WO2020010921A1 - 物品检测系统及方法、电子设备、存储介质 - Google Patents

物品检测系统及方法、电子设备、存储介质 Download PDF

Info

Publication number
WO2020010921A1
WO2020010921A1 PCT/CN2019/087484 CN2019087484W WO2020010921A1 WO 2020010921 A1 WO2020010921 A1 WO 2020010921A1 CN 2019087484 W CN2019087484 W CN 2019087484W WO 2020010921 A1 WO2020010921 A1 WO 2020010921A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
module
tube
solenoid valve
sampling
Prior art date
Application number
PCT/CN2019/087484
Other languages
English (en)
French (fr)
Inventor
马秋峰
张清军
李元景
陈志强
赵自然
刘以农
刘耀红
辛宏辉
曹彪
白楠
Original Assignee
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司 filed Critical 同方威视技术股份有限公司
Priority to US16/622,553 priority Critical patent/US20210055267A1/en
Priority to DE112019000081.0T priority patent/DE112019000081T5/de
Publication of WO2020010921A1 publication Critical patent/WO2020010921A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/08Preparation using an enricher
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/12Preparation by evaporation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/64Electrical detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8675Evaluation, i.e. decoding of the signal into analytical information
    • G01N30/8686Fingerprinting, e.g. without prior knowledge of the sample components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/025Gas chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/08Preparation using an enricher
    • G01N2030/085Preparation using an enricher using absorbing precolumn
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/12Preparation by evaporation
    • G01N2030/126Preparation by evaporation evaporating sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/32Control of physical parameters of the fluid carrier of pressure or speed
    • G01N2030/326Control of physical parameters of the fluid carrier of pressure or speed pumps
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/32Control of physical parameters of the fluid carrier of pressure or speed
    • G01N2030/328Control of physical parameters of the fluid carrier of pressure or speed valves, e.g. check valves of pumps

Definitions

  • the present disclosure relates to the technical field of security detection, and in particular, to an article detection system, an article detection method, an electronic device, and a computer-readable storage medium.
  • the related technology may use a MOS gas-sensitive sensor test method to detect the gas emitted by the item.
  • MOS metal-oxide-semiconductor
  • IMS ion mobility spectrometry
  • MOS gas-sensing sensors when using MOS gas-sensing sensors to detect and distinguish items such as animal and plant foods, samples must be produced with a high concentration of volatile sample odor, which can be achieved, while the actual odor concentration of the goods and items carried by passengers is low. MOS gas sensors cannot be tested quickly. And when mixed with other complicated volatile odors, the MOS gas sensor may mistakenly identify other goods as items such as moving food, causing false detection.
  • the MCC-IMS detection method is used to detect animals, plants, food, and other items, if the volatile odor of these items is lower than the minimum response required by the MCC-IMS instrument, the instrument will not be able to obtain a significantly effective signal. Therefore, when passengers carry a small number of items such as animals, plants, food, etc., there will be missed inspections and false inspections.
  • the traditional MCC-IMS instrument uses an open-loop gas path, which makes the gas path of the system susceptible to interference from the external environment. This will shorten the life of the molecular sieve and even cause a lot of interference spectra in the spectrum after the molecular sieve is saturated. As a result, the recognition accuracy is reduced.
  • the purpose of the present disclosure is to provide an article detection system and method, electronic equipment, and storage medium, and at least to a certain extent, overcome the low detection efficiency, short molecular sieve life, and low accuracy rate of the articles due to the limitations and defects of the related technology. At least one problem with poor system piping control.
  • a pneumatic control system is also provided, which can intelligently and quickly realize a variety of complex functions of the entire detection system.
  • an article detection system including: a pre-concentration sampling module, which is located within a preset range from the article to be detected, and is used to perform concentrated sampling on gas molecules of the article to be detected and capture a sample Molecules; a gas chromatography module connected to the pre-concentration sampling module for pre-separating the sample molecules; an internal circulation gas path module connected to the gas chromatography module; an ion migration tube module connected to the gas phase A chromatographic module is connected to the internal circulation gas path module, and is used to detect the spectrum of the pre-separated sample molecules that enter the ion migration tube module from the gas chromatography module, thereby forming a fingerprint spectrum of the item to be detected.
  • a pre-concentration sampling module which is located within a preset range from the article to be detected, and is used to perform concentrated sampling on gas molecules of the article to be detected and capture a sample Molecules
  • a gas chromatography module connected to the pre-concentration sampling module for pre-separating the sample molecules
  • the pre-concentration sampling module includes: a sampling head for sampling molecules volatilized from the object to be detected; a solenoid valve for controlling on / off of the gas path; a filler A tube for adsorbing the volatilized molecules; a temperature control component for controlling the temperature of the filler tube; a sampling pump for pumping the volatilized molecules of the object to be detected.
  • the gas chromatography module includes a capillary column for performing pre-separation processing on the sample molecules.
  • the internal circulation gas path module includes: a diaphragm pump configured to provide gas circulation power for the internal circulation gas path; and a flow splitter configured to provide an air flow with the sample molecules. Shunting; buffer module, used to control the fluctuation of airflow within a preset range; molecular sieve module, used to purify the airflow.
  • the internal circulation gas path module includes: an ion migration tube gas path including a first molecular sieve module and a connection pipeline between a second splitter and the ion migration tube module, The gas enters the drift gas inlet of the ion migration tube module through the ion migration tube gas path;
  • the gas chromatography tube gas path includes a zero-gas carrier gas inlet located between the second splitter and the gas chromatography module, a second solenoid valve, and a connection In the pipeline, the gas enters the gas chromatography module through the gas path of the gas chromatography tube, wherein a second molecular sieve module is provided at the zero gas carrier gas inlet for purifying the gas to form zero gas;
  • the return gas path includes The third diaphragm pump and the connecting pipeline between the second shunt and the ion migration tube module, the suction port of the third diaphragm pump faces the ion migration tube, and the air outlet faces the second shunt; the second shunt, and
  • the ion migration tube gas path further includes a first buffer module for controlling fluctuations of the air flow supplied to the ion migration tube module within a preset range; and / or gas chromatography
  • the tube gas path further includes a second buffer module for controlling fluctuations of the airflow supplied to the gas chromatography module within a preset range; and / or the return gas path further includes a third buffer module for The fluctuation of the air flow from the ion transfer tube module is controlled within a preset range.
  • the ion migration tube gas path further includes a first splitter located between the first molecular sieve module and the ion transfer tube module, and the gas enters the ion transfer tube module through the first splitter.
  • Air inlet and / or air carrier gas inlet are located between the first molecular sieve module and the ion transfer tube module, and the gas enters the ion transfer tube module through the first splitter. Air inlet and / or air carrier gas inlet.
  • the return gas path further includes a third diverter connected to an exhaust port of the ion migration tube module.
  • the gas chromatography tube gas path further includes a second diaphragm pump for providing additional gas circulation power to the gas chromatography tube gas path.
  • the gas chromatography tube gas path further includes a first solenoid valve for controlling the on-off of the gas path.
  • the first buffer module, the first molecular sieve module, and the first splitter are sequentially arranged in a direction in which the gas moves from the second splitter to the ion transfer tube.
  • the gas enters the drift gas inlet and air carrier gas inlet of the ion migration tube module through the ion migration tube gas path.
  • the second buffer module, the second diaphragm pump, and the first solenoid valve In the gas chromatography tube gas path, the second buffer module, the second diaphragm pump, and the first solenoid valve The zero gas carrier gas inlet and the second solenoid valve are arranged in sequence according to the direction in which the gas moves from the second splitter to the gas chromatography module; in the return gas path, the third splitter, the third buffer module, and the third diaphragm pump Arrange the gas in sequence from the ion migration tube module to the second shunt.
  • the ion migration tube module is a positive-negative dual-mode migration tube module
  • the positive-negative dual-mode migration tube module includes a positive mode ionization zone and a negative mode ionization zone, The positive mode drift region and the negative mode drift region and the positive mode Faraday cup detection region and the negative mode Faraday cup detection region, wherein the positive mode Faraday cup detection region and the negative mode Faraday cup detection region are used to detect the sample molecules To obtain a fingerprint spectrum of the item to be detected.
  • an article detection system including:
  • An ion migration tube branch includes a first buffer module, a first molecular sieve module, an ion migration tube, and a connection pipe therebetween, and is used for passing gas through the first buffer module, the first molecular sieve module, and the ion migration tube module.
  • Drift gas inlet a first buffer module, a first molecular sieve module, an ion migration tube, and a connection pipe therebetween, and is used for passing gas through the first buffer module, the first molecular sieve module, and the ion migration tube module.
  • Gas chromatographic tube branch including a second buffer module, a second diaphragm pump, a zero-gas carrier gas inlet, a gas sampling inlet, a second solenoid valve, a gas chromatographic tube, and a connecting pipe therebetween for passing the carrier gas through
  • the second buffer module, the first solenoid valve, the zero-gas carrier gas inlet are mixed with the sample gas from the gas sampling inlet, and then enter the gas chromatography tube through the second solenoid valve.
  • the zero-gas carrier gas inlet is provided with a first Two molecular sieve modules;
  • the return gas branch includes a third diverter, a third buffer module, a third diaphragm pump, and a connecting pipeline between them. Under the action of the third diaphragm pump, gas flows from the ion migration tube module to the third diverter, The third buffer module and the third diaphragm pump move, and are finally sucked to the second diverter;
  • the second splitter is connected to the ion migration tube branch, the gas chromatography tube branch, and the return gas branch.
  • the first buffer module, the second buffer module, and the third buffer module are used to control the fluctuation of the air flow within a preset range, and the first molecular sieve module and the second molecular sieve module are used to control the gas.
  • Purification is performed to form zero gas
  • the second splitter and the third splitter are used for splitting the gas flow
  • a first diaphragm pump is used to provide gas circulation power for the entire system
  • a second diaphragm pump is used for gas chromatography tubes
  • the gas flow of the branch circuit provides additional power
  • the first solenoid valve and the second solenoid valve are used to control the opening and closing of the gas circuit.
  • the ion migration tube branch further includes a first flow splitter, and the gas sequentially passes through the first buffer module, the first molecular sieve module, the first flow splitter, and finally enters the drift of the ion transfer tube module.
  • Air inlet and / or air carrier gas inlet are examples of air carrier gas inlet.
  • the dynamic pre-concentration sampling branch includes: a sampling head for sampling molecules volatilized from the object to be detected; a third A solenoid valve is used to control the opening and closing of the intake gas path; a filler tube is located between the gas sampling inlet of the gas chromatography tube branch and the second solenoid valve, and is used to adsorb the volatile molecules; a temperature control component For controlling the temperature of the filler tube to perform adsorption and desorption operations; a fourth solenoid valve for controlling the on-off of the gas outlet gas path; a first diaphragm pump for sucking the volatilization of the item to be detected
  • the molecular pre-concentration sampling branch is connected to the gas chromatography tube branch through the gas sampling inlet, and the outlet of the filler tube is connected to the second solenoid valve and the fourth solenoid valve.
  • the gas chromatographic tube branch further includes a first solenoid valve located between the second diaphragm pump and the zero-gas carrier gas inlet, for controlling the on-off of the gas path.
  • the second flow splitter is configured such that a ratio of a gas flow rate passing into the ion migration tube branch and the gas chromatography tube branch ranges from 3: 1 to 20: 1.
  • a method for detecting an article comprising: obtaining sample molecules of the article to be detected; performing pre-separation processing on the sample molecules of the article to be detected; and forming an article to be detected according to a spectrum of the sample molecule Fingerprint spectrum; determine the type of the item to be detected by using the fingerprint spectrum.
  • determining the type of the item to be detected by using the fingerprint spectrum includes: determining the type of the item to be detected according to a mapping relationship between the fingerprint spectrum and the item.
  • obtaining the sample molecules of the item to be detected includes: adsorbing the sample molecules volatilized from the item to be detected by a sampling module, and then heating the sampling module to a preset temperature to Sample molecules are desorbed.
  • the sampling module includes a filler tube, a temperature control assembly, a sampling pump, a third solenoid valve, and a fourth solenoid valve.
  • the sample to be tested is volatilized by the sampling pump.
  • the emitted odor molecules move to the third solenoid valve, the packing tube, the fourth solenoid valve and the sampling pump; after the desorption process, the desorbed sample molecules are introduced into the gas chromatography module; the gas chromatography module is used to pre-evaporate the volatile molecules.
  • the method further includes: after the internal circulation gas path is stabilized, opening the third solenoid valve, the fourth solenoid valve, and the sampling pump, and the temperature control component adjusts the temperature of the filler pipe to The adsorption temperature lower than the preset temperature allows the sample gas to enter the packing tube under the action of the sampling pump.
  • the packing tube performs the adsorption treatment on the volatile molecules, and the gas molecules that cannot be adsorbed will be discharged through the exhaust port of the sampling pump.
  • the thermal desorption and desorption treatment is started; the first solenoid valve and the second solenoid valve are opened, and the air is passed through the zero-air carrier gas equipped with the second molecular sieve module
  • the inlet enters the packing tube, and the carrier gas containing the sample molecules enters the capillary column of the gas chromatography module from the packing tube for pre-separation processing, and the molecules after the pre-separation processing enter the ion migration tube module through the sample carrier gas inlet;
  • the ion migration tube module detects the molecules, the molecules are collected from the negative mode exhaust port and the positive mode exhaust port of the ion migration module under the action of the third diaphragm pump.
  • the second solenoid valve is closed, and the sampling pump, the first solenoid valve, and the fourth solenoid valve are opened for a period of time to clean the packing tube.
  • an electronic device including: a processor; and
  • the memory is configured to store executable instructions of the processor; wherein the processor is configured to execute the item detection method according to any one of the foregoing by executing the executable instructions.
  • a computer-readable storage medium having stored thereon a computer program that, when executed by a processor, implements the article detection method according to any one of the above.
  • a sample molecule of an article to be detected is obtained through a pre-concentration sampling module, and the sample molecule is performed through a gas chromatography module. Pre-separation processing, and then obtain the fingerprint spectrum of the item to be detected through the ion migration tube module, so as to determine the type of the item to be detected through the fingerprint spectrum.
  • the type of the object to be detected can be quickly determined through the fingerprint spectrum, which improves the detection efficiency; on the other hand, the concentration of the sample molecules in the object to be detected is increased through the concentrated sampling of the sample molecules, which not only makes it easier to detect the fingerprint of the object Spectrum, and to avoid missed detection and false detection when the number of carried items is small, and improve the accuracy of item detection; on the other hand, through a set of multiple diaphragm pumps and multiple solenoid valves and ion migration
  • the system that cooperates with the tube, gas chromatography module and pre-concentration sampling module uses the control of the diaphragm pump and solenoid valve to achieve a variety of functions, which can make the pre-concentration sampling module and other modules realize related functions without movement, and improve the detection of items. Convenience, can detect items more intelligently.
  • FIG. 1 schematically illustrates a block diagram of an article detection system in an exemplary embodiment of the present disclosure
  • FIG. 2 schematically illustrates a specific structural diagram of an article detection system in an exemplary embodiment of the present disclosure
  • FIG. 3 schematically illustrates a simplified structure diagram of an article detection system in an exemplary embodiment of the present disclosure
  • FIG. 5 schematically illustrates a flowchart of an article detection method in an exemplary embodiment of the present disclosure
  • FIG. 6 schematically illustrates a first fingerprint spectrum in an exemplary embodiment of the present disclosure
  • FIG. 7 schematically illustrates a second fingerprint spectrum in an exemplary embodiment of the present disclosure
  • FIG. 8 schematically illustrates a third fingerprint spectrum in an exemplary embodiment of the present disclosure
  • FIG. 9 schematically illustrates a fourth fingerprint spectrum in an exemplary embodiment of the present disclosure.
  • FIG. 10 schematically illustrates a block diagram of an electronic device in an exemplary embodiment of the present disclosure
  • FIG. 11 schematically illustrates a program product in an exemplary embodiment of the present disclosure.
  • an article detection system 10 is first provided, which can be applied to any scene requiring security inspection, such as an airport, a station, or the like, so as to provide users with a detection basis such as a fingerprint spectrum through the article detection system. Then achieve the purpose of accurate detection of objects.
  • the article detection system 10 may specifically include a pre-concentration sampling module 100, a gas chromatography module 200, an internal circulation gas path module 300, and an ion migration tube module 400, where:
  • the pre-concentration sampling module 100 is located within a preset range from the object to be detected, and is used to perform concentration sampling on the gas molecules of the object to be detected to capture sample molecules;
  • the gas chromatography module 200 is connected to the pre-concentration sampling module, and is configured to perform pre-separation processing on the sample molecules;
  • the internal circulation gas path module 300 is connected to the gas chromatography module and the ion migration tube module;
  • the ion migration tube module 400 is connected to the gas chromatography module and the internal circulation gas path module, and is configured to detect a spectrum of a pre-separated sample molecule that enters the ion migration tube module from the gas chromatography module, thereby forming the waiting sample. Check the fingerprint spectrum of the item.
  • the type of the article to be detected can be quickly determined through the fingerprint spectrum, which improves the detection efficiency; on the one hand, by concentrating and sampling the sample molecules, the The molecular concentration of the sample not only makes it easier to detect the fingerprint spectrum of the item, but also avoids missed and false detections that occur when the number of items carried is small, and improves the accuracy of the item detection; on the other hand, a set of The system of multiple diaphragm pumps and multiple solenoid valves combined with ion migration tube, gas chromatography module and pre-concentration sampling module, realizes various functions by controlling the diaphragm pump and solenoid valve, and can make modules such as pre-concentration sampling module Dynamic changes occur but no movement or displacement is needed, improving the convenience of item detection.
  • the pre-concentration sampling module 100 is located within a preset range from the object to be detected, and is used to perform concentration sampling on the gas molecules of the object to be detected to capture the sample molecules.
  • the item to be detected may be any shape, size, any kind of animal, plant, or food, etc.
  • the item to be detected is food as an example for description.
  • the items to be tested can be placed separately at the sampling location, or in a suitcase, container, or other container.
  • the item to be tested can be completely placed in the sampling position of the pre-concentration sampling module, or it can be processed by shredding, beating, bottled, filling, fresh-keeping bag, etc. and then placed in the sampling position. In this example, it is to be tested.
  • the form of the article is not particularly limited.
  • the preset range can be set according to the actual security inspection requirements, for example, it can be within a range of 0.5 meters around the item to be detected, or it can be set to other values, such as within a range of 1 meter around the item to be detected.
  • a relatively low concentration of gas molecules are volatilized from the item to be detected, and the gas molecules of each item are different. Therefore, the item can be detected based on the gas molecules to determine the type of the item to be detected.
  • the sample molecules with relatively low concentration can be captured by concentrating and sampling the naturally volatilized gas molecules, avoiding the problem that the instrument cannot generate a significant signal caused by the lower concentration, so that even in the item to be detected carried by the user When the number is small, it is also possible to capture enough sample molecules through concentrated sampling to effectively detect the object to be detected.
  • the pre-concentration sampling module 100 may include: a sampling head 101, a third solenoid valve 102, a packing tube 103, a temperature control assembly 104, a fourth solenoid valve 105, and a first diaphragm pump (sampling pump ) 106.
  • the sampling head 101 is used to sample the gas molecules volatilized from the object 500 to be detected; the third solenoid valve 102 and the fourth solenoid valve 105 are used to control the on / off of the gas path; the filler tube 103 is located on the branch of the gas chromatography tube Between the gas sampling inlet 107 and the second solenoid valve 203 for adsorbing the gas molecules; the temperature control component 104 is arranged around the packing tube 103 to control the temperature of the packing tube to perform Adsorption and desorption operations; the first diaphragm pump (sampling pump) 106 is used to control the on-off of the gas path.
  • the dynamic pre-concentration sampling branch is connected to the gas chromatography tube branch through the gas sampling inlet 107, and the outlet of the packing tube 103 is connected to the second solenoid valve 203 and the fourth solenoid valve 105.
  • the filler in the filler tube 103 may be fillers such as Tenaxs TA, Tenaxs GR, Carbotrap, and Carboxen569, or a mixture of Tenax and activated carbon fillers to adsorb and capture gas molecules volatilized from the object 500 to be detected through the filler tube. At the same time, gas molecules that cannot be captured by trapping are discharged into the atmosphere. It should be noted that, the filler tube 103 may be used to adsorb and trap gas molecules for 1 to 3 seconds.
  • the temperature control component 104 can implement cooling and heating functions to control the temperature of the filler pipe to a preset temperature.
  • the preset temperature can be set according to different stages. It can be set to 10-20 degrees Celsius during the sampling stage and 100-150 degrees Celsius during the pre-separation stage.
  • the gas chromatography module 200 may include a first solenoid valve 201, a second solenoid valve 203, a zero-gas carrier gas inlet 202, and a capillary column 204.
  • the first solenoid valve 201 and the second solenoid valve 203 are used to control the on-off of the gas path;
  • the capillary column 204 is used to separate the sample molecules;
  • the zero-gas carrier gas inlet 202 is used to purify the gas to form Zero gas.
  • zero gas is the gas produced by filtering ordinary air through a multilayer molecular sieve.
  • the inner surface of the capillary column is coated with a polar layer to pre-separate sample molecules of different polarities through the capillary column.
  • the internal circulation gas path module 300 may include a third diaphragm pump 301, a second diaphragm pump 309, a second flow splitter 302 for performing air flow splitting, a first flow splitter 306, a third flow splitter 307, The first buffer module 303, the second buffer module 305, the third buffer module 308, and the first molecular sieve module 304.
  • the diaphragm pump is used to control the on-off of the gas path
  • a second diaphragm pump 309 is provided on the basis of the third diaphragm pump 301 because the pre-concentration sampling module 100 is provided in the sampling branch to which the second diaphragm pump 309 belongs.
  • the packing tube 103 has a large air resistance, so it is preferable to provide a second diaphragm pump 309 for pressurization; a splitter is used to split the gas flow with the sample molecules to the gas chromatography module and the ion migration tube.
  • the shunt may include a three-way or a four-way.
  • the second shunt 302 and the third shunt 307 are three-way
  • the second shunt 306 is a four-way.
  • the preset range of the fluctuation control of all the buffer modules may be 5-10 ml / min, so as to control the fluctuation of the air flow supplied to the ion migration tube module 400 within 5-10 ml / min through the buffer module, thereby making the air flow stable.
  • the first molecular sieve module 304 can remove water vapor, organic gas molecules, and the like in the air after the stabilized airflow forms zero gas.
  • the internal circulation air circuit module can realize the closed cycle of the entire zero air system and reduce the interference of the external environment.
  • the internal circulation gas path module shown in FIG. 2 may specifically include three gas paths: an ion migration tube gas path, including a first molecular sieve module located between the second splitter 302 and the ion migration tube module 400 304 and the connecting pipeline, the gas enters the drift gas inlet of the ion migration tube module 400 through the gas path of the ion migration tube.
  • the ion migration tube gas path further includes a first buffer module 303 for controlling fluctuations of the air flow within a preset range.
  • the ion migration tube gas path further includes a first diverter 306 between the first molecular sieve module 304 and the ion migration tube module 400.
  • the gas enters the positive mode drift gas inlet 409 of the ion migration tube module 400 through the first diverter 306. And negative mode drift gas inlet 408, if the ion migration tube module 400 also has an air carrier gas inlet 412, the gas also enters the air carrier gas inlet 412 through the first diverter 306.
  • the first buffer module 303, the first molecular sieve module 304, and the first diverter 306 are sequentially arranged in the direction in which the gas moves from the second diverter 302 to the ion migration tube, and the gas enters the ion migration tube through the gas path of the ion migration tube.
  • the drift gas inlet and air carrier gas inlet of the module can also be interchanged.
  • the gas chromatography tube gas path includes a zero-gas carrier gas inlet 202, a second solenoid valve 203, and a connecting pipe located between the second splitter 302 and the gas chromatography module 200.
  • the gas enters the gas chromatography module 200 through the gas chromatography tube gas path.
  • a second molecular sieve module is provided at the zero-gas carrier gas inlet 202 for purifying the gas to form zero gas.
  • the gas chromatography tube gas path further includes a second buffer module 305 for controlling the fluctuation of the air flow within a preset range.
  • the gas chromatography tube gas path also includes a second diaphragm pump 309 for providing additional gas circulation power to the gas chromatography tube gas path.
  • the gas chromatography tube gas path further includes a first solenoid valve 201 for controlling the on-off of the gas path.
  • the second buffer module 305, the second diaphragm pump 309, the first solenoid valve 201, the zero-gas carrier gas inlet 202, and the second solenoid valve 203 flow from the second diverter to the gas according to the gas.
  • the direction of the gas chromatography module movement is arranged sequentially, but the arrangement order of the second buffer module 305 and the second diaphragm pump 309 is interchangeable.
  • the return gas path includes a third diaphragm pump 301 and a connecting pipe located between the second diverter 302 and the ion migration tube module 400.
  • the suction port of the third diaphragm pump 301 faces the ion migration tube, and the air outlet faces the second branch flow.
  • the second splitter 302 is connected to the ion migration tube gas path, the gas chromatography tube gas path, and the return gas path.
  • the return air path further includes a third buffer module 308 for controlling the fluctuation of the air flow within a preset range.
  • the return gas path also includes a third flow splitter 307 connected to the exhaust port of the ion transfer tube module.
  • the ion migration tube module 400 may preferably adopt a positive-negative dual-mode migration tube module, which can detect many types of contraband such as drugs and explosives.
  • the positive-negative dual-mode migration tube module is only the preferred solution of the present application. This application may also use any one of a positive-mode ion migration tube module or a negative-mode ion migration tube module.
  • the positive-negative dual-mode migration tube module includes a positive-mode ionization region 401 and a negative-mode ionization region 402, a positive-mode drift region 403 and a negative-mode drift region 404, a positive-mode Faraday cup detection region 405, and a negative-mode Faraday. Cup detection area 406.
  • the Faraday cup detection area in the positive mode and the Faraday cup detection area in the negative mode are used to detect the spectrum of the sample molecules to obtain a fingerprint spectrum.
  • the ion migration tube module 400 may further include a gas path portion, which is mainly composed of a positive-mode drift gas inlet 409, a positive-mode drift gas outlet 411, a negative-mode drift gas inlet 408, a negative
  • the mode drift gas exhaust port 410, the sample carrier gas intake port 407, and the air carrier gas intake port 412 are configured.
  • Positive mode refers to the positive mode of the migration tube plus a positive voltage, which can detect the first type of items, such as substances similar to drugs; negative mode refers to the negative voltage of the migration tube to the second type, such as an explosion sample.
  • the positive and negative dual-mode migration tube can detect various molecules with affinity for positive and negative ions, increasing the detection range, thereby avoiding missed detection.
  • the fingerprint spectrum of the object to be detected is obtained from the spectrum of the sample molecules obtained in the detection area of the Faraday Cup in the positive and negative dual modes. Since the fingerprint spectrum of each item is different, the fingerprint spectrum can be based on the A mapping relationship determines the type of each item to be detected.
  • the article detection system may further include the following branches: 1.
  • An ion migration tube branch including a first buffer module 303, a first molecular sieve module 304, an ion migration tube, and a connection between them A pipeline for passing gas through the first buffer module 303, the first molecular sieve module 304, and the drift gas inlets of the ion migration tube module 400, such as a positive mode drift gas inlet 409 and a negative mode drift gas inlet 408.
  • the ion migration tube branch also includes a first diverter 306, and the gas passes through the first buffer module 303, the first molecular sieve module 304, the first diverter 306, and finally enters the positive mode drift gas inlet 409 of the ion migration tube module.
  • the gas chromatography tube branch includes a second buffer module 305, a second diaphragm pump 309, a zero-gas carrier gas inlet 202, a gas sampling inlet 107, a second solenoid valve 203, a gas chromatography tube, and a connecting pipeline therebetween.
  • the carrier gas After passing the carrier gas through the second buffer module 305, the first solenoid valve 201, and the zero-gas carrier gas inlet 202, the carrier gas is mixed with the sample gas from the gas sampling inlet 107, and then enters the gas chromatography tube through the second solenoid valve 203.
  • a second molecular sieve module is provided at the zero-gas carrier gas inlet.
  • the gas chromatographic tube branch also includes a first solenoid valve 201 located between the second diaphragm pump 309 and the zero-gas carrier gas inlet 202 for controlling the on-off of the gas path.
  • the return gas branch includes the third diverter 307, the third buffer module 308, the third diaphragm pump 301, and the connecting pipelines between them. Under the action of the third diaphragm pump 301, the gas flows from the ion migration tube module 400 to the The third diverter 307, the third buffer module 308, and the third diaphragm pump 301 move and are finally sucked to the second diverter 302.
  • the second splitter 302 is connected to the ion migration tube branch, the gas chromatography tube branch, and the return gas branch, and the second splitter 302 is configured to allow the airflow passing through the ion migration tube branch and the gas chromatography tube branch
  • the ratio ranges from 3: 1 to 20: 1.
  • the dynamic pre-concentration sampling branch includes a sampling head 101 for sampling molecules volatilized from the object 500 to be detected; a third solenoid valve 102 for controlling the opening and closing of the intake gas path; a filler tube 103, located at The gas sampling inlet 107 of the branch of the gas chromatography tube and the second solenoid valve 203 are used for adsorbing the volatile molecules; the temperature control component 104 is used for controlling the temperature of the filler tube to perform Adsorption and desorption operations; a fourth solenoid valve 105 for controlling the on-off of the gas outlet gas path; a first diaphragm pump (sampling pump) 106 for sucking molecules volatilized from the object 500 to be detected;
  • the enrichment sampling branch is connected to the gas chromatography tube branch through the gas sampling inlet, and the outlet of the packing tube 103 is connected to the second solenoid valve 203 and the fourth solenoid valve 105.
  • the fingerprint spectra of all items can be stored in the database of the item detection system in advance, and the obtained fingerprint spectra can be compared with the fingerprint spectra of all items in the database by writing a program to obtain The best matching fingerprint spectrum to determine the type or type of the item to be detected. For example, if the obtained fingerprint spectrum is shown in FIG. 7, by matching with the fingerprint spectra of all the items stored in the database, it can be determined that the item to be detected is item 2 (for example, Chenzhou Chenqu). If the obtained fingerprint spectrum is shown in FIG. 8, it can be determined that the item to be detected is item 3 (for example, beef jerky) by matching with the fingerprint spectra of all the items stored in the database.
  • the fingerprint spectrum of the sample molecules extracted by the ion migration tube module 400 can quickly determine the type of the item to be detected, thereby improving the detection efficiency of the item, and facilitating the security inspection in places with a large number of people, such as airports and stations. . In addition, when the number of items is relatively large, the accuracy of item detection can be improved.
  • the third diaphragm pump 301 and the second diaphragm pump 309 in the internal circulation gas path module 300 are turned on, and the output gas flow rate is controlled to be 1L to 1.5L per minute to supply air to the entire closed circuit gas path system.
  • the air flow is sent to the second splitter 302 for splitting.
  • One gas is supplied to the gas chromatography module 200 and the other gas is supplied to the ion migration tube module 400.
  • the ratio of the two gas flows can be adjusted between 12: 1 to 6: 1. .
  • the airflow supplied to the ion migration tube module 400 passes through the first buffer module 303 to stabilize the airflow and control the fluctuation within 5-10ml / min.
  • the stabilized airflow passes through the first molecular sieve module 304 to remove water vapor and organic gas in the air.
  • the molecules form zero gas.
  • the purified zero gas distributes the zero gas to the negative mode drift gas inlet 408, the air carrier gas inlet 412, and the positive mode drift gas inlet 409 through the first diverter 306.
  • the gas After passing through the migration pipe, the gas is collected from the negative-mode exhaust port 410 and the positive-mode exhaust port 411 to the third diverter 307, then passes through the third buffer module 308, and finally flows back to the exhaust port of the third diaphragm pump 301.
  • the other air stream supplied to the gas chromatography module 200 flows through the second buffer module 305 and reaches the suction port of the second diaphragm pump 309.
  • the outlet of the second diaphragm pump 309 sends the branched air flow to the first solenoid valve 201, and then passes through the zero air load.
  • the gas inlet 202 removes water vapor and organic gas molecules in the air to form zero gas, and injects a filler tube 103 filled with a pre-concentrated filler, and then passes through a second solenoid valve 203, so that the air flow with the information of the sample molecules flows through the coated electrode
  • the capillary column 204 of the neutral layer is separated, and finally flows into the sample carrier gas inlet 407 to realize a closed cycle of the zero gas system.
  • the temperature control assembly 104 After the closed-cycle zero-air system is stable, place the object 500 to be tested at the front end of the sampling head 101 with a filter membrane or within a preset range, and turn on the temperature control assembly 104 to cool the filler tube 103 filled with Tenax-TA filler. To 10-20 degrees Celsius. After the temperature stabilizes, close the first solenoid valve 201 and the second solenoid valve 203 that control the on-off of the gas circuit, open the third solenoid valve 102 and the fourth solenoid valve 105, and turn on the first diaphragm pump (sampling pump) 106 to control the gas. The flow rate is 400ml / min to 800ml / min.
  • the gas emitted from the sample 500 is sucked into the filler tube 103 filled with Tenax-TA filler through the sampling head 101.
  • the filler tube starts to perform gas molecules volatilized from the object 500 to be detected.
  • gas molecules that cannot be adsorbed will be discharged into the atmosphere through the first diaphragm pump (sampling pump) 106 exhaust port.
  • the third electromagnetic valve 102 and the third electromagnetic valve 105 can be closed, the first diaphragm pump (sampling pump) 106 can be closed, and the sampling process of the object 500 to be detected can be stopped.
  • the temperature control assembly 104 can be turned on again to instantly heat the filler tube 103 to 100 ° C. to 150 ° C. to perform rapid thermal desorption and desorption treatment on the sample molecules of the collected object 500 to be detected. Then open the first solenoid valve 201 and the second solenoid valve 203, so that the air with a gas flow rate of 80ml / min-200ml / min passes through the zero-gas carrier gas inlet 202 filled with molecular sieve and enters the filler tube 103 to obtain the sample molecules.
  • the gas stream passes through a capillary layer 204 coated with a polar layer for pre-separation treatment.
  • the pre-separated gas stream is transmitted to the ion transfer tube module 400 through the sample carrier gas inlet 407 to detect the spectrum of the sample molecules pre-separated through the capillary column 204 using the ion transfer tube module 400 to form the object to be detected 500 MCC-IMS fingerprint spectrum.
  • the second solenoid valve 203 is closed, and the first diaphragm pump (sampling pump) 106, the first solenoid valve 201, and the fourth solenoid valve 105 are turned on for a period of time to clean the packing tube 103.
  • the operation of cleaning the packing tube 103 may also be performed after the fingerprint spectrum is formed, but the working time of the entire system may be slightly extended.
  • each of the solenoid valves, diaphragm pumps, buffers, molecular sieve modules, and corresponding connection pipelines in FIG. 2 are the optimal embodiments of the present application, but the application is not limited to this, and can be used for devices in the gas path. Simplified processing, the simplified schematic diagram of the structure can be shown in Figure 3, or can be further simplified on the basis of Figure 3. It should be noted that, for the ion migration tube gas path, the air carrier gas inlet 412 and the first buffer module 303 can be omitted to simplify the system.
  • the first diverter 306 may be a tee, and the gas only passes into the positive mode drift gas inlet 409 and the negative mode drift gas inlet 408; if the ion migration tube Furthermore, if it is a single-mode migration tube, the first diverter 306 can be omitted. If the first buffer module 303 is omitted, the airflow is less stable, but the same purpose can be achieved.
  • the second buffer module 305 can be omitted. Although the same purpose can be achieved, the air flow is not stable.
  • the first solenoid valve 201 may also be omitted, but omitting it may cause inconvenience in control or difficulty in controlling airflow.
  • the second diaphragm pump 309 can be barely omitted, but this will increase the burden on the third diaphragm pump 301, and it is difficult to achieve the effect.
  • the third diverter 307 can also be omitted.
  • the third buffer module 308 may be omitted, and the airflow is not stable after being omitted, which is not the most preferable.
  • this exemplary embodiment also provides an article detection method.
  • the method may specifically include the following steps:
  • step S410 sample molecules of an item to be detected are obtained
  • step S420 pre-separation processing is performed on the sample molecules of the item to be detected
  • step S430 forming a fingerprint spectrum of the item to be detected according to the spectrum of the sample molecule
  • step S440 the type of the item to be detected is determined through the fingerprint spectrum.
  • step S420 a capillary column coated with a polar layer is used to perform pre-separation processing on the sample molecules of the object to be detected.
  • Determining the type of the item to be detected through the fingerprint spectrum in step S440 includes: determining the type of the item to be detected according to a mapping relationship between the fingerprint spectrum and the item.
  • the method further includes: performing thermal desorption and desorption treatment on the sample molecules by heating the sample molecules to a preset temperature.
  • the preset temperature may be, for example, 100 to 150 degrees Celsius.
  • the article detection process will be specifically described.
  • the volatilized molecules of the object 500 to be sampled are sampled through the sampling head 101.
  • the gas is directed to the third solenoid valve 102, the filler pipe 103, and the temperature control assembly 104.
  • the fourth solenoid valve 105 and the first diaphragm pump (sampling pump) 106 move and are connected to the gas chromatography module 200.
  • the volatilized molecules of the object 500 to be sampled are sampled by the sampling head 101, and the gas is allowed to enter the filler tube 103 controlled by the temperature control component 104 under the action of the third solenoid valve 102 to perform the volatilized molecules.
  • a pre-separation process is performed on the volatilized molecules using the gas chromatography module 200 and the pre-separated molecules are connected to the ion migration tube module 400.
  • air is passed through the zero-air carrier gas inlet 202 equipped with the second molecular sieve module into the filler tube 103, and the carrier gas of the molecules of the article to be detected is removed from
  • the packing tube 103 enters the capillary column 204 for a pre-separation process, and the molecules after the pre-separation process pass through the sample carrier gas inlet 407 and enter the ion migration tube module 400.
  • the ion spectrum tube module 400 is used to detect the molecular spectrum to form the fingerprint spectrum of the object to be detected. After the molecules are detected by the ion migration tube module 400, the molecules are collected from the negative mode exhaust port 410 and the positive mode exhaust port 411 of the ion migration module to the third shunt 307 under the action of the third diaphragm pump 301. The third buffer module 308 enters the suction port of the third diaphragm pump 301 and is finally sucked to the second diverter 302.
  • the circulation is performed according to the above-mentioned ion migration tube branch, gas chromatography tube branch, and return gas branch to detect the volatilization of the gas to be detected.
  • FIG. 5 shows a specific flowchart of item detection, which specifically includes the following steps:
  • step S510 pre-concentrating and cooling, waiting for sampling
  • step S520 the first diaphragm pump (sampling pump) 106 is turned on for sampling;
  • step S530 the sampling pump 106 is turned off, and the pre-concentration sampling module is heated to desorb the incoming sample molecules.
  • step S540 and step S550 can be continued, and steps S560 to S580 of subsequent detection can be performed. ;
  • step S540 the desorption sample ends, and the pre-concentration cleaning is turned on;
  • step S550 pre-concentrating and cooling, waiting for sampling
  • step S560 the sample enters the MCC, and the sample starts pre-separation
  • step S570 the pre-separated sample enters the ion migration tube for ionization, separation, and detection;
  • step S580 the sample signal is collected and the MCC-IMS spectrum is presented.
  • the type of the item to be detected can then be determined based on the MCC-IMS spectrum.
  • an electronic device capable of implementing the above method is also provided.
  • FIG. 10 An electronic device 900 according to this embodiment of the present invention is described below with reference to FIG. 10.
  • the electronic device 900 shown in FIG. 10 is merely an example, and should not impose any limitation on the functions and scope of use of the embodiments of the present invention.
  • the electronic device 900 is expressed in the form of a general-purpose computing device.
  • the components of the electronic device 900 may include, but are not limited to, the at least one processing unit 910, the at least one storage unit 920, and a bus 930 connecting different system components (including the storage unit 920 and the processing unit 910).
  • the storage unit stores program code, and the program code can be executed by the processing unit 910, so that the processing unit 910 executes various exemplary embodiments according to the present invention described in the above-mentioned "exemplary method" section of the present specification. Steps of the implementation.
  • the processing unit 910 may perform steps as shown in FIG. 4.
  • the storage unit 920 may include a readable medium in the form of a volatile storage unit, such as a random access storage unit (RAM) 9201 and / or a cache storage unit 9202, and may further include a read-only storage unit (ROM) 9203.
  • RAM random access storage unit
  • ROM read-only storage unit
  • the storage unit 920 may also include a program / utility tool 9204 having a set of (at least one) program modules 9205.
  • program modules 9205 include, but are not limited to, an operating system, one or more application programs, other program modules, and program data. Each or some combination of these examples may include an implementation of a network environment.
  • the bus 930 may be one or more of several types of bus structures, including a memory unit bus or a memory unit controller, a peripheral bus, a graphics acceleration port, a processing unit, or a local area using any bus structure in a variety of bus structures bus.
  • the electronic device 900 may also communicate with one or more external devices 1000 (such as a keyboard, pointing device, Bluetooth device, etc.), and may also communicate with one or more devices that enable a user to interact with the electronic device 900, and / or with Any device (eg, router, modem, etc.) that enables the electronic device 900 to communicate with one or more other computing devices. This communication can be performed through an input / output (I / O) interface 950. Moreover, the electronic device 900 may also communicate with one or more networks (such as a local area network (LAN), a wide area network (WAN), and / or a public network, such as the Internet) through the network adapter 960.
  • LAN local area network
  • WAN wide area network
  • public network such as the Internet
  • the network adapter 960 communicates with other modules of the electronic device 900 through the bus 930. It should be understood that although not shown in the figure, other hardware and / or software modules may be used in conjunction with the electronic device 900, including but not limited to: microcode, device drivers, redundant processing units, external disk drive arrays, RAID systems, tape drives And data backup storage systems.
  • the technical solution according to the embodiment of the present disclosure may be embodied in the form of a software product, which may be stored in a non-volatile storage medium (which may be a CD-ROM, a U disk, a mobile hard disk, etc.) or on a network It includes several instructions to cause a computing device (which may be a personal computer, a server, a terminal device, or a network device, etc.) to execute a method according to an embodiment of the present disclosure.
  • a computing device which may be a personal computer, a server, a terminal device, or a network device, etc.
  • a computer-readable storage medium on which a program product capable of implementing the above-mentioned method of the present specification is stored.
  • aspects of the present invention may also be implemented in the form of a program product, which includes program code.
  • the program product runs on a terminal device, the program code is used to make the program product
  • the terminal device performs the steps according to various exemplary embodiments of the present invention described in the above-mentioned "exemplary method" section of this specification.
  • the program product 1100 may adopt a portable compact disc read-only memory (CD-ROM) and include program code, and may be stored in a terminal device. For example running on a personal computer.
  • CD-ROM compact disc read-only memory
  • the program product of the present invention is not limited thereto.
  • the readable storage medium may be any tangible medium containing or storing a program, and the program may be used by or in combination with an instruction execution system, apparatus, or device.
  • the program product may employ any combination of one or more readable media.
  • the readable medium may be a readable signal medium or a readable storage medium.
  • the readable storage medium may be, for example, but is not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any combination thereof. More specific examples (non-exhaustive list) of readable storage media include: electrical connections with one or more wires, portable disks, hard disks, random access memory (RAM), read-only memory (ROM), erasable Programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the foregoing.
  • the computer-readable signal medium may include a data signal in baseband or propagated as part of a carrier wave, which carries readable program code. Such a propagated data signal may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • the readable signal medium may also be any readable medium other than a readable storage medium, and the readable medium may send, propagate, or transmit a program for use by or in combination with an instruction execution system, apparatus, or device.
  • the program code contained on the readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wired, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
  • the program code for performing the operations of the present invention can be written in any combination of one or more programming languages, which include object-oriented programming languages—such as Java, C ++, etc.—and also include conventional procedural Programming language—such as "C" or a similar programming language.
  • the program code can be executed entirely on the user computing device, partly on the user device, as an independent software package, partly on the user computing device, partly on the remote computing device, or entirely on the remote computing device or server On.
  • the remote computing device may be connected to a user computing device through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computing device (e.g. (Commercially connected via the Internet).
  • LAN local area network
  • WAN wide area network
  • an external computing device e.g. (Commercially connected via the Internet).

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Library & Information Science (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

一种物品检测系统(10)及方法、电子设备、存储介质,涉及安全检测技术领域,该系统(10)包括:预浓缩采样模块(100),用于对所述待检测物品的气体分子进行浓缩采样,得到样品分子;气相色谱模块(200);内循环气路模块(300);离子迁移管模块(400),与所述内循环气路模块(300)连接,用于通过所述样品分子的谱图形成所述待检测物品的指纹谱图,以通过所述指纹谱图确定所述待检测物品的种类。物品检测系统(10)可以提高物品检测的效率、准确率,且能够实现物品智能检测。

Description

物品检测系统及方法、电子设备、存储介质 技术领域
本公开涉及安全检测技术领域,具体而言,涉及一种物品检测系统、物品检测方法、电子设备以及计算机可读存储介质。
背景技术
随着机场进出行李和货物数量的增加,对机场、车站等处的货物以及行李中携带物品的安全检查的要求也逐渐提高。
为了解决货物流量大,物品种类繁多以及每个货箱开箱检查的问题,相关技术中可以采用MOS气敏传感器测试方法来实现对物品散发出的气体进行检测。除此之外,也采用新一代的电子鼻即离子迁移谱(IMS)对物品进行检测。
但是,在采用MOS气敏传感器对例如动植食物等物品进行检测和分辨时,需要样品产生高浓度的挥发性样品气味才可以实现,而实际货物及旅客携带的物品挥发出来的气味浓度低,MOS气敏传感器不能快速测试出来。而且当混杂有其它复杂的挥发性气味时,MOS气敏传感器可能将其它货物错误辨认成动植食等物品,从而造成误检。在采用MCC-IMS检测方法检测动植食等物品时,如果这些物品的挥发性气味低于MCC-IMS仪器的最低响应所需要的量,仪器将不能得到明显有效的信号。因此当旅客携带动植食等物品数量较少时,会发生漏检以及误检等情况。
此外,传统的MCC-IMS仪器采用开环气路,导致系统的气路容易受到外界环境的干扰,这样会使得分子筛的寿命变短,甚至会在分子筛饱和后导致谱图出现很多干扰谱,从而导致识别正确率下降。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本公开的目的在于提供一种物品检测系统及方法、电子设备、存储介质,进而至少在一定程度上克服由于相关技术的限制和缺陷而导致的物品检测效率低、分子筛寿命短、准确率低、系统管路控制差中的至少一个问题。另外,还提供一种气路控制系统,能够智能化地、快速实现整个检测系统的多种复杂的功能。
本公开的其他特性和优点将通过下面的详细描述变得显然,或部分地通过本公开的实践而习得。
根据本公开的一个方面,提供一种物品检测系统,包括:预浓缩采样模块,设于距离待检测物品的预设范围内,用于对所述待检测物品的气体分子进行浓缩采样,捕获样品分子;气相色谱模块,与所述预浓缩采样模块连接,用于对所述样品分子进行预分离处理;内循环气路模块,与所述气相色谱模块连接;离子迁移管模块,与所述气相色谱模块和所述内循环气路模块连接,用于检测从气相色谱模块进入离子迁移管模块的经预分离的样品分子的谱图,从而形成所述待检测物品的指纹谱图。
在本公开的一种示例性实施例中,所述预浓缩采样模块包括:采样头,用于对所述待检测物品挥发出的分子进行采样;电磁阀,用于控制气路通断;填料管,用于对所述挥发出的分子进行吸附;温控组件,用于对所述填料管的温度进行控制;采样泵,用于抽吸所述待检测物品挥发出的分子。
在本公开的一种示例性实施例中,所述气相色谱模块包括:毛细管柱,用于对所述样品分子进行预分离处理。
在本公开的一种示例性实施例中,所述内循环气路模块包括:隔膜泵,用于为内循环气路提供气体循环动力;分流器,用于对带有所述样品分子的气流进行分流;缓冲模块,用于将气流的波动控制在预设范围内;分子筛模块,用于对气流进行净化处理。
在本公开的一种示例性实施例中,所述内循环气路模块包括:离子迁移管气路,包括位于第二分流器与离子迁移管模块之间的第一分子筛模块以及连接管路,气体通过离子迁移管气路进入离子迁移管模块的漂移气进气口;气相色谱管气路,包括位于第二分流器与气相色谱模块之间的零气载气入口、第二电磁阀以及连接管路,气体通过气相色谱管气路进入气相色谱模块,其中,所述零气载气入口处设有第二分子筛模块,用于对气体进行净化,形成零气;回气气路,包括位于第二分流器与离子迁移管模块之间的第三隔膜泵以及连接管路,第三隔膜泵的抽气口朝向离子迁移管,出气口朝向第二分流器;第二分流器,与离子迁移管气路、气相色谱管气路和回气气路连接。
在本公开的一种示例性实施例中,离子迁移管气路还包括第一缓冲模块,用于将供给所述离子迁移管模块的气流的波动控制在预设范围内;和/或气相色谱管气路还包括第二缓冲模块,用于将供给所述气相色谱模块的气流的波动控制在预设范围内;和/或回气气路还包括第三缓冲模块,用于将从所述离子迁移管模块流出的气流的波动控 制在预设范围内。
在本公开的一种示例性实施例中,离子迁移管气路还包括位于第一分子筛模块与离子迁移管模块之间的第一分流器,气体通过第一分流器进入离子迁移管模块的漂移气进气口和/或空气载气进气口。
在本公开的一种示例性实施例中,回气气路还包括连接到离子迁移管模块的排气口的第三分流器。
在本公开的一种示例性实施例中,气相色谱管气路还包括第二隔膜泵,用于为气相色谱管气路提供额外的气体循环动力。
在本公开的一种示例性实施例中,气相色谱管气路还包括第一电磁阀,用于控制气路通断。
在本公开的一种示例性实施例中,在离子迁移管气路中,第一缓冲模块、第一分子筛模块、第一分流器按照气体从第二分流器向离子迁移管运动的方向依次排布,气体通过离子迁移管气路进入离子迁移管模块的漂移气进气口和空气载气进气口;在气相色谱管气路中,第二缓冲模块、第二隔膜泵、第一电磁阀、零气载气入口、第二电磁阀按照气体从第二分流器向气相色谱模块运动的方向依次排布;在回气气路中,第三分流器、第三缓冲模块和第三隔膜泵按照气体从离子迁移管模块向第二分流器运动的方向依次排布。
在本公开的一种示例性实施例中,所述离子迁移管模块为正负双模式迁移管模块,所述正负双模式迁移管模块包括:正模式离化区及负模式离化区、正模式漂移区及负模式漂移区以及正模式法拉第杯探测区及负模式法拉第杯探测区,其中,所述正模式法拉第杯探测区及所述负模式法拉第杯探测区用于检测所述样品分子的谱图,以获取所述待检测物品的指纹谱图。
根据本公开的一个方面,提供一种物品检测系统,其特征在于,包括:
离子迁移管支路,包括第一缓冲模块、第一分子筛模块、离子迁移管以及它们之间的连接管路,用于让气体经过第一缓冲模块、第一分子筛模块并进入离子迁移管模块的漂移气进气口;
气相色谱管支路,包括第二缓冲模块、第二隔膜泵、零气载气入口、气体采样入口、第二电磁阀、气相色谱管以及它们之间的连接管路,用于让载气经过第二缓冲模块、第一电磁阀、零气载气入口后与来自气体采样入口的样品气体混合,然后经第二电磁阀进入气相色谱管,其中,所述零气载气入口处设有第二分子筛模块;
回气支路,包括第三分流器、第三缓冲模块和第三隔膜泵以及它们之间的连接管路,在第三隔膜泵的作用下,气体从离子迁移管模块向第三分流器、第三缓冲模块和第三隔膜泵运动,并最终被抽吸到第二分流器;
第二分流器,与离子迁移管支路、气相色谱管支路和回气支路连接,
其中,所述第一缓冲模块、所述第二缓冲模块和所述第三缓冲模块缓冲模块用于将气流的波动控制在预设范围内,第一分子筛模块和第二分子筛模块用于对气体进行净化以形成零气,所述第二分流器和所述第三分流器用于对气流进行分流,第一隔膜泵用于为整个系统提供气体循环动力,第二隔膜泵用于对气相色谱管支路的气体流动提供额外的动力,所述第一电磁阀和所述第二电磁阀用于控制气路通断。
在本公开的一种示例性实施例中,离子迁移管支路还包括第一分流器,气体依次经过第一缓冲模块、第一分子筛模块、第一分流器并最终进入离子迁移管模块的漂移气进气口和/或空气载气进气口。
在本公开的一种示例性实施例中,还包括动态预浓缩采样支路,该动态预浓缩采样支路包括:采样头,用于对所述待检测物品挥发出的分子进行采样;第三电磁阀,用于控制进气气路的通断;填料管,位于气相色谱管支路的气体采样入口与第二电磁阀之间,用于对所述挥发出的分子进行吸附;温控组件,用于对所述填料管的温度进行控制,以进行吸附和解吸附操作;第四电磁阀,用于控制出气气路的通断;第一隔膜泵,用于抽吸所述待检测物品挥发出的分子;其中,动态预浓缩采样支路通过气体采样入口接入气相色谱管支路,填料管的出口连接第二电磁阀和第四电磁阀。
在本公开的一种示例性实施例中,气相色谱管支路还包括位于第二隔膜泵与零气载气入口之间的第一电磁阀,用于控制气路通断。
在本公开的一种示例性实施例中,第二分流器被配置为使得通入离子迁移管支路、气相色谱管支路的气流量比例的范围为3:1~20:1。
根据本公开的一个方面,提供一种物品检测方法,包括:获取待检测物品的样品分子;对所述待检测物品的样品分子进行预分离处理;根据所述样品分子的谱图形成待检测物品的指纹谱图;通过所述指纹谱图确定所述待检测物品的种类。
在本公开的一种示例性实施例中,通过所述指纹谱图确定所述待检测物品的种类包括:根据所述指纹谱图与物品之间的映射关系确定所述待检测物品的种类。
在本公开的一种示例性实施例中,获取待检测物品的样品分子包括:通过采样模块吸附待检测物品挥发出的样品分子,然后将所述采样模块加热至预设温度,以对所 述样品分子进行解吸附处理。
在本公开的一种示例性实施例中,采样模块包括填料管、温控组件、采样泵、第三电磁阀和第四电磁阀,在所述吸附过程中,通过采样泵让待检测物品挥发出的气味分子向第三电磁阀、填料管、第四电磁阀以及采样泵运动;在解吸附过程之后,解吸附的样品分子被引入气相色谱模块;利用气相色谱模块对挥发出的分子进行预分离处理并将预分离后的分子接入离子迁移管模块;利用离子迁移管模块对分子的谱图进行检测,形成待检测物品的指纹谱图。
在本公开的一种示例性实施例中,所述方法还包括:在内循环气路稳定之后,开启第三电磁阀、第四电磁阀和采样泵,温控组件将填料管的温度调节到低于预设温度的吸附温度,让样品气体在采样泵的作用下进入填料管,填料管对挥发出的分子进行所述吸附处理,不能被吸附的气体分子将通过采样泵的排气口排出;关闭第三电磁阀、第四电磁阀和采样泵之后,开始进行热解吸脱附处理;打开第一电磁阀和第二电磁阀,使空气经过装有第二分子筛模块的零气载气入口进入填料管,并使包含样品分子的载气从填料管进入气相色谱模块的毛细管柱进行预分离处理,并使预分离处理后的分子通过样品载气进气口进入离子迁移管模块;利用离子迁移管模块对分子进行检测后,在第三隔膜泵的作用下,使分子从离子迁移模块的负模式排气口和正模式排气口汇集至第三分流器,经过第三缓冲模块进入第三隔膜泵的抽气口,并最终被抽吸到第二分流器。
在本公开的一种示例性实施例中,在含有样品分子的气流进入毛细管柱之后,关闭第二电磁阀,打开采样泵、第一电磁阀以及第四电磁阀一段时间,以清理填料管。
根据本公开的一个方面,提供一种电子设备,包括:处理器;以及
存储器,用于存储所述处理器的可执行指令;其中,所述处理器配置为经由执行所述可执行指令来执行上述任意一项所述的物品检测方法。
根据本公开的一个方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述任意一项所述的物品检测方法。
本公开示例性实施例中提供的一种物品检测系统、物品检测方法、电子设备以及计算机可读存储介质中,通过预浓缩采样模块获取待检测物品的样品分子,通过气相色谱模块对样品分子进行预分离处理,再通过离子迁移管模块获取待检测物品的指纹谱图,以通过指纹谱图确定待检测物品的种类。一方面,可以通过指纹谱图快速确定待检测物品的种类,提高了检测效率;一方面,通过对样品分子进行浓缩采样,提高 了待检测物品的样品分子浓度,不仅更容易检测到物品的指纹谱图,而且避免了携带物品数量较少时发生的漏检以及误检等情况,提高了物品检测的准确率;另一方面,通过一套具有多个隔膜泵和多个电磁阀与离子迁移管、气相色谱模块和预浓缩采样模块相配合的系统,利用对隔膜泵和电磁阀的控制实现了多种功能,可以使得预浓缩采样模块等模块无需运动就可实现相关功能,提高了物品检测的便捷性,能够更智能化地进行物品检测。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示意性示出本公开示例性实施例中一种物品检测系统框图示意图;
图2示意性示出本公开示例性实施例中物品检测系统的具体结构图;
图3示意性示出本公开示例性实施例中物品检测系统简化的结构图;
图4示意性示出本公开示例性实施例中物品检测方法的流程图;
图5示意性示出本公开示例性实施例中物品检测方法的流程图;
图6示意性示出本公开示例性实施例中第一种指纹谱图的示意图;
图7示意性示出本公开示例性实施例中第二种指纹谱图的示意图;
图8示意性示出本公开示例性实施例中第三种指纹谱图的示意图;
图9示意性示出本公开示例性实施例中第四种指纹谱图的示意图;
图10示意性示出本公开示例性实施例中一种电子设备的框图;
图11示意性示出本公开示例性实施例中一种程序产品。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施方式使得本公开将更加全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。所描 述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中。在下面的描述中,提供许多具体细节从而给出对本公开的实施方式的充分理解。然而,本领域技术人员将意识到,可以实践本公开的技术方案而省略所述特定细节中的一个或更多,或者可以采用其它的方法、组元、装置、步骤等。在其它情况下,不详细示出或描述公知技术方案以避免喧宾夺主而使得本公开的各方面变得模糊。
此外,附图仅为本公开的示意性图解,并非一定是按比例绘制。图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。附图中所示的一些方框图是功能实体,不一定必须与物理或逻辑上独立的实体相对应。可以采用软件形式来实现这些功能实体,或在一个或多个硬件模块或集成电路中实现这些功能实体,或在不同网络和/或处理器装置和/或微控制器装置中实现这些功能实体。
本示例实施方式中首先提供了一种物品检测系统10,可以应用于任何需要安全检查的场景内,例如机场、车站等场景,以通过该物品检测系统,为用户提供指纹谱图等检测依据,进而实现精准检测物品的目的。参考图1所示,该物品检测系统10具体可以包括预浓缩采样模块100、气相色谱模块200、内循环气路模块300以及离子迁移管模块400,其中:
预浓缩采样模块100,设于距离待检测物品的预设范围内,用于对所述待检测物品的气体分子进行浓缩采样,捕获样品分子;
气相色谱模块200,与所述预浓缩采样模块连接,用于对所述样品分子进行预分离处理;
内循环气路模块300,与所述气相色谱模块和离子迁移管模块连接;
离子迁移管模块400,与所述气相色谱模块和所述内循环气路模块连接,用于检测从气相色谱模块进入离子迁移管模块的经预分离的样品分子的谱图,从而形成所述待检测物品的指纹谱图。
本示例性实施例提供的物品检测系统中,一方面,可以通过指纹谱图快速确定待检测物品的种类,提高了检测效率;一方面,通过对样品分子进行浓缩采样,提高了待检测物品的样品分子浓度,不仅更容易检测到物品的指纹谱图,而且避免了携带物品数量较少时发生的漏检以及误检等情况,提高了物品检测的准确率;另一方面,通过一套具有多个隔膜泵和多个电磁阀与离子迁移管、气相色谱模块和预浓缩采样模块相配合的系统,利用对隔膜泵和电磁阀的控制实现了多种功能,可以使得预浓缩采样模块等模块发生动态变化但无需运动位移,提高了物品检测的便捷性。
接下来,将结合图1至图9对该物品检测系统的具体部分进行具体说明。
预浓缩采样模块100,设于距离待检测物品的预设范围内,用于对所述待检测物品的气体分子进行浓缩采样,捕获样品分子。
本示例实施方式中,待检测物品可以为任意形状、任意大小、任意种类的动物、植物或者是食物等等,此处以待检测物品为食物为例进行说明。待检测物品可以单独放置在采样处,也可以放置在行李箱、集装箱或者是其他容器内。待检测物品可以完整的放置在预浓缩采样模块的采样处,也可以通过切碎、打浆、瓶装、灌装、保鲜袋装等方式处理完待检测物品再放在采样处,本示例中对待检测物品的形式不做特殊限定。
预设范围可以根据实际安全检查需求进行设置,例如可以为待检测物品周围0.5米的范围内,或者也可以设置为其他数值,例如待检测物品周围1米的范围内。一般而言,待检测物品会挥发出浓度比较低的气体分子,而且每种物品的气体分子都不相同,因此可以基于气体分子对物品进行检测,以判断待检测物品的种类。
本示例中,通过对自然挥发出的气体分子进行浓缩采样,可以捕获到浓度比较低的样品分子,避免了浓度较低导致的仪器不能产生明显信号的问题,使得即使在用户携带的待检测物品数量较少时,也可以通过浓缩采样捕获足够的样品分子,从而对待检测物品进行有效检测。
具体而言,参考图2所示,预浓缩采样模块100可以包括:采样头101、第三电磁阀102、填料管103、温控组件104、第四电磁阀105及第一隔膜泵(采样泵)106。其中:采样头101用于对所述待检测物品500挥发出的气体分子进行采样;第三电磁阀102和第四电磁阀105用于控制气路通断;填料管103位于气相色谱管支路的气体采样入口107与第二电磁阀203之间,用于对所述气体分子进行吸附;温控组件104设置在填料管103的周围,用于对所述填料管的温度进行控制,以进行吸附和解吸附操作;第一隔膜泵(采样泵)106用于控制气路通断。其中,动态预浓缩采样支路通过气体采样入口107接入气相色谱管支路,填料管103的出口连接第二电磁阀203和第四电磁阀105。
其中,填料管103中的填料可以为Tenaxs TA,Tenaxs GR,Carbotrap,and Carboxen569等填料,或者Tenax和活性炭填料的混合物,以通过填料管对待检测物品500挥发出来的气体分子进行吸附捕集。同时,不能被吸附捕集的气体分子则被排到大气中。需要说明的是,可以采用填料管103吸附捕集气体分子1至3秒。温控组 件104可以实现制冷和加热功能,以将填料管的温度控制为预设温度。预设温度可以根据不同阶段进行设置,在采样阶段可以设置为10-20摄氏度,在预分离阶段可以设置为100-150摄氏度。
再参考图2所示,气相色谱模块200可以包括第一电磁阀201、第二电磁阀203、零气载气入口202及毛细管柱204。其中:第一电磁阀201以及第二电磁阀203用于控制气路通断;毛细管柱204用于对所述样品分子进行分离处理;零气载气入口202用于对气体进行净化,以形成零气。
一般而言,零气是将普通的空气经过多层分子筛过滤处理产生的气体。毛细管柱内表面涂有极性层,以通过毛细管柱对不同极性的样品分子进行预分离处理。
再参考图2所示,内循环气路模块300可以包括:第三隔膜泵301、第二隔膜泵309、进行气流分流的第二分流器302、第一分流器306、第三分流器307、第一缓冲模块303、第二缓冲模块305、第三缓冲模块308及第一分子筛模块304。其中:隔膜泵用于控制气路通断,在第三隔膜泵301的基础上再设置一个第二隔膜泵309是因为在第二隔膜泵309所属的采样支路中具有预浓缩采样模块100,其中的填料管103气阻较大,因此优选再设置一个第二隔膜泵309来进行增压;分流器用于将带有所述样品分子的气流分流至所述气相色谱模块和所述离子迁移管模块;缓冲模块用于将所述带有所述样品分子的气流的波动控制在预设范围内;分子筛模块用于对带有所述样品分子的气流进行净化处理。
其中,分流器可以包括三通或者四通,本示例中第二分流器302和第三分流器307为三通,第二分流器306为四通。所有缓冲模块的波动控制的预设范围可以为5-10ml/min,以通过缓冲模块将供给离子迁移管模块400的气流波动控制在5-10ml/min以内,从而使得气流稳定。进而可以通过第一分子筛模块304,将稳定之后的气流除去在空气中的水蒸气、有机物气体分子等形成零气。通过内循环气路模块可以实现整个零气系统的闭循环,减少外界环境的干扰。
需要说明的是,图2中所示的内循环气路模块具体可包括三个气路:离子迁移管气路,包括位于第二分流器302与离子迁移管模块400之间的第一分子筛模块304以及连接管路,气体通过离子迁移管气路进入离子迁移管模块400的漂移气进气口。除此之外,离子迁移管气路还包括第一缓冲模块303,用于将气流的波动控制在预设范围内。离子迁移管气路还包括位于第一分子筛模块304与离子迁移管模块400之间的第一分流器306,气体通过第一分流器306进入离子迁移管模块400的正模式漂移气 进气口409和负模式漂移气进气口408,如果离子迁移管模块400还具有空气载气进气口412,则所述气体还通过第一分流器306进入空气载气进气口412。
图2中第一缓冲模块303、第一分子筛模块304、第一分流器306按照气体从第二分流器302向离子迁移管运动的方向依次排布,气体通过离子迁移管气路进入离子迁移管模块的漂移气进气口和空气载气进气口;但是其中第一缓冲模块303、第一分子筛模块304的排列顺序也可以互换。
气相色谱管气路,包括位于第二分流器302与气相色谱模块200之间的零气载气入口202、第二电磁阀203以及连接管路,气体通过气相色谱管气路进入气相色谱模块200。其中,所述零气载气入口202处设有第二分子筛模块,用于对气体进行净化,形成零气。气相色谱管气路还包括第二缓冲模块305,用于将气流的波动控制在预设范围内。气相色谱管气路还包括第二隔膜泵309,用于为气相色谱管气路提供额外的气体循环动力。气相色谱管气路还包括第一电磁阀201,用于控制气路通断。
图2所示的气相色谱管气路中,第二缓冲模块305、第二隔膜泵309、第一电磁阀201、零气载气入口202、第二电磁阀203按照气体从第二分流器向气相色谱模块运动的方向依次排布,但是第二缓冲模块305和第二隔膜泵309的排列顺序可互换。
回气气路,包括位于第二分流器302与离子迁移管模块400之间的第三隔膜泵301以及连接管路,第三隔膜泵301的抽气口朝向离子迁移管,出气口朝向第二分流器302;第二分流器302,与离子迁移管气路、气相色谱管气路和回气气路连接。回气气路还包括第三缓冲模块308,用于将气流的波动控制在预设范围内。回气气路还包括连接到离子迁移管模块的排气口的第三分流器307。
继续参考图2所示,离子迁移管模块400可优选采用正负双模式迁移管模块,其可以检出毒品和爆炸物等很多种类的违禁品。但是正负双模式迁移管模块只是本申请的优选方案,本申请也可采用正模式离子迁移管模块或者负模式离子迁移管模块中的任意一种。具体而言,正负双模式迁移管模块包括:正模式离化区401以及负模式离化区402、正模式漂移区403以及负模式漂移区404、正模式法拉第杯探测区405以及负模式法拉第杯探测区406。其中,正模式法拉第杯探测区和负模式法拉第杯探测区用于检测所述样品分子的谱图,以获取指纹谱图。除此之外,离子迁移管模块400还可以包括气路部分,其气路部分主要由正模式漂移气进气口409、正模式漂移气排出口411、负模式漂移气进气口408、负模式漂移气排气口410、样品载气进气口407、空气载气进气口412构成。
正模式指的是正模式迁移管端加正电压,可以检测第一类物品,例如类似于毒品一类的物质;负模式指的是迁移管端加负电压,以检测第二类物品,例如爆炸样品。通过正负双模式迁移管可以检测具备正负离子亲和力的各种分子,增大检测范围,从而避免漏检情况。通过正负双模式法拉第杯探测区获取的样品分子的谱图得到待检测物品的指纹谱图,由于每一种物品对应的指纹谱图均不同,因此可以根据指纹谱图与物品之间的一一映射关系,确定每一个待检测物品的种类。
在上述气路的基础上,所述物品检测系统还可包括以下支路:1、离子迁移管支路,包括第一缓冲模块303、第一分子筛模块304、离子迁移管以及它们之间的连接管路,用于让气体经过第一缓冲模块303、第一分子筛模块304并进入离子迁移管模块400的漂移气进气口,如正模式漂移气进气口409和负模式漂移气进气口408。离子迁移管支路还包括第一分流器306,气体依次经过第一缓冲模块303、第一分子筛模块304、第一分流器306并最终进入离子迁移管模块的正模式漂移气进气口409、负模式漂移气进气口408和/或空气载气进气口412。
气相色谱管支路,包括第二缓冲模块305、第二隔膜泵309、零气载气入口202、气体采样入口107、第二电磁阀203、气相色谱管以及它们之间的连接管路,用于让载气经过第二缓冲模块305、第一电磁阀201、零气载气入口202后与来自气体采样入口107的样品气体混合,然后经第二电磁阀203进入气相色谱管,其中,所述零气载气入口处设有第二分子筛模块。气相色谱管支路还包括位于第二隔膜泵309与零气载气入口202之间的第一电磁阀201,用于控制气路通断。
回气支路,包括第三分流器307、第三缓冲模块308、第三隔膜泵301以及它们之间的连接管路,在第三隔膜泵301的作用下,气体从离子迁移管模块400向第三分流器307、第三缓冲模块308和第三隔膜泵301运动,并最终被抽吸到第二分流器302。
第二分流器302,与离子迁移管支路、气相色谱管支路和回气支路连接,且第二分流器302被配置为使得通入离子迁移管支路、气相色谱管支路的气流比例的范围为3:1~20:1。
动态预浓缩采样支路,包括采样头101,用于对所述待检测物品500挥发出的分子进行采样;第三电磁阀102,用于控制进气气路的通断;填料管103,位于气相色谱管支路的气体采样入口107与第二电磁阀203之间,用于对所述挥发出的分子进行吸附;温控组件104,用于对所述填料管的温度进行控制,以进行吸附和解吸附操作;第四电磁阀105,用于控制出气气路的通断;第一隔膜泵(采样泵)106,用于抽吸所 述待检测物品500挥发出的分子;其中,动态预浓缩采样支路通过气体采样入口接入气相色谱管支路,填料管103的出口连接第二电磁阀203和第四电磁阀105。
在对物品进行检测之前,所有物品的指纹谱图可以事先存储在该物品检测系统的数据库中,进一步可以通过编写程序将获取的指纹谱图与数据库中所有物品的指纹谱图进行比较,以得到最匹配的指纹谱图,进而确定待检测物品的种类或者种类。举例而言,如果获得的指纹谱图如图7所示,则通过与数据库中存储的所有物品的指纹谱图进行匹配,可以确定待检测物品为物品2(例如泸州陈曲)。如果获得的指纹谱图如图8所示,则通过与数据库中存储的所有物品的指纹谱图进行匹配,可以确定待检测物品为物品3(例如牛肉干)。
通过离子迁移管模块400提取样品分子的指纹谱图,可以快速确定待检测物品的种类,从而提高物品检测效率,为机场、车站等人流量比较多,物品数量较大的场所内的安检提供方便。除此之外,还可以在物品数量比较多的情况下,提高物品检测的准确率。
参考图2中所示的具体结构图以及图4和图5中所示的流程图,对检测物品的具体过程进行具体说明。
首先对零气系统进行测试,以保证零气系统的闭循环。测试开始时,内循环气路模块300中的第三隔膜泵301和第二隔膜泵309开启,控制输出气流量为每分钟1L至1.5L,对整个闭路循环气路系统供气。气流输送到第二分流器302进行分流,一路供气给气相色谱模块200,一路供气给离子迁移管模块400,且可以将两路气流量的比例调节到12:1至6:1之间。
供给离子迁移管模块400的气流通过第一缓冲模块303,将气流稳定,波动控制在5-10ml/min以内,稳定后的空气气流经过第一分子筛模块304除去在空气中的水蒸气、有机物气体分子形成零气。净化的零气通过第一分流器306将零气分配给负模式漂移气进气口408、空气载气进气口412和正模式漂移气进气口409。气体经过迁移管后从负模式排气口410和正模式排气口411汇集到第三分流器307,然后经过第三缓冲模块308,最后流回第三隔膜泵301的抽气口。
另一路供给气相色谱模块200的气流流经第二缓冲模块305后到达第二隔膜泵309抽气口,第二隔膜泵309的出气口将分支气流输送第一电磁阀201,然后再经过零气载气入口202除去在空气中的水蒸气、有机物气体分子形成零气,注入填有预浓缩填料的填料管103,再经过第二电磁阀203,使得带有样品分子信息的气流流经涂 有极性层的毛细管柱204进行分离,最后流入样品载气进气口407,实现零气系统的闭循环。
待闭循环零气系统稳定后,将待检测物品500放置在带有滤膜的采样头101前端或者是预设范围内,并开启温控组件104对填有Tenax-TA填料的填料管103降温到10-20摄氏度。等到温度稳定后,关闭控制气路通断的第一电磁阀201和第二电磁阀203,开启第三电磁阀102和第四电磁阀105,开启第一隔膜泵(采样泵)106,控制气体流量400ml/min到800ml/min,将样品500挥发出的气体通过采样头101吸入到填有Tenax-TA填料的填料管103中,此时填料管开始对待检测物品500挥发出的气体分子进行1至3秒的吸附捕集以形成样品分子,不能被吸附的气体分子将通过第一隔膜泵(采样泵)106排气口排出到大气中。在对气体分子进行吸附捕集之后,可以关闭第三电磁阀102和第三电磁阀105,关闭第一隔膜泵(采样泵)106,停止对待检测物品500的采样进程。
完成采样过程之后,可以再次开启温控组件104将填料管103瞬时加热到100℃-150℃,以对采集的待检测物品500的样品分子进行快速热解吸脱附处理。再开启第一电磁阀201和第二电磁阀203,使得气体流量为80ml/min-200ml/min的空气经过装填有分子筛的零气载气入口202进入到填料管103中,得到带有样品分子的气流,该气流经过涂有极性层的毛细管柱204进行预分离处理。预分离后的气流经过样品载气进气口407传输到离子迁移管模块400中,以采用离子迁移管模块400检测经过毛细管柱204预分离出来的样品分子的谱图,从而形成待检测物品500的MCC-IMS指纹谱图。
在含有样品分子的气流进入毛细管柱204之后,关闭第二电磁阀203,开启第一隔膜泵(采样泵)106、第一电磁阀201以及第四电磁阀105一段时间,以清理填料管103。当然,根据本申请的另一实施例,清理填料管103的操作也可以在形成指纹谱图之后进行,不过整个系统的工作时间会稍微延长。
需要说明的是,图2中的各个电磁阀、隔膜泵、缓冲器、分子筛模块以及相应的连接管路是本申请的最优实施方式,但是本申请不限于此,可以对气路中的器件做简化处理,简化后的结构示意图可以如图3所示,甚至可以在图3的基础上进一步简化。需要说明的是,对于离子迁移管气路而言,可省掉空气载气进气口412和第一缓冲模块303,以对系统进行简化。如果离子迁移管没有空气载气进气口412,则第一分流器306可以是三通,气体只通入正模式漂移气进气口409和负模式漂移气进气口408; 如果离子迁移管再进一步是单模式的迁移管,则可以省去第一分流器306。如果省去第一缓冲模块303,则气流不太稳定,但是可以实现同样的目的。
对于气相色谱管气路而言,可省去第二缓冲模块305,虽然可实现同样的目的,但是气流不太稳定。还可省去第一电磁阀201,但是省略会导致控制上的不方便或者气流的控制难度。第二隔膜泵309可以勉强省去,但是这样会增加对第三隔膜泵301的负担,实现效果很难。
对于回气气路而言,如果离子迁移管是单模式的迁移管,则只有一个排气口例如负模式模式排气口410,因此也可省去第三分流器307。另外,第三缓冲模块308都可省去,省去后气流不太稳定,不是最优选的。
基于上述提供的气路和支路,本示例性实施例中还提供了一种物品检测方法,参考图4所示,该方法具体可以包括以下步骤:
在步骤S410中,获取待检测物品的样品分子;
在步骤S420中,对所述待检测物品的样品分子进行预分离处理;
在步骤S430中,根据所述样品分子的谱图形成待检测物品的指纹谱图;
在步骤S440中,通过所述指纹谱图确定所述待检测物品的种类。
其中,在步骤S420中,采用涂有极性层毛细管柱对所述待检测物品的样品分子进行预分离处理。
步骤S440中的通过所述指纹谱图确定所述待检测物品的种类包括:根据所述指纹谱图与物品之间的映射关系确定所述待检测物品的种类。
除此之外,所述方法还包括:通过将所述样品分子加热至预设温度的方式对所述样品分子进行热解吸脱附处理。预设温度例如可以为100至150摄氏度。
需要说明的是,上述物品检测方法中各步骤的具体细节已经在对应的物品检测系统中进行了详细描述,因此此处不再赘述。
结合上述描述的气路和支路,对物品检测过程进行具体说明。首先通过采样头101对所述待检测物品500挥发出的分子进行采样,在第一隔膜泵(采样泵)106的作用下,让气体向第三电磁阀102、填料管103、温控组件104、第四电磁阀105以及第一隔膜泵(采样泵)106运动并接入气相色谱模块200。具体地,通过采样头101对所述待检测物品500挥发出的分子进行采样,让气体在第三电磁阀102的作用下进入由温控组件104控制的填料管103以对挥发出的分子进行吸附,并在第四电磁阀105的作用下通过第一隔膜泵(采样泵)106抽吸所述待检测物品挥发出的分子。
接下来,利用气相色谱模块200对挥发出的分子进行预分离处理并将预分离后的分子接入离子迁移管模块400。具体地,在第一电磁阀201和第二电磁阀203的作用下,使空气经过装有第二分子筛模块的零气载气入口202进入填料管103,并使待检测物品分子的载气从填料管103进入毛细管柱204进行预分离处理,并使预分离处理后的分子经过样品载气进气口407进入离子迁移管模块400。
最后,利用离子迁移管模块400对分子的谱图进行检测,形成待检测物品的指纹谱图。利用离子迁移管模块400对分子进行检测后,在第三隔膜泵301的作用下,使分子从离子迁移模块的负模式排气口410和正模式排气口411汇集至第三分流器307,经过第三缓冲模块308进入第三隔膜泵301的抽气口,并最终被抽吸到第二分流器302。
接下来,按照上述的离子迁移管支路、气相色谱管支路以及回气支路进行循环,以对待检测物品挥发出的气体进行检测。
图5示出了物品检测的具体流程图,具体包括以下步骤:
在步骤S510中,预浓缩冷却,等待采样;
在步骤S520中,开启第一隔膜泵(采样泵)106进行采样;
在步骤S530中,关闭采样泵106,将预浓缩采样模块加热,以对进入的样品分子进行解吸;在步骤S530之后,可以继续执行步骤S540以及步骤S550,并且执行后续检测的步骤S560至步骤S580;
在步骤S540中,解吸附样品结束,开启预浓缩清洁;
在步骤S550中,预浓缩冷却,等待采样;
在步骤S560中,样品进入MCC中,样品开始预分离;
在步骤S570中,预分离样品进入离子迁移管中离化、分离、检测;
在步骤S580中,样品信号采集,呈现MCC-IMS谱图。随后可以根据MCC-IMS谱图确定待检测物品的种类。
应当注意,尽管在上文详细描述中提及了用于动作执行的设备的若干模块或者单元,但是这种划分并非强制性的。实际上,根据本公开的实施方式,上文描述的两个或更多模块或者单元的特征和功能可以在一个模块或者单元中具体化。反之,上文描述的一个模块或者单元的特征和功能可以进一步划分为由多个模块或者单元来具体化。
此外,尽管在附图中以特定顺序描述了本公开中方法的各个步骤,但是,这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才 能实现期望的结果。附加的或备选的,可以省略某些步骤,将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行等。
在本公开的示例性实施例中,还提供了一种能够实现上述方法的电子设备。
所属技术领域的技术人员能够理解,本发明的各个方面可以实现为系统、方法或程序产品。因此,本发明的各个方面可以具体实现为以下形式,即:完全的硬件实施方式、完全的软件实施方式(包括固件、微代码等),或硬件和软件方面结合的实施方式,这里可以统称为“电路”、“模块”或“系统”。
下面参照图10来描述根据本发明的这种实施方式的电子设备900。图10显示的电子设备900仅仅是一个示例,不应对本发明实施例的功能和使用范围带来任何限制。
如图10所示,电子设备900以通用计算设备的形式表现。电子设备900的组件可以包括但不限于:上述至少一个处理单元910、上述至少一个存储单元920、连接不同系统组件(包括存储单元920和处理单元910)的总线930。
其中,所述存储单元存储有程序代码,所述程序代码可以被所述处理单元910执行,使得所述处理单元910执行本说明书上述“示例性方法”部分中描述的根据本发明各种示例性实施方式的步骤。例如,所述处理单元910可以执行如图4中所示的步骤。
存储单元920可以包括易失性存储单元形式的可读介质,例如随机存取存储单元(RAM)9201和/或高速缓存存储单元9202,还可以进一步包括只读存储单元(ROM)9203。
存储单元920还可以包括具有一组(至少一个)程序模块9205的程序/实用工具9204,这样的程序模块9205包括但不限于:操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。
总线930可以为表示几类总线结构中的一种或多种,包括存储单元总线或者存储单元控制器、外围总线、图形加速端口、处理单元或者使用多种总线结构中的任意总线结构的局域总线。
电子设备900也可以与一个或多个外部设备1000(例如键盘、指向设备、蓝牙设备等)通信,还可与一个或者多个使得用户能与该电子设备900交互的设备通信,和/或与使得该电子设备900能与一个或多个其它计算设备进行通信的任何设备(例如路由器、调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口950进行。 并且,电子设备900还可以通过网络适配器960与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。如图所示,网络适配器960通过总线930与电子设备900的其它模块通信。应当明白,尽管图中未示出,可以结合电子设备900使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、RAID系统、磁带驱动器以及数据备份存储系统等。
通过以上的实施方式的描述,本领域的技术人员易于理解,这里描述的示例实施方式可以通过软件实现,也可以通过软件结合必要的硬件的方式来实现。因此,根据本公开实施方式的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中或网络上,包括若干指令以使得一台计算设备(可以是个人计算机、服务器、终端装置、或者网络设备等)执行根据本公开实施方式的方法。
在本公开的示例性实施例中,还提供了一种计算机可读存储介质,其上存储有能够实现本说明书上述方法的程序产品。在一些可能的实施方式中,本发明的各个方面还可以实现为一种程序产品的形式,其包括程序代码,当所述程序产品在终端设备上运行时,所述程序代码用于使所述终端设备执行本说明书上述“示例性方法”部分中描述的根据本发明各种示例性实施方式的步骤。
参考图11所示,描述了根据本发明的实施方式的用于实现上述方法的程序产品1100,其可以采用便携式紧凑盘只读存储器(CD-ROM)并包括程序代码,并可以在终端设备,例如个人电脑上运行。然而,本发明的程序产品不限于此,在本文件中,可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
所述程序产品可以采用一个或多个可读介质的任意组合。可读介质可以是可读信号介质或者可读存储介质。可读存储介质例如可以为但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。
计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其 中承载了可读程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。可读信号介质还可以是可读存储介质以外的任何可读介质,该可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、有线、光缆、RF等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言的任意组合来编写用于执行本发明操作的程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、C++等,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。在涉及远程计算设备的情形中,远程计算设备可以通过任意种类的网络,包括局域网(LAN)或广域网(WAN),连接到用户计算设备,或者,可以连接到外部计算设备(例如利用因特网服务提供商来通过因特网连接)。
此外,上述附图仅是根据本发明示例性实施例的方法所包括的处理的示意性说明,而不是限制目的。易于理解,上述附图所示的处理并不表明或限制这些处理的时间顺序。另外,也易于理解,这些处理可以是例如在多个模块中同步或异步执行的。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其他实施例。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由权利要求指出。

Claims (25)

  1. 一种物品检测系统,其特征在于,包括:
    预浓缩采样模块,设于距离待检测物品的预设范围内,用于对所述待检测物品的气体分子进行浓缩采样,捕获样品分子;
    气相色谱模块,与所述预浓缩采样模块连接,用于对所述样品分子进行预分离处理;
    内循环气路模块,与所述气相色谱模块连接;以及
    离子迁移管模块,与所述气相色谱模块和所述内循环气路模块连接,用于检测从所述气相色谱模块进入所述离子迁移管模块的、经预分离的样品分子的谱图,从而形成所述待检测物品的指纹谱图。
  2. 根据权利要求1所述的物品检测系统,其特征在于,所述预浓缩采样模块包括:
    采样头,用于对所述待检测物品挥发出的分子进行采样;
    电磁阀,用于控制气路通断;
    填料管,用于对所述挥发出的分子进行吸附;
    温控组件,用于对所述填料管的温度进行控制;以及
    采样泵,用于抽吸所述待检测物品挥发出的分子。
  3. 根据权利要求1所述的物品检测系统,其特征在于,所述气相色谱模块包括:
    毛细管柱,用于对所述样品分子进行所述预分离处理。
  4. 根据权利要求1所述的物品检测系统,其特征在于,所述内循环气路模块包括:
    隔膜泵,用于为内循环气路提供气体循环动力;
    分流器,用于对带有所述样品分子的气流进行分流;
    缓冲模块,用于将所述气流的波动控制在预设范围内;以及
    分子筛模块,用于对所述气流进行净化处理。
  5. 根据权利要求1所述的物品检测系统,其特征在于,所述内循环气路模块包括:
    第二分流器;
    离子迁移管气路,与所述第二分流器连接,包括位于所述第二分流器与所述离子 迁移管模块之间的第一分子筛模块以及连接管路,气体通过所述离子迁移管气路进入所述离子迁移管模块的漂移气进气口;
    气相色谱管气路,与所述第二分流器连接,包括位于所述第二分流器与所述气相色谱模块之间的零气载气入口、第二电磁阀以及连接管路,气体通过所述气相色谱管气路进入所述气相色谱模块,其中,所述零气载气入口处设有第二分子筛模块,用于对气体进行净化,形成零气;以及
    回气气路,与所述第二分流器连接,包括位于所述第二分流器与所述离子迁移管模块之间的第三隔膜泵以及连接管路,所述第三隔膜泵的抽气口朝向所述离子迁移管模块,出气口朝向所述第二分流器。
  6. 根据权利要求5所述的物品检测系统,其特征在于,
    所述离子迁移管气路还包括第一缓冲模块,用于将供给所述离子迁移管模块的气流的波动控制在预设范围内;和/或
    所述气相色谱管气路还包括第二缓冲模块,用于将供给所述气相色谱模块的气流的波动控制在预设范围内;和/或
    所述回气气路还包括第三缓冲模块,用于将从所述离子迁移管模块流出的气流的波动控制在预设范围内。
  7. 根据权利要求5或6所述的物品检测系统,其特征在于,
    所述离子迁移管气路还包括位于所述第一分子筛模块与所述离子迁移管模块之间的第一分流器,气体通过所述第一分流器进入所述离子迁移管模块的漂移气进气口和/或空气载气进气口。
  8. 根据权利要求5或6所述的物品检测系统,其特征在于,
    所述回气气路还包括连接到所述离子迁移管模块的排气口的第三分流器。
  9. 根据权利要求5或6所述的物品检测系统,其特征在于,
    所述气相色谱管气路还包括第二隔膜泵,用于为所述气相色谱管气路提供额外的气体循环动力。
  10. 根据权利要求5或6所述的物品检测系统,其特征在于,
    所述气相色谱管气路还包括第一电磁阀,用于控制气路通断。
  11. 根据权利要求6所述的物品检测系统,其特征在于,
    在所述离子迁移管气路中,所述第一缓冲模块、所述第一分子筛模块、所述第一分流器按照气体从所述第二分流器向所述离子迁移管模块运动的方向依次排布,气体 通过所述离子迁移管气路进入所述离子迁移管模块的漂移气进气口和空气载气进气口;
    在所述气相色谱管气路中,所述第二缓冲模块、所述第二隔膜泵、所述第一电磁阀、所述零气载气入口、所述第二电磁阀按照气体从所述第二分流器向所述气相色谱模块运动的方向依次排布;
    在回气气路中,所述第三分流器、所述第三缓冲模块和所述第三隔膜泵按照气体从所述离子迁移管模块向所述第二分流器运动的方向依次排布。
  12. 根据权利要求1所述的物品检测系统,其特征在于,所述离子迁移管模块为正负双模式迁移管模块,所述正负双模式迁移管模块包括:正模式离化区及负模式离化区、正模式漂移区及负模式漂移区以及正模式法拉第杯探测区及负模式法拉第杯探测区;其中,所述正模式法拉第杯探测区及所述负模式法拉第杯探测区用于检测所述样品分子的谱图,以获取所述待检测物品的所述指纹谱图。
  13. 一种物品检测系统,其特征在于,包括:
    第二分流器;
    离子迁移管支路,与所述第二分流器连接,包括第一缓冲模块、第一分子筛模块、离子迁移管模块以及它们之间的连接管路,用于让气体经过所述第一缓冲模块、所述第一分子筛模块并进入所述离子迁移管模块的漂移气进气口;
    气相色谱管支路,与所述第二分流器连接,包括第二缓冲模块、第二隔膜泵、零气载气入口、气体采样入口、第二电磁阀、气相色谱管模块以及它们之间的连接管路,用于让载气经过所述第二缓冲模块、所述第一电磁阀、所述零气载气入口后与来自所述气体采样入口的样品气体混合,然后经所述第二电磁阀进入所述气相色谱管模块,其中,所述零气载气入口处设有第二分子筛模块;以及
    回气支路,与所述第二分流器连接,包括所述第三分流器、所述第三缓冲模块和所述第三隔膜泵以及它们之间的连接管路,在所述第三隔膜泵的作用下,气体从所述离子迁移管模块向所述第三分流器、所述第三缓冲模块和所述第三隔膜泵运动,并最终被抽吸到所述第二分流器;其中,所述第一缓冲模块、所述第二缓冲模块和所述第三缓冲模块用于将气流的波动控制在预设范围内,所述第一分子筛模块和所述第二分子筛模块用于对气体进行净化以形成零气,所述第二分流器和所述第三分流器用于对气流进行分流,所述第一隔膜泵用于为整个系统提供气体循环动力,所述第二隔膜泵用于对所述气相色谱管支路的气体流动提供额外的动力,所述第一电磁阀和所述第二 电磁阀用于控制气路通断。
  14. 根据权利要求13所述的物品检测系统,其特征在于,所述离子迁移管支路还包括第一分流器;其中,气体依次经过所述第一缓冲模块、所述第一分子筛模块、所述第一分流器并最终进入所述离子迁移管模块的漂移气进气口和/或空气载气进气口。
  15. 根据权利要求13所述的物品检测系统,其特征在于,还包括动态预浓缩采样支路,所述动态预浓缩采样支路包括:
    采样头,用于对所述待检测物品挥发出的分子进行采样;
    第三电磁阀,用于控制进气气路的通断;
    填料管,位于所述气相色谱管支路的所述气体采样入口与所述第二电磁阀之间,用于对所述挥发出的分子进行吸附;
    温控组件,用于对所述填料管的温度进行控制,以进行吸附和解吸附操作;
    第四电磁阀,用于控制出气气路的通断;以及
    第一隔膜泵,用于抽吸所述待检测物品挥发出的分子;
    其中,所述动态预浓缩采样支路通过所述气体采样入口接入所述气相色谱管支路,所述填料管的出口连接所述第二电磁阀和所述第四电磁阀。
  16. 根据权利要求13所述的物品检测系统,其特征在于,所述气相色谱管支路还包括位于所述第二隔膜泵与所述零气载气入口之间的所述第一电磁阀,用于控制气路通断。
  17. 根据权利要求13所述的物品检测系统,其特征在于,
    所述第二分流器被配置为使得通入所述离子迁移管支路、所述气相色谱管支路的气流量比例的范围为3:1~20:1。
  18. 一种物品检测方法,其特征在于,包括:
    获取待检测物品的样品分子;
    对所述待检测物品的样品分子进行预分离处理;
    根据所述样品分子的谱图形成待检测物品的指纹谱图;
    通过所述指纹谱图确定所述待检测物品的种类。
  19. 根据权利要求18所述的物品检测方法,其特征在于,通过所述指纹谱图确定所述待检测物品的种类包括:
    根据所述指纹谱图与物品之间的映射关系确定所述待检测物品的种类。
  20. 根据权利要求18所述的物品检测方法,获取待检测物品的样品分子包括:
    通过采样模块对所述待检测物品挥发出的样品分子进行吸附处理,然后将所述采样模块加热至预设温度,以对所述样品分子进行解吸附处理。
  21. 根据权利要求20所述的物品检测方法,其特征在于,所述采样模块包括填料管、温控组件、采样泵、第三电磁阀和第四电磁阀,
    在吸附过程中,通过所述采样泵让所述待检测物品挥发出的气味分子向所述第三电磁阀、所述填料管、所述第四电磁阀以及所述采样泵运动;
    在解吸附过程之后,解吸附的样品分子被引入气相色谱模块;
    利用所述气相色谱模块对挥发出的分子进行预分离处理并将预分离后的分子接入离子迁移管模块;
    利用所述离子迁移管模块对分子的谱图进行检测,形成所述待检测物品的指纹谱图。
  22. 根据权利要求21所述的物品检测方法,其特征在于,所述方法还包括:
    在内循环气路稳定之后,开启所述第三电磁阀、所述第四电磁阀和所述采样泵,所述温控组件将所述填料管的温度调节到低于预设温度的吸附温度,让样品气体在所述采样泵的作用下进入所述填料管,所述填料管对挥发出的分子进行所述吸附处理,不能被吸附的气体分子将通过所述采样泵的排气口排出;
    关闭所述第三电磁阀、所述第四电磁阀和所述采样泵之后,开始进行热解吸脱附处理;
    打开第一电磁阀和第二电磁阀,使空气经过装有第二分子筛模块的零气载气入口进入所述填料管,并使包含样品分子的载气从所述填料管进入所述气相色谱模块的毛细管柱进行预分离处理,并使预分离处理后的分子通过样品载气进气口进入所述离子迁移管模块;
    利用所述离子迁移管模块对分子进行检测后,在所述第三隔膜泵的作用下,使分子从所述离子迁移模块的负模式排气口和正模式排气口汇集至第三分流器,经过第三缓冲模块进入所述第三隔膜泵的抽气口,并最终被抽吸到第二分流器。
  23. 根据权利要求21或22所述的物品检测方法,其特征在于,
    在解吸附的样品分子被引入所述气相色谱模块之后,关闭所述第二电磁阀,打开所述采样泵、所述第一电磁阀以及所述第四电磁阀一段时间,以清理所述填料管。
  24. 一种电子设备,其特征在于,包括:
    处理器;以及
    存储器,用于存储所述处理器的可执行指令;
    其中,所述处理器配置为经由执行所述可执行指令来执行权利要求18-23中任意一项所述的物品检测方法。
  25. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求18-23任意一项所述的物品检测方法。
PCT/CN2019/087484 2018-07-12 2019-05-17 物品检测系统及方法、电子设备、存储介质 WO2020010921A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/622,553 US20210055267A1 (en) 2018-07-12 2019-05-17 Article inspection system and method, electronic device, storage medium
DE112019000081.0T DE112019000081T5 (de) 2018-07-12 2019-05-17 System und Verfahren zur Prüfung von Artikeln, elektronisches Gerät, Speichermedium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810761906.3A CN108845054A (zh) 2018-07-12 2018-07-12 物品检测系统及方法、电子设备、存储介质
CN201810761906.3 2018-07-12

Publications (1)

Publication Number Publication Date
WO2020010921A1 true WO2020010921A1 (zh) 2020-01-16

Family

ID=64197167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/087484 WO2020010921A1 (zh) 2018-07-12 2019-05-17 物品检测系统及方法、电子设备、存储介质

Country Status (4)

Country Link
US (1) US20210055267A1 (zh)
CN (1) CN108845054A (zh)
DE (1) DE112019000081T5 (zh)
WO (1) WO2020010921A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US12017506B2 (en) 2020-08-20 2024-06-25 Denso International America, Inc. Passenger cabin air control systems and methods

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108845054A (zh) * 2018-07-12 2018-11-20 同方威视技术股份有限公司 物品检测系统及方法、电子设备、存储介质
CN109307724A (zh) * 2018-12-18 2019-02-05 同方威视技术股份有限公司 气相色谱-离子迁移谱联用设备
CN112285259B (zh) * 2019-07-23 2022-03-29 同方威视技术股份有限公司 一种离子迁移谱装置
CN111337598B (zh) * 2020-05-18 2020-09-11 同方威视技术股份有限公司 痕量探测设备
CN113740444A (zh) * 2020-05-29 2021-12-03 清华大学 气相检测装置
CN113776900B (zh) * 2020-06-08 2022-08-30 同方威视技术股份有限公司 气味嗅探装置和用于集装箱的车载安检设备
CN112103171B (zh) * 2020-09-18 2023-10-13 中国科学院空天信息创新研究院 被动进样装置及应用
CN114383925A (zh) * 2021-12-24 2022-04-22 同方威视技术股份有限公司 痕量微粒及蒸汽探测系统
CN114740118A (zh) * 2022-04-21 2022-07-12 云南电网有限责任公司电力科学研究院 一种有机储氢材料分解产物的分析方法
US20240260880A1 (en) * 2022-06-08 2024-08-08 Spotitearly Ltd. Machine Learning (ML)-based Disease-Detection System Using Detection Animals
WO2024077230A2 (en) * 2022-10-07 2024-04-11 Texas Tech University System Automated canine line-up for detection dog research

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080128612A1 (en) * 1999-07-21 2008-06-05 The Charles Stark Draper Laboratory, Inc. Method and apparatus for chromatography high field asymmetric waveform ion mobility spectrometry
WO2013159204A1 (en) * 2012-04-26 2013-10-31 Teknoscan Systems Inc. Substances detection system and method
CN105203692A (zh) * 2015-10-16 2015-12-30 同方威视技术股份有限公司 安检设备、安检设备的采样装置、安检方法和采样方法
CN105259246A (zh) * 2015-11-18 2016-01-20 同方威视技术股份有限公司 暗室式安检设备以及方法
CN105277577A (zh) * 2015-11-18 2016-01-27 清华大学 暗室式安检设备以及方法
CN205139052U (zh) * 2015-11-18 2016-04-06 同方威视技术股份有限公司 暗室式安检设备
CN205262812U (zh) * 2015-11-18 2016-05-25 清华大学 暗室式安检设备
CN107064361A (zh) * 2014-12-31 2017-08-18 同方威视技术股份有限公司 检测设备和检测方法
CN108845054A (zh) * 2018-07-12 2018-11-20 同方威视技术股份有限公司 物品检测系统及方法、电子设备、存储介质
CN208860817U (zh) * 2018-07-12 2019-05-14 同方威视技术股份有限公司 物品检测系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10228912C1 (de) * 2002-06-24 2003-11-06 Draeger Safety Ag & Co Kgaa Ionenmobilitätsspektrometer mit GC-Säule und internem geregeltem Gaskreislauf
DE102007052802B4 (de) * 2007-11-06 2012-06-14 Bruker Daltonik Gmbh Ionenmobilitätsspektrometer und Verfahren zu seinem Betrieb
CN103871825A (zh) * 2012-12-12 2014-06-18 中国科学院大连化学物理研究所 热解析进样器离子迁移谱气路
CN103163268A (zh) * 2013-03-21 2013-06-19 北京华新安科科技有限公司 一种医用呼气检测装置及其检测方法
CN103295871A (zh) * 2013-05-30 2013-09-11 苏州微木智能系统有限公司 一种离子迁移谱检测系统
CN106057627B (zh) * 2016-07-24 2018-07-10 中国科学院合肥物质科学研究院 一种循环模式高场不对称波形离子迁移谱仪
WO2019104487A1 (zh) * 2017-11-28 2019-06-06 深圳达闼科技控股有限公司 一种混合物检测方法及设备

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080128612A1 (en) * 1999-07-21 2008-06-05 The Charles Stark Draper Laboratory, Inc. Method and apparatus for chromatography high field asymmetric waveform ion mobility spectrometry
WO2013159204A1 (en) * 2012-04-26 2013-10-31 Teknoscan Systems Inc. Substances detection system and method
CN107064361A (zh) * 2014-12-31 2017-08-18 同方威视技术股份有限公司 检测设备和检测方法
CN105203692A (zh) * 2015-10-16 2015-12-30 同方威视技术股份有限公司 安检设备、安检设备的采样装置、安检方法和采样方法
CN105259246A (zh) * 2015-11-18 2016-01-20 同方威视技术股份有限公司 暗室式安检设备以及方法
CN105277577A (zh) * 2015-11-18 2016-01-27 清华大学 暗室式安检设备以及方法
CN205139052U (zh) * 2015-11-18 2016-04-06 同方威视技术股份有限公司 暗室式安检设备
CN205262812U (zh) * 2015-11-18 2016-05-25 清华大学 暗室式安检设备
CN108845054A (zh) * 2018-07-12 2018-11-20 同方威视技术股份有限公司 物品检测系统及方法、电子设备、存储介质
CN208860817U (zh) * 2018-07-12 2019-05-14 同方威视技术股份有限公司 物品检测系统

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US12017506B2 (en) 2020-08-20 2024-06-25 Denso International America, Inc. Passenger cabin air control systems and methods

Also Published As

Publication number Publication date
DE112019000081T5 (de) 2020-03-26
CN108845054A (zh) 2018-11-20
US20210055267A1 (en) 2021-02-25

Similar Documents

Publication Publication Date Title
WO2020010921A1 (zh) 物品检测系统及方法、电子设备、存储介质
WO2016107515A1 (zh) 样品采集和热解析进样装置和方法以及痕量检测设备
JP7100766B2 (ja) ガス濃縮サンプリングのための除水方法、試料導入方法及びそれらの装置
WO2016107486A1 (zh) 检测设备和检测方法
CN103364484B (zh) 一种卷烟主流烟气在线分析装置及方法
CN106198707A (zh) 一种质谱进样装置和质谱检测设备
WO2013037182A1 (zh) 一种在线挥发性有机物分析仪及其使用方法
CN205538861U (zh) 挥发性有机物在线监测系统
CN105353056A (zh) 挥发性有机物在线监测系统
CN104950065B (zh) 一种全烟气捕集及在线分析装置和方法
CN104713959B (zh) 一种在线烟草制品烟气实时分析方法
CN110940722A (zh) 一种大气污染颗粒物实时采样及在线分析方法及装置
WO2019129294A1 (zh) 一种安检仪及方法
CN205404512U (zh) 电子制冷二级冷冻收集voc连续在线分析仪
Qian et al. A pre-concentration system design for electronic nose via finite element method
CN204789503U (zh) 一种全烟气捕集及在线分析装置
CN204088259U (zh) 一种用于离子迁移谱的预热与解析分离的进样装置
CN208860817U (zh) 物品检测系统
CN218188003U (zh) 一种气体预浓缩设备
JP6792496B2 (ja) ガス検知装置
CN112908827B (zh) 一种离子迁移谱分析仪控制气路
CN113155552B (zh) 应用于在线检测的样品获取装置
CN111076988B (zh) 一种土壤微生物呼吸气体自动采集、置换及进样装置
CN207623292U (zh) 一种平衡气压的热解析模块
CN207472838U (zh) 一种二次解析的热解析模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19833393

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19833393

Country of ref document: EP

Kind code of ref document: A1