WO2020006843A1 - 一种稀土掺杂的Mg基储氢合金 - Google Patents

一种稀土掺杂的Mg基储氢合金 Download PDF

Info

Publication number
WO2020006843A1
WO2020006843A1 PCT/CN2018/102185 CN2018102185W WO2020006843A1 WO 2020006843 A1 WO2020006843 A1 WO 2020006843A1 CN 2018102185 W CN2018102185 W CN 2018102185W WO 2020006843 A1 WO2020006843 A1 WO 2020006843A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy ingot
alloy
hydrogen storage
doped
based hydrogen
Prior art date
Application number
PCT/CN2018/102185
Other languages
English (en)
French (fr)
Inventor
黄倩
Original Assignee
黄倩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 黄倩 filed Critical 黄倩
Publication of WO2020006843A1 publication Critical patent/WO2020006843A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/04Hydrogen absorbing

Definitions

  • the invention relates to the technical field of new energy materials, in particular to a rare earth-doped Mg-based hydrogen storage alloy.
  • Hydrogen storage alloy is an alloy that can reversibly absorb, store, and release hydrogen under certain conditions.
  • hydrogen can exist in a large number of lattice interstitial positions inside the alloy.
  • metals and intermetallic compounds can absorb a large amount of hydrogen. This means that the alloy has better safety and reliability and high bulk density of hydrogen storage while storing hydrogen.
  • the purpose of the present invention is to provide a rare earth-doped Mg-based hydrogen storage alloy, thereby overcoming the disadvantages of the prior art.
  • the present invention provides a rare earth-doped Mg-based hydrogen storage alloy, which is characterized in that the rare earth-doped Mg-based hydrogen storage alloy is prepared by the following method: providing Mg, Ce, Gd, Y, Ni, and Al metal raw materials; Weigh Mg, Ce, Gd, Y, Ni, and Al metal raw materials according to a preset chemical formula; perform Mg, Ce, Gd, Y, Ni, and Al metal raw materials after the first vacuum melting, The primary Mg alloy ingot is obtained; the primary Mg alloy ingot is crushed and ball-milled to obtain a primary magnesium alloy powder; the primary magnesium alloy powder is pressed into a loose alloy ingot by cold isostatic pressing; the loose alloy ingot is hot-pressed to obtain a dense alloy Ingots; second vacuum melting of dense alloy ingots to obtain second Mg alloy ingots; crushing of second Mg alloy ingots; single-roll quenching of second Mg alloy ingots after crushing to obtain rare earth-doped
  • the first vacuum melting process is specifically: the vacuum degree is lower than 0.01 Pa, the melting time is 5-8 minutes, and the alloy ingot is inverted once every 30-40 s during the melting process.
  • the ball milling of the primary Mg alloy ingot is specifically: the ball milling time is 15-20h, the ball milling speed is 500-600r / min, wherein each ball milling is 50-60min, and the ball milling is stopped for 5-10min.
  • the hot pressing of the loose alloy ingot is specifically: the hot pressing air pressure is lower than 0.03Pa, the hot pressing temperature is 800-900 ° C, the hot pressing pressure is 10-20MPa, and the hot pressing time is 30 -50min.
  • the second vacuum melting of the loose alloy ingot is specifically: the vacuum degree is less than 0.01 Pa, and the melting time is 10-15 min. During the melting process, the alloy ingot is inverted once every 60-80s of melting .
  • the single-roller quenching is specifically: the vacuum pressure of the vacuum chamber is lower than 0.01 Pa, the rotation speed of the copper roller is 3000-4000 r / min, the spray pressure is 0.5-1 MPa, and the nozzle diameter is 0.5-1 mm.
  • the thickness of the rare earth-doped Mg-based hydrogen storage alloy is 0.2-0.4 mm.
  • the magnesium-based alloy is a well-known hydrogen storage material, and currently there are a large number of existing technologies for research and improvement of the magnesium-based hydrogen storage material.
  • rare earth-doped magnesium-based alloys exhibit unique hydrogen storage properties.
  • the rare-earth-doped magnesium-based alloys still have the following problems: 1. Due to the backward preparation process, the alloy composition is not uniform and cannot be used. Taking advantage of the special band structure of rare earth elements, the alloy has poor hydrogen storage performance. 2.
  • the alloy Due to the uneven composition of the alloy and the poor mechanical properties, brittleness and hardness of the rare earth element itself, the alloy is extremely brittle, and the magnesium-based alloy cannot be processed into a shape consistent with the device at all, resulting in a rare-earth-doped magnesium-based alloy.
  • the alloy is basically not practical for mass production.
  • a new magnesium-based hydrogen storage alloy and a preparation method thereof are designed in the present application.
  • the invention has the following advantages: first, the alloy composition is optimized, the energy band structure rich in rare earth elements of Ce and Gd is fully utilized, and the Fermi level of the alloy is appropriately cut and optimized, so that the interaction between the alloy and hydrogen element The force is enhanced, and the ability of the alloy to capture hydrogen is enhanced.
  • alloy preparation process is optimized. Through the processes of smelting, ball milling, cold, hot pressing, crushing, smelting, and single-roll quenching, alloy strips with good mechanical properties are prepared.
  • the alloy strips prepared in this application have good toughness and can Adapt to a certain degree of machining.
  • the rare earth-doped Mg-based hydrogen storage alloy is prepared by the following methods: providing Mg, Ce, Gd, Y, Ni, and Al metal raw materials; weighing Mg, Ce, Gd, Y, Ni, and Al metal raw materials according to a preset chemical formula ; The first vacuum melting of the Mg, Ce, Gd, Y, Ni, and Al metal materials after weighing to obtain a primary Mg alloy ingot; crushing and ball milling of the primary Mg alloy ingot to obtain a primary magnesium alloy powder; using cold, etc.
  • the primary magnesium alloy powder is pressed into a loose alloy ingot by a static pressing method; the loose alloy ingot is hot-pressed to obtain a dense alloy ingot; the second vacuum melting is performed on the dense alloy ingot to obtain a second Mg alloy ingot; and the second Mg alloy ingot Crushing is performed; the second Mg alloy ingot after the crushing is subjected to single-roll quenching to obtain a rare earth-doped Mg-based hydrogen storage alloy.
  • the first vacuum melting process is as follows: the vacuum degree is less than 0.01 Pa, and the melting time is 5 minutes.
  • the alloy ingot is inverted once every 30 seconds of melting.
  • the ball milling of the primary Mg alloy ingot is specifically: the ball milling time is 15 hours, and the ball milling speed is 500 r / min, wherein each ball milling is 50 minutes, and the ball milling is stopped for 5 minutes.
  • the hot pressing of the loose alloy ingot is specifically: the hot pressing air pressure is lower than 0.03 Pa, the hot pressing temperature is 800 ° C., the hot pressing pressure is 10 MPa, and the hot pressing time is 30 min.
  • the second vacuum melting of the loose alloy ingot is specifically as follows: the vacuum degree is less than 0.01 Pa, and the melting time is 10 minutes.
  • the alloy ingot is inverted once every 60 seconds of melting.
  • the single roll quenching is specifically: the vacuum pressure of the vacuum chamber is less than 0.01 Pa, the rotation speed of the copper roll is 3000 r / min, the spray pressure is 0.5 MPa, and the nozzle diameter is 0.5 mm.
  • the thickness of the rare earth-doped Mg-based hydrogen storage alloy is 0.2 mm.
  • the rare earth-doped Mg-based hydrogen storage alloy is prepared by the following methods: providing Mg, Ce, Gd, Y, Ni, and Al metal raw materials; weighing Mg, Ce, Gd, Y, Ni, and Al metal raw materials according to a preset chemical formula ; The first vacuum melting of the Mg, Ce, Gd, Y, Ni, and Al metal materials after weighing to obtain a primary Mg alloy ingot; crushing and ball milling of the primary Mg alloy ingot to obtain a primary magnesium alloy powder; using cold, etc.
  • the primary magnesium alloy powder is pressed into a loose alloy ingot by a static pressing method; the loose alloy ingot is hot-pressed to obtain a dense alloy ingot; the second vacuum melting is performed on the dense alloy ingot to obtain a second Mg alloy ingot; and the second Mg alloy ingot Crushing is performed; the second Mg alloy ingot after the crushing is subjected to single-roll quenching to obtain a rare earth-doped Mg-based hydrogen storage alloy.
  • the first vacuum melting process is as follows: the vacuum degree is lower than 0.01 Pa, and the melting time is 8 minutes.
  • the alloy ingot is inverted once every 40 s of melting.
  • the ball milling of the primary Mg alloy ingot is specifically: the ball milling time is 20 hours, and the ball milling speed is 600 r / min, wherein each ball milling is 60 minutes, and the ball milling is stopped for 10 minutes.
  • the hot pressing of the loose alloy ingot is specifically: the hot pressing air pressure is less than 0.03 Pa, the hot pressing temperature is 900 ° C., the hot pressing pressure is 20 MPa, and the hot pressing time is 50 min.
  • the second vacuum melting of the loose alloy ingot is specifically as follows: the vacuum degree is less than 0.01 Pa, and the melting time is 15 minutes. During the melting process, the alloy ingot is inverted once every 80 s of melting.
  • the single roll quenching is specifically: the vacuum pressure of the vacuum chamber is less than 0.01 Pa, the rotation speed of the copper roll is 4000 r / min, the spray pressure is 1 MPa, and the nozzle diameter is 1 mm.
  • the thickness of the rare earth-doped Mg-based hydrogen storage alloy is 0.4 mm.
  • the rare earth-doped Mg-based hydrogen storage alloy is prepared by the following methods: providing Mg, Ce, Gd, Y, Ni, and Al metal raw materials; weighing Mg, Ce, Gd, Y, Ni, and Al metal raw materials according to a preset chemical formula ; The first vacuum melting of the Mg, Ce, Gd, Y, Ni, and Al metal materials after weighing to obtain a primary Mg alloy ingot; crushing and ball milling of the primary Mg alloy ingot to obtain a primary magnesium alloy powder; using cold, etc.
  • the primary magnesium alloy powder is pressed into a loose alloy ingot by a static pressing method; the loose alloy ingot is hot-pressed to obtain a dense alloy ingot; the second vacuum melting is performed on the dense alloy ingot to obtain a second Mg alloy ingot; and the second Mg alloy ingot Crushing is performed; the second Mg alloy ingot after the crushing is subjected to single-roll quenching to obtain a rare earth-doped Mg-based hydrogen storage alloy.
  • the first vacuum melting process is as follows: the degree of vacuum is less than 0.01 Pa, and the melting time is 6 minutes. In the melting process, the alloy ingot is inverted once every 35 seconds of melting.
  • the ball milling of the primary Mg alloy ingot is specifically: the ball milling time is 18 hours, and the ball milling speed is 550 r / min, wherein each ball milling is 55 minutes, and the ball milling is stopped for 8 minutes.
  • the hot pressing of the loose alloy ingot is specifically: the hot pressing air pressure is less than 0.03 Pa, the hot pressing temperature is 850 ° C., the hot pressing pressure is 15 MPa, and the hot pressing time is 40 min.
  • the second vacuum melting of the loose alloy ingot is specifically as follows: the vacuum degree is less than 0.01 Pa, and the melting time is 12 minutes. In the melting process, the alloy ingot is inverted once every 70s of melting.
  • the single roll quenching is specifically: the vacuum pressure of the vacuum chamber is less than 0.01 Pa, the rotation speed of the copper roll is 3500 r / min, the spray pressure is 0.8 MPa, and the nozzle diameter is 0.8 mm.
  • the thickness of the rare earth-doped Mg-based hydrogen storage alloy is 0.3 mm.
  • the rare earth-doped Mg-based hydrogen storage alloy is prepared by the following methods: providing Mg, Ce, Gd, Y, Ni, and Al metal raw materials; weighing Mg, Ce, Gd, Y, Ni, and Al metal raw materials according to a preset chemical formula ; The first vacuum melting of the Mg, Ce, Gd, Y, Ni, and Al metal materials after weighing to obtain a primary Mg alloy ingot; crushing and ball milling of the primary Mg alloy ingot to obtain a primary magnesium alloy powder; using cold, etc.
  • the primary magnesium alloy powder is pressed into a loose alloy ingot by a static pressing method; the loose alloy ingot is hot-pressed to obtain a dense alloy ingot; the second vacuum melting is performed on the dense alloy ingot to obtain a second Mg alloy ingot; and the second Mg alloy ingot Crushing is performed; the second Mg alloy ingot after the crushing is subjected to single-roll quenching to obtain a rare earth-doped Mg-based hydrogen storage alloy.
  • the first vacuum melting process is as follows: the degree of vacuum is less than 0.01 Pa, and the melting time is 6 minutes. In the melting process, the alloy ingot is inverted once every 35 seconds of melting.
  • the ball milling of the primary Mg alloy ingot is specifically: the ball milling time is 18 hours, and the ball milling speed is 550 r / min, wherein each ball milling is 55 minutes, and the ball milling is stopped for 8 minutes.
  • the hot pressing of the loose alloy ingot is specifically: the hot pressing air pressure is less than 0.03 Pa, the hot pressing temperature is 850 ° C., the hot pressing pressure is 15 MPa, and the hot pressing time is 40 min.
  • the second vacuum melting of the loose alloy ingot is specifically as follows: the vacuum degree is less than 0.01 Pa, and the melting time is 12 minutes. In the melting process, the alloy ingot is inverted once every 70s of melting.
  • the single roll quenching is specifically: the vacuum pressure of the vacuum chamber is less than 0.01 Pa, the rotation speed of the copper roll is 3500 r / min, the spray pressure is 0.8 MPa, and the nozzle diameter is 0.8 mm.
  • the thickness of the rare earth-doped Mg-based hydrogen storage alloy is 0.3 mm.
  • the rare earth-doped Mg-based hydrogen storage alloy is prepared by the following methods: providing Mg, Ce, Gd, Y, Ni, and Al metal raw materials; weighing Mg, Ce, Gd, Y, Ni, and Al metal raw materials according to a preset chemical formula ; The first vacuum melting of the Mg, Ce, Gd, Y, Ni, and Al metal materials after weighing to obtain a primary Mg alloy ingot; crushing and ball milling of the primary Mg alloy ingot to obtain a primary magnesium alloy powder; using cold, etc.
  • the primary magnesium alloy powder is pressed into a loose alloy ingot by a static pressing method; the loose alloy ingot is hot-pressed to obtain a dense alloy ingot; the second vacuum melting is performed on the dense alloy ingot to obtain a second Mg alloy ingot; and the second Mg alloy ingot Crushing is performed; the second Mg alloy ingot after the crushing is subjected to single-roll quenching to obtain a rare earth-doped Mg-based hydrogen storage alloy.
  • the first vacuum melting process is as follows: the vacuum degree is less than 0.01 Pa, and the melting time is 10 minutes.
  • the alloy ingot is inverted once every 60 s of melting.
  • the ball milling of the primary Mg alloy ingot is specifically as follows: the ball milling time is 30 hours and the ball milling speed is 800 r / min, wherein each ball milling is 100 minutes and the ball milling is stopped for 20 minutes.
  • the hot pressing of the loose alloy ingot is specifically: the hot pressing air pressure is less than 0.03 Pa, the hot pressing temperature is 850 ° C., the hot pressing pressure is 15 MPa, and the hot pressing time is 40 min.
  • the second vacuum melting of the loose alloy ingot is specifically as follows: the vacuum degree is less than 0.01 Pa, and the melting time is 12 minutes. In the melting process, the alloy ingot is inverted once every 70s of melting.
  • the single roll quenching is specifically: the vacuum pressure of the vacuum chamber is less than 0.01 Pa, the rotation speed of the copper roll is 3500 r / min, the spray pressure is 0.8 MPa, and the nozzle diameter is 0.8 mm.
  • the thickness of the rare earth-doped Mg-based hydrogen storage alloy is 0.3 mm.
  • the rare earth-doped Mg-based hydrogen storage alloy is prepared by the following methods: providing Mg, Ce, Gd, Y, Ni, and Al metal raw materials; weighing Mg, Ce, Gd, Y, Ni, and Al metal raw materials according to a preset chemical formula ; The first vacuum melting of the Mg, Ce, Gd, Y, Ni, and Al metal materials after weighing to obtain a primary Mg alloy ingot; crushing and ball milling of the primary Mg alloy ingot to obtain a primary magnesium alloy powder; using cold, etc.
  • the primary magnesium alloy powder is pressed into a loose alloy ingot by a static pressing method; the loose alloy ingot is hot-pressed to obtain a dense alloy ingot; the second vacuum melting is performed on the dense alloy ingot to obtain a second Mg alloy ingot; and the second Mg alloy ingot Crushing is performed; the second Mg alloy ingot after the crushing is subjected to single-roll quenching to obtain a rare earth-doped Mg-based hydrogen storage alloy.
  • the first vacuum melting process is as follows: the degree of vacuum is less than 0.01 Pa, and the melting time is 6 minutes. In the melting process, the alloy ingot is inverted once every 35 seconds of melting.
  • the ball milling of the primary Mg alloy ingot is specifically: the ball milling time is 18 hours, and the ball milling speed is 550 r / min, wherein each ball milling is 55 minutes, and the ball milling is stopped for 8 minutes.
  • the hot pressing of the loose alloy ingot is specifically: the hot pressing air pressure is less than 0.03 Pa, the hot pressing temperature is 700 ° C., the hot pressing pressure is 5 MPa, and the hot pressing time is 20 min.
  • the second vacuum melting of the loose alloy ingot is specifically as follows: the vacuum degree is less than 0.01 Pa, and the melting time is 20 min. In the melting process, the alloy ingot is inverted once every 90 seconds of melting.
  • the single roll quenching is specifically: the vacuum pressure of the vacuum chamber is less than 0.01 Pa, the rotation speed of the copper roll is 3500 r / min, the spray pressure is 0.8 MPa, and the nozzle diameter is 0.8 mm.
  • the thickness of the rare earth-doped Mg-based hydrogen storage alloy is 0.3 mm.
  • the rare earth-doped Mg-based hydrogen storage alloy is prepared by the following methods: providing Mg, Ce, Gd, Y, Ni, and Al metal raw materials; weighing Mg, Ce, Gd, Y, Ni, and Al metal raw materials according to a preset chemical formula ; The first vacuum melting of the Mg, Ce, Gd, Y, Ni, and Al metal materials after weighing to obtain a primary Mg alloy ingot; crushing and ball milling of the primary Mg alloy ingot to obtain a primary magnesium alloy powder; using cold, etc.
  • the primary magnesium alloy powder is pressed into a loose alloy ingot by a static pressing method; the loose alloy ingot is hot-pressed to obtain a dense alloy ingot; the second vacuum melting is performed on the dense alloy ingot to obtain a second Mg alloy ingot; and the second Mg alloy ingot Crushing is performed; the second Mg alloy ingot after the crushing is subjected to single-roll quenching to obtain a rare earth-doped Mg-based hydrogen storage alloy.
  • the first vacuum melting process is as follows: the degree of vacuum is less than 0.01 Pa, and the melting time is 6 minutes. In the melting process, the alloy ingot is inverted once every 35 seconds of melting.
  • the ball milling of the primary Mg alloy ingot is specifically: the ball milling time is 18 hours, and the ball milling speed is 550 r / min, wherein each ball milling is 55 minutes, and the ball milling is stopped for 8 minutes.
  • the hot pressing of the loose alloy ingot is specifically: the hot pressing air pressure is less than 0.03 Pa, the hot pressing temperature is 850 ° C., the hot pressing pressure is 15 MPa, and the hot pressing time is 40 min.
  • the second vacuum melting of the loose alloy ingot is specifically as follows: the vacuum degree is less than 0.01 Pa, and the melting time is 12 minutes. In the melting process, the alloy ingot is inverted once every 70s of melting.
  • the single roll quenching is specifically as follows: the vacuum chamber air pressure is lower than 0.01Pa, the copper roll speed is 5000r / min, the spray air pressure is 0.3MPa, and the nozzle diameter is 1.5mm.
  • the thickness of the rare earth-doped Mg-based hydrogen storage alloy is 0.8 mm.
  • the alloys were tested for discharge capacity and fracture toughness.
  • the test methods are known in the art.
  • the test results are normalized based on Example 1.
  • the test results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种稀土掺杂的Mg基储氢合金,稀土掺杂的Mg基储氢合金由如下方法制备:提供Mg、Ce、Gd、Y、Ni以及Al金属原料;按照预设化学式对Mg、Ce、Gd、Y、Ni以及Al金属原料进行称重;将称重之后的Mg、Ce、Gd、Y、Ni以及Al金属原料进行第一真空熔炼,得到初级Mg合金锭;对初级Mg合金锭进行破碎和球磨,得到初级镁合金粉;利用冷等静压法将初级镁合金粉压成松散合金锭;对松散合金锭进行热压,得到密实合金锭;对密实合金锭进行第二真空熔炼,得到第二Mg合金锭;对第二Mg合金锭进行破碎;对破碎之后的第二Mg合金锭进行单辊急冷以得到稀土掺杂的Mg基储氢合金。

Description

一种稀土掺杂的Mg基储氢合金 技术领域
本发明涉及新能源材料技术领域,特别涉及一种稀土掺杂的Mg基储氢合金。
背景技术
伴随着人类社会的不断进步和发展,人类对能源的认识和利用也在不断的革新。从早期的化石、蒸汽能到现在所常用的电能,乃至现行的风能、太阳能、潮汐能等,均为社会的繁荣和进一步发展做出了巨大贡献。目前电能已经成为主要的二次能源,主要通过煤炭、石油等化石燃料燃烧制备所得。而现今对化石燃料如煤炭石油天然气等的依赖变得愈发严重。据报道全世界能源的利用中包括将近四分之一用在了交通运输上,到本世纪中期我们将进入“能源危机时代”。以及从2012年冬天开始,一个新鲜而又让人头疼的词语走进了人们的视野--雾霾,据人民日报经济社会报道,在2013年1月1日至4月10日这100天里,北京雾霾日数有46天,即平均每两天就有一次雾霾天。面对尴尬的现状,人们不得不重新审视现阶段能源的结构并为此而作出相应的改善措施。氢作为一种非常清洁的新型燃料不失为一种明智之选。氢燃烧后只产生水,这就意味着氢燃烧后是的零污染的。此外,氢还可以通过再生能源电解水制得。这样看来,无论从环境保护或是能源可持续发展的角度来讲,氢能是最为理想的载能体,也同样意味着储氢材料的发展前景是令人期待的。储氢合金是一种能够在一定的条件下可逆吸收、储存、释放氢气的合金。在储氢合金中氢可以原子状态存在于合金内部大量晶格间隙位置,随着外在环境的进一步改变和其内部结构的进一步优化,金属以及金属间化合物能够吸收大量的氢。这就意味着合金在储氢的同时具有更加优良放心的安全可靠性和高体积密度的储氢量。
公开于该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。
发明内容
本发明的目的在于提供基于一种稀土掺杂的Mg基储氢合金,从而克服现有技术的缺点。
为实现上述目的,本发明提供了一种稀土掺杂的Mg基储氢合金,其特征在于:稀土掺杂的Mg基储氢合金由如下方法制备:提供Mg、Ce、Gd、Y、Ni以及Al金属原料;按照预设化学式对Mg、Ce、Gd、Y、Ni以及Al金属原料进行称重;将称重之后的Mg、Ce、Gd、Y、Ni以及Al金属原料进行第一真空熔炼,得到初级Mg合金锭;对初级Mg合金锭进行破碎和球磨,得到初级镁合金粉;利用冷等静压法将初级镁合金粉压成松散合金锭;对松散合金锭进行热压,得到密实合金锭;对密实合金锭进行第二真空熔炼,得到第二Mg合金锭;对第二Mg合金锭进行破碎;对破碎之后的第二Mg合金锭进行单辊急冷以得到稀土掺杂的Mg基储氢合金。
优选地,上述技术方案中,其中,预设化学式为:(Mg 1-x-y-zCe xGd yY z)Ni 0.95Al 0.05,其中,X=0.005-0.008,y=0.01-0.012,z=0.003-0.005。
优选地,上述技术方案中,第一真空熔炼工艺具体为:真空度低于0.01Pa,熔炼时间为5-8min,在熔炼过程中,每熔炼30-40s将合金锭进行一次翻转。
优选地,上述技术方案中,其中,对初级Mg合金锭进行球磨具体为:球磨时间为15-20h,球磨速度为500-600r/min,其中,每球磨50-60min,停止球磨5-10min。
优选地,上述技术方案中,其中,对松散合金锭进行热压具体为:热压气压低于0.03Pa,热压温度为800-900℃,热压压力为10-20MPa,热压时间为30-50min。
优选地,上述技术方案中,对松散合金锭进行第二真空熔炼具体为:真 空度低于0.01Pa,熔炼时间为10-15min,在熔炼过程中,每熔炼60-80s将合金锭进行一次翻转。
优选地,上述技术方案中,单辊急冷具体为:真空腔气压低于0.01Pa,铜辊转速为3000-4000r/min,喷射气压为0.5-1MPa,喷口直径为0.5-1mm。
优选地,上述技术方案中,稀土掺杂的Mg基储氢合金的厚度为0.2-0.4mm。
与现有技术相比,本发明具有如下有益效果:镁基合金是一种众所周知的储氢材料,目前有大量的现有技术对镁基储氢材料进行了研究和改进。在众多优化设计中,稀土掺杂的镁基合金展现出了独特的储氢性能,目前稀土掺杂的镁基合金仍然存在如下问题:1、由于制备工艺的落后,导致合金成分不均匀,无法发挥稀土元素特殊的能带结构的优势,合金储氢性能差。2、由于合金成分不均匀,而稀土元素本身的力学性能较差,脆性、硬度较大,所以合金急脆,根本不能将镁基合金加工为与器件相符的形状,导致稀土掺杂的镁基合金基本上无法实现量产实用。针对现有技术的问题,本申请设计了一种新的镁基储氢合金及其制备方法。本发明具有如下优点:首先,优化了合金成分,充分发挥了Ce、Gd稀土元素丰富的能带结构,对合金的费米能级进行适当的裁剪和优化,使得合金与氢元素之间的作用力得到增强,合金捕获氢元素的能力增强。其次,优化了合金制备工艺,通过熔炼、球磨、冷、热压、破碎、在熔炼以及单辊急冷的工艺,制备了力学性能良好的合金条带,本申请制备的合金条带韧性好,能够适应一定程度的机械加工。
具体实施方式
提供以下实施方式是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
实施例1
稀土掺杂的Mg基储氢合金由如下方法制备:提供Mg、Ce、Gd、Y、Ni以及Al金属原料;按照预设化学式对Mg、Ce、Gd、Y、Ni以及Al金属原料进行称重;将称重之后的Mg、Ce、Gd、Y、Ni以及Al金属原料进行第一 真空熔炼,得到初级Mg合金锭;对初级Mg合金锭进行破碎和球磨,得到初级镁合金粉;利用冷等静压法将初级镁合金粉压成松散合金锭;对松散合金锭进行热压,得到密实合金锭;对密实合金锭进行第二真空熔炼,得到第二Mg合金锭;对第二Mg合金锭进行破碎;对破碎之后的第二Mg合金锭进行单辊急冷以得到稀土掺杂的Mg基储氢合金。其中,预设化学式为:(Mg 1-x-y-zCe xGd yY z)Ni 0.95Al 0.05,其中,X=0.005,y=0.01,z=0.003。第一真空熔炼工艺具体为:真空度低于0.01Pa,熔炼时间为5min,在熔炼过程中,每熔炼30s将合金锭进行一次翻转。其中,对初级Mg合金锭进行球磨具体为:球磨时间为15h,球磨速度为500r/min,其中,每球磨50min,停止球磨5min。其中,对松散合金锭进行热压具体为:热压气压低于0.03Pa,热压温度为800℃,热压压力为10MPa,热压时间为30min。对松散合金锭进行第二真空熔炼具体为:真空度低于0.01Pa,熔炼时间为10min,在熔炼过程中,每熔炼60s将合金锭进行一次翻转。单辊急冷具体为:真空腔气压低于0.01Pa,铜辊转速为3000r/min,喷射气压为0.5MPa,喷口直径为0.5mm。稀土掺杂的Mg基储氢合金的厚度为0.2mm。
实施例2
稀土掺杂的Mg基储氢合金由如下方法制备:提供Mg、Ce、Gd、Y、Ni以及Al金属原料;按照预设化学式对Mg、Ce、Gd、Y、Ni以及Al金属原料进行称重;将称重之后的Mg、Ce、Gd、Y、Ni以及Al金属原料进行第一真空熔炼,得到初级Mg合金锭;对初级Mg合金锭进行破碎和球磨,得到初级镁合金粉;利用冷等静压法将初级镁合金粉压成松散合金锭;对松散合金锭进行热压,得到密实合金锭;对密实合金锭进行第二真空熔炼,得到第二Mg合金锭;对第二Mg合金锭进行破碎;对破碎之后的第二Mg合金锭进行单辊急冷以得到稀土掺杂的Mg基储氢合金。其中,预设化学式为:(Mg 1-x-y-zCe xGd yY z)Ni 0.95Al 0.05,其中,X=0.008,y=0.012,z=0.005。第一真空熔炼工艺具体为:真空度低于0.01Pa,熔炼时间为8min,在熔炼过程中,每熔炼40s将合金锭进行一次翻转。其中,对初级Mg合金锭进行球磨具体为:球磨时间为20h,球磨速度为600r/min,其中,每球磨60min,停止球磨10min。 其中,对松散合金锭进行热压具体为:热压气压低于0.03Pa,热压温度为900℃,热压压力为20MPa,热压时间为50min。对松散合金锭进行第二真空熔炼具体为:真空度低于0.01Pa,熔炼时间为15min,在熔炼过程中,每熔炼80s将合金锭进行一次翻转。单辊急冷具体为:真空腔气压低于0.01Pa,铜辊转速为4000r/min,喷射气压为1MPa,喷口直径为1mm。稀土掺杂的Mg基储氢合金的厚度为0.4mm。
实施例3
稀土掺杂的Mg基储氢合金由如下方法制备:提供Mg、Ce、Gd、Y、Ni以及Al金属原料;按照预设化学式对Mg、Ce、Gd、Y、Ni以及Al金属原料进行称重;将称重之后的Mg、Ce、Gd、Y、Ni以及Al金属原料进行第一真空熔炼,得到初级Mg合金锭;对初级Mg合金锭进行破碎和球磨,得到初级镁合金粉;利用冷等静压法将初级镁合金粉压成松散合金锭;对松散合金锭进行热压,得到密实合金锭;对密实合金锭进行第二真空熔炼,得到第二Mg合金锭;对第二Mg合金锭进行破碎;对破碎之后的第二Mg合金锭进行单辊急冷以得到稀土掺杂的Mg基储氢合金。其中,预设化学式为:(Mg 1-x-y-zCe xGd yY z)Ni 0.95Al 0.05,其中,X=0.006,y=0.011,z=0.004。第一真空熔炼工艺具体为:真空度低于0.01Pa,熔炼时间为6min,在熔炼过程中,每熔炼35s将合金锭进行一次翻转。其中,对初级Mg合金锭进行球磨具体为:球磨时间为18h,球磨速度为550r/min,其中,每球磨55min,停止球磨8min。其中,对松散合金锭进行热压具体为:热压气压低于0.03Pa,热压温度为850℃,热压压力为15MPa,热压时间为40min。对松散合金锭进行第二真空熔炼具体为:真空度低于0.01Pa,熔炼时间为12min,在熔炼过程中,每熔炼70s将合金锭进行一次翻转。单辊急冷具体为:真空腔气压低于0.01Pa,铜辊转速为3500r/min,喷射气压为0.8MPa,喷口直径为0.8mm。稀土掺杂的Mg基储氢合金的厚度为0.3mm。
实施例4
稀土掺杂的Mg基储氢合金由如下方法制备:提供Mg、Ce、Gd、Y、Ni以及Al金属原料;按照预设化学式对Mg、Ce、Gd、Y、Ni以及Al金属原 料进行称重;将称重之后的Mg、Ce、Gd、Y、Ni以及Al金属原料进行第一真空熔炼,得到初级Mg合金锭;对初级Mg合金锭进行破碎和球磨,得到初级镁合金粉;利用冷等静压法将初级镁合金粉压成松散合金锭;对松散合金锭进行热压,得到密实合金锭;对密实合金锭进行第二真空熔炼,得到第二Mg合金锭;对第二Mg合金锭进行破碎;对破碎之后的第二Mg合金锭进行单辊急冷以得到稀土掺杂的Mg基储氢合金。其中,预设化学式为:(Mg 1-x-y-zCe xGd yY z)Ni 0.95Al 0.05,其中,X=0.01,y=0.015,z=0。第一真空熔炼工艺具体为:真空度低于0.01Pa,熔炼时间为6min,在熔炼过程中,每熔炼35s将合金锭进行一次翻转。其中,对初级Mg合金锭进行球磨具体为:球磨时间为18h,球磨速度为550r/min,其中,每球磨55min,停止球磨8min。其中,对松散合金锭进行热压具体为:热压气压低于0.03Pa,热压温度为850℃,热压压力为15MPa,热压时间为40min。对松散合金锭进行第二真空熔炼具体为:真空度低于0.01Pa,熔炼时间为12min,在熔炼过程中,每熔炼70s将合金锭进行一次翻转。单辊急冷具体为:真空腔气压低于0.01Pa,铜辊转速为3500r/min,喷射气压为0.8MPa,喷口直径为0.8mm。稀土掺杂的Mg基储氢合金的厚度为0.3mm。
实施例5
稀土掺杂的Mg基储氢合金由如下方法制备:提供Mg、Ce、Gd、Y、Ni以及Al金属原料;按照预设化学式对Mg、Ce、Gd、Y、Ni以及Al金属原料进行称重;将称重之后的Mg、Ce、Gd、Y、Ni以及Al金属原料进行第一真空熔炼,得到初级Mg合金锭;对初级Mg合金锭进行破碎和球磨,得到初级镁合金粉;利用冷等静压法将初级镁合金粉压成松散合金锭;对松散合金锭进行热压,得到密实合金锭;对密实合金锭进行第二真空熔炼,得到第二Mg合金锭;对第二Mg合金锭进行破碎;对破碎之后的第二Mg合金锭进行单辊急冷以得到稀土掺杂的Mg基储氢合金。其中,预设化学式为:(Mg 1-x-y-zCe xGd yY z)Ni 0.95Al 0.05,其中,X=0.006,y=0.011,z=0.004。第一真空熔炼工艺具体为:真空度低于0.01Pa,熔炼时间为10min,在熔炼过程中,每熔炼60s将合金锭进行一次翻转。其中,对初级Mg合金锭进行球磨具体为: 球磨时间为30h,球磨速度为800r/min,其中,每球磨100min,停止球磨20min。其中,对松散合金锭进行热压具体为:热压气压低于0.03Pa,热压温度为850℃,热压压力为15MPa,热压时间为40min。对松散合金锭进行第二真空熔炼具体为:真空度低于0.01Pa,熔炼时间为12min,在熔炼过程中,每熔炼70s将合金锭进行一次翻转。单辊急冷具体为:真空腔气压低于0.01Pa,铜辊转速为3500r/min,喷射气压为0.8MPa,喷口直径为0.8mm。稀土掺杂的Mg基储氢合金的厚度为0.3mm。
实施例6
稀土掺杂的Mg基储氢合金由如下方法制备:提供Mg、Ce、Gd、Y、Ni以及Al金属原料;按照预设化学式对Mg、Ce、Gd、Y、Ni以及Al金属原料进行称重;将称重之后的Mg、Ce、Gd、Y、Ni以及Al金属原料进行第一真空熔炼,得到初级Mg合金锭;对初级Mg合金锭进行破碎和球磨,得到初级镁合金粉;利用冷等静压法将初级镁合金粉压成松散合金锭;对松散合金锭进行热压,得到密实合金锭;对密实合金锭进行第二真空熔炼,得到第二Mg合金锭;对第二Mg合金锭进行破碎;对破碎之后的第二Mg合金锭进行单辊急冷以得到稀土掺杂的Mg基储氢合金。其中,预设化学式为:(Mg 1-x-y-zCe xGd yY z)Ni 0.95Al 0.05,其中,X=0.006,y=0.011,z=0.004。第一真空熔炼工艺具体为:真空度低于0.01Pa,熔炼时间为6min,在熔炼过程中,每熔炼35s将合金锭进行一次翻转。其中,对初级Mg合金锭进行球磨具体为:球磨时间为18h,球磨速度为550r/min,其中,每球磨55min,停止球磨8min。其中,对松散合金锭进行热压具体为:热压气压低于0.03Pa,热压温度为700℃,热压压力为5MPa,热压时间为20min。对松散合金锭进行第二真空熔炼具体为:真空度低于0.01Pa,熔炼时间为20min,在熔炼过程中,每熔炼90s将合金锭进行一次翻转。单辊急冷具体为:真空腔气压低于0.01Pa,铜辊转速为3500r/min,喷射气压为0.8MPa,喷口直径为0.8mm。稀土掺杂的Mg基储氢合金的厚度为0.3mm。
实施例7
稀土掺杂的Mg基储氢合金由如下方法制备:提供Mg、Ce、Gd、Y、Ni 以及Al金属原料;按照预设化学式对Mg、Ce、Gd、Y、Ni以及Al金属原料进行称重;将称重之后的Mg、Ce、Gd、Y、Ni以及Al金属原料进行第一真空熔炼,得到初级Mg合金锭;对初级Mg合金锭进行破碎和球磨,得到初级镁合金粉;利用冷等静压法将初级镁合金粉压成松散合金锭;对松散合金锭进行热压,得到密实合金锭;对密实合金锭进行第二真空熔炼,得到第二Mg合金锭;对第二Mg合金锭进行破碎;对破碎之后的第二Mg合金锭进行单辊急冷以得到稀土掺杂的Mg基储氢合金。其中,预设化学式为:(Mg 1-x-y-zCe xGd yY z)Ni 0.95Al 0.05,其中,X=0.006,y=0.011,z=0.004。第一真空熔炼工艺具体为:真空度低于0.01Pa,熔炼时间为6min,在熔炼过程中,每熔炼35s将合金锭进行一次翻转。其中,对初级Mg合金锭进行球磨具体为:球磨时间为18h,球磨速度为550r/min,其中,每球磨55min,停止球磨8min。其中,对松散合金锭进行热压具体为:热压气压低于0.03Pa,热压温度为850℃,热压压力为15MPa,热压时间为40min。对松散合金锭进行第二真空熔炼具体为:真空度低于0.01Pa,熔炼时间为12min,在熔炼过程中,每熔炼70s将合金锭进行一次翻转。单辊急冷具体为:真空腔气压低于0.01Pa,铜辊转速为5000r/min,喷射气压为0.3MPa,喷口直径为1.5mm。稀土掺杂的Mg基储氢合金的厚度为0.8mm。
对合金进行放电容量和断裂韧性测试,测试方式是本领域公知的方式,测试结果基于实施例1进行归一化,测试结果列于表1。
表1
  放电容量 断裂韧性
实施例1 100% 100%
实施例2 103% 101%
实施例3 105% 102%
实施例4 70% 62%
实施例5 67% 74%
实施例6 64% 72%
实施例7 62% 71%
前述对本发明的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本发明限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本发明的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本发明的各种不同的示例性实施方案以及各种不同的选择和改变。本发明的范围意在由权利要求书及其等同形式所限定。

Claims (8)

  1. 一种稀土掺杂的Mg基储氢合金,其特征在于:所述稀土掺杂的Mg基储氢合金由如下方法制备:
    提供Mg、Ce、Gd、Y、Ni以及Al金属原料;
    按照预设化学式对所述Mg、Ce、Gd、Y、Ni以及Al金属原料进行称重;
    将称重之后的所述Mg、Ce、Gd、Y、Ni以及Al金属原料进行第一真空熔炼,得到初级Mg合金锭;
    对所述初级Mg合金锭进行破碎和球磨,得到初级镁合金粉;
    利用冷等静压法将所述初级镁合金粉压成松散合金锭;
    对所述松散合金锭进行热压,得到密实合金锭;
    对所述密实合金锭进行第二真空熔炼,得到第二Mg合金锭;
    对所述第二Mg合金锭进行破碎;
    对破碎之后的第二Mg合金锭进行单辊急冷以得到稀土掺杂的Mg基储氢合金。
  2. 如权利要求1所述的稀土掺杂的Mg基储氢合金,其特征在于:其中,所述预设化学式为:(Mg 1-x-y-zCe xGd yY z)Ni 0.95Al 0.05,其中,X=0.005-0.008,y=0.01-0.012,z=0.003-0.005。
  3. 如权利要求1所述的稀土掺杂的Mg基储氢合金,其特征在于:所述第一真空熔炼工艺具体为:真空度低于0.01Pa,熔炼时间为5-8min,在熔炼过程中,每熔炼30-40s将合金锭进行一次翻转。
  4. 如权利要求1所述的稀土掺杂的Mg基储氢合金,其特征在于:其中,对所述初级Mg合金锭进行球磨具体为:球磨时间为15-20h,球磨速度为500-600r/min,其中,每球磨50-60min,停止球磨5-10min。
  5. 如权利要求1所述的稀土掺杂的Mg基储氢合金,其特征在于:其中, 对所述松散合金锭进行热压具体为:热压气压低于0.03Pa,热压温度为800-900℃,热压压力为10-20MPa,热压时间为30-50min。
  6. 如权利要求1所述的稀土掺杂的Mg基储氢合金,其特征在于:对所述松散合金锭进行第二真空熔炼具体为:真空度低于0.01Pa,熔炼时间为10-15min,在熔炼过程中,每熔炼60-80s将合金锭进行一次翻转。
  7. 如权利要求1所述的稀土掺杂的Mg基储氢合金,其特征在于:所述单辊急冷具体为:真空腔气压低于0.01Pa,铜辊转速为3000-4000r/min,喷射气压为0.5-1MPa,喷口直径为0.5-1mm。
  8. 如权利要求7述的稀土掺杂的Mg基储氢合金,其特征在于:所述稀土掺杂的Mg基储氢合金的厚度为0.2-0.4mm。
PCT/CN2018/102185 2018-07-04 2018-08-24 一种稀土掺杂的Mg基储氢合金 WO2020006843A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810720919.6 2018-07-04
CN201810720919.6A CN108715962B (zh) 2018-07-04 2018-07-04 一种稀土掺杂的Mg基储氢合金

Publications (1)

Publication Number Publication Date
WO2020006843A1 true WO2020006843A1 (zh) 2020-01-09

Family

ID=63912418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/102185 WO2020006843A1 (zh) 2018-07-04 2018-08-24 一种稀土掺杂的Mg基储氢合金

Country Status (2)

Country Link
CN (1) CN108715962B (zh)
WO (1) WO2020006843A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113862536A (zh) * 2021-09-14 2021-12-31 钢铁研究总院 一种Mg-Al-Y基储氢材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6193929B1 (en) * 1999-11-06 2001-02-27 Energy Conversion Devices, Inc. High storage capacity alloys enabling a hydrogen-based ecosystem
CN102277508A (zh) * 2011-08-09 2011-12-14 安泰科技股份有限公司 镁基储氢合金的制备方法
CN102383011A (zh) * 2011-10-19 2012-03-21 厦门钨业股份有限公司 一种低成本长寿命稀土镁基贮氢合金及其应用
CN103074529A (zh) * 2012-10-16 2013-05-01 西北工业大学 一种镁-镍-钇储氢合金薄带及其制备方法
CN108149073A (zh) * 2017-11-17 2018-06-12 安泰科技股份有限公司 低温镍氢电池用La-Mg-Ni系储氢合金及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101624660B (zh) * 2008-07-07 2012-07-18 北京有色金属研究总院 一种高容量长寿命稀土镁基储氢合金的制备方法
CN101457321B (zh) * 2008-12-25 2010-06-16 浙江大学 一种镁基复合储氢材料及制备方法
CN101575679A (zh) * 2009-06-22 2009-11-11 北京科技大学 一种Mg-Ni系储氢合金的制备方法
JP5394273B2 (ja) * 2010-02-03 2014-01-22 本田技研工業株式会社 水素吸蔵材及びその製造方法
CN102392167B (zh) * 2011-11-17 2013-03-20 上海交通大学 一种添加稀土元素的镁基储氢材料及其制备方法
CN102888545B (zh) * 2012-09-25 2016-12-21 上海锦众信息科技有限公司 一种镁基储氢合金的制备方法
CN103317128B (zh) * 2013-05-27 2016-08-10 西北工业大学 一种Mg-Ni-La基复合储氢合金粉及其制备方法
CN108220728B (zh) * 2017-12-26 2019-08-23 钢铁研究总院 一种高容量轻质石墨烯催化稀土镁铝基贮氢材料及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6193929B1 (en) * 1999-11-06 2001-02-27 Energy Conversion Devices, Inc. High storage capacity alloys enabling a hydrogen-based ecosystem
CN102277508A (zh) * 2011-08-09 2011-12-14 安泰科技股份有限公司 镁基储氢合金的制备方法
CN102383011A (zh) * 2011-10-19 2012-03-21 厦门钨业股份有限公司 一种低成本长寿命稀土镁基贮氢合金及其应用
CN103074529A (zh) * 2012-10-16 2013-05-01 西北工业大学 一种镁-镍-钇储氢合金薄带及其制备方法
CN108149073A (zh) * 2017-11-17 2018-06-12 安泰科技股份有限公司 低温镍氢电池用La-Mg-Ni系储氢合金及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S. COUILLAUD: "On the magnetic properties of pseudo-Laves phases RE1-yYy- Ni4-xAlxMg with RE=La, Ce and Gd prepared by both melting and ball milling", JOURNAL OF ALLOYS AND COMPOUNDS, vol. 525, 16 February 2012 (2012-02-16), ISSN: 0925-8388 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113862536A (zh) * 2021-09-14 2021-12-31 钢铁研究总院 一种Mg-Al-Y基储氢材料及其制备方法
CN113862536B (zh) * 2021-09-14 2022-07-08 钢铁研究总院 一种Mg-Al-Y基储氢材料及其制备方法

Also Published As

Publication number Publication date
CN108715962B (zh) 2020-06-23
CN108715962A (zh) 2018-10-30

Similar Documents

Publication Publication Date Title
CN104532095B (zh) 一种钇‑镍稀土系储氢合金
CN110317974B (zh) 一种钇-镍稀土系储氢合金
CN104513925B (zh) 一种钇‑镍稀土系储氢合金及含该储氢合金的二次电池
CN102517487B (zh) 一种产生高压氢的储氢合金
CN104513915B (zh) 添加锆、钛元素的ab3型稀土‑钇‑镍系储氢合金
CN107275626B (zh) 一种单相ab4型超晶格储氢合金电极材料及其制备方法
CN108511742A (zh) 一种单相a2b7型超晶格镨–镁–镍基合金电极材料及其制备方法
WO2020006843A1 (zh) 一种稀土掺杂的Mg基储氢合金
CN108977676B (zh) 一种3r型ab4储氢合金及其制备方法和应用
Wang et al. Preparation of Mg2− xRExNi (RE= La, Ce, Pr, Nd, Y) alloys and their electrochemical characteristics
Xie et al. High-performance La–Mg–Ni-based alloys prepared with low cost raw materials
CN101575679A (zh) 一种Mg-Ni系储氢合金的制备方法
Liang et al. Recent advances on preparation method of Ti-based hydrogen storage alloy
CN102181764A (zh) 一种无钴低镍贮氢合金
CN103361517B (zh) 高容量储氢合金电极材料及其生产方法
CN102403490A (zh) 镍氢电池用低自放电稀土-镁-镍-铝系储氢合金及其镍氢电池
CN101740767B (zh) 一种镍氢电池负极用的复合储氢合金
WO2020000607A1 (zh) 一种MgLaNi基环保材料
CN111334679B (zh) 一种具有优异热稳定性的钨-氧化钇复合材料的加工方法
CN110157951B (zh) 储氢合金材料的制备方法
US20190390307A1 (en) Catalyst enhanced MgAl-based hydrogen storage material
CN110642626A (zh) 活泼金属高温蒸气密封与防护用陶瓷材料及其制备方法
CN110257651A (zh) 一种具有多相共晶组织的Mg-Ni-Y储氢合金及其制备方法
WO2020000610A1 (zh) 一种催化剂增强的MgAl基储氢材料
CN103236529B (zh) 一种无钴贮氢合金电极材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18925336

Country of ref document: EP

Kind code of ref document: A1