WO2020004710A1 - Acier inoxydable ferritique à faible teneur en cr présentant une excellente capacité d'amortissement et son procédé de fabrication - Google Patents

Acier inoxydable ferritique à faible teneur en cr présentant une excellente capacité d'amortissement et son procédé de fabrication Download PDF

Info

Publication number
WO2020004710A1
WO2020004710A1 PCT/KR2018/010699 KR2018010699W WO2020004710A1 WO 2020004710 A1 WO2020004710 A1 WO 2020004710A1 KR 2018010699 W KR2018010699 W KR 2018010699W WO 2020004710 A1 WO2020004710 A1 WO 2020004710A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
vibration damping
ferritic stainless
low
precipitates
Prior art date
Application number
PCT/KR2018/010699
Other languages
English (en)
Korean (ko)
Inventor
정일찬
류승희
이계만
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to ES18924969T priority Critical patent/ES2978502T3/es
Priority to EP18924969.1A priority patent/EP3795711B1/fr
Publication of WO2020004710A1 publication Critical patent/WO2020004710A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium

Definitions

  • the present invention relates to a low Cr ferritic stainless steel having excellent vibration damping ability to absorb external vibration energy and a method of manufacturing the same.
  • Ferritic stainless steels are excellent in corrosion resistance even though less expensive alloying elements are added, and have a higher price competitiveness than austenitic stainless steels.
  • the low Cr ferritic stainless steel of 9-14% is more cost-competitive, and is used in exhaust system parts (Muffler, Ex-manifold, Collector cone, etc.) corresponding to the exhaust gas temperature range from room temperature to 800 ° C.
  • Steel sheets for automobile exhaust systems must be able to absorb the noises and vibrations generated during engine or other driving, and to withstand external environmental factors such as exhaust gases, rain or fog generated inside the vehicle. It must be secured.
  • Embodiments of the present invention are to provide a low Cr ferritic stainless steel and a method of manufacturing the same by maximizing the vibration damping ability by using Nb, Cu fine precipitated phase.
  • Low Cr ferritic stainless steel having excellent vibration damping ability according to an embodiment of the present invention, in weight%, C: 0.005 to 0.01%, N: 0.005 to 0.01%, Si: 0.1 to 0.9%, Mn: 0.1 to 0.9 %, Cr: 9-14%, Ni: 0.3% or less, P: 0.04% or less, S: 0.002% or less, Ti: 0.15 to 0.3%, Nb: 0.15 to 0.3%, Cu: 0.15 to 0.3%, Al: 0.01 to 0.05%, remaining Fe and unavoidable impurities, and containing at least 5 ⁇ 10 2 / mm 2 of Nb laves phase precipitates and Cu precipitates.
  • the stainless steel may satisfy the following formula (1).
  • Nb, Cu, Ti means content (wt%) of each element.
  • the stainless steel may satisfy the following formula (2).
  • Nb and Cu mean content (weight%) of each element.
  • the Nb Laves phase precipitate is Fe 2 Nb
  • the size of the Nb Laves phase precipitate and Cu precipitates may be 1 to 200nm.
  • the vibration damping index (Q-1) of the stainless steel may be 2.0 ⁇ 10 -4 or more at 25 ° C, 2.5 ⁇ 10 -4 or more at 300 ° C.
  • Low Cr ferritic stainless steel manufacturing method excellent in vibration damping ability in weight%, C: 0.005 to 0.01%, N: 0.005 to 0.01%, Si: 0.1 to 0.9%, Mn: 0.1 To 0.9%, Cr: 9 to 14%, Ni: 0.3% or less, P: 0.04% or less, S: 0.002% or less, Ti: 0.15 to 0.3%, Nb: 0.15 to 0.3%, Cu: 0.15 to 0.3%, Al: cold rolling annealing the ferritic stainless steel cold rolled steel sheet containing 0.01 to 0.05%, the remaining Fe and unavoidable impurities at a temperature of (Ac 1-10) °C or less; And quenching at 400 to 600 ° C. for 5 minutes or more.
  • the cold rolled steel sheet may satisfy the following formula (1).
  • Nb, Cu, Ti means content (wt%) of each element.
  • the cold rolled steel sheet may satisfy the following formula (2).
  • Nb and Cu mean content (weight%) of each element.
  • Low Cr ferritic stainless steel according to an embodiment of the present invention can increase the vibration damping ability by more than 100% through the sound absorption mechanism by the movement of the solid solution C, N and the vibration damping mechanism through the suppression of precipitation of carbonitride.
  • low-Cr ferritic stainless steel according to an embodiment of the present invention is excellent in corrosion resistance to ensure quietness and durability when used in automobile exhaust system parts and the like.
  • 1 is a graph showing the correlation between the vibration damping index according to the number of Nb Laves phase precipitate and Cu precipitates.
  • Fig. 2 is a photograph showing distribution of Nb Laves phase precipitates and Cu precipitates at a known interface.
  • Low Cr ferritic stainless steel having excellent vibration damping ability according to an embodiment of the present invention, in weight%, C: 0.005 to 0.01%, N: 0.005 to 0.01%, Si: 0.1 to 0.9%, Mn: 0.1 to 0.9 %, Cr: 9-14%, Ni: 0.3% or less, P: 0.04% or less, S: 0.002% or less, Ti: 0.15 to 0.3%, Nb: 0.15 to 0.3%, Cu: 0.15 to 0.3%, Al: 0.01 to 0.05%, remaining Fe and unavoidable impurities, and containing at least 5 ⁇ 10 2 / mm 2 of Nb laves phase precipitates and Cu precipitates.
  • the stainless steel may satisfy the following formula (1).
  • the sound absorbing mechanism causes energy loss as C and N, which are employed during vibration, change position in the lattice, resulting in sound absorption.
  • the sound absorbing effect by solid solution C and N has a characteristic proportional to the amount of solid solution C and N, and the vibration damping effect by magnetic domain wall hinders the movement of magnetic domain walls such as precipitates, dislocations and internal stresses. The more elements there are, the better.
  • Nb is added to the ferritic stainless steel applied at a high temperature of exhaust gas of 400 ° C. or higher, and Cu is further added as a solid solution strengthening element.
  • Nb Laves phases (Fe 2 Nb) and Cu precipitated phases having a fine size of 1 to 200 nm may be generated under specific heat treatment conditions.
  • the vibration will vibrate together, by absorbing the external vibration energy can increase the vibration damping ability.
  • the effect is further increased when precipitated in complex than when precipitated in Nb Laves phase or Cu alone.
  • the vibration damping ability can be maximized by depositing fine Nb Laves phase precipitates and Cu precipitates at known interfaces.
  • Low Cr ferritic stainless steel having excellent vibration damping ability according to an embodiment of the present invention, in weight%, C: 0.005 to 0.01%, N: 0.005 to 0.01%, Si: 0.1 to 0.9%, Mn: 0.1 to 0.9 %, Cr: 9-14%, Ni: 0.3% or less, P: 0.04% or less, S: 0.002% or less, Ti: 0.15 to 0.3%, Nb: 0.15 to 0.3%, Cu: 0.15 to 0.3%, Al: 0.01 to 0.05%, remaining Fe and unavoidable impurities, and containing at least 5 ⁇ 10 2 / mm 2 of Nb laves phase precipitates and Cu precipitates.
  • the content of C is 0.005 to 0.01%.
  • the content of N is 0.005 to 0.01%.
  • N in steel is a key element that causes sound absorption and vibration attenuation through the same mechanism as C.
  • the vibration damping ability increases.
  • the concentration of solid solution N reaches its limit, and it binds with Cr and forms Cr 2 N precipitates, which hinders the movement of the magnetic domain walls, and due to local Cr depletion in the base, Golden dust Occurs and corrosion resistance falls.
  • the solid solution C and N in the matrix may be increased to suppress the precipitation of carbonitride and to improve the vibration damping ability due to the smooth movement of the magnetic domain walls.
  • the content of Si is 0.1 to 0.9%.
  • Si is an element that acts as a deoxidizer during steelmaking and contains 0.1% or more.
  • the inclusions are generated due to the Si oxide, and the inclusions interfere with the movement of the magnetic domain walls, thereby inhibiting the vibration damping ability, thereby limiting the content to 0.9% or less.
  • the content of Mn is 0.1 to 0.9%.
  • Mn plays a role in stabilizing austenite.
  • the austenite-ferrite transformation point (Ac1) is lowered, and since the high temperature annealing which can solidify C and N after cold rolling becomes impossible, the content is limited to 0.9% or less.
  • the content of Cr is 9-14%.
  • Cr increases the magnetostriction constant of the steel to further promote the movement of the magnetic domain walls compared to the carbon steel when vibration occurs, and increases the vibration damping ability by the magnetic domain walls. In addition, it plays a positive role in the vibration damping effect by C, N. However, if the content of Cr exceeds 14%, it easily bonds with C and N, making it easier to produce carbonitrides, thereby lowering the amount of solid solution C and N, and because the precipitate interferes with the movement of the magnetic domain walls, the content falls within the above range. Restrict.
  • the content of Ni is 0.3% or less.
  • Ni may be contained in an amount of about 0.1%, which is inevitably included in steel by melting the scrap, and the upper limit thereof is limited to 0.3%.
  • the content of P is 0.04% or less.
  • P is an unavoidable impurity contained in steel, and is limited to 0.04% or less because it causes grain boundary corrosion during pickling or inhibits hot workability. Preferable content of P is 0.01 to 0.04%.
  • the content of S is 0.002% or less.
  • S is an unavoidable impurity contained in steel, and segregates at grain boundaries and inhibits hot workability, so the content is limited to 20 ppm or less.
  • the content of Ti is 0.15 to 0.3%.
  • Ti must be added in order to increase the corrosion resistance of the weld is added 0.15% or more. However, Ti combines with C and N to form Ti (C, N) precipitates, lowering the amount of solid solution C and N, and inferior to the vibration damping ability because Ti (C, N) precipitates interfere with the movement of the magnetic domain walls. Make it. Therefore, the content is limited to 0.3% or less.
  • the content of Nb is 0.15 to 0.3%.
  • Nb is also an essential element to increase the corrosion resistance of welded parts, and if it satisfies the proper composition conditions and heat treatment conditions, fine Laves phase precipitates are formed, which helps to improve vibration damping ability. .
  • Nb combines with C and N to form Nb (C, N) precipitates, thereby lowering the amount of solid solution C and N. Since Nb (C, N) precipitates interfere with the movement of the magnetic domain walls, Nb is inferior to vibration damping ability. Therefore, the content is limited to 0.3% or less.
  • the content of Cu is 0.15 to 0.3%.
  • Cu generates fine precipitates by appropriate heat treatment and is added in an amount of 0.15% or more to help improve vibration damping ability.
  • the hot hot workability may be inhibited, so the content is limited to 0.3% or less.
  • the content of Al is 0.01 to 0.05%.
  • Al combines with N to form AlN precipitates, lowering the amount of solid solution N, and inferior to the vibration damping ability because AlN precipitates interfere with the movement of the magnetic domain walls.
  • Al is an alloy component added as a deoxidizer during steelmaking, but the content is limited to 0.01 to 0.05% because it exists as a non-metallic inclusion when a large amount is added, causing a sleeve defect of the cold rolled strip.
  • the remainder of the ferritic stainless steel except for the alloying elements described above is composed of Fe and other unavoidable impurities.
  • Low Cr ferritic stainless steel according to an embodiment of the present invention may satisfy the following formula (1).
  • the vibration damping effect by the fine Nb Laves phase precipitate and Cu precipitate should be increased by increasing the Nb + Cu content.
  • the low Cr ferritic stainless steel according to an embodiment of the present invention may satisfy the following formula (2).
  • the Nb + Cu content becomes higher than necessary, coarsening of precipitates easily occurs. In this case, the interface coherence between the precipitate and the matrix is reduced, and the number and total interface area of the precipitate are reduced, so that vibration damping effects due to Nb Laves phase precipitate and Cu precipitate are hardly expressed. Therefore, the Nb + Cu content is limited to 0.5% or less.
  • Nb Laves phase precipitate is Fe 2 Nb
  • the size of the Nb Laves phase precipitate and Cu precipitates may be 1 to 200nm.
  • the size of the precipitate is preferably controlled to 200 nm or less.
  • the Nb Laves phase precipitate, and the precipitate of Cu 200nm than 5 ⁇ 10 2 pieces / low-Cr ferritic stainless steel according to the present invention comprises at least mm2 is, the vibration attenuation factor (Q-1) is 2.0 ⁇ 10 eseo 25 °C - 4 or more, it is possible to exhibit excellent vibration damping capacity of 2.5 ⁇ 10 ⁇ 4 or more at 300 ° C.
  • the method for producing a low Cr ferritic stainless steel having excellent vibration damping ability of the present invention can be made of a cold rolled steel sheet through a conventional manufacturing process, and the ferritic stainless steel cold rolled steel sheet containing the alloying composition described above (Ac1-10) ° C. Cold rolling annealing at the following temperature; And quenching at 400 to 600 ° C. for 5 minutes or more.
  • the slab including the alloy component composition described above may be hot rolled, the hot rolled hot rolled steel sheet is annealed and heat-treated, and cold rolled to produce a cold rolled steel sheet.
  • Cold-rolled steel sheet is cold-rolled and annealed in the temperature range below 10 degreeC lower than austenite-ferrite transformation temperature (Ac1).
  • austenite phase is partially present, so that the annealing temperature is limited to (Ac 1-10) ° C. or less to prevent reverse transformation.
  • Annealing is carried out so that C and N can be sufficiently dissolved in the matrix within the above temperature range.
  • quenching is required in the temperature range of 400 to 600 °C after cold rolling annealing in order to suppress the production of Cr carbonitride, and the number of fine Nb Laves phase precipitate and Cu precipitates by heat treatment maintained for 5 minutes or more in the temperature range By increasing the vibration damping capacity can be maximized.
  • the Nb + Cu content according to Equation (2) exceeds 0.5%, the precipitated precipitates are coarsened compared to the Nb Laves phase precipitates and Cu precipitates additionally generated by the heat treatment, thereby reducing the total number of precipitates. Can be. Therefore, when the Nb + Cu content is more than 0.5%, it is preferable not to perform additional heat treatment after cold rolling annealing.
  • Vibration damping was measured using IMCE's "RFDA LTVP800" instrument.
  • the above instrument generates a vibration damping index (Q-1) by measuring the attenuation of sound after generating a vibration of natural frequency by giving a shock of a constant force to a sample of 80mm (length) * 20mm (width).
  • the higher the vibration attenuation index the faster the damping of the vibration. That is, the vibration damping ability is excellent.
  • vibration damping index can be obtained for the temperature range of 25 ⁇ 800 °C.
  • vibration damping indices of room temperature (25 °C) and 300 °C were obtained.
  • the natural frequency was 1 kHz.
  • the number of Nb Laves phase precipitates and Cu precipitates was measured only for precipitates having a size of 200 nm or less.
  • the total amount of Nb Laves phase precipitates and Cu precipitates is not required even after heat treatment at 500 ° C. for at least 5 minutes.
  • the vibration damping index (Q-1) was measured to be 2.3 ⁇ 10 ⁇ 4 or more at room temperature of 500 or more. Particularly, when the heat treatment was performed, the total amount of precipitates increased by 100 to 150 and increased by 15 to 30%.
  • the vibration attenuation index (Q-1) also increased by 20 to 35% and increased by 3.1 ⁇ 10 ⁇ 4 or more. Was measured.
  • Comparative Example 1 satisfies Equations (1) and (2), but the content of Ti, Nb, and Cu was less than 0.15%, and the total amount of precipitates was less than 360 pieces / mm 2 even after annealing at 500 ° C. for further heat treatment. This was found to be due to the lack of Nb and Cu content to form Nb Laves phase precipitate and Cu precipitates.
  • Comparative Example 3 satisfies all the component ranges of the present invention including Ti, Nb, and Cu, but the content of Ti is higher than that of Nb + Cu, and thus dissatisfied with Equation (1), whereby a large amount of Ti (C, N) carbonitride Precipitated.
  • 2 is a photograph showing distribution of Nb Laves phase precipitates and Cu precipitates at a known interface of Comparative Example 3.
  • FIG. It can be seen that the Ti content is high due to the high Ti content.
  • the TiN precipitate not only lowers the solid solution C and N, but also the precipitate itself interferes with the movement of the magnetic domain walls, and the vibration damping index is also 1.7 ⁇ 10 ⁇ 4 or less after further heat treatment. Was measured.
  • Comparative Example 4 satisfies the component range and formula (1) of the present invention including Ti, Nb, and Cu, but has a high Nb + Cu content, which dissatisfies formula (2).
  • the content of Nb + Cu was 0.55%, so that the Nb Laves phase precipitate and the Cu precipitate were coarsened.
  • the total amount of precipitates having a size of 200 nm or less was rather reduced, and it was confirmed that this was due to coarsening of precipitates.
  • the vibration damping index after the additional heat treatment of Comparative Example 4 was the lowest despite satisfying the component range of the present invention.
  • Ferritic stainless steel according to the present invention can ensure the quietness and durability of automobile exhaust system components by maximizing vibration damping ability by utilizing Nb, Cu fine precipitated phase.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

L'invention concerne un acier inoxydable ferritique à faible teneur en Cr présentant une excellente capacité d'amortissement, pour absorber l'énergie de vibration externe par une régulation des précipités et son procédé de fabrication. Un acier inoxydable ferritique à faible teneur en Cr présentant une excellente capacité d'amortissement selon un mode de réalisation de la présente invention comprend, en pourcentage en poids : C : 0,005 à 0,01 % ; N : 0,005 à 0,01 % ; Si : 0,1 à 0,9 % ; Mn : 0,1 à 0,9 % ; Cr : 9 à 14 % ; Ni : 0,3 % au maximum ; P : 0,04 % au maximum ; S : 0,002 % au maximum ; Ti : 0,15 à 0,3 % ; Nb : 0,15 à 0,3 % ; Cu : 0,15 à 0,3 % ; Al : 0,01 à 0,05 % ; et le reste étant constitué de Fe et d'impuretés inévitables, l'acier inoxydable ferritique à faible teneur en Cr présentant une excellente capacité d'amortissement comprenant 5×102/㎟ ou plus de précipités de phase de Nb-Laves et de précipités de Cu.
PCT/KR2018/010699 2018-06-26 2018-09-12 Acier inoxydable ferritique à faible teneur en cr présentant une excellente capacité d'amortissement et son procédé de fabrication WO2020004710A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES18924969T ES2978502T3 (es) 2018-06-26 2018-09-12 Acero inoxidable ferrítico de bajo contenido en Cr con excelente capacidad de amortiguación y método de fabricación del mismo
EP18924969.1A EP3795711B1 (fr) 2018-06-26 2018-09-12 Acier inoxydable ferritique à faible teneur en cr présentant une excellente capacité d'amortissement et son procédé de fabrication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0073250 2018-06-26
KR1020180073250A KR102109898B1 (ko) 2018-06-26 2018-06-26 진동 감쇄능이 우수한 저Cr 페라이트계 스테인리스강 및 그 제조방법

Publications (1)

Publication Number Publication Date
WO2020004710A1 true WO2020004710A1 (fr) 2020-01-02

Family

ID=68985020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/010699 WO2020004710A1 (fr) 2018-06-26 2018-09-12 Acier inoxydable ferritique à faible teneur en cr présentant une excellente capacité d'amortissement et son procédé de fabrication

Country Status (4)

Country Link
EP (1) EP3795711B1 (fr)
KR (1) KR102109898B1 (fr)
ES (1) ES2978502T3 (fr)
WO (1) WO2020004710A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299182A (ja) * 2008-05-12 2009-12-24 Nisshin Steel Co Ltd フェライト系ステンレス鋼
JP2010070799A (ja) * 2008-09-18 2010-04-02 Jfe Steel Corp スピニング加工性に優れるTi添加フェライト系ステンレス鋼板及びその製造方法
CN102234740A (zh) * 2010-04-22 2011-11-09 宝山钢铁股份有限公司 一种铁素体不锈钢及其冷轧板的制造方法
KR101762046B1 (ko) * 2012-12-26 2017-07-26 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 항균성이 우수한 페라이트계 스테인리스 강판 및 그 제조 방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3886933B2 (ja) * 2003-06-04 2007-02-28 日新製鋼株式会社 プレス成形性,二次加工性に優れたフェライト系ステンレス鋼板及びその製造方法
JP5659061B2 (ja) * 2011-03-29 2015-01-28 新日鐵住金ステンレス株式会社 耐熱性と加工性に優れたフェライト系ステンレス鋼板及びその製造方法
KR101641794B1 (ko) * 2014-12-23 2016-07-22 주식회사 포스코 흡음성이 우수한 고내식 강판 및 그 제조방법
JP6796708B2 (ja) * 2017-03-27 2020-12-09 日鉄ステンレス株式会社 フェライト系ステンレス鋼板およびその製造方法、ならびに、排気部品

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299182A (ja) * 2008-05-12 2009-12-24 Nisshin Steel Co Ltd フェライト系ステンレス鋼
JP2010070799A (ja) * 2008-09-18 2010-04-02 Jfe Steel Corp スピニング加工性に優れるTi添加フェライト系ステンレス鋼板及びその製造方法
CN102234740A (zh) * 2010-04-22 2011-11-09 宝山钢铁股份有限公司 一种铁素体不锈钢及其冷轧板的制造方法
KR101762046B1 (ko) * 2012-12-26 2017-07-26 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 항균성이 우수한 페라이트계 스테인리스 강판 및 그 제조 방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KOBAYASHI ET AL.: "Effect of Nb Addition on Cu Precipitation in Ferritic Stainless Steel", ISIJ INTERNATIONAL, vol. 51, no. 4, 2011, pages 657 - 662, XP055666762 *
See also references of EP3795711A4 *

Also Published As

Publication number Publication date
ES2978502T3 (es) 2024-09-13
EP3795711A4 (fr) 2021-03-24
EP3795711B1 (fr) 2024-02-07
EP3795711C0 (fr) 2024-02-07
KR102109898B1 (ko) 2020-05-12
EP3795711A1 (fr) 2021-03-24
KR20200000942A (ko) 2020-01-06

Similar Documents

Publication Publication Date Title
WO2019112144A1 (fr) Acier inoxydable austénitique non magnétique ayant une excellente résistance à la corrosion et procédé pour le fabriquer
JP5846950B2 (ja) フェライト系ステンレス鋼熱延鋼板及びその製造方法、並びにフェライト系ステンレス鋼板の製造方法
WO2017111473A1 (fr) Tôle d'acier à haute teneur en manganèse ayant une excellente propriété d'amortissement des vibrations et procédé de fabrication s'y rapportant
WO2011081350A2 (fr) Feuillard d'acier à résistance mécanique élevée ayant une excellente résistance au traitement thermique post-soudage et son procédé de fabrication
WO2019117430A1 (fr) Acier inoxydable ferritique ayant une excellente résistance à l'oxydation à haute température et procédé de fabrication associé
WO2014209064A1 (fr) Tôle d'acier à haute résistance et procédé de fabrication associé
WO2018117477A1 (fr) Acier inoxydable duplex ayant d'excellentes caractéristiques de résistance à la corrosion et d'usinabilité et procédé de fabrication de celui-ci
WO2019039768A1 (fr) Acier inoxydable austénitique à faible teneur en ni présentant d'excellentes propriétés d'ouvrabilité à chaud et de résistance à la fragilisation par l'hydrogène
WO2009145562A2 (fr) Tôle d'acier à haute résistance et excellente ductilité présentant un bord sans crique, tôle d'acier galvanisé à chaud et procédé de production correspondant
WO2017052005A1 (fr) Acier inoxydable ferritique et son procédé de fabrication
WO2020130279A1 (fr) Acier inoxydable à haute résistance mécanique
WO2020004710A1 (fr) Acier inoxydable ferritique à faible teneur en cr présentant une excellente capacité d'amortissement et son procédé de fabrication
KR19990014738A (ko) 자동차 배기계 기기용 페라이트계 스테인레스강
WO2011081236A1 (fr) Feuille d'acier trempé ayant une excellente aptitude au formage à chaud par pression, et son procédé de fabrication
WO2017111436A1 (fr) Acier inoxydable ferritique pour système d'échappement d'automobile, ayant une résistance à la corrosion par piqûre et une résistance à la corrosion par eau de condensation améliorées, et son procédé de fabrication
WO2020122320A1 (fr) Acier inoxydable ferritique à faible teneur en cr présentant une aptitude au formage et des propriétés à température élevée excellentes, et son procédé de fabrication
WO2020130257A1 (fr) Tôle d'acier à haute résistance ayant une excellente ductilité et une excellente aptitude au façonnage, et son procédé de fabrication
WO2021025248A1 (fr) Acier inoxydable ferritique présentant une résistance au fluage à haute température améliorée et son procédé de fabrication
WO2019124690A1 (fr) Acier inoxydable ferritique ayant une aptitude au façonnage améliorée pour la dilatation de tubes et son procédé de fabrication
WO2023121133A1 (fr) Tôle d'acier pour tuyau d'acier de système d'échappement ayant une résistance à la corrosion et une formabilité améliorées, et son procédé de production
WO2023090670A1 (fr) Acier inoxydable ferritique ayant une résistance à la corrosion améliorée et des propriétés magnétiques améliorées, et son procédé de fabrication
WO2018110866A1 (fr) Acier inoxydable à base de ferrite à résistance au choc améliorée, et son procédé de production
WO2020111859A1 (fr) Plaque d'acier pour applications à haute température ayant une excellente résistance à haute température, et son procédé de fabrication
WO2024136135A1 (fr) Acier inoxydable ferritique présentant une meilleure résistance aux chocs et son procédé de fabrication
WO2017111437A1 (fr) Acier inoxydable duplex pauvre et son procédé de fabrication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924969

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018924969

Country of ref document: EP

Effective date: 20201216