,第一间隙61到第一接地端40(G2)之间的辐射体可辐射第三低频频段的信号,即产生谐振⑤。也即是说,在串联匹配电路31处于开路状态下,第一辐射段11可用于辐射第三低频频段的信号。可选的,第三低频频段可以但不限于是LTE B28。LTE B28频段的范围为:上行703-748MHz,下行758-803MHz。这里,匹配电路31处于开路状态是指匹配电路31中的开关34处于断开状态。
请参阅图2,该天线装置还可以在两个高频频段产生谐振③和④。
具体的,第二间隙62到第二连接端23之间的辐射体可辐射第一高频频段的信号,即产生谐振③。这里,第一高频频段为第一高频滤波器21允许通过的频段。一种可选的实施方式中,第一高频滤波器21(M)可以是LTE B3的带通滤波器,用于第二间隙62到第二连接端23之间的辐射段辐射LTE B3的高频信号。第一高频频段可以但不限于是LTE B3。LTE B3频段的范围为:上行1710-1785MHz,下行1805-1880MHz。
具体的,在第一辐射段12上出现电流零点的状态下,第一辐射段12可以辐射第二高频频段的信号,即产生谐振④。一种可选的实施方式中,第二高频频段可以但不限于是LTE B4。LTE B4频段的范围为:上行1710-1733MHz,下行2110-2133MHz。这里,电流零点是指电流为零的位置,又可称为反相点。
图3示出了该天线装置辐射信号的仿真。其中,该天线装置初始可产生4个谐振,分别是①、②、③、④。匹配电路31处于开路状态下,该天线装置可产生谐振⑤。
图4A-4E分别示出了谐振①、②、③、④、⑤的电流分布。谐振①的电流分布可以如图4A所示,谐振①可以为从第一间隙61到第三接地端32(G1)的左右手复合(composite right left hand,CRLH)模式。谐振②的电流分布可以如图4B所示,谐振②可以为从第二间隙62到第二接地端50(G3)的左右手复合(CRLH)模式。谐振③的电流分布可以如图4C所示,谐振③可以为从第二间隙62到第四接地端22的左右手复合(CRLH)模式。谐振④的电流分布可以如图4D所示,谐振④可以为从第一间隙61到第三接地端32(G1)或者到第一接地端40(G2)的二分之一波长模式。在匹配电路31处于开路状态下,会产生谐振⑤,谐振⑤的电流分布可以如图4E所示,谐振⑤可以为从第一间隙61到第一接地端40(G2)的左右手复合(CRLH)模式。
可以看出,图2所示的天线装置可以同时覆盖两个低频频段,如LTE B5和LTE B8,以及两个高频频段,如LTE B3和LTE B4。并通过在第三接地端32(G1)处加可调器件(即匹配电路31)来切换至LTE B28频段,即当匹配电路31开路时辐射体10可辐射LTE B28频段的信号。
另外,图5示出了该天线装置在LTE B5、LTE B8的系统效率和辐射效率的仿真,图6示出了该天线装置在高频频段1710MHz—2690MHz(包括LTE B3、LTE B4)的系统效率和辐射效率的仿真,图7示出了该天线装置在LTE B28的系统效率和辐射效率的仿真。可以看出,该天线装置在低频、高频的辐射效率均较高,没有明显的效率凹坑。
再者,表1示出了本申请提供的天线装置(双CRLH方案,参考图2)与传统天线装置(单CRLH方案,如图1所示)的特定吸收比(specific absorption rate,SAP)的比较。
Figure PCTCN2019095515-appb-000001
表1
可以看出,在效率基本相同的情况下,本申请提供的天线装置(双CRLH方案,参考图2)的SAR值比传统天线装置(单CRLH方案,如图1所示)的SAR值低0.2-0.3。也即是说,相比传统天线,本申请提供的天线装置能够降低用户的电磁波吸收率,可防止发射电波太强而伤害人体。从前述内容可以知道,830MHz处于LTE B5的频段,是由第一辐射段12产生的CRLH谐振模式(即谐振①);900MHz处于LTE B8的频段,是由第二辐射段11产生的CRLH谐振模式(即谐振②)。由于这两个低频频段的电流分散于第一辐射段12、第二辐射段11,而不是集中在一个区域,因此图2所示的天线装置能够降低SAR值。
请参阅图8,图8中G代表接地点。图8示出了本申请的另一个实施例提供的天线装置。与图2所示的天线装置不同的是,图8所示的天线装置还包括:馈电点13与供电侧之间串联电容70。电容70的电容值在预设范围内,能够同时覆盖3个低频频段,如 LTE B5、LTE B8、LTE B28。
与图2所示的天线装置相同的是,图8所示的天线装置可以同时覆盖两个低频频段。具体的,在第三接地端32(G1)和第一连接端33之间串联匹配电路31处于合路状态下,第一间隙61到第一连接端33之间的辐射体辐射第一低频频段的信号。具体的,在第三接地端32(G1)和第一连接端33之间串联匹配电路31处于合路状态下,第二间隙62到第二接地端50(G3)之间的辐射体辐射第二低频频段的信号。
另外,在第三接地端32(G1)和第一连接端33之间串联匹配电路31处于合路状态下,第一连接端33到第二接地端50(G3)之间的辐射体可以辐射第三低频频段的信号,如LTE B28。
也即是说,在匹配电路31处于合路状态下,该天线装置可以在低频同时辐射3个频段段的信号,能够支持低频3载波聚合(3 carrier aggregation,3CA)。图9示出了该天线装置同时辐射3个低频频段(LTE B5、LTE B8、LTE B28)的信号的仿真。
图10示出了图8所示的天线装置辐射第三低频频段的信号的电流分布。如图10所示,第三低频频段(如LTE B28)的信号是由第一连接端33到第二接地端50(G3)之间的辐射体辐射,第一连接端33到第二接地端50(G3)之间的辐射体上出现了电流零点,第三低频频段(如LTE B28)的信号辐射为第一连接端33到第二接地端50(G3)之间的辐射体的二分之一波长模式。
另外,图11示出了图8所示的天线装置同时辐射3个低频频段(LTE B5、LTE B8、LTE B28)的信号的效率仿真,可以看出,图8所示的天线装置同时辐射3个低频频段的效率均较高,没有明显的效率凹坑。
请参阅图12,图12中G代表接地点,M代表滤波器。图12示出了本申请的再一个实施例提供的天线装置。与图2所示的天线装置不同的是,图12所示的天线装置还可包括:第三接地支路80。其中,第三接地支路80可包括第五接地端83(G5)和第三连接端82,第三连接端82位于第三接地支路80与第一辐射段12的交点位置,第三连接端82与第五接地端83之间串联第二高频滤波器81(M2)。即,在第一辐射段12上增加接地点G5,M1和M2分别为不同高频频段的带通滤波器,这样可以在高频多产生一个CRLH模式。
与图2所示的天线装置相同的是,图12所示的天线装置可以同时覆盖两个低频频段。具体的,在第三接地端32(G1)和第一连接端33之间串联匹配电路31处于合路状态下,第一间隙61到第一连接端33之间的辐射体辐射第一低频频段的信号。具体的,在第三接地端32(G1)和第一连接端33之间串联匹配电路31处于合路状态下,第二间隙62到第二接地端50(G3)之间的辐射体辐射第二低频频段的信号。
另外,图12所示的天线装置还可以同时覆盖两个高频频段。下面描述:
具体的,第二间隙62到第二连接端23之间的辐射体可辐射第一高频频段的信号。这里,第一高频频段为第一高频滤波器21(M1)允许通过的频段。一种可选的实施方式中,第一高频滤波器21(M1)可以是LTE B3的带通滤波器,用于第二间隙62到第二连接端23之间的辐射段辐射LTE B3的高频信号。即第一高频频段可以但不限于是LTE B3。
具体的,第一间隙61到第一连接端33之间的辐射体可辐射第二高频频段的信号。这里,第二高频频段为第二高频滤波器81(M2)允许通过的频段。一种可选的实施方式中,第二高频滤波器81(M2)可以是LTE B4的带通滤波器,用于第一间隙61到第一连 接端33之间的辐射段辐射LTE B4的高频信号。即第二高频频段可以但不限于是LTE B4。
图12所示的天线装置在馈电点两侧有两个辐射段,这两个辐射段与馈电点不直接连接,而是通过间隙耦合连接,M1和M2分别为不同高频频段的带通滤波器,G1/G2/G3/G4分别为天线的四个接地点,并在G1接地点增加开关来切换低频频段。可以看出,图12所示的天线装置可以同时覆盖两个低频频段以及两个高频频段,具体可以同时覆盖LTE B5、LTE B8以及全高频频段。
在一些可选的实施方式中,如图13A所示,在第一间隙61,馈电点13与第一辐射段12之间可以串联集总电容C1;在第二间隙62,馈电点13与第二辐射段11之间可以串联集总电容C2。也即是说,馈电点13与第一辐射段12、第二辐射段11之间的间隙可以用集总电容代替。
在一些可选的实施方式中,如图13B所示,在第一间隙61,馈电点13与第一辐射段12之间可以串联可变电容C3;在第二间隙62,馈电点13与第二辐射段11之间可以串联可变电容C4。也即是说,馈电点13与第一辐射段12、第二辐射段11之间的间隙可以用可变电容代替。
在一些可选的实施方式中,如图13C所示,在第一间隙61,馈电点13与第一辐射段12之间可以串联调谐开关S1;在第二间隙62,馈电点13与第二辐射段11之间可以串联调谐开关S2。也即是说,馈电点13与第一辐射段12、第二辐射段11之间的间隙可以用调谐开关代替。
不限于图13A-13C所示,馈电点13与第一辐射段12、第二辐射段11之间的间隙还可以采用其他形式的器件来代替,本申请不作限制。
不限于图12所示的天线装置,图2或图8所示的天线装置中的间隙也可以采用集总电容、可变电容或调谐开关来代替。
请参阅图14,图14中G代表接地点,M代表滤波器。图14示出了本申请的再一个实施例提供的天线装置。
与图2所示的天线装置不同的是,图14所示的天线装置还可包括:第三接地支路80。其中,第三接地支路80可包括第五接地端83(G5)和第三连接端82,第三连接端82位于第三接地支路80与第一辐射段12的交点位置,第三连接端82与第五接地端83之间串联第二高频滤波器81(M2)。另外,第一辐射段12上靠近第一间隙61的一端设有第二馈电点,第一辐射段12可以辐射第一频段的信号。这里,第二辐射段11可用于检测第二频段的信号的特定吸收比SAR。第二频段远远高于第一频段,第二频段与第一频段之间的差值大于第一预设阈值。本申请对第一预设阈值的取值不作特别限制。
这里,第一频段与前述第一低频频段之间不存在包含关系,第一频段是独立于前述第一低频频段的概念。同理,第二频段是独立于前述第二低频频段的概念。
一种可选的实施方式中,如图14所示,第二馈电点可以为近场通信NFC馈电点,第一频段的信号为NFC信号。NFC信号的频率约为13.56MHz,远远低于LTE B3、LTE B4等移动通信的高频频段。
可以看出,图14所示的天线装置中,第一辐射段12可以作为NFC天线的共体辐射体,第二辐射段11可以作为SAR传感器的共体辐射体,可用于检测高频信号的SAR。这样可以实现NFC天线和SAR传感器的兼容设计。
不限于NFC天线和SAR传感器的兼容设计,第二馈电点还可以是其他低频信号的 馈电点,图14所示的天线装置还可以实施为工作频段相差较大的其他两种天线的兼容设计。
另外,本申请提供的天线装置应用在移动终端中,移动终端可以为智能手机,该移动终端可包括金属外壳,本申请提供的天线装置的辐射体可以为该金属外壳的一部分,关于如何利用金属外壳构成本申请提供的天线装置的辐射体,这里不作限制。可选的,本申请提供的天线装置的辐射体可以设于该金属外壳的内部,关于如何在金属外壳的内部布局本申请提供的天线装置的辐射体,这里不作限制。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (12)

  1. 一种天线装置,其特征在于,包括:辐射体、第一接地支路和第二接地支路,
    所述辐射体包括馈电点、第一辐射段和第二辐射段,所述第一辐射段和所述第二辐射段设在所述馈电点的两侧,所述第一辐射段与所述馈电点之间设有第一间隙,所述第二辐射段与所述馈电点之间设有第二间隙;所述第一辐射段远离所述第一间隙的一端设有第一接地端,所述第二辐射段远离所述第二间隙的一端设有第二接地端;
    所述第一接地支路包括第三接地端和第一连接端,所述第一连接端位于所述第一接地支路与所述第一辐射段的交点位置,所述第一连接端与所述第一接地端之间串联匹配电路;所述第二接地支路包括第四接地端和第二连接端,所述第二连接端位于所述第二接地支路与所述第二辐射段的交点位置,所述第二连接端与所述第四接地端之间串联第一高频滤波器。
  2. 如权利要求1所述的天线装置,其特征在于,在所述第一连接端与所述第三接地端之间串联的匹配电路处于合路状态下,所述第一间隙到所述第一连接端之间的辐射体辐射第一低频频段的信号,所述匹配电路用于对所述第一低频频段的信号进行调频,所述第二间隙到第二接地端之间的辐射体辐射第二低频频段的信号;在所述第一连接端与所述第三接地端之间串联的匹配电路处于开路状态下,所述第一间隙到第一接地端之间的辐射体辐射第三低频频段的信号。
  3. 如权利要求1或2所述的天线装置,其特征在于,所述第二间隙到所述第二连接端之间的辐射体辐射第一高频频段的信号,所述第一高频频段为所述第一高频滤波器允许通过的频段。
  4. 如权利要求1-3中任一项所述的天线装置,其特征在于,在所述第一辐射段上出现电流零点的状态下,所述第一辐射段辐射第二高频频段的信号。
  5. 如权利要求1-4中任一项所述的天线装置,其特征在于,还包括:所述馈电点与供电侧之间串联电容;所述电容的电容值在预设范围内;
    在所述第一连接端与所述第三接地端之间串联的匹配电路处于合路状态下,所述第一连接端到所述第二接地端之间的辐射体辐射第三低频频段的信号。
  6. 如权利要求1-5中任一项所述的天线装置,其特征在于,所述天线装置还包括:第三接地支路;所述第三接地支路包括第五接地端和第三连接端,所述第三连接端位于所述第三接地支路与所述第一辐射段的交点位置,所述第三连接端与所述第五接地端之间串联第二高频滤波器。
  7. 如权利要求1-6中任一项所述的天线装置,在所述第一间隙,所述馈电点与所述第一辐射段之间串联集总电容;在所述第二间隙,所述馈电点与所述第二辐射段之间串联集总电容。
  8. 如权利要求1-6中任一项所述的天线装置,其特征在于,在所述第一间隙,所述馈电点与所述第一辐射段之间串联可变电容;在所述第二间隙,所述馈电点与所述第二辐射段之间串联可变电容。
  9. 如权利要求1-6中任一项所述的天线装置,其特征在于,在所述第一间隙,所述馈电点与所述第一辐射段之间串联天线调谐开关;在所述第二间隙,所述馈电点与所述第二辐射段之间串联天线调谐开关。
  10. 如权利要求1所述的天线装置,其特征在于,所述天线装置还包括:第三接地支路;所述第三接地支路包括第五接地端和第三连接端,所述第三连接端位于所述第三接地支路与所述第一辐射段的交点位置,所述第三连接端与所述第五接地端之间串联第二高频滤波器;
    所述第一辐射段上靠近所述第一间隙的一端设有第二馈电点,所述第一辐射段辐射第一频段的信号;所述第二辐射段用于检测第二频段的信号的特定吸收比SAR;所述第二频段高于所述第一频段,所述第二频段与所述第一频段之间的差值大于第一预设阈值。
  11. 如权利要求10所述的天线装置,其特征在于,所述第二馈电点为近场通信NFC馈电点,所述第一频段的信号为NFC信号。
  12. 一种移动终端,其特征在于,包括金属外壳和如权利要求1至11任意一项所述的天线装置,所述天线装置的辐射体为所述金属外壳的一部分,或者所述辐射体设于所述金属外壳的内部。
PCT/CN2019/095515 2018-07-11 2019-07-11 天线装置及移动终端 WO2020011219A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/259,027 US11404790B2 (en) 2018-07-11 2019-07-11 Antenna apparatus and mobile terminal
CN201980044539.8A CN112352350B (zh) 2018-07-11 2019-07-11 天线装置及移动终端
EP19834327.9A EP3809527A4 (en) 2018-07-11 2019-07-11 ANTENNA DEVICE AND MOBILE TERMINAL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810762908.4 2018-07-11
CN201810762908.4A CN110718761B (zh) 2018-07-11 2018-07-11 天线装置及移动终端

Publications (1)

Publication Number Publication Date
WO2020011219A1 true WO2020011219A1 (zh) 2020-01-16

Family

ID=69143201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095515 WO2020011219A1 (zh) 2018-07-11 2019-07-11 天线装置及移动终端

Country Status (4)

Country Link
US (1) US11404790B2 (zh)
EP (1) EP3809527A4 (zh)
CN (2) CN110718761B (zh)
WO (1) WO2020011219A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112821031A (zh) * 2020-12-29 2021-05-18 Oppo广东移动通信有限公司 电子设备
CN113993199A (zh) * 2020-07-27 2022-01-28 北京小米移动软件有限公司 天线辐射功率的调节方法及装置、电子设备

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109546311A (zh) * 2018-12-12 2019-03-29 维沃移动通信有限公司 一种天线结构及通信终端
CN111244616B (zh) * 2020-03-27 2022-01-11 维沃移动通信有限公司 一种天线结构及电子设备
CN113540752B (zh) * 2020-04-21 2024-03-01 北京小米移动软件有限公司 终端设备
CN113708093B (zh) * 2020-05-22 2024-02-06 北京小米移动软件有限公司 天线结构和电子设备
CN114069228B (zh) * 2020-08-07 2023-08-22 华为技术有限公司 天线的供电系统及电子设备
CN114122683B (zh) * 2020-08-28 2022-12-30 华为技术有限公司 天线系统及电子设备
CN114337715A (zh) * 2020-09-30 2022-04-12 南京矽力微电子(香港)有限公司 多段式共辐射体天线及应用该天线的穿戴式装置
CN112467371B (zh) * 2020-11-23 2023-10-03 Oppo广东移动通信有限公司 天线装置及电子设备
CN112736459B (zh) * 2020-12-24 2023-12-15 维沃移动通信有限公司 双天线系统、射频架构和电子设备
CN112909509B (zh) * 2021-01-20 2023-08-22 维沃移动通信有限公司 天线和电子设备
TWI766553B (zh) * 2021-01-21 2022-06-01 華碩電腦股份有限公司 寬頻天線系統
CN115117599B (zh) * 2021-03-19 2023-11-28 北京小米移动软件有限公司 天线结构和电子设备
CN115548649A (zh) * 2021-06-30 2022-12-30 Oppo广东移动通信有限公司 天线模组及电子设备
CN116247420A (zh) * 2021-12-07 2023-06-09 Oppo广东移动通信有限公司 天线装置及电子设备
CN114336009A (zh) * 2021-12-24 2022-04-12 深圳市锐尔觅移动通信有限公司 电子设备
CN117293535A (zh) * 2022-06-20 2023-12-26 荣耀终端有限公司 一种终端天线及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205609756U (zh) * 2016-04-19 2016-09-28 惠州硕贝德无线科技股份有限公司 一种金属背盖手机的新型天线结构
CN206313756U (zh) * 2016-12-21 2017-07-07 珠海全志科技股份有限公司 一种可变阻抗调谐装置及带有该装置的射频系统
CN106992359A (zh) * 2017-01-13 2017-07-28 瑞声科技(新加坡)有限公司 天线系统
EP3331096A1 (en) * 2016-03-18 2018-06-06 Guangdong OPPO Mobile Telecommunications Corp., Ltd. Metal housing, antenna device, and mobile terminal

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008013021A1 (fr) 2006-07-28 2008-01-31 Murata Manufacturing Co., Ltd. Dispositif d'antenne et dispositif de communication radio
US9246221B2 (en) * 2011-03-07 2016-01-26 Apple Inc. Tunable loop antennas
EP2525438B1 (en) * 2011-05-17 2013-11-13 Laird Technologies AB An antenna arrangement for a portable radio communication device having a metal casing
CN104425881B (zh) * 2013-08-22 2019-02-26 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置
CN106575821B (zh) * 2015-03-30 2019-11-05 华为技术有限公司 一种终端
KR102306080B1 (ko) * 2015-08-13 2021-09-30 삼성전자주식회사 안테나 장치 및 안테나 장치를 포함하는 전자 장치
CN105305067B (zh) 2015-10-29 2016-12-14 维沃移动通信有限公司 一种天线系统及移动终端
CN107293838A (zh) * 2016-03-31 2017-10-24 宏碁股份有限公司 具有窄接地面净空区的天线元件的通信装置
CN205693664U (zh) * 2016-06-08 2016-11-16 华硕电脑股份有限公司 通信装置
CN107359402B (zh) * 2017-07-07 2019-06-07 维沃移动通信有限公司 一种天线结构及移动终端
CN108110423B (zh) * 2017-12-14 2020-03-10 Oppo广东移动通信有限公司 天线调谐电路、天线装置及移动终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3331096A1 (en) * 2016-03-18 2018-06-06 Guangdong OPPO Mobile Telecommunications Corp., Ltd. Metal housing, antenna device, and mobile terminal
CN205609756U (zh) * 2016-04-19 2016-09-28 惠州硕贝德无线科技股份有限公司 一种金属背盖手机的新型天线结构
CN206313756U (zh) * 2016-12-21 2017-07-07 珠海全志科技股份有限公司 一种可变阻抗调谐装置及带有该装置的射频系统
CN106992359A (zh) * 2017-01-13 2017-07-28 瑞声科技(新加坡)有限公司 天线系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3809527A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113993199A (zh) * 2020-07-27 2022-01-28 北京小米移动软件有限公司 天线辐射功率的调节方法及装置、电子设备
CN113993199B (zh) * 2020-07-27 2024-05-14 北京小米移动软件有限公司 天线辐射功率的调节方法及装置、电子设备
CN112821031A (zh) * 2020-12-29 2021-05-18 Oppo广东移动通信有限公司 电子设备
CN112821031B (zh) * 2020-12-29 2024-01-02 Oppo广东移动通信有限公司 电子设备

Also Published As

Publication number Publication date
US20210273340A1 (en) 2021-09-02
CN112352350A (zh) 2021-02-09
EP3809527A1 (en) 2021-04-21
CN110718761B (zh) 2021-11-09
CN110718761A (zh) 2020-01-21
CN112352350B (zh) 2021-12-28
US11404790B2 (en) 2022-08-02
EP3809527A4 (en) 2021-08-11

Similar Documents

Publication Publication Date Title
WO2020011219A1 (zh) 天线装置及移动终端
US10601117B2 (en) Antenna and mobile terminal
WO2019090690A1 (zh) 一种移动终端的天线及移动终端
WO2019218168A1 (zh) 天线系统和终端设备
WO2019071848A1 (zh) 天线装置及移动终端
US10892552B2 (en) Antenna structure
WO2018232677A1 (zh) 一种移动终端的天线及具有该天线的移动终端
US11355853B2 (en) Antenna structure and wireless communication device using the same
JP2017501634A (ja) ループ状アンテナおよびモバイル端末
WO2021052127A1 (zh) 天线结构及终端
CN105655690B (zh) 一种频段开关天线
WO2017157004A1 (zh) 一种分集天线
CN108258405B (zh) 一种方向图可重构滤波天线
WO2020019465A1 (zh) 一种天线及移动终端
TWI446626B (zh) 寬頻行動通訊天線
TW201733207A (zh) 天線系統
TW201843877A (zh) 行動裝置和天線結構
CN104681972B (zh) 同时具有稳定方向图和良好带外抑制能力的槽加载超宽带单极子天线
WO2019052478A1 (zh) 一种双频wifi天线及移动终端
CN110911842B (zh) 一种具有共辐射体天线的终端
CN113078445A (zh) 天线结构及具有该天线结构的无线通信装置
TW201911644A (zh) 天線結構及具有該天線結構之無線通訊裝置
CN108432048A (zh) 一种缝隙天线和终端
CN208299037U (zh) 一种多频段手机天线
JP7243966B2 (ja) アンテナシステム及び端末デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19834327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019834327

Country of ref document: EP

Effective date: 20210113