KR20060080786A - The method of electrode formation in electrochemical gas sensor - Google Patents

The method of electrode formation in electrochemical gas sensor Download PDF

Info

Publication number
KR20060080786A
KR20060080786A KR1020050001241A KR20050001241A KR20060080786A KR 20060080786 A KR20060080786 A KR 20060080786A KR 1020050001241 A KR1020050001241 A KR 1020050001241A KR 20050001241 A KR20050001241 A KR 20050001241A KR 20060080786 A KR20060080786 A KR 20060080786A
Authority
KR
South Korea
Prior art keywords
electrode
gas
gas sensor
electrolyte solution
electrochemical gas
Prior art date
Application number
KR1020050001241A
Other languages
Korean (ko)
Other versions
KR100707987B1 (en
Inventor
최요한
민석홍
하승철
Original Assignee
(주)센코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)센코 filed Critical (주)센코
Priority to KR1020050001241A priority Critical patent/KR100707987B1/en
Publication of KR20060080786A publication Critical patent/KR20060080786A/en
Application granted granted Critical
Publication of KR100707987B1 publication Critical patent/KR100707987B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/301Reference electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4075Composition or fabrication of the electrodes and coatings thereon, e.g. catalysts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7206Mass spectrometers interfaced to gas chromatograph
    • G01N30/722Mass spectrometers interfaced to gas chromatograph through a gas permeable barrier (membranes, porous layers)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0062General constructional details of gas analysers, e.g. portable test equipment concerning the measuring method, e.g. intermittent, or the display, e.g. digital
    • G01N33/0067General constructional details of gas analysers, e.g. portable test equipment concerning the measuring method, e.g. intermittent, or the display, e.g. digital by measuring the rate of variation of the concentration

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

본 발명은 전기화학식 가스센서의 전극 형성 방법에 관한 것으로 외부에서 유입된 가스가 촉매특성을 지니는 전극에서 보다 쉽게 분해 될 뿐 아니라 분해 되어 형성된 이온이 쉽게 전해용액을 통해 전류를 형성 할 수 있도록, 외부에서 유입된 가스, 촉매특성을 지니는 전극, 그리고 전해용액이 함께 만나는 삼중점이 많이 존재하게끔 전극을 형성 시켜 주는 것이다. The present invention relates to a method for forming an electrode of an electrochemical gas sensor, so that the gas introduced from the outside is not only easily decomposed at the electrode having catalytic properties, but also the ions formed by decomposition can easily form current through the electrolyte solution. It is to form an electrode so that the triple point where the gas introduced from, the electrode having the catalytic characteristics, and the electrolyte solution are present together.

전기화학식 가스센서 {electrochemical gas sensor}, 전극 {electrode} Electrochemical gas sensor, electrode {electrode}

Description

전기화학식 가스센서의 전극 형성 방법 { The method of electrode formation in electrochemical gas sensor } The method of electrode formation in electrochemical gas sensor             

도 1은 본 발명에 따른 전기화학식 가스센서에 있어서 유입된 가스, 전극 그리고 전해용액이 만나는 모습을 도시한 단면 개략도 이다.1 is a schematic cross-sectional view showing a state where the introduced gas, the electrode and the electrolyte solution in the electrochemical gas sensor according to the present invention.

도 2는 본 발명의 실시예로 멤브레인 위에 전극이 형성된 모습을 도시한 것이다.Figure 2 illustrates the appearance of an electrode on the membrane in an embodiment of the present invention.

도 3은 본 발명의 다른 실시예로 멤브레인 위에 전극이 형성된 모습을 도시한 것이다. 3 is a view showing an electrode formed on a membrane in another embodiment of the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of Symbols for Main Parts of Drawings>

10 : 다공성 PTFE 멤브레인10: porous PTFE membrane

11 : 촉매 특성을 지니는 전극11: electrode with catalytic properties

12 : 전해용액12: electrolytic solution

본 발명은 전기화학식 가스센서의 전극형성에 있어서 외부에서 유입된 가스와 전극 그리고 전해용액이 만나는 부분을 최대화 함으로써 가스농도를 측정함에 있어 반응 시그널의 크기를 최대화 하고자 하는 것이다. 즉 동일한 농도의 가스 감지 시 기존 방법보다 반응 크기를 크게 함으로써, 노이즈에 대한 시그널의 비율을 크게 함으로써 보다 저 농도의 가스 측정을 가능케 하며 작은 가스농도 변화의 측정을 가능케 하고자 하는 것이다.The present invention is to maximize the size of the reaction signal in measuring the gas concentration by maximizing the portion where the gas and the electrode and the electrolyte solution introduced from the outside in forming the electrode of the electrochemical gas sensor. In other words, when detecting the same concentration of gas, the response size is larger than the conventional method, and the ratio of signal to noise is increased to enable the measurement of gas at lower concentration and to measure the change of small gas concentration.

산업사회가 고도화됨에 따라 생산현장이 다양화 되며 각각의 산업현장에서는 여러 종류의 가스를 사용할 뿐만 아니라 발생시키고 있어 이에 대한 가스사고 안전관리가 심각한 문제로 대두되고 있다. 가스관련 안전 사고를 미연에 방지하기 위해서는 작은 가스농도의 변화를 감지 할 수 있어야 될 뿐 아니라 인체에 작은 양이나마 장시간 노출 시 인체에 해가 될 수 있는 유독 가스의 경우 저 농도의 가스 존재 또한 감지 할 수 있어야 한다. 유독 가스와 산소가스 등 환경오염 및 산업현장에서의 가스안전 사고와 밀접한 관련이 있는 가스의 경우 산화환원 반응을 이용한 전기화학식 가스센서가 가장 적합하여 이미 널리 사용되고 있다. 그 구조는 일반적으로 일측에 가스 유입구가 형성 되어 있어 외부의 가스가 유입될 수 있도록 하며, 유입된 가스는 다공성 멤브레인을 통해 전극에서 분해 되어 이온을 발생시키고 발생된 이온은 전해용액을 통해 반대측 전극으로 이동하여 전류를 형성 시킬 수 있게 되어 있다. 유입된 가스를 분해하여 주는 촉매 특성을 지니는 전극의 경우 다공성 멤브레인에 있어 가스가 유입된 반대편 방향, 즉 전해용액과 맞닿는 면에 코팅을 하여 사용하고 있다. As industrial societies are advanced, production sites are diversified, and each industrial site not only uses various types of gases but also generates them, so gas accident safety management is emerging as a serious problem. In order to prevent gas-related safety accidents, it is necessary not only to detect small gas concentration changes but also to detect the presence of low concentration gas in the case of toxic gases that may harm the human body when exposed to small amounts for a long time. It should be possible. In the case of gas which is closely related to environmental pollution such as toxic gas and oxygen gas and gas safety accident in industrial field, electrochemical gas sensor using redox reaction is most suitable and is already widely used. The structure generally has a gas inlet formed at one side to allow external gas to flow therein, and the introduced gas is decomposed at the electrode through the porous membrane to generate ions, and the generated ions are transferred to the opposite electrode through the electrolytic solution. It can move to form current. In the case of the electrode having a catalytic characteristic that decomposes the gas introduced into the porous membrane is coated on the opposite side in which the gas flows, that is, the surface in contact with the electrolyte solution.

기존의 전기화학식 가스센서의 경우 전극을 형성함에 있어서 다공성 멤브레인에 전면 코팅을 하여 사용하고 있다. 그러나 이러한 경우 전극을 형성함에 있어 공정이 단순하다는 장점을 지니지만 다공성 멤브레인을 통해 확산 되어 들어온 가스가 전극에서 분해되고 분해된 이온이 전해용액을 통해 전해지는 과정이 원할하게 진행되지 못하다는 단점을 지니고 있어 저 농도의 가스농도 측정 및 작은 농도의 변화를 측정함에 있어 한계를 지니고 있다. 다공성 멤브레인을 통해 유입된 가스들은 전극물질과만 접할 수 있고 센서 내부에 충전되어 있는 전해용액도 전극물질과만 접하게 되어 있다는 것이다. 즉, 유입된 가스가 분해되고 분해된 이온이 전해용액으로 전달 되는 과정이 보다 원할하게 이루어지기 위해서는 유입된 가스, 전극물질, 그리고 전해용액 세가지가 함께 접하게 되는 삼중점이 필요하다. Conventional electrochemical gas sensors are used with front coatings on porous membranes in forming electrodes. However, in this case, the process is simple in forming the electrode, but the disadvantage is that the gas diffused through the porous membrane is decomposed from the electrode and the decomposed ions are not transferred to the electrolyte solution. There are limitations in measuring low gas concentrations and measuring small concentration changes. Gases introduced through the porous membrane can only come in contact with the electrode material, and the electrolyte solution inside the sensor is only in contact with the electrode material. In other words, in order for the flow of the introduced gas to be decomposed and the decomposed ions to be delivered to the electrolyte solution more smoothly, the triple point of contacting the introduced gas, the electrode material, and the electrolyte solution is required.

본 발명은 이와 같은 종래의 문제점을 해결하기 위하여 제안한 것으로서, 다공성 멤브레인에 전극물질을 전면 코팅하는 대신 유입된 가스, 전극물질, 그리고 전해용액 이 함께 접할 수 부분이 최대화 되도록 전극물질을 형성 하여 줌으로써 유입된 가스가 분해되고 분해된 이온이 전해용액으로 전달 되는 과정이 원할하게 이루어 지게 하여, 측정하고자 하는 가스의 작은 농도 변화까지 감지하도록 하기 위함이다.
The present invention has been proposed to solve such a conventional problem, and instead of the front coating of the electrode material on the porous membrane, the inlet gas is formed by forming the electrode material so as to maximize the portion of the gas, the electrode material, and the electrolyte solution can be contacted together. This is to make the process of decomposing the decomposed gas and the decomposed ions transferred to the electrolytic solution smoothly, so as to detect the small concentration change of the gas to be measured.

상기 기술적 과제를 달성하기 위하여 본 발명에서 제시한 방법에 따라 형성된 전기화학식 가스 센서의 전극의 단면을 확대한 개략도를 제시 하였다.In order to achieve the above technical problem, a schematic diagram of an enlarged cross section of an electrode of an electrochemical gas sensor formed according to the method proposed in the present invention is presented.

이하, 첨부도면을 참조하여 본 발명의 실시 예를 상세히 설명한다. 그러나, 다음에 예시하는 본 발명의 실시 예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 다음에 상술하는 실시 예에 한정되는 것은 아니다. 본 발명의 실시 예는 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위하여 제공되어지는 것이다. 도면에서 가스센서 내의 각 부품 들은 명세서의 명확성을 위하여 과장되어진 것이다. Hereinafter, with reference to the accompanying drawings will be described an embodiment of the present invention; However, embodiments of the present invention illustrated below may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below. The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art. In the drawings, each component in the gas sensor is exaggerated for clarity.

도 1은 본 발명에 따른 전기화학식 가스센서에 있어, 다공성 멤브레인 (10), 전극 (11), 그리고 전해용액 (12) 이 만나는 모습을 간략하게 도시한 것이다. 외부에서 유입된 가스는 확산으로 다공성 멤브레인 (10) 을 통해 유입되면서 확산 촉매 특성을 지니는 전극 (11) 과 전해용액 (12) 이 함께 맞닿아 있는 곳에서 분해되어 이온을 형성하고 형성된 이온이 전해용액 (12) 으로 원할하게 전달이 된다. 더불어 전극의 모서리 부분의 경우 촉매특성이 보다 우수하여 유입된 가스의 분해작용 또한 더욱 활발해지게 된다.1 is a view briefly showing how the porous membrane 10, the electrode 11, and the electrolyte solution 12 in the electrochemical gas sensor according to the present invention. The gas introduced from the outside flows through the porous membrane 10 through diffusion, and decomposes at the place where the electrode 11 and the electrolyte solution 12 having the diffusion catalyst properties are brought into contact with each other to form ions, and the ions formed are electrolytic solutions. (12) is delivered smoothly. In addition, in the case of the edge of the electrode, the catalytic properties are better, so that the decomposition of the introduced gas is also more active.

도 2 와 3은 본 발명에서 제시하는 실시 예를 도시한 것으로 기존의 기술처럼 다공성 멤브레인 (10) 에 전극 (11) 을 형성함에 있어 전면 코팅하는 것이 아니라 다공성 멤브레인 (10), 전극 (11), 그리고 전해용액이 함께 만나는 부분이 최대화 되도록 도 2와 3 과 같이 전극을 형성 하여 주는 것이다. 전극 (11) 을 형성하는 방법에 있어서는, 하드마스크를 다공성 멤브레인 (10) 위에 덮고 evaporator 를 이용하 여 전극물질 을 증착 시켜 주거나, 프린트 스크린 방법을 이용하여 전극물질을 형성하여 주는 방법이 있다.2 and 3 illustrate the embodiments presented in the present invention. In forming the electrode 11 in the porous membrane 10 as in the conventional art, the porous membrane 10, the electrode 11, And to form the electrode as shown in Figures 2 and 3 to maximize the portion where the electrolyte solution meets together. In the method of forming the electrode 11, there is a method in which the hard mask is covered on the porous membrane 10 and the electrode material is deposited using an evaporator, or the electrode material is formed using a print screen method.

상술한 바와 같이 본 발명의 전기화학식 가스센서는 다공성 멤브레인을 통해 확산 유입 되어온 가스가 촉매특성을 지니는 전극에서 분해되고, 분해를 통해 형성 된 이온이 쉽게 전해용액으로 전달 될 뿐만 아니라 전극이 패턴화 되고 모서리를 지니고 있어 촉매활동도 보다 활발하게 되므로 작은 가스농도의 변화를 측정 할 수 있을 뿐 아니라 저 농도의 가스를 감지 할 수 있는 능력이 보다 우수해진다.

As described above, in the electrochemical gas sensor of the present invention, the gas diffused through the porous membrane is decomposed at the electrode having catalytic properties, and the ions formed through the decomposition are easily transferred to the electrolyte solution and the electrode is patterned. Because of the edges, the catalytic activity is more active, so it is possible not only to measure small gas concentration changes but also to be able to detect low concentrations of gas.

Claims (1)

전기화학식 가스센서의 제조 시 다공성 멤브레인 (10) 에 전극물질을 형성함에 있어서 다공성 멤브레인 (10), 전극 (11), 그리고 전해용액 (12) 이 함께 만나는 부분이 존재하도록 전극을 바둑판 또는 특정 모양의 어레이 형태로 형성함으로써,In the manufacture of the electrochemical gas sensor, in forming the electrode material on the porous membrane 10, the electrode is placed on a checkerboard or in a specific shape so that the portion where the porous membrane 10, the electrode 11, and the electrolyte solution 12 meet together is present. By forming in the form of an array, 전극의 촉매 특성을 보다 활발하게 함과 동시에 전극에서 분해되어 형성된 이온이 원할하게 전해용액으로 전달 될 수 있게 하는 방법 A method for more active catalytic properties of the electrode and at the same time allows the ions formed by decomposition at the electrode to be smoothly transferred to the electrolytic solution.
KR1020050001241A 2005-01-06 2005-01-06 The method of electrode formation in electrochemical gas sensor KR100707987B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050001241A KR100707987B1 (en) 2005-01-06 2005-01-06 The method of electrode formation in electrochemical gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050001241A KR100707987B1 (en) 2005-01-06 2005-01-06 The method of electrode formation in electrochemical gas sensor

Publications (2)

Publication Number Publication Date
KR20060080786A true KR20060080786A (en) 2006-07-11
KR100707987B1 KR100707987B1 (en) 2007-04-16

Family

ID=37172001

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050001241A KR100707987B1 (en) 2005-01-06 2005-01-06 The method of electrode formation in electrochemical gas sensor

Country Status (1)

Country Link
KR (1) KR100707987B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020004769A1 (en) * 2018-06-29 2020-01-02 한국세라믹기술원 Gas sensor electrode manufacturing method and gas sensor
KR20200116797A (en) 2019-04-02 2020-10-13 한국세라믹기술원 Manufacturing Method of Electrode for Gas Sensor and Gas Sensor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200082562A (en) 2018-12-31 2020-07-08 한국세라믹기술원 Porous membrane electrode and manufacturing method of the same
KR102191105B1 (en) 2018-12-31 2020-12-15 한국세라믹기술원 Conductive membrane electrode and manufacturing method of the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10282035A (en) 1997-04-02 1998-10-23 Sekiyu Kodan Mixture volume ratio measurement sensor
KR200175157Y1 (en) * 1999-08-12 2000-03-15 마포산업전자주식회사 Oxygen sensor
KR100497463B1 (en) * 2003-04-01 2005-07-01 (주)바이오텔 Oxygen sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020004769A1 (en) * 2018-06-29 2020-01-02 한국세라믹기술원 Gas sensor electrode manufacturing method and gas sensor
KR20200002460A (en) 2018-06-29 2020-01-08 한국세라믹기술원 Manufacturing Method of Electrode for Gas Sensor and Gas Sensor
KR20200116797A (en) 2019-04-02 2020-10-13 한국세라믹기술원 Manufacturing Method of Electrode for Gas Sensor and Gas Sensor

Also Published As

Publication number Publication date
KR100707987B1 (en) 2007-04-16

Similar Documents

Publication Publication Date Title
Yang et al. Nanoporous PdCu alloy as an excellent electrochemical sensor for H2O2 and glucose detection
US10914705B2 (en) Electrochemical sensor
AU2006286395B2 (en) Electrochemical sensor
ITMI20131096A1 (en) INTEGRATED GAS SENSOR DEVICE, IN PARTICULAR FOR THE DETECTION OF CARBON MONOXIDE (CO)
Atta et al. Gold-doped nano-perovskite-decorated carbon nanotubes for electrochemical sensing of hazardous hydrazine with application in wastewater sample
CN103424456B (en) A kind of three-electrode electrochemical sensor
CN112697864B (en) Integrated four-electrode gas sensor and preparation method and application thereof
EP2975390B1 (en) Amperometric electrochemical gas sensing apparatus and method for measuring oxidising gases
KR100707987B1 (en) The method of electrode formation in electrochemical gas sensor
US20070131550A1 (en) Electrochemical gas sensor
US7156968B2 (en) Electrode comprising material to help stabilize oxide of catalyst for electrochemical sensor
Li et al. Photoelectro-synergistic catalysis combined with a FIA system application on determination of chemical oxygen demand
GB2338559A (en) Electrochemical sensor for hydrides of arsenic and phosphorus
CN109813779A (en) A kind of electrochemistry sulfur dioxide gas body sensor
CN108139373A (en) Electrochemical sensor
Yang et al. A non-enzymatic glucose sensor based on Pd-Fe/Ti nanocomposites
CN101929979B (en) Mirocavity electrochemistry oxidation exhausting type ammonia nitrogen sensor
Muthuraman et al. Real time potentiometric macro flow sensor: An innovative tool to monitor electrogenerated electron mediator in high concentrated electrolyte during electrolysis and air pollutants removal
JP2001289816A (en) Controlled potential electrolysis type gas sensor
CN109270146B (en) Electrochemical chlorine sensor
KR100667263B1 (en) Electrochemical oxygen gas sensor
CN109813780A (en) A kind of electrochemistry nitric oxide gas sensor
KR100386304B1 (en) Potentiometric ammonia gas sensor and manufacturing process thereof
JP5337058B2 (en) CO sensor sensitivity improvement method and CO sensor
Do et al. Anodic oxidation of nitric oxide on Au/Nafion®: Kinetics and mass transfer

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130329

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140305

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee