WO2020009146A1 - High-frequency passive component and method for producing high-frequency passive component - Google Patents

High-frequency passive component and method for producing high-frequency passive component Download PDF

Info

Publication number
WO2020009146A1
WO2020009146A1 PCT/JP2019/026457 JP2019026457W WO2020009146A1 WO 2020009146 A1 WO2020009146 A1 WO 2020009146A1 JP 2019026457 W JP2019026457 W JP 2019026457W WO 2020009146 A1 WO2020009146 A1 WO 2020009146A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
conductor layer
passive component
frequency passive
main surface
Prior art date
Application number
PCT/JP2019/026457
Other languages
French (fr)
Japanese (ja)
Inventor
理 額賀
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2020009146A1 publication Critical patent/WO2020009146A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides

Definitions

  • the present invention relates to a high-frequency passive component having a waveguide structure that can be used for high-frequency communication such as millimeter waves, and a method for manufacturing a high-frequency passive component.
  • This application claims priority based on Japanese Patent Application No. 2018-128679 for which it applied to Japan on July 6, 2018, and uses the content here.
  • Patent Document 1 proposes a mode converter using a post-wall waveguide (Post-wall @ Waveguide).
  • the conductor layer may be used depending on the use environment. Was sometimes peeled off.
  • a substrate material for high frequency applications it is sometimes required that the substrate material has superior high frequency characteristics rather than adhesion to a conductor layer.
  • the present invention has been made in view of the above circumstances, and provides a high-frequency passive component capable of suppressing a conductive layer from peeling off from a substrate, and a method for manufacturing the high-frequency passive component.
  • one embodiment of the present invention provides a substrate formed of a dielectric including a waveguide region, and a conductor in contact with the substrate so as to surround the waveguide region in plan view on at least one surface in a thickness direction of the substrate.
  • a high-frequency passive component comprising: a layer; and a dielectric layer provided on a side intersecting the thickness direction of the substrate, wherein at least a part of an outer peripheral portion of the conductor layer is disposed on the dielectric layer.
  • the surface of the dielectric layer on which the conductor layer is arranged may be roughened.
  • a corner of an outer peripheral portion of the conductor layer may be arranged on the dielectric layer.
  • the entire outer peripheral portion of the conductor layer may be disposed on the dielectric layer.
  • the high-frequency passive component according to one aspect of the present invention is configured such that the waveguide region has a waveguide structure surrounded by a wide wall formed on both surfaces of the substrate and a side wall connected to the wide wall.
  • a layer may be at least one of said wide walls.
  • at least a part of the conductor layer may be sealed with a resin.
  • one embodiment of the present invention is a method for manufacturing a high-frequency passive component including a substrate made of a dielectric and a side wall formed on the substrate, the method including a concave portion corresponding to the side wall.
  • a manufacturing method is provided.
  • the conductor layer can be prevented from peeling off from the substrate.
  • FIG. 2 is a cross-sectional view taken along a line II-II in FIG. 1, illustrating a pattern of a conductor layer. It is sectional drawing which shows the process of producing a type
  • FIG. 1 shows a cross-sectional structure of the high-frequency passive component 100 of the present embodiment.
  • the substrate 101 include a dielectric substrate such as a glass substrate, a sapphire substrate, a quartz substrate, and a resin substrate.
  • the substrate 101 is preferably made of a material having excellent high-frequency characteristics such as a small dielectric loss tangent.
  • the thickness direction of the substrate 101 is shown to be up and down.
  • the conductor layer 103 is formed on the first main surface 101 a of the substrate 101.
  • the conductor layer 103 can include wiring and the like.
  • the space surrounded by the conductor layers 103 and 102 formed on both the main surfaces 101a and 101b in the thickness direction of the substrate 101 and the side wall 104 formed on the side of the substrate 101 is a waveguide.
  • the waveguide structure is configured to be a region. This waveguide structure can be used, for example, as a high-frequency device through which a high-frequency signal (electromagnetic wave) such as a millimeter wave is propagated. Although the frequency is not particularly limited, for example, 30 to 300 GHz, 60 to 80 GHz and the like can be mentioned.
  • the waveguide structure may constitute a passive component (passive device) such as a waveguide, a filter, a diplexer, a directional coupler, and a distributor.
  • a dielectric layer 106 made of resin or the like is provided on the conductor layer 102 provided on the second main surface 101 b of the substrate 101 and on the side wall 104 on the side of the substrate 101.
  • the side of the substrate 101 is a direction crossing the thickness direction, for example, the longitudinal direction or the width direction of the waveguide structure.
  • a sealing layer 107 made of resin or the like is provided on the conductor layer 103 provided on the first main surface 101a of the substrate 101.
  • the outer peripheral portion 103 a of the conductor layer 103 on the first main surface 101 a of the substrate 101 is arranged on the dielectric layer 106.
  • the conductor layer 103 can be prevented from peeling off from the substrate 101.
  • the present invention is not particularly limited.
  • the following hypothesis is considered. If the end face of the conductor layer 103 is arranged on the substrate 101, the conductor layer 103 may peel off from the substrate 101 depending on the use environment. For example, when the temperature rise from low temperature to high temperature or the temperature drop from high temperature to low temperature is excessive, stress between the layers is increased due to the difference in the coefficient of thermal expansion between the material forming the conductor layer 103 and the material forming the substrate 101. May occur.
  • the peeling of the conductor layer 103 starts from the outer peripheral portion 103a of the conductor layer 103. Therefore, by providing the dielectric layer 106 on the side of the substrate 101 and arranging the outer peripheral portion 103a of the conductor layer 103 on the dielectric layer 106, the outer peripheral portion 103a of the conductor layer 103 does not contact the substrate 101, There is a situation where the stress is relieved through the layer 106. Therefore, it is considered that peeling of the outer peripheral portion 103a of the conductor layer 103 can be suppressed.
  • a material having good high-frequency characteristics has low adhesion to a metal serving as a conductor layer such as a wiring or a wide wall.
  • a metal serving as a conductor layer such as a wiring or a wide wall.
  • the surface 106a of the dielectric layer 106 on which the conductor layer 103 is arranged may be roughened to increase the adhesion to metal.
  • the surface 106a is a surface along the first main surface 101a of the substrate 101. Since the surface 106a of the dielectric layer 106 on which the conductor layer 103 is disposed is roughened outside the waveguide structure, the roughened surface does not affect the high-frequency characteristics of the waveguide and can be used for metal. Adhesion can be improved
  • the outer peripheral portion 103a of the conductor layer 103 disposed on the dielectric layer 106 is preferably at least a corner or the entire outer peripheral portion.
  • a through electrode 105 serving as a mode conversion mechanism may be provided.
  • redistribution layers 109 and 111 electrically connected to the conductor layer 103 can be provided over the sealing layer 107.
  • the rewiring layers 109 and 111 can be connected to the conductor layer 103 via vias 108 and 110, respectively.
  • the via 108 and the rewiring layer 109 are connected to the through-electrode 105 serving as a mode conversion mechanism.
  • the via 110 and the redistribution layer 111 are connected to the side wall 104.
  • FIG. 2 illustrates a pattern on the plane of the conductor layer 103.
  • the circular pattern having the end face 103c indicates the conductor layer 103 connected to the through electrode 105 serving as a mode conversion mechanism.
  • the two mode conversion mechanisms may be provided at both ends in the longitudinal direction of the waveguide.
  • the surrounding conductor layer 103 is a portion that becomes a wide wall of the waveguide structure.
  • the outer peripheral portion 103a of the conductor layer 103 serving as a wide wall is disposed on the dielectric layer 106 shown in FIG. 1 as described above.
  • FIG. 3A, FIG. 3B, and FIG. 3C sequentially show the steps of producing a mold from a prototype.
  • FIG. 4A, FIG. 4B, and FIG. 4C sequentially show steps of manufacturing a substrate from a mold.
  • FIG. 5A, FIG. 5B, FIG. 5C, and FIG. 5D sequentially show steps of manufacturing a high-frequency passive component on a substrate.
  • FIG. 6A, FIG. 6B, and FIG. 6C sequentially show a process of providing a wiring for external connection on the high-frequency passive component.
  • the method of manufacturing the high-frequency passive component according to the present embodiment has the following steps as shown in FIGS. 3A to 5D.
  • a step of manufacturing a mold 10 having a concave portion 11 corresponding to a side wall and a concave portion 12 corresponding to a through electrode from glass (FIG. 3A).
  • a step of using the prototype 10 to fabricate a mold 20 having projections 21 and 22 corresponding to the recesses 11 and 12 of the prototype 10 from metal (FIGS. 3B and 3C).
  • the mold 20 has a first main surface 33 where the concave portions 31 and 32 corresponding to the convex portions 21 and 22 are opened, and a second main surface 34 opposite to the first main surface 33.
  • Step of manufacturing substrate 35 from substrate material 30 made of resin (FIGS. 4A to 4C).
  • a step of polishing the second main surface 34 of the substrate 35 to form an exposed portion EX in which a part of the concave portions 31 and 32 of the substrate 35 is exposed on the second main surface 36 (FIGS. 5A to 5D).
  • Each of the concave portions 31 and 32 exposed on the second main surface 36 of the substrate 35 can be provided with a side wall 45 and a through electrode 46.
  • the prototype 10 has a first main surface 13 in which the concave portions 11 and 12 are open, and a second main surface 14 on the opposite side to the first main surface 13.
  • the recesses 11 and 12 do not reach the second main surface 14, and the bottoms of the recesses 11 and 12 are closed.
  • the prototype 10 has the same shape as the substrate 35, and is used to transfer the shape of the prototype 10 to the mold 20, and further to transfer the shape of the mold 20 to the substrate material 30. That is, the prototype 10 is not a mold 20 for directly molding the substrate 35 but a master mold that is a base of the mold 20.
  • ⁇ ⁇ Glass is an example of a dielectric material constituting the prototype 10.
  • the glass include multi-component glass, quartz glass (silica glass), and silicate glass.
  • quartz glass silicon glass
  • silicate glass As a material similar to glass, inorganic materials such as sapphire, synthetic quartz, natural quartz, and semiconductors can be used.
  • the dielectric substrate constituting the prototype 10 may be, for example, a wafer-shaped large-area substrate. 3A to 3C, the concave portions 11 and 12 of the prototype 10 are displayed downward, but the prototype 10 may be arranged in a direction different from the downward direction.
  • a punching machine such as a drill, a laser, an etching and the like can be mentioned.
  • a material such as glass is locally modified by laser condensing irradiation, and a portion having high solubility due to the modification is selectively removed by wet etching.
  • femtosecond laser-assisted etching enables processing with high positional accuracy and high processing accuracy.
  • the femtosecond laser-assisted etching referred to here means that, first, an ultrashort pulse laser having a pulse width of 10 ps or less is condensed and scanned to form a modified portion including a crack or a structurally modified portion along the condensed portion. Next, a processing method in which the modified portion is selectively etched by etching to provide the concave portions 11 and 12 and the like. Not only can micropores having a high aspect ratio (ratio of depth to diameter) be formed, but also recesses of any shape including a tapered shape, a stepped shape, and the like can be processed.
  • the tapered shape may have a smaller diameter or shape from the first main surface of the material to the second main surface or inside, or conversely, may have a larger diameter or shape.
  • the metal is adhered to the concave portions 11, 12 and the first main surface 13 of the prototype 10 by electroforming, plating, or the like using a metal such as Ni, thereby forming the mold 20.
  • the protrusions 21 and 22 are made of metal deposited on the recesses 11 and 12 of the prototype 10, and the base 23 is made of metal deposited on the first main surface 13 of the prototype 10.
  • a substrate material 30 made of resin is prepared, and as shown in FIG. 4B, the substrate material 30 is overlaid on the protrusions 21 and 22 of the mold 20.
  • Substrate material 30 may be a flat film, sheet, or the like.
  • Preferred resins for the substrate material 30 include cycloolefin copolymer (COC), fluororesin, liquid crystal polymer (LCP) and the like.
  • COC cycloolefin copolymer
  • LCP liquid crystal polymer
  • the resin constituting the substrate material 30 is a thermoplastic resin
  • the resin is softened by heating, the shape of the mold 20 is transferred to the substrate material 30 by the hot embossing method, and the concave portions having the shapes corresponding to the convex portions 21 and 22 are formed. 31, 32 can be formed.
  • the substrate material 30 is a curable resin such as a thermosetting resin or a photo-curable resin
  • the substrate material 30 is applied to the mold 20 in an uncured state having fluidity such as a liquid, and is superimposed on the mold 20.
  • the concave portions 31 and 32 having shapes corresponding to the convex portions 21 and 22 can be formed.
  • the first main surface 33 is a surface where the concave portions 31 and 32 are opened.
  • the second main surface 34 is a surface opposite to the first main surface 33.
  • the recesses 31 and 32 do not reach the second main surface 34, and the bottoms of the recesses 31 and 32 are closed. Since the material constituting the mold 20 is excellent in durability, the step of forming the substrate 35 having the concave portions 31 and 32 using the same mold 20 can be repeated a plurality of times.
  • the first conductor layers 41, 42, and 43 are respectively provided on the concave portion 31, the concave portion 32, and the first main surface 33 with respect to the substrate 35 having the concave portions 31 and 32 opened on the first main surface 33. Is formed. Specifically, among these conductor layers, the first conductor layer 41 is formed on the inner wall of the recess 31, the first conductor layer 42 is formed on the inner wall of the recess 32, and the first conductor layer 43 is formed on the first wall. It is formed on the main surface 33.
  • the first conductor layers 41, 42, 43 are formed so as to conform to the respective surface shapes (inner wall, bottom wall, surface) of the concave portion 31, the concave portion 32, and the first main surface 33.
  • the first conductor layers 41 and formed on the inner walls of the recesses 31 and 32 are not exposed on the second main surface of the substrate.
  • the first conductor layers 41 and 42 form blind vias.
  • a method of forming a conductor layer such as the first conductor layers 41, 42, and 43
  • a sputtering method a vapor deposition method, an electroless plating method, an electrolytic plating method, and a method of applying a conductor paste
  • Method Two or more kinds of conductor materials or film forming methods may be used in combination, and two or more kinds of conductors may be laminated to form a conductor layer.
  • a seed layer is formed with a smaller thickness than the target by sputtering, vapor deposition, or electroless plating, and then the conductor is laminated to the target thickness by electrolytic plating. You may.
  • an oxidation preventing layer such as NiAu or NiPdAu may be provided to prevent oxidation. Further, patterning or the like may be appropriately performed so that the first conductive layer 43 has a shape such as a wiring and a pad.
  • the first main surface 33 of the substrate 35 having the first conductor layer 43 formed on the first main surface 33 is covered with an insulating material 44.
  • the insulating material 44 fills the recess 31, but does not have to fill the recess 32.
  • Examples of the insulating material 44 include a resin.
  • the insulating material 44 functions as a bonding material or an adhesive, and the waveguide structure 48 is formed. Can be prevented from separating from the substrate 35.
  • the exposed portions where the concave portions 31 and 32 are exposed on the new second main surface 36 (polishing processing surface, surface obtained by polishing). EX is formed.
  • the first conductor layers 41 and 42 formed in the concave portions 31 and 32 are exposed on the new second main surface 36 to become the side walls 45 and the through electrodes 46 (exposed electrodes).
  • the shapes of the side walls 45 and the through electrodes 46 are based on the shapes of the precisely formed recesses 31 and 32 according to the shapes of the recesses 11 and 12 of the prototype 10, respectively. Thereby, highly accurate side walls and through holes can be formed in the substrate 35 made of resin.
  • a second conductor layer 47 is formed on the second main surface 36 of the substrate 35.
  • the method of forming the second conductor layer 47 may be the same as the method of forming the first conductor layers 41, 42, and 43, as described above. Since the dielectric constituting the substrate 35 has a region surrounded by the first conductor layer 43, the second conductor layer 47, and the side wall 45, a waveguide structure 48 similar to a waveguide can be constituted. Further, before forming the second conductor layer 47, the insulating material 44 exposed on the second main surface 36 may be roughened.
  • the through electrode 46 provided inside the waveguide structure 48 may constitute a mode conversion mechanism.
  • the mode conversion mechanism is connected to a wiring layer (the redistribution layer 53 in FIG. 6C) provided outside the waveguide structure 48, and inputs an electric signal to the waveguide structure from the wiring layer, or outputs a signal from the waveguide structure. For example, an electric signal can be output to the wiring layer.
  • patterning of the second conductor layer 47 may be performed as appropriate. Further, as described above, an oxidation preventing layer may be provided on the surface of the second conductor layer 47 (the outer surface opposite to the surface in contact with the substrate 35).
  • the second conductor layer 47 formed on the second main surface 36 may be the same as or different from the first conductor layer 43 formed on the first main surface 33 with respect to the layer configuration, patterning, and the like.
  • the through electrode 46 serving as a mode conversion mechanism and the side wall 45 are separated via the gap 49.
  • a method of forming a patterned conductor layer using a patterned resist for example, the following two methods can be mentioned. (1) A method in which a conductor layer is formed after a patterned resist is formed, the conductor layer laminated on the resist is removed together with the resist, and the conductor layer is left in a region where there is no resist (lift-off). (2) After forming a patterned resist on the entire surface of the conductor layer, the material layer in a region not covered with the resist is removed by etching or the like, and if necessary, unnecessary resist is removed. Method.
  • the etching method can be appropriately selected from various types such as dry etching and wet etching.
  • a sealing layer 50 made of a dielectric such as a resin may be provided on the second conductor layer 47.
  • An opening 51 communicating with the second conductor layer 47 can be provided in the sealing layer 50.
  • photolithography can be used.
  • non-photosensitive material a printing method can be used.
  • the rewiring layers 53 and 55 may be provided on the sealing layer 50, and the vias 52 and 54 may be provided in the opening 51.
  • the substrate 35 may include a step of cutting the substrate for each passive component. Examples of the means for cutting the substrate include known processing means such as a blade dicer and a laser.
  • the high-frequency passive component 100 shown in FIG. 1 can be obtained.
  • the substrate 101 in FIG. 1 corresponds to the substrate 35 in FIG. 6C
  • the conductor layers 102 and 103 in FIG. 1 correspond to the first conductor layer 43 and the second conductor layer 47 in FIG. 6C, respectively.
  • the side wall 104 in FIG. 1 corresponds to the side wall 45 in FIG. 6C
  • the through electrode 105 in FIG. 1 corresponds to the through electrode 46 in FIG. 6C.
  • the dielectric layer 106 in FIG. 1 corresponds to the insulating material 44 in FIG. 6C
  • the sealing layer 107 in FIG. 1 corresponds to the sealing layer 50 in FIG. 6C.
  • the vias 108 and 110 and the redistribution layers 109 and 111 in FIG. 1 correspond to the vias 52 and 54 and the redistribution layers 53 and 55 in FIG. 6C, respectively.
  • the high-frequency passive component 100 shown in FIG. 1 When manufacturing the high-frequency passive component 100 shown in FIG. 1, as shown in FIG. 4C, a method of manufacturing a substrate 35 in which a concave portion 31 serving as a side wall and a concave portion 32 serving as a through hole are formed,
  • the method for forming 11 and 12 may be the same.
  • the substrate material 30 is glass, quartz, or the like
  • the concave portions 31 and 32 may be formed by femtosecond laser assisted etching or the like.
  • the high-frequency passive component 100 shown in FIG. 1 can be manufactured.
  • a plurality of components may be configured on the same substrate.
  • Other components configured on the substrate are not limited to high frequency passive components, and may include other passive components, active components, and the like.
  • a high-frequency module can be configured.
  • the high-frequency module of the present embodiment is, for example, a module including the above-described high-frequency passive component.
  • Various components necessary for the function can be incorporated in the module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Waveguides (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

This high-frequency passive component is provided with: a substrate comprising a dielectric material that includes a waveguide region; a conductor layer that abuts the waveguide region so as to surround said waveguide region in a planar view on at least one surface of the substrate in the thickness direction thereof; and a dielectric material layer provided on a side intersecting the thickness direction of the substrate. At least part of the outer peripheral section of the conductor layer is arranged on the dielectric material layer.

Description

高周波受動部品、および、高周波受動部品の製造方法High frequency passive component and method of manufacturing high frequency passive component
 本発明は、ミリ波等の高周波通信に利用可能な導波路構造を有する高周波受動部品、および、高周波受動部品の製造方法に関する。
 本願は、2018年7月6日に日本に出願された特願2018-128679号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a high-frequency passive component having a waveguide structure that can be used for high-frequency communication such as millimeter waves, and a method for manufacturing a high-frequency passive component.
This application claims priority based on Japanese Patent Application No. 2018-128679 for which it applied to Japan on July 6, 2018, and uses the content here.
 近年、ミリ波帯を利用した数G[bps]の高速大容量通信が提案され、その一部が実現されつつある。小型で安価なミリ波通信モジュールを実現する形態として、例えば、特許文献1には、ポスト壁導波路(Post-wall Waveguide)を利用したモード変換器が提案されている。 In recent years, high-speed, large-capacity communication of several gigabits per second (bps) using the millimeter wave band has been proposed, and a part thereof is being realized. As a mode for realizing a small and inexpensive millimeter-wave communication module, for example, Patent Document 1 proposes a mode converter using a post-wall waveguide (Post-wall @ Waveguide).
日本国特開2014-158243号公報JP 2014-158243 A
 外部接続用の配線または電磁界を閉じ込める導波路構造等を設けた基板において、配線または導波路構造の広壁等を構成する導体層を基板の直上に設けると、使用環境によっては導体層が基板から剥離することがあった。高周波用途の基板材料を選択する場合は、導体層に対する密着性よりも、高周波特性に優れていることが優先的に要求されることがある。 In a substrate provided with wiring for external connection or a waveguide structure for confining an electromagnetic field, if a conductor layer constituting a wide wall or the like of the wiring or the waveguide structure is provided directly above the substrate, the conductor layer may be used depending on the use environment. Was sometimes peeled off. When a substrate material for high frequency applications is selected, it is sometimes required that the substrate material has superior high frequency characteristics rather than adhesion to a conductor layer.
 本発明は、上記事情に鑑みてなされたものであり、導体層が基板から剥離することを抑制することが可能な高周波受動部品、および、高周波受動部品の製造方法を提供する。 The present invention has been made in view of the above circumstances, and provides a high-frequency passive component capable of suppressing a conductive layer from peeling off from a substrate, and a method for manufacturing the high-frequency passive component.
 前記課題を解決するため、本発明の一態様は、導波領域を含む誘電体からなる基板と、前記基板の厚さ方向の少なくとも片面において、平面視で前記導波領域を囲むように接する導体層と、前記基板の厚さ方向に交差する側方に設けられた誘電体層と、を備え、前記導体層の外周部の少なくとも一部が、前記誘電体層に配置されている高周波受動部品を提供する。 In order to solve the above-described problem, one embodiment of the present invention provides a substrate formed of a dielectric including a waveguide region, and a conductor in contact with the substrate so as to surround the waveguide region in plan view on at least one surface in a thickness direction of the substrate. A high-frequency passive component, comprising: a layer; and a dielectric layer provided on a side intersecting the thickness direction of the substrate, wherein at least a part of an outer peripheral portion of the conductor layer is disposed on the dielectric layer. I will provide a.
 本発明の一態様に係る高周波受動部品は、前記導体層が配置された前記誘電体層の面は粗面化されてもよい。 In the high-frequency passive component according to one aspect of the present invention, the surface of the dielectric layer on which the conductor layer is arranged may be roughened.
 本発明の一態様に係る高周波受動部品は、前記導体層の外周部の隅部が、前記誘電体層に配置されてもよい。
 本発明の一態様に係る高周波受動部品は、前記導体層の外周部全体が、前記誘電体層に配置されてもよい。
In the high-frequency passive component according to one aspect of the present invention, a corner of an outer peripheral portion of the conductor layer may be arranged on the dielectric layer.
In the high-frequency passive component according to one aspect of the present invention, the entire outer peripheral portion of the conductor layer may be disposed on the dielectric layer.
 本発明の一態様に係る高周波受動部品は、前記導波領域が、前記基板の両面に形成された広壁および前記広壁に接続された側壁により囲まれた導波路構造で構成され、前記導体層が、前記広壁の少なくとも一方であってもよい。
 本発明の一態様に係る高周波受動部品は、前記導体層は、少なくとも一部を、樹脂で封止されてもよい。
The high-frequency passive component according to one aspect of the present invention is configured such that the waveguide region has a waveguide structure surrounded by a wide wall formed on both surfaces of the substrate and a side wall connected to the wide wall. A layer may be at least one of said wide walls.
In the high-frequency passive component according to one aspect of the present invention, at least a part of the conductor layer may be sealed with a resin.
 前記課題を解決するため、本発明の一態様は、誘電体からなる基板と、前記基板に形成された側壁とを有する高周波受動部品の製造方法であって、前記側壁に対応する凹部を有する第1主面と、前記第1主面とは反対側の第2主面とを有する基板を作製し、前記凹部内に誘電体層を設け、前記基板の前記第2主面を研磨して、前記誘電体層を前記第2主面の研磨により得られた面に露出させ、導体層の外周部が、前記誘電体層に配置されるように、前記導体層を形成する、高周波受動部品の製造方法を提供する。 In order to solve the above-described problem, one embodiment of the present invention is a method for manufacturing a high-frequency passive component including a substrate made of a dielectric and a side wall formed on the substrate, the method including a concave portion corresponding to the side wall. Producing a substrate having a first main surface and a second main surface opposite to the first main surface, providing a dielectric layer in the recess, polishing the second main surface of the substrate, Exposing the dielectric layer to the surface obtained by polishing the second main surface and forming the conductor layer so that the outer peripheral portion of the conductor layer is disposed on the dielectric layer; A manufacturing method is provided.
 本発明の一態様によれば、誘電体層と導体層との配置として上記構造を採用することにより、基板から導体層が剥離することを抑制することができる。 According to one embodiment of the present invention, by adopting the above structure as the arrangement of the dielectric layer and the conductor layer, the conductor layer can be prevented from peeling off from the substrate.
高周波受動部品の実施形態を示す断面図である。It is sectional drawing which shows embodiment of a high frequency passive component. 図1の線II-IIに沿う断面図であって、導体層のパターンを例示する図である。FIG. 2 is a cross-sectional view taken along a line II-II in FIG. 1, illustrating a pattern of a conductor layer. 原型から型を作製する工程を示す断面図である。It is sectional drawing which shows the process of producing a type | mold from a prototype. 原型から型を作製する工程を示す断面図である。It is sectional drawing which shows the process of producing a type | mold from a prototype. 原型から型を作製する工程を示す断面図である。It is sectional drawing which shows the process of producing a type | mold from a prototype. 型から基板を作製する工程を示す断面図である。It is sectional drawing which shows the process of producing a board | substrate from a type | mold. 型から基板を作製する工程を示す断面図である。It is sectional drawing which shows the process of producing a board | substrate from a type | mold. 型から基板を作製する工程を示す断面図である。It is sectional drawing which shows the process of producing a board | substrate from a type | mold. 高周波受動部品を作製する工程を示す断面図である。It is sectional drawing which shows the process of manufacturing a high frequency passive component. 高周波受動部品を作製する工程を示す断面図である。It is sectional drawing which shows the process of manufacturing a high frequency passive component. 高周波受動部品を作製する工程を示す断面図である。It is sectional drawing which shows the process of manufacturing a high frequency passive component. 高周波受動部品を作製する工程を示す断面図である。It is sectional drawing which shows the process of manufacturing a high frequency passive component. 外部接続用の配線を高周波受動部品に設ける工程を示す断面図である。It is sectional drawing which shows the process of providing the wiring for external connection in a high frequency passive component. 外部接続用の配線を高周波受動部品に設ける工程を示す断面図である。It is sectional drawing which shows the process of providing the wiring for external connection in a high frequency passive component. 外部接続用の配線を高周波受動部品に設ける工程を示す断面図である。It is sectional drawing which shows the process of providing the wiring for external connection in a high frequency passive component.
 以下、好適な実施形態に基づき、図面を参照して本発明を説明する。 Hereinafter, the present invention will be described based on preferred embodiments with reference to the drawings.
 図1に、本実施形態の高周波受動部品100の断面構造を示す。基板101としては、例えば、ガラス基板、サファイア基板、石英基板、樹脂基板などの誘電体基板が挙げられる。基板101は、誘電正接が小さい等、高周波特性の優れた材料が好ましい。図1では、基板101の厚さ方向が上下となるように表されている。 FIG. 1 shows a cross-sectional structure of the high-frequency passive component 100 of the present embodiment. Examples of the substrate 101 include a dielectric substrate such as a glass substrate, a sapphire substrate, a quartz substrate, and a resin substrate. The substrate 101 is preferably made of a material having excellent high-frequency characteristics such as a small dielectric loss tangent. In FIG. 1, the thickness direction of the substrate 101 is shown to be up and down.
 基板101の第1主面101aには、導体層103が形成されている。導体層103は、配線等を含むことができる。本実施形態の場合、基板101の厚さ方向の両主面101a,101bに形成された導体層103,102と、基板101の側方に形成された側壁104とにより囲まれた空間が導波領域となるように、導波路構造が構成されている。この導波路構造は、例えば、ミリ波などの高周波信号(電磁波)が伝搬される高周波デバイスとして利用することができる。周波数は特に限定されないが、例えば、30~300GHz、60~80GHz等が挙げられる。導波路構造は、導波路、フィルタ、ダイプレクサ、方向性結合器、分配器等の受動部品(パッシブデバイス)を構成してもよい。 導体 The conductor layer 103 is formed on the first main surface 101 a of the substrate 101. The conductor layer 103 can include wiring and the like. In the case of the present embodiment, the space surrounded by the conductor layers 103 and 102 formed on both the main surfaces 101a and 101b in the thickness direction of the substrate 101 and the side wall 104 formed on the side of the substrate 101 is a waveguide. The waveguide structure is configured to be a region. This waveguide structure can be used, for example, as a high-frequency device through which a high-frequency signal (electromagnetic wave) such as a millimeter wave is propagated. Although the frequency is not particularly limited, for example, 30 to 300 GHz, 60 to 80 GHz and the like can be mentioned. The waveguide structure may constitute a passive component (passive device) such as a waveguide, a filter, a diplexer, a directional coupler, and a distributor.
 基板101の第2主面101bに設けられた導体層102、および基板101の側方における側壁104には、樹脂等からなる誘電体層106が設けられている。ここで、基板101の側方とは、厚さ方向に交差する方向であり、例えば、導波路構造の長手方向または幅方向である。また、基板101の第1主面101aに設けられた導体層103には、樹脂等からなる封止層107が設けられている。基板101の第1主面101aの導体層103の外周部103aは、誘電体層106に配置されている。 誘 電 A dielectric layer 106 made of resin or the like is provided on the conductor layer 102 provided on the second main surface 101 b of the substrate 101 and on the side wall 104 on the side of the substrate 101. Here, the side of the substrate 101 is a direction crossing the thickness direction, for example, the longitudinal direction or the width direction of the waveguide structure. Further, a sealing layer 107 made of resin or the like is provided on the conductor layer 103 provided on the first main surface 101a of the substrate 101. The outer peripheral portion 103 a of the conductor layer 103 on the first main surface 101 a of the substrate 101 is arranged on the dielectric layer 106.
 本実施形態によれば、導体層103と誘電体層106との配置として上記構造を採用することにより、基板101から導体層103が剥離することを抑制することができる。この理由については、特に本発明を限定するものではないが、例えば、次のような仮説が考えられる。もし、導体層103の端面を基板101上に配置した場合、使用環境によっては導体層103が基板101から剥離する場合がある。例えば、低温から高温への温度上昇や、高温から低温への温度降下が甚だしいと、導体層103を構成する材料と、基板101を構成する材料との熱膨張率の違いから、層間に応力が生じるおそれがある。また、導体層103の剥離は、導体層103の外周部103aを起点とする。そこで、基板101の側方に誘電体層106を設け、導体層103の外周部103aを誘電体層106に配置することにより、導体層103の外周部103aが基板101に接することなく、誘電体層106を介して応力を緩和する状況になる。このため、導体層103の外周部103aの剥離が抑制できると考えられる。 According to the present embodiment, by adopting the above structure as the arrangement of the conductor layer 103 and the dielectric layer 106, the conductor layer 103 can be prevented from peeling off from the substrate 101. For this reason, the present invention is not particularly limited. For example, the following hypothesis is considered. If the end face of the conductor layer 103 is arranged on the substrate 101, the conductor layer 103 may peel off from the substrate 101 depending on the use environment. For example, when the temperature rise from low temperature to high temperature or the temperature drop from high temperature to low temperature is excessive, stress between the layers is increased due to the difference in the coefficient of thermal expansion between the material forming the conductor layer 103 and the material forming the substrate 101. May occur. The peeling of the conductor layer 103 starts from the outer peripheral portion 103a of the conductor layer 103. Therefore, by providing the dielectric layer 106 on the side of the substrate 101 and arranging the outer peripheral portion 103a of the conductor layer 103 on the dielectric layer 106, the outer peripheral portion 103a of the conductor layer 103 does not contact the substrate 101, There is a situation where the stress is relieved through the layer 106. Therefore, it is considered that peeling of the outer peripheral portion 103a of the conductor layer 103 can be suppressed.
 一般に、高周波特性がよい材料は、配線、広壁等の導体層となる金属に対する密着性が低い。金属に対する密着性を高めるため、導体層が設けられる基板の主面を粗面化する等も考えられるが、導波領域を構成する面が粗面化されると、高周波特性を悪化させる要因となる。
 そこで、剥離の起点となり得る導体層103の外周部103aが、導波路構造の外側に設けられた誘電体層106に配置される。導体層103が配置される誘電体層106の面106aを粗面化して、金属に対する密着性を高めてもよい。ここで、面106aは、基板101の第1主面101aに沿う面である。導体層103が配置された誘電体層106の面106aが粗面化されている箇所が導波路構造の外側であるため、粗面化されても導波路の高周波特性に影響しないで、金属に対する密着性を高めることができる。
In general, a material having good high-frequency characteristics has low adhesion to a metal serving as a conductor layer such as a wiring or a wide wall. In order to enhance the adhesion to metal, it is conceivable to roughen the main surface of the substrate on which the conductive layer is provided. Become.
Therefore, the outer peripheral portion 103a of the conductor layer 103, which can be a starting point of the separation, is disposed on the dielectric layer 106 provided outside the waveguide structure. The surface 106a of the dielectric layer 106 on which the conductor layer 103 is arranged may be roughened to increase the adhesion to metal. Here, the surface 106a is a surface along the first main surface 101a of the substrate 101. Since the surface 106a of the dielectric layer 106 on which the conductor layer 103 is disposed is roughened outside the waveguide structure, the roughened surface does not affect the high-frequency characteristics of the waveguide and can be used for metal. Adhesion can be improved.
 誘電体層106に配置された導体層103の外周部103aは少なくとも隅部、あるいは外周部全体であることが好ましい。 外 周 The outer peripheral portion 103a of the conductor layer 103 disposed on the dielectric layer 106 is preferably at least a corner or the entire outer peripheral portion.
 図1に示す導波路構造では、詳しくは後述するが、モード変換機構となる貫通電極105を設けてもよい。また、封止層107上には、導体層103に電気的に接続される再配線層109,111を設けることができる。再配線層109,111は各々、ビア108,110を介して導体層103と接続することができる。ここで、ビア108および再配線層109は、モード変換機構となる貫通電極105と接続されている。また、ビア110および再配線層111は、側壁104と接続されている。 (1) In the waveguide structure shown in FIG. 1, although described in detail later, a through electrode 105 serving as a mode conversion mechanism may be provided. Further, redistribution layers 109 and 111 electrically connected to the conductor layer 103 can be provided over the sealing layer 107. The rewiring layers 109 and 111 can be connected to the conductor layer 103 via vias 108 and 110, respectively. Here, the via 108 and the rewiring layer 109 are connected to the through-electrode 105 serving as a mode conversion mechanism. The via 110 and the redistribution layer 111 are connected to the side wall 104.
 図2は、導体層103の平面上のパターンを例示する。端面103cを有する円形状のパターンは、モード変換機構となる貫通電極105と接続される導体層103を示す。2つのモード変換機構は、導波路の長手方向の両端部に設けられてもよい。周囲の導体層103は、導波路構造の広壁となる部分である。広壁となる導体層103の外周部103aは、上述したように、図1に示す誘電体層106に配置される。広壁とモード変換機構とを絶縁するパターンの周囲における導体層103の端面103b,103cは、パターンが小さく、または閉じた形状であるため、基板101上に直接配置されても剥離が起きにくい。 FIG. 2 illustrates a pattern on the plane of the conductor layer 103. The circular pattern having the end face 103c indicates the conductor layer 103 connected to the through electrode 105 serving as a mode conversion mechanism. The two mode conversion mechanisms may be provided at both ends in the longitudinal direction of the waveguide. The surrounding conductor layer 103 is a portion that becomes a wide wall of the waveguide structure. The outer peripheral portion 103a of the conductor layer 103 serving as a wide wall is disposed on the dielectric layer 106 shown in FIG. 1 as described above. Since the end faces 103b and 103c of the conductor layer 103 around the pattern that insulates the wide wall from the mode conversion mechanism have a small pattern or a closed shape, peeling hardly occurs even when the end faces are directly arranged on the substrate 101.
 次に、本実施形態の高周波受動部品を製造する方法の一例を説明する。図3A、図3B、及び図3Cは、原型から型を作製する工程を順に示す。図4A、図4B、及び図4Cは、型から基板を作製する工程を順に示す。図5A、図5B、図5C、及び図5Dは、基板に高周波受動部品を作製する工程を順に示す。図6A、図6B、及び図6Cは、外部接続用の配線を高周波受動部品に設ける工程を順に示す。 Next, an example of a method for manufacturing the high-frequency passive component of the present embodiment will be described. FIG. 3A, FIG. 3B, and FIG. 3C sequentially show the steps of producing a mold from a prototype. FIG. 4A, FIG. 4B, and FIG. 4C sequentially show steps of manufacturing a substrate from a mold. FIG. 5A, FIG. 5B, FIG. 5C, and FIG. 5D sequentially show steps of manufacturing a high-frequency passive component on a substrate. FIG. 6A, FIG. 6B, and FIG. 6C sequentially show a process of providing a wiring for external connection on the high-frequency passive component.
 本実施形態による高周波受動部品の製造方法は、概略として、図3A~図5Dに示すように、以下の工程を有する。
・側壁に対応する凹部11および貫通電極に対応する凹部12を有する原型10をガラスから作製する工程(図3A)。
・原型10を用いて、原型10の凹部11,12に対応する凸部21,22を有する型20を金属から作製する工程(図3B、図3C)。
・型20を用いて、型20の凸部21,22に対応する凹部31,32が開口する第1主面33と、第1主面33とは反対側の第2主面34とを有する基板35を樹脂からなる基板材料30から作製する工程(図4A~図4C)。
・基板35の第2主面34を研磨して、基板35の凹部31,32の一部が第2主面36に露出した露出部EXを形成する工程(図5A~図5D)。
 基板35の第2主面36に露出した凹部31,32には各々、側壁45、貫通電極46を設けることができる。
The method of manufacturing the high-frequency passive component according to the present embodiment has the following steps as shown in FIGS. 3A to 5D.
A step of manufacturing a mold 10 having a concave portion 11 corresponding to a side wall and a concave portion 12 corresponding to a through electrode from glass (FIG. 3A).
A step of using the prototype 10 to fabricate a mold 20 having projections 21 and 22 corresponding to the recesses 11 and 12 of the prototype 10 from metal (FIGS. 3B and 3C).
Using the mold 20, the mold 20 has a first main surface 33 where the concave portions 31 and 32 corresponding to the convex portions 21 and 22 are opened, and a second main surface 34 opposite to the first main surface 33. Step of manufacturing substrate 35 from substrate material 30 made of resin (FIGS. 4A to 4C).
A step of polishing the second main surface 34 of the substrate 35 to form an exposed portion EX in which a part of the concave portions 31 and 32 of the substrate 35 is exposed on the second main surface 36 (FIGS. 5A to 5D).
Each of the concave portions 31 and 32 exposed on the second main surface 36 of the substrate 35 can be provided with a side wall 45 and a through electrode 46.
 図3Aに示すように、原型10は、凹部11,12が開口した第1主面13と、この第1主面13とは反対側にある第2主面14とを有する。凹部11,12は第2主面14に到達せず、凹部11,12の底部が閉鎖されている。本実施形態で原型10とは、基板35と同様な形状を有し、原型10の形状を型20に転写し、さらに型20の形状を基板材料30に転写するために用いられる。つまり、原型10は、直接基板35を成形するための型20ではなく、型20の元となるマスター型である。 As shown in FIG. 3A, the prototype 10 has a first main surface 13 in which the concave portions 11 and 12 are open, and a second main surface 14 on the opposite side to the first main surface 13. The recesses 11 and 12 do not reach the second main surface 14, and the bottoms of the recesses 11 and 12 are closed. In the present embodiment, the prototype 10 has the same shape as the substrate 35, and is used to transfer the shape of the prototype 10 to the mold 20, and further to transfer the shape of the mold 20 to the substrate material 30. That is, the prototype 10 is not a mold 20 for directly molding the substrate 35 but a master mold that is a base of the mold 20.
 原型10を構成する誘電体としては、ガラスが挙げられる。ガラスとしては、多成分ガラス、石英ガラス(シリカガラス)、ケイ酸塩ガラス等が挙げられる。ガラスと同様な材料として、サファイア、合成石英、天然石英、半導体等の無機材料を採用することもできる。原型10を構成する誘電体基板は、例えば、ウエハ状をした大面積の基板であってもよい。図3A~図3Cでは原型10の凹部11,12を下向きに表示しているが、下向きとは異なる向きに原型10を配置してもよい。 誘 電 Glass is an example of a dielectric material constituting the prototype 10. Examples of the glass include multi-component glass, quartz glass (silica glass), and silicate glass. As a material similar to glass, inorganic materials such as sapphire, synthetic quartz, natural quartz, and semiconductors can be used. The dielectric substrate constituting the prototype 10 may be, for example, a wafer-shaped large-area substrate. 3A to 3C, the concave portions 11 and 12 of the prototype 10 are displayed downward, but the prototype 10 may be arranged in a direction different from the downward direction.
 原型10に凹部11,12を形成する方法としては、ドリル等の穿孔機械、レーザ、エッチング等が挙げられる。例えば、レーザの集光照射により、ガラス等の材料を局所的に改質した後、改質により溶解性が高くなった部分をウェットエッチングで選択的に除去する方法が挙げられる。例えば、フェムト秒レーザアシストエッチングにより、位置精度および加工精度の高い加工が可能となる。ここでいうフェムト秒レーザアシストエッチングとは、第一に、パルス幅10ps以下の超短パルスレーザを集光走査させることで集光部に沿って、クラックあるいは構造変性部からなる改質部を設け、次いで、エッチングによって改質部を選択的にエッチングし凹部11,12などを設ける加工法を指す。アスペクト比(径に対する深さの比率)が高い微細孔を形成できるだけでなく、テーパ形状、段差形状等を含む任意形状の凹部が加工できる。テーパ形状は、材料の第1主面から第2主面または内部に向けて、径または形状が小さくなってもよく、逆に、径または形状が大きくなってもよい。 方法 As a method of forming the concave portions 11 and 12 in the prototype 10, a punching machine such as a drill, a laser, an etching and the like can be mentioned. For example, there is a method in which a material such as glass is locally modified by laser condensing irradiation, and a portion having high solubility due to the modification is selectively removed by wet etching. For example, femtosecond laser-assisted etching enables processing with high positional accuracy and high processing accuracy. The femtosecond laser-assisted etching referred to here means that, first, an ultrashort pulse laser having a pulse width of 10 ps or less is condensed and scanned to form a modified portion including a crack or a structurally modified portion along the condensed portion. Next, a processing method in which the modified portion is selectively etched by etching to provide the concave portions 11 and 12 and the like. Not only can micropores having a high aspect ratio (ratio of depth to diameter) be formed, but also recesses of any shape including a tapered shape, a stepped shape, and the like can be processed. The tapered shape may have a smaller diameter or shape from the first main surface of the material to the second main surface or inside, or conversely, may have a larger diameter or shape.
 図3Bに示すように、例えば、Ni等の金属を用いた電鋳、メッキ等により、原型10の凹部11,12と第1主面13に金属を付着させ、型20を形成する。原型10の凹部11,12に堆積した金属から凸部21,22が構成され、原型10の第1主面13に堆積した金属から基部23が構成される。原型10と型20とを剥離することにより、図3Cに示すように、基部23の片面に凸部21,22が突出して形成された型20が得られる。原型10を構成する材料は耐久性に優れるため、同一の原型10を用いて、原型10から型20を作製する工程を複数回繰り返して行うことができる。 3B, as shown in FIG. 3B, the metal is adhered to the concave portions 11, 12 and the first main surface 13 of the prototype 10 by electroforming, plating, or the like using a metal such as Ni, thereby forming the mold 20. The protrusions 21 and 22 are made of metal deposited on the recesses 11 and 12 of the prototype 10, and the base 23 is made of metal deposited on the first main surface 13 of the prototype 10. By peeling the prototype 10 and the mold 20, as shown in FIG. 3C, the mold 20 in which the protrusions 21 and 22 project from one surface of the base 23 is obtained. Since the material constituting the prototype 10 is excellent in durability, the process of manufacturing the mold 20 from the prototype 10 using the same prototype 10 can be repeated a plurality of times.
 図4Aに示すように、樹脂からなる基板材料30を準備し、図4Bに示すように、型20の凸部21,22に基板材料30を重ね合わせる。基板材料30は、平坦なフィルム、シート等でもよい。基板材料30として好ましい樹脂としては、シクロオレフィンコポリマー(COC)、フッ素樹脂、液晶ポリマー(LCP)等が挙げられる。図4A~図4Cでは型20の凸部21,22を上向きに表示しているが、上向きとは異なる向きに型20を配置してもよい。 4) As shown in FIG. 4A, a substrate material 30 made of resin is prepared, and as shown in FIG. 4B, the substrate material 30 is overlaid on the protrusions 21 and 22 of the mold 20. Substrate material 30 may be a flat film, sheet, or the like. Preferred resins for the substrate material 30 include cycloolefin copolymer (COC), fluororesin, liquid crystal polymer (LCP) and the like. 4A to 4C, the protrusions 21 and 22 of the mold 20 are displayed upward, but the mold 20 may be arranged in a direction different from the upward.
 基板材料30を構成する樹脂が熱可塑性樹脂である場合、加熱により樹脂を軟化させ、ホットエンボス法により、型20の形状を基板材料30に転写させ、凸部21,22に対応する形状の凹部31,32を形成することができる。基板材料30が熱硬化性樹脂、光硬化性樹脂等の硬化性樹脂である場合は、液状などの流動性を有する未硬化の状態で基板材料30を型20に塗布し、型20と重ね合わせたまま樹脂を硬化させることで、凸部21,22に対応する形状の凹部31,32を形成することができる。 When the resin constituting the substrate material 30 is a thermoplastic resin, the resin is softened by heating, the shape of the mold 20 is transferred to the substrate material 30 by the hot embossing method, and the concave portions having the shapes corresponding to the convex portions 21 and 22 are formed. 31, 32 can be formed. When the substrate material 30 is a curable resin such as a thermosetting resin or a photo-curable resin, the substrate material 30 is applied to the mold 20 in an uncured state having fluidity such as a liquid, and is superimposed on the mold 20. By curing the resin as it is, the concave portions 31 and 32 having shapes corresponding to the convex portions 21 and 22 can be formed.
 型20と基板材料30とを剥離することにより、図4Cに示すように、型20の基部23に接した第1主面33に凹部31,32が形成された基板35が得られる。第1主面33は、凹部31,32が開口した面である。また、第2主面34は、第1主面33とは反対側の面である。凹部31,32は第2主面34に到達せず、凹部31,32の底部が閉鎖されている。型20を構成する材料は耐久性に優れるため、同一の型20を用いて、凹部31,32を有する基板35を成形する工程を複数回繰り返して行うことができる。 By peeling off the mold 20 and the substrate material 30, a substrate 35 having the concave portions 31, 32 formed in the first main surface 33 in contact with the base 23 of the mold 20, as shown in FIG. 4C, is obtained. The first main surface 33 is a surface where the concave portions 31 and 32 are opened. The second main surface 34 is a surface opposite to the first main surface 33. The recesses 31 and 32 do not reach the second main surface 34, and the bottoms of the recesses 31 and 32 are closed. Since the material constituting the mold 20 is excellent in durability, the step of forming the substrate 35 having the concave portions 31 and 32 using the same mold 20 can be repeated a plurality of times.
 図5Aに示すように、第1主面33に凹部31,32が開口した基板35に対して、凹部31、凹部32、及び第1主面33の各々に第1導体層41,42,43が形成される。具体的に、これら導体層のうち、第1導体層41は凹部31の内壁に形成されており、第1導体層42は凹部32の内壁に形成されており、第1導体層43は第1主面33に形成されている。この構造においては、第1導体層41、42、43は、凹部31、凹部32、及び第1主面33の各々の表面形状(内壁、底壁、表面)に沿うように、形成される。凹部31,32の内壁に各々形成された第1導体層41,42は、基板35の第2主面34に露出していない。第1導体層41,42はブラインドビアを構成している。 As shown in FIG. 5A, the first conductor layers 41, 42, and 43 are respectively provided on the concave portion 31, the concave portion 32, and the first main surface 33 with respect to the substrate 35 having the concave portions 31 and 32 opened on the first main surface 33. Is formed. Specifically, among these conductor layers, the first conductor layer 41 is formed on the inner wall of the recess 31, the first conductor layer 42 is formed on the inner wall of the recess 32, and the first conductor layer 43 is formed on the first wall. It is formed on the main surface 33. In this structure, the first conductor layers 41, 42, 43 are formed so as to conform to the respective surface shapes (inner wall, bottom wall, surface) of the concave portion 31, the concave portion 32, and the first main surface 33. The first conductor layers 41 and formed on the inner walls of the recesses 31 and 32 are not exposed on the second main surface of the substrate. The first conductor layers 41 and 42 form blind vias.
 第1導体層41,42,43のような導体層を形成する方法としては、スパッタ法、蒸着法、無電解メッキ法、電解メッキ法、導体ペーストの塗布法などの1種または2種以上の方法が挙げられる。2種以上の導体材料または成膜方法を併用してもよく、2種以上の導体を積層して導体層を構成してもよい。絶縁体上に導体層を形成する場合には、スパッタ法、蒸着法、無電解メッキ法により目標より薄い膜厚でシード層を形成した後、電解メッキ法により目標の膜厚まで導体を積層してもよい。第1導体層41,42,43の表面(基板35に接する面とは反対側の外面)には、酸化防止のため、NiAu,NiPdAu等の酸化防止層を設けてもよい。また、第1導体層43が配線、パッド等の形状を有するようにパターニング等を適宜行ってもよい。 As a method of forming a conductor layer such as the first conductor layers 41, 42, and 43, one or two or more of a sputtering method, a vapor deposition method, an electroless plating method, an electrolytic plating method, and a method of applying a conductor paste are used. Method. Two or more kinds of conductor materials or film forming methods may be used in combination, and two or more kinds of conductors may be laminated to form a conductor layer. When a conductor layer is formed on an insulator, a seed layer is formed with a smaller thickness than the target by sputtering, vapor deposition, or electroless plating, and then the conductor is laminated to the target thickness by electrolytic plating. You may. On the surfaces of the first conductor layers 41, 42, and 43 (the outer surface opposite to the surface in contact with the substrate 35), an oxidation preventing layer such as NiAu or NiPdAu may be provided to prevent oxidation. Further, patterning or the like may be appropriately performed so that the first conductive layer 43 has a shape such as a wiring and a pad.
 図5Bに示すように、第1主面33に第1導体層43が形成された基板35の第1主面33を、絶縁材44で被覆する。絶縁材44は、凹部31には充填されるが、凹部32内には充填されなくてもよい。絶縁材44としては、例えば、樹脂が挙げられる。これにより、後述するように、基板35の第2主面34を研磨する際に、凹部31の内壁、凹部32の内壁、及び第1主面33の表面の各々に形成された第1導体層41,42,43を保護することができる。また、基板35の第2主面34を研磨し、凹部31,32が基板35の第2主面36に露出した際に、絶縁材44が接合材または接着材として機能し、導波路構造48が基板35から離反することを防ぐことができる。 (5) As shown in FIG. 5B, the first main surface 33 of the substrate 35 having the first conductor layer 43 formed on the first main surface 33 is covered with an insulating material 44. The insulating material 44 fills the recess 31, but does not have to fill the recess 32. Examples of the insulating material 44 include a resin. Thereby, as described later, when the second main surface 34 of the substrate 35 is polished, the first conductive layer formed on each of the inner wall of the concave portion 31, the inner wall of the concave portion 32, and the surface of the first main surface 33 is formed. 41, 42 and 43 can be protected. In addition, when the second main surface 34 of the substrate 35 is polished and the concave portions 31 and 32 are exposed on the second main surface 36 of the substrate 35, the insulating material 44 functions as a bonding material or an adhesive, and the waveguide structure 48 is formed. Can be prevented from separating from the substrate 35.
 図5Cに示すように、基板35の第2主面34を研磨することにより、凹部31,32が新たな第2主面36(研磨処理面、研磨によって得られた面)に露出した露出部EXが形成される。また、凹部31,32に形成された第1導体層41,42が新たな第2主面36に露出されて、側壁45、貫通電極46(露出電極)となる。側壁45および貫通電極46の形状は各々、原型10の凹部11,12の形状に従って、精密に形成された凹部31,32の形状に基づく。これにより、樹脂からなる基板35に高精度な側壁および貫通孔を作製することができる。 As shown in FIG. 5C, by polishing the second main surface 34 of the substrate 35, the exposed portions where the concave portions 31 and 32 are exposed on the new second main surface 36 (polishing processing surface, surface obtained by polishing). EX is formed. In addition, the first conductor layers 41 and 42 formed in the concave portions 31 and 32 are exposed on the new second main surface 36 to become the side walls 45 and the through electrodes 46 (exposed electrodes). The shapes of the side walls 45 and the through electrodes 46 are based on the shapes of the precisely formed recesses 31 and 32 according to the shapes of the recesses 11 and 12 of the prototype 10, respectively. Thereby, highly accurate side walls and through holes can be formed in the substrate 35 made of resin.
 図5Dに示すように、基板35の第2主面36に第2導体層47を形成する。第2導体層47を形成する方法は、上述したように、第1導体層41,42,43を形成する方法と同様でよい。基板35を構成する誘電体が、第1導体層43と第2導体層47と側壁45とで囲まれる領域を有することにより、導波管と同様な導波路構造48を構成することができる。また、第2導体層47を形成する前に、第2主面36に露出した絶縁材44を粗面化してもよい。 (5) As shown in FIG. 5D, a second conductor layer 47 is formed on the second main surface 36 of the substrate 35. The method of forming the second conductor layer 47 may be the same as the method of forming the first conductor layers 41, 42, and 43, as described above. Since the dielectric constituting the substrate 35 has a region surrounded by the first conductor layer 43, the second conductor layer 47, and the side wall 45, a waveguide structure 48 similar to a waveguide can be constituted. Further, before forming the second conductor layer 47, the insulating material 44 exposed on the second main surface 36 may be roughened.
 導波路構造48の内部に設けられる貫通電極46は、モード変換機構を構成してもよい。モード変換機構は、導波路構造48の外部に設けられる配線層(図6Cの再配線層53)と接続され、配線層から導波路構造に対して電気信号を入力したり、または導波路構造から配線層に対して電気信号を出力したりすることができる。 貫通 The through electrode 46 provided inside the waveguide structure 48 may constitute a mode conversion mechanism. The mode conversion mechanism is connected to a wiring layer (the redistribution layer 53 in FIG. 6C) provided outside the waveguide structure 48, and inputs an electric signal to the waveguide structure from the wiring layer, or outputs a signal from the waveguide structure. For example, an electric signal can be output to the wiring layer.
 図6Aに示されるように、第2導体層47のパターニングなどを適宜行ってもよい。また、上述したように、第2導体層47の表面(基板35に接する面とは反対側の外面)に酸化防止層を設けてもよい。層構成、パターニング等に関して、第2主面36に形成された第2導体層47が、第1主面33に形成された第1導体層43と同様であってもよく、互いに異なってもよい。ここでは、例えば、モード変換機構となる貫通電極46と、側壁45とが、間隙49を介して分断される。 (6) As shown in FIG. 6A, patterning of the second conductor layer 47 may be performed as appropriate. Further, as described above, an oxidation preventing layer may be provided on the surface of the second conductor layer 47 (the outer surface opposite to the surface in contact with the substrate 35). The second conductor layer 47 formed on the second main surface 36 may be the same as or different from the first conductor layer 43 formed on the first main surface 33 with respect to the layer configuration, patterning, and the like. . Here, for example, the through electrode 46 serving as a mode conversion mechanism and the side wall 45 are separated via the gap 49.
 パターン状のレジストを用いてパターン状の導体層を形成する方法としては、例えば、次の2つの方法が挙げられる。
(1)パターン状のレジストを形成した後に導体層を形成し、レジスト上に積層された導体層をレジストと一緒に除去して、レジストのない領域に導体層を残す方法(リフトオフ)。
(2)全面的に導体層を形成した上にパターン状のレジストを形成した後、レジストに覆われていない領域の材料層をエッチング等で除去し、さらに必要に応じて不要なレジストを除去する方法。
 エッチング法としては、適宜、ドライエッチング、ウェットエッチング等の各種から選択することができる。
As a method of forming a patterned conductor layer using a patterned resist, for example, the following two methods can be mentioned.
(1) A method in which a conductor layer is formed after a patterned resist is formed, the conductor layer laminated on the resist is removed together with the resist, and the conductor layer is left in a region where there is no resist (lift-off).
(2) After forming a patterned resist on the entire surface of the conductor layer, the material layer in a region not covered with the resist is removed by etching or the like, and if necessary, unnecessary resist is removed. Method.
The etching method can be appropriately selected from various types such as dry etching and wet etching.
 図6Bに示されるように、第2導体層47上に、樹脂等の誘電体からなる封止層50を設けてもよい。封止層50には、第2導体層47に通じる開口51を設けることができる。封止層50が感光性を持つ材料からなる場合はフォトリソグラフィーを用いることができる。また、封止層50が非感光性を持つ材料からなる場合は印刷法を用いることができる。 封 止 As shown in FIG. 6B, a sealing layer 50 made of a dielectric such as a resin may be provided on the second conductor layer 47. An opening 51 communicating with the second conductor layer 47 can be provided in the sealing layer 50. When the sealing layer 50 is made of a photosensitive material, photolithography can be used. When the sealing layer 50 is made of a non-photosensitive material, a printing method can be used.
 図6Cに示されるように、封止層50上に再配線層53,55を設け、上述の開口51にビア52,54を設けてもよい。導波路構造48等の受動部品を有する基板35において、基板35が複数の受動部品を搭載している場合は、受動部品ごとに基板を切断する個片化工程を有してもよい。基板を切断する手段としては、ブレードダイサー、レーザなどの公知の加工手段が挙げられる。 (6) As shown in FIG. 6C, the rewiring layers 53 and 55 may be provided on the sealing layer 50, and the vias 52 and 54 may be provided in the opening 51. In the case of the substrate 35 having passive components such as the waveguide structure 48, when the substrate 35 has a plurality of passive components mounted thereon, the substrate 35 may include a step of cutting the substrate for each passive component. Examples of the means for cutting the substrate include known processing means such as a blade dicer and a laser.
 図6Cに示される受動部品を個片化することにより、図1に示す高周波受動部品100を得ることができる。ここで、図1の基板101は、図6Cの基板35に相当し、図1の導体層102,103は、図6Cの第1導体層43および第2導体層47にそれぞれ相当する。図1の側壁104は、図6Cの側壁45に相当し、図1の貫通電極105は、図6Cの貫通電極46に相当する。また、図1の誘電体層106は、図6Cの絶縁材44に相当し、図1の封止層107は、図6Cの封止層50に相当する。また、図1のビア108,110および再配線層109,111は、図6Cのビア52,54および再配線層53,55にそれぞれ相当する。 高周波 By dividing the passive component shown in FIG. 6C into individual pieces, the high-frequency passive component 100 shown in FIG. 1 can be obtained. Here, the substrate 101 in FIG. 1 corresponds to the substrate 35 in FIG. 6C, and the conductor layers 102 and 103 in FIG. 1 correspond to the first conductor layer 43 and the second conductor layer 47 in FIG. 6C, respectively. The side wall 104 in FIG. 1 corresponds to the side wall 45 in FIG. 6C, and the through electrode 105 in FIG. 1 corresponds to the through electrode 46 in FIG. 6C. The dielectric layer 106 in FIG. 1 corresponds to the insulating material 44 in FIG. 6C, and the sealing layer 107 in FIG. 1 corresponds to the sealing layer 50 in FIG. 6C. The vias 108 and 110 and the redistribution layers 109 and 111 in FIG. 1 correspond to the vias 52 and 54 and the redistribution layers 53 and 55 in FIG. 6C, respectively.
 以上、本発明を好適な実施形態に基づいて説明してきたが、本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の改変が可能である。改変としては、各実施形態における構成要素の追加、置換、省略、その他の変更が挙げられる。また、2以上の実施形態に用いられた構成要素を適宜組み合わせることも可能である。 Although the present invention has been described based on the preferred embodiments, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the gist of the present invention. Modifications include addition, substitution, omission, and other changes of the components in each embodiment. Also, the components used in two or more embodiments can be appropriately combined.
 図1に示す高周波受動部品100を製造する際に、図4Cに示すように、側壁となる凹部31および貫通孔となる凹部32が形成されている基板35を作製する方法は、原型10に凹部11,12を形成する方法と同様にしてもよい。例えば、基板材料30がガラス、石英等である場合は、フェムト秒レーザアシストエッチング等により凹部31,32を形成してもよい。この場合は、図3A~図4Cに示す工程を省略して、図5A~図6Cに示す工程を行うことで、図1に示す高周波受動部品100を製造することができる。 When manufacturing the high-frequency passive component 100 shown in FIG. 1, as shown in FIG. 4C, a method of manufacturing a substrate 35 in which a concave portion 31 serving as a side wall and a concave portion 32 serving as a through hole are formed, The method for forming 11 and 12 may be the same. For example, when the substrate material 30 is glass, quartz, or the like, the concave portions 31 and 32 may be formed by femtosecond laser assisted etching or the like. In this case, by omitting the steps shown in FIGS. 3A to 4C and performing the steps shown in FIGS. 5A to 6C, the high-frequency passive component 100 shown in FIG. 1 can be manufactured.
 上述の実施形態に係る高周波受動部品においては、同一の基板に複数の部品が構成されてもよい。基板に構成される他の部品は、高周波用の受動部品に限らず、他の受動部品や能動部品等を含んでもよい。部品をモジュール化することにより、高周波モジュールを構成することもできる。本実施形態の高周波モジュールは、例えば、上述の高周波受動部品を備えるモジュールである。モジュールには、機能に必要な種々の部品を組み込むことができる。 In the high-frequency passive component according to the above-described embodiment, a plurality of components may be configured on the same substrate. Other components configured on the substrate are not limited to high frequency passive components, and may include other passive components, active components, and the like. By modularizing the components, a high-frequency module can be configured. The high-frequency module of the present embodiment is, for example, a module including the above-described high-frequency passive component. Various components necessary for the function can be incorporated in the module.
 35,101…基板、41,42,43…第1導体層、44…絶縁材(誘電体層)、45,104…側壁、46,105…貫通電極、47…第2導体層、48…導波路構造、100…高周波受動部品、102,103…導体層、106…誘電体層、50,107…封止層。 35, 101 ... substrate, 41, 42, 43 ... first conductor layer, 44 ... insulating material (dielectric layer), 45, 104 ... side wall, 46, 105 ... through electrode, 47 ... second conductor layer, 48 ... conductor Waveguide structure, 100: high-frequency passive component, 102, 103: conductor layer, 106: dielectric layer, 50, 107: sealing layer.

Claims (7)

  1.  導波領域を含む誘電体からなる基板と、
     前記基板の厚さ方向の少なくとも片面において、平面視で前記導波領域を囲むように接する導体層と、
     前記基板の厚さ方向に交差する側方に設けられた誘電体層と、
     を備え、
     前記導体層の外周部の少なくとも一部が、前記誘電体層に配置されている高周波受動部品。
    A substrate made of a dielectric including a waveguide region;
    On at least one surface in the thickness direction of the substrate, a conductor layer that contacts the waveguide region in plan view,
    A dielectric layer provided on a side crossing the thickness direction of the substrate,
    With
    A high-frequency passive component in which at least a part of an outer peripheral portion of the conductor layer is disposed on the dielectric layer.
  2.  前記導体層が配置された前記誘電体層の面は粗面化されている請求項1に記載の高周波受動部品。 The high-frequency passive component according to claim 1, wherein the surface of the dielectric layer on which the conductor layer is disposed is roughened.
  3.  前記導体層の外周部の隅部が、前記誘電体層に配置されている請求項1又は請求項2に記載の高周波受動部品。 (3) The high-frequency passive component according to (1) or (2), wherein a corner of an outer peripheral portion of the conductor layer is arranged on the dielectric layer.
  4.  前記導体層の外周部全体が、前記誘電体層に配置されている請求項1又は請求項2に記載の高周波受動部品。 The high-frequency passive component according to claim 1 or 2, wherein the entire outer peripheral portion of the conductor layer is disposed on the dielectric layer.
  5.  前記導波領域が、前記基板の両面に形成された広壁および前記広壁に接続された側壁により囲まれた導波路構造で構成され、
     前記導体層が、前記広壁の少なくとも一方である請求項1から請求項4のいずれか一項に記載の高周波受動部品。
    The waveguide region has a waveguide structure surrounded by a wide wall formed on both surfaces of the substrate and a side wall connected to the wide wall,
    The high-frequency passive component according to claim 1, wherein the conductor layer is at least one of the wide walls.
  6.  前記導体層は、少なくとも一部を、樹脂で封止されている請求項1から請求項5のいずれか一項に記載の高周波受動部品。 6. The high-frequency passive component according to claim 1, wherein at least a part of the conductor layer is sealed with a resin.
  7.  誘電体からなる基板と、前記基板に形成された側壁とを有する高周波受動部品の製造方法であって、
     前記側壁に対応する凹部を有する第1主面と、前記第1主面とは反対側の第2主面とを有する基板を作製し、
     前記凹部内に誘電体層を設け、
     前記基板の前記第2主面を研磨して、前記誘電体層を前記第2主面の研磨により得られた面に露出させ、
     導体層の外周部が、前記誘電体層に配置されるように、前記導体層を形成する、
     高周波受動部品の製造方法。
    A method for manufacturing a high-frequency passive component having a substrate made of a dielectric and side walls formed on the substrate,
    Producing a substrate having a first main surface having a concave portion corresponding to the side wall and a second main surface opposite to the first main surface;
    Providing a dielectric layer in the recess,
    Polishing the second main surface of the substrate to expose the dielectric layer to the surface obtained by polishing the second main surface;
    Forming the conductor layer so that an outer peripheral portion of the conductor layer is disposed on the dielectric layer;
    Manufacturing method of high frequency passive components.
PCT/JP2019/026457 2018-07-06 2019-07-03 High-frequency passive component and method for producing high-frequency passive component WO2020009146A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018128679A JP2020010148A (en) 2018-07-06 2018-07-06 High-frequency passive component and manufacturing method thereof
JP2018-128679 2018-07-06

Publications (1)

Publication Number Publication Date
WO2020009146A1 true WO2020009146A1 (en) 2020-01-09

Family

ID=69060886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026457 WO2020009146A1 (en) 2018-07-06 2019-07-03 High-frequency passive component and method for producing high-frequency passive component

Country Status (2)

Country Link
JP (1) JP2020010148A (en)
WO (1) WO2020009146A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5962201A (en) * 1982-07-06 1984-04-09 エリクソン ジーイー モービル コミュニケーションズ インコーポレーテッド Microstrip line and method of producing same
JPH06224562A (en) * 1993-01-27 1994-08-12 Mitsubishi Electric Corp Multilayer board and its manufacture
JPH07501910A (en) * 1992-09-24 1995-02-23 ヒューズ・エアクラフト・カンパニー Multilayer three-dimensional structure with internal ferromagnetic vias
JPH08125412A (en) * 1994-10-19 1996-05-17 Mitsubishi Electric Corp Transmission line and its manufacture
JPH1197854A (en) * 1997-09-25 1999-04-09 Kyocera Corp Multilayered wiring board for high-frequency and its manufacturing method
WO2006014397A2 (en) * 2004-07-02 2006-02-09 Georgia Tech Research Corporation Low-loss substrate for high quality components
US20150382460A1 (en) * 2014-06-27 2015-12-31 Avago Technologies General Ip (Singapore) Pte. Ltd. Printed circuit board (pcb) with wrapped conductor
JP2017011561A (en) * 2015-06-24 2017-01-12 京セラ株式会社 Waveguide structure, and manufacturing method therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5962201A (en) * 1982-07-06 1984-04-09 エリクソン ジーイー モービル コミュニケーションズ インコーポレーテッド Microstrip line and method of producing same
JPH07501910A (en) * 1992-09-24 1995-02-23 ヒューズ・エアクラフト・カンパニー Multilayer three-dimensional structure with internal ferromagnetic vias
JPH06224562A (en) * 1993-01-27 1994-08-12 Mitsubishi Electric Corp Multilayer board and its manufacture
JPH08125412A (en) * 1994-10-19 1996-05-17 Mitsubishi Electric Corp Transmission line and its manufacture
JPH1197854A (en) * 1997-09-25 1999-04-09 Kyocera Corp Multilayered wiring board for high-frequency and its manufacturing method
WO2006014397A2 (en) * 2004-07-02 2006-02-09 Georgia Tech Research Corporation Low-loss substrate for high quality components
US20150382460A1 (en) * 2014-06-27 2015-12-31 Avago Technologies General Ip (Singapore) Pte. Ltd. Printed circuit board (pcb) with wrapped conductor
JP2017011561A (en) * 2015-06-24 2017-01-12 京セラ株式会社 Waveguide structure, and manufacturing method therefor

Also Published As

Publication number Publication date
JP2020010148A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
JP5390346B2 (en) Package substrate manufacturing method
CN112039455B (en) Packaging method and packaging structure of bulk acoustic wave resonator
US7800233B2 (en) Semiconductor device and method of manufacturing the same
CN112039458B (en) Packaging method and packaging structure of bulk acoustic wave resonator
JP5933103B1 (en) Method for manufacturing waveguide substrate
CN112039459B (en) Packaging method and packaging structure of bulk acoustic wave resonator
JP4055015B2 (en) Manufacturing method of semiconductor device
TWI736918B (en) Circuit board and method of manufacturing the same
TWI542271B (en) Package substrate and manufacturing method thereof
WO2020009146A1 (en) High-frequency passive component and method for producing high-frequency passive component
TW202143804A (en) Copper plate structure, circuit board with embedded copper block and manufacturing method thereof
WO2020009145A1 (en) Method for producing high-frequency passive component
KR20050030148A (en) Semiconductor device and method of fabricating semiconductor device
JP2004103911A (en) Method for forming wiring
KR100963201B1 (en) Substrate embedded chip and method of manufactruing the same
JP2018082141A (en) Electronic component including resistor
JP2018125491A (en) Conductive substrate and manufacturing method thereof
CN108156754B (en) Vertical connection interface structure, circuit board with the structure and manufacturing method thereof
CN111465167B (en) Substrate structure and manufacturing method thereof
WO2020004345A1 (en) High-frequency passive component
TWI731745B (en) Embedded component structure and manufacturing method thereof
CN219876259U (en) Multi-layer board circuit board with heat dissipation function
TWI811648B (en) Antenna structure and method of forming the same
JP7150571B2 (en) CHIP CAPACITOR AND CHIP CAPACITOR MANUFACTURING METHOD
JP2011043493A (en) Probe card and probe device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19829758

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19829758

Country of ref document: EP

Kind code of ref document: A1