WO2020004769A1 - Gas sensor electrode manufacturing method and gas sensor - Google Patents

Gas sensor electrode manufacturing method and gas sensor Download PDF

Info

Publication number
WO2020004769A1
WO2020004769A1 PCT/KR2019/001991 KR2019001991W WO2020004769A1 WO 2020004769 A1 WO2020004769 A1 WO 2020004769A1 KR 2019001991 W KR2019001991 W KR 2019001991W WO 2020004769 A1 WO2020004769 A1 WO 2020004769A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
gas sensor
gas
porous polymer
plasma
Prior art date
Application number
PCT/KR2019/001991
Other languages
French (fr)
Korean (ko)
Inventor
조정호
정영훈
윤지선
전창준
최용호
Original Assignee
한국세라믹기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국세라믹기술원 filed Critical 한국세라믹기술원
Publication of WO2020004769A1 publication Critical patent/WO2020004769A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00

Definitions

  • the present invention relates to a method for manufacturing a gas sensor electrode and a gas sensor, and more particularly to a method for manufacturing a gas sensor electrode and a gas sensor manufactured by using the same to increase the adhesion to the porous polymer membrane and the metal thin film.
  • the structure generally has a gas inlet formed at one side to allow external gas to flow therein, and the introduced gas is decomposed at the electrode through the porous polymer membrane to generate ions, and the generated ions are transferred to the opposite electrode through the electrolyte. To form current.
  • the electrode when the electrode is formed on the porous polymer membrane, the electrode is formed by printing on the porous polymer membrane or by the sputtering method.
  • the heat treatment process has to be performed, which causes the porous polymer membrane to be bent or deformed and contracted under thermal shock.
  • there is no problem as described above because there is no heat treatment process by the sputtering method, but because of the weak adhesive strength between the porous polymer membrane and the electrode, there was a problem that many defects occur.
  • Patent Document 1 Korean Unexamined Patent Publication No. 10-2006-0080786
  • the present invention provides a gas sensor electrode manufacturing method and a gas sensor manufactured using the same to improve the adhesion of the porous polymer membrane when the electrode for producing a gas sensor so that the bonding with the metal thin film.
  • Electrode manufacturing method for a gas sensor comprises the steps of providing a porous polymer membrane in the chamber; Plasma pretreatment of the surface of the porous polymer membrane as a plasma formed by putting a processing gas into the chamber; And forming a metal thin film by physical vapor deposition on the plasma pretreated porous polymer membrane.
  • the process of plasma pretreatment and the process of forming the metal thin film may be continuously performed in-situ.
  • the process gas may include at least one of argon (Ar) or oxygen (O 2 ).
  • the process of forming the metal thin film may be performed by sputtering at room temperature.
  • the porous polymer membrane may be made of Teflon or polyethylene.
  • the metal thin film may include at least one of Au, Pt, Ag, and Pd.
  • the thickness of the metal thin film may be greater than 0 mm and 0.4 mm or less, and the size of pores generated on the surface of the metal thin film may be greater than 0 ⁇ m and 0.3 ⁇ m or less.
  • Gas sensor is a working electrode for electrochemical reaction of the gas to be detected; A counter electrode corresponding to the working electrode; A reference electrode for controlling the potential of the working electrode; An electrolyte provided between the working electrode, the counter electrode and the reference electrode; And a housing accommodating the working electrode, the counter electrode, the reference electrode, and the electrolyte, wherein a gas passage hole through which the gas passes is formed, wherein at least one of the working electrode, the counter electrode, and the reference electrode is defined in claim 1.
  • the electrolyte may be in a solid or semisolid state.
  • the present invention is a method for forming an electrode for a gas sensor for bonding the metal thin film to improve adhesion by performing plasma pretreatment on the surface of the porous polymer membrane and a gas sensor manufactured using the same.
  • the surface energy of the porous polymer membrane is increased by lowering the surface energy by chemically breaking a part of the bonds of the elements. Due to this, adhesion with other materials may be improved. In addition, by physically roughening the surface, adhesion to other materials may be increased, thereby increasing adhesion.
  • the electrode is not separated by physically depositing the electrode on the porous polymer membrane having improved adhesion, thereby increasing the effect of the gas sensor.
  • FIG. 1 is a flow chart showing a method for forming an electrode for a gas sensor according to an embodiment of the present invention.
  • Figure 2 is a graph showing the surface energy of the plasma polymerized porous polymer membrane according to an embodiment of the present invention.
  • 3 is a SEM observation of the surface of the plasma pre-treated porous polymer membrane according to an embodiment of the present invention.
  • Figure 4 is a graph of the plasma resistance electrode resistance measurement results according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of the gas sensor in accordance with another embodiment of the present invention.
  • the gas sensor conducts electrolysis while maintaining the interface between the electrode and the electrolyte solution at a constant potential, and selectively detects the gas by quantitatively performing oxidation and reduction reactions by changing the potential set by the detection gas passing through the porous polymer membrane with the working electrode. Sensor to detect by
  • FIG. 1 is a flowchart illustrating a method of forming an electrode for a gas sensor according to an embodiment of the present invention.
  • a method of forming an electrode for a gas sensor may include providing a porous polymer membrane 200 in a chamber (S100); Plasma pretreatment of the surface of the porous polymer membrane (200) as a plasma formed while putting the processing gas in the chamber (S200); And forming a metal thin film on the plasma pretreated porous polymer film 200 by physical vapor deposition (S300).
  • a process of providing a porous polymer membrane 200 in a chamber is performed (S100).
  • the chamber provides an internal space and can be maintained in a vacuum state, and a support is provided at the lower end to place a desired object, and an electrode is provided at the upper end.
  • the porous polymer membrane 200 is a porous membrane having excellent permeability as a gas permeable membrane of a gas sensor.
  • the plasma has a high electrical conductivity in that electrons are separated from atoms or molecules in a gas state to contain electrons and ions. Therefore, when a gas containing impurities passes through the discharge electrode, electrons generated from the discharge electrode adhere to the impurity particles, and the particles have a negative charge. The negatively charged particles move to and adhere to the collecting electrode on which the positive charge is applied by electrostatic attraction, so that impurities of the porous polymer membrane 200 may be removed.
  • the chemical bond of the porous polymer membrane 200 is broken to increase the surface energy, thereby improving adhesion.
  • the surface of the porous polymer membrane 200 may be roughened to increase the surface area, thereby increasing the adhesion to other materials.
  • 2 is a graph showing the surface energy of Teflon according to the treatment gas (or discharge gas) according to the plasma pretreatment process according to an embodiment of the present invention.
  • 2 (a) shows the binding energy of Teflon without plasma treatment.
  • 2 (b) shows the binding energy of Teflon subjected to argon (Ar) plasma treatment in the processing gas.
  • 2 (c) shows the binding energy of Teflon subjected to oxygen (O 2 ) plasma treatment in the processing gas.
  • 2 (d) shows the binding energy of Teflon subjected to argon (Ar) and oxygen (O 2 ) plasma treatment in the processing gas.
  • the process gas may further include a process including at least one of argon (Ar) or oxygen (O 2 ).
  • Figure 2 shows the measured value of F 1s X-ray Photoelectron Spectroscopy (XPS) of Teflon and the XPS is X-ray photoelectron spectroscopy, the element and chemical bonding state of the surface and interface, the energy level through the photons of constant energy Surface analysis method to find out.
  • Teflon which is an embodiment of the present invention, is a structure in which a plurality of CF 2 are connected as PTFE (C 2 F 4 ), and the adhesion to other materials is not good because the surface energy is low and stable. Therefore, when the plasma pretreatment is performed on the Teflon, the surface energy is increased by breaking a portion of the CF 2 bond, thereby improving adhesion to other materials.
  • the peaks of C-CF 2 are argon (Ar), oxygen (O 2 ), argon (Ar) + oxygen (O 2 ), and the peaks are higher in order of argon (Ar) and oxygen (O 2 ).
  • Argon (Ar) + oxygen (O 2 ) in order to increase the surface energy can be seen that the adhesion is further improved.
  • Figure 3 is a SEM observation of the surface of the Teflon according to the treatment gas during the plasma pretreatment according to an embodiment of the present invention.
  • A) of FIG. 3 is a surface of Teflon not treated with plasma
  • (b) of FIG. 3 is argon (Ar) plasma
  • (c) of FIG. 3 is oxygen (O 2 ) plasma
  • 3 (b) is a surface diagram of Teflon treated with argon (Ar) plasma, and it can be seen that the surface is slightly rougher than that of Teflon not treated with plasma.
  • 3 (c) and 3 (d) show that the surface of Teflon treated with oxygen (O 2 ) plasma and argon (Ar) + oxygen (O 2 ) plasma is very rough, in particular, oxygen (O 2 ) plasma. In the case of the air hole can be seen.
  • the surface roughness allows the porous polymer membrane to better support the metal thin film.
  • the metal thin film formed thereon is not well supported and has a disadvantage in that adhesive strength is also lowered.
  • the physical vapor deposition method may be, for example, sputtering, electron beam deposition, thermal deposition, laser molecular beam deposition, pulsed laser deposition.
  • An embodiment of the present invention may be a method of depositing a metal thin film on the plasma pretreated porous polymer membrane 200 by a sputtering method.
  • sputtering accelerates an ionized atom by an electric field and collides with a source material, which causes the atoms or molecules of the thin film material to protrude. These released atoms are deposited on the surface of the desired material has the advantage of forming a thin metal film.
  • the adhesive force is not good, and when the gas sensor is operated, the electrode is separated and a malfunction occurs or a desired performance is not obtained.
  • the present invention improves adhesion to other materials by performing plasma pretreatment on the surface of the porous polymer membrane 200.
  • the electrode manufactured by depositing a metal thin film by sputtering on the plasma pretreated porous polymer membrane 200 according to an embodiment of the present invention may be able to operate in a gas sensor more stably than a conventional electrode.
  • the scotch tape evaluation method is a method of evaluating whether the electrode remains on the polymer film 200 by attaching and detaching the electrode deposited on the porous polymer film 200 with the scotch tape.
  • the electrode deposited on the Teflon not subjected to the plasma treatment was found that the adhesion between the electrode and the polymer film 200 is not good because many electrodes are attached to the scotch tape.
  • the adhesive strength was evaluated by the scotch tape method on the electrode deposited on the porous polymer film 200 treated with argon (Ar) plasma, it was confirmed that the electrode did not come out on the scotch tape, and the polymer film 200 and the electrode were separated. The adhesion of the well was confirmed that the adhesion was improved.
  • FIG. 4 is a graph illustrating electrode resistance measurement results according to processing gases during plasma pretreatment according to an exemplary embodiment of the present invention.
  • argon (Ar) + oxygen (O 2 ) plasma-treated porous The polymer film 200 has the highest surface energy and good surface roughness according to FIG. 3.
  • the porous polymer membrane 200 treated with argon (Ar) + oxygen (O 2 ) plasma has a relatively high resistance and discoloration due to oxidation of the electrode when the adhesion is evaluated by the scotch tape.
  • the porous polymer membrane 200 treated with oxygen (O 2 ) plasma and argon (Ar) + oxygen (O 2 ) plasma was excellent in terms of adhesive strength, whereas the porous polymer membrane 200 treated with argon (Ar) plasma was excellent.
  • the deposited electrode has no discoloration problem, good adhesion, and relatively small resistance, which can be considered as the most suitable treatment gas.
  • the plasma pretreatment and the metal thin film may be continuously performed in-situ. If it does not proceed in-situ, after the plasma treatment of the porous polymer membrane 200 in the vacuum chamber, the vacuum is released again, and then the chamber is again vacuumed to proceed with the process of forming a metal thin film. It is not efficient because it takes unnecessary time and effort. Therefore, the chamber for plasma pretreatment and forming a metal thin film is formed as a chamber having a single space or a chamber in which two or more spaces are formed and connected between the spaces. You can proceed.
  • the process of forming the metal thin film may be performed by sputtering at room temperature.
  • an electrode is formed by printing a solution containing metal particles on a porous polymer membrane, and a process of drying the coated solution and then heat treating it is essential. At this time, heat was applied to the porous polymer film having low thermal stability during the heat treatment (firing), and thus the metal thin film was not correctly deposited due to warpage or shrinkage.
  • the present invention can increase the adhesion by chemically and physically modifying the plasma by treating the surface of the porous polymer membrane 200 to overcome this problem.
  • the electrode is deposited on the porous polymer membrane 200 which is plasma-treated through physical vapor deposition (for example, sputtering, etc.) to increase adhesion, so that the bonding occurs well and the electrode is separated during gas sensor operation to prevent the efficiency from being reduced. can do.
  • the porous polymer membrane 200 may be made of Teflon or polyethylene.
  • the gas permeable membrane used for the gas sensor should have excellent gas permeability.
  • a gas sensor electrode may be manufactured using the porous polymer membrane 200 made of Teflon or polyethylene having good performance.
  • the metal thin film may include at least one of Au, Pt, Ag, and Pd. If a metal thin film is formed using a metal having high reactivity, the metal used in the electrode may have a problem that the life of the gas sensor does not last long as the metal thin film is oxidized, leaving electrical conductivity. Therefore, the electrode must be manufactured using a stable metal that is stable and not oxidized because of low reactivity, so that the gas sensor can be used for a long time.
  • the thickness of the metal thin film may be greater than 0 mm and 0.4 mm or less, and the size of pores generated on the surface of the metal thin film may be greater than 0 ⁇ m and 0.3 ⁇ m or less.
  • the thickness of the metal thin film is the numerical thickness, adhesion to the porous polymer membrane may be improved, and the metal thin film may be uniformly deposited. If the thickness of the metal thin film exceeds 0.4mm, not only the adhesion but also the deposition is not uniform, the electrical signal is not constant, the gas sensor performance may be reduced.
  • FIG. 5 is a cross-sectional view of the gas sensor in accordance with another embodiment of the present invention.
  • a gas sensor includes a working electrode 300 for electrochemically reacting a gas to be detected; A counter electrode 310 corresponding to the working electrode 300; A reference electrode 320 for controlling the potential of the working electrode 300; An electrolyte 400 provided between the working electrode 300, the counter electrode 310, and the reference electrode 320; And a housing 100 accommodating the working electrode 300, the counter electrode 310, the reference electrode 320, and the electrolyte 400, and the gas passage hole 110 through which the gas passes. At least one of the working electrode 300, the counter electrode 310, and the reference electrode 320 may be manufactured by the gas sensor electrode manufacturing method.
  • the working electrode 300 is a gas electrode that detects gas, and electrochemically reacts the gas to be detected.
  • the counter electrode 310 corresponds to the working electrode 300.
  • Three electrodes of the reference electrode 320 for controlling the potential of the working electrode 300 were provided, and an electrolytic cell containing the electrolyte 400 to which they could be contacted, a circuit for setting the potential of each electrode, and the like were connected.
  • the counter electrode 310 and the reference electrode 320 may be provided to correspond to (or face each other) on the same plane, and form three electrodes together with the working electrode 300.
  • the counter electrode 310 and the reference electrode 320 may include a pair of comb electrodes, and teeth (or branches) of each of the counter electrode 310 and the reference electrode 320 are crossed (or crossed). Can be arranged.
  • a noble metal catalyst such as platinum (Pt), gold (Au), or palladium (Pd) is coated on the porous polymer membrane 200 manufactured by the gas sensor electrode manufacturing method.
  • an acidic aqueous solution such as sulfuric acid or phosphoric acid was used.
  • the gas sensor is provided with an electrolyte 400 on the surface of the working electrode 300 deposited on the porous polymer membrane 200 and the porous polymer membrane 200 abuts on the housing 100 through which the gas passage 110 is drilled. .
  • the counter electrode 310 and the reference electrode 320 have a branch shape, are stacked on the same surface in a zigzag form, and are deposited on the porous polymer film 200 facing the working electrode 300.
  • the porous polymer membrane 200 is in contact with the housing 100. Meanwhile, at least one of the porous polymer membrane 200, the working electrode 300, the counter electrode 310, and the reference electrode 320 is manufactured by the method for manufacturing the electrode for the gas sensor. However, this is only an example and the present invention is not limited thereto.
  • the housing 100 includes a gas passage port 110 on one surface thereof, and accommodates the working electrode 300, the counter electrode 310, the reference electrode 320, and the electrolyte 400 to stably configure a gas sensor. It can help you.
  • a metal terminal is included in the housing 100 so as to electrically connect the working electrode 300, the counter electrode 310, and the reference electrode 320. Make it work.
  • the electrostatic potential electrolytic gas sensor controls the potential of the working electrode 300 with respect to changes in the surrounding environment and maintains a constant value, thereby corresponding to a change in the surrounding environment between the working electrode 300 and the counter electrode 310. Generate a current.
  • the potential of the working electrode 300 does not change and the oxidation-reduction potential varies depending on the type of gas, selective detection of gas is possible depending on the set potential of the circuit.
  • the catalyst used for a gas electrode high selectivity can be provided with respect to the target gas.
  • the electrolyte 400 may be in a solid or semisolid state. Conventionally, there is a problem in mobility because it is heavy and liquid using the electrolyte 400 in the liquid phase. Therefore, the electrolyte 400 may be formed in a solid or semi-solid to obtain the advantages of convenience of movement and may be further lighter because it is a solid rather than a liquid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Combustion & Propulsion (AREA)

Abstract

A gas sensor electrode manufacturing method, according to one embodiment of the present invention, may comprise the steps of: providing a porous polymer membrane in a chamber; plasma-pre-processing the surface of the porous polymer membrane using plasma formed when inputting a processing gas in the chamber; and forming a metal thin film on the plasma-pre-processed porous polymer membrane by physical vapor deposition.

Description

가스센서용 전극 제조방법 및 가스센서Electrode manufacturing method for gas sensor and gas sensor
본 발명은 가스센서용 전극 제조방법 및 가스센서에 관한 것으로, 더욱 상세하게는 다공성 고분자막에 접착력을 높여 금속 박막과의 접합이 잘 되도록 하는 가스센서용 전극 제조방법 및 이를 이용해 제조된 가스센서이다.The present invention relates to a method for manufacturing a gas sensor electrode and a gas sensor, and more particularly to a method for manufacturing a gas sensor electrode and a gas sensor manufactured by using the same to increase the adhesion to the porous polymer membrane and the metal thin film.
산업사회가 고도화됨에 따라 생산 현장이 다양화 되며 각각의 산업현장에서는 여러 종류의 가스를 사용할 뿐만 아니라 발생시키고 있어 이에 대한 가스사고 안전관리가 심각한 문제로 대두되고 있다. 가스관련 안전 사고를 미연에 방지하기 위해서는 작은 가스농도의 변화를 감지 할 수 있어야 될 뿐 아니라 인체에 작은 양이나마 장시간 노출 시 인체에 해가 될 수 있는 유독 가스의 경우 저농도의 가스 존재 또한 감지할 수 있어야 한다. 유독 가스와 산소가스 등 환경오염 및 산업현장에서의 가스안전 사고와 밀접한 관련이 있는 가스의 경우 산화환원 반응을 이용한 전기화학식 가스센서가 가장 적합하여 이미 널리 사용되고 있다. 그 구조는 일반적으로 일측에 가스 유입구가 형성 되어 있어 외부의 가스가 유입될 수 있도록 하며, 유입된 가스는 다공성 고분자막을 통해 전극에서 분해 되어 이온을 발생시키고 발생된 이온은 전해질을 통해 반대측 전극으로 이동하여 전류를 형성 시킬 수 있게 되어 있다.As industrial societies are advanced, production sites are diversified, and each industrial site not only uses various types of gases but also generates them, so gas accident safety management is emerging as a serious problem. In order to prevent gas-related safety accidents, it is necessary not only to detect small changes in gas concentration, but also to detect low concentrations of gas in the case of toxic gases that may harm the human body after prolonged exposure to small amounts. Should be In the case of gas which is closely related to environmental pollution such as toxic gas and oxygen gas and gas safety accident in industrial field, electrochemical gas sensor using redox reaction is most suitable and is already widely used. The structure generally has a gas inlet formed at one side to allow external gas to flow therein, and the introduced gas is decomposed at the electrode through the porous polymer membrane to generate ions, and the generated ions are transferred to the opposite electrode through the electrolyte. To form current.
종래의 전기화학식 가스센서의 경우 다공성 고분자막에 전극을 형성할 때 다공성 고분자막에 프링팅으로 전극을 형성하거나 스퍼터링 방법 등으로 전극을 형성하였다. 다공성 고분자막에 전극을 프린팅을 하여 전극을 형성할때는 열처리를 과정을 수행 하여야하기 때문에 다공성 고분자막이 열적충격을 받아 휘거나 변형 및 수축이 일어나는 문제점이 있었다. 또한, 스퍼터링 방법으로 진행하면 열처리 과정이 없기에 위와 같은 문제점은 없으나 다공성 고분자막과 전극 사이에 접착력이 약하기 때문에 많은 불량이 발생는 문제점이 있었다.In the case of the conventional electrochemical gas sensor, when the electrode is formed on the porous polymer membrane, the electrode is formed by printing on the porous polymer membrane or by the sputtering method. When the electrode is formed by printing the electrode on the porous polymer membrane, the heat treatment process has to be performed, which causes the porous polymer membrane to be bent or deformed and contracted under thermal shock. In addition, there is no problem as described above because there is no heat treatment process by the sputtering method, but because of the weak adhesive strength between the porous polymer membrane and the electrode, there was a problem that many defects occur.
(특허문헌 1) 한국 공개특허공보 제10-2006-0080786호(Patent Document 1) Korean Unexamined Patent Publication No. 10-2006-0080786
본 발명은 가스센서용 전극을 제조할 때 다공성 고분자막의 접착력을 향상하여 금속 박막과의 접합이 잘 일어나도록 하는 가스센서용 전극 제조 방법 및 이를 이용해 제조된 가스센서를 제공한다.The present invention provides a gas sensor electrode manufacturing method and a gas sensor manufactured using the same to improve the adhesion of the porous polymer membrane when the electrode for producing a gas sensor so that the bonding with the metal thin film.
본 발명의 일실시예에 따른 가스센서용 전극 제조방법은 챔버 내에 다공성 고분자막을 제공하는 과정; 상기 챔버 내에 처리가스를 넣으면서 형성된 플라즈마로서 상기 다공성 고분자막의 표면을 플라즈마 전처리하는 과정; 및 상기 플라즈마 전처리된 다공성 고분자막 상에 물리적 증착법으로 금속 박막을 형성하는 과정을 포함할 수 있다.Electrode manufacturing method for a gas sensor according to an embodiment of the present invention comprises the steps of providing a porous polymer membrane in the chamber; Plasma pretreatment of the surface of the porous polymer membrane as a plasma formed by putting a processing gas into the chamber; And forming a metal thin film by physical vapor deposition on the plasma pretreated porous polymer membrane.
상기 플라즈마 전처리하는 과정과 상기 금속 박막을 형성하는 과정을 인시츄(In-situ)로 연속해서 진행할 수 있다.The process of plasma pretreatment and the process of forming the metal thin film may be continuously performed in-situ.
상기 처리가스는 아르곤(Ar) 또는 산소(O2) 중 적어도 하나를 포함할 수 있다.The process gas may include at least one of argon (Ar) or oxygen (O 2 ).
상기 금속 박막을 형성하는 과정은 상온에서 스퍼터링법으로 진행할 수 있다.The process of forming the metal thin film may be performed by sputtering at room temperature.
상기 다공성 고분자막은 테프론 또는 폴리에틸렌으로 이루어질 수 있다.The porous polymer membrane may be made of Teflon or polyethylene.
상기 금속박막은 Au, Pt, Ag 및 Pd 중 적어도 어느 하나를 포함할 수 있다.The metal thin film may include at least one of Au, Pt, Ag, and Pd.
상기 금속 박막의 두께는 0mm를 초과하고 0.4mm 이하이며, 상기 금속 박막의 표면에 발생하는 기공의 크기는 0㎛를 초과하고 0.3㎛ 이하일 수 있다.The thickness of the metal thin film may be greater than 0 mm and 0.4 mm or less, and the size of pores generated on the surface of the metal thin film may be greater than 0 μm and 0.3 μm or less.
본 발명의 다른 실시예에 따른 가스센서는 검지 대상 가스를 전기 화학 반응시키는 작업전극; 상기 작업전극에 대응되는 상대전극; 상기 작업전극의 전위를 제어하는 기준전극; 상기 작업전극, 상대전극 및 기준전극 사이에 제공되는 전해질; 및 상기 작업전극, 상대전극, 기준전극 및 전해질을 수용하고, 상기 가스가 통과하는 가스 통과구가 형성된 하우징을 포함하고, 상기 작업전극, 상대전극 및 기준전극 중 적어도 어느 하나는 상기 청구항 제 1항 내지 청구항 제 7항의 가스센서용 전극 제조방법으로 제조될 수 있다.Gas sensor according to another embodiment of the present invention is a working electrode for electrochemical reaction of the gas to be detected; A counter electrode corresponding to the working electrode; A reference electrode for controlling the potential of the working electrode; An electrolyte provided between the working electrode, the counter electrode and the reference electrode; And a housing accommodating the working electrode, the counter electrode, the reference electrode, and the electrolyte, wherein a gas passage hole through which the gas passes is formed, wherein at least one of the working electrode, the counter electrode, and the reference electrode is defined in claim 1. To the gas sensor electrode manufacturing method of claim 7.
상기 전해질은 고체 또는 반고체의 상태일 수 있다.The electrolyte may be in a solid or semisolid state.
본 발명은 다공성 고분자막 표면에 플라즈마 전처리를 하여 접착력을 향상시켜 금속박막이 잘 접합하도록 하기 위한 가스센서용 전극 형성 방법 및 이를 이용해 제조된 가스센서이다.The present invention is a method for forming an electrode for a gas sensor for bonding the metal thin film to improve adhesion by performing plasma pretreatment on the surface of the porous polymer membrane and a gas sensor manufactured using the same.
본 발명의 실시 형태에 따른 가스센서용 전극 제조방법은 다공성 고분자막 표면에 플라즈마 전처리를 진행시 화학적으로는 표면의 구성원소의 결합의 일부분을 끊어 줌으로써 표면에너지가 낮아져 안정적이던 다공성 고분자막의 표면에너지가 높아짐으로 인하여 다른 물질과의 접착력이 향상될 수 있다. 또한, 물리적으로는 표면을 거칠게 만듦으로써 다른 물질과의 결합력을 높여 접착력이 또한 증진될 수 있다.In the method for manufacturing an electrode for a gas sensor according to an embodiment of the present invention, when plasma pretreatment is performed on the surface of the porous polymer membrane, the surface energy of the porous polymer membrane is increased by lowering the surface energy by chemically breaking a part of the bonds of the elements. Due to this, adhesion with other materials may be improved. In addition, by physically roughening the surface, adhesion to other materials may be increased, thereby increasing adhesion.
위와 같은 방법으로 접착력이 향상된 다공성 고분자막에 물리적 증착법으로 전극을 증착시킴으로써 전극이 분리되지 않아 가스센서의 효과가 증대된다.In this way, the electrode is not separated by physically depositing the electrode on the porous polymer membrane having improved adhesion, thereby increasing the effect of the gas sensor.
도 1은 본 발명의 일실시예에 따른 가스센서용 전극 형성방법을 나타낸 순서도.1 is a flow chart showing a method for forming an electrode for a gas sensor according to an embodiment of the present invention.
도 2는 본 발명의 일실시예에 따른 플라즈마 전처리된 다공성 고분자막의 표면 에너지를 나타내는 그래프.Figure 2 is a graph showing the surface energy of the plasma polymerized porous polymer membrane according to an embodiment of the present invention.
도 3은 본 발명의 일실시예에 따른 플라즈마 전처리된 다공성 고분자막의 표면을 SEM으로 관찰한 그림.3 is a SEM observation of the surface of the plasma pre-treated porous polymer membrane according to an embodiment of the present invention.
도 4는 본 발명의 일실시예에 따른 플라즈마 전처리된 전극 저항 측정 결과 그래프.Figure 4 is a graph of the plasma resistance electrode resistance measurement results according to an embodiment of the present invention.
도 5는 본 발명의 다른 실시예에 따른 가스센서 결합 단면도.5 is a cross-sectional view of the gas sensor in accordance with another embodiment of the present invention.
이하에서는 첨부된 도면을 참조하여 본 발명의 실시예를 더욱 상세히 설명하기로 한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 설명 중, 동일 구성에 대해서는 동일한 참조부호를 부여하도록 하고, 도면은 본 발명의 실시예를 정확히 설명하기 위하여 크기가 부분적으로 과장될 수 있으며, 도면상에서 동일 부호는 동일한 요소를 지칭한다.Hereinafter, with reference to the accompanying drawings will be described an embodiment of the present invention in more detail. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various forms, and only the embodiments are intended to complete the disclosure of the present invention, and to those skilled in the art to fully understand the scope of the invention. It is provided to inform you. In the description, like reference numerals refer to like elements, and the drawings may be partially exaggerated in size in order to accurately describe embodiments of the present invention, and like reference numerals refer to like elements in the drawings.
가스센서는 전극과 전해질 용액의 계면을 일정한 전위로 유지하면서 전해를 하고, 다공성 고분자막을 통과한 검지 가스가 작업전극과 반응하여 설정한 전위를 바꿈으로써 산화, 환원반응을 선택적으로 진행시켜 가스를 정량적으로 검지하는 센서이다.The gas sensor conducts electrolysis while maintaining the interface between the electrode and the electrolyte solution at a constant potential, and selectively detects the gas by quantitatively performing oxidation and reduction reactions by changing the potential set by the detection gas passing through the porous polymer membrane with the working electrode. Sensor to detect by
도 1은 본 발명의 일실시예에 따른 가스센서용 전극 형성방법을 나타낸 순서도이다.1 is a flowchart illustrating a method of forming an electrode for a gas sensor according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일실시예에 따른 가스센서용 전극 형성 방법은 챔버 내에 다공성 고분자막(200)을 제공하는 과정(S100); 상기 챔버 내에 처리가스를 넣으면서 형성된 플라즈마로서 상기 다공성 고분자막(200)의 표면을 플라즈마 전처리하는 과정(S200); 및 상기 플라즈마 전처리된 다공성 고분자막(200) 상에 물리적 증착법으로 금속 박막을 형성하는 과정(S300)을 포함할 수 있다.Referring to FIG. 1, a method of forming an electrode for a gas sensor according to an embodiment of the present invention may include providing a porous polymer membrane 200 in a chamber (S100); Plasma pretreatment of the surface of the porous polymer membrane (200) as a plasma formed while putting the processing gas in the chamber (S200); And forming a metal thin film on the plasma pretreated porous polymer film 200 by physical vapor deposition (S300).
먼저, 챔버 내에 다공성 고분자막(200)을 제공하는 과정을 진행한다(S100). 상기 챔버는 내부공간을 제공하고 진공상태로 유지할 수 있으며 하단부에 지지대가 제공되어 원하는 대상을 놓을 수 있고 상단에는 전극이 제공되어 있다. 상기 다공성 고분자막(200)은 가스센서의 가스 투과막으로서 투과성이 우수한 다공질막이다.First, a process of providing a porous polymer membrane 200 in a chamber is performed (S100). The chamber provides an internal space and can be maintained in a vacuum state, and a support is provided at the lower end to place a desired object, and an electrode is provided at the upper end. The porous polymer membrane 200 is a porous membrane having excellent permeability as a gas permeable membrane of a gas sensor.
다음으로, 상기 다공성 고분자막(200)에 플라즈마 전처리를 진행한다(S200). 상기 플라즈마(Plasma)는 기체 상태의 원자나 분자에서 전자가 분리되어 전자와 이온을 포함하고 있는 상태로 전기 전도율이 높은 특성을 갖는다. 따라서 불순물이 포함된 기체가 방전극을 통과하면, 방전극에서 생성된 전자가 불순물 입자에 부착되어 입자들이 음전하를 띠게 된다. 이러한 음전하를 띤 입자는 정전기적 인력에 의해 양전하가 걸려 있는 집전극으로 이동하여 부착됨으로써 다공성 고분자막(200)의 불순물들이 제거될 수 있다.Next, plasma pretreatment is performed on the porous polymer membrane 200 (S200). The plasma has a high electrical conductivity in that electrons are separated from atoms or molecules in a gas state to contain electrons and ions. Therefore, when a gas containing impurities passes through the discharge electrode, electrons generated from the discharge electrode adhere to the impurity particles, and the particles have a negative charge. The negatively charged particles move to and adhere to the collecting electrode on which the positive charge is applied by electrostatic attraction, so that impurities of the porous polymer membrane 200 may be removed.
또한, 플라즈마가 상기 지지대 하부에 제공된 전극으로 이동하여 부딪힘으로써 다공성 고분자막(200)의 화학적 결합이 끊어져 표면 에너지를 증가시켜 접착력을 향상시킬 수 있다. 그리고 물리적 효과로서는 다공성 고분자막(200)의 표면을 거칠게 만들어 표면적을 늘려 다른 물질과의 접착력이 또한 증대되는 효과를 볼 수 있다.In addition, as the plasma moves to the electrode provided under the support and collides, the chemical bond of the porous polymer membrane 200 is broken to increase the surface energy, thereby improving adhesion. In addition, as a physical effect, the surface of the porous polymer membrane 200 may be roughened to increase the surface area, thereby increasing the adhesion to other materials.
도 2는 본 발명의 일실시예에 따른 플라즈마 전처리 과정에 따라 처리가스(또는 방전가스)에 따른 테프론의 표면 에너지를 나타내는 그래프이다. 도 2의 (a)는 플라즈마 처리를 안한 테프론의 결합에너지를 나타낸다. 도 2의 (b)는 처리가스 중 아르곤(Ar) 플라즈마 처리를 한 테프론의 결합에너지를 나타낸다. 도 2의 (c)는 처리가스 중 산소(O2) 플라즈마 처리를 한 테프론의 결합에너지를 나타낸다. 도 2의 (d)는 처리가스 중 아르곤(Ar)과 산소(O2) 플라즈마 처리를 한 테프론의 결합에너지를 나타낸다.2 is a graph showing the surface energy of Teflon according to the treatment gas (or discharge gas) according to the plasma pretreatment process according to an embodiment of the present invention. 2 (a) shows the binding energy of Teflon without plasma treatment. 2 (b) shows the binding energy of Teflon subjected to argon (Ar) plasma treatment in the processing gas. 2 (c) shows the binding energy of Teflon subjected to oxygen (O 2 ) plasma treatment in the processing gas. 2 (d) shows the binding energy of Teflon subjected to argon (Ar) and oxygen (O 2 ) plasma treatment in the processing gas.
도 2를 참조하면, 상기 처리가스는 아르곤(Ar) 또는 산소(O2) 중 적어도 하나를 포함하는 과정을 더 포함할 수 있다. 또한, 도 2는 테프론의 F 1s XPS(X-ray Photoelectron Spectroscopy)의 측정값을 나타내고 상기 XPS는 X-선 광전자 분광법으로 일정한 에너지의 광자를 통해 표면과 계면의 구성원소 및 화학적 결합상태, 에너지 준위 등을 알아내는 표면분석방법이다. 본 발명의 실시예인 테프론은 PTFE(C2F4)로서 여러 개의 CF2가 연결되어 있는 구조이며, 표면에너지가 낮아서 안정적이기 때문에 다른 물질과의 접착력이 좋지 못하다. 따라서 상기 테프론에 플라즈마 전처리를 진행하면 CF2 결합의 일부분을 끊어줌으로써 표면에너지를 증가시켜 다른 물질과의 접착력을 향상시킬 수 있다.Referring to FIG. 2, the process gas may further include a process including at least one of argon (Ar) or oxygen (O 2 ). In addition, Figure 2 shows the measured value of F 1s X-ray Photoelectron Spectroscopy (XPS) of Teflon and the XPS is X-ray photoelectron spectroscopy, the element and chemical bonding state of the surface and interface, the energy level through the photons of constant energy Surface analysis method to find out. Teflon, which is an embodiment of the present invention, is a structure in which a plurality of CF 2 are connected as PTFE (C 2 F 4 ), and the adhesion to other materials is not good because the surface energy is low and stable. Therefore, when the plasma pretreatment is performed on the Teflon, the surface energy is increased by breaking a portion of the CF 2 bond, thereby improving adhesion to other materials.
테프론의 F 1s XPS의 측정값을 나타내는 도 2의 (a)를 참조하면, 테프론에 플라즈마 처리를 안한 경우, 결합에너지는 690 eV 부근에서 CF2의 피크만 검출되는 것을 볼 수 있다. 하지만 도 2의 (b), (c), (d)를 보면 처리가스에 따라 결합에너지가 687 eV 부근에 F가 없는 C-CF2 피크가 함께 검출 됨으로써 플라즈마 처리를 통해 C와 F의 결합이 끊어진 것을 확인할 수 있다. 또한, C-CF2의 피크를 보면 아르곤(Ar), 산소(O2), 아르곤(Ar)+산소(O2)의 순서로 피크가 더 높진 것으로 보아 아르곤(Ar), 산소(O2), 아르곤(Ar)+산소(O2)의 순서로 표면에너지가 높아져 접착력이 더 향상 되었다고 볼 수 있다.Referring to (a) of FIG. 2, which shows a measured value of F 1s XPS of Teflon, it can be seen that when Teflon is not subjected to plasma treatment, only a peak of CF 2 is detected at a binding energy around 690 eV. However, referring to (b), (c), and (d) of FIG. 2, the binding energy of C-CF 2 without F is detected near 687 eV depending on the treatment gas, thereby combining C and F by plasma treatment. You can see that it is broken. In addition, the peaks of C-CF 2 are argon (Ar), oxygen (O 2 ), argon (Ar) + oxygen (O 2 ), and the peaks are higher in order of argon (Ar) and oxygen (O 2 ). , Argon (Ar) + oxygen (O 2 ) in order to increase the surface energy can be seen that the adhesion is further improved.
도 3은 본 발명의 일실시예에 따른 플라즈마 전처리시 처리가스에 따른 테프론의 표면을 SEM으로 관찰한 그림이다. 도 3의 (a)는 플라즈마를 처리하지 않은 테프론의 표면이고, 도 3의 (b)는 아르곤(Ar) 플라즈마, 도 3의 (c)는 산소(O2) 플라즈마, 도 3의 (d)는 아르곤(Ar)+산소(O2)플라즈마 처리를 한 테프론의 표면을 SEM으로 관찰한 그림이다.Figure 3 is a SEM observation of the surface of the Teflon according to the treatment gas during the plasma pretreatment according to an embodiment of the present invention. (A) of FIG. 3 is a surface of Teflon not treated with plasma, (b) of FIG. 3 is argon (Ar) plasma, (c) of FIG. 3 is oxygen (O 2 ) plasma, and (d) of FIG. Is a SEM observation of the surface of Teflon treated with argon (Ar) + oxygen (O 2 ) plasma.
도 3을 참조하면, 도 3의 (a)의 플라즈마 처리를 안한 테프론의 표면은 깨끗하고 균일한 것을 확인 할 수 있다. 그리하여 표면적이 상대적으로 없어 다른 물질과의 접촉 면적이 적어 접착력이 낮은 것으로 판단된다. 도 3의 (b)는 아르곤(Ar) 플라즈마를 처리한 테프론의 표면 그림으로서 플라즈마 처리를 안한 테프론의 경우 보다 표면이 약간 거칠어 진 것을 볼 수 있다. 도 3의 (c)와 도 3의 (d)는 산소(O2) 플라즈마, 아르곤(Ar)+산소(O2) 플라즈마를 처리한 테프론의 표면은 매우 거칠어 졌으며, 특히 산소(O2) 플라즈마의 경우 대기공이 생긴 것을 볼 수 있다. 이와 같이 표면의 거칠기가 생김으로써 다공성 고분자막이 금속박막을 더 잘 지지할 수 있다. 하지만 상기 산소(O2) 플라즈마의 경우처럼 너무 커버린 대기공이 형성되면 그 위에 형성된 금속 박막이 잘 지지되지 않으며 접착력도 떨어지는 단점이 생긴다.Referring to FIG. 3, it can be seen that the surface of the Teflon without plasma treatment of FIG. 3A is clean and uniform. As a result, the surface area is relatively low, so the contact area with other materials is small, and thus the adhesion strength is low. 3 (b) is a surface diagram of Teflon treated with argon (Ar) plasma, and it can be seen that the surface is slightly rougher than that of Teflon not treated with plasma. 3 (c) and 3 (d) show that the surface of Teflon treated with oxygen (O 2 ) plasma and argon (Ar) + oxygen (O 2 ) plasma is very rough, in particular, oxygen (O 2 ) plasma. In the case of the air hole can be seen. As a result, the surface roughness allows the porous polymer membrane to better support the metal thin film. However, when too much covered air holes are formed, as in the case of the oxygen (O 2 ) plasma, the metal thin film formed thereon is not well supported and has a disadvantage in that adhesive strength is also lowered.
다음으로, 플라즈마 전처리된 다공성 고분자막(200) 상에 물리적 증착법으로 금속 박막을 형성하는 과정을 진행한다(S300). 상기 물리적 기상 증착법은 예를들면 스퍼터링, 전자빔증착법, 열증착법, 레이저분자빔증착법, 펄스레이저증착법 등일 수 있다. 본 발명의 실시예는 스퍼터링 방법에 의하여 상기 플라즈마 전처리된 다공성 고분자막(200)에 금속 박막을 증착하는 방법일 수 있다. 특히, 스퍼터링은 이온화된 원자를 전기장에 의해 가속시켜 박막재료(source material)에 충돌시키면, 이 충돌에 의해 박막재료의 원자 또는 분자들이 튀어나온다. 이 방출된 원자들이 원하는 물질의 표면에 증착되어 금속박막을 얇은 두께로 형성할 수 있는 장점이 있다.Next, a process of forming a metal thin film by physical vapor deposition on the plasma pre-treated porous polymer film 200 is performed (S300). The physical vapor deposition method may be, for example, sputtering, electron beam deposition, thermal deposition, laser molecular beam deposition, pulsed laser deposition. An embodiment of the present invention may be a method of depositing a metal thin film on the plasma pretreated porous polymer membrane 200 by a sputtering method. In particular, sputtering accelerates an ionized atom by an electric field and collides with a source material, which causes the atoms or molecules of the thin film material to protrude. These released atoms are deposited on the surface of the desired material has the advantage of forming a thin metal film.
상술한 바와 같이 플라즈마 처리되지 않은 다공성 고분자막(200)에 전극을 증착 시킬 때 접착력이 좋지 않아 가스센서를 운용할 시 전극이 분리되어 오작동이 일어나거나 원하는 성능이 나오지 않는 부작용이 있었다.As described above, when the electrode is deposited on the non-plasma porous polymer membrane 200, the adhesive force is not good, and when the gas sensor is operated, the electrode is separated and a malfunction occurs or a desired performance is not obtained.
이러한 문제점을 극복하고자 본 발명은 다공성 고분자막(200) 표면에 플라즈마 전처리를 하여 타 물질과의 접착력을 향상시켰다. 그리하여 본 발명의 실시예에 따라 플라즈마 전처리된 다공성 고분자막(200) 상에 스퍼터링법을 통해 금속박막을 증착하여 제작된 전극은 기존의 전극보다 안정적으로 가스센서에서 작동을 할 수 있게 될 수 있다.In order to overcome this problem, the present invention improves adhesion to other materials by performing plasma pretreatment on the surface of the porous polymer membrane 200. Thus, the electrode manufactured by depositing a metal thin film by sputtering on the plasma pretreated porous polymer membrane 200 according to an embodiment of the present invention may be able to operate in a gas sensor more stably than a conventional electrode.
본 발명의 실시예에 따른 상기 처리가스(아르곤(Ar), 산소(O2), 아르곤(Ar)+산소(O2)) 플라즈마로 처리된 테프론 위에 전극을 각각 증착한 후 스카치테이프를 통한 접착력 평가를 진행하였다. 스카치테이프 평가 방법은 다공성 고분자막(200) 위에 증착된 전극을 스카치테이프로 붙였다가 떼어내어 전극이 고분자막(200)에 남아 있는지를 평가하는 방법이다.Adhesion through scotch tape after depositing electrodes on the treated gas (argon (Ar), oxygen (O 2 ), argon (Ar) + oxygen (O 2 )) plasma according to an embodiment of the present invention, respectively Evaluation was conducted. The scotch tape evaluation method is a method of evaluating whether the electrode remains on the polymer film 200 by attaching and detaching the electrode deposited on the porous polymer film 200 with the scotch tape.
플라즈마 처리를 하지 않은 테프론에 증착된 전극은 스카치테이프에 많은 전극이 붙어 있음으로써 전극과 고분자막(200)의 접착력이 좋지 않다는 것을 알 수 있었다. 그 다음으로 아르곤(Ar) 플라즈마를 이용해 표면처리된 다공성 고분자막(200)에 증착된 전극에 스카치테이프 방법으로 접착력을 평가했을 때 스카치테이프에 전극이 묻어 나오지 않음이 확인되면서 고분자막(200)과 전극사이의 접착이 잘 되어 있어 접착력이 향상 되었음을 확인할 수 있었다. 마지막으로 산소(O2)와 아르곤(Ar)+산소(O2) 플라즈마로 처리한 테프론 위에 증착된 전극을 스카치테치프 방법으로 접착력을 시험했을 때 아르곤(Ar) 플라즈마로 처리했을때와 마찬가지로 스카치테이프에 전극이 묻어나오지 않았다. 하지만 산소(O2)의 영향에 의해 산화되었는지 전극의 색깔이 변색되는 점이 확인되었다. 하지만 이는 실시예일뿐 이에 제한되지 않는다.The electrode deposited on the Teflon not subjected to the plasma treatment was found that the adhesion between the electrode and the polymer film 200 is not good because many electrodes are attached to the scotch tape. Next, when the adhesive strength was evaluated by the scotch tape method on the electrode deposited on the porous polymer film 200 treated with argon (Ar) plasma, it was confirmed that the electrode did not come out on the scotch tape, and the polymer film 200 and the electrode were separated. The adhesion of the well was confirmed that the adhesion was improved. Finally, when the electrode deposited on Teflon treated with oxygen (O 2 ) and argon (Ar) + oxygen (O 2 ) plasma was tested for adhesion by the Scotch techip method, the Scotch was treated as if it was treated with argon (Ar) plasma. There was no electrode on the tape. However, it was confirmed that the color of the electrode discolored whether it was oxidized under the influence of oxygen (O 2 ). However, this is only an example and the present invention is not limited thereto.
도 4는 본 발명의 일실시예에 따른 플라즈마 전처리시 처리가스에 따른 전극 저항 측정 결과 그래프이다.4 is a graph illustrating electrode resistance measurement results according to processing gases during plasma pretreatment according to an exemplary embodiment of the present invention.
도 4를 참조하면, 플라즈마를 처리하지 않은 테프론에 증착된 전극의 경우 저항이 측정되지 않았다. 다음으로 아르곤(Ar) 플라즈마 처리를 한 테프론에 증착된 전극의 경우 가장 낮은 전극 저항 값을 얻을 수 있었다. 산소(O2)와 아르곤(Ar)+산소(O2) 플라즈마를 처리한 테프론에 증착된 전극의 경우 아르곤(Ar) 플라즈마를 처리한 테프론에 증착된 전극보다 높은 저항 값을 나타냈다. 이는 앞서 스카치테이프에 의한 접착력 평가에서 전극 색 변화에 따른 산화 영향으로 예상이 된다. 또한 산소(O2) 플라즈마를 처리한 테프론에 증착된 전극의 경우 가장 높은 저항 값을 나타내었는데, 이는 도 3의 (c)를 참조하면 미세구조에서 확인된 기공의 영향 때문으로 판단된다.Referring to FIG. 4, in the case of an electrode deposited on Teflon not treated with plasma, resistance was not measured. Next, in the case of electrodes deposited on Teflon treated with argon (Ar) plasma, the lowest electrode resistance was obtained. The electrode deposited on Teflon treated with oxygen (O 2 ) and argon (Ar) + oxygen (O 2 ) plasma showed higher resistance than the electrode deposited on Teflon treated with argon (Ar) plasma. This is expected to be due to the oxidative effect of the electrode color change in the evaluation of adhesion by Scotch tape. In addition, the electrode deposited on the Teflon treated with oxygen (O 2 ) plasma showed the highest resistance value, which is determined by the influence of pores confirmed in the microstructure with reference to FIG.
본 발명의 실시예에 따른 위의 도 2, 도 3, 도 4, 상기 스카치테이프에 의한 접착력 평가에 의해 종합적으로 판단해보면, 도 2에 따라 아르곤(Ar)+산소(O2) 플라즈마 처리한 다공성 고분자막(200)은 표면에너지가 가장 높고 도 3에 따라 표면의 거칠기도 좋았다. 그러나 아르곤(Ar)+산소(O2) 플라즈마 처리한 다공성 고분자막(200)은 도 4에서 상대적으로 저항이 높고 스카치테이프에 의한 접착력 평가시 전극이 산화되어 변색이 되는 아쉬운 점이 있었다. 즉, 산소(O2) 플라즈마, 아르곤(Ar)+산소(O2)플라즈마 처리한 다공성 고분자막(200)은 접착력면에서 훌륭하였으며, 그에 반해 아르곤(Ar) 플라즈마를 처리한 다공성 고분자막(200)에 증착된 전극이 변색문제도 없고 접착력도 양호하며 저항이 상대적으로 작음으로써 가장 알맞은 처리가스라고 볼 수 있다.2, 3, and 4 according to the embodiment of the present invention, when comprehensively judged by the evaluation of the adhesion by the scotch tape, according to Figure 2 argon (Ar) + oxygen (O 2 ) plasma-treated porous The polymer film 200 has the highest surface energy and good surface roughness according to FIG. 3. However, the porous polymer membrane 200 treated with argon (Ar) + oxygen (O 2 ) plasma has a relatively high resistance and discoloration due to oxidation of the electrode when the adhesion is evaluated by the scotch tape. That is, the porous polymer membrane 200 treated with oxygen (O 2 ) plasma and argon (Ar) + oxygen (O 2 ) plasma was excellent in terms of adhesive strength, whereas the porous polymer membrane 200 treated with argon (Ar) plasma was excellent. The deposited electrode has no discoloration problem, good adhesion, and relatively small resistance, which can be considered as the most suitable treatment gas.
한편, 상기 플라즈마 전처리하는 과정과 상기 금속 박막을 형성하는 과정을 인시츄(In-situ)로 연속해서 진행할 수 있다. 인시츄(In-situ)로 진행하지 않는다면, 진공상태의 챔버에서 다공성 고분자막(200)을 플라즈마 처리를 한 후 다시 진공을 해제하고 후에 금속 박막을 형성하는 과정을 진행하기 위해 다시 진공상태로 챔버를 만드는 등 불필요한 시간과 노력이 들어감으로써 효율이 떨어진다. 그렇기 때문에 플라즈마 전처리하는 과정과 금속 박막을 형성하는 과정을 진행하는 상기 챔버는 단일 공간을 갖는 챔버 또는 두 개 이상의 공간이 형성되고 그 공간 사이가 연결된 형태의 챔버로 형성되어 두 가지 공정을 동일한 공간에서 진행할 수 있다.In the meantime, the plasma pretreatment and the metal thin film may be continuously performed in-situ. If it does not proceed in-situ, after the plasma treatment of the porous polymer membrane 200 in the vacuum chamber, the vacuum is released again, and then the chamber is again vacuumed to proceed with the process of forming a metal thin film. It is not efficient because it takes unnecessary time and effort. Therefore, the chamber for plasma pretreatment and forming a metal thin film is formed as a chamber having a single space or a chamber in which two or more spaces are formed and connected between the spaces. You can proceed.
상기 금속 박막을 형성하는 과정은 상온에서 스퍼터링법으로 진행할 수 있다.The process of forming the metal thin film may be performed by sputtering at room temperature.
종래의 기술에서는 다공성 고분자막에 금속 입자를 포함하는 용액을 프린팅하여 전극을 형성하는데, 도포된 용액을 건조한 후 열처리하여 소성하는 과정이 필수적이다. 이때 열처리(소성) 과정 중에 열적 안정성이 낮은 다공성 고분자막에 열이 가해지면서 휘거나 수축되어 금속박막이 올바르게 증착되지 못하였다.In the prior art, an electrode is formed by printing a solution containing metal particles on a porous polymer membrane, and a process of drying the coated solution and then heat treating it is essential. At this time, heat was applied to the porous polymer film having low thermal stability during the heat treatment (firing), and thus the metal thin film was not correctly deposited due to warpage or shrinkage.
그리하여 본 발명은 이를 극복하기 위해 다공성 고분자막(200)의 표면에 플라즈마를 처리함으로써 화학적으로 그리고 물리적으로 변형을 주어 접착력을 높일 수 있다. 이를 통해 물리적 증착법(예를 들면, 스퍼터링 방법 등)을 통해 플라즈마 처리되어 접착력이 높아진 다공성 고분자막(200)에 전극이 증착됨으로써 접합이 잘 일어나게 되고 가스센서 운용시 전극이 분리되어 효율이 감소하는 것을 방지 할 수 있다.Thus, the present invention can increase the adhesion by chemically and physically modifying the plasma by treating the surface of the porous polymer membrane 200 to overcome this problem. Through this process, the electrode is deposited on the porous polymer membrane 200 which is plasma-treated through physical vapor deposition (for example, sputtering, etc.) to increase adhesion, so that the bonding occurs well and the electrode is separated during gas sensor operation to prevent the efficiency from being reduced. can do.
또한, 스퍼터링을 진행하면 박막 재료의 원자 또는 분자가 튀어나오면서 높은 에너지를 가지게 되고 그로 인하여 상온에서도 금속 박막을 형성할 수 있음에 따라 챔버 내부에 온도를 변화를 주지 않아도 되어 공정을 진행하는 시간이 빨라 지고 온도 변화에 따른 공정 지연도 방지 할 수 있다. 또한, 상온에서 진행함으로써 다공성 고분자막에 소성과정을 거치지 않아 열적충격이 없으므로 휘거나 수축되지 않으며, 다공성 고분자막 상에 균일하면서 얇은 금속 박막을 형성하는 것이 가능해진다.In addition, when sputtering, atoms or molecules of the thin film material come out and have a high energy, thereby forming a metal thin film even at room temperature, so that the process does not have to change the temperature inside the chamber, thereby speeding up the process. It also prevents process delays caused by high temperature changes. In addition, by proceeding at room temperature, there is no thermal shock because the porous polymer membrane does not undergo a calcination process, and thus it is possible to form a uniform and thin metal thin film on the porous polymer membrane.
상기 다공성 고분자막(200)은 테프론 또는 폴리에틸렌으로 이루어 질 수 있다. 가스센서에 사용되는 가스 투과막은 가스투과성이 우수해야 한다. 그 중에서도 성능이 좋은 테프론 또는 폴리에틸렌으로 이루어진 다공성 고분자막(200)을 이용하여 가스센서 전극을 제조할 수 있다.The porous polymer membrane 200 may be made of Teflon or polyethylene. The gas permeable membrane used for the gas sensor should have excellent gas permeability. Among them, a gas sensor electrode may be manufactured using the porous polymer membrane 200 made of Teflon or polyethylene having good performance.
상기 금속박막은 Au, Pt, Ag 및 Pd 중 적어도 어느 하나를 포함할 수 있다. 전극에 사용되는 금속을 반응성이 큰 금속을 사용하여 금속 박막을 형성한다면 전기전도도를 떠나 금속 박막이 산화되면서 가스센서의 수명이 오래 가지 못하는 문제점이 있을 것이다. 그리하여 전극은 반응성이 낮아 안정적이고 산화되지 않는 안정한 금속을 사용하여 전극을 제조해야 가스센서를 오랜기간 사용할 수 있다.The metal thin film may include at least one of Au, Pt, Ag, and Pd. If a metal thin film is formed using a metal having high reactivity, the metal used in the electrode may have a problem that the life of the gas sensor does not last long as the metal thin film is oxidized, leaving electrical conductivity. Therefore, the electrode must be manufactured using a stable metal that is stable and not oxidized because of low reactivity, so that the gas sensor can be used for a long time.
상기 금속 박막의 두께는 0mm를 초과하고 0.4mm 이하이며, 상기 금속 박막의 표면에 발생하는 기공의 크기는 0㎛를 초과하고 0.3㎛ 이하일 수 있다. 금속 박막의 두께가 상기 수치상의 두께가 되어야 다공성 고분자막과의 접착력이 향상되고 금속 박막이 균일하게 증착이 될 수 있다. 만약 금속박막의 두꼐가 0.4mm를 초과하면 접착력도 감소할 뿐만 아니라 균일하게 증착되지 못해 전기적 신호가 일정하지 못하여 가스센서의 성능이 저하 될 수 있다.The thickness of the metal thin film may be greater than 0 mm and 0.4 mm or less, and the size of pores generated on the surface of the metal thin film may be greater than 0 μm and 0.3 μm or less. When the thickness of the metal thin film is the numerical thickness, adhesion to the porous polymer membrane may be improved, and the metal thin film may be uniformly deposited. If the thickness of the metal thin film exceeds 0.4mm, not only the adhesion but also the deposition is not uniform, the electrical signal is not constant, the gas sensor performance may be reduced.
또한, 금속 박막의 표면에 기공의 크기가 0.3㎛를 초과하여 커지면 도 3의 (c)와 도 4를 참조하여 보면 산소(O2) 플라즈마로서 표면처리된 다공성 고분자막(200)에 대기공이 생겨 전극의 저항이 높아 진 것을 볼 수 있고, 상술 했듯이 금속 박막의 지지도 원할히 수행하지 못하게 된다. 또한 전극자체에도 기공이 생긴다면 저항이 높아져 미세한 전류를 측정하지 못하는 부작용이 발생할 수 있다.In addition, when the size of the pores on the surface of the metal thin film is larger than 0.3㎛, referring to Figure 3 (c) and 4 as shown in the air (O 2 ) plasma air hole in the porous polymer membrane 200 surface-treated electrode It can be seen that the resistance of the is increased, and as described above, the support of the metal thin film cannot be performed smoothly. In addition, if pores are formed in the electrode itself, the resistance may be increased, which may cause side effects of failing to measure minute currents.
이하에서는 본 발명의 다른 실시예에 따른 가스센서를 보다 상세히 살펴보는데, 본 발명의 일실시예에 따른 가스센서용 전극 제조방법과 관련하여 앞서 설명된 부분과 중복되는 사항들은 생략하도록 한다.Hereinafter, a gas sensor according to another embodiment of the present invention will be described in more detail, and details overlapping with those described above in connection with a method for manufacturing an electrode for a gas sensor according to an embodiment of the present invention will be omitted.
도 5는 본 발명의 다른 실시예에 따른 가스센서 결합 단면도이다.5 is a cross-sectional view of the gas sensor in accordance with another embodiment of the present invention.
도 5를 참조하면, 본 발명의 다른 실시예에 따른 가스센서는 검지 대상 가스를 전기 화학 반응시키는 작업전극(300); 상기 작업전극(300)에 대응되는 상대전극(310); 상기 작업전극(300)의 전위를 제어하는 기준전극(320); 상기 작업전극(300), 상대전극(310) 및 기준전극(320) 사이에 제공되는 전해질(400); 및 상기 작업전극(300), 상대전극(310), 기준전극(320) 및 전해질(400)을 수용하고, 상기 가스가 통과하는 가스 통과구(110)가 형성된 하우징(100)을 포함할 수 있고, 상기 작업전극(300), 상대전극(310) 및 기준전극(320) 중 적어도 어느 하나는 상기 가스센서용 전극 제조방법으로 제조될 수 있다.Referring to FIG. 5, a gas sensor according to another embodiment of the present invention includes a working electrode 300 for electrochemically reacting a gas to be detected; A counter electrode 310 corresponding to the working electrode 300; A reference electrode 320 for controlling the potential of the working electrode 300; An electrolyte 400 provided between the working electrode 300, the counter electrode 310, and the reference electrode 320; And a housing 100 accommodating the working electrode 300, the counter electrode 310, the reference electrode 320, and the electrolyte 400, and the gas passage hole 110 through which the gas passes. At least one of the working electrode 300, the counter electrode 310, and the reference electrode 320 may be manufactured by the gas sensor electrode manufacturing method.
작업전극(300)은 가스를 검지하는 가스 전극으로서 피검지 가스를 전기 화학 반응시킨다. 상대전극(310)은 상기 작업전극(300)에 대응된다. 작업전극(300)의 전위를 제어하는 기준전극(320)의 3전극을 마련하였으며, 또한 이들이 접촉 가능한 전해질(400)을 수용한 전해조와, 각 전극의 전위를 설정하는 회로 등이 접속되어 있다.The working electrode 300 is a gas electrode that detects gas, and electrochemically reacts the gas to be detected. The counter electrode 310 corresponds to the working electrode 300. Three electrodes of the reference electrode 320 for controlling the potential of the working electrode 300 were provided, and an electrolytic cell containing the electrolyte 400 to which they could be contacted, a circuit for setting the potential of each electrode, and the like were connected.
이때, 상대전극(310)과 기준전극(320)은 동일 평면 상에 서로 대응되어(또는 대향하여) 제공될 수 있으며, 작업전극(300)과 함께 3전극을 형성할 수 있다. 예를 들어, 상대전극(310)과 기준전극(320)은 한 쌍의 빗살 전극으로 이루어질 수 있으며, 상대전극(310)과 기준전극(320) 각각의 이빨(또는 가지)들이 엇갈려(또는 교차하여) 배치될 수 있다.In this case, the counter electrode 310 and the reference electrode 320 may be provided to correspond to (or face each other) on the same plane, and form three electrodes together with the working electrode 300. For example, the counter electrode 310 and the reference electrode 320 may include a pair of comb electrodes, and teeth (or branches) of each of the counter electrode 310 and the reference electrode 320 are crossed (or crossed). Can be arranged.
상기 3전극의 재료로는 상기 가스센서용 전극 제조방법으로 제조된 다공질 고분자막(200)에 백금(Pt)이나 금(Au), 팔라듐(Pd) 등의 귀금속 촉매 등을 도포한 것이다.As the material of the three electrodes, a noble metal catalyst such as platinum (Pt), gold (Au), or palladium (Pd) is coated on the porous polymer membrane 200 manufactured by the gas sensor electrode manufacturing method.
전해질(400)로는 황산이나 인산 등의 산성 수용액 등이 이용되었다.As the electrolyte 400, an acidic aqueous solution such as sulfuric acid or phosphoric acid was used.
상기 가스센서는 가스 통과구(110)이 뚫려 있는 하우징(100)에 다공성 고분자막(200)이 맞닿고 상기 다공성 고분자막(200)에 증착된 작업전극(300)의 표면에는 전해질(400)이 제공된다. 상대전극(310)과 기준전극(320)은 가지형태를 가지고 지그재그 형식으로 같은면에 포개져 있고 작업전극(300)과 마주보며 다공성 고분자막(200)에 증착되어 있다. 그리고 상기 다공성 고분자막(200)은 하우징(100)과 맞닿는다. 한편, 상기 다공성 고분자막(200)과 작업전극(300), 상대전극(310), 및 기준전극(320) 중 적어도 어느 하나는 상기 가스센서용 전극 제조방법으로 제조되었다. 하지만 이는 실시예일뿐 이에 한정되지 않는다.The gas sensor is provided with an electrolyte 400 on the surface of the working electrode 300 deposited on the porous polymer membrane 200 and the porous polymer membrane 200 abuts on the housing 100 through which the gas passage 110 is drilled. . The counter electrode 310 and the reference electrode 320 have a branch shape, are stacked on the same surface in a zigzag form, and are deposited on the porous polymer film 200 facing the working electrode 300. The porous polymer membrane 200 is in contact with the housing 100. Meanwhile, at least one of the porous polymer membrane 200, the working electrode 300, the counter electrode 310, and the reference electrode 320 is manufactured by the method for manufacturing the electrode for the gas sensor. However, this is only an example and the present invention is not limited thereto.
하우징(100)은 일면에 가스통과구(110)가 포함되어 있고 상기 작업전극(300), 상대전극(310), 기준전극(320) 및 전해질(400)을 수용하여 안정적으로 가스센서를 구성할 수 있게 해줄 수 있다. 그리고 하우징(100) 내부에 작업전극(300), 상대전극(310) 및 기준전극(320)을 전기적으로 연결될 수 있게 금속단자가 포함되어 있어 검지되는 가스의 전기 화학의 반응을 통하여 발생하는 전류가 통할 수 있게 만들어 준다.The housing 100 includes a gas passage port 110 on one surface thereof, and accommodates the working electrode 300, the counter electrode 310, the reference electrode 320, and the electrolyte 400 to stably configure a gas sensor. It can help you. In addition, a metal terminal is included in the housing 100 so as to electrically connect the working electrode 300, the counter electrode 310, and the reference electrode 320. Make it work.
또한, 정전위 전해식 가스 센서는 주위의 환경 변화에 대해 작업전극(300)의 전위를 제어하여 일정하게 유지함으로써, 작업전극(300)과 상대전극(310) 사이에 주위의 환경 변화에 상당하는 전류를 발생시킨다. 그리고 작업전극(300)의 전위가 변하지 않고, 또 가스종류에 따라 산화 환원 전위가 다르다는 것을 이용함으로써, 회로의 설정 전위에 따라서는 가스의 선택적인 검지가 가능해진다. 또한, 가스 전극에 이용하는 촉매를 바꿈으로써, 목적으로 하는 가스에 대해 높은 선택성을 부여할 수 있다.In addition, the electrostatic potential electrolytic gas sensor controls the potential of the working electrode 300 with respect to changes in the surrounding environment and maintains a constant value, thereby corresponding to a change in the surrounding environment between the working electrode 300 and the counter electrode 310. Generate a current. By using the fact that the potential of the working electrode 300 does not change and the oxidation-reduction potential varies depending on the type of gas, selective detection of gas is possible depending on the set potential of the circuit. Moreover, by changing the catalyst used for a gas electrode, high selectivity can be provided with respect to the target gas.
상기 전해질(400)은 고체 또는 반고체의 상태일 수 있다. 종래에는 액상으로 된 전해질(400)을 사용하여 무겁고 액체이기 때문에 이동성에도 문제점이 있었다. 그렇기 때문에 전해질(400)을 고체 또는 반고체로 형성하여 이동의 편의성의 이점을 얻을 수 있고 액체가 아닌 고체이므로 더욱 경량화가 가능할 것이다.The electrolyte 400 may be in a solid or semisolid state. Conventionally, there is a problem in mobility because it is heavy and liquid using the electrolyte 400 in the liquid phase. Therefore, the electrolyte 400 may be formed in a solid or semi-solid to obtain the advantages of convenience of movement and may be further lighter because it is a solid rather than a liquid.
이와 같이, 본 발명의 설명에서는 구체적인 실시 예에 관해 설명하였으나, 본 발명의 범주에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능하다. 그러므로 본 발명의 범위는 설명된 실시 예에 국한되어 정해져서는 안되며, 아래에 기재될 특허청구범위뿐만 아니라 이 청구범위와 균등한 것들에 의해 정해져야 한다.As described above, although specific embodiments have been described in the description of the present invention, various modifications may be made without departing from the scope of the present invention. Therefore, the scope of the present invention should not be limited to the described embodiments, but should be defined not only by the claims described below, but also by those equivalent to the claims.

Claims (9)

  1. 챔버 내에 다공성 고분자막을 제공하는 과정;Providing a porous polymer membrane in the chamber;
    상기 챔버 내에 처리가스를 넣으면서 형성된 플라즈마로서 상기 다공성 고분자막의 표면을 플라즈마 전처리하는 과정; 및Plasma pretreatment of the surface of the porous polymer membrane as a plasma formed by putting a processing gas into the chamber; And
    상기 플라즈마 전처리된 다공성 고분자막 상에 물리적 증착법으로 금속 박막을 형성하는 과정을 포함하는 가스센서용 전극 제조방법.The method of manufacturing an electrode for a gas sensor comprising the step of forming a metal thin film by physical vapor deposition on the plasma pre-treated porous polymer membrane.
  2. 제 1항에 있어서,The method of claim 1,
    상기 플라즈마 전처리하는 과정과 상기 금속 박막을 형성하는 과정을 인시츄(In-situ)로 연속해서 진행하는 가스센서용 전극 제조방법.The method of manufacturing an electrode for a gas sensor, which proceeds in series with the plasma pretreatment and the process of forming the metal thin film in-situ.
  3. 제 1항에 있어서,The method of claim 1,
    상기 처리가스는 아르곤(Ar) 또는 산소(O2) 중 적어도 하나를 포함하는 가스센서용 전극 제조방법.The process gas is a gas sensor electrode manufacturing method comprising at least one of argon (Ar) or oxygen (O 2 ).
  4. 제 1항에 있어서,The method of claim 1,
    상기 금속 박막을 형성하는 과정은 상온에서 스퍼터링법으로 진행하는 가스센서용 전극 제조방법.The process of forming the metal thin film is a method for manufacturing an electrode for a gas sensor that proceeds by sputtering at room temperature.
  5. 제 1항에 있어서,The method of claim 1,
    상기 다공성 고분자막은 테프론 또는 폴리에틸렌으로 이루어진 가스센서용 전극 제조방법.The porous polymer membrane is an electrode manufacturing method for a gas sensor made of Teflon or polyethylene.
  6. 제 1항에 있어서,The method of claim 1,
    상기 금속박막은 Au, Pt, Ag 및 Pd 중 적어도 어느 하나를 포함하는 가스센서용 전극 제조방법.The metal thin film is a gas sensor electrode manufacturing method comprising at least one of Au, Pt, Ag and Pd.
  7. 제 1항에 있어서,The method of claim 1,
    상기 금속 박막의 두께는 0mm를 초과하고 0.4mm 이하이며,The thickness of the metal thin film is greater than 0 mm and less than or equal to 0.4 mm,
    상기 금속 박막의 표면에 발생하는 기공의 크기는 0㎛를 초과하고 0.3㎛ 이하인 가스센서용 전극 제조방법.The pore size on the surface of the metal thin film is greater than 0㎛ and 0.3㎛ or less electrode manufacturing method for the electrode.
  8. 검지 대상 가스를 전기 화학 반응시키는 작업전극;A working electrode for electrochemically reacting the gas to be detected;
    상기 작업전극에 대응되는 상대전극;A counter electrode corresponding to the working electrode;
    상기 작업전극의 전위를 제어하는 기준전극;A reference electrode for controlling the potential of the working electrode;
    상기 작업전극, 상대전극 및 기준전극 사이에 제공되는 전해질; 및An electrolyte provided between the working electrode, the counter electrode and the reference electrode; And
    상기 작업전극, 상대전극, 기준전극 및 전해질을 수용하고, 상기 가스가 통과하는 가스 통과구가 형성된 하우징을 포함하고,A housing for receiving the working electrode, the counter electrode, the reference electrode, and an electrolyte, the gas passage hole through which the gas passes;
    상기 작업전극, 상대전극 및 기준전극 중 적어도 어느 하나는 상기 청구항 제 1항 내지 청구항 제 7항의 가스센서용 전극 제조방법으로 제조된 가스센서.At least one of the working electrode, the counter electrode and the reference electrode is a gas sensor manufactured by the method for manufacturing a gas sensor electrode of claim 1 to claim 7.
  9. 제 8항에 있어서,The method of claim 8,
    상기 전해질은 고체 또는 반고체의 상태인 가스센서.The electrolyte is a gas sensor in a solid or semi-solid state.
PCT/KR2019/001991 2018-06-29 2019-02-19 Gas sensor electrode manufacturing method and gas sensor WO2020004769A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180075969A KR102290337B1 (en) 2018-06-29 2018-06-29 Manufacturing Method of Electrode for Gas Sensor and Gas Sensor
KR10-2018-0075969 2018-06-29

Publications (1)

Publication Number Publication Date
WO2020004769A1 true WO2020004769A1 (en) 2020-01-02

Family

ID=68985467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/001991 WO2020004769A1 (en) 2018-06-29 2019-02-19 Gas sensor electrode manufacturing method and gas sensor

Country Status (2)

Country Link
KR (1) KR102290337B1 (en)
WO (1) WO2020004769A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060080786A (en) * 2005-01-06 2006-07-11 (주)센코 The method of electrode formation in electrochemical gas sensor
KR20070016640A (en) * 2005-08-04 2007-02-08 주식회사 누리테크 Plasma generator for preprocessing in parylene coating
KR20080050951A (en) * 2006-12-04 2008-06-10 한국전자통신연구원 Electrochemical gas sensor chip and method for preparing the same
KR100851067B1 (en) * 2007-04-18 2008-08-12 삼성전기주식회사 Capacitor and manufacturing method thereof
KR20160016088A (en) * 2014-08-04 2016-02-15 한국세라믹기술원 Ultra high sensitive and very fast responsive electrochemical sensor for toxic gas detection and manufacturing method of the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060080786A (en) * 2005-01-06 2006-07-11 (주)센코 The method of electrode formation in electrochemical gas sensor
KR20070016640A (en) * 2005-08-04 2007-02-08 주식회사 누리테크 Plasma generator for preprocessing in parylene coating
KR20080050951A (en) * 2006-12-04 2008-06-10 한국전자통신연구원 Electrochemical gas sensor chip and method for preparing the same
KR100851067B1 (en) * 2007-04-18 2008-08-12 삼성전기주식회사 Capacitor and manufacturing method thereof
KR20160016088A (en) * 2014-08-04 2016-02-15 한국세라믹기술원 Ultra high sensitive and very fast responsive electrochemical sensor for toxic gas detection and manufacturing method of the same

Also Published As

Publication number Publication date
KR102290337B1 (en) 2021-08-17
KR20200002460A (en) 2020-01-08

Similar Documents

Publication Publication Date Title
Blades et al. Mechanism of electrospray mass spectrometry. Electrospray as an electrolysis cell
US9446350B2 (en) Gas decomposition apparatus and method for decomposing gas
WO2007088975A1 (en) Carbon membrane having biological molecule immobilized thereon
US20070218344A1 (en) Diffusion media with vapor deposited fluorocarbon polymer
WO2015064820A1 (en) Vanadium ion low-permeable amphiphilic ion exchange membrane for redox flow battery and redox flow battery comprising same
Tian et al. Modification and evaluation of membranes for vanadium redox battery applications
EP3565042A1 (en) Titanium material, separator, cell, and solid polymer fuel cell
WO2013065984A1 (en) Method of manufacturing powder having high surface area
WO2007055043A1 (en) Cell electro-physiological sensor and method of manufacturing the same
WO2020004769A1 (en) Gas sensor electrode manufacturing method and gas sensor
CN106410238A (en) Metal-air battery apparatus and method of operating the same
US3470071A (en) Method and apparatus for detecting gas
EP2053677A1 (en) Polymer electrolyte membrane and method for producing the same, membrane-electrode assembly and fuel battery cell each using the polymer electrolyte membrane, and method for evaluating ion conductivity of polymer electrolyte membrane
US11283081B2 (en) Gas diffusion electrode and fuel cell comprising such a gas diffusion electrode
WO2013062209A1 (en) Biosensor
US4636294A (en) Apparatus for detecting and measuring hydrogen sulfide gas in the presence of carbon monoxide
US7589047B1 (en) Composite materials and method of making
KR102273595B1 (en) Manufacturing Method of Electrode for Gas Sensor and Gas Sensor
WO2023080675A1 (en) Separator, having metal coating layer thereon, for fuel cell and manufacturing method therefor
CN102983301A (en) Porous membrane with nanometer aperture and preparation method thereof
KR20010011032A (en) Methods for Treatment of Metallic Aluminum and Copper Current Collector for Secondary Batteries
KR20110049100A (en) A reference electrode for electrochemistry of molten salt and a preparation method for the same
WO2020067622A1 (en) Anode for chlor-alkali process and method for manufacturing same
KR100955498B1 (en) Method For Making Cathode of Electrochemical Oxygen Gas Sensor
RU2784199C1 (en) A method for producing an electrochemical catalyst based on reduced gold

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19826501

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19826501

Country of ref document: EP

Kind code of ref document: A1