WO2020010745A1 - 太阳能电池的回收方法 - Google Patents

太阳能电池的回收方法 Download PDF

Info

Publication number
WO2020010745A1
WO2020010745A1 PCT/CN2018/110846 CN2018110846W WO2020010745A1 WO 2020010745 A1 WO2020010745 A1 WO 2020010745A1 CN 2018110846 W CN2018110846 W CN 2018110846W WO 2020010745 A1 WO2020010745 A1 WO 2020010745A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
active material
solution
stainless steel
steel substrate
Prior art date
Application number
PCT/CN2018/110846
Other languages
English (en)
French (fr)
Inventor
孙刚
李胜春
刘凯华
Original Assignee
汉能新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 汉能新材料科技有限公司 filed Critical 汉能新材料科技有限公司
Publication of WO2020010745A1 publication Critical patent/WO2020010745A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0065Leaching or slurrying
    • C22B15/0067Leaching or slurrying with acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0084Treating solutions
    • C22B15/0089Treating solutions by chemical methods
    • C22B15/0091Treating solutions by chemical methods by cementation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B17/00Obtaining cadmium
    • C22B17/04Obtaining cadmium by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/34Obtaining molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B58/00Obtaining gallium or indium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the disclosure belongs to the technical field of solar cells, and particularly relates to a method for recycling solar cells.
  • the present disclosure provides a method for recycling a solar cell, the solar cell including a stainless steel substrate and an active material layer disposed thereon, and the method includes:
  • the passivation-treated solar cell is subjected to a first leaching treatment with an acidic substance solution containing a second surface treatment agent to separate the stainless steel substrate and the active material layer.
  • the first surface treatment agent and the second surface treatment agent are the same or different, and are selected from any one or more of hydrogen peroxide, sodium hypochlorite, sodium peroxide, ozone, sodium nitrite, sodium phosphate, and corrosion inhibitor Lan826. Species.
  • the passivation treatment of the solar cell by the first surface treatment agent includes:
  • the passivation treatment of the solar cell by the first surface treatment agent includes:
  • the solar cell is immersed in water, and a first surface treatment agent of 2 to 10 L ⁇ min -1 is passed into each liter of water to passivate the solar cell.
  • the temperature of the passivation treatment is 20 to 95 ° C., and the time is 0.5 to 10 hours.
  • the acidic substance is any one or more of sulfuric acid, hydrochloric acid, and nitric acid.
  • the mass percentage concentration of the acidic substance in the acidic substance solution is 10-30%.
  • the temperature of processing the passivation-treated solar cell by using the acidic substance solution containing the first surface treatment agent is 20-40 ° C., and the processing time is 0.5-10 hours.
  • the recycling method further includes: taking out a stainless steel substrate with a passivation layer on the surface, and performing a second leaching treatment on the solution in which the active material layer is soaked to dissolve the active material layer.
  • the second leaching treatment includes heating and heating the solution soaked with the active material layer to dissolve the active material layer.
  • the temperature for heating and heating is 50-100 ° C, and the heating time is 0.5-10 hours.
  • the recovery method further includes: wet-separating the active material solution subjected to the second leaching treatment, so that the active elements in the active material solution are recovered in the form of a simple substance or a compound.
  • the solar cell is a copper indium gallium selenium solar cell or a cadmium telluride solar cell.
  • the solar cell is a copper indium gallium selenium solar cell, and the specific steps of the above wet separation are:
  • step 1 the reaction equivalent of sulfite or sulfur dioxide is 1.5 to 2 times;
  • the acid added in step 3 is any one or more of sulfuric acid, hydrochloric acid and nitric acid, and the pH value of the added acid is 1.5-6;
  • the concentration of the sodium hydroxide solution added in the step 3 is 50-200 g / L, and the temperature is heated to 90-100 ° C.
  • the steps 1 and 2 also include a step m to extract the molybdate in the first liquid phase with an alkaline resin or an organic amine extractant, and the extraction of molybdenum is omitted in the subsequent steps 2 and 3.
  • FIG. 1 is a flowchart of a method for recycling a copper indium gallium selenium solar cell in Embodiment 1 of the present disclosure.
  • Thin-film solar modules usually use silicon or metals such as indium, gallium, cadmium, and titanium, which are expensive, and some are not reasonably recycled after the module is scrapped, which will cause great pollution to the environment.
  • thin-film solar cells contain multiple layers of active material layers.
  • the substrate is usually a stainless steel substrate. During the wet leaching process during recovery, it is easy to immerse the iron in the stainless steel with the active material layer into the solution system. Subsequent separation of metal elements causes greater difficulty. At present, there is no better way to separate the active material layer without damaging the stainless steel substrate.
  • the technical problem to be solved by the present disclosure is to solve the technical problem that the active material layer on a thin-film solar cell is not separated separately in the prior art without damaging the stainless steel substrate.
  • the present disclosure provides a solar cell The recycling method allows the active material layer to be separated from the stainless steel substrate without damaging the stainless steel substrate.
  • the present disclosure provides a recycling method of a solar cell, the solar cell including a stainless steel substrate and an active material layer disposed thereon, and the recycling method includes:
  • the passivation-treated solar cell is subjected to a first leaching treatment with an acidic substance solution containing a second surface treatment agent to separate the stainless steel substrate and the active material layer.
  • the first surface treatment agent and the second surface treatment agent may be the same or different.
  • the first surface treatment agent and the second surface treatment agent may be selected from any one or more of hydrogen peroxide, sodium hypochlorite, sodium peroxide, ozone, sodium nitrite, sodium phosphate, and corrosion inhibitor Lan826.
  • the passivation treatment of the solar cell by the first surface treatment agent includes:
  • the passivation treatment of the decapsulated solar cell by the first surface treatment agent includes:
  • the solar cell is immersed in water, and a first surface treatment agent of 2 to 10 L ⁇ min -1 is passed into each liter of water to passivate the unsealed solar cell.
  • the temperature of the passivation treatment is 20 to 95 ° C., and the time is 0.5 to 10 hours.
  • the acidic substance is any one or more of sulfuric acid, hydrochloric acid, and nitric acid.
  • the mass percentage concentration of the acidic substance in the acidic substance solution is 10-30%.
  • the temperature of performing the first leaching treatment on the passivation-treated solar cell by using an acidic substance solution containing a second surface treatment agent is 20 to 40 ° C., and the treatment time is 0.5 to 10 hours.
  • the recycling method further includes: taking out a stainless steel substrate with a passivation layer on the surface, and performing a second leaching treatment on the solution impregnated with the active material layer.
  • the second leaching treatment includes heating and heating the solution soaked with the active material layer to dissolve the active material layer.
  • the temperature for heating and heating is 50-100 ° C, and the heating time is 0.5-10 hours.
  • the recovery method further includes: wet-separating the active material solution obtained after the second leaching treatment, so that the active elements in the active material solution are recovered in the form of a simple substance or a compound.
  • the solar cell is a copper indium gallium selenium solar cell or a cadmium telluride solar cell, for example, a discarded copper indium gallium selenium solar cell or a cadmium telluride solar cell.
  • the solar cell is a copper indium gallium selenium solar cell, and the specific steps of the above wet separation are:
  • Excess sodium hydroxide solution is added to the precipitation mixture of gallium hydroxide and indium hydroxide to generate sodium gallium, which is subjected to solid-liquid separation to obtain sodium gallium solution, and indium hydroxide is precipitated.
  • the sodium gallium solution is obtained by electrolysis under alkaline conditions. Gallium elemental; indium hydroxide precipitation was re-dissolved with hydrochloric acid, replaced with zinc plate to recover sponge indium, and the sponge indium was electrolyzed to produce elemental indium.
  • step 1 the reaction equivalent of sulfite or sulfur dioxide is 1.5 to 2 times;
  • the acid added in step 3 is any one or more of sulfuric acid, hydrochloric acid and nitric acid, and the pH value of the added acid is 1.5-6;
  • the concentration of the sodium hydroxide solution added in the step 3 is 50-200 g / L, and the temperature is heated to 90-100 ° C.
  • the steps 1 and 2 also include a step m to extract the molybdate in the first liquid phase with an alkaline resin or an organic amine extractant, and the extraction of molybdenum is omitted in the subsequent steps 2 and 3.
  • a passivation layer is formed on the surface of a stainless steel substrate, so that the surface-passivated stainless steel substrate is not damaged during the immersion process, and the active material layer is made without damaging the stainless steel substrate. Separated from the stainless steel substrate, the stainless steel substrate can be continuously recycled and reused, and the separated active material layer can be continuously used in the subsequent wet recycling process.
  • the recycling method in the present disclosure is simple, low cost, and easy to implement.
  • this embodiment provides a method for recycling a copper indium gallium selenium solar cell, which includes the following steps:
  • the copper indium gallium selenium solar cell includes a stainless steel substrate and an active material layer disposed thereon;
  • a hydrogen peroxide solution with a concentration of 3.5% by mass immerse 10 kg of copper indium gallium selenium solar cell detached from the resin film in 50 L of hydrogen peroxide solution, and passivate the copper indium gallium selenium solar cell.
  • the stainless steel on the surface of the stainless steel substrate undergoes a passivation reaction to form a passivation layer, and a mixture of a copper indium gallium selenium solar cell and a hydrogen peroxide solution is obtained on the surface of the stainless steel substrate.
  • the main component of the passivation layer is ferric tetroxide.
  • the passivation layer does not react, and the surface portion of the active material layer reacts.
  • the copper indium gallium selenide in the active material layer in this embodiment reacts with hydrogen peroxide under acidic conditions.
  • the copper indium gallium selenide , Hydrogen peroxide, and hydrogen ions react to form Cu 3+ , In 3+ , Ga 3+ , SeO 3 2- , SeO 4 2- , and H 2 O.
  • the active material layer in this embodiment further includes zinc oxide and cadmium sulfide. Zinc oxide reacts with hydrogen ions to generate Zn 2+ and water, and cadmium sulfide reacts with hydrogen peroxide to generate Cd 2+ , SO 4 2- and water. Due to the low soaking temperature, the above reaction is slow, and only the surface portion of the active material layer reacts.
  • the temperature was raised to 95 ° C., and the leaching was stopped for 1 hour. At this time, the mixed solution soaked with the active material layer became clear, and the powder or debris of the active material layer was completely dissolved in the mixed solution to obtain The total solution in which the active material is dissolved can be sent to the subsequent wet process for recycling after cooling.
  • Table 1 shows the concentration and leaching rate of each element in the total solution in which the active material was dissolved after the second stage of leaching.
  • the concentration of each element in the total solution was detected by atomic absorption.
  • the leaching rate can be calculated through conversion.
  • Table 1 it can be seen that the concentration of iron in the solution is very small, only At 75 ppm, the recycling method in this embodiment hardly causes corrosion damage to the stainless steel substrate.
  • the leaching rates of copper, indium, gallium, and selenium all reached more than 99%, and basically all leached into the solution.
  • the active material solution obtained by dissolving the active material layer is subjected to wet separation, so that the active elements in the active material solution are recovered as a single substance.
  • the specific steps of wet separation are:
  • the reaction equivalent of concentrated ammonia to the first liquid phase to form gallium hydroxide and indium hydroxide to complete precipitation, and obtain a precipitated mixture of gallium hydroxide and indium hydroxide and a second liquid through solid-liquid separation.
  • the second liquid phase contains copper ammonia complex, zinc ammonia complex, cadmium ammonia complex, molybdate;
  • the precipitated mixture of gallium hydroxide and indium hydroxide is firstly ball milled, and then an excess of sodium hydroxide solution is added, the concentration of the sodium hydroxide solution is 50 g / L, and the mixture is heated to 90 ° C. and stirred to dissolve, so that the gallium hydroxide is dissolved.
  • the sodium gallium solution is obtained, and solid-liquid separation is performed to obtain sodium gallium solution, and indium hydroxide is precipitated.
  • the sodium gallium solution is electrolytically obtained under alkaline conditions to obtain gallium simple substance; the indium hydroxide precipitate is re-dissolved with hydrochloric acid, and the zinc plate is replaced to recover the sponge. Indium is used to electrolyze sponge indium to produce elemental indium.
  • a passivation layer is formed on the surface of the stainless steel substrate, so that the surface-passivated stainless steel substrate is not damaged during the immersion process, and the active material is made without destroying the stainless steel substrate.
  • the layer is separated from the stainless steel substrate, the stainless steel substrate can be continuously recycled and reused, and the separated active material layer can be continuously used in the subsequent wet recycling process.
  • the recycling method in this embodiment is simple, low cost, and easy to implement.
  • This embodiment provides a method for recycling a copper indium gallium selenium solar cell, which includes the following steps:
  • the copper indium gallium selenium solar cell includes a stainless steel substrate and an active material layer disposed thereon;
  • a 10% hydrogen peroxide solution was arranged, 10 kg of copper indium gallium selenium solar cell detached from the resin film was immersed in a 50 L of hydrogen peroxide solution, and the copper indium gallium selenium solar cell was passivated.
  • the passivation temperature was At 20 ° C for 5 hours, the stainless steel on the surface of the stainless steel substrate undergoes a passivation reaction to form a passivation layer, and a mixture of a copper indium gallium selenium solar cell and a hydrogen peroxide solution is obtained on the surface of the stainless steel substrate.
  • the main component of the passivation layer is ferric tetroxide.
  • the passivation layer does not react, and the surface portion of the active material layer reacts.
  • the copper indium gallium selenide in the active material layer in this embodiment reacts with hydrogen peroxide under acidic conditions.
  • the copper indium gallium selenide , Hydrogen peroxide, and hydrogen ions react to form Cu 3+ , In 3+ , Ga 3+ , SeO 3 2- , SeO 4 2- , and H 2 O.
  • the active material layer in this embodiment further includes zinc oxide and cadmium sulfide. Zinc oxide reacts with hydrogen ions to generate Zn 2+ and water, and cadmium sulfide reacts with hydrogen peroxide to generate Cd 2+ , SO 4 2- and water. Due to the low soaking temperature, the above reaction is slow, and only the surface portion of the active material layer reacts.
  • the temperature was raised to 95 ° C., and the leaching was stopped for 1 hour. At this time, the mixed solution soaked with the active material layer became clear, and the powder or debris of the active material layer was completely dissolved in the mixed solution to obtain The total solution in which the active material is dissolved can be sent to the subsequent wet process for recycling after cooling.
  • the following Table 2 shows the concentration and leaching rate of each element in the total solution in which the active material was dissolved after the second stage of leaching.
  • the concentration of each element in the total solution was detected by atomic absorption.
  • the leaching rate can be calculated through conversion.
  • Table 2 it can be seen that the concentration of iron in the solution is very small, only At 70 ppm, the recycling method in this embodiment hardly caused corrosion damage to the stainless steel substrate.
  • the leaching rates of copper, indium, gallium, and selenium all reached more than 99%, and basically all leached into the solution.
  • the active material solution obtained by dissolving the active material layer is subjected to wet separation, so that the active elements in the active material solution are recovered as a single substance. Specific steps of wet separation:
  • the phase contains copper ammonia complex, zinc ammonia complex, cadmium ammonia complex, and molybdate;
  • Excess sodium hydroxide solution is added to the precipitation mixture of gallium hydroxide and indium hydroxide to generate sodium gallium, and solid-liquid separation is performed to obtain sodium gallium solution, and indium hydroxide is precipitated.
  • the sodium gallium solution is under alkaline conditions.
  • the gallium elementary substance is obtained by electrolysis; the indium hydroxide precipitate is re-dissolved with hydrochloric acid, and the sponge indium is recovered by replacing with zinc plate, and the sponge indium is electrolyzed to generate elementary indium.
  • a passivation layer is formed on the surface of the stainless steel substrate, so that the surface-passivated stainless steel substrate is not damaged during the immersion process, and the active material is made without destroying the stainless steel substrate.
  • the layer is separated from the stainless steel substrate, the stainless steel substrate can be continuously recycled and reused, and the separated active material layer can be continuously used in the subsequent wet recycling process.
  • the recycling method in this embodiment is simple, low cost, and easy to implement.
  • This embodiment provides a method for recycling a copper indium gallium selenium solar cell, which includes the following steps:
  • the copper indium gallium selenium solar cell includes a stainless steel substrate and an active material layer disposed thereon;
  • the passivation temperature is At 65 ° C. for 5 hours, the stainless steel on the surface of the stainless steel substrate undergoes a passivation reaction to form a passivation layer, and a mixture of a copper indium gallium selenium solar cell and a sodium hypochlorite solution that is passivated on the surface of the stainless steel substrate is obtained.
  • the main component of the passivation layer is ferric tetroxide.
  • the passivation layer does not react, and the surface portion of the active material layer reacts.
  • the copper indium gallium selenide and sodium hypochlorite in the active material layer in this embodiment react under acidic conditions, and the copper indium gallium selenide It reacts with sodium hypochlorite and hydrogen ions to form Cu 3+ , In 3+ , Ga 3+ , SeO 3 2- , SeO 4 2- , and H 2 O.
  • the active material layer in this embodiment further includes zinc oxide and cadmium sulfide. Zinc oxide reacts with hydrogen ions to generate Zn 2+ and water, and cadmium sulfide reacts with sodium hypochlorite to generate Cd 2+ , SO 4 2- and water. Due to the low soaking temperature, the above reaction is slow, and only the surface portion of the active material layer reacts.
  • the temperature was raised to 95 ° C, and the leaching was continued for 0.5 hours to stop. At this time, the mixed solution soaked with the active material layer became clear, and the powder or debris of the active material layer was completely dissolved in the mixed solution to obtain The total solution in which the active material is dissolved can be sent to the subsequent wet process for recycling after cooling.
  • the following Table 3 shows the concentration and leaching rate of each element in the total solution in which the active material was dissolved after the second stage leaching.
  • the concentration of each element in the total solution was detected by atomic absorption.
  • the leaching rate can be calculated through conversion.
  • Table 3 it can be seen that the concentration of iron in the solution is very small, only At 75 ppm, the recycling method in this embodiment hardly causes corrosion damage to the stainless steel substrate.
  • the leaching rates of copper, indium, gallium, and selenium all reached more than 99%, and basically all leached into the solution.
  • the active material solution obtained by dissolving the active material layer is subjected to wet separation, so that the active elements in the active material solution are recovered as a single substance.
  • the specific steps of wet separation are:
  • the precipitated mixture of gallium hydroxide and indium hydroxide is firstly ball-milled, and then an excess of sodium hydroxide solution is added, the concentration of the sodium hydroxide solution is 200 g / L, and the mixture is heated to 100 ° C. and stirred to dissolve, so that the gallium hydroxide is dissolved.
  • the sodium gallium solution is obtained, and solid-liquid separation is performed to obtain sodium gallium solution, and indium hydroxide is precipitated.
  • the sodium gallium solution is electrolytically obtained under alkaline conditions to obtain gallium simple substance; the indium hydroxide precipitate is re-dissolved with hydrochloric acid, and the zinc sponge is replaced to recover Indium is used to electrolyze sponge indium to produce elemental indium.
  • a passivation layer is formed on the surface of the stainless steel substrate, so that the surface-passivated stainless steel substrate is not damaged during the immersion process, and the active material is made without destroying the stainless steel substrate.
  • the layer is separated from the stainless steel substrate, the stainless steel substrate can be continuously recycled and reused, and the separated active material layer can be continuously used in the subsequent wet recycling process.
  • the recycling method in this embodiment is simple, low cost, and easy to implement.
  • This embodiment provides a method for recycling a copper indium gallium selenium solar cell, which includes the following steps:
  • the copper indium gallium selenium solar cell includes a stainless steel substrate and an active material layer disposed thereon;
  • the treatment temperature is 95 ° C. and the time is 0.5 hours.
  • the stainless steel on the surface of the stainless steel substrate undergoes a passivation reaction to form a passivation layer, and a mixture of a copper indium gallium selenium solar cell and a sodium nitrite solution passivated on the surface of the stainless steel substrate is obtained.
  • the main component of the passivation layer is ferric tetroxide.
  • the passivation layer does not react, and the surface portion of the active material layer reacts.
  • the copper indium gallium selenide and sodium nitrite in the active material layer in this example react under acidic conditions. Indium gallium, sodium nitrite, and hydrogen ions react to form Cu 3+ , In 3+ , Ga 3+ , SeO 3 2- , SeO 4 2- , and H 2 O.
  • the active material layer in this embodiment further includes zinc oxide and cadmium sulfide. Zinc oxide reacts with hydrogen ions to generate Zn 2+ and water, and cadmium sulfide reacts with sodium nitrite to generate Cd 2+ , SO 4 2- and water. Due to the low soaking temperature, the above reaction is slow, and only the surface portion of the active material layer reacts.
  • the temperature was raised to 65 ° C., and the leaching was stopped for 6 hours. At this time, the mixed solution soaked with the active material layer became clear, and the powder or debris of the active material layer was completely dissolved in the mixed solution to obtain The total solution in which the active material is dissolved can be sent to the subsequent wet process for recycling after cooling.
  • the following Table 4 shows the concentration and leaching rate of each element in the total solution in which the active material was dissolved after the second stage leaching.
  • the concentration of each element in the total solution was detected by atomic absorption.
  • the leaching rate can be calculated through conversion.
  • Table 4 it can be seen that the concentration of iron in the solution is very small, only At 72 ppm, the recovery method in this embodiment hardly caused corrosion damage to the stainless steel substrate.
  • the leaching rates of copper, indium, gallium, and selenium all reached more than 99%, and basically all leached into the solution.
  • the active material solution obtained by dissolving the active material layer is subjected to wet separation, so that the active elements in the active material solution are recovered as a single substance.
  • the specific steps of wet separation are:
  • the precipitated mixture of gallium hydroxide and indium hydroxide is firstly ball milled, and then an excess of sodium hydroxide solution is added, the concentration of the sodium hydroxide solution is 100 g / L, and the mixture is heated to 95 ° C., and stirred to dissolve, so that the gallium hydroxide is dissolved.
  • the sodium gallium solution is obtained, and solid-liquid separation is performed to obtain sodium gallium solution, and indium hydroxide is precipitated.
  • the sodium gallium solution is electrolytically obtained under alkaline conditions to obtain gallium simple substance; the indium hydroxide precipitate is re-dissolved with hydrochloric acid, and the zinc plate is replaced to recover the sponge. Indium is used to electrolyze sponge indium to produce elemental indium.
  • a passivation layer is formed on the surface of the stainless steel substrate, so that the surface-passivated stainless steel substrate is not damaged during the immersion process, and the active material is made without damaging the stainless steel substrate.
  • the layer is separated from the stainless steel substrate, the stainless steel substrate can be continuously recycled and reused, and the separated active material layer can be continuously used in the subsequent wet recycling process.
  • the recycling method in this embodiment is simple, low cost, and easy to implement.
  • This embodiment provides a method for recycling a copper indium gallium selenium solar cell, which includes the following steps:
  • the copper indium gallium selenium solar cell includes a stainless steel substrate and an active material layer disposed thereon;
  • the passivation layer does not react, and the surface portion of the active material layer reacts.
  • the copper indium gallium selenide in the active material layer in this example reacts with the corrosion inhibitor Lan826 under acidic conditions, and selenization Copper indium gallium, corrosion inhibitor Lan826, and hydrogen ions react to form Cu 3+ , In 3+ , Ga 3+ , SeO 3 2- , SeO 4 2- , and H 2 O.
  • the active material layer in this embodiment further includes zinc oxide and cadmium sulfide. Zinc oxide reacts with hydrogen ions to generate Zn 2+ and water, and cadmium sulfide reacts with corrosion inhibitor Lan826 to generate Cd 2+ , SO 4 2- and water. Due to the low soaking temperature, the above reaction is slow, and only the surface portion of the active material layer reacts.
  • the temperature was raised to 80 ° C., and the leaching was stopped for 4 hours. At this time, the mixed solution soaked with the active material layer became clear, and the powder or debris of the active material layer was completely dissolved in the mixed solution to obtain The total solution in which the active material is dissolved can be sent to the subsequent wet process for recycling after cooling.
  • the following Table 5 shows the concentration and leaching rate of each element in the total solution in which the active material was dissolved after the second stage leaching.
  • the concentration of each element in the total solution was detected by atomic absorption.
  • the leaching rate can be calculated through conversion.
  • Table 5 it can be seen that the concentration of iron in the solution is very small, only At 76 ppm, the recycling method in this embodiment hardly caused corrosion damage to the stainless steel substrate.
  • the leaching rates of copper, indium, gallium, and selenium all reached more than 99%, and basically all leached into the solution.
  • the active material solution obtained by dissolving the active material layer is subjected to wet separation, so that the active elements in the active material solution are recovered as a single substance.
  • the specific steps of wet separation are:
  • the precipitated mixture of gallium hydroxide and indium hydroxide is firstly ball milled, and then an excess of sodium hydroxide solution is added, the concentration of the sodium hydroxide solution is 120 g / L, and the mixture is heated to 96 ° C., and stirred to dissolve the gallium hydroxide.
  • the sodium gallium solution is obtained, and solid-liquid separation is performed to obtain sodium gallium solution, and indium hydroxide is precipitated.
  • the sodium gallium solution is electrolytically obtained under alkaline conditions to obtain gallium simple substance; the indium hydroxide precipitate is re-dissolved with hydrochloric acid, and the zinc plate is replaced to recover the sponge. Indium is used to electrolyze sponge indium to produce elemental indium.
  • a passivation layer is formed on the surface of the stainless steel substrate, so that the surface-passivated stainless steel substrate is not damaged during the immersion process, and the active material is made without destroying the stainless steel substrate.
  • the layer is separated from the stainless steel substrate, the stainless steel substrate can be continuously recycled and reused, and the separated active material layer can be continuously used in the subsequent wet recycling process.
  • the recycling method in this embodiment is simple, low cost, and easy to implement.
  • This embodiment provides a method for recycling a copper indium gallium selenium solar cell, which includes the following steps:
  • the copper indium gallium selenium solar cell includes a stainless steel substrate and an active material layer disposed thereon;
  • a mixed solution of sodium peroxide and hydrogen peroxide (mass ratio of 2: 1) with a concentration of 18% by mass, and immerse 10 kg of copper indium gallium selenium solar cell detached from the resin film in a mixed solution of 50 L of sodium peroxide and hydrogen peroxide.
  • the temperature of the passivation treatment is 30 ° C and the time is 10 hours.
  • the passivation reaction of the stainless steel on the surface of the stainless steel substrate generates a passivation layer, and the surface of the stainless steel substrate is passivated.
  • the main component of the passivation layer is ferric tetroxide.
  • the active material layer is detached from the stainless steel substrate with a passivation layer on the surface, and the active material in the active material layer mostly enters the mixed liquid in the form of powder or debris.
  • the passivated stainless steel substrate is not damaged. Out of a passivated stainless steel substrate.
  • the passivation layer does not react during the first stage of leaching, and the surface portion of the active material layer reacts.
  • the copper indium gallium selenide in the active material layer in this embodiment reacts with sodium peroxide and hydrogen peroxide under acidic conditions.
  • Selenium Copper indium gallium, sodium peroxide, hydrogen peroxide, and hydrogen ions react to form Cu 3+ , In 3+ , Ga 3+ , SeO 3 2- , SeO 4 2- , and H 2 O.
  • the active material layer in this embodiment further includes zinc oxide and cadmium sulfide.
  • Zinc oxide reacts with hydrogen ions to generate Zn 2+ and water, and cadmium sulfide reacts with sodium peroxide and hydrogen peroxide to generate Cd 2+ , SO 4 2- and water. Due to the low soaking temperature, the above reaction is slow, and only the surface portion of the active material layer reacts.
  • the temperature was raised to 50 ° C, and the leaching was continued for 10 hours to stop. At this time, the mixed solution soaked with the active material layer became clear, and the powder or debris of the active material layer was completely dissolved in the mixed solution to obtain The total solution in which the active material is dissolved can be sent to the subsequent wet process for recycling after cooling.
  • the following Table 6 shows the concentration and leaching rate of each element in the total solution in which the active material was dissolved after the second stage of leaching.
  • the concentration of each element in the total solution was detected by atomic absorption.
  • the leaching rate can be calculated through conversion.
  • Table 6 it can be seen that the concentration of iron in the solution is very small, only At 75 ppm, the recycling method in this embodiment hardly causes corrosion damage to the stainless steel substrate.
  • the leaching rates of copper, indium, gallium, and selenium all reached more than 99%, and basically all leached into the solution.
  • the active material solution obtained by dissolving the active material layer is subjected to wet separation, so that the active elements in the active material solution are recovered as a single substance.
  • the specific steps of wet separation are:
  • the precipitated mixture of gallium hydroxide and indium hydroxide is firstly ball milled, and then an excess of sodium hydroxide solution is added, and the concentration of the sodium hydroxide solution is 160 g / L.
  • the mixture is heated to 98 ° C and stirred to dissolve, so that the gallium hydroxide is dissolved.
  • the sodium gallium solution is obtained, and solid-liquid separation is performed to obtain sodium gallium solution, and indium hydroxide is precipitated.
  • the sodium gallium solution is electrolytically obtained under alkaline conditions to obtain gallium simple substance; the indium hydroxide precipitate is re-dissolved with hydrochloric acid, and the zinc plate is replaced to recover the sponge. Indium is used to electrolyze sponge indium to produce elemental indium.
  • a passivation layer is formed on the surface of the stainless steel substrate, so that the surface-passivated stainless steel substrate is not damaged during the immersion process, and the active material is made without destroying the stainless steel substrate.
  • the layer is separated from the stainless steel substrate, the stainless steel substrate can be continuously recycled and reused, and the separated active material layer can be continuously used in the subsequent wet recycling process.
  • the recycling method in this embodiment is simple, low cost, and easy to implement.
  • This embodiment provides a method for recycling a copper indium gallium selenium solar cell, which includes the following steps:
  • the copper indium gallium selenium solar cell includes a stainless steel substrate and an active material layer disposed thereon;
  • the temperature is 60 ° C. and the time is 4 hours.
  • the stainless steel on the surface of the stainless steel substrate undergoes a passivation reaction to form a passivation layer, and a mixture of a copper indium gallium selenium solar cell and a sodium phosphate solution that is passivated on the surface of the stainless steel substrate is obtained.
  • the main component of the passivation layer is ferric tetroxide.
  • a nitric acid solution with a mass concentration of 60% is slowly added to a mixture of a copper indium gallium selenium solar cell and a sodium phosphate solution that is passivated on the surface of a stainless steel substrate, and stirred to make the mixture uniform.
  • the copper indium gallium selenium solar cell is immersed in a mixed solution, the mass percentage concentration of nitric acid in the mixed solution is 30%, and the temperature is 35 ° C.
  • a slight oscillation is performed, and the leaching is continued for 4 hours to stop.
  • the active material The layer is detached from the stainless steel substrate whose surface is a passivation layer.
  • the active material in the active material layer mostly enters the mixed liquid in the form of powder or debris.
  • the passivated stainless steel substrate is not damaged. Use a colander to remove the passivated stainless steel. Substrate.
  • the passivation layer does not react, and the surface portion of the active material layer reacts.
  • the copper indium gallium selenide and sodium phosphate in the active material layer in this example react under acidic conditions, and the copper indium selenide Gallium, sodium phosphate, and hydrogen ions react to form Cu 3+ , In 3+ , Ga 3+ , SeO 3 2- , SeO 4 2- , and H 2 O.
  • the active material layer in this embodiment further includes zinc oxide and cadmium sulfide. Zinc oxide reacts with hydrogen ions to generate Zn 2+ and water, and cadmium sulfide reacts with sodium phosphate to generate Cd 2+ , SO 4 2- and water. Due to the low soaking temperature, the above reaction is slow, and only the surface portion of the active material layer reacts.
  • the temperature was raised to 70 ° C, and the leaching was continued for 8 hours to stop. At this time, the mixed solution soaked with the active material layer became clear, and the powder or debris of the active material layer was completely dissolved in the mixed solution to obtain The total solution in which the active material is dissolved can be sent to the subsequent wet process for recycling after cooling.
  • the following Table 7 shows the concentration and leaching rate of each element in the total solution in which the active material was dissolved after the second stage of leaching.
  • the concentration of each element in the total solution was detected by atomic absorption.
  • the leaching rate can be calculated through conversion.
  • Table 7 it can be seen that the concentration of iron in the solution is very small, only At 80 ppm, the recovery method in this embodiment hardly caused corrosion damage to the stainless steel substrate.
  • the leaching rates of copper, indium, gallium, and selenium all reached more than 99%, and basically all leached into the solution.
  • the active material solution obtained by dissolving the active material layer is subjected to wet separation, so that the active elements in the active material solution are recovered as a single substance.
  • the specific steps of wet separation are:
  • the reaction equivalent of concentrated ammonia to the first liquid phase to form gallium hydroxide and indium hydroxide to complete precipitation, and obtain a precipitated mixture of gallium hydroxide and indium hydroxide and a second liquid through solid-liquid separation.
  • the second liquid phase contains copper ammonia complex, zinc ammonia complex, cadmium ammonia complex, molybdate;
  • the precipitated mixture of gallium hydroxide and indium hydroxide is firstly ball milled, and then an excess of sodium hydroxide solution is added, the concentration of the sodium hydroxide solution is 180 g / L, and the mixture is heated to 90 ° C. and stirred to dissolve, so that the gallium hydroxide is dissolved.
  • the sodium gallium solution is obtained, and solid-liquid separation is performed to obtain sodium gallium solution, and indium hydroxide is precipitated.
  • the sodium gallium solution is electrolytically obtained under alkaline conditions to obtain gallium simple substance; the indium hydroxide precipitate is re-dissolved with hydrochloric acid, and the zinc plate is replaced to recover the sponge. Indium is used to electrolyze sponge indium to produce elemental indium.
  • a passivation layer is formed on the surface of the stainless steel substrate, so that the surface-passivated stainless steel substrate is not damaged during the immersion process, and the active material is made without destroying the stainless steel substrate.
  • the layer is separated from the stainless steel substrate, the stainless steel substrate can be continuously recycled and reused, and the separated active material layer can be continuously used in the subsequent wet recycling process.
  • the recycling method in this embodiment is simple, low cost, and easy to implement.
  • This embodiment provides a method for recycling a copper indium gallium selenium solar cell.
  • the difference between this embodiment and the recycling method in Example 7 is:
  • the active material solution obtained by dissolving the active material layer is subjected to wet separation, so that the active elements in the active material solution are recovered as a single substance.
  • the specific steps of wet separation are:
  • the reaction equivalent of concentrated ammonia to the first liquid phase to form gallium hydroxide and indium hydroxide to complete precipitation, and obtain a precipitated mixture of gallium hydroxide and indium hydroxide and a second liquid through solid-liquid separation.
  • the second liquid phase contains copper ammonia complex, zinc ammonia complex, cadmium ammonia complex;
  • the precipitated mixture of gallium hydroxide and indium hydroxide is firstly ball milled, and then an excess of sodium hydroxide solution is added, the concentration of the sodium hydroxide solution is 180 g / L, and the mixture is heated to 90 ° C. and stirred to dissolve, so that the gallium hydroxide is dissolved.
  • the sodium gallium solution is obtained, and solid-liquid separation is performed to obtain sodium gallium solution, and indium hydroxide is precipitated.
  • the sodium gallium solution is electrolytically obtained under alkaline conditions to obtain gallium simple substance; the indium hydroxide precipitate is re-dissolved with hydrochloric acid, and the zinc plate is replaced to recover the sponge. Indium is used to electrolyze sponge indium to produce elemental indium.
  • a passivation layer is formed on the surface of the stainless steel substrate, so that the surface-passivated stainless steel substrate is not damaged during the immersion process, and the active material is made without destroying the stainless steel substrate.
  • the layer is separated from the stainless steel substrate, the stainless steel substrate can be continuously recycled and reused, and the separated active material layer can be continuously used in the subsequent wet recycling process.
  • the recycling method in this embodiment is simple, low cost, and easy to implement.
  • This embodiment provides a recycling method for a copper indium gallium selenium solar cell.
  • the difference between this embodiment and the recycling method in Embodiment 8 is:
  • step m the molybdate in the first liquid phase is extracted with an organic amine-based extractant.
  • This embodiment provides a method for recycling a copper indium gallium selenium solar cell, which includes the following steps:
  • the copper indium gallium selenium solar cell includes a stainless steel substrate and an active material layer disposed thereon;
  • the passivation temperature is At 50 ° C for 6 hours, the stainless steel on the surface of the stainless steel substrate undergoes a passivation reaction to form a passivation layer, and a mixture of a copper indium gallium selenium solar cell and an ozone solution is obtained on the surface of the stainless steel substrate.
  • the main component of the passivation layer is ferric tetroxide.
  • the passivation layer does not react during the first leaching process, and the surface portion of the active material layer reacts.
  • the copper indium gallium selenide in the active material layer in this embodiment reacts with ozone under acidic conditions, and the copper indium gallium selenide , Ozone, and hydrogen ions react to form Cu 3+ , In 3+ , Ga 3+ , SeO 3 2- , SeO 4 2- , and H 2 O.
  • the active material layer in this embodiment further includes zinc oxide and cadmium sulfide. Zinc oxide reacts with hydrogen ions to generate Zn 2+ and water, and cadmium sulfide reacts with ozone to generate Cd 2+ , SO 4 2- and water. Due to the low soaking temperature, the above reaction is slow, and only the surface portion of the active material layer reacts.
  • the temperature was raised to 100 ° C, and the leaching was continued for 5 hours to stop. At this time, the mixed solution soaked with the active material layer became clear, and the powder or debris of the active material layer was completely dissolved in the mixed solution to obtain The total solution in which the active material is dissolved can be sent to the subsequent wet process for recycling after cooling.
  • the following Table 8 shows the concentration and leaching rate of each element in the total solution in which the active material was dissolved after the second stage leaching.
  • the concentration of each element in the total solution was detected by atomic absorption.
  • the leaching rate can be calculated through conversion.
  • Table 8 it can be seen that the concentration of iron in the solution is very small, only At 71 ppm, the recycling method in this embodiment hardly caused corrosion damage to the stainless steel substrate.
  • the leaching rates of copper, indium, gallium, and selenium all reached more than 99%, and basically all leached into the solution.
  • the active material solution obtained by dissolving the active material layer is subjected to wet separation, so that the active elements in the active material solution are recovered as a single substance.
  • the specific steps of wet separation are:
  • the precipitated mixture of gallium hydroxide and indium hydroxide is firstly ball milled, and then an excess of sodium hydroxide solution is added, the concentration of the sodium hydroxide solution is 50 g / L, and the mixture is heated to 100 ° C. and stirred to dissolve the gallium hydroxide.
  • the sodium gallium solution is obtained, and solid-liquid separation is performed to obtain sodium gallium solution, and indium hydroxide is precipitated.
  • the sodium gallium solution is electrolytically obtained under alkaline conditions to obtain gallium simple substance; the indium hydroxide precipitate is re-dissolved with hydrochloric acid, and the zinc plate is replaced to recover the sponge. Indium is used to electrolyze sponge indium to produce elemental indium.
  • a passivation layer is formed on the surface of the stainless steel substrate, so that the surface-passivated stainless steel substrate is not damaged during the immersion process, and the active material is made without destroying the stainless steel substrate.
  • the layer is separated from the stainless steel substrate, the stainless steel substrate can be continuously recycled and reused, and the separated active material layer can be continuously used in the subsequent wet recycling process.
  • the recycling method in this embodiment is simple, low cost, and easy to implement.
  • This embodiment provides a recycling method for a copper indium gallium selenium solar cell.
  • the difference between this embodiment and the recycling method in Embodiment 10 is as follows:
  • step B in this embodiment a 2 L ⁇ min -1 ozone solution is passed into each liter of water to passivate the copper indium gallium selenium solar cell.
  • the following Table 9 shows the concentration and leaching rate of each element in the total solution in which the active material was dissolved after the second stage leaching.
  • the concentration of each element in the total solution was detected by atomic absorption.
  • the leaching rate can be calculated by conversion.
  • Table 9 it can be seen that the concentration of iron in the solution is very small, only At 75 ppm, the recycling method in this embodiment hardly causes corrosion damage to the stainless steel substrate.
  • the leaching rates of copper, indium, gallium, and selenium all reached more than 99%, and basically all leached into the solution.
  • This embodiment provides a recycling method for a copper indium gallium selenium solar cell.
  • the difference between this embodiment and the recycling method in Embodiment 10 is as follows:
  • step B in this embodiment a 10 L ⁇ min -1 ozone solution is passed into each liter of water to passivate the copper indium gallium selenium solar cell.
  • the following Table 10 shows the concentration and leaching rate of each element in the total solution in which the active material was dissolved after the second stage leaching.
  • the concentration of each element in the total solution was detected by atomic absorption.
  • the leaching rate can be calculated through conversion.
  • Table 10 it can be seen that the concentration of iron in the solution is very small, only At 70 ppm, the recovery method in this embodiment hardly caused corrosion damage to the stainless steel substrate.
  • the leaching rates of copper, indium, gallium, and selenium all reached more than 99%, and basically all leached into the solution.
  • This embodiment provides a method for recycling a cadmium telluride solar cell, including the following steps:
  • the cadmium telluride solar cell includes a stainless steel substrate and an active material layer disposed thereon;
  • a 20% hydrogen peroxide solution was arranged, 10 kg of the cadmium telluride solar cell detached from the resin film was immersed in 50 L of the hydrogen peroxide solution, and the passivation treatment was performed on the cadmium telluride solar cell at a temperature of 40 ° C.
  • the stainless steel on the surface of the stainless steel substrate undergoes a passivation reaction to form a passivation layer, and a mixture of a cadmium telluride solar cell and a hydrogen peroxide solution is obtained on the surface of the stainless steel substrate.
  • the main component of the passivation layer is ferric tetroxide.
  • a nitric acid solution with a mass concentration of 60% was slowly added to a mixture of a cadmium telluride solar cell and a hydrogen peroxide solution passivated on the surface of a stainless steel substrate, and stirred to make the mixture uniform.
  • the cadmium solar cell is immersed in a mixed solution, the mass percentage concentration of nitric acid in the mixed solution is 30%, and the temperature is 20 ° C.
  • a slight shaking is performed, and the leaching is continued for 10 hours to stop.
  • the active material layer is from the surface
  • the stainless steel substrate for the passivation layer is detached, and the active material in the active material layer mostly enters the mixed liquid in the form of powder or debris.
  • the passivated stainless steel substrate is not damaged. Use a colander to remove the passivated stainless steel substrate.
  • the passivation layer does not react, and the surface portion of the active material layer reacts.
  • the cadmium telluride in the active material layer in this embodiment reacts with hydrogen peroxide under acidic conditions.
  • Cadmium telluride, hydrogen peroxide, hydrogen Ionic reaction produces TeO 3 2- , Cd 2+ , and H 2 O. Due to the low soaking temperature, the above reaction is slow, and only the surface portion of the active material layer reacts.
  • the temperature was raised to 50 ° C, and the leaching was continued for 10 hours to stop. At this time, the mixed solution soaked with the active material layer became clear, and the powder or debris of the active material layer was completely dissolved in the mixed solution to obtain The total solution in which the active material is dissolved can be sent to the subsequent wet process for recycling after cooling.
  • Table 11 shows the concentration and leaching rate of each element in the total solution in which the active material was dissolved after the second stage of leaching.
  • the concentration of each element in the total solution was detected by atomic absorption.
  • the leaching rate can be calculated through conversion.
  • Table 11 it can be seen that the concentration of iron in the solution is very small, only 75 ppm.
  • the recycling method in the embodiment hardly caused corrosion damage to the stainless steel substrate.
  • the leaching rates of tellurium and cadmium have reached more than 99%, basically all leaching into the solution.
  • the active material solution obtained by dissolving the active material layer is subjected to wet separation, so that the active elements in the active material solution are recovered as a single substance.
  • a passivation layer is formed on the surface of the stainless steel substrate, so that the surface-passivated stainless steel substrate is not damaged during the immersion process, and the active material is made without destroying the stainless steel substrate.
  • the layer is separated from the stainless steel substrate, the stainless steel substrate can be continuously recycled and reused, and the separated active material layer can be continuously used in the subsequent wet recycling process.
  • the recycling method in this embodiment is simple, low cost, and easy to implement.
  • Embodiment 13 provides a method for recycling a cadmium telluride solar cell.
  • the difference from Embodiment 13 is as follows:
  • Step B passivation treatment: configure sodium hypochlorite with a concentration of 0.5% by mass, the temperature of the passivation treatment is 65 ° C., and the time is 5 hours.
  • the temperature is raised to 95 ° C., and the leaching is stopped for 0.5 hours.
  • Table 12 shows the concentration and leaching rate of each element in the total solution in which the active material was dissolved after the second stage leaching.
  • the concentration of each element in the total solution was detected by atomic absorption.
  • the leaching rate can be calculated through conversion.
  • Table 12 it can be seen that the concentration of iron in the solution is very small, only 58 ppm.
  • the recycling method in the embodiment hardly caused corrosion damage to the stainless steel substrate.
  • the leaching rates of tellurium and cadmium have reached more than 99%, basically all leaching into the solution.
  • a passivation layer is formed on the surface of the stainless steel substrate, so that the surface-passivated stainless steel substrate is not damaged during the immersion process, and the active material is made without destroying the stainless steel substrate.
  • the layer is separated from the stainless steel substrate, the stainless steel substrate can be continuously recycled and reused, and the separated active material layer can be continuously used in the subsequent wet recycling process.
  • the recycling method in this embodiment is simple, low cost, and easy to implement.
  • Embodiment 13 provides a method for recycling a cadmium telluride solar cell.
  • the difference from Embodiment 13 is as follows:
  • Step B Passivation treatment: configure sodium peroxide with a concentration of 10% by mass.
  • the temperature of the passivation treatment is 95 ° C. and the time is 0.5 hour.
  • hydrochloric acid solution 50 L of a 20% by weight hydrochloric acid solution was slowly added to a mixture of a passivated cadmium telluride solar cell and a hydrogen peroxide solution on the surface of a stainless steel substrate.
  • concentration of the hydrochloric acid in the mixed solution was 10% and the temperature was 40. °C, continuous leaching stopped for 2 hours.
  • the temperature was raised to 70 ° C., and the leaching was stopped for 2 hours.
  • Table 13 shows the concentration and leaching rate of each element in the total solution in which the active material was dissolved after the second stage of leaching.
  • the concentration of each element in the total solution was detected by atomic absorption.
  • the leaching rate can be calculated through conversion.
  • Table 13 it can be seen that the concentration of iron in the solution is very small, only 71 ppm.
  • the recycling method in the embodiment hardly caused corrosion damage to the stainless steel substrate.
  • the leaching rates of tellurium and cadmium have reached more than 99%, basically all leaching into the solution.
  • a passivation layer is formed on the surface of the stainless steel substrate, so that the surface-passivated stainless steel substrate is not damaged during the immersion process, and the active material is made without destroying the stainless steel substrate.
  • the layer is separated from the stainless steel substrate, the stainless steel substrate can be continuously recycled and reused, and the separated active material layer can be continuously used in the subsequent wet recycling process.
  • the recycling method in this embodiment is simple, low cost, and easy to implement.
  • Embodiment 13 provides a method for recycling a cadmium telluride solar cell.
  • the difference from Embodiment 13 is as follows:
  • Step B Passivation treatment: configure sodium nitrite and sodium phosphate with a concentration of 5% by mass.
  • the temperature of the passivation treatment is 20 ° C. and the time is 4 hours.
  • nitric acid solution 50 L of a nitric acid solution with a mass concentration of 30% was slowly added to a mixture of a cadmium telluride solar cell and a hydrogen peroxide solution passivated on the surface of a stainless steel substrate.
  • the mass concentration of nitric acid in the mixed solution was 15% and the temperature was 25. °C, continued leaching for 8 hours and stopped.
  • the temperature was raised to 100 ° C., and the leaching was stopped for 4 hours.
  • Table 14 shows the concentration and leaching rate of each element in the total solution in which the active material was dissolved after the second stage leaching.
  • the concentration of each element in the total solution was detected by atomic absorption.
  • the leaching rate can be calculated through conversion. From Table 12, it can be seen that the concentration of iron in the solution is very small, only 75 ppm
  • the recycling method in the embodiment hardly caused corrosion damage to the stainless steel substrate.
  • the leaching rates of tellurium and cadmium have reached more than 99%, basically all leaching into the solution.
  • a passivation layer is formed on the surface of the stainless steel substrate, so that the surface-passivated stainless steel substrate is not damaged during the immersion process, and the active material is made without destroying the stainless steel substrate.
  • the layer is separated from the stainless steel substrate, the stainless steel substrate can be continuously recycled and reused, and the separated active material layer can be continuously used in the subsequent wet recycling process.
  • the recycling method in this embodiment is simple, low cost, and easy to implement.
  • Embodiment 13 provides a method for recycling a cadmium telluride solar cell.
  • the difference from Embodiment 13 is as follows:
  • Step B passivation treatment: Lan826, an inhibitor with a mass concentration of 15%, is configured, and the temperature of the passivation treatment is 70 ° C. and the time is 10 hours.
  • the temperature was raised to 80 ° C., and the leaching was stopped for 6 hours.
  • Table 15 shows the concentration and leaching rate of each element in the total solution in which the active material was dissolved after the second stage leaching.
  • the concentration of each element in the total solution was detected by atomic absorption.
  • the leaching rate can be calculated through conversion.
  • Table 15 it can be seen that the concentration of iron in the solution is very small, only 70 ppm.
  • the recycling method in the embodiment hardly caused corrosion damage to the stainless steel substrate.
  • the leaching rates of tellurium and cadmium have reached more than 99%, basically all leaching into the solution.
  • a passivation layer is formed on the surface of the stainless steel substrate, so that the surface-passivated stainless steel substrate is not damaged during the immersion process, and the active material is made without destroying the stainless steel substrate.
  • the layer is separated from the stainless steel substrate, the stainless steel substrate can be continuously recycled and reused, and the separated active material layer can be continuously used in the subsequent wet recycling process.
  • the recycling method in this embodiment is simple, low cost, and easy to implement.
  • Embodiment 13 provides a method for recycling a cadmium telluride solar cell.
  • the difference from Embodiment 13 is as follows:
  • Step B Passivation treatment: Pass 8L ⁇ min -1 ozone solution into each liter of water to passivate the copper indium gallium selenium solar cell.
  • the temperature of the passivation treatment is 80 ° C. and the time is 8 hours.
  • the temperature was raised to 60 ° C., and the leaching was stopped for 8 hours.
  • the following Table 16 shows the concentration and leaching rate of each element in the total solution in which the active material was dissolved after the second stage leaching.
  • the concentration of each element in the total solution was detected by atomic absorption.
  • the leaching rate can be calculated through conversion.
  • Table 16 it can be seen that the concentration of iron in the solution is very small, only 75 ppm.
  • the recycling method in the embodiment hardly caused corrosion damage to the stainless steel substrate.
  • the leaching rates of tellurium and cadmium have reached more than 99%, basically all leaching into the solution.
  • the active material solution obtained by dissolving the active material layer is subjected to wet separation, so that the active elements in the active material solution are recovered as a single substance.
  • a passivation layer is formed on the surface of the stainless steel substrate, so that the surface-passivated stainless steel substrate is not damaged during the immersion process, and the active material is made without destroying the stainless steel substrate.
  • the layer is separated from the stainless steel substrate, the stainless steel substrate can be continuously recycled and reused, and the separated active material layer can be continuously used in the subsequent wet recycling process.
  • the recycling method in this embodiment is simple, low cost, and easy to implement.
  • This embodiment provides a recycling method for cadmium telluride solar cells.
  • the difference between this embodiment and the recycling method in Embodiment 18 is:
  • step B in this embodiment a 2 L ⁇ min -1 ozone solution is passed into each liter of water to passivate the cadmium telluride solar cell.
  • Table 17 shows the concentration and leaching rate of each element in the total solution in which the active material was dissolved after the second stage of leaching.
  • the concentration of each element in the total solution was detected by atomic absorption.
  • the leaching rate can be calculated through conversion.
  • Table 16 it can be seen that the concentration of iron in the solution is very small, only 75 ppm.
  • the recycling method in the embodiment hardly caused corrosion damage to the stainless steel substrate.
  • the leaching rates of tellurium and cadmium have reached more than 99%, basically all leaching into the solution.
  • a passivation layer is formed on the surface of the stainless steel substrate, so that the surface-passivated stainless steel substrate is not damaged during the immersion process, and the active material is made without destroying the stainless steel substrate.
  • the layer is separated from the stainless steel substrate, the stainless steel substrate can be continuously recycled and reused, and the separated active material layer can be continuously used in the subsequent wet recycling process.
  • the recycling method in this embodiment is simple, low cost, and easy to implement.
  • This embodiment provides a recycling method for cadmium telluride solar cells.
  • the difference between this embodiment and the recycling method in Embodiment 18 is:
  • step B in this embodiment a 10 L ⁇ min -1 ozone solution is passed into each liter of water to passivate the cadmium telluride solar cell.
  • the following Table 18 shows the concentration and leaching rate of each element in the total solution in which the active material was dissolved after the second stage of leaching.
  • the concentration of each element in the total solution was detected by atomic absorption.
  • the leaching rate can be calculated through conversion.
  • Table 16 it can be seen that the concentration of iron in the solution is very small, only 75 ppm.
  • the recycling method in the embodiment hardly caused corrosion damage to the stainless steel substrate.
  • the leaching rates of tellurium and cadmium have reached more than 99%, basically all leaching into the solution.
  • a passivation layer is formed on the surface of the stainless steel substrate, so that the surface-passivated stainless steel substrate is not damaged during the immersion process, and the active material is made without destroying the stainless steel substrate.
  • the layer is separated from the stainless steel substrate, the stainless steel substrate can be continuously recycled and reused, and the separated active material layer can be continuously used in the subsequent wet recycling process.
  • the recycling method in this embodiment is simple, low cost, and easy to implement.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Photovoltaic Devices (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

一种太阳能电池的回收方法,包括:从太阳能电池分离出有机膜层,从而形成脱封的太阳能电池,脱封的太阳能电池包括不锈钢衬底和设置于其上的活性材料层,通过第一表面处理剂对脱封的太阳能电池进行钝化处理,以使不锈钢衬底的表面生成钝化层;利用含有第二表面处理剂的酸性物质溶液对经钝化处理的太阳能电池进行第一阶段浸出处理,以使不锈钢衬底和活性材料层分离。该回收方法在不破坏不锈钢衬底的情况下,使得活性材料层与不锈钢衬底分离,不锈钢衬底可继续回收再利用。

Description

太阳能电池的回收方法 技术领域
本公开属于太阳能电池技术领域,具体涉及一种太阳能电池的回收方法。
背景技术
随着太阳能电池行业的迅速发展,太阳能光伏组件的总产量也快速提升,然而,随着太阳能电池使用年限的增加,依照太阳能光伏组件的使用寿命推断,在不远的将来,将会有大量的太阳能光伏组件报废,且在太阳能光伏组件的生产过程中,也会有不良品出现。因此,太阳能光伏组件回收的问题被提上了议程。
发明内容
本本公开提供了一种太阳能电池的回收方法,所述太阳能电池包括不锈钢衬底和设置于其上的活性材料层,并且所述方法包括:
通过第一表面处理剂对太阳能电池进行钝化处理,以使不锈钢衬底的表面生成钝化层;以及
利用含有第二表面处理剂的酸性物质溶液对经所述钝化处理的太阳能电池进行第一浸出处理,以使不锈钢衬底和活性材料层分离。
可选的是,第一表面处理剂和第二表面处理剂相同或者不同,并且选自双氧水、次氯酸钠、过氧化钠、臭氧、亚硝酸钠、磷酸钠和缓蚀剂Lan826中的任意一种或几种。
可选的是,在所述第一表面处理剂为液体或固体的情形下,所述通过第一表面处理剂对所述太阳能电池进行钝化处理包括:
将所述太阳能电池浸泡于质量百分比浓度为0.5~20%的第一 表面处理剂溶液中,以对所述太阳能电池进行钝化处理;或
在所述第一表面处理剂为气体的情形下,所述通过第一表面处理剂对所述太阳能电池进行钝化处理包括:
将所述太阳能电池浸泡于水中,向每升水中通入2~10L·min -1的第一表面处理剂,对所述太阳能电池进行钝化处理。
可选的是,所述钝化处理的温度为20~95℃,时间为0.5~10小时。
可选的是,所述酸性物质为硫酸、盐酸、硝酸中的任意一种或几种。
可选的是,所述酸性物质溶液中的酸性物质的质量百分比浓度为10~30%。
可选的是,所述利用含有第一表面处理剂的酸性物质溶液对经所述钝化处理的太阳能电池进行处理的温度为20~40℃,处理时间为0.5~10小时。
可选的是,所述回收方法还包括:取出表面为钝化层的不锈钢衬底,对浸泡有活性材料层的溶液进行第二浸出处理,以使活性材料层溶解。
可选的是,所述第二浸出处理包括对浸泡有所述活性材料层的溶液进行升温加热,以使所述活性材料层溶解。
可选的是,所述升温加热的温度为50~100℃,加热时间为0.5~10小时。
所述回收方法还包括:将进行第二浸出处理的活性材料溶液进行湿法分离,使得活性材料溶液中的活性元素以单质或化合物的形式回收。
可选的是,太阳能电池为铜铟镓硒太阳能电池或碲化镉太阳能电池。
可选的是,太阳能电池为铜铟镓硒太阳能电池,上述湿法分离的具体步骤为:
①向活性材料溶液中加入亚硫酸盐或二氧化硫进行还原沉淀,经固液分离得到硒单质产品和第一液相物;
②向第一液相物中加入浓氨水或液氨,生成氢氧化镓、氢氧化铟,经固液分离得到氢氧化镓和氢氧化铟的沉淀混合物和第二液相物,第二液相物中含有铜的氨络合物、锌的氨络合物、镉的氨络合物、钼酸根;
③向第二液相物中加入锌粉,置换出海绵铜,固液分离得到海绵铜产品;再加入锌粉,置换出海绵镉,固液分离得到海绵镉产品;然后加入酸,使钼以钼酸铵形式沉淀出来,过滤得到钼酸铵产品;最后将剩余液相蒸发结晶获得硫酸锌产品;或者向所述第二液相物中加入溶于水的硫化物至铜、锌、镉、钼离子沉淀完全,固液分离后得到铜、锌、镉、钼硫化物的混合沉淀物,可作为铜冶炼原料;
向氢氧化镓和氢氧化铟的沉淀混合物中加入过量氢氧化钠溶液,生成镓酸钠,进行固液分离得到镓酸钠溶液、氢氧化铟沉淀,镓酸钠溶液在碱性条件下电解得到镓单质;氢氧化铟沉淀用盐酸返溶,用锌板置换回收海绵铟,将海绵铟电解生成单质铟。
可选的是,所述步骤①中亚硫酸盐或二氧化硫为1.5~2倍的反应当量;
所述步骤②中浓氨水或液氨为1~1.5倍的反应当量;
所述步骤③中加入的酸为硫酸、盐酸和硝酸中的任意一种或几种,加入酸的pH值为1.5~6;
所述步骤③中加入氢氧化钠溶液的浓度为50~200g/L,加热到90~100℃。
可选的是,所述步骤①与步骤②之间还包括步骤m用碱性树脂或有机胺类萃取剂将第一液相物中的钼酸根提取出来,后续步骤②、③中省略提取钼的步骤。
附图说明
图1是本公开实施例1中的铜铟镓硒太阳能电池的回收方法的流程图。
具体实施方式
为使本领域技术人员更好地理解本公开的技术方案,下面结合附图和具体实施方式对本公开作进一步详细描述。
薄膜太阳能组件中通常会用到硅或是铟、镓、镉、钛等金属,价格昂贵,有的在组件报废后如不合理回收,则会给环境带来极大污染。然而,薄膜太阳能电池上含有多层复合的活性材料层,衬底通常是不锈钢基底,在回收时的湿法浸出过程中,容易将不锈钢中的铁和活性材料层一起浸入到溶液体系中,为后续的金属元素分离造成较大难度,目前尚无较好的办法来单独分离出活性材料层,而不损坏不锈钢基底。
本公开所要解决的技术问题是针对现有技术中存在的尚无较好的办法将薄膜太阳能电池上的活性材料层单独分离出来,而不损坏不锈钢基底的技术问题,本公开提供一种太阳能电池的回收方法,在不破坏不锈钢衬底的情况下,使得活性材料层与不锈钢衬底分离。
为了解决上述问题,本公开提供了一种太阳能电池的回收方法,所述太阳能电池包括不锈钢衬底和设置于其上的活性材料层,并且所述回收方法包括:
通过第一表面处理剂对太阳能电池进行钝化处理,以使不锈钢衬底的表面生成钝化层;以及
利用含有第二表面处理剂的酸性物质溶液对经所述钝化处理的太阳能电池进行第一浸出处理,以使不锈钢衬底和活性材料层分离。
第一表面处理剂和第二表面处理剂可以相同或者不同。第一表面处理剂和第二表面处理剂可以选自双氧水、次氯酸钠、过氧化钠、臭氧、亚硝酸钠、磷酸钠和缓蚀剂Lan826中的任意一种或几种。
可选的是,在所述表面处理剂为液体或固体的情形下,所述通过第一表面处理剂对所述太阳能电池进行钝化处理包括:
将太阳能电池浸泡于质量百分比浓度为0.5~20%的第一表面 处理剂溶液中,以对太阳能电池进行钝化处理;或
在所述第一表面处理剂为气体的情形下,所述通过第一表面处理剂对脱封的太阳能电池进行钝化处理包括:
将太阳能电池浸泡于水中,向每升水中通入2~10L·min -1的第一表面处理剂,对所述脱封的太阳能电池进行钝化处理。
可选的是,所述钝化处理的温度为20~95℃,时间为0.5~10小时。
可选的是,所述酸性物质为硫酸、盐酸和硝酸中的任意一种或几种。
可选的是,所述酸性物质溶液中的酸性物质的质量百分比浓度为10~30%。
可选的是,利用含有第二表面处理剂的酸性物质溶液对经所述钝化处理的太阳能电池进行第一浸出处理的温度为20~40℃,处理时间为0.5~10小时。
可选的是,所述回收方法还包括:取出表面为钝化层的不锈钢衬底,对浸泡有活性材料层的溶液进行第二浸出处理。可选地,第二浸出处理包括对浸泡有活性材料层的溶液升温加热,以使活性材料层溶解。
可选的是,所述升温加热的温度为50~100℃,加热时间为0.5~10小时。
所述回收方法还包括:将经过第二浸出处理得到的活性材料溶液进行湿法分离,使得活性材料溶液中的活性元素以单质或化合物的形式回收。
可选的是,太阳能电池为铜铟镓硒太阳能电池或碲化镉太阳能电池,例如,废弃的铜铟镓硒太阳能电池或碲化镉太阳能电池。
可选的是,太阳能电池为铜铟镓硒太阳能电池,上述湿法分离的具体步骤为:
①向活性材料溶液中加入亚硫酸盐或二氧化硫进行还原沉淀,经固液分离得到硒单质产品和第一液相物;
②向第一液相物中加入浓氨水或液氨,生成氢氧化镓、氢氧 化铟,经固液分离得到氢氧化镓和氢氧化铟的沉淀混合物和第二液相物,第二液相物中含有铜的氨络合物、锌的氨络合物、镉的氨络合物、钼酸根;
③向第二液相物中加入锌粉,置换出海绵铜,固液分离得到海绵铜产品;再加入锌粉,置换出海绵镉,固液分离得到海绵镉产品;然后加入酸,使钼以钼酸铵形式沉淀出来,过滤得到钼酸铵产品;最后将剩余液相蒸发结晶获得硫酸锌产品;或者向所述第二液相物中加入溶于水的硫化物至铜、锌、镉、钼离子沉淀完全,固液分离后得到铜、锌、镉、钼硫化物的混合沉淀物,可作为铜冶炼原料;
向氢氧化镓和氢氧化铟的沉淀混合物中加入过量氢氧化钠溶液,生成镓酸钠,进行固液分离得到镓酸钠溶液、氢氧化铟沉淀,镓酸钠溶液在碱性条件下电解得到镓单质;氢氧化铟沉淀用盐酸返溶,用锌板置换回收海绵铟,将海绵铟电解生成单质铟。
可选的是,所述步骤①中亚硫酸盐或二氧化硫为1.5~2倍的反应当量;
所述步骤②中浓氨水或液氨为1~1.5倍的反应当量;
所述步骤③中加入的酸为硫酸、盐酸和硝酸中的任意一种或几种,加入酸的pH值为1.5~6;
所述步骤③中加入氢氧化钠溶液的浓度为50~200g/L,加热到90~100℃。
可选的是,所述步骤①与步骤②之间还包括步骤m用碱性树脂或有机胺类萃取剂将第一液相物中的钼酸根提取出来,后续步骤②、③中省略提取钼的步骤。
本公开中的太阳能电池的回收方法,不锈钢衬底的表面生成钝化层,使得表面钝化的不锈钢衬底在浸泡工序中不被破坏,在不破坏不锈钢衬底的情况下,使得活性材料层与不锈钢衬底分离,不锈钢衬底可继续回收再利用,分离开的活性材料层可继续用于后续的湿法回收工序,本公开中的回收方法简单,成本低,容易实现。
以下参照实施例对本公开进行具体说明。
实施例1
如图1所示,本实施例提供一种铜铟镓硒太阳能电池的回收方法,包括以下步骤:
A.废芯片准备:
准备10kg脱离了树脂膜(脱封)的铜铟镓硒太阳能电池,铜铟镓硒太阳能电池包括不锈钢衬底和设置于其上的活性材料层;
B.钝化处理:
配置质量百分比浓度为3.5%的双氧水溶液,将10kg脱离了树脂膜的铜铟镓硒太阳能电池浸泡于50L的双氧水溶液中,对铜铟镓硒太阳能电池进行钝化处理,钝化处理的温度为40℃,时间为1小时,不锈钢衬底表面的不锈钢发生钝化反应生成钝化层,得到不锈钢衬底表面钝化的铜铟镓硒太阳能电池与双氧水溶液的混合物。钝化层的主要组分为四氧化三铁。
C.分步法浸出:
第一段浸出:
将50L的质量百分比浓度为20%的硫酸溶液缓慢加入到不锈钢衬底表面钝化的铜铟镓硒太阳能电池与双氧水溶液的混合物中,搅拌使得混合均匀,混合后不锈钢衬底表面钝化的铜铟镓硒太阳能电池浸泡于混合液中,混合液中的硫酸的质量百分比浓度为10%,温度为40℃,浸泡过程中给以轻微的振荡,持续浸出1小时停止,此时,活性材料层从表面为钝化层的不锈钢衬底脱离,活性材料层中的活性材料多以粉末或碎屑形式进入混合液中,钝化的不锈钢衬底未被破坏,用漏勺捞出钝化的不锈钢衬底。
第一段浸出过程中钝化层不反应,活性材料层的表面部分发生反应,本实施例中的活性材料层中的硒化铜铟镓与双氧水在酸性条件下发生反应,硒化铜铟镓、双氧水、氢离子反应生成Cu 3+、In 3+、Ga 3+、SeO 3 2-、SeO 4 2-、H 2O。本实施例中的活性材料层还包括氧化锌和硫化镉,氧化锌与氢离子反应生成Zn 2+和水,硫化镉与双氧水反应生成Cd 2+、SO 4 2-和水。由于浸泡温度低,所以 上述反应缓慢,仅仅活性材料层的表面部分发生反应。
第二段浸出:
对浸泡有活性材料层的混合液,升温至95℃,持续浸出1小时停止,此时浸泡有活性材料层的混合液变得清澈,活性材料层粉末或碎屑完全溶解在混合液中,得到溶解有活性材料的总溶液,冷却后可以送到后续湿法工序中再回收利用。
通过第二段浸出升温加热后,上述反应速度加快,活性材料层完全溶解。
下述表1为经过第二段浸出后的溶解有活性材料的总溶液中的各个元素的浓度以及浸出率。通过原子吸收检测出总溶液中的各个元素的浓度。根据铜、铟、镓、硒在溶液中的浸出浓度和各元素在芯片中的含量,经过换算,可计算出浸出率,通过表1可以看出,铁元素在溶液中的浓度很小,仅有75ppm,本实施例中的回收方法几乎未对不锈钢衬底造成腐蚀破坏。铜、铟、镓、硒浸出率都达到了99%以上,基本上全部浸出进入溶液中。
元素 In Ga Se Fe
浓度/ppm 339 216 945 75
浸出率 99.2% 99.7% 99.5% 0.1%
表1
D湿法回收
将活性材料层溶解得到的活性材料溶液进行湿法分离,使得活性材料溶液中的活性元素以单质的形式回收,湿法分离的具体步骤为:
①向所述活性材料溶液中加入1.5倍反应当量的二氧化硫进行还原沉淀,经固液分离得到硒单质产品和第一液相物;
②向所述第一液相物中加入1.5倍反应当量的浓氨水,生成氢氧化镓、氢氧化铟至完全沉淀,经固液分离得到氢氧化镓和氢氧化铟的沉淀混合物和第二液相物,所述第二液相物中含有铜的氨络合物、锌的氨络合物、镉的氨络合物、钼酸根;
③向所述第二液相物中加入锌粉,恰好能完全置换出海绵铜, 固液分离得到海绵铜产品;再加入锌粉,恰好能完全置换出海绵镉,固液分离得到海绵镉产品;然后加入酸,加入酸的pH值为1.5,使钼以钼酸铵形式沉淀出来,过滤得到钼酸铵产品;最后将剩余液相蒸发结晶获得硫酸锌产品;
将所述氢氧化镓和氢氧化铟的沉淀混合物先进行球磨,然后加入过量氢氧化钠溶液,氢氧化钠溶液的浓度为50g/L,加热到90℃,进行搅拌溶解,使得氢氧化镓溶解得到镓酸钠溶液,进行固液分离得到镓酸钠溶液、氢氧化铟沉淀,镓酸钠溶液在碱性条件下电解得到镓单质;氢氧化铟沉淀用盐酸返溶,用锌板置换回收海绵铟,将海绵铟电解生成单质铟。
本实施例中的太阳能电池的回收方法,不锈钢衬底的表面生成钝化层,使得表面钝化的不锈钢衬底在浸泡工序中不被破坏,在不破坏不锈钢衬底的情况下,使得活性材料层与不锈钢衬底分离,不锈钢衬底可继续回收再利用,分离开的活性材料层可继续用于后续的湿法回收工序,本实施例中的回收方法简单,成本低,容易实现。
实施例2
本实施例提供一种铜铟镓硒太阳能电池的回收方法,包括以下步骤:
A.废芯片准备:
准备10kg脱离了树脂膜(脱封)的铜铟镓硒太阳能电池,铜铟镓硒太阳能电池包括不锈钢衬底和设置于其上的活性材料层;
B.钝化处理:
配置质量百分比浓度为10%的双氧水溶液,将10kg脱离了树脂膜的铜铟镓硒太阳能电池浸泡于50L的双氧水溶液中,对铜铟镓硒太阳能电池进行钝化处理,钝化处理的温度为20℃,时间为5小时,不锈钢衬底表面的不锈钢发生钝化反应生成钝化层,得到不锈钢衬底表面钝化的铜铟镓硒太阳能电池与双氧水溶液的混合物。钝化层的主要组分为四氧化三铁。
C.分步法浸出:
第一段浸出:
将50L的质量百分比浓度为24%的硫酸溶液缓慢加入到不锈钢衬底表面钝化的铜铟镓硒太阳能电池与双氧水溶液的混合物中,搅拌使得混合均匀,混合后不锈钢衬底表面钝化的铜铟镓硒太阳能电池浸泡于混合液中,混合液中的硫酸的质量百分比浓度为12%,温度为30℃,浸泡过程中给以轻微的振荡,持续浸出1小时停止,此时,活性材料层从表面为钝化层的不锈钢衬底脱离,活性材料层中的活性材料多以粉末或碎屑形式进入混合液中,钝化的不锈钢衬底未被破坏,用漏勺捞出钝化的不锈钢衬底。
第一段浸出过程中钝化层不反应,活性材料层的表面部分发生反应,本实施例中的活性材料层中的硒化铜铟镓与双氧水在酸性条件下发生反应,硒化铜铟镓、双氧水、氢离子反应生成Cu 3+、In 3+、Ga 3+、SeO 3 2-、SeO 4 2-、H 2O。本实施例中的活性材料层还包括氧化锌和硫化镉,氧化锌与氢离子反应生成Zn 2+和水,硫化镉与双氧水反应生成Cd 2+、SO 4 2-和水。由于浸泡温度低,所以上述反应缓慢,仅仅活性材料层的表面部分发生反应。
第二段浸出:
对浸泡有活性材料层的混合液,升温至95℃,持续浸出1小时停止,此时浸泡有活性材料层的混合液变得清澈,活性材料层粉末或碎屑完全溶解在混合液中,得到溶解有活性材料的总溶液,冷却后可以送到后续湿法工序中再回收利用。
通过第二段浸出升温加热后,上述反应速度加快,活性材料层完全溶解。
下述表2为经过第二段浸出后的溶解有活性材料的总溶液中的各个元素的浓度以及浸出率。通过原子吸收检测出总溶液中的各个元素的浓度。根据铜、铟、镓、硒在溶液中的浸出浓度和各元素在芯片中的含量,经过换算,可计算出浸出率,通过表2可以看出,铁元素在溶液中的浓度很小,仅有70ppm,本实施例中的回收方法几乎未对不锈钢衬底造成腐蚀破坏。铜、铟、镓、硒 浸出率都达到了99%以上,基本上全部浸出进入溶液中。
元素 In Ga Se Fe
浓度/ppm 360 210 945 70
浸出率 99.7% 99.6% 99.5% 0.1%
表2
D湿法回收
将活性材料层溶解得到的活性材料溶液进行湿法分离,使得活性材料溶液中的活性元素以单质的形式回收。湿法分离具体步骤:
①向所述活性材料溶液中加入二氧化硫进行还原沉淀,经固液分离得到硒单质产品和第一液相物;
②向所述第一液相物中加入液氨,生成氢氧化镓、氢氧化铟,经固液分离得到氢氧化镓和氢氧化铟的沉淀混合物和第二液相物,所述第二液相物中含有铜的氨络合物、锌的氨络合物、镉的氨络合物、钼酸根;
③向所述第二液相物中加入锌粉,置换出海绵铜,固液分离得到海绵铜产品;再加入锌粉,置换出海绵镉,固液分离得到海绵镉产品;然后加入酸,使钼以钼酸铵形式沉淀出来,过滤得到钼酸铵产品;最后将剩余液相蒸发结晶获得硫酸锌产品;
向所述氢氧化镓和氢氧化铟的沉淀混合物中加入过量氢氧化钠溶液,生成镓酸钠,进行固液分离得到镓酸钠溶液、氢氧化铟沉淀,镓酸钠溶液在碱性条件下电解得到镓单质;氢氧化铟沉淀用盐酸返溶,用锌板置换回收海绵铟,将海绵铟电解生成单质铟。
本实施例中的太阳能电池的回收方法,不锈钢衬底的表面生成钝化层,使得表面钝化的不锈钢衬底在浸泡工序中不被破坏,在不破坏不锈钢衬底的情况下,使得活性材料层与不锈钢衬底分离,不锈钢衬底可继续回收再利用,分离开的活性材料层可继续用于后续的湿法回收工序,本实施例中的回收方法简单,成本低,容易实现。
实施例3
本实施例提供一种铜铟镓硒太阳能电池的回收方法,包括以下步骤:
A.废芯片准备:
准备10kg脱离了树脂膜(脱封)的铜铟镓硒太阳能电池,铜铟镓硒太阳能电池包括不锈钢衬底和设置于其上的活性材料层;
B.钝化处理:
配置质量百分比浓度为0.5%的次氯酸钠溶液,将10kg脱离了树脂膜的铜铟镓硒太阳能电池浸泡于50L的次氯酸钠溶液中,对铜铟镓硒太阳能电池进行钝化处理,钝化处理的温度为65℃,时间为5小时,不锈钢衬底表面的不锈钢发生钝化反应生成钝化层,得到不锈钢衬底表面钝化的铜铟镓硒太阳能电池与次氯酸钠溶液的混合物。钝化层的主要组分为四氧化三铁。
C.分步法浸出:
第一段浸出:
将50L的质量百分比浓度为20%的盐酸溶液缓慢加入到不锈钢衬底表面钝化的铜铟镓硒太阳能电池与次氯酸钠溶液的混合物中,搅拌使得混合均匀,混合后不锈钢衬底表面钝化的铜铟镓硒太阳能电池浸泡于混合液中,混合液中的盐酸的质量百分比浓度为10%,温度为30℃,浸泡过程中给以轻微的振荡,持续浸出6小时停止,此时,活性材料层从表面为钝化层的不锈钢衬底脱离,活性材料层中的活性材料多以粉末或碎屑形式进入混合液中,钝化的不锈钢衬底未被破坏,用漏勺捞出钝化的不锈钢衬底。
第一段浸出过程中钝化层不反应,活性材料层的表面部分发生反应,本实施例中的活性材料层中的硒化铜铟镓与次氯酸钠在酸性条件下发生反应,硒化铜铟镓、次氯酸钠、氢离子反应生成Cu 3+、In 3+、Ga 3+、SeO 3 2-、SeO 4 2-、H 2O。本实施例中的活性材料层还包括氧化锌和硫化镉,氧化锌与氢离子反应生成Zn 2+和水,硫化镉与次氯酸钠反应生成Cd 2+、SO 4 2-和水。由于浸泡温度低,所以上述反应缓慢,仅仅活性材料层的表面部分发生反应。
第二段浸出:
对浸泡有活性材料层的混合液,升温至95℃,持续浸出0.5小时停止,此时浸泡有活性材料层的混合液变得清澈,活性材料层粉末或碎屑完全溶解在混合液中,得到溶解有活性材料的总溶液,冷却后可以送到后续湿法工序中再回收利用。
通过第二段浸出升温加热后,上述反应速度加快,活性材料层完全溶解。
下述表3为经过第二段浸出后的溶解有活性材料的总溶液中的各个元素的浓度以及浸出率。通过原子吸收检测出总溶液中的各个元素的浓度。根据铜、铟、镓、硒在溶液中的浸出浓度和各元素在芯片中的含量,经过换算,可计算出浸出率,通过表3可以看出,铁元素在溶液中的浓度很小,仅有75ppm,本实施例中的回收方法几乎未对不锈钢衬底造成腐蚀破坏。铜、铟、镓、硒浸出率都达到了99%以上,基本上全部浸出进入溶液中。
元素 In Ga Se Fe
浓度/ppm 350 210 980 75
浸出率 99.3% 99.7% 99.7% 0.1%
表3
D湿法回收
将活性材料层溶解得到的活性材料溶液进行湿法分离,使得活性材料溶液中的活性元素以单质的形式回收。湿法分离的具体步骤为:
①向所述活性材料溶液中加入2倍反应当量的亚硫酸钾进行还原沉淀,经固液分离得到硒单质产品和第一液相物;
②向所述第一液相物中加入1倍反应当量的液氨,生成氢氧化镓、氢氧化铟至完全沉淀,经固液分离得到氢氧化镓和氢氧化铟的沉淀混合物和第二液相物,所述第二液相物中含有铜的氨络合物、锌的氨络合物、镉的氨络合物、钼酸根;
③向所述第二液相物中加入锌粉,恰好能完全置换出海绵铜,固液分离得到海绵铜产品;再加入锌粉,恰好能完全置换出海绵 镉,固液分离得到海绵镉产品;然后加入酸,加入酸的pH值为3,使钼以钼酸铵形式沉淀出来,过滤得到钼酸铵产品;最后将剩余液相蒸发结晶获得硫酸锌产品;
将所述氢氧化镓和氢氧化铟的沉淀混合物先进行球磨,然后加入过量氢氧化钠溶液,氢氧化钠溶液的浓度为200g/L,加热到100℃,进行搅拌溶解,使得氢氧化镓溶解得到镓酸钠溶液,进行固液分离得到镓酸钠溶液、氢氧化铟沉淀,镓酸钠溶液在碱性条件下电解得到镓单质;氢氧化铟沉淀用盐酸返溶,用锌板置换回收海绵铟,将海绵铟电解生成单质铟。
本实施例中的太阳能电池的回收方法,不锈钢衬底的表面生成钝化层,使得表面钝化的不锈钢衬底在浸泡工序中不被破坏,在不破坏不锈钢衬底的情况下,使得活性材料层与不锈钢衬底分离,不锈钢衬底可继续回收再利用,分离开的活性材料层可继续用于后续的湿法回收工序,本实施例中的回收方法简单,成本低,容易实现。
实施例4
本实施例提供一种铜铟镓硒太阳能电池的回收方法,包括以下步骤:
A.废芯片准备:
准备10kg脱离了树脂膜(脱封)的铜铟镓硒太阳能电池,铜铟镓硒太阳能电池包括不锈钢衬底和设置于其上的活性材料层;
B.钝化处理:
配置质量百分比浓度为20%的亚硝酸钠溶液,将10kg脱离了树脂膜的铜铟镓硒太阳能电池浸泡于50L的亚硝酸钠溶液中,对铜铟镓硒太阳能电池进行钝化处理,钝化处理的温度为95℃,时间为0.5小时,不锈钢衬底表面的不锈钢发生钝化反应生成钝化层,得到不锈钢衬底表面钝化的铜铟镓硒太阳能电池与亚硝酸钠溶液的混合物。钝化层的主要组分为四氧化三铁。
C.分步法浸出:
第一段浸出:
将50L的质量百分比浓度为30%的硝酸溶液缓慢加入到不锈钢衬底表面钝化的铜铟镓硒太阳能电池与亚硝酸钠溶液的混合物中,搅拌使得混合均匀,混合后不锈钢衬底表面钝化的铜铟镓硒太阳能电池浸泡于混合液中,混合液中的硝酸的质量百分比浓度为15%,温度为40℃,浸泡过程中给以轻微的振荡,持续浸出10小时停止,此时,活性材料层从表面为钝化层的不锈钢衬底脱离,活性材料层中的活性材料多以粉末或碎屑形式进入混合液中,钝化的不锈钢衬底未被破坏,用漏勺捞出钝化的不锈钢衬底。
第一段浸出过程中钝化层不反应,活性材料层的表面部分发生反应,本实施例中的活性材料层中的硒化铜铟镓与亚硝酸钠在酸性条件下发生反应,硒化铜铟镓、亚硝酸钠、氢离子反应生成Cu 3+、In 3+、Ga 3+、SeO 3 2-、SeO 4 2-、H 2O。本实施例中的活性材料层还包括氧化锌和硫化镉,氧化锌与氢离子反应生成Zn 2+和水,硫化镉与亚硝酸钠反应生成Cd 2+、SO 4 2-和水。由于浸泡温度低,所以上述反应缓慢,仅仅活性材料层的表面部分发生反应。
第二段浸出:
对浸泡有活性材料层的混合液,升温至65℃,持续浸出6小时停止,此时浸泡有活性材料层的混合液变得清澈,活性材料层粉末或碎屑完全溶解在混合液中,得到溶解有活性材料的总溶液,冷却后可以送到后续湿法工序中再回收利用。
通过第二段浸出升温加热后,上述反应速度加快,活性材料层完全溶解。
下述表4为经过第二段浸出后的溶解有活性材料的总溶液中的各个元素的浓度以及浸出率。通过原子吸收检测出总溶液中的各个元素的浓度。根据铜、铟、镓、硒在溶液中的浸出浓度和各元素在芯片中的含量,经过换算,可计算出浸出率,通过表4可以看出,铁元素在溶液中的浓度很小,仅有72ppm,本实施例中的回收方法几乎未对不锈钢衬底造成腐蚀破坏。铜、铟、镓、硒浸出率都达到了99%以上,基本上全部浸出进入溶液中。
元素 In Ga Se Fe
浓度/ppm 330 213 950 72
浸出率 99.1% 99.7% 99.5% 0.1%
表4
D湿法回收
将活性材料层溶解得到的活性材料溶液进行湿法分离,使得活性材料溶液中的活性元素以单质的形式回收。湿法分离的具体步骤为:
①向所述活性材料溶液中加入1.6倍反应当量的二氧化硫进行还原沉淀,经固液分离得到硒单质产品和第一液相物;
②向所述第一液相物中加入1.2倍反应当量的液氨,生成氢氧化镓、氢氧化铟至完全沉淀,经固液分离得到氢氧化镓和氢氧化铟的沉淀混合物和第二液相物,所述第二液相物中含有铜的氨络合物、锌的氨络合物、镉的氨络合物、钼酸根;
③向所述第二液相物中加入锌粉,恰好能完全置换出海绵铜,固液分离得到海绵铜产品;再加入锌粉,恰好能完全置换出海绵镉,固液分离得到海绵镉产品;然后加入酸,加入酸的pH值为6,使钼以钼酸铵形式沉淀出来,过滤得到钼酸铵产品;最后将剩余液相蒸发结晶获得硫酸锌产品;
将所述氢氧化镓和氢氧化铟的沉淀混合物先进行球磨,然后加入过量氢氧化钠溶液,氢氧化钠溶液的浓度为100g/L,加热到95℃,进行搅拌溶解,使得氢氧化镓溶解得到镓酸钠溶液,进行固液分离得到镓酸钠溶液、氢氧化铟沉淀,镓酸钠溶液在碱性条件下电解得到镓单质;氢氧化铟沉淀用盐酸返溶,用锌板置换回收海绵铟,将海绵铟电解生成单质铟。
本实施例中的太阳能电池的回收方法,不锈钢衬底的表面生成钝化层,使得表面钝化的不锈钢衬底在浸泡工序中不被破坏,在不破坏不锈钢衬底的情况下,使得活性材料层与不锈钢衬底分离,不锈钢衬底可继续回收再利用,分离开的活性材料层可继续用于后续的湿法回收工序,本实施例中的回收方法简单,成本低, 容易实现。
实施例5
本实施例提供一种铜铟镓硒太阳能电池的回收方法,包括以下步骤:
A.废芯片准备:
准备10kg脱离了树脂膜(脱封)的铜铟镓硒太阳能电池,铜铟镓硒太阳能电池包括不锈钢衬底和设置于其上的活性材料层;
B.钝化处理:
配置质量百分比浓度为5%的缓蚀剂Lan826溶液,将10kg脱离了树脂膜的铜铟镓硒太阳能电池浸泡于50L的缓蚀剂Lan826溶液中,对铜铟镓硒太阳能电池进行钝化处理,钝化处理的温度为45℃,时间为8小时,不锈钢衬底表面的不锈钢发生钝化反应生成钝化层,得到不锈钢衬底表面钝化的铜铟镓硒太阳能电池与缓蚀剂Lan826溶液的混合物。钝化层的主要组分为四氧化三铁。
C.分步法浸出:
第一段浸出:
将50L的质量百分比浓度为36%的硫酸和盐酸(质量比为1 1)的混合溶液缓慢加入到不锈钢衬底表面钝化的铜铟镓硒太阳能电池与缓蚀剂Lan826溶液的混合物中,搅拌使得混合均匀,混合后不锈钢衬底表面钝化的铜铟镓硒太阳能电池浸泡于混合液中,混合液中的硫酸和盐酸的质量百分比浓度和为18%,温度为25℃,浸泡过程中给以轻微的振荡,持续浸出0.5小时停止,此时,活性材料层从表面为钝化层的不锈钢衬底脱离,活性材料层中的活性材料多以粉末或碎屑形式进入混合液中,钝化的不锈钢衬底未被破坏,用漏勺捞出钝化的不锈钢衬底。
第一段浸出过程中钝化层不反应,活性材料层的表面部分发生反应,本实施例中的活性材料层中的硒化铜铟镓与缓蚀剂Lan826在酸性条件下发生反应,硒化铜铟镓、缓蚀剂Lan826、氢离子反应生成Cu 3+、In 3+、Ga 3+、SeO 3 2-、SeO 4 2-、H 2O。本 实施例中的活性材料层还包括氧化锌和硫化镉,氧化锌与氢离子反应生成Zn 2+和水,硫化镉与缓蚀剂Lan826反应生成Cd 2+、SO 4 2-和水。由于浸泡温度低,所以上述反应缓慢,仅仅活性材料层的表面部分发生反应。
第二段浸出:
对浸泡有活性材料层的混合液,升温至80℃,持续浸出4小时停止,此时浸泡有活性材料层的混合液变得清澈,活性材料层粉末或碎屑完全溶解在混合液中,得到溶解有活性材料的总溶液,冷却后可以送到后续湿法工序中再回收利用。
通过第二段浸出升温加热后,上述反应速度加快,活性材料层完全溶解。
下述表5为经过第二段浸出后的溶解有活性材料的总溶液中的各个元素的浓度以及浸出率。通过原子吸收检测出总溶液中的各个元素的浓度。根据铜、铟、镓、硒在溶液中的浸出浓度和各元素在芯片中的含量,经过换算,可计算出浸出率,通过表5可以看出,铁元素在溶液中的浓度很小,仅有76ppm,本实施例中的回收方法几乎未对不锈钢衬底造成腐蚀破坏。铜、铟、镓、硒浸出率都达到了99%以上,基本上全部浸出进入溶液中。
元素 In Ga Se Fe
浓度/ppm 340 230 945 76
浸出率 99.2% 99.7% 99.5% 0.1%
表5
D湿法回收
将活性材料层溶解得到的活性材料溶液进行湿法分离,使得活性材料溶液中的活性元素以单质的形式回收。湿法分离的具体步骤为:
①向所述活性材料溶液中加入1.7倍反应当量的亚硫酸钠进行还原沉淀,经固液分离得到硒单质产品和第一液相物;
②向所述第一液相物中加入1.3倍反应当量的浓氨水,生成氢氧化镓、氢氧化铟至完全沉淀,经固液分离得到氢氧化镓和氢 氧化铟的沉淀混合物和第二液相物,所述第二液相物中含有铜的氨络合物、锌的氨络合物、镉的氨络合物、钼酸根;
③向所述第二液相物中加入溶于水的硫化物至铜、锌、镉、钼离子沉淀完全,固液分离后得到铜、锌、镉、钼硫化物的混合沉淀物,可作为铜冶炼原料;具体的,本实施例中的硫化物为硫化钠,当然溶于水的硫化物也可以为硫化钾或硫化氨。
将所述氢氧化镓和氢氧化铟的沉淀混合物先进行球磨,然后加入过量氢氧化钠溶液,氢氧化钠溶液的浓度为120g/L,加热到96℃,进行搅拌溶解,使得氢氧化镓溶解得到镓酸钠溶液,进行固液分离得到镓酸钠溶液、氢氧化铟沉淀,镓酸钠溶液在碱性条件下电解得到镓单质;氢氧化铟沉淀用盐酸返溶,用锌板置换回收海绵铟,将海绵铟电解生成单质铟。
本实施例中的太阳能电池的回收方法,不锈钢衬底的表面生成钝化层,使得表面钝化的不锈钢衬底在浸泡工序中不被破坏,在不破坏不锈钢衬底的情况下,使得活性材料层与不锈钢衬底分离,不锈钢衬底可继续回收再利用,分离开的活性材料层可继续用于后续的湿法回收工序,本实施例中的回收方法简单,成本低,容易实现。
实施例6
本实施例提供一种铜铟镓硒太阳能电池的回收方法,包括以下步骤:
A.废芯片准备:
准备10kg脱离了树脂膜(脱封)的铜铟镓硒太阳能电池,铜铟镓硒太阳能电池包括不锈钢衬底和设置于其上的活性材料层;
B.钝化处理:
配置质量百分比浓度为18%的过氧化钠和双氧水(质量比为2∶1)的混合溶液,将10kg脱离了树脂膜的铜铟镓硒太阳能电池浸泡于50L的过氧化钠和双氧水的混合溶液中,对铜铟镓硒太阳能电池进行钝化处理,钝化处理的温度为30℃,时间为10小时,不 锈钢衬底表面的不锈钢发生钝化反应生成钝化层,得到不锈钢衬底表面钝化的铜铟镓硒太阳能电池与过氧化钠和双氧水的混合溶液的混合物。钝化层的主要组分为四氧化三铁。
C.分步法浸出:
第一段浸出:
将50L的质量百分比浓度为40%的硫酸溶液缓慢加入到不锈钢衬底表面钝化的铜铟镓硒太阳能电池与过氧化钠和双氧水的混合溶液的混合物中,搅拌使得混合均匀,混合后不锈钢衬底表面钝化的铜铟镓硒太阳能电池浸泡于混合液中,混合液中的硫酸的质量百分比浓度为20%,温度为20℃,浸泡过程中给以轻微的振荡,持续浸出2小时停止,此时,活性材料层从表面为钝化层的不锈钢衬底脱离,活性材料层中的活性材料多以粉末或碎屑形式进入混合液中,钝化的不锈钢衬底未被破坏,用漏勺捞出钝化的不锈钢衬底。
第一段浸出过程中钝化层不反应,活性材料层的表面部分发生反应,本实施例中的活性材料层中的硒化铜铟镓与过氧化钠、双氧水在酸性条件下发生反应,硒化铜铟镓、过氧化钠、双氧水、氢离子反应生成Cu 3+、In 3+、Ga 3+、SeO 3 2-、SeO 4 2-、H 2O。本实施例中的活性材料层还包括氧化锌和硫化镉,氧化锌与氢离子反应生成Zn 2+和水,硫化镉与过氧化钠、双氧水反应生成Cd 2+、SO 4 2-和水。由于浸泡温度低,所以上述反应缓慢,仅仅活性材料层的表面部分发生反应。
第二段浸出:
对浸泡有活性材料层的混合液,升温至50℃,持续浸出10小时停止,此时浸泡有活性材料层的混合液变得清澈,活性材料层粉末或碎屑完全溶解在混合液中,得到溶解有活性材料的总溶液,冷却后可以送到后续湿法工序中再回收利用。
通过第二段浸出升温加热后,上述反应速度加快,活性材料层完全溶解。
下述表6为经过第二段浸出后的溶解有活性材料的总溶液中 的各个元素的浓度以及浸出率。通过原子吸收检测出总溶液中的各个元素的浓度。根据铜、铟、镓、硒在溶液中的浸出浓度和各元素在芯片中的含量,经过换算,可计算出浸出率,通过表6可以看出,铁元素在溶液中的浓度很小,仅有75ppm,本实施例中的回收方法几乎未对不锈钢衬底造成腐蚀破坏。铜、铟、镓、硒浸出率都达到了99%以上,基本上全部浸出进入溶液中。
元素 In Ga Se Fe
浓度/ppm 380 220 960 75
浸出率 99.4% 99.7% 99.6% 0.1%
表6
D湿法回收
将活性材料层溶解得到的活性材料溶液进行湿法分离,使得活性材料溶液中的活性元素以单质的形式回收。,湿法分离的具体步骤为:
①向所述活性材料溶液中加入1.5倍反应当量的亚硫酸钾进行还原沉淀,经固液分离得到硒单质产品和第一液相物;
②向所述第一液相物中加入1.1倍反应当量的浓氨水,生成氢氧化镓、氢氧化铟至完全沉淀,经固液分离得到氢氧化镓和氢氧化铟的沉淀混合物和第二液相物,所述第二液相物中含有铜的氨络合物、锌的氨络合物、镉的氨络合物、钼酸根;
③向所述第二液相物中加入锌粉,恰好能完全置换出海绵铜,固液分离得到海绵铜产品;再加入锌粉,恰好能完全置换出海绵镉,固液分离得到海绵镉产品;然后加入酸,加入酸的pH值为5,使钼以钼酸铵形式沉淀出来,过滤得到钼酸铵产品;最后将剩余液相蒸发结晶获得硫酸锌产品;
将所述氢氧化镓和氢氧化铟的沉淀混合物先进行球磨,然后加入过量氢氧化钠溶液,氢氧化钠溶液的浓度为160g/L,加热到98℃,进行搅拌溶解,使得氢氧化镓溶解得到镓酸钠溶液,进行固液分离得到镓酸钠溶液、氢氧化铟沉淀,镓酸钠溶液在碱性条件下电解得到镓单质;氢氧化铟沉淀用盐酸返溶,用锌板置换回 收海绵铟,将海绵铟电解生成单质铟。
本实施例中的太阳能电池的回收方法,不锈钢衬底的表面生成钝化层,使得表面钝化的不锈钢衬底在浸泡工序中不被破坏,在不破坏不锈钢衬底的情况下,使得活性材料层与不锈钢衬底分离,不锈钢衬底可继续回收再利用,分离开的活性材料层可继续用于后续的湿法回收工序,本实施例中的回收方法简单,成本低,容易实现。
实施例7
本实施例提供一种铜铟镓硒太阳能电池的回收方法,包括以下步骤:
A.废芯片准备:
准备10kg脱离了树脂膜(脱封)的铜铟镓硒太阳能电池,铜铟镓硒太阳能电池包括不锈钢衬底和设置于其上的活性材料层;
B.钝化处理:
配置质量百分比浓度为15%的磷酸钠溶液,将10kg脱离了树脂膜的铜铟镓硒太阳能电池浸泡于50L的磷酸钠溶液中,对铜铟镓硒太阳能电池进行钝化处理,钝化处理的温度为60℃,时间为4小时,不锈钢衬底表面的不锈钢发生钝化反应生成钝化层,得到不锈钢衬底表面钝化的铜铟镓硒太阳能电池与磷酸钠溶液的混合物。钝化层的主要组分为四氧化三铁。
C.分步法浸出:
第一段浸出:
将50L的质量百分比浓度为60%的硝酸溶液缓慢加入到不锈钢衬底表面钝化的铜铟镓硒太阳能电池与磷酸钠溶液的混合物中,搅拌使得混合均匀,混合后不锈钢衬底表面钝化的铜铟镓硒太阳能电池浸泡于混合液中,混合液中的硝酸的质量百分比浓度为30%,温度为35℃,浸泡过程中给以轻微的振荡,持续浸出4小时停止,此时,活性材料层从表面为钝化层的不锈钢衬底脱离,活性材料层中的活性材料多以粉末或碎屑形式进入混合液中,钝 化的不锈钢衬底未被破坏,用漏勺捞出钝化的不锈钢衬底。
第一段浸出过程中钝化层不反应,活性材料层的表面部分发生反应,本实施例中的活性材料层中的硒化铜铟镓与磷酸钠在酸性条件下发生反应,硒化铜铟镓、磷酸钠、氢离子反应生成Cu 3+、In 3+、Ga 3+、SeO 3 2-、SeO 4 2-、H 2O。本实施例中的活性材料层还包括氧化锌和硫化镉,氧化锌与氢离子反应生成Zn 2+和水,硫化镉与磷酸钠反应生成Cd 2+、SO 4 2-和水。由于浸泡温度低,所以上述反应缓慢,仅仅活性材料层的表面部分发生反应。
第二段浸出:
对浸泡有活性材料层的混合液,升温至70℃,持续浸出8小时停止,此时浸泡有活性材料层的混合液变得清澈,活性材料层粉末或碎屑完全溶解在混合液中,得到溶解有活性材料的总溶液,冷却后可以送到后续湿法工序中再回收利用。
通过第二段浸出升温加热后,上述反应速度加快,活性材料层完全溶解。
下述表7为经过第二段浸出后的溶解有活性材料的总溶液中的各个元素的浓度以及浸出率。通过原子吸收检测出总溶液中的各个元素的浓度。根据铜、铟、镓、硒在溶液中的浸出浓度和各元素在芯片中的含量,经过换算,可计算出浸出率,通过表7可以看出,铁元素在溶液中的浓度很小,仅有80ppm,本实施例中的回收方法几乎未对不锈钢衬底造成腐蚀破坏。铜、铟、镓、硒浸出率都达到了99%以上,基本上全部浸出进入溶液中。
元素 In Ga Se Fe
浓度/ppm 340 216 945 80
浸出率 99.2% 99.7% 99.5% 0.1%
表7
D湿法回收
将活性材料层溶解得到的活性材料溶液进行湿法分离,使得活性材料溶液中的活性元素以单质的形式回收。湿法分离的具体步骤为:
①向所述活性材料溶液中加入2倍反应当量的二氧化硫进行还原沉淀,经固液分离得到硒单质产品和第一液相物;
②向所述第一液相物中加入1倍反应当量的浓氨水,生成氢氧化镓、氢氧化铟至完全沉淀,经固液分离得到氢氧化镓和氢氧化铟的沉淀混合物和第二液相物,所述第二液相物中含有铜的氨络合物、锌的氨络合物、镉的氨络合物、钼酸根;
③向所述第二液相物中加入锌粉,恰好能完全置换出海绵铜,固液分离得到海绵铜产品;再加入锌粉,恰好能完全置换出海绵镉,固液分离得到海绵镉产品;然后加入酸,加入酸的pH值为2,使钼以钼酸铵形式沉淀出来,过滤得到钼酸铵产品;最后将剩余液相蒸发结晶获得硫酸锌产品;
将所述氢氧化镓和氢氧化铟的沉淀混合物先进行球磨,然后加入过量氢氧化钠溶液,氢氧化钠溶液的浓度为180g/L,加热到90℃,进行搅拌溶解,使得氢氧化镓溶解得到镓酸钠溶液,进行固液分离得到镓酸钠溶液、氢氧化铟沉淀,镓酸钠溶液在碱性条件下电解得到镓单质;氢氧化铟沉淀用盐酸返溶,用锌板置换回收海绵铟,将海绵铟电解生成单质铟。
本实施例中的太阳能电池的回收方法,不锈钢衬底的表面生成钝化层,使得表面钝化的不锈钢衬底在浸泡工序中不被破坏,在不破坏不锈钢衬底的情况下,使得活性材料层与不锈钢衬底分离,不锈钢衬底可继续回收再利用,分离开的活性材料层可继续用于后续的湿法回收工序,本实施例中的回收方法简单,成本低,容易实现。
实施例8
本实施例提供一种铜铟镓硒太阳能电池的回收方法,本实施例与实施例7中的回收方法的区别为:
D湿法回收
将活性材料层溶解得到的活性材料溶液进行湿法分离,使得活性材料溶液中的活性元素以单质的形式回收。湿法分离的具体 步骤为:
①向所述活性材料溶液中加入2倍反应当量的亚硫酸钠进行还原沉淀,经固液分离得到硒单质产品和第一液相物;
m用碱性树脂将第一液相物中的钼酸根提取出来;
②向所述第一液相物中加入1倍反应当量的浓氨水,生成氢氧化镓、氢氧化铟至完全沉淀,经固液分离得到氢氧化镓和氢氧化铟的沉淀混合物和第二液相物,所述第二液相物中含有铜的氨络合物、锌的氨络合物、镉的氨络合物;
③向所述第二液相物中加入锌粉,恰好能完全置换出海绵铜,固液分离得到海绵铜产品;再加入锌粉,恰好能完全置换出海绵镉,固液分离得到海绵镉产品;最后将剩余液相蒸发结晶获得硫酸锌产品;
将所述氢氧化镓和氢氧化铟的沉淀混合物先进行球磨,然后加入过量氢氧化钠溶液,氢氧化钠溶液的浓度为180g/L,加热到90℃,进行搅拌溶解,使得氢氧化镓溶解得到镓酸钠溶液,进行固液分离得到镓酸钠溶液、氢氧化铟沉淀,镓酸钠溶液在碱性条件下电解得到镓单质;氢氧化铟沉淀用盐酸返溶,用锌板置换回收海绵铟,将海绵铟电解生成单质铟。
本实施例中的太阳能电池的回收方法,不锈钢衬底的表面生成钝化层,使得表面钝化的不锈钢衬底在浸泡工序中不被破坏,在不破坏不锈钢衬底的情况下,使得活性材料层与不锈钢衬底分离,不锈钢衬底可继续回收再利用,分离开的活性材料层可继续用于后续的湿法回收工序,本实施例中的回收方法简单,成本低,容易实现。
实施例9
本实施例提供一种铜铟镓硒太阳能电池的回收方法,本实施例与实施例8中的回收方法的区别为:
步骤m用有机胺类萃取剂将第一液相物中的钼酸根提取出来。
实施例10
本实施例提供一种铜铟镓硒太阳能电池的回收方法,包括以下步骤:
A.废芯片准备:
准备10kg脱离了树脂膜(脱封)的铜铟镓硒太阳能电池,铜铟镓硒太阳能电池包括不锈钢衬底和设置于其上的活性材料层;
B.钝化处理:
将10kg脱离了树脂膜的铜铟镓硒太阳能电池浸泡于50L的水中,向每升水中通入6L·min -1臭氧溶液对铜铟镓硒太阳能电池进行钝化处理,钝化处理的温度为50℃,时间为6小时,不锈钢衬底表面的不锈钢发生钝化反应生成钝化层,得到不锈钢衬底表面钝化的铜铟镓硒太阳能电池与臭氧溶液的混合物。钝化层的主要组分为四氧化三铁。
C.分步法浸出:
第一段浸出:
将50L的质量百分比浓度为34%的盐酸溶液缓慢加入到不锈钢衬底表面钝化的铜铟镓硒太阳能电池与臭氧溶液的混合物中,搅拌使得混合均匀,混合后不锈钢衬底表面钝化的铜铟镓硒太阳能电池浸泡于混合液中,混合液中的盐酸的质量百分比浓度为17%,温度为25℃,浸泡过程中给以轻微的振荡,持续浸出8小时停止,此时,活性材料层从表面为钝化层的不锈钢衬底脱离,活性材料层中的活性材料多以粉末或碎屑形式进入混合液中,钝化的不锈钢衬底未被破坏,用漏勺捞出钝化的不锈钢衬底。
第一段浸出过程中钝化层不反应,活性材料层的表面部分发生反应,本实施例中的活性材料层中的硒化铜铟镓与臭氧在酸性条件下发生反应,硒化铜铟镓、臭氧、氢离子反应生成Cu 3+、In 3+、Ga 3+、SeO 3 2-、SeO 4 2-、H 2O。本实施例中的活性材料层还包括氧化锌和硫化镉,氧化锌与氢离子反应生成Zn 2+和水,硫化镉与臭氧反应生成Cd 2+、SO 4 2-和水。由于浸泡温度低,所以上述反应 缓慢,仅仅活性材料层的表面部分发生反应。
第二段浸出:
对浸泡有活性材料层的混合液,升温至100℃,持续浸出5小时停止,此时浸泡有活性材料层的混合液变得清澈,活性材料层粉末或碎屑完全溶解在混合液中,得到溶解有活性材料的总溶液,冷却后可以送到后续湿法工序中再回收利用。
通过第二段浸出升温加热后,上述反应速度加快,活性材料层完全溶解。
下述表8为经过第二段浸出后的溶解有活性材料的总溶液中的各个元素的浓度以及浸出率。通过原子吸收检测出总溶液中的各个元素的浓度。根据铜、铟、镓、硒在溶液中的浸出浓度和各元素在芯片中的含量,经过换算,可计算出浸出率,通过表8可以看出,铁元素在溶液中的浓度很小,仅有71ppm,本实施例中的回收方法几乎未对不锈钢衬底造成腐蚀破坏。铜、铟、镓、硒浸出率都达到了99%以上,基本上全部浸出进入溶液中。
元素 In Ga Se Fe
浓度/ppm 355 207 950 71
浸出率 99.3% 99.7% 99.5% 0.1%
表8
D湿法回收
将活性材料层溶解得到的活性材料溶液进行湿法分离,使得活性材料溶液中的活性元素以单质的形式回收。湿法分离的具体步骤为:
①向所述活性材料溶液中加入1.8倍反应当量的二氧化硫进行还原沉淀,经固液分离得到硒单质产品和第一液相物;
②向所述第一液相物中加入1.5倍反应当量的浓氨水或液氨,生成氢氧化镓、氢氧化铟至完全沉淀,经固液分离得到氢氧化镓和氢氧化铟的沉淀混合物和第二液相物,所述第二液相物中含有铜的氨络合物、锌的氨络合物、镉的氨络合物、钼酸根;
③向所述第二液相物中加入锌粉,恰好能完全置换出海绵铜, 固液分离得到海绵铜产品;再加入锌粉,恰好能完全置换出海绵镉,固液分离得到海绵镉产品;然后加入酸,加入酸的pH值为6,使钼以钼酸铵形式沉淀出来,过滤得到钼酸铵产品;最后将剩余液相蒸发结晶获得硫酸锌产品;
将所述氢氧化镓和氢氧化铟的沉淀混合物先进行球磨,然后加入过量氢氧化钠溶液,氢氧化钠溶液的浓度为50g/L,加热到100℃,进行搅拌溶解,使得氢氧化镓溶解得到镓酸钠溶液,进行固液分离得到镓酸钠溶液、氢氧化铟沉淀,镓酸钠溶液在碱性条件下电解得到镓单质;氢氧化铟沉淀用盐酸返溶,用锌板置换回收海绵铟,将海绵铟电解生成单质铟。
本实施例中的太阳能电池的回收方法,不锈钢衬底的表面生成钝化层,使得表面钝化的不锈钢衬底在浸泡工序中不被破坏,在不破坏不锈钢衬底的情况下,使得活性材料层与不锈钢衬底分离,不锈钢衬底可继续回收再利用,分离开的活性材料层可继续用于后续的湿法回收工序,本实施例中的回收方法简单,成本低,容易实现。
实施例11
本实施例提供一种铜铟镓硒太阳能电池的回收方法,本实施例与实施例10中的回收方法的区别为:
本实施例中的B步骤中,向每升水中通入2L·min -1臭氧溶液对铜铟镓硒太阳能电池进行钝化处理。
下述表9为经过第二段浸出后的溶解有活性材料的总溶液中的各个元素的浓度以及浸出率。通过原子吸收检测出总溶液中的各个元素的浓度。根据铜、铟、镓、硒在溶液中的浸出浓度和各元素在芯片中的含量,经过换算,可计算出浸出率,通过表9可以看出,铁元素在溶液中的浓度很小,仅有75ppm,本实施例中的回收方法几乎未对不锈钢衬底造成腐蚀破坏。铜、铟、镓、硒浸出率都达到了99%以上,基本上全部浸出进入溶液中。
元素 In Ga Se Fe
浓度/ppm 341 215 913 75
浸出率 99.2% 99.7% 99.1% 0.1%
表9
实施例12
本实施例提供一种铜铟镓硒太阳能电池的回收方法,本实施例与实施例10中的回收方法的区别为:
本实施例中的B步骤中,向每升水中通入10L·min -1臭氧溶液对铜铟镓硒太阳能电池进行钝化处理。
下述表10为经过第二段浸出后的溶解有活性材料的总溶液中的各个元素的浓度以及浸出率。通过原子吸收检测出总溶液中的各个元素的浓度。根据铜、铟、镓、硒在溶液中的浸出浓度和各元素在芯片中的含量,经过换算,可计算出浸出率,通过表10可以看出,铁元素在溶液中的浓度很小,仅有70ppm,本实施例中的回收方法几乎未对不锈钢衬底造成腐蚀破坏。铜、铟、镓、硒浸出率都达到了99%以上,基本上全部浸出进入溶液中。
元素 In Ga Se Fe
浓度/ppm 352 211 982 70
浸出率 99.2% 99.7% 99.7% 0.1%
表10
实施例13
本实施例提供一种碲化镉太阳能电池的回收方法,包括以下步骤:
A.废芯片准备:
准备10kg脱离了树脂膜(脱封)的碲化镉太阳能电池,碲化镉太阳能电池包括不锈钢衬底和设置于其上的活性材料层;
B.钝化处理:
配置质量百分比浓度为20%的双氧水溶液,将10kg脱离了树脂膜的碲化镉太阳能电池浸泡于50L的双氧水溶液中,对碲化镉太阳能电池进行钝化处理,钝化处理的温度为40℃,时间为2小 时,不锈钢衬底表面的不锈钢发生钝化反应生成钝化层,得到不锈钢衬底表面钝化的碲化镉太阳能电池与双氧水溶液的混合物。钝化层的主要组分为四氧化三铁。
C.分步法浸出:
第一段浸出:
将50L的质量百分比浓度为60%的硝酸溶液缓慢加入到不锈钢衬底表面钝化的碲化镉太阳能电池与双氧水溶液的混合物中,搅拌使得混合均匀,混合后不锈钢衬底表面钝化的碲化镉太阳能电池浸泡于混合液中,混合液中的硝酸的质量百分比浓度为30%,温度为20℃,浸泡过程中给以轻微的振荡,持续浸出10小时停止,此时,活性材料层从表面为钝化层的不锈钢衬底脱离,活性材料层中的活性材料多以粉末或碎屑形式进入混合液中,钝化的不锈钢衬底未被破坏,用漏勺捞出钝化的不锈钢衬底。
第一段浸出过程中钝化层不反应,活性材料层的表面部分发生反应,本实施例中的活性材料层中的碲化镉与双氧水在酸性条件下发生反应,碲化镉、双氧水、氢离子反应生成TeO 3 2-、Cd 2+、H 2O。由于浸泡温度低,所以上述反应缓慢,仅仅活性材料层的表面部分发生反应。
第二段浸出:
对浸泡有活性材料层的混合液,升温至50℃,持续浸出10小时停止,此时浸泡有活性材料层的混合液变得清澈,活性材料层粉末或碎屑完全溶解在混合液中,得到溶解有活性材料的总溶液,冷却后可以送到后续湿法工序中再回收利用。
通过第二段浸出升温加热后,上述反应速度加快,活性材料层完全溶解。
下述表11为经过第二段浸出后的溶解有活性材料的总溶液中的各个元素的浓度以及浸出率。通过原子吸收检测出总溶液中的各个元素的浓度。根据碲、镉在溶液中的浸出浓度和各元素在芯片中的含量,经过换算,可计算出浸出率,通过表11可以看出,铁元素在溶液中的浓度很小,仅有75ppm,本实施例中的回收方 法几乎未对不锈钢衬底造成腐蚀破坏。碲、镉浸出率都达到了99%以上,基本上全部浸出进入溶液中。
元素 Te Cd Fe
浓度/ppm 339 216 75
浸出率 99.2% 99.7% 0.1%
表11
D湿法回收
将活性材料层溶解得到的活性材料溶液进行湿法分离,使得活性材料溶液中的活性元素以单质的形式回收。
本实施例中的太阳能电池的回收方法,不锈钢衬底的表面生成钝化层,使得表面钝化的不锈钢衬底在浸泡工序中不被破坏,在不破坏不锈钢衬底的情况下,使得活性材料层与不锈钢衬底分离,不锈钢衬底可继续回收再利用,分离开的活性材料层可继续用于后续的湿法回收工序,本实施例中的回收方法简单,成本低,容易实现。
实施例14
本实施例提供一种碲化镉太阳能电池的回收方法,与实施例13的区别为:
步骤B钝化处理:配置质量百分比浓度为0.5%的次氯酸钠,钝化处理的温度为65℃,时间为5小时。
C.分步法浸出:
第一段浸出:
将50L的质量百分比浓度为20%的硫酸溶液缓慢加入到不锈钢衬底表面钝化的碲化镉太阳能电池与双氧水溶液的混合物中,混合液中的硫酸的质量百分比浓度为10%,温度为30℃,持续浸出6小时停止。
第二段浸出:
对浸泡有活性材料层的混合液,升温至95℃,持续浸出0.5小时停止。
下述表12为经过第二段浸出后的溶解有活性材料的总溶液中的各个元素的浓度以及浸出率。通过原子吸收检测出总溶液中的各个元素的浓度。根据碲、镉在溶液中的浸出浓度和各元素在芯片中的含量,经过换算,可计算出浸出率,通过表12可以看出,铁元素在溶液中的浓度很小,仅有58ppm,本实施例中的回收方法几乎未对不锈钢衬底造成腐蚀破坏。碲、镉浸出率都达到了99%以上,基本上全部浸出进入溶液中。
元素 Te Cd Fe
浓度/ppm 308 211 58
浸出率 99.1% 99.7% 0.1%
表12
本实施例中的太阳能电池的回收方法,不锈钢衬底的表面生成钝化层,使得表面钝化的不锈钢衬底在浸泡工序中不被破坏,在不破坏不锈钢衬底的情况下,使得活性材料层与不锈钢衬底分离,不锈钢衬底可继续回收再利用,分离开的活性材料层可继续用于后续的湿法回收工序,本实施例中的回收方法简单,成本低,容易实现。
实施例15
本实施例提供一种碲化镉太阳能电池的回收方法,与实施例13的区别为:
步骤B钝化处理:配置质量百分比浓度为10%的过氧化钠,钝化处理的温度为95℃,时间为0.5小时。
C.分步法浸出:
第一段浸出:
将50L的质量百分比浓度为20%的盐酸溶液缓慢加入到不锈钢衬底表面钝化的碲化镉太阳能电池与双氧水溶液的混合物中,混合液中的盐酸的质量百分比浓度为10%,温度为40℃,持续浸出2小时停止。
第二段浸出:
对浸泡有活性材料层的混合液,升温至70℃,持续浸出2小时停止。
下述表13为经过第二段浸出后的溶解有活性材料的总溶液中的各个元素的浓度以及浸出率。通过原子吸收检测出总溶液中的各个元素的浓度。根据碲、镉在溶液中的浸出浓度和各元素在芯片中的含量,经过换算,可计算出浸出率,通过表13可以看出,铁元素在溶液中的浓度很小,仅有71ppm,本实施例中的回收方法几乎未对不锈钢衬底造成腐蚀破坏。碲、镉浸出率都达到了99%以上,基本上全部浸出进入溶液中。
元素 Te Cd Fe
浓度/ppm 323 211 71
浸出率 99.2% 99.7% 0.1%
表13
本实施例中的太阳能电池的回收方法,不锈钢衬底的表面生成钝化层,使得表面钝化的不锈钢衬底在浸泡工序中不被破坏,在不破坏不锈钢衬底的情况下,使得活性材料层与不锈钢衬底分离,不锈钢衬底可继续回收再利用,分离开的活性材料层可继续用于后续的湿法回收工序,本实施例中的回收方法简单,成本低,容易实现。
实施例16
本实施例提供一种碲化镉太阳能电池的回收方法,与实施例13的区别为:
步骤B钝化处理:配置质量百分比浓度为5%的亚硝酸钠和磷酸钠,钝化处理的温度为20℃,时间为4小时。
C.分步法浸出:
第一段浸出:
将50L的质量百分比浓度为30%的硝酸溶液缓慢加入到不锈钢衬底表面钝化的碲化镉太阳能电池与双氧水溶液的混合物中,混合液中的硝酸的质量百分比浓度为15%,温度为25℃,持续浸 出8小时停止。
第二段浸出:
对浸泡有活性材料层的混合液,升温至100℃,持续浸出4小时停止。
下述表14为经过第二段浸出后的溶解有活性材料的总溶液中的各个元素的浓度以及浸出率。通过原子吸收检测出总溶液中的各个元素的浓度。根据碲、镉在溶液中的浸出浓度和各元素在芯片中的含量,经过换算,可计算出浸出率,通过表12可以看出,铁元素在溶液中的浓度很小,仅有75ppm,本实施例中的回收方法几乎未对不锈钢衬底造成腐蚀破坏。碲、镉浸出率都达到了99%以上,基本上全部浸出进入溶液中。
元素 Te Cd Fe
浓度/ppm 378 200 75
浸出率 99.7% 99.0% 0.1%
表14
本实施例中的太阳能电池的回收方法,不锈钢衬底的表面生成钝化层,使得表面钝化的不锈钢衬底在浸泡工序中不被破坏,在不破坏不锈钢衬底的情况下,使得活性材料层与不锈钢衬底分离,不锈钢衬底可继续回收再利用,分离开的活性材料层可继续用于后续的湿法回收工序,本实施例中的回收方法简单,成本低,容易实现。
实施例17
本实施例提供一种碲化镉太阳能电池的回收方法,与实施例13的区别为:
步骤B钝化处理:配置质量百分比浓度为15%的缓蚀剂Lan826,钝化处理的温度为70℃,时间为10小时。
C.分步法浸出:
第一段浸出:
将50L的质量百分比浓度为24%的盐酸溶液缓慢加入到不锈 钢衬底表面钝化的碲化镉太阳能电池与双氧水溶液的混合物中,混合液中的盐酸的质量百分比浓度为12%,温度为35℃,持续浸出5小时停止。
第二段浸出:
对浸泡有活性材料层的混合液,升温至80℃,持续浸出6小时停止。
下述表15为经过第二段浸出后的溶解有活性材料的总溶液中的各个元素的浓度以及浸出率。通过原子吸收检测出总溶液中的各个元素的浓度。根据碲、镉在溶液中的浸出浓度和各元素在芯片中的含量,经过换算,可计算出浸出率,通过表15可以看出,铁元素在溶液中的浓度很小,仅有70ppm,本实施例中的回收方法几乎未对不锈钢衬底造成腐蚀破坏。碲、镉浸出率都达到了99%以上,基本上全部浸出进入溶液中。
元素 Te Cd Fe
浓度/ppm 330 210 70
浸出率 99.2% 99.7% 0.1%
表15
本实施例中的太阳能电池的回收方法,不锈钢衬底的表面生成钝化层,使得表面钝化的不锈钢衬底在浸泡工序中不被破坏,在不破坏不锈钢衬底的情况下,使得活性材料层与不锈钢衬底分离,不锈钢衬底可继续回收再利用,分离开的活性材料层可继续用于后续的湿法回收工序,本实施例中的回收方法简单,成本低,容易实现。
实施例18
本实施例提供一种碲化镉太阳能电池的回收方法,与实施例13的区别为:
步骤B钝化处理:向每升水中通入8L·min -1臭氧溶液对铜铟镓硒太阳能电池进行钝化处理,钝化处理的温度为80℃,时间为8小时。
C.分步法浸出:
第一段浸出:
将50L的质量百分比浓度为40%的硫酸溶液缓慢加入到不锈钢衬底表面钝化的碲化镉太阳能电池与双氧水溶液的混合物中,混合液中的硫酸的质量百分比浓度为20%,温度为38℃,持续浸出0.5小时停止。
第二段浸出:
对浸泡有活性材料层的混合液,升温至60℃,持续浸出8小时停止。
下述表16为经过第二段浸出后的溶解有活性材料的总溶液中的各个元素的浓度以及浸出率。通过原子吸收检测出总溶液中的各个元素的浓度。根据碲、镉在溶液中的浸出浓度和各元素在芯片中的含量,经过换算,可计算出浸出率,通过表16可以看出,铁元素在溶液中的浓度很小,仅有75ppm,本实施例中的回收方法几乎未对不锈钢衬底造成腐蚀破坏。碲、镉浸出率都达到了99%以上,基本上全部浸出进入溶液中。
元素 Te Cd Fe
浓度/ppm 335 218 75
浸出率 99.2% 99.7% 0.1%
表16
D湿法回收
将活性材料层溶解得到的活性材料溶液进行湿法分离,使得活性材料溶液中的活性元素以单质的形式回收。
本实施例中的太阳能电池的回收方法,不锈钢衬底的表面生成钝化层,使得表面钝化的不锈钢衬底在浸泡工序中不被破坏,在不破坏不锈钢衬底的情况下,使得活性材料层与不锈钢衬底分离,不锈钢衬底可继续回收再利用,分离开的活性材料层可继续用于后续的湿法回收工序,本实施例中的回收方法简单,成本低,容易实现。
实施例19
本实施例提供一种碲化镉太阳能电池的回收方法,本实施例与实施例18中的回收方法的区别为:
本实施例中的B步骤中,向每升水中通入2L·min -1臭氧溶液对碲化镉太阳能电池进行钝化处理。
下述表17为经过第二段浸出后的溶解有活性材料的总溶液中的各个元素的浓度以及浸出率。通过原子吸收检测出总溶液中的各个元素的浓度。根据碲、镉在溶液中的浸出浓度和各元素在芯片中的含量,经过换算,可计算出浸出率,通过表16可以看出,铁元素在溶液中的浓度很小,仅有75ppm,本实施例中的回收方法几乎未对不锈钢衬底造成腐蚀破坏。碲、镉浸出率都达到了99%以上,基本上全部浸出进入溶液中。
元素 Te Cd Fe
浓度/ppm 360 212 68
浸出率 99.3% 99.7% 0.1%
表17
本实施例中的太阳能电池的回收方法,不锈钢衬底的表面生成钝化层,使得表面钝化的不锈钢衬底在浸泡工序中不被破坏,在不破坏不锈钢衬底的情况下,使得活性材料层与不锈钢衬底分离,不锈钢衬底可继续回收再利用,分离开的活性材料层可继续用于后续的湿法回收工序,本实施例中的回收方法简单,成本低,容易实现。
实施例20
本实施例提供一种碲化镉太阳能电池的回收方法,本实施例与实施例18中的回收方法的区别为:
本实施例中的B步骤中,向每升水中通入10L·min -1臭氧溶液对碲化镉太阳能电池进行钝化处理。
下述表18为经过第二段浸出后的溶解有活性材料的总溶液中的各个元素的浓度以及浸出率。通过原子吸收检测出总溶液中 的各个元素的浓度。根据碲、镉在溶液中的浸出浓度和各元素在芯片中的含量,经过换算,可计算出浸出率,通过表16可以看出,铁元素在溶液中的浓度很小,仅有75ppm,本实施例中的回收方法几乎未对不锈钢衬底造成腐蚀破坏。碲、镉浸出率都达到了99%以上,基本上全部浸出进入溶液中。
元素 Te Cd Fe
浓度/ppm 345 235 80
浸出率 99.2% 99.8% 0.1%
表18
本实施例中的太阳能电池的回收方法,不锈钢衬底的表面生成钝化层,使得表面钝化的不锈钢衬底在浸泡工序中不被破坏,在不破坏不锈钢衬底的情况下,使得活性材料层与不锈钢衬底分离,不锈钢衬底可继续回收再利用,分离开的活性材料层可继续用于后续的湿法回收工序,本实施例中的回收方法简单,成本低,容易实现。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (10)

  1. 一种太阳能电池的回收方法,其特征在于,所述太阳能电池包括不锈钢衬底和设置于其上的活性材料层并且所述回收方法包括:
    通过第一表面处理剂对所述太阳能电池进行钝化处理,以使所述不锈钢衬底的表面生成钝化层;以及
    利用含有第二表面处理剂的酸性物质溶液对经所述钝化处理的太阳能电池进行第一浸出处理,以使不锈钢衬底和活性材料层分离。
  2. 根据权利要求1所述的太阳能电池的回收方法,其特征在于,所述第一表面处理剂和所述第二表面处理剂相同或者不同,并且选自由双氧水、次氯酸钠、过氧化钠、臭氧、亚硝酸钠、磷酸钠和缓蚀剂Lan826构成的组中的任意一种或几种;和/或,
    所述酸性物质选自由硫酸、盐酸和硝酸构成的组中的任意一种或几种。
  3. 根据权利要求1或2所述的太阳能电池的回收方法,其特征在于,在所述第一表面处理剂为液体或固体的情形下,所述通过第一表面处理剂对所述太阳能电池进行钝化处理包括:
    将所述太阳能电池浸泡于质量百分比浓度为0.5~20%的表面处理剂溶液中,以对所述太阳能电池进行钝化处理;或
    在所述第一表面处理剂为气体的情形下,所述通过第一表面处理剂对所述太阳能电池进行钝化处理包括:
    将所述太阳能电池浸泡于水中,向每升水中通入2~10L·min -1的第一表面处理剂,对所述太阳能电池进行钝化处理。
  4. 根据权利要求1所述的太阳能电池的回收方法,其特征在于,所述钝化处理的温度为20~95℃,时间为0.5~10小时。
  5. 根据权利要求1-4任意一项所述的太阳能电池的回收方法,其特征在于,所述酸性物质溶液中的酸性物质的质量百分比浓度为10~30%。
  6. 根据权利要求1-5任意一项所述的太阳能电池的回收方法,其特征在于,所述利用含有第二表面处理剂的酸性物质溶液对经所述钝化处理的太阳能电池进行处理的温度为20~40℃,处理时间为0.5~10小时。
  7. 根据权利要求1-6任意一项所述的太阳能电池的回收方法,其特征在于,还包括:取出所述表面为钝化层的不锈钢衬底,对浸泡有所述活性材料层的溶液进行第二浸出处理。
  8. 根据权利要求7所述的太阳能电池的回收方法,其特征在于,所述第二浸出处理包括对浸泡有所述活性材料层的溶液进行升温加热,以使所述活性材料层溶解,所述升温加热的温度为50~100℃,加热时间为0.5~10小时。
  9. 根据权利要求7或8所述的太阳能电池的回收方法,其特征在于,还包括:将经过第二浸出处理得到的活性材料溶液进行湿法分离,使得所述活性材料溶液中的活性元素以单质或化合物的形式回收。
  10. 根据权利要求1-9任意一项所述的太阳能电池的回收方法,其特征在于,所述太阳能电池为铜铟镓硒太阳能电池或碲化镉太阳能电池。
PCT/CN2018/110846 2018-07-12 2018-10-18 太阳能电池的回收方法 WO2020010745A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810763629.XA CN108893602A (zh) 2018-07-12 2018-07-12 脱封的太阳能电池的分离方法
CN201810763629.X 2018-07-12

Publications (1)

Publication Number Publication Date
WO2020010745A1 true WO2020010745A1 (zh) 2020-01-16

Family

ID=64348999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/110846 WO2020010745A1 (zh) 2018-07-12 2018-10-18 太阳能电池的回收方法

Country Status (2)

Country Link
CN (1) CN108893602A (zh)
WO (1) WO2020010745A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19541074A1 (de) * 1995-11-03 1997-05-07 Siemens Solar Gmbh Wiederverwertung von Solarmodulen und -zellen aus Silizium und seinen Legierungen
US5779877A (en) * 1997-05-12 1998-07-14 Drinkard Metalox, Inc. Recycling of CIS photovoltaic waste
CN104201248A (zh) * 2014-09-12 2014-12-10 成都科莱斯低温设备有限公司 薄膜太阳能电池的回收方法
CN105355541A (zh) * 2015-10-23 2016-02-24 乐山新天源太阳能科技有限公司 一种太阳能电池片回收处理方法
CN106629738A (zh) * 2017-01-12 2017-05-10 东莞珂洛赫慕电子材料科技有限公司 一种从晶体硅太阳能板中提取银的方法
EP3178576A1 (fr) * 2015-12-11 2017-06-14 Commissariat à l'Energie Atomique et aux Energies Alternatives Procédé de recyclage de l' argent présent dans une cellule photovoltaïque

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5715474B2 (ja) * 2011-04-21 2015-05-07 国立大学法人東北大学 稀少金属の製造方法
KR101539528B1 (ko) * 2014-02-20 2015-07-29 금오공과대학교 산학협력단 폐 태양전지에서 은을 회수하는 방법
CN103866129B (zh) * 2014-03-12 2016-01-20 中国科学院电工研究所 一种CdTe太阳能电池组件的回收方法
CN106744972A (zh) * 2016-12-15 2017-05-31 中山市得高行知识产权中心(有限合伙) 一种太阳能电池片碎片回收方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19541074A1 (de) * 1995-11-03 1997-05-07 Siemens Solar Gmbh Wiederverwertung von Solarmodulen und -zellen aus Silizium und seinen Legierungen
US5779877A (en) * 1997-05-12 1998-07-14 Drinkard Metalox, Inc. Recycling of CIS photovoltaic waste
CN104201248A (zh) * 2014-09-12 2014-12-10 成都科莱斯低温设备有限公司 薄膜太阳能电池的回收方法
CN105355541A (zh) * 2015-10-23 2016-02-24 乐山新天源太阳能科技有限公司 一种太阳能电池片回收处理方法
EP3178576A1 (fr) * 2015-12-11 2017-06-14 Commissariat à l'Energie Atomique et aux Energies Alternatives Procédé de recyclage de l' argent présent dans une cellule photovoltaïque
CN106629738A (zh) * 2017-01-12 2017-05-10 东莞珂洛赫慕电子材料科技有限公司 一种从晶体硅太阳能板中提取银的方法

Also Published As

Publication number Publication date
CN108893602A (zh) 2018-11-27

Similar Documents

Publication Publication Date Title
CN104017995B (zh) 一种从含铜铟镓硒废料中回收铜铟镓硒的方法
TWI392745B (zh) A method for recovering a valuable metal from a lithium battery residue containing Co, Ni, and Mn
CN105886767B (zh) 一种铜铟镓硒废料的回收方法
CN108075203A (zh) 一种废旧锂离子电池材料中有价金属组分回收的方法
WO2017124892A1 (zh) 一种铜铟镓硒物料的回收方法
CN102285673A (zh) 一种从电动汽车磷酸铁锂动力电池中回收锂和铁的方法
US20190010578A1 (en) Method for recycling copper indium gallium selenium materials
TWI717948B (zh) 有價金屬之回收方法
CN115066402B (zh) 废旧锂离子电池的废水处理方法
JP7317761B2 (ja) リチウムイオン電池廃棄物の処理方法
KR101383280B1 (ko) 인듐갈륨아연산화물 타겟으로부터 갈륨 회수방법
EP3576162A1 (en) Method for separating an organic film of a solar cell module and method for recycling
CN108359802B (zh) 从铜铟镓硒太阳能薄膜电池废料中回收铜铟镓硒的方法
WO2020010745A1 (zh) 太阳能电池的回收方法
US20140251820A1 (en) Method of recovering a metal from a solution
CN108441637B (zh) 从铜铟镓硒太阳能薄膜电池废芯片中回收有价金属的方法
CN104651880B (zh) 一种脱铜分氰联立工艺处理银冶炼含氰贫液的方法
CN115786715A (zh) 一种三元锂电池正极废料膜法高效回收镍钴锰锂金属的方法
CN101713025B (zh) 一种含镍、锌混合溶液湿法分离方法
CN101709489B (zh) 一种用纯硫酸镍溶液直接电积生产镍粉的方法
JP2024508733A (ja) 金属の回収
CN111129634B (zh) 失效三元锂离子电池正极材料分离回收方法
CN113998742A (zh) 镍钴锰三元锂电池的回收利用方法
CN108425016B (zh) 从cigs太阳能薄膜电池腔室废料中回收有价金属的方法
CN110482496A (zh) 一种从铂钯精矿中回收碲的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18926149

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 18926149

Country of ref document: EP

Kind code of ref document: A1